code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) class snake_case_ ( __A ): __A : Optional[Any] = "encoder-decoder" __A : Dict = True def __init__( self : str , **lowercase_ : int ) -> Optional[int]: super().__init__(**lowercase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase__ : Tuple = kwargs.pop("encoder" ) lowercase__ : List[str] = encoder_config.pop("model_type" ) lowercase__ : Optional[int] = kwargs.pop("decoder" ) lowercase__ : Optional[int] = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowercase__ : str = AutoConfig.for_model(lowercase_ , **lowercase_ ) lowercase__ : Any = AutoConfig.for_model(lowercase_ , **lowercase_ ) lowercase__ : Dict = True @classmethod def __UpperCamelCase ( cls : str , lowercase_ : PretrainedConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] ) -> PretrainedConfig: logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: lowercase__ : List[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Dict = self.encoder.to_dict() lowercase__ : Tuple = self.decoder.to_dict() lowercase__ : str = self.__class__.model_type return output
333
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class snake_case_ ( __A ): __A : Any = ["image_processor", "tokenizer"] __A : str = "OwlViTImageProcessor" __A : Optional[Any] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : int , lowercase_ : Union[str, Any]=None , lowercase_ : Tuple=None , **lowercase_ : Any ) -> str: lowercase__ : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) lowercase__ : Any = kwargs.pop("feature_extractor" ) lowercase__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) def __call__( self : List[Any] , lowercase_ : List[Any]=None , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : int="max_length" , lowercase_ : List[str]="np" , **lowercase_ : Any ) -> List[Any]: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowercase_ , lowercase_ ) or (isinstance(lowercase_ , lowercase_ ) and not isinstance(text[0] , lowercase_ )): lowercase__ : Optional[int] = [self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors=lowercase_ , **lowercase_ )] elif isinstance(lowercase_ , lowercase_ ) and isinstance(text[0] , lowercase_ ): lowercase__ : str = [] # Maximum number of queries across batch lowercase__ : int = max([len(lowercase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowercase_ ) != max_num_queries: lowercase__ : Tuple = t + [" "] * (max_num_queries - len(lowercase_ )) lowercase__ : Optional[int] = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors=lowercase_ , **lowercase_ ) encodings.append(lowercase_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": lowercase__ : Dict = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowercase__ : int = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowercase__ : Union[str, Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowercase__ : str = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowercase__ : List[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) lowercase__ : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowercase__ : str = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowercase__ : int = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) lowercase__ : int = BatchEncoding() lowercase__ : Optional[Any] = input_ids lowercase__ : Dict = attention_mask if query_images is not None: lowercase__ : Any = BatchEncoding() lowercase__ : Union[str, Any] = self.image_processor( lowercase_ , return_tensors=lowercase_ , **lowercase_ ).pixel_values lowercase__ : int = query_pixel_values if images is not None: lowercase__ : List[Any] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: lowercase__ : Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowercase__ : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def __UpperCamelCase ( self : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : int ) -> List[Any]: return self.image_processor.post_process(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : str , *lowercase_ : str , **lowercase_ : Optional[Any] ) -> Optional[int]: return self.image_processor.post_process_object_detection(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Any: return self.image_processor.post_process_image_guided_detection(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : str , *lowercase_ : Dict , **lowercase_ : str ) -> List[str]: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Any , *lowercase_ : str , **lowercase_ : List[Any] ) -> int: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def __UpperCamelCase ( self : Tuple ) -> Optional[int]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : Any ) -> Optional[int]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , ) return self.image_processor
333
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case_ ( __A ,unittest.TestCase ): __A : Dict = UnCLIPImageVariationPipeline __A : Optional[Any] = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} __A : str = IMAGE_VARIATION_BATCH_PARAMS __A : Optional[Any] = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] __A : Optional[Any] = False @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: return 32 @property def __UpperCamelCase ( self : Dict ) -> List[Any]: return 32 @property def __UpperCamelCase ( self : Any ) -> Optional[int]: return self.time_input_dim @property def __UpperCamelCase ( self : str ) -> Any: return self.time_input_dim * 4 @property def __UpperCamelCase ( self : List[str] ) -> Dict: return 1_00 @property def __UpperCamelCase ( self : Optional[Any] ) -> Any: lowercase__ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def __UpperCamelCase ( self : Any ) -> Any: torch.manual_seed(0 ) lowercase__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(lowercase_ ) @property def __UpperCamelCase ( self : str ) -> Optional[Any]: torch.manual_seed(0 ) lowercase__ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowercase_ ) @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: torch.manual_seed(0 ) lowercase__ : Tuple = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } lowercase__ : Any = UnCLIPTextProjModel(**lowercase_ ) return model @property def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: torch.manual_seed(0 ) lowercase__ : int = { "sample_size": 32, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } lowercase__ : List[Any] = UNetaDConditionModel(**lowercase_ ) return model @property def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) lowercase__ : Optional[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __UpperCamelCase ( self : Any ) -> Optional[Any]: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) lowercase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __UpperCamelCase ( self : Optional[Any] ) -> Dict: lowercase__ : List[str] = self.dummy_decoder lowercase__ : List[Any] = self.dummy_text_proj lowercase__ : Optional[Any] = self.dummy_text_encoder lowercase__ : Union[str, Any] = self.dummy_tokenizer lowercase__ : Dict = self.dummy_super_res_first lowercase__ : Tuple = self.dummy_super_res_last lowercase__ : Dict = UnCLIPScheduler( variance_type="learned_range" , prediction_type="epsilon" , num_train_timesteps=10_00 , ) lowercase__ : Any = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="epsilon" , num_train_timesteps=10_00 , ) lowercase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowercase__ : Union[str, Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Any=0 , lowercase_ : Any=True ) -> Dict: lowercase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith("mps" ): lowercase__ : int = torch.manual_seed(lowercase_ ) else: lowercase__ : Optional[int] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) if pil_image: lowercase__ : List[str] = input_image * 0.5 + 0.5 lowercase__ : Union[str, Any] = input_image.clamp(0 , 1 ) lowercase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(lowercase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __UpperCamelCase ( self : int ) -> Tuple: lowercase__ : Tuple = "cpu" lowercase__ : Tuple = self.get_dummy_components() lowercase__ : Optional[int] = self.pipeline_class(**lowercase_ ) lowercase__ : Optional[Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Optional[int] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : Optional[int] = pipe(**lowercase_ ) lowercase__ : int = output.images lowercase__ : Optional[Any] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : List[Any] = pipe( **lowercase_ , return_dict=lowercase_ , )[0] lowercase__ : List[Any] = image[0, -3:, -3:, -1] lowercase__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : Dict = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : Any ) -> Any: lowercase__ : Tuple = "cpu" lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : Union[str, Any] = self.pipeline_class(**lowercase_ ) lowercase__ : Union[str, Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : int = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : Optional[int] = pipe(**lowercase_ ) lowercase__ : Any = output.images lowercase__ : Dict = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : str = pipe( **lowercase_ , return_dict=lowercase_ , )[0] lowercase__ : str = image[0, -3:, -3:, -1] lowercase__ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : Tuple = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : Union[str, Any] ) -> str: lowercase__ : Tuple = "cpu" lowercase__ : Optional[int] = self.get_dummy_components() lowercase__ : Dict = self.pipeline_class(**lowercase_ ) lowercase__ : List[Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Dict = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : int = [ pipeline_inputs["image"], pipeline_inputs["image"], ] lowercase__ : Optional[int] = pipe(**lowercase_ ) lowercase__ : List[Any] = output.images lowercase__ : Any = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : List[Any] = [ tuple_pipeline_inputs["image"], tuple_pipeline_inputs["image"], ] lowercase__ : Union[str, Any] = pipe( **lowercase_ , return_dict=lowercase_ , )[0] lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowercase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowercase__ : Optional[int] = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowercase__ : int = torch.device("cpu" ) class snake_case_ : __A : Optional[int] = 1 lowercase__ : Optional[int] = self.get_dummy_components() lowercase__ : List[Any] = self.pipeline_class(**lowercase_ ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Optional[Any] = torch.Generator(device=lowercase_ ).manual_seed(0 ) lowercase__ : Optional[Any] = pipe.decoder.dtype lowercase__ : List[Any] = 1 lowercase__ : List[Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowercase__ : List[Any] = pipe.prepare_latents( lowercase_ , dtype=lowercase_ , device=lowercase_ , generator=lowercase_ , latents=lowercase_ , scheduler=DummyScheduler() ) lowercase__ : Any = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowercase__ : Optional[int] = pipe.prepare_latents( lowercase_ , dtype=lowercase_ , device=lowercase_ , generator=lowercase_ , latents=lowercase_ , scheduler=DummyScheduler() ) lowercase__ : List[str] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : List[Any] = pipe( **lowercase_ , decoder_latents=lowercase_ , super_res_latents=lowercase_ ).images lowercase__ : List[str] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) # Don't pass image, instead pass embedding lowercase__ : Tuple = pipeline_inputs.pop("image" ) lowercase__ : Tuple = pipe.image_encoder(lowercase_ ).image_embeds lowercase__ : str = pipe( **lowercase_ , decoder_latents=lowercase_ , super_res_latents=lowercase_ , image_embeddings=lowercase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def __UpperCamelCase ( self : int ) -> Optional[int]: lowercase__ : List[str] = torch_device == "cpu" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowercase__ : List[Any] = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , expected_max_diff=lowercase_ ) @skip_mps def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: lowercase__ : Optional[int] = torch_device == "cpu" lowercase__ : List[str] = True lowercase__ : Union[str, Any] = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , additional_params_copy_to_batched_inputs=lowercase_ , ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: lowercase__ : Dict = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowercase__ : List[Any] = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowercase_ , additional_params_copy_to_batched_inputs=lowercase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowercase_ ) @skip_mps def __UpperCamelCase ( self : int ) -> Optional[int]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: return super().test_save_load_local() @skip_mps def __UpperCamelCase ( self : Any ) -> Dict: return super().test_save_load_optional_components() @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" ) lowercase__ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy" ) lowercase__ : List[Any] = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations" , torch_dtype=torch.floataa ) lowercase__ : List[str] = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : List[Any] = pipeline( lowercase_ , generator=lowercase_ , output_type="np" , ) lowercase__ : Dict = output.images[0] assert image.shape == (2_56, 2_56, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ , 15 )
333
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor UpperCamelCase = random.Random() def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Dict=1.0 , _lowerCamelCase : Any=None , _lowerCamelCase : Dict=None): if rng is None: lowercase__ : str = global_rng lowercase__ : Optional[Any] = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_torchaudio class snake_case_ ( unittest.TestCase ): def __init__( self : int , lowercase_ : int , lowercase_ : Any=7 , lowercase_ : Any=4_00 , lowercase_ : Any=20_00 , lowercase_ : str=24 , lowercase_ : Union[str, Any]=24 , lowercase_ : List[str]=0.0 , lowercase_ : Union[str, Any]=1_60_00 , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=True , ) -> Optional[int]: lowercase__ : Optional[Any] = parent lowercase__ : int = batch_size lowercase__ : str = min_seq_length lowercase__ : Union[str, Any] = max_seq_length lowercase__ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ : Optional[int] = feature_size lowercase__ : List[Any] = num_mel_bins lowercase__ : Optional[int] = padding_value lowercase__ : Union[str, Any] = sampling_rate lowercase__ : Any = return_attention_mask lowercase__ : List[str] = do_normalize def __UpperCamelCase ( self : Union[str, Any] ) -> Any: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase ( self : List[Any] , lowercase_ : int=False , lowercase_ : Optional[int]=False ) -> str: def _flatten(lowercase_ : Any ): return list(itertools.chain(*lowercase_ ) ) if equal_length: lowercase__ : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : str = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case_ ( __A ,unittest.TestCase ): __A : Tuple = SpeechaTextFeatureExtractor if is_speech_available() else None def __UpperCamelCase ( self : Any ) -> int: lowercase__ : Dict = SpeechaTextFeatureExtractionTester(self ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[int] ) -> Dict: self.assertTrue(np.all(np.mean(lowercase_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase_ , axis=0 ) - 1 ) < 1E-3 ) ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus lowercase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : Optional[int] = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test feature size lowercase__ : List[str] = feature_extractor(lowercase_ , padding=lowercase_ , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowercase__ : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features lowercase__ : int = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test batched lowercase__ : Dict = feature_extractor(lowercase_ , return_tensors="np" ).input_features lowercase__ : Dict = feature_extractor(lowercase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ : Any = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowercase__ : Dict = np.asarray(lowercase_ ) lowercase__ : int = feature_extractor(lowercase_ , return_tensors="np" ).input_features lowercase__ : List[str] = feature_extractor(lowercase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : int = ["longest", "max_length", "do_not_pad"] lowercase__ : Union[str, Any] = [None, 16, None] for max_length, padding in zip(lowercase_ , lowercase_ ): lowercase__ : List[Any] = feature_extractor( lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_attention_mask=lowercase_ ) lowercase__ : Union[str, Any] = inputs.input_features lowercase__ : Dict = inputs.attention_mask lowercase__ : List[Any] = [np.sum(lowercase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: lowercase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : List[Any] = ["longest", "max_length", "do_not_pad"] lowercase__ : int = [None, 16, None] for max_length, padding in zip(lowercase_ , lowercase_ ): lowercase__ : Tuple = feature_extractor( lowercase_ , max_length=lowercase_ , padding=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ ) lowercase__ : List[Any] = inputs.input_features lowercase__ : Any = inputs.attention_mask lowercase__ : List[Any] = [np.sum(lowercase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __UpperCamelCase ( self : List[str] ) -> List[str]: lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : str = feature_extractor( lowercase_ , padding="max_length" , max_length=4 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , ) lowercase__ : Tuple = inputs.input_features lowercase__ : Tuple = inputs.attention_mask lowercase__ : Union[str, Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __UpperCamelCase ( self : List[Any] ) -> str: lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Dict = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : Tuple = feature_extractor( lowercase_ , padding="longest" , max_length=4 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , ) lowercase__ : Dict = inputs.input_features lowercase__ : List[Any] = inputs.attention_mask lowercase__ : int = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) lowercase__ : Any = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : Optional[int] = feature_extractor( lowercase_ , padding="longest" , max_length=16 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , ) lowercase__ : List[Any] = inputs.input_features lowercase__ : Union[str, Any] = inputs.attention_mask lowercase__ : List[str] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __UpperCamelCase ( self : Dict ) -> Optional[Any]: import torch lowercase__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : str = np.random.rand(1_00 , 32 ).astype(np.floataa ) lowercase__ : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ : List[Any] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowercase__ : int = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __UpperCamelCase ( self : Dict , lowercase_ : str ) -> List[str]: from datasets import load_dataset lowercase__ : List[str] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowercase__ : Optional[Any] = ds.sort("id" ).select(range(lowercase_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __UpperCamelCase ( self : str ) -> str: # fmt: off lowercase__ : Optional[int] = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on lowercase__ : List[str] = self._load_datasamples(1 ) lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Optional[int] = feature_extractor(lowercase_ , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , lowercase_ , atol=1E-4 ) )
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
1
def lowercase_ ( ): return [list(range(1000 - i , -1000 - i , -1)) for i in range(1000)] UpperCamelCase = generate_large_matrix() UpperCamelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowercase_ ( _lowerCamelCase : list[list[int]]): assert all(row == sorted(_lowerCamelCase , reverse=_lowerCamelCase) for row in grid) assert all(list(_lowerCamelCase) == sorted(_lowerCamelCase , reverse=_lowerCamelCase) for col in zip(*_lowerCamelCase)) def lowercase_ ( _lowerCamelCase : list[int]): lowercase__ : Tuple = 0 lowercase__ : str = len(_lowerCamelCase) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowercase__ : int = (left + right) // 2 lowercase__ : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowercase__ : Optional[Any] = mid + 1 else: lowercase__ : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : list[list[int]]): lowercase__ : str = 0 lowercase__ : Optional[Any] = len(grid[0]) for i in range(len(_lowerCamelCase)): lowercase__ : List[Any] = find_negative_index(grid[i][:bound]) total += bound return (len(_lowerCamelCase) * len(grid[0])) - total def lowercase_ ( _lowerCamelCase : list[list[int]]): return len([number for row in grid for number in row if number < 0]) def lowercase_ ( _lowerCamelCase : list[list[int]]): lowercase__ : List[Any] = 0 for row in grid: for i, number in enumerate(_lowerCamelCase): if number < 0: total += len(_lowerCamelCase) - i break return total def lowercase_ ( ): from timeit import timeit print("Running benchmarks") lowercase__ : Optional[int] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowercase__ : Any = timeit(f'''{func}(grid=grid)''' , setup=_lowerCamelCase , number=500) print(f'''{func}() took {time:0.4f} seconds''') if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) UpperCamelCase = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) UpperCamelCase = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) UpperCamelCase = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) UpperCamelCase = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) UpperCamelCase = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class snake_case_ ( _BaseAutoModelClass ): __A : Tuple = FLAX_MODEL_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModel) class snake_case_ ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class snake_case_ ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class snake_case_ ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class snake_case_ ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class snake_case_ ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class snake_case_ ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class snake_case_ ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class snake_case_ ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class snake_case_ ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class snake_case_ ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class snake_case_ ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class snake_case_ ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
333
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowercase_ ( _lowerCamelCase : str): lowercase__ : str = 384 if "tiny" in model_name: lowercase__ : Optional[int] = [3, 3, 9, 3] lowercase__ : str = [96, 192, 384, 768] if "small" in model_name: lowercase__ : Union[str, Any] = [3, 3, 27, 3] lowercase__ : List[str] = [96, 192, 384, 768] if "base" in model_name: lowercase__ : Union[str, Any] = [3, 3, 27, 3] lowercase__ : Dict = [128, 256, 512, 1024] lowercase__ : Union[str, Any] = 512 if "large" in model_name: lowercase__ : Tuple = [3, 3, 27, 3] lowercase__ : str = [192, 384, 768, 1536] lowercase__ : Dict = 768 if "xlarge" in model_name: lowercase__ : List[Any] = [3, 3, 27, 3] lowercase__ : str = [256, 512, 1024, 2048] lowercase__ : Optional[int] = 1024 # set label information lowercase__ : Optional[int] = 150 lowercase__ : Tuple = "huggingface/label-files" lowercase__ : Optional[int] = "ade20k-id2label.json" lowercase__ : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset") , "r")) lowercase__ : str = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : int = {v: k for k, v in idalabel.items()} lowercase__ : Optional[Any] = ConvNextConfig( depths=_lowerCamelCase , hidden_sizes=_lowerCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"]) lowercase__ : Tuple = UperNetConfig( backbone_config=_lowerCamelCase , auxiliary_in_channels=_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , ) return config def lowercase_ ( _lowerCamelCase : Tuple): lowercase__ : str = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight")) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias")) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight")) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''')) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''')) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''')) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''')) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''')) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''')) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''')) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''')) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''')) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''')) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''')) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''')) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''')) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''')) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''')) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ]) # fmt: on return rename_keys def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : List[Any] = dct.pop(_lowerCamelCase) lowercase__ : str = val def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str): lowercase__ : Any = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } lowercase__ : int = model_name_to_url[model_name] lowercase__ : str = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")["state_dict"] lowercase__ : int = get_upernet_config(_lowerCamelCase) lowercase__ : Optional[int] = UperNetForSemanticSegmentation(_lowerCamelCase) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase__ : Union[str, Any] = state_dict.pop(_lowerCamelCase) if "bn" in key: lowercase__ : List[str] = key.replace("bn" , "batch_norm") lowercase__ : Optional[int] = val # rename keys lowercase__ : Optional[int] = create_rename_keys(_lowerCamelCase) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) model.load_state_dict(_lowerCamelCase) # verify on image lowercase__ : Any = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowercase__ : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw).convert("RGB") lowercase__ : Union[str, Any] = SegformerImageProcessor() lowercase__ : Tuple = processor(_lowerCamelCase , return_tensors="pt").pixel_values with torch.no_grad(): lowercase__ : Optional[Any] = model(_lowerCamelCase) if model_name == "upernet-convnext-tiny": lowercase__ : List[Any] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]) elif model_name == "upernet-convnext-small": lowercase__ : Tuple = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]]) elif model_name == "upernet-convnext-base": lowercase__ : Optional[Any] = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]]) elif model_name == "upernet-convnext-large": lowercase__ : Any = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]]) elif model_name == "upernet-convnext-xlarge": lowercase__ : int = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]]) print("Logits:" , outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving processor to {pytorch_dump_folder_path}''') processor.save_pretrained(_lowerCamelCase) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''') model.push_to_hub(f'''openmmlab/{model_name}''') processor.push_to_hub(f'''openmmlab/{model_name}''') if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[f"upernet-convnext-{size}" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCamelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
333
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
1
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: lowercase__ : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) lowercase__ : Tuple = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) sd_pipe.set_scheduler("sample_euler" ) lowercase__ : Dict = "A painting of a squirrel eating a burger" lowercase__ : Union[str, Any] = torch.manual_seed(0 ) lowercase__ : List[Any] = sd_pipe([prompt] , generator=lowercase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) lowercase__ : Dict = output.images lowercase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase__ : Any = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : str ) -> Dict: lowercase__ : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase__ : Tuple = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) sd_pipe.set_scheduler("sample_euler" ) lowercase__ : Optional[Any] = "A painting of a squirrel eating a burger" lowercase__ : Optional[Any] = torch.manual_seed(0 ) lowercase__ : str = sd_pipe([prompt] , generator=lowercase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) lowercase__ : List[Any] = output.images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase__ : Union[str, Any] = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase__ : int = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) lowercase__ : Any = "A painting of a squirrel eating a burger" lowercase__ : Any = torch.manual_seed(0 ) lowercase__ : List[Any] = sd_pipe( [prompt] , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=lowercase_ , ) lowercase__ : Any = output.images lowercase__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase__ : List[str] = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel UpperCamelCase = False UpperCamelCase = True UpperCamelCase = False if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') UpperCamelCase = parser.parse_args() UpperCamelCase = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } UpperCamelCase = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } UpperCamelCase = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: UpperCamelCase = reader.read() UpperCamelCase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): UpperCamelCase = UNetaDModel(**config) else: UpperCamelCase = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel UpperCamelCase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) UpperCamelCase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: UpperCamelCase = config[key] del config[key] UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: UpperCamelCase = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) UpperCamelCase = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue UpperCamelCase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: UpperCamelCase = param_value UpperCamelCase = True if not has_changed: UpperCamelCase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
333
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
1
UpperCamelCase = 8.314_462 # Unit - J mol-1 K-1 def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value.") return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value.") return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } UpperCamelCase = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase_ ( ): lowercase__ : int = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowercase__ : str = bs[:] lowercase__ : List[str] = 0 for b in range(2**8): if b not in bs: bs.append(_lowerCamelCase) cs.append(2**8 + n) n += 1 lowercase__ : int = [chr(_lowerCamelCase) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase)) def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : Optional[Any] = set() lowercase__ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowercase__ : Tuple = char return pairs class snake_case_ ( __A ): __A : int = VOCAB_FILES_NAMES __A : int = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : int = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : int="replace" , lowercase_ : Optional[int]="<s>" , lowercase_ : Optional[Any]="</s>" , lowercase_ : int="</s>" , lowercase_ : str="<s>" , lowercase_ : int="<unk>" , lowercase_ : int="<pad>" , lowercase_ : Union[str, Any]="<mask>" , lowercase_ : List[str]=False , **lowercase_ : List[str] , ) -> int: lowercase__ : List[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token lowercase__ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token lowercase__ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token lowercase__ : List[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token lowercase__ : Dict = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else unk_token lowercase__ : List[str] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ : List[str] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: lowercase__ : List[str] = json.load(lowercase_ ) lowercase__ : Optional[int] = {v: k for k, v in self.encoder.items()} lowercase__ : Optional[int] = errors # how to handle errors in decoding lowercase__ : str = bytes_to_unicode() lowercase__ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowercase_ , encoding="utf-8" ) as merges_handle: lowercase__ : Any = merges_handle.read().split("\n" )[1:-1] lowercase__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ : List[str] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : int = {} lowercase__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ : Tuple = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Dict ) -> Optional[int]: return len(self.encoder ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : Dict , lowercase_ : Dict ) -> List[str]: if token in self.cache: return self.cache[token] lowercase__ : Union[str, Any] = tuple(lowercase_ ) lowercase__ : List[Any] = get_pairs(lowercase_ ) if not pairs: return token while True: lowercase__ : Any = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : Union[str, Any] = bigram lowercase__ : Optional[Any] = [] lowercase__ : str = 0 while i < len(lowercase_ ): try: lowercase__ : str = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : Any = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : List[Any] = tuple(lowercase_ ) lowercase__ : str = new_word if len(lowercase_ ) == 1: break else: lowercase__ : int = get_pairs(lowercase_ ) lowercase__ : List[str] = " ".join(lowercase_ ) lowercase__ : Tuple = word return word def __UpperCamelCase ( self : str , lowercase_ : Optional[int] ) -> List[Any]: lowercase__ : Optional[Any] = [] for token in re.findall(self.pat , lowercase_ ): lowercase__ : Optional[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase_ ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[Any] ) -> Optional[int]: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Dict , lowercase_ : List[str] ) -> Union[str, Any]: return self.decoder.get(lowercase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: lowercase__ : Dict = "".join(lowercase_ ) lowercase__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : Optional[Any] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) lowercase__ : Optional[Any] = 0 with open(lowercase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowercase__ : str = token_index writer.write(" ".join(lowercase_ ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def __UpperCamelCase ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : List[Any] , lowercase_ : Tuple , lowercase_ : str=False , **lowercase_ : Union[str, Any] ) -> Union[str, Any]: lowercase__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase_ ) > 0 and not text[0].isspace()): lowercase__ : Optional[Any] = " " + text return (text, kwargs) def __UpperCamelCase ( self : Dict , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> str: return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : List[str] , lowercase_ : "Conversation" ) -> List[int]: lowercase__ : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(lowercase_ ) lowercase__ : Optional[Any] = " ".join(lowercase_ ) lowercase__ : int = self.encode(lowercase_ ) if len(lowercase_ ) > self.model_max_length: lowercase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
333
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowercase_ ( _lowerCamelCase : int=None): if subparsers is not None: lowercase__ : Dict = subparsers.add_parser("test") else: lowercase__ : List[str] = argparse.ArgumentParser("Accelerate test command") parser.add_argument( "--config_file" , default=_lowerCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase) return parser def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : List[str] = os.path.sep.join(__file__.split(os.path.sep)[:-2] + ["test_utils", "scripts", "test_script.py"]) if args.config_file is None: lowercase__ : Union[str, Any] = script_name else: lowercase__ : Union[str, Any] = f'''--config_file={args.config_file} {script_name}''' lowercase__ : List[str] = ["accelerate-launch"] + test_args.split() lowercase__ : Optional[Any] = execute_subprocess_async(_lowerCamelCase , env=os.environ.copy()) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!") def lowercase_ ( ): lowercase__ : int = test_command_parser() lowercase__ : Optional[int] = parser.parse_args() test_command(_lowerCamelCase) if __name__ == "__main__": main()
333
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = '''src/diffusers''' UpperCamelCase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase = spec.loader.load_module() def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any]): return line.startswith(_lowerCamelCase) or len(_lowerCamelCase) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , _lowerCamelCase) is not None def lowercase_ ( _lowerCamelCase : Union[str, Any]): lowercase__ : Tuple = object_name.split(".") lowercase__ : int = 0 # First let's find the module where our object lives. lowercase__ : List[Any] = parts[i] while i < len(_lowerCamelCase) and not os.path.isfile(os.path.join(_lowerCamelCase , f'''{module}.py''')): i += 1 if i < len(_lowerCamelCase): lowercase__ : Optional[int] = os.path.join(_lowerCamelCase , parts[i]) if i >= len(_lowerCamelCase): raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''') with open(os.path.join(_lowerCamelCase , f'''{module}.py''') , "r" , encoding="utf-8" , newline="\n") as f: lowercase__ : str = f.readlines() # Now let's find the class / func in the code! lowercase__ : Dict = "" lowercase__ : Optional[int] = 0 for name in parts[i + 1 :]: while ( line_index < len(_lowerCamelCase) and re.search(Rf'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index]) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_lowerCamelCase): raise ValueError(f''' {object_name} does not match any function or class in {module}.''') # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowercase__ : int = line_index while line_index < len(_lowerCamelCase) and _should_continue(lines[line_index] , _lowerCamelCase): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 lowercase__ : str = lines[start_index:line_index] return "".join(_lowerCamelCase) UpperCamelCase = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') UpperCamelCase = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') UpperCamelCase = re.compile(R'''<FILL\s+[^>]*>''') def lowercase_ ( _lowerCamelCase : Tuple): lowercase__ : List[str] = code.split("\n") lowercase__ : Any = 0 while idx < len(_lowerCamelCase) and len(lines[idx]) == 0: idx += 1 if idx < len(_lowerCamelCase): return re.search(R"^(\s*)\S" , lines[idx]).groups()[0] return "" def lowercase_ ( _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = len(get_indent(_lowerCamelCase)) > 0 if has_indent: lowercase__ : List[str] = f'''class Bla:\n{code}''' lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_lowerCamelCase) lowercase__ : Tuple = black.format_str(_lowerCamelCase , mode=_lowerCamelCase) lowercase__ , lowercase__ : Dict = style_docstrings_in_code(_lowerCamelCase) return result[len("class Bla:\n") :] if has_indent else result def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=False): with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n") as f: lowercase__ : Optional[int] = f.readlines() lowercase__ : Optional[Any] = [] lowercase__ : int = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_lowerCamelCase): lowercase__ : Dict = _re_copy_warning.search(lines[line_index]) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowercase__ , lowercase__ , lowercase__ : Any = search.groups() lowercase__ : Dict = find_code_in_diffusers(_lowerCamelCase) lowercase__ : Optional[Any] = get_indent(_lowerCamelCase) lowercase__ : List[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 lowercase__ : List[str] = theoretical_indent lowercase__ : Union[str, Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowercase__ : str = True while line_index < len(_lowerCamelCase) and should_continue: line_index += 1 if line_index >= len(_lowerCamelCase): break lowercase__ : Dict = lines[line_index] lowercase__ : List[str] = _should_continue(_lowerCamelCase , _lowerCamelCase) and re.search(f'''^{indent}# End copy''' , _lowerCamelCase) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 lowercase__ : Any = lines[start_index:line_index] lowercase__ : List[Any] = "".join(_lowerCamelCase) # Remove any nested `Copied from` comments to avoid circular copies lowercase__ : List[Any] = [line for line in theoretical_code.split("\n") if _re_copy_warning.search(_lowerCamelCase) is None] lowercase__ : Optional[Any] = "\n".join(_lowerCamelCase) # Before comparing, use the `replace_pattern` on the original code. if len(_lowerCamelCase) > 0: lowercase__ : Dict = replace_pattern.replace("with" , "").split(",") lowercase__ : Any = [_re_replace_pattern.search(_lowerCamelCase) for p in patterns] for pattern in patterns: if pattern is None: continue lowercase__ , lowercase__ , lowercase__ : int = pattern.groups() lowercase__ : List[str] = re.sub(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if option.strip() == "all-casing": lowercase__ : Optional[Any] = re.sub(obja.lower() , obja.lower() , _lowerCamelCase) lowercase__ : int = re.sub(obja.upper() , obja.upper() , _lowerCamelCase) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowercase__ : Dict = blackify(lines[start_index - 1] + theoretical_code) lowercase__ : Tuple = theoretical_code[len(lines[start_index - 1]) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index]) if overwrite: lowercase__ : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] lowercase__ : Optional[int] = start_index + 1 if overwrite and len(_lowerCamelCase) > 0: # Warn the user a file has been modified. print(f'''Detected changes, rewriting {filename}.''') with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(_lowerCamelCase) return diffs def lowercase_ ( _lowerCamelCase : bool = False): lowercase__ : Optional[Any] = glob.glob(os.path.join(_lowerCamelCase , "**/*.py") , recursive=_lowerCamelCase) lowercase__ : str = [] for filename in all_files: lowercase__ : List[str] = is_copy_consistent(_lowerCamelCase , _lowerCamelCase) diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(_lowerCamelCase) > 0: lowercase__ : Tuple = "\n".join(_lowerCamelCase) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCamelCase = parser.parse_args() check_copies(args.fix_and_overwrite)
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase = 256 class snake_case_ ( __A ): __A : str = ["melgan"] def __init__( self : str , lowercase_ : SpectrogramNotesEncoder , lowercase_ : SpectrogramContEncoder , lowercase_ : TaFilmDecoder , lowercase_ : DDPMScheduler , lowercase_ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN lowercase__ : Dict = math.log(1E-5 ) # Matches MelGAN training. lowercase__ : Dict = 4.0 # Largest value for most examples lowercase__ : str = 1_28 self.register_modules( notes_encoder=lowercase_ , continuous_encoder=lowercase_ , decoder=lowercase_ , scheduler=lowercase_ , melgan=lowercase_ , ) def __UpperCamelCase ( self : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]=(-1.0, 1.0) , lowercase_ : Optional[int]=False ) -> Any: lowercase__ , lowercase__ : Dict = output_range if clip: lowercase__ : List[str] = torch.clip(lowercase_ , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__ : int = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __UpperCamelCase ( self : str , lowercase_ : int , lowercase_ : Union[str, Any]=(-1.0, 1.0) , lowercase_ : Optional[Any]=False ) -> Dict: lowercase__ , lowercase__ : Optional[Any] = input_range lowercase__ : str = torch.clip(lowercase_ , lowercase_ , lowercase_ ) if clip else outputs # Scale to [0, 1]. lowercase__ : List[str] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __UpperCamelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str ) -> List[Any]: lowercase__ : List[str] = input_tokens > 0 lowercase__ , lowercase__ : Optional[Any] = self.notes_encoder( encoder_input_tokens=lowercase_ , encoder_inputs_mask=lowercase_ ) lowercase__ , lowercase__ : List[Any] = self.continuous_encoder( encoder_inputs=lowercase_ , encoder_inputs_mask=lowercase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __UpperCamelCase ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : int ) -> int: lowercase__ : Tuple = noise_time if not torch.is_tensor(lowercase_ ): lowercase__ : str = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(lowercase_ ) and len(timesteps.shape ) == 0: lowercase__ : Union[str, Any] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__ : List[Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__ : Dict = self.decoder( encodings_and_masks=lowercase_ , decoder_input_tokens=lowercase_ , decoder_noise_time=lowercase_ ) return logits @torch.no_grad() def __call__( self : Union[str, Any] , lowercase_ : List[List[int]] , lowercase_ : Optional[torch.Generator] = None , lowercase_ : int = 1_00 , lowercase_ : bool = True , lowercase_ : str = "numpy" , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(lowercase_ )}.''' ) lowercase__ : List[Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__ : List[str] = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__ : List[str] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=lowercase_ , device=self.device ) for i, encoder_input_tokens in enumerate(lowercase_ ): if i == 0: lowercase__ : str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__ : str = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=lowercase_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__ : Tuple = ones lowercase__ : int = self.scale_features( lowercase_ , output_range=[-1.0, 1.0] , clip=lowercase_ ) lowercase__ : Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=lowercase_ , continuous_mask=lowercase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__ : Union[str, Any] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=lowercase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(lowercase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : int = self.decode( encodings_and_masks=lowercase_ , input_tokens=lowercase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__ : Any = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample lowercase__ : str = self.scale_to_features(lowercase_ , input_range=[-1.0, 1.0] ) lowercase__ : List[str] = mel[:1] lowercase__ : List[Any] = mel.cpu().float().numpy() lowercase__ : Any = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ ) logger.info("Generated segment" , lowercase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": lowercase__ : Union[str, Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__ : int = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowercase_ )
333
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
1
def lowercase_ ( _lowerCamelCase : int): if not isinstance(_lowerCamelCase , _lowerCamelCase): lowercase__ : Dict = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowerCamelCase) if number < 0: return False lowercase__ : int = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
333
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
1
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) lowercase__ : int = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(lowercase_ ) from datasets import load_dataset lowercase__ : str = load_dataset("nielsr/rvlcdip-demo" ) lowercase__ : int = dataset["train"][0]["image"].convert("RGB" ) lowercase__ : Tuple = image_processor(lowercase_ , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**lowercase_ ) lowercase__ : List[Any] = outputs.logits lowercase__ : Tuple = torch.Size((1, 16) ) self.assertEqual(logits.shape , lowercase_ ) lowercase__ : Union[str, Any] = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=lowercase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) )
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
1
UpperCamelCase = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} UpperCamelCase = ['''a''', '''b''', '''c''', '''d''', '''e'''] def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple): lowercase__ : Any = start # add current to visited visited.append(_lowerCamelCase) lowercase__ : List[Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowercase__ : Optional[Any] = topological_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # if all neighbors visited add current to sort sort.append(_lowerCamelCase) # if all vertices haven't been visited select a new one to visit if len(_lowerCamelCase) != len(_lowerCamelCase): for vertice in vertices: if vertice not in visited: lowercase__ : Optional[Any] = topological_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # return sort return sort if __name__ == "__main__": UpperCamelCase = topological_sort('''a''', [], []) print(sort)
333
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
333
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(__A ) class snake_case_ ( __A ): def __init__( self : List[Any] , **lowercase_ : Union[str, Any] ) -> Optional[int]: super().__init__(**lowercase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict , lowercase_ : Union[str, List[str], "Image", List["Image"]] , **lowercase_ : Any ) -> Optional[int]: return super().__call__(lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Dict , **lowercase_ : int ) -> Optional[int]: lowercase__ : List[Any] = {} if "candidate_labels" in kwargs: lowercase__ : Optional[Any] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __UpperCamelCase ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : int=None , lowercase_ : Any="This is a photo of {}." ) -> List[str]: lowercase__ : Tuple = load_image(lowercase_ ) lowercase__ : Union[str, Any] = self.image_processor(images=[image] , return_tensors=self.framework ) lowercase__ : Union[str, Any] = candidate_labels lowercase__ : List[str] = [hypothesis_template.format(lowercase_ ) for x in candidate_labels] lowercase__ : List[Any] = self.tokenizer(lowercase_ , return_tensors=self.framework , padding=lowercase_ ) lowercase__ : Optional[int] = [text_inputs] return inputs def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str ) -> Tuple: lowercase__ : int = model_inputs.pop("candidate_labels" ) lowercase__ : Dict = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , lowercase_ ): lowercase__ : Any = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Union[str, Any] = self.model(**lowercase_ , **lowercase_ ) lowercase__ : List[Any] = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def __UpperCamelCase ( self : List[str] , lowercase_ : Union[str, Any] ) -> Tuple: lowercase__ : Optional[Any] = model_outputs.pop("candidate_labels" ) lowercase__ : Dict = model_outputs["logits"][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Optional[Any] = probs.tolist() if not isinstance(lowercase_ , lowercase_ ): lowercase__ : List[str] = [scores] elif self.framework == "tf": lowercase__ : str = stable_softmax(lowercase_ , axis=-1 ) lowercase__ : Union[str, Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowercase__ : Union[str, Any] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(lowercase_ , lowercase_ ) , key=lambda lowercase_ : -x[0] ) ] return result
333
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase_ ( _lowerCamelCase : Any): lowercase__ , lowercase__ : Optional[Any] = image.size lowercase__ , lowercase__ : int = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase__ : int = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"]) lowercase__ : Union[str, Any] = np.array(_lowerCamelCase).astype(np.floataa) / 255.0 lowercase__ : Union[str, Any] = image[None].transpose(0 , 3 , 1 , 2) lowercase__ : Dict = torch.from_numpy(_lowerCamelCase) return 2.0 * image - 1.0 class snake_case_ ( __A ): def __init__( self : str , lowercase_ : VQModel , lowercase_ : UNetaDModel , lowercase_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> List[Any]: super().__init__() self.register_modules(vqvae=lowercase_ , unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : Tuple , lowercase_ : Union[torch.Tensor, PIL.Image.Image] = None , lowercase_ : Optional[int] = 1 , lowercase_ : Optional[int] = 1_00 , lowercase_ : Optional[float] = 0.0 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowercase_ , PIL.Image.Image ): lowercase__ : Any = 1 elif isinstance(lowercase_ , torch.Tensor ): lowercase__ : List[Any] = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowercase_ )}''' ) if isinstance(lowercase_ , PIL.Image.Image ): lowercase__ : str = preprocess(lowercase_ ) lowercase__ , lowercase__ : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowercase__ : Tuple = (batch_size, self.unet.config.in_channels // 2, height, width) lowercase__ : Any = next(self.unet.parameters() ).dtype lowercase__ : Optional[int] = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) lowercase__ : Tuple = image.to(device=self.device , dtype=lowercase_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowercase_ , device=self.device ) lowercase__ : Optional[Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowercase__ : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : List[str] = {} if accepts_eta: lowercase__ : int = eta for t in self.progress_bar(lowercase_ ): # concat latents and low resolution image in the channel dimension. lowercase__ : Optional[int] = torch.cat([latents, image] , dim=1 ) lowercase__ : Optional[int] = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual lowercase__ : Tuple = self.unet(lowercase_ , lowercase_ ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Optional[int] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample # decode the image latents with the VQVAE lowercase__ : Union[str, Any] = self.vqvae.decode(lowercase_ ).sample lowercase__ : str = torch.clamp(lowercase_ , -1.0 , 1.0 ) lowercase__ : Any = image / 2 + 0.5 lowercase__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ : Optional[Any] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
333
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class snake_case_ ( __A ): __A : List[Any] = "efficientnet" def __init__( self : Optional[Any] , lowercase_ : int = 3 , lowercase_ : int = 6_00 , lowercase_ : float = 2.0 , lowercase_ : float = 3.1 , lowercase_ : int = 8 , lowercase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowercase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowercase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowercase_ : List[int] = [] , lowercase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowercase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowercase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowercase_ : float = 0.25 , lowercase_ : str = "swish" , lowercase_ : int = 25_60 , lowercase_ : str = "mean" , lowercase_ : float = 0.02 , lowercase_ : float = 0.0_01 , lowercase_ : float = 0.99 , lowercase_ : float = 0.5 , lowercase_ : float = 0.2 , **lowercase_ : Optional[int] , ) -> List[Any]: super().__init__(**lowercase_ ) lowercase__ : Tuple = num_channels lowercase__ : Optional[Any] = image_size lowercase__ : List[Any] = width_coefficient lowercase__ : List[str] = depth_coefficient lowercase__ : Optional[Any] = depth_divisor lowercase__ : Dict = kernel_sizes lowercase__ : List[str] = in_channels lowercase__ : Dict = out_channels lowercase__ : str = depthwise_padding lowercase__ : int = strides lowercase__ : int = num_block_repeats lowercase__ : int = expand_ratios lowercase__ : Any = squeeze_expansion_ratio lowercase__ : List[Any] = hidden_act lowercase__ : int = hidden_dim lowercase__ : Optional[Any] = pooling_type lowercase__ : str = initializer_range lowercase__ : Optional[Any] = batch_norm_eps lowercase__ : Dict = batch_norm_momentum lowercase__ : List[str] = dropout_rate lowercase__ : Optional[int] = drop_connect_rate lowercase__ : Union[str, Any] = sum(lowercase_ ) * 4 class snake_case_ ( __A ): __A : Union[str, Any] = version.parse("1.11" ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __UpperCamelCase ( self : List[Any] ) -> float: return 1E-5
333
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A ,__A ,unittest.TestCase ): __A : Optional[Any] = StableDiffusionSAGPipeline __A : Optional[Any] = TEXT_TO_IMAGE_PARAMS __A : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : List[Any] = False def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: torch.manual_seed(0 ) lowercase__ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowercase__ : Tuple = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowercase__ : Union[str, Any] = CLIPTextModel(lowercase_ ) lowercase__ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase__ : Tuple = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __UpperCamelCase ( self : Tuple , lowercase_ : Any , lowercase_ : int=0 ) -> str: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Dict = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[int] = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Tuple ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: lowercase__ : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) lowercase__ : Dict = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Optional[Any] = "." lowercase__ : Optional[int] = torch.manual_seed(0 ) lowercase__ : int = sag_pipe( [prompt] , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) lowercase__ : Optional[int] = output.images lowercase__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase__ : Any = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : Tuple = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase__ : List[Any] = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Union[str, Any] = "." lowercase__ : Tuple = torch.manual_seed(0 ) lowercase__ : Any = sag_pipe( [prompt] , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) lowercase__ : int = output.images lowercase__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase__ : Dict = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __UpperCamelCase ( self : int ) -> List[Any]: lowercase__ : List[str] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase__ : Tuple = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Dict = "." lowercase__ : Optional[Any] = torch.manual_seed(0 ) lowercase__ : Any = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) lowercase__ : Dict = output.images assert image.shape == (1, 5_12, 7_68, 3)
333
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
1
from __future__ import annotations from collections.abc import Iterator class snake_case_ : def __init__( self : List[Any] , lowercase_ : int ) -> None: lowercase__ : Dict = value lowercase__ : Node | None = None lowercase__ : Node | None = None class snake_case_ : def __init__( self : Union[str, Any] , lowercase_ : Node ) -> None: lowercase__ : Tuple = tree def __UpperCamelCase ( self : int , lowercase_ : Node | None ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
333
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
1
from __future__ import annotations def lowercase_ ( _lowerCamelCase : tuple[int, int] , _lowerCamelCase : int): lowercase__ , lowercase__ : Dict = position lowercase__ : int = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ : Union[str, Any] = [] for position in positions: lowercase__ , lowercase__ : Any = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_lowerCamelCase) return permissible_positions def lowercase_ ( _lowerCamelCase : list[list[int]]): return not any(elem == 0 for row in board for elem in row) def lowercase_ ( _lowerCamelCase : list[list[int]] , _lowerCamelCase : tuple[int, int] , _lowerCamelCase : int): if is_complete(_lowerCamelCase): return True for position in get_valid_pos(_lowerCamelCase , len(_lowerCamelCase)): lowercase__ , lowercase__ : Union[str, Any] = position if board[y][x] == 0: lowercase__ : Any = curr + 1 if open_knight_tour_helper(_lowerCamelCase , _lowerCamelCase , curr + 1): return True lowercase__ : Union[str, Any] = 0 return False def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = [[0 for i in range(_lowerCamelCase)] for j in range(_lowerCamelCase)] for i in range(_lowerCamelCase): for j in range(_lowerCamelCase): lowercase__ : Optional[Any] = 1 if open_knight_tour_helper(_lowerCamelCase , (i, j) , 1): return board lowercase__ : List[Any] = 0 lowercase__ : Tuple = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_lowerCamelCase) if __name__ == "__main__": import doctest doctest.testmod()
333
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
1
import argparse import struct import unittest class snake_case_ : def __init__( self : Tuple , lowercase_ : bytes ) -> None: lowercase__ : Optional[int] = data # Initialize hash values lowercase__ : Optional[Any] = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants lowercase__ : Optional[Any] = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] lowercase__ : Optional[int] = self.preprocessing(self.data ) self.final_hash() @staticmethod def __UpperCamelCase ( lowercase_ : bytes ) -> bytes: lowercase__ : List[Any] = b"\x80" + (b"\x00" * (63 - (len(lowercase_ ) + 8) % 64)) lowercase__ : int = struct.pack(">Q" , (len(lowercase_ ) * 8) ) return data + padding + big_endian_integer def __UpperCamelCase ( self : Optional[Any] ) -> None: # Convert into blocks of 64 bytes lowercase__ : Tuple = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase__ : int = list(struct.unpack(">16L" , lowercase_ ) ) # add 48 0-ed integers words += [0] * 48 lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowercase__ : Optional[int] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowercase__ : int = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowercase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowercase__ : str = self.ror(lowercase_ , 6 ) ^ self.ror(lowercase_ , 11 ) ^ self.ror(lowercase_ , 25 ) lowercase__ : List[str] = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) lowercase__ : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowercase__ : Union[str, Any] = self.ror(lowercase_ , 2 ) ^ self.ror(lowercase_ , 13 ) ^ self.ror(lowercase_ , 22 ) lowercase__ : List[Any] = (a & b) ^ (a & c) ^ (b & c) lowercase__ : Union[str, Any] = (sa + maj) % 0x1_00_00_00_00 lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[Any] = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowercase__ : int = [a, b, c, d, e, f, g, h] # Modify final values lowercase__ : Tuple = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowercase__ : List[Any] = "".join([hex(lowercase_ )[2:].zfill(8 ) for value in self.hashes] ) def __UpperCamelCase ( self : List[Any] , lowercase_ : int , lowercase_ : int ) -> int: return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[int] ) -> None: import hashlib lowercase__ : Optional[int] = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(lowercase_ ).hash , hashlib.shaaaa(lowercase_ ).hexdigest() ) def lowercase_ ( ): import doctest doctest.testmod() lowercase__ : Dict = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file") lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Optional[Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb") as f: lowercase__ : Optional[int] = f.read() else: lowercase__ : Union[str, Any] = bytes(_lowerCamelCase , "utf-8") print(SHAaaa(_lowerCamelCase).hash) if __name__ == "__main__": main()
333
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
1
from torch import nn class snake_case_ ( nn.Module ): def __init__( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple ) -> str: super().__init__() lowercase__ : List[str] = class_size lowercase__ : Optional[int] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowercase__ : Union[str, Any] = nn.Linear(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : Optional[int] ) -> Optional[Any]: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) lowercase__ : str = self.mlp(lowercase_ ) return logits
333
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]): assert isinstance(_lowerCamelCase , _lowerCamelCase) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True]) def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict): lowercase__ : Optional[int] = tmp_path / "cache" lowercase__ : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Optional[int] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any]): lowercase__ : List[str] = tmp_path / "cache" lowercase__ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : List[Any] = features.copy() if features else default_expected_features lowercase__ : List[Any] = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : List[Any] = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : int): lowercase__ : Optional[int] = tmp_path / "cache" lowercase__ : Optional[Any] = {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowercase__ : Union[str, Any] = features.copy() if features else default_expected_features lowercase__ : List[str] = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : List[Any] = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() assert isinstance(_lowerCamelCase , _lowerCamelCase) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowercase__ : int = {"col_2": "int64", "col_3": "float64", "col_1": "string"} lowercase__ : Optional[Any] = features.copy() lowercase__ : Optional[int] = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : Tuple = tmp_path / "cache" lowercase__ : Dict = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() assert isinstance(_lowerCamelCase , _lowerCamelCase) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train"), "train", "test"]) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : int): lowercase__ : Tuple = tmp_path / "cache" lowercase__ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Optional[Any] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , split=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list]) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : str): if issubclass(_lowerCamelCase , _lowerCamelCase): lowercase__ : List[str] = jsonl_path elif issubclass(_lowerCamelCase , _lowerCamelCase): lowercase__ : Dict = [jsonl_path] lowercase__ : Tuple = tmp_path / "cache" lowercase__ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Tuple = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple=("train",)): assert isinstance(_lowerCamelCase , _lowerCamelCase) for split in splits: lowercase__ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True]) def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : List[str]): lowercase__ : Dict = tmp_path / "cache" lowercase__ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Optional[Any] = JsonDatasetReader({"train": jsonl_path} , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]): lowercase__ : Dict = tmp_path / "cache" lowercase__ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : List[Any] = features.copy() if features else default_expected_features lowercase__ : Tuple = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : List[str] = JsonDatasetReader({"train": jsonl_path} , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize("split" , [None, NamedSplit("train"), "train", "test"]) def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Any): if split: lowercase__ : Union[str, Any] = {split: jsonl_path} else: lowercase__ : Union[str, Any] = "train" lowercase__ : List[str] = {"train": jsonl_path, "test": jsonl_path} lowercase__ : Any = tmp_path / "cache" lowercase__ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Any = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase , splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def lowercase_ ( _lowerCamelCase : Optional[int]): return json.load(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return [json.loads(_lowerCamelCase) for line in buffer] class snake_case_ : @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __UpperCamelCase ( self : Any , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : List[Any] ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ ).write() buffer.seek(0 ) lowercase__ : Union[str, Any] = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Tuple ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ ).write() buffer.seek(0 ) lowercase__ : str = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __UpperCamelCase ( self : str , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Any ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) lowercase__ : Tuple = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __UpperCamelCase ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Optional[int] ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) lowercase__ : Any = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 def __UpperCamelCase ( self : Dict , lowercase_ : Optional[int] ) -> List[Any]: with pytest.raises(lowercase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def __UpperCamelCase ( self : List[str] , lowercase_ : int , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Optional[int] ) -> int: lowercase__ : Tuple = tmp_path_factory.mktemp("data" ) / F'''test.json.{extension}''' lowercase__ : List[Any] = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(lowercase_ , lowercase_ , compression=lowercase_ ).write() with fsspec.open(lowercase_ , "rb" , compression="infer" ) as f: lowercase__ : Optional[Any] = f.read() with fsspec.open(lowercase_ , "rb" , compression="infer" ) as f: lowercase__ : Any = f.read() assert exported_content == original_content
333
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
1
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int): return [sentence[i : i + ngram_size] for i in range(len(_lowerCamelCase) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class snake_case_ : def __UpperCamelCase ( self : List[str] ) -> str: torch.manual_seed(0 ) lowercase__ : List[Any] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowercase__ : str = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) lowercase__ : Any = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.4_14 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase__ : Tuple = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowercase__ : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) lowercase__ : List[str] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any ) -> Optional[int]: lowercase__ : str = self.get_dummy_components() lowercase__ : Optional[int] = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Dict = self.get_dummy_inputs(lowercase_ ) lowercase__ : Dict = inputs["prompt"] lowercase__ : List[str] = inputs["generator"] lowercase__ : Tuple = inputs["num_inference_steps"] lowercase__ : Union[str, Any] = inputs["output_type"] if "image" in inputs: lowercase__ : Optional[int] = inputs["image"] else: lowercase__ : List[Any] = None if "mask_image" in inputs: lowercase__ : int = inputs["mask_image"] else: lowercase__ : Union[str, Any] = None if "original_image" in inputs: lowercase__ : Tuple = inputs["original_image"] else: lowercase__ : Tuple = None lowercase__ , lowercase__ : Optional[int] = pipe.encode_prompt(lowercase_ ) # inputs with prompt converted to embeddings lowercase__ : Optional[int] = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowercase__ : List[str] = image if mask_image is not None: lowercase__ : List[Any] = mask_image if original_image is not None: lowercase__ : Tuple = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : str = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) lowercase__ : Dict = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowercase_ , lowercase_ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) lowercase__ : str = inputs["generator"] lowercase__ : Optional[Any] = inputs["num_inference_steps"] lowercase__ : Any = inputs["output_type"] # inputs with prompt converted to embeddings lowercase__ : Optional[Any] = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowercase__ : int = image if mask_image is not None: lowercase__ : Optional[int] = mask_image if original_image is not None: lowercase__ : Tuple = original_image lowercase__ : Tuple = pipe_loaded(**lowercase_ )[0] lowercase__ : Any = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1E-4 ) def __UpperCamelCase ( self : Optional[Any] ) -> int: lowercase__ : List[Any] = self.get_dummy_components() lowercase__ : Dict = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Optional[Any] = self.get_dummy_inputs(lowercase_ ) lowercase__ : Optional[Any] = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) lowercase__ : Optional[int] = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowercase__ : Dict = self.get_dummy_inputs(lowercase_ ) lowercase__ : Union[str, Any] = pipe_loaded(**lowercase_ )[0] lowercase__ : List[str] = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1E-4 )
333
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
1
def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : list[float]): if discount_rate < 0: raise ValueError("Discount rate cannot be negative") if not cash_flows: raise ValueError("Cash flows list cannot be empty") lowercase__ : str = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCamelCase)) return round(_lowerCamelCase , ndigits=2) if __name__ == "__main__": import doctest doctest.testmod()
333
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
1
def lowercase_ ( _lowerCamelCase : List[str]): lowercase__ : Dict = len(_lowerCamelCase) lowercase__ : Union[str, Any] = sum(_lowerCamelCase) lowercase__ : Any = [[False for x in range(s + 1)] for y in range(n + 1)] for i in range(1 , n + 1): lowercase__ : Union[str, Any] = True for i in range(1 , s + 1): lowercase__ : Optional[int] = False for i in range(1 , n + 1): for j in range(1 , s + 1): lowercase__ : List[Any] = dp[i][j - 1] if arr[i - 1] <= j: lowercase__ : List[str] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2) , -1 , -1): if dp[n][j] is True: lowercase__ : str = s - 2 * j break return diff
333
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml UpperCamelCase = NewType('''DataClass''', Any) UpperCamelCase = NewType('''DataClassType''', Any) def lowercase_ ( _lowerCamelCase : Dict): if isinstance(_lowerCamelCase , _lowerCamelCase): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''') def lowercase_ ( _lowerCamelCase : list): lowercase__ : Dict = {str(_lowerCamelCase): choice for choice in choices} return lambda _lowerCamelCase: str_to_choice.get(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( *, _lowerCamelCase : Union[str, List[str]] = None , _lowerCamelCase : str = None , _lowerCamelCase : Any = dataclasses.MISSING , _lowerCamelCase : Callable[[], Any] = dataclasses.MISSING , _lowerCamelCase : dict = None , **_lowerCamelCase : int , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowercase__ : List[Any] = {} if aliases is not None: lowercase__ : Optional[int] = aliases if help is not None: lowercase__ : Optional[int] = help return dataclasses.field(metadata=_lowerCamelCase , default=_lowerCamelCase , default_factory=_lowerCamelCase , **_lowerCamelCase) class snake_case_ ( __A ): __A : Iterable[DataClassType] def __init__( self : Dict , lowercase_ : Union[DataClassType, Iterable[DataClassType]] , **lowercase_ : Tuple ) -> Dict: # To make the default appear when using --help if "formatter_class" not in kwargs: lowercase__ : Optional[int] = ArgumentDefaultsHelpFormatter super().__init__(**lowercase_ ) if dataclasses.is_dataclass(lowercase_ ): lowercase__ : int = [dataclass_types] lowercase__ : List[Any] = list(lowercase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowercase_ ) @staticmethod def __UpperCamelCase ( lowercase_ : ArgumentParser , lowercase_ : dataclasses.Field ) -> str: lowercase__ : List[Any] = F'''--{field.name}''' lowercase__ : Tuple = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowercase_ ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) lowercase__ : Optional[Any] = kwargs.pop("aliases" , [] ) if isinstance(lowercase_ , lowercase_ ): lowercase__ : str = [aliases] lowercase__ : Optional[int] = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(lowercase_ , "UnionType" ) and isinstance(lowercase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowercase_ ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F''' Problem encountered in field \'{field.name}\'.''' ) if type(lowercase_ ) not in field.type.__args__: # filter `str` in Union lowercase__ : int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowercase__ : str = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowercase__ : Optional[int] = ( field.type.__args__[0] if isinstance(lowercase_ , field.type.__args__[1] ) else field.type.__args__[1] ) lowercase__ : List[str] = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowercase__ : Dict = {} if origin_type is Literal or (isinstance(field.type , lowercase_ ) and issubclass(field.type , lowercase_ )): if origin_type is Literal: lowercase__ : List[Any] = field.type.__args__ else: lowercase__ : Any = [x.value for x in field.type] lowercase__ : Tuple = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: lowercase__ : int = field.default else: lowercase__ : Optional[Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowercase__ : Union[str, Any] = copy(lowercase_ ) # Hack because type=bool in argparse does not behave as we want. lowercase__ : Optional[int] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowercase__ : Optional[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowercase__ : str = default # This tells argparse we accept 0 or 1 value after --field_name lowercase__ : str = "?" # This is the value that will get picked if we do --field_name (without value) lowercase__ : List[str] = True elif isclass(lowercase_ ) and issubclass(lowercase_ , lowercase_ ): lowercase__ : str = field.type.__args__[0] lowercase__ : Tuple = "+" if field.default_factory is not dataclasses.MISSING: lowercase__ : Any = field.default_factory() elif field.default is dataclasses.MISSING: lowercase__ : int = True else: lowercase__ : List[str] = field.type if field.default is not dataclasses.MISSING: lowercase__ : Tuple = field.default elif field.default_factory is not dataclasses.MISSING: lowercase__ : Dict = field.default_factory() else: lowercase__ : List[str] = True parser.add_argument(lowercase_ , *lowercase_ , **lowercase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowercase__ : Union[str, Any] = False parser.add_argument(F'''--no_{field.name}''' , action="store_false" , dest=field.name , **lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : DataClassType ) -> List[Any]: if hasattr(lowercase_ , "_argument_group_name" ): lowercase__ : List[str] = self.add_argument_group(dtype._argument_group_name ) else: lowercase__ : Optional[Any] = self try: lowercase__ : Dict[str, type] = get_type_hints(lowercase_ ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowercase_ ): lowercase__ : Optional[Any] = ".".join(map(lowercase_ , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(lowercase_ ): if not field.init: continue lowercase__ : Optional[int] = type_hints[field.name] self._parse_dataclass_field(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : int=None , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=True , lowercase_ : List[str]=None , lowercase_ : Any=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowercase__ : List[Any] = [] if args_filename: args_files.append(Path(lowercase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowercase__ : str = ArgumentParser() args_file_parser.add_argument(lowercase_ , type=lowercase_ , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) lowercase__ , lowercase__ : Union[str, Any] = args_file_parser.parse_known_args(args=lowercase_ ) lowercase__ : Union[str, Any] = vars(lowercase_ ).get(args_file_flag.lstrip("-" ) , lowercase_ ) if cmd_args_file_paths: args_files.extend([Path(lowercase_ ) for p in cmd_args_file_paths] ) lowercase__ : Any = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowercase__ : List[Any] = file_args + args if args is not None else file_args + sys.argv[1:] lowercase__ , lowercase__ : List[str] = self.parse_known_args(args=lowercase_ ) lowercase__ : int = [] for dtype in self.dataclass_types: lowercase__ : int = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} lowercase__ : Tuple = {k: v for k, v in vars(lowercase_ ).items() if k in keys} for k in keys: delattr(lowercase_ , lowercase_ ) lowercase__ : Tuple = dtype(**lowercase_ ) outputs.append(lowercase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowercase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def __UpperCamelCase ( self : Dict , lowercase_ : Dict[str, Any] , lowercase_ : bool = False ) -> Tuple[DataClass, ...]: lowercase__ : Optional[int] = set(args.keys() ) lowercase__ : List[str] = [] for dtype in self.dataclass_types: lowercase__ : int = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} lowercase__ : Optional[int] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowercase__ : Optional[int] = dtype(**lowercase_ ) outputs.append(lowercase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(lowercase_ )}''' ) return tuple(lowercase_ ) def __UpperCamelCase ( self : List[str] , lowercase_ : str , lowercase_ : bool = False ) -> Tuple[DataClass, ...]: with open(Path(lowercase_ ) , encoding="utf-8" ) as open_json_file: lowercase__ : Tuple = json.loads(open_json_file.read() ) lowercase__ : Dict = self.parse_dict(lowercase_ , allow_extra_keys=lowercase_ ) return tuple(lowercase_ ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : str , lowercase_ : bool = False ) -> Tuple[DataClass, ...]: lowercase__ : Tuple = self.parse_dict(yaml.safe_load(Path(lowercase_ ).read_text() ) , allow_extra_keys=lowercase_ ) return tuple(lowercase_ )
333
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType UpperCamelCase = None UpperCamelCase = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image UpperCamelCase = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class snake_case_ : __A : bool = True __A : Optional[str] = None # Automatically constructed __A : ClassVar[str] = "PIL.Image.Image" __A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) __A : str = field(default="Image" ,init=__A ,repr=__A ) def __call__( self : str ) -> Any: return self.pa_type def __UpperCamelCase ( self : str , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(lowercase_ , lowercase_ ): lowercase__ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : dict , lowercase_ : Optional[Any]=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: lowercase__ : Optional[Any] = {} lowercase__ , lowercase__ : Any = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase__ : Optional[int] = PIL.Image.open(lowercase_ ) else: lowercase__ : Optional[int] = path.split("::" )[-1] try: lowercase__ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["repo_id"] lowercase__ : Tuple = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase__ : Tuple = None with xopen(lowercase_ , "rb" , use_auth_token=lowercase_ ) as f: lowercase__ : Union[str, Any] = BytesIO(f.read() ) lowercase__ : Optional[int] = PIL.Image.open(bytes_ ) else: lowercase__ : List[str] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __UpperCamelCase ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def __UpperCamelCase ( self : Any , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): lowercase__ : Optional[int] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase__ : int = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase__ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase__ : Dict = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: lowercase__ : Tuple = storage.field("bytes" ) else: lowercase__ : int = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: lowercase__ : Any = storage.field("path" ) else: lowercase__ : Any = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase__ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase__ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase__ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase__ : int = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(lowercase_ : List[str] ): with xopen(lowercase_ , "rb" ) as f: lowercase__ : str = f.read() return bytes_ lowercase__ : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase__ : Optional[int] = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) lowercase__ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowercase_ ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase__ : List[str] = list(set(PIL.Image.OPEN.keys()) & set(PIL.Image.SAVE.keys())) return _IMAGE_COMPRESSION_FORMATS def lowercase_ ( _lowerCamelCase : "PIL.Image.Image"): lowercase__ : Any = BytesIO() if image.format in list_image_compression_formats(): lowercase__ : List[str] = image.format else: lowercase__ : Dict = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_lowerCamelCase , format=_lowerCamelCase) return buffer.getvalue() def lowercase_ ( _lowerCamelCase : "PIL.Image.Image"): if hasattr(_lowerCamelCase , "filename") and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowerCamelCase)} def lowercase_ ( _lowerCamelCase : np.ndarray): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") lowercase__ : Dict = array.dtype lowercase__ : str = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER lowercase__ : Dict = dtype.kind lowercase__ : int = dtype.itemsize lowercase__ : Union[str, Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase__ : Any = np.dtype("|u1") if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''') if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''') # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase__ : Any = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase__ : Any = dtype_byteorder + dtype_kind + str(_lowerCamelCase) lowercase__ : Optional[int] = np.dtype(_lowerCamelCase) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''') break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''') lowercase__ : Optional[Any] = PIL.Image.fromarray(array.astype(_lowerCamelCase)) return {"path": None, "bytes": image_to_bytes(_lowerCamelCase)} def lowercase_ ( _lowerCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]]): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") if objs: lowercase__ , lowercase__ : Any = first_non_null_value(_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowerCamelCase , np.ndarray): lowercase__ : Optional[Any] = no_op_if_value_is_null(_lowerCamelCase) return [obj_to_image_dict_func(_lowerCamelCase) for obj in objs] elif isinstance(_lowerCamelCase , PIL.Image.Image): lowercase__ : List[Any] = no_op_if_value_is_null(_lowerCamelCase) return [obj_to_image_dict_func(_lowerCamelCase) for obj in objs] else: return objs else: return objs
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : Dict): # Initialise PyTorch model lowercase__ : Dict = MobileBertConfig.from_json_file(_lowerCamelCase) print(f'''Building PyTorch model from configuration: {config}''') lowercase__ : Tuple = MobileBertForPreTraining(_lowerCamelCase) # Load weights from tf checkpoint lowercase__ : Any = load_tf_weights_in_mobilebert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , _lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
333
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase = logging.get_logger(__name__) class snake_case_ : def __init__( self : Tuple , lowercase_ : List[Any] , lowercase_ : Optional[int] ) -> Any: lowercase__ : Tuple = question_encoder lowercase__ : Optional[Any] = generator lowercase__ : List[str] = self.question_encoder def __UpperCamelCase ( self : Any , lowercase_ : Tuple ) -> Any: if os.path.isfile(lowercase_ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowercase__ : Dict = os.path.join(lowercase_ , "question_encoder_tokenizer" ) lowercase__ : Tuple = os.path.join(lowercase_ , "generator_tokenizer" ) self.question_encoder.save_pretrained(lowercase_ ) self.generator.save_pretrained(lowercase_ ) @classmethod def __UpperCamelCase ( cls : Tuple , lowercase_ : List[Any] , **lowercase_ : Tuple ) -> str: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer lowercase__ : List[str] = kwargs.pop("config" , lowercase_ ) if config is None: lowercase__ : Any = RagConfig.from_pretrained(lowercase_ ) lowercase__ : List[Any] = AutoTokenizer.from_pretrained( lowercase_ , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) lowercase__ : str = AutoTokenizer.from_pretrained( lowercase_ , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=lowercase_ , generator=lowercase_ ) def __call__( self : Tuple , *lowercase_ : Any , **lowercase_ : Dict ) -> List[Any]: return self.current_tokenizer(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Dict ) -> Dict: return self.generator.batch_decode(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : int , *lowercase_ : List[str] , **lowercase_ : Union[str, Any] ) -> Optional[Any]: return self.generator.decode(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: lowercase__ : Any = self.question_encoder def __UpperCamelCase ( self : int ) -> str: lowercase__ : int = self.generator def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[List[str]] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "longest" , lowercase_ : str = None , lowercase_ : bool = True , **lowercase_ : List[Any] , ) -> BatchEncoding: warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , lowercase_ , ) if max_length is None: lowercase__ : Any = self.current_tokenizer.model_max_length lowercase__ : int = self( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , max_length=lowercase_ , padding=lowercase_ , truncation=lowercase_ , **lowercase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowercase__ : Optional[int] = self.current_tokenizer.model_max_length lowercase__ : List[Any] = self( text_target=lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , **lowercase_ , ) lowercase__ : Dict = labels["input_ids"] return model_inputs
333
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
1
import string def lowercase_ ( _lowerCamelCase : str): lowercase__ : int = "" for i in sequence: lowercase__ : Any = ord(_lowerCamelCase) if 65 <= extract <= 90: output += chr(155 - extract) elif 97 <= extract <= 122: output += chr(219 - extract) else: output += i return output def lowercase_ ( _lowerCamelCase : str): lowercase__ : Tuple = string.ascii_letters lowercase__ : List[str] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_lowerCamelCase)] if c in letters else c for c in sequence) def lowercase_ ( ): from timeit import timeit print("Running performance benchmarks...") lowercase__ : List[Any] = "from string import printable ; from __main__ import atbash, atbash_slow" print(f'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=_lowerCamelCase)} seconds''') print(f'''> atbash(): {timeit("atbash(printable)" , setup=_lowerCamelCase)} seconds''') if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"{example} encrypted in atbash: {atbash(example)}") benchmark()
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowercase_ ( _lowerCamelCase : Union[dict, list, tuple, torch.Tensor]): lowercase__ : Optional[Any] = [] if isinstance(_lowerCamelCase , _lowerCamelCase): for v in tree.values(): shapes.extend(_fetch_dims(_lowerCamelCase)) elif isinstance(_lowerCamelCase , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(_lowerCamelCase)) elif isinstance(_lowerCamelCase , torch.Tensor): shapes.append(tree.shape) else: raise ValueError("Not supported") return shapes @torch.jit.ignore def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple[int, ...]): lowercase__ : Optional[Any] = [] for d in reversed(_lowerCamelCase): idx.append(flat_idx % d) lowercase__ : Union[str, Any] = flat_idx // d return tuple(reversed(_lowerCamelCase)) @torch.jit.ignore def lowercase_ ( _lowerCamelCase : Sequence[int] , _lowerCamelCase : Sequence[int] , _lowerCamelCase : Sequence[int] , _lowerCamelCase : Optional[Sequence[bool]] = None , _lowerCamelCase : Optional[Sequence[bool]] = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(_lowerCamelCase : List[bool]) -> None: lowercase__ : Optional[int] = True for i in range(len(_lowerCamelCase)): lowercase__ : Dict = -1 * (i + 1) l[reversed_idx] &= tally lowercase__ : List[Any] = l[reversed_idx] if start_edges is None: lowercase__ : Union[str, Any] = [s == 0 for s in start] reduce_edge_list(_lowerCamelCase) if end_edges is None: lowercase__ : str = [e == (d - 1) for e, d in zip(_lowerCamelCase , _lowerCamelCase)] reduce_edge_list(_lowerCamelCase) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_lowerCamelCase) == 0: return [()] elif len(_lowerCamelCase) == 1: return [(slice(start[0] , end[0] + 1),)] lowercase__ : List[Tuple[slice, ...]] = [] lowercase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(_lowerCamelCase , _lowerCamelCase): if s == e: path_list.append(slice(_lowerCamelCase , s + 1)) else: break lowercase__ : Tuple[slice, ...] = tuple(_lowerCamelCase) lowercase__ : List[str] = len(_lowerCamelCase) # start == end, and we're done if divergence_idx == len(_lowerCamelCase): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ : Optional[int] = start[divergence_idx] return tuple( path + (slice(_lowerCamelCase , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ : int = end[divergence_idx] return tuple( path + (slice(_lowerCamelCase , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) lowercase__ : Optional[int] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def lowercase_ ( _lowerCamelCase : torch.Tensor , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): lowercase__ : Dict = t.shape[:no_batch_dims] lowercase__ : List[Any] = list(_flat_idx_to_idx(_lowerCamelCase , _lowerCamelCase)) # _get_minimal_slice_set is inclusive lowercase__ : int = list(_flat_idx_to_idx(flat_end - 1 , _lowerCamelCase)) # Get an ordered list of slices to perform lowercase__ : List[str] = _get_minimal_slice_set( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) lowercase__ : int = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def lowercase_ ( _lowerCamelCase : Callable , _lowerCamelCase : Dict[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : bool = False , _lowerCamelCase : Any = None , _lowerCamelCase : bool = False , ): if not (len(_lowerCamelCase) > 0): raise ValueError("Must provide at least one input") lowercase__ : List[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(_lowerCamelCase)] lowercase__ : int = tuple([max(_lowerCamelCase) for s in zip(*_lowerCamelCase)]) def _prep_inputs(_lowerCamelCase : torch.Tensor) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: lowercase__ : str = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) lowercase__ : Any = t.reshape(-1 , *t.shape[no_batch_dims:]) else: lowercase__ : Any = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t lowercase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , _lowerCamelCase) lowercase__ : str = None if _out is not None: lowercase__ : Dict = tensor_tree_map(lambda _lowerCamelCase: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) lowercase__ : Tuple = 1 for d in orig_batch_dims: flat_batch_dim *= d lowercase__ : Dict = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_lowerCamelCase : torch.Tensor) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t lowercase__ : Dict = 0 lowercase__ : List[Any] = prepped_outputs for _ in range(_lowerCamelCase): # Chunk the input if not low_mem: lowercase__ : int = _select_chunk else: lowercase__ : str = partial( _chunk_slice , flat_start=_lowerCamelCase , flat_end=min(_lowerCamelCase , i + chunk_size) , no_batch_dims=len(_lowerCamelCase) , ) lowercase__ : Dict[str, Any] = tensor_tree_map(_lowerCamelCase , _lowerCamelCase) # Run the layer on the chunk lowercase__ : int = layer(**_lowerCamelCase) # Allocate space for the output if out is None: lowercase__ : Union[str, Any] = tensor_tree_map(lambda _lowerCamelCase: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , _lowerCamelCase) # Put the chunk in its pre-allocated space if isinstance(_lowerCamelCase , _lowerCamelCase): def assign(_lowerCamelCase : dict , _lowerCamelCase : dict) -> None: for k, v in da.items(): if isinstance(_lowerCamelCase , _lowerCamelCase): assign(_lowerCamelCase , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: lowercase__ : Dict = da[k] assign(_lowerCamelCase , _lowerCamelCase) elif isinstance(_lowerCamelCase , _lowerCamelCase): for xa, xa in zip(_lowerCamelCase , _lowerCamelCase): if _add_into_out: xa[i : i + chunk_size] += xa else: lowercase__ : Optional[int] = xa elif isinstance(_lowerCamelCase , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: lowercase__ : int = output_chunk else: raise ValueError("Not supported") i += chunk_size lowercase__ : Any = tensor_tree_map(lambda _lowerCamelCase: t.view(orig_batch_dims + t.shape[1:]) , _lowerCamelCase) return out class snake_case_ : def __init__( self : Optional[int] , lowercase_ : int = 5_12 , ) -> List[Any]: lowercase__ : Optional[int] = max_chunk_size lowercase__ : Optional[int] = None lowercase__ : Optional[tuple] = None def __UpperCamelCase ( self : List[str] , lowercase_ : Callable , lowercase_ : tuple , lowercase_ : int ) -> int: logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size lowercase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] lowercase__ : List[Any] = [c for c in candidates if c > min_chunk_size] lowercase__ : str = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowercase_ : int ) -> bool: try: with torch.no_grad(): fn(*lowercase_ , chunk_size=lowercase_ ) return True except RuntimeError: return False lowercase__ : str = 0 lowercase__ : List[Any] = len(lowercase_ ) - 1 while i > min_viable_chunk_size_index: lowercase__ : Tuple = test_chunk_size(candidates[i] ) if not viable: lowercase__ : List[Any] = (min_viable_chunk_size_index + i) // 2 else: lowercase__ : Tuple = i lowercase__ : List[Any] = (i + len(lowercase_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : str , lowercase_ : Iterable , lowercase_ : Iterable ) -> bool: lowercase__ : Optional[Any] = True for aa, aa in zip(lowercase_ , lowercase_ ): assert type(lowercase_ ) == type(lowercase_ ) if isinstance(lowercase_ , (list, tuple) ): consistent &= self._compare_arg_caches(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): lowercase__ : int = [v for _, v in sorted(aa.items() , key=lambda lowercase_ : x[0] )] lowercase__ : str = [v for _, v in sorted(aa.items() , key=lambda lowercase_ : x[0] )] consistent &= self._compare_arg_caches(lowercase_ , lowercase_ ) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Callable , lowercase_ : tuple , lowercase_ : int , ) -> int: lowercase__ : str = True lowercase__ : tuple = tree_map(lambda lowercase_ : a.shape if isinstance(lowercase_ , torch.Tensor ) else a , lowercase_ , lowercase_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowercase_ ) lowercase__ : Optional[int] = self._compare_arg_caches(self.cached_arg_data , lowercase_ ) else: # Otherwise, we can reuse the precomputed value lowercase__ : Optional[Any] = False if not consistent: lowercase__ : Tuple = self._determine_favorable_chunk_size( lowercase_ , lowercase_ , lowercase_ , ) lowercase__ : int = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
333
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class snake_case_ ( unittest.TestCase ,__A ): def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: lowercase__ : Any = load_tool("text-to-speech" ) self.tool.setup() def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowercase__ : Any = self.tool("hey" ) lowercase__ : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) ) def __UpperCamelCase ( self : List[str] ) -> List[str]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowercase__ : List[str] = self.tool("hey" ) lowercase__ : int = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) )
333
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''PoolFormerConfig''' # Base docstring UpperCamelCase = '''sail/poolformer_s12''' UpperCamelCase = [1, 512, 7, 7] # Image classification docstring UpperCamelCase = '''sail/poolformer_s12''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : float = 0.0 , _lowerCamelCase : bool = False): if drop_prob == 0.0 or not training: return input lowercase__ : Optional[int] = 1 - drop_prob lowercase__ : List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowercase__ : Union[str, Any] = keep_prob + torch.rand(_lowerCamelCase , dtype=input.dtype , device=input.device) random_tensor.floor_() # binarize lowercase__ : Any = input.div(_lowerCamelCase) * random_tensor return output class snake_case_ ( nn.Module ): def __init__( self : Tuple , lowercase_ : Optional[float] = None ) -> None: super().__init__() lowercase__ : Dict = drop_prob def __UpperCamelCase ( self : Optional[int] , lowercase_ : torch.Tensor ) -> torch.Tensor: return drop_path(lowercase_ , self.drop_prob , self.training ) def __UpperCamelCase ( self : Dict ) -> str: return "p={}".format(self.drop_prob ) class snake_case_ ( nn.Module ): def __init__( self : int , lowercase_ : Dict , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[int]=None ) -> Any: super().__init__() lowercase__ : Optional[int] = patch_size if isinstance(lowercase_ , collections.abc.Iterable ) else (patch_size, patch_size) lowercase__ : Optional[int] = stride if isinstance(lowercase_ , collections.abc.Iterable ) else (stride, stride) lowercase__ : int = padding if isinstance(lowercase_ , collections.abc.Iterable ) else (padding, padding) lowercase__ : List[Any] = nn.Convad(lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=lowercase_ ) lowercase__ : Optional[Any] = norm_layer(lowercase_ ) if norm_layer else nn.Identity() def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Dict ) -> int: lowercase__ : Any = self.projection(lowercase_ ) lowercase__ : Optional[Any] = self.norm(lowercase_ ) return embeddings class snake_case_ ( nn.GroupNorm ): def __init__( self : Union[str, Any] , lowercase_ : Any , **lowercase_ : List[str] ) -> Optional[Any]: super().__init__(1 , lowercase_ , **lowercase_ ) class snake_case_ ( nn.Module ): def __init__( self : int , lowercase_ : str ) -> Optional[int]: super().__init__() lowercase__ : Optional[Any] = nn.AvgPoolad(lowercase_ , stride=1 , padding=pool_size // 2 , count_include_pad=lowercase_ ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Optional[Any] ) -> Tuple: return self.pool(lowercase_ ) - hidden_states class snake_case_ ( nn.Module ): def __init__( self : List[str] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Any ) -> Dict: super().__init__() lowercase__ : List[Any] = nn.Convad(lowercase_ , lowercase_ , 1 ) lowercase__ : Dict = nn.Convad(lowercase_ , lowercase_ , 1 ) lowercase__ : int = PoolFormerDropPath(lowercase_ ) if isinstance(config.hidden_act , lowercase_ ): lowercase__ : int = ACTaFN[config.hidden_act] else: lowercase__ : Union[str, Any] = config.hidden_act def __UpperCamelCase ( self : int , lowercase_ : Optional[int] ) -> Optional[Any]: lowercase__ : Union[str, Any] = self.conva(lowercase_ ) lowercase__ : Optional[int] = self.act_fn(lowercase_ ) lowercase__ : Optional[int] = self.drop(lowercase_ ) lowercase__ : Any = self.conva(lowercase_ ) lowercase__ : Any = self.drop(lowercase_ ) return hidden_states class snake_case_ ( nn.Module ): def __init__( self : List[Any] , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ) -> Optional[int]: super().__init__() lowercase__ : Optional[int] = PoolFormerPooling(lowercase_ ) lowercase__ : Tuple = PoolFormerOutput(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = PoolFormerGroupNorm(lowercase_ ) lowercase__ : Union[str, Any] = PoolFormerGroupNorm(lowercase_ ) # Useful for training neural nets lowercase__ : Optional[Any] = PoolFormerDropPath(lowercase_ ) if drop_path > 0.0 else nn.Identity() lowercase__ : Union[str, Any] = config.use_layer_scale if config.use_layer_scale: lowercase__ : List[str] = nn.Parameter( config.layer_scale_init_value * torch.ones((lowercase_) ) , requires_grad=lowercase_ ) lowercase__ : Union[str, Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((lowercase_) ) , requires_grad=lowercase_ ) def __UpperCamelCase ( self : List[str] , lowercase_ : Union[str, Any] ) -> int: if self.use_layer_scale: lowercase__ : Union[str, Any] = self.pooling(self.before_norm(lowercase_ ) ) lowercase__ : int = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowercase__ : Optional[Any] = hidden_states + self.drop_path(lowercase_ ) lowercase__ : Optional[Any] = () lowercase__ : int = self.output(self.after_norm(lowercase_ ) ) lowercase__ : List[str] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowercase__ : List[str] = hidden_states + self.drop_path(lowercase_ ) lowercase__ : Tuple = (output,) + outputs return outputs else: lowercase__ : str = self.drop_path(self.pooling(self.before_norm(lowercase_ ) ) ) # First residual connection lowercase__ : Any = pooling_output + hidden_states lowercase__ : List[Any] = () # Second residual connection inside the PoolFormerOutput block lowercase__ : Optional[Any] = self.drop_path(self.output(self.after_norm(lowercase_ ) ) ) lowercase__ : Optional[Any] = hidden_states + layer_output lowercase__ : str = (output,) + outputs return outputs class snake_case_ ( nn.Module ): def __init__( self : Optional[int] , lowercase_ : Union[str, Any] ) -> Tuple: super().__init__() lowercase__ : Optional[Any] = config # stochastic depth decay rule lowercase__ : int = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowercase__ : List[str] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowercase__ : List[str] = nn.ModuleList(lowercase_ ) # Transformer blocks lowercase__ : Optional[int] = [] lowercase__ : Any = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowercase__ : List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( lowercase_ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(lowercase_ ) ) lowercase__ : List[Any] = nn.ModuleList(lowercase_ ) def __UpperCamelCase ( self : int , lowercase_ : Tuple , lowercase_ : Optional[Any]=False , lowercase_ : Union[str, Any]=True ) -> Any: lowercase__ : Any = () if output_hidden_states else None lowercase__ : List[Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowercase__ , lowercase__ : int = layers # Get patch embeddings from hidden_states lowercase__ : List[str] = embedding_layer(lowercase_ ) # Send the embeddings through the blocks for _, blk in enumerate(lowercase_ ): lowercase__ : List[Any] = blk(lowercase_ ) lowercase__ : List[Any] = layer_outputs[0] if output_hidden_states: lowercase__ : int = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowercase_ , hidden_states=lowercase_ ) class snake_case_ ( __A ): __A : Optional[Any] = PoolFormerConfig __A : Tuple = "poolformer" __A : Optional[Any] = "pixel_values" __A : Optional[Any] = True def __UpperCamelCase ( self : List[Any] , lowercase_ : List[Any] ) -> Optional[Any]: if isinstance(lowercase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowercase_ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def __UpperCamelCase ( self : List[Any] , lowercase_ : int , lowercase_ : List[Any]=False ) -> Tuple: if isinstance(lowercase_ , lowercase_ ): lowercase__ : Dict = value UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." ,__A ,) class snake_case_ ( __A ): def __init__( self : str , lowercase_ : str ) -> int: super().__init__(lowercase_ ) lowercase__ : int = config lowercase__ : Any = PoolFormerEncoder(lowercase_ ) # Initialize weights and apply final processing self.post_init() def __UpperCamelCase ( self : Dict ) -> List[str]: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: lowercase__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) lowercase__ : str = self.encoder( lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ , ) lowercase__ : Dict = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=lowercase_ , hidden_states=encoder_outputs.hidden_states , ) class snake_case_ ( nn.Module ): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] ) -> Tuple: super().__init__() lowercase__ : Union[str, Any] = nn.Linear(config.hidden_size , config.hidden_size ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str ) -> List[str]: lowercase__ : Optional[int] = self.dense(lowercase_ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " ,__A ,) class snake_case_ ( __A ): def __init__( self : List[Any] , lowercase_ : List[Any] ) -> Any: super().__init__(lowercase_ ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : Dict = PoolFormerModel(lowercase_ ) # Final norm lowercase__ : int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowercase__ : str = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCamelCase ( self : Dict , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[torch.LongTensor] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: lowercase__ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.poolformer( lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ , ) lowercase__ : Dict = outputs[0] lowercase__ : Dict = self.classifier(self.norm(lowercase_ ).mean([-2, -1] ) ) lowercase__ : str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : int = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Union[str, Any] = "single_label_classification" else: lowercase__ : Tuple = "multi_label_classification" if self.config.problem_type == "regression": lowercase__ : List[Any] = MSELoss() if self.num_labels == 1: lowercase__ : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase__ : List[str] = loss_fct(lowercase_ , lowercase_ ) elif self.config.problem_type == "single_label_classification": lowercase__ : int = CrossEntropyLoss() lowercase__ : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Dict = BCEWithLogitsLoss() lowercase__ : Any = loss_fct(lowercase_ , lowercase_ ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states )
333
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
1
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : List[str] ) -> Optional[int]: lowercase__ : Dict = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) lowercase__ : str = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowercase__ : List[str] = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ : Any = model(lowercase_ )["last_hidden_state"].detach() self.assertEqual(output.shape , lowercase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase_ , atol=1E-3 ) ) @slow def __UpperCamelCase ( self : Any ) -> Tuple: lowercase__ : Dict = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) lowercase__ : int = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowercase__ : Any = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ : Union[str, Any] = model(lowercase_ )["last_hidden_state"].detach() self.assertEqual(output.shape , lowercase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase_ , atol=1E-3 ) )
333
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class snake_case_ ( __A ): __A : List[str] = "pegasus" __A : List[str] = ["past_key_values"] __A : int = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Tuple , lowercase_ : Optional[int]=5_02_65 , lowercase_ : List[str]=10_24 , lowercase_ : int=12 , lowercase_ : Union[str, Any]=40_96 , lowercase_ : Optional[Any]=16 , lowercase_ : Tuple=12 , lowercase_ : int=40_96 , lowercase_ : List[Any]=16 , lowercase_ : Any=0.0 , lowercase_ : List[Any]=0.0 , lowercase_ : Tuple=True , lowercase_ : Dict=True , lowercase_ : int="gelu" , lowercase_ : Any=10_24 , lowercase_ : Dict=0.1 , lowercase_ : Dict=0.0 , lowercase_ : str=0.0 , lowercase_ : Optional[Any]=0.02 , lowercase_ : List[str]=0 , lowercase_ : int=False , lowercase_ : List[str]=0 , lowercase_ : List[Any]=1 , lowercase_ : Optional[Any]=1 , **lowercase_ : Optional[int] , ) -> int: lowercase__ : Optional[int] = vocab_size lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : Dict = d_model lowercase__ : Tuple = encoder_ffn_dim lowercase__ : Union[str, Any] = encoder_layers lowercase__ : List[Any] = encoder_attention_heads lowercase__ : Optional[int] = decoder_ffn_dim lowercase__ : Optional[int] = decoder_layers lowercase__ : Tuple = decoder_attention_heads lowercase__ : Any = dropout lowercase__ : Dict = attention_dropout lowercase__ : List[Any] = activation_dropout lowercase__ : Any = activation_function lowercase__ : Optional[int] = init_std lowercase__ : Any = encoder_layerdrop lowercase__ : List[str] = decoder_layerdrop lowercase__ : str = use_cache lowercase__ : int = encoder_layers lowercase__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) @property def __UpperCamelCase ( self : List[str] ) -> int: return self.encoder_attention_heads @property def __UpperCamelCase ( self : Any ) -> int: return self.d_model
333
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off UpperCamelCase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class snake_case_ ( __A ): __A : Tuple = VOCAB_FILES_NAMES __A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[str] = PRETRAINED_VOCAB_FILES_MAP __A : List[str] = ["input_ids", "attention_mask"] __A : Tuple = MBartTokenizer __A : List[int] = [] __A : List[int] = [] def __init__( self : Optional[Any] , lowercase_ : Dict=None , lowercase_ : Dict=None , lowercase_ : Dict="<s>" , lowercase_ : Optional[Any]="</s>" , lowercase_ : str="</s>" , lowercase_ : List[Any]="<s>" , lowercase_ : Any="<unk>" , lowercase_ : int="<pad>" , lowercase_ : str="<mask>" , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=None , lowercase_ : Optional[int]=None , **lowercase_ : Optional[int] , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it lowercase__ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( vocab_file=lowercase_ , tokenizer_file=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) lowercase__ : Any = vocab_file lowercase__ : str = False if not self.vocab_file else True lowercase__ : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowercase__ : Any = { lang_code: self.convert_tokens_to_ids(lowercase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase__ : str = src_lang if src_lang is not None else "en_XX" lowercase__ : List[str] = self.convert_tokens_to_ids(self._src_lang ) lowercase__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase ( self : List[str] ) -> str: return self._src_lang @src_lang.setter def __UpperCamelCase ( self : List[Any] , lowercase_ : str ) -> None: lowercase__ : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : List[str] = [self.sep_token_id] lowercase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[str] , lowercase_ : Optional[str] , **lowercase_ : Union[str, Any] ) -> int: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowercase__ : Union[str, Any] = src_lang lowercase__ : str = self(lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , **lowercase_ ) lowercase__ : str = self.convert_tokens_to_ids(lowercase_ ) lowercase__ : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : str = "en_XX" , lowercase_ : Optional[List[str]] = None , lowercase_ : str = "ro_RO" , **lowercase_ : Tuple , ) -> BatchEncoding: lowercase__ : Union[str, Any] = src_lang lowercase__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowercase_ , lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Any ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self : Dict ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Optional[int] ) -> None: lowercase__ : List[str] = self.convert_tokens_to_ids(lowercase_ ) lowercase__ : int = [] lowercase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] lowercase__ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__ : str = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase ( self : Dict , lowercase_ : str ) -> None: lowercase__ : List[str] = self.convert_tokens_to_ids(lowercase_ ) lowercase__ : str = [] lowercase__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] lowercase__ : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__ : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__ : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowercase__ : Tuple = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
333
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class snake_case_ ( __A ): __A : List[Any] = "marian" __A : Dict = ["past_key_values"] __A : Dict = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , lowercase_ : Any=5_81_01 , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]=10_24 , lowercase_ : Tuple=12 , lowercase_ : Tuple=40_96 , lowercase_ : List[Any]=16 , lowercase_ : str=12 , lowercase_ : int=40_96 , lowercase_ : Optional[int]=16 , lowercase_ : List[Any]=0.0 , lowercase_ : str=0.0 , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=True , lowercase_ : Any="gelu" , lowercase_ : Dict=10_24 , lowercase_ : List[str]=0.1 , lowercase_ : List[str]=0.0 , lowercase_ : Dict=0.0 , lowercase_ : List[Any]=0.02 , lowercase_ : Tuple=5_81_00 , lowercase_ : Any=False , lowercase_ : List[Any]=5_81_00 , lowercase_ : Dict=0 , lowercase_ : Tuple=0 , lowercase_ : Union[str, Any]=True , **lowercase_ : List[Any] , ) -> Optional[int]: lowercase__ : Dict = vocab_size lowercase__ : int = decoder_vocab_size or vocab_size lowercase__ : str = max_position_embeddings lowercase__ : Optional[Any] = d_model lowercase__ : List[Any] = encoder_ffn_dim lowercase__ : Tuple = encoder_layers lowercase__ : Union[str, Any] = encoder_attention_heads lowercase__ : Optional[Any] = decoder_ffn_dim lowercase__ : Optional[int] = decoder_layers lowercase__ : Optional[int] = decoder_attention_heads lowercase__ : int = dropout lowercase__ : int = attention_dropout lowercase__ : Optional[int] = activation_dropout lowercase__ : List[Any] = activation_function lowercase__ : Any = init_std lowercase__ : int = encoder_layerdrop lowercase__ : Dict = decoder_layerdrop lowercase__ : Any = use_cache lowercase__ : int = encoder_layers lowercase__ : Any = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ : int = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) class snake_case_ ( __A ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCamelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowercase__ : Dict = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowercase__ : Tuple = {0: "batch"} lowercase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowercase__ : str = {0: "batch", 1: "decoder_sequence"} lowercase__ : List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowercase__ , lowercase__ : List[Any] = self.num_layers for i in range(lowercase_ ): lowercase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} lowercase__ : str = {0: "batch", 2: "past_sequence + sequence"} else: lowercase__ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCamelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowercase__ : List[Any] = super().outputs else: lowercase__ : Union[str, Any] = super(lowercase_ , self ).outputs if self.use_past: lowercase__ , lowercase__ : List[Any] = self.num_layers for i in range(lowercase_ ): lowercase__ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} lowercase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCamelCase ( self : Any , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowercase__ : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Generate decoder inputs lowercase__ : Tuple = seq_length if not self.use_past else 1 lowercase__ : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Dict = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowercase__ : int = dict(**lowercase_ , **lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowercase__ , lowercase__ : List[Any] = common_inputs["input_ids"].shape lowercase__ : Optional[Any] = common_inputs["decoder_input_ids"].shape[1] lowercase__ , lowercase__ : Optional[int] = self.num_attention_heads lowercase__ : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ : Union[str, Any] = decoder_seq_length + 3 lowercase__ : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase__ : Tuple = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(lowercase_ , lowercase_ )] , dim=1 ) lowercase__ : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase__ , lowercase__ : str = self.num_layers lowercase__ : Union[str, Any] = min(lowercase_ , lowercase_ ) lowercase__ : Tuple = max(lowercase_ , lowercase_ ) - min_num_layers lowercase__ : List[Any] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. lowercase__ : List[str] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(lowercase_ , lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def __UpperCamelCase ( self : Optional[Any] , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowercase__ : List[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowercase__ , lowercase__ : Any = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowercase__ : Optional[Any] = seqlen + 2 lowercase__ , lowercase__ : Union[str, Any] = self.num_layers lowercase__ , lowercase__ : Any = self.num_attention_heads lowercase__ : int = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ : List[str] = common_inputs["attention_mask"].dtype lowercase__ : Dict = torch.cat( [common_inputs["attention_mask"], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) lowercase__ : Dict = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def __UpperCamelCase ( self : Tuple , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ : str = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ : List[Any] = tokenizer.num_special_tokens_to_add(lowercase_ ) lowercase__ : Dict = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence lowercase__ : str = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase__ : Optional[Any] = dict(tokenizer(lowercase_ , return_tensors=lowercase_ ) ) return common_inputs def __UpperCamelCase ( self : Any , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowercase__ : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) else: lowercase__ : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) return common_inputs def __UpperCamelCase ( self : Any , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Tuple ) -> Union[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowercase__ : List[str] = super()._flatten_past_key_values_(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : Optional[Any] = super(lowercase_ , self )._flatten_past_key_values_( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) @property def __UpperCamelCase ( self : str ) -> float: return 1E-4
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int): lowercase__ : Any = b.T lowercase__ : Optional[int] = np.sum(np.square(_lowerCamelCase) , axis=1) lowercase__ : Dict = np.sum(np.square(_lowerCamelCase) , axis=0) lowercase__ : int = np.matmul(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict): lowercase__ : Dict = x.reshape(-1 , 3) lowercase__ : Optional[int] = squared_euclidean_distance(_lowerCamelCase , _lowerCamelCase) return np.argmin(_lowerCamelCase , axis=1) class snake_case_ ( __A ): __A : Tuple = ["pixel_values"] def __init__( self : Optional[int] , lowercase_ : Optional[Union[List[List[int]], np.ndarray]] = None , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : bool = True , **lowercase_ : Tuple , ) -> None: super().__init__(**lowercase_ ) lowercase__ : Dict = size if size is not None else {"height": 2_56, "width": 2_56} lowercase__ : Optional[int] = get_size_dict(lowercase_ ) lowercase__ : List[Any] = np.array(lowercase_ ) if clusters is not None else None lowercase__ : Tuple = do_resize lowercase__ : List[str] = size lowercase__ : List[str] = resample lowercase__ : Any = do_normalize lowercase__ : Tuple = do_color_quantize def __UpperCamelCase ( self : str , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ) -> np.ndarray: lowercase__ : Optional[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase_ , size=(size["height"], size["width"]) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : np.ndarray , lowercase_ : Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: lowercase__ : Union[str, Any] = rescale(image=lowercase_ , scale=1 / 1_27.5 , data_format=lowercase_ ) lowercase__ : Tuple = image - 1 return image def __UpperCamelCase ( self : List[Any] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[List[List[int]], np.ndarray]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **lowercase_ : int , ) -> PIL.Image.Image: lowercase__ : str = do_resize if do_resize is not None else self.do_resize lowercase__ : int = size if size is not None else self.size lowercase__ : Dict = get_size_dict(lowercase_ ) lowercase__ : Optional[int] = resample if resample is not None else self.resample lowercase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : int = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowercase__ : Any = clusters if clusters is not None else self.clusters lowercase__ : Optional[Any] = np.array(lowercase_ ) lowercase__ : Union[str, Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. lowercase__ : int = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowercase__ : Any = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_normalize: lowercase__ : List[Any] = [self.normalize(image=lowercase_ ) for image in images] if do_color_quantize: lowercase__ : Union[str, Any] = [to_channel_dimension_format(lowercase_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowercase__ : List[Any] = np.array(lowercase_ ) lowercase__ : Dict = color_quantize(lowercase_ , lowercase_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) lowercase__ : Union[str, Any] = images.shape[0] lowercase__ : Tuple = images.reshape(lowercase_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. lowercase__ : str = list(lowercase_ ) else: lowercase__ : Union[str, Any] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase__ : Optional[Any] = {"input_ids": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
333
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
1
import json import sys def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Any): with open(_lowerCamelCase , encoding="utf-8") as f: lowercase__ : int = json.load(_lowerCamelCase) lowercase__ : Union[str, Any] = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(_lowerCamelCase): lowercase__ : Any = results[benchmark_name] lowercase__ : Optional[int] = benchmark_name.split("/")[-1] output_md.append(f'''### Benchmark: {benchmark_file_name}''') lowercase__ : Union[str, Any] = "| metric |" lowercase__ : Optional[int] = "|--------|" lowercase__ : List[str] = "| new / old (diff) |" for metric_name in sorted(_lowerCamelCase): lowercase__ : str = benchmark_res[metric_name] lowercase__ : Optional[Any] = metric_vals["new"] lowercase__ : str = metric_vals.get("old" , _lowerCamelCase) lowercase__ : Dict = metric_vals.get("diff" , _lowerCamelCase) lowercase__ : Optional[Any] = f''' {new_val:f}''' if isinstance(_lowerCamelCase , (int, float)) else "None" if old_val is not None: val_str += f''' / {old_val:f}''' if isinstance(_lowerCamelCase , (int, float)) else "None" if dif_val is not None: val_str += f''' ({dif_val:f})''' if isinstance(_lowerCamelCase , (int, float)) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>") with open(_lowerCamelCase , "w" , encoding="utf-8") as f: f.writelines("\n".join(_lowerCamelCase)) if __name__ == "__main__": UpperCamelCase = sys.argv[1] UpperCamelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
333
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ ( __A ): __A : List[Any] = ["image_processor", "tokenizer"] __A : Any = "AutoImageProcessor" __A : Any = "AutoTokenizer" def __init__( self : str , lowercase_ : List[str] , lowercase_ : Dict ) -> Dict: super().__init__(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = self.image_processor def __call__( self : Optional[Any] , lowercase_ : int=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]=None , **lowercase_ : Union[str, Any] ) -> Optional[Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowercase__ : List[str] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: lowercase__ : Tuple = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: lowercase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def __UpperCamelCase ( self : Optional[int] , *lowercase_ : str , **lowercase_ : List[Any] ) -> Dict: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Tuple , *lowercase_ : Dict , **lowercase_ : List[Any] ) -> Any: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def __UpperCamelCase ( self : Optional[int] ) -> str: return ["input_ids", "attention_mask", "pixel_values"]
333
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_ ( __A ): __A : str = (IPNDMScheduler,) __A : int = (("num_inference_steps", 50),) def __UpperCamelCase ( self : Any , **lowercase_ : Dict ) -> Dict: lowercase__ : str = {"num_train_timesteps": 10_00} config.update(**lowercase_ ) return config def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Optional[int]=0 , **lowercase_ : Union[str, Any] ) -> Any: lowercase__ : Union[str, Any] = dict(self.forward_default_kwargs ) lowercase__ : Tuple = kwargs.pop("num_inference_steps" , lowercase_ ) lowercase__ : str = self.dummy_sample lowercase__ : Tuple = 0.1 * sample lowercase__ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ : Dict = self.get_scheduler_config(**lowercase_ ) lowercase__ : Union[str, Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals lowercase__ : Union[str, Any] = dummy_past_residuals[:] if time_step is None: lowercase__ : Optional[int] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) lowercase__ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals lowercase__ : str = dummy_past_residuals[:] lowercase__ : Optional[int] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowercase__ : Tuple = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowercase__ : Tuple = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: pass def __UpperCamelCase ( self : Dict , lowercase_ : List[Any]=0 , **lowercase_ : Optional[Any] ) -> List[Any]: lowercase__ : List[Any] = dict(self.forward_default_kwargs ) lowercase__ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) lowercase__ : Union[str, Any] = self.dummy_sample lowercase__ : Optional[Any] = 0.1 * sample lowercase__ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ : Tuple = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ : List[str] = dummy_past_residuals[:] if time_step is None: lowercase__ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) lowercase__ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) lowercase__ : List[str] = dummy_past_residuals[:] lowercase__ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowercase__ : Tuple = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowercase__ : Optional[Any] = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : List[Any] , **lowercase_ : Any ) -> List[str]: lowercase__ : Any = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(**lowercase_ ) lowercase__ : str = scheduler_class(**lowercase_ ) lowercase__ : Optional[Any] = 10 lowercase__ : Any = self.dummy_model() lowercase__ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : List[str] = model(lowercase_ , lowercase_ ) lowercase__ : Dict = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ : Optional[int] = model(lowercase_ , lowercase_ ) lowercase__ : Optional[int] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def __UpperCamelCase ( self : str ) -> Optional[Any]: lowercase__ : Dict = dict(self.forward_default_kwargs ) lowercase__ : Dict = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: lowercase__ : Optional[Any] = self.get_scheduler_config() lowercase__ : Any = scheduler_class(**lowercase_ ) lowercase__ : Optional[int] = self.dummy_sample lowercase__ : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): lowercase__ : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ : int = dummy_past_residuals[:] lowercase__ : Any = scheduler.timesteps[5] lowercase__ : Union[str, Any] = scheduler.timesteps[6] lowercase__ : Optional[int] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowercase__ : Union[str, Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase__ : Optional[int] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowercase__ : Union[str, Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ , time_step=lowercase_ ) def __UpperCamelCase ( self : Dict ) -> List[str]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowercase_ , time_step=lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Tuple: lowercase__ : Union[str, Any] = self.full_loop() lowercase__ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
333
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class snake_case_ ( __A ): __A : Optional[Any] = "table-transformer" __A : Tuple = ["past_key_values"] __A : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Dict , lowercase_ : Union[str, Any]=True , lowercase_ : Any=None , lowercase_ : int=3 , lowercase_ : List[str]=1_00 , lowercase_ : List[Any]=6 , lowercase_ : List[str]=20_48 , lowercase_ : Any=8 , lowercase_ : Any=6 , lowercase_ : Optional[int]=20_48 , lowercase_ : Tuple=8 , lowercase_ : Tuple=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Any=True , lowercase_ : List[Any]="relu" , lowercase_ : List[Any]=2_56 , lowercase_ : List[str]=0.1 , lowercase_ : int=0.0 , lowercase_ : Any=0.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=1.0 , lowercase_ : Dict=False , lowercase_ : Tuple="sine" , lowercase_ : str="resnet50" , lowercase_ : Optional[int]=True , lowercase_ : int=False , lowercase_ : Any=1 , lowercase_ : Any=5 , lowercase_ : Tuple=2 , lowercase_ : Union[str, Any]=1 , lowercase_ : Optional[Any]=1 , lowercase_ : Dict=5 , lowercase_ : int=2 , lowercase_ : Tuple=0.1 , **lowercase_ : str , ) -> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowercase__ : int = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): lowercase__ : Any = backbone_config.get("model_type" ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : Union[str, Any] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowercase__ , lowercase__ , lowercase__ : str = None, None, None lowercase__ : Optional[int] = use_timm_backbone lowercase__ : List[str] = backbone_config lowercase__ : Optional[int] = num_channels lowercase__ : List[str] = num_queries lowercase__ : List[str] = d_model lowercase__ : Tuple = encoder_ffn_dim lowercase__ : Tuple = encoder_layers lowercase__ : Any = encoder_attention_heads lowercase__ : Optional[Any] = decoder_ffn_dim lowercase__ : Any = decoder_layers lowercase__ : Optional[int] = decoder_attention_heads lowercase__ : Union[str, Any] = dropout lowercase__ : int = attention_dropout lowercase__ : Optional[int] = activation_dropout lowercase__ : Tuple = activation_function lowercase__ : Optional[Any] = init_std lowercase__ : Dict = init_xavier_std lowercase__ : Any = encoder_layerdrop lowercase__ : Dict = decoder_layerdrop lowercase__ : Any = encoder_layers lowercase__ : Union[str, Any] = auxiliary_loss lowercase__ : List[Any] = position_embedding_type lowercase__ : Optional[Any] = backbone lowercase__ : str = use_pretrained_backbone lowercase__ : Dict = dilation # Hungarian matcher lowercase__ : str = class_cost lowercase__ : Optional[int] = bbox_cost lowercase__ : List[Any] = giou_cost # Loss coefficients lowercase__ : Optional[int] = mask_loss_coefficient lowercase__ : List[Any] = dice_loss_coefficient lowercase__ : Optional[int] = bbox_loss_coefficient lowercase__ : Any = giou_loss_coefficient lowercase__ : Union[str, Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def __UpperCamelCase ( self : Any ) -> int: return self.encoder_attention_heads @property def __UpperCamelCase ( self : Any ) -> int: return self.d_model class snake_case_ ( __A ): __A : Optional[int] = version.parse("1.11" ) @property def __UpperCamelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __UpperCamelCase ( self : Dict ) -> float: return 1E-5 @property def __UpperCamelCase ( self : Optional[Any] ) -> int: return 12
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
import math import sys def lowercase_ ( _lowerCamelCase : int): if number != int(_lowerCamelCase): raise ValueError("the value of input must be a natural number") if number < 0: raise ValueError("the value of input must not be a negative number") if number == 0: return 1 lowercase__ : List[Any] = [-1] * (number + 1) lowercase__ : Any = 0 for i in range(1 , number + 1): lowercase__ : Optional[int] = sys.maxsize lowercase__ : Union[str, Any] = int(math.sqrt(_lowerCamelCase)) for j in range(1 , root + 1): lowercase__ : List[str] = 1 + answers[i - (j**2)] lowercase__ : List[Any] = min(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class snake_case_ ( __A ): def __init__( self : Union[str, Any] , lowercase_ : Dict ) -> Union[str, Any]: lowercase__ : Union[str, Any] = data def __iter__( self : Optional[Any] ) -> Tuple: for element in self.data: yield element def lowercase_ ( _lowerCamelCase : Any=True): lowercase__ : Union[str, Any] = Accelerator(even_batches=_lowerCamelCase) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def lowercase_ ( _lowerCamelCase : Accelerator , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : bool = False): if iterable: lowercase__ : Tuple = DummyIterableDataset(torch.as_tensor(range(_lowerCamelCase))) else: lowercase__ : List[str] = TensorDataset(torch.as_tensor(range(_lowerCamelCase))) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase) lowercase__ : str = accelerator.prepare(_lowerCamelCase) return dl def lowercase_ ( _lowerCamelCase : Accelerator , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[int] , _lowerCamelCase : List[int] , ): lowercase__ : Tuple = create_dataloader(accelerator=_lowerCamelCase , dataset_size=_lowerCamelCase , batch_size=_lowerCamelCase) lowercase__ : List[str] = [len(batch[0]) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def lowercase_ ( ): lowercase__ : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def lowercase_ ( ): lowercase__ : Dict = create_accelerator(even_batches=_lowerCamelCase) verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def lowercase_ ( ): lowercase__ : Union[str, Any] = create_accelerator(even_batches=_lowerCamelCase) lowercase__ : Optional[int] = torch.nn.Linear(1 , 1) lowercase__ : str = accelerator.prepare(_lowerCamelCase) lowercase__ : Optional[Any] = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1) lowercase__ : Tuple = [] with accelerator.join_uneven_inputs([ddp_model]): for batch_idx, batch in enumerate(_lowerCamelCase): lowercase__ : List[str] = ddp_model(batch[0].float()) lowercase__ : Union[str, Any] = output.sum() loss.backward() batch_idxs.append(_lowerCamelCase) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def lowercase_ ( _lowerCamelCase : str): with warnings.catch_warnings(record=_lowerCamelCase) as w: with accelerator.join_uneven_inputs([Mock()]): pass assert issubclass(w[-1].category , _lowerCamelCase) assert "only supported for multi-GPU" in str(w[-1].message) def lowercase_ ( ): lowercase__ : Union[str, Any] = True lowercase__ : str = False lowercase__ : Any = create_accelerator(even_batches=_lowerCamelCase) lowercase__ : Union[str, Any] = torch.nn.Linear(1 , 1) lowercase__ : List[Any] = accelerator.prepare(_lowerCamelCase) lowercase__ : Tuple = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1) lowercase__ : Dict = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase): lowercase__ : Dict = train_dl.batch_sampler.even_batches lowercase__ : Any = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def lowercase_ ( ): lowercase__ : Optional[Any] = True lowercase__ : List[str] = False lowercase__ : Dict = create_accelerator(even_batches=_lowerCamelCase) lowercase__ : Any = torch.nn.Linear(1 , 1) lowercase__ : List[Any] = accelerator.prepare(_lowerCamelCase) create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCamelCase) lowercase__ : Optional[int] = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1) with warnings.catch_warnings(): warnings.filterwarnings("ignore") try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase): lowercase__ : Union[str, Any] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def lowercase_ ( ): lowercase__ : Optional[int] = create_accelerator() lowercase__ : Any = torch.nn.Linear(1 , 1) lowercase__ : Union[str, Any] = accelerator.prepare(_lowerCamelCase) create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCamelCase) with warnings.catch_warnings(record=_lowerCamelCase) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase): pass assert issubclass(w[-1].category , _lowerCamelCase) assert "only supported for map-style datasets" in str(w[-1].message) def lowercase_ ( ): lowercase__ : str = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes") test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled") test_can_disable_even_batches() accelerator.print("Test joining uneven inputs") test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs") test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types") test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders") test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning") lowercase__ : Optional[Any] = accelerator.state.distributed_type lowercase__ : Union[str, Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_lowerCamelCase) lowercase__ : Dict = original_state if __name__ == "__main__": main()
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
1
import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
333
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : int = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[int]): lowercase__ , lowercase__ : int = emb.weight.shape lowercase__ : List[str] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) lowercase__ : Dict = emb.weight.data return lin_layer def lowercase_ ( _lowerCamelCase : Optional[Any]): lowercase__ : int = torch.load(_lowerCamelCase , map_location="cpu") lowercase__ : List[Any] = mam_aaa["args"] or mam_aaa["cfg"]["model"] lowercase__ : int = mam_aaa["model"] remove_ignore_keys_(_lowerCamelCase) lowercase__ : str = state_dict["encoder.embed_tokens.weight"].shape[0] lowercase__ : Any = MaMaaaConfig( vocab_size=_lowerCamelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) lowercase__ : Optional[int] = state_dict["decoder.embed_tokens.weight"] lowercase__ : int = MaMaaaForConditionalGeneration(_lowerCamelCase) model.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase) lowercase__ : Optional[Any] = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase = parser.parse_args() UpperCamelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
333
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase = '''bert-base-cased''' UpperCamelCase = '''fp16''' UpperCamelCase = '''bf16''' UpperCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class snake_case_ ( __A ): def __UpperCamelCase ( self : Optional[int] ) -> Dict: super().setUp() lowercase__ : Union[str, Any] = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowercase_ ): lowercase__ : int = self.dist_env.copy() lowercase__ : Dict = F'''{i + 1}''' lowercase__ : str = strategy with mockenv_context(**lowercase_ ): lowercase__ : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowercase_ ): lowercase__ : int = self.dist_env.copy() lowercase__ : Any = prefetch_policy with mockenv_context(**lowercase_ ): lowercase__ : Tuple = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __UpperCamelCase ( self : int ) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowercase_ ): lowercase__ : Union[str, Any] = self.dist_env.copy() lowercase__ : List[Any] = state_dict_type with mockenv_context(**lowercase_ ): lowercase__ : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __UpperCamelCase ( self : Any ) -> Any: lowercase__ : int = AutoModel.from_pretrained(lowercase_ ) for policy in FSDP_AUTO_WRAP_POLICY: lowercase__ : str = self.dist_env.copy() lowercase__ : int = policy if policy == "TRANSFORMER_BASED_WRAP": lowercase__ : Tuple = "BertLayer" elif policy == "SIZE_BASED_WRAP": lowercase__ : List[Any] = "2000" with mockenv_context(**lowercase_ ): lowercase__ : Dict = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase_ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) lowercase__ : Optional[int] = self.dist_env.copy() lowercase__ : int = "TRANSFORMER_BASED_WRAP" lowercase__ : List[Any] = "T5Layer" with mockenv_context(**lowercase_ ): lowercase__ : List[Any] = FullyShardedDataParallelPlugin() with self.assertRaises(lowercase_ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowercase_ ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) lowercase__ : Any = self.dist_env.copy() lowercase__ : str = "SIZE_BASED_WRAP" lowercase__ : Tuple = "0" with mockenv_context(**lowercase_ ): lowercase__ : Any = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase_ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowercase__ : str = self.dist_env.copy() lowercase__ : Dict = mp_dtype with mockenv_context(**lowercase_ ): lowercase__ : Union[str, Any] = Accelerator() if mp_dtype == "fp16": lowercase__ : int = torch.floataa elif mp_dtype == "bf16": lowercase__ : Union[str, Any] = torch.bfloataa lowercase__ : Tuple = MixedPrecision(param_dtype=lowercase_ , reduce_dtype=lowercase_ , buffer_dtype=lowercase_ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowercase_ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowercase_ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowercase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowercase__ : Any = self.dist_env.copy() lowercase__ : List[str] = str(lowercase_ ).lower() with mockenv_context(**lowercase_ ): lowercase__ : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowercase_ ) ) @require_fsdp @require_multi_gpu @slow class snake_case_ ( __A ): def __UpperCamelCase ( self : Union[str, Any] ) -> Any: super().setUp() lowercase__ : str = 0.82 lowercase__ : List[Any] = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] lowercase__ : int = { "multi_gpu_fp16": 32_00, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 20_00, "fsdp_full_shard_transformer_based_wrap_fp16": 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowercase__ : Optional[Any] = 1_60 lowercase__ : int = 1_60 lowercase__ : Optional[Any] = inspect.getfile(accelerate.test_utils ) lowercase__ : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def __UpperCamelCase ( self : Tuple ) -> int: lowercase__ : Union[str, Any] = os.path.join(self.test_scripts_folder , "test_performance.py" ) lowercase__ : Union[str, Any] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: lowercase__ : Optional[int] = cmd.copy() for i, strategy in enumerate(lowercase_ ): if strategy.lower() in config: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Tuple = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) lowercase__ : Union[str, Any] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(lowercase_ ): lowercase__ : List[Any] = cmd.copy() cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue lowercase__ : Any = len(lowercase_ ) for state_dict_type in FSDP_STATE_DICT_TYPE: lowercase__ : Tuple = cmd_config[:state_dict_config_index] cmd_config.append(F'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) lowercase__ : Tuple = cmd_config[:-1] lowercase__ : Dict = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ F'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) def __UpperCamelCase ( self : List[str] ) -> int: lowercase__ : List[str] = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) lowercase__ : int = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowercase__ : Union[str, Any] = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(lowercase_ ): if strategy.lower() in spec: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--peak_memory_upper_bound={peak_mem_upper_bound}''', F'''--n_train={self.n_train}''', F'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() )
333
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A ,unittest.TestCase ): __A : Optional[Any] = LongformerTokenizer __A : Dict = True __A : Any = LongformerTokenizerFast __A : str = True def __UpperCamelCase ( self : List[Any] ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : Optional[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : int = {"unk_token": "<unk>"} lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def __UpperCamelCase ( self : str , **lowercase_ : List[Any] ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : Tuple , **lowercase_ : List[str] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Optional[Any]: lowercase__ : Tuple = "lower newer" lowercase__ : Union[str, Any] = "lower newer" return input_text, output_text def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: lowercase__ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Dict = "lower newer" lowercase__ : Optional[Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowercase__ : str = tokenizer.tokenize(lowercase_ ) # , add_prefix_space=True) self.assertListEqual(lowercase_ , lowercase_ ) lowercase__ : int = tokens + [tokenizer.unk_token] lowercase__ : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Any: lowercase__ : List[str] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=lowercase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=lowercase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __UpperCamelCase ( self : Any ) -> Dict: lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) lowercase__ : List[str] = tokenizer.encode("sequence builders" , add_special_tokens=lowercase_ ) lowercase__ : List[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase_ ) lowercase__ : str = tokenizer.encode( "sequence builders" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : Any = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : int = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase__ : Any = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self : int ) -> int: lowercase__ : Dict = self.get_tokenizer() lowercase__ : str = "Encode this sequence." lowercase__ : List[str] = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments lowercase__ : List[str] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) lowercase__ : Any = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase_ , lowercase_ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) lowercase__ : str = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowercase__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) # Testing spaces after special tokens lowercase__ : str = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ )} ) # mask token has a left space lowercase__ : int = tokenizer.convert_tokens_to_ids(lowercase_ ) lowercase__ : Tuple = "Encode <mask> sequence" lowercase__ : Optional[Any] = "Encode <mask>sequence" lowercase__ : Optional[int] = tokenizer.encode(lowercase_ ) lowercase__ : Union[str, Any] = encoded.index(lowercase_ ) lowercase__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase_ , lowercase_ ) lowercase__ : List[Any] = tokenizer.encode(lowercase_ ) lowercase__ : str = encoded.index(lowercase_ ) lowercase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Any ) -> Any: pass def __UpperCamelCase ( self : Any ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[str] = "A, <mask> AllenNLP sentence." lowercase__ : Dict = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) lowercase__ : List[str] = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase__ : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , lowercase_ ) self.assertEqual(post_processor_state["add_prefix_space"] , lowercase_ ) self.assertEqual(post_processor_state["trim_offsets"] , lowercase_ ) def __UpperCamelCase ( self : int ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : Union[str, Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowercase__ : Tuple = F'''{text_of_1_token} {text_of_1_token}''' lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Tuple = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Optional[int] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : str = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : str = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : Any = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase__ : Any = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Optional[Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : Any = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : str = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : str = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Dict = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , )
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ : def __init__( self : int , lowercase_ : Any , lowercase_ : List[str]=13 , lowercase_ : List[str]=30 , lowercase_ : Any=2 , lowercase_ : Any=3 , lowercase_ : Tuple=True , lowercase_ : int=True , lowercase_ : Dict=32 , lowercase_ : Any=5 , lowercase_ : List[Any]=4 , lowercase_ : int=37 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[int]=0.02 , lowercase_ : Dict=3 , lowercase_ : Dict=0.6 , lowercase_ : Optional[Any]=None , ) -> int: lowercase__ : str = parent lowercase__ : Tuple = batch_size lowercase__ : Any = image_size lowercase__ : List[Any] = patch_size lowercase__ : List[Any] = num_channels lowercase__ : List[Any] = is_training lowercase__ : Tuple = use_labels lowercase__ : str = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : List[str] = type_sequence_label_size lowercase__ : Optional[int] = initializer_range lowercase__ : Tuple = mask_ratio lowercase__ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ : Optional[int] = (image_size // patch_size) ** 2 lowercase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __UpperCamelCase ( self : Dict ) -> int: lowercase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Dict = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ) -> Optional[Any]: lowercase__ : str = ViTMAEModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : str = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Tuple ) -> Tuple: lowercase__ : Tuple = ViTMAEForPreTraining(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Tuple = model(lowercase_ ) lowercase__ : int = (self.image_size // self.patch_size) ** 2 lowercase__ : Any = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ : Any = 1 lowercase__ : int = ViTMAEForPreTraining(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : Dict = model(lowercase_ ) lowercase__ : str = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: lowercase__ : List[Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : int = config_and_inputs lowercase__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( __A ,__A ,unittest.TestCase ): __A : str = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __A : Tuple = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} __A : List[Any] = False __A : Any = False __A : List[Any] = False __A : int = False def __UpperCamelCase ( self : List[str] ) -> List[Any]: lowercase__ : Optional[Any] = ViTMAEModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: pass def __UpperCamelCase ( self : List[Any] ) -> Any: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def __UpperCamelCase ( self : int ) -> int: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = model_class(lowercase_ ) lowercase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Union[str, Any] = [*signature.parameters.keys()] lowercase__ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[Any]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_ ) def __UpperCamelCase ( self : List[Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Tuple ) -> List[str]: # make masks reproducible np.random.seed(2 ) lowercase__ : List[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowercase__ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ : Any = torch.from_numpy(lowercase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ : Dict = pt_noise super().check_pt_tf_models(lowercase_ , lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase__ : Union[str, Any] = outputs[0].cpu().numpy() lowercase__ : Tuple = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase__ : Dict = model_class.from_pretrained(lowercase_ ) model.to(lowercase_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) # Make sure we don't have nans lowercase__ : int = after_outputs[0].cpu().numpy() lowercase__ : List[Any] = 0 lowercase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __UpperCamelCase ( self : Tuple ) -> Any: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __UpperCamelCase ( self : List[str] ) -> Any: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __UpperCamelCase ( self : Any ) -> Any: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def __UpperCamelCase ( self : Optional[int] ) -> Any: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: pass @slow def __UpperCamelCase ( self : Optional[int] ) -> Dict: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = ViTMAEModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowercase_ ( ): lowercase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int ) -> Optional[Any]: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowercase__ : Tuple = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(lowercase_ ) lowercase__ : int = self.default_image_processor lowercase__ : Union[str, Any] = prepare_img() lowercase__ : Optional[int] = image_processor(images=lowercase_ , return_tensors="pt" ).to(lowercase_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ : int = ViTMAEConfig() lowercase__ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ : str = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowercase__ : Optional[int] = model(**lowercase_ , noise=torch.from_numpy(lowercase_ ).to(device=lowercase_ ) ) # verify the logits lowercase__ : Tuple = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase__ : List[Any] = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowercase_ ) , atol=1E-4 ) )
333
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class snake_case_ ( __A ): def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Optional[int] = SMALL_MODEL_IDENTIFIER lowercase__ : int = "pt" lowercase__ : Optional[int] = "tf" def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Any ) -> List[str]: lowercase__ : Union[str, Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowercase_ ) def __UpperCamelCase ( self : Tuple , lowercase_ : Any ) -> Dict: lowercase__ : Optional[int] = TFAutoModel.from_pretrained(self.test_model , from_pt=lowercase_ ) model_tf.save_pretrained(lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Any: lowercase__ : List[Any] = "mock_framework" # Framework provided - return whatever the user provides lowercase__ : List[str] = FeaturesManager.determine_framework(self.test_model , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase_ ) lowercase__ : List[Any] = FeaturesManager.determine_framework(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase_ ) lowercase__ : Optional[Any] = FeaturesManager.determine_framework(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase_ ) lowercase__ : Optional[int] = FeaturesManager.determine_framework(lowercase_ ) self.assertEqual(lowercase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase_ ) lowercase__ : List[str] = FeaturesManager.determine_framework(lowercase_ ) self.assertEqual(lowercase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowercase_ ): lowercase__ : str = FeaturesManager.determine_framework(lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: lowercase__ : Union[str, Any] = MagicMock(return_value=lowercase_ ) with patch("transformers.onnx.features.is_tf_available" , lowercase_ ): lowercase__ : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowercase__ : Dict = MagicMock(return_value=lowercase_ ) with patch("transformers.onnx.features.is_torch_available" , lowercase_ ): lowercase__ : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase_ , self.framework_tf ) # Both in environment -> use PyTorch lowercase__ : str = MagicMock(return_value=lowercase_ ) lowercase__ : Union[str, Any] = MagicMock(return_value=lowercase_ ) with patch("transformers.onnx.features.is_tf_available" , lowercase_ ), patch( "transformers.onnx.features.is_torch_available" , lowercase_ ): lowercase__ : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase_ , self.framework_pt ) # Both not in environment -> raise error lowercase__ : Optional[Any] = MagicMock(return_value=lowercase_ ) lowercase__ : Union[str, Any] = MagicMock(return_value=lowercase_ ) with patch("transformers.onnx.features.is_tf_available" , lowercase_ ), patch( "transformers.onnx.features.is_torch_available" , lowercase_ ): with self.assertRaises(lowercase_ ): lowercase__ : Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowercase__ : Dict = os.getenv("SM_HP_MP_PARAMETERS" , "{}") try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowercase__ : Optional[Any] = json.loads(_lowerCamelCase) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowercase__ : List[str] = os.getenv("SM_FRAMEWORK_PARAMS" , "{}") try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowercase__ : List[Any] = json.loads(_lowerCamelCase) if not mpi_options.get("sagemaker_mpi_enabled" , _lowerCamelCase): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed") is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class snake_case_ ( __A ): __A : str = field( default="" ,metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} ,) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowercase_ , ) @cached_property def __UpperCamelCase ( self : Dict ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: lowercase__ : List[Any] = torch.device("cpu" ) lowercase__ : Optional[Any] = 0 elif is_sagemaker_model_parallel_available(): lowercase__ : Tuple = smp.local_rank() lowercase__ : Union[str, Any] = torch.device("cuda" , lowercase_ ) lowercase__ : Dict = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) lowercase__ : List[Any] = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) lowercase__ : Tuple = torch.device("cuda" , self.local_rank ) lowercase__ : Any = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowercase__ : Any = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowercase__ : Optional[int] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) lowercase__ : Dict = torch.device("cuda" , self.local_rank ) lowercase__ : Tuple = 1 if device.type == "cuda": torch.cuda.set_device(lowercase_ ) return device @property def __UpperCamelCase ( self : Tuple ) -> List[str]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __UpperCamelCase ( self : str ) -> str: return not is_sagemaker_model_parallel_available() @property def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: return False
333
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.model'''} UpperCamelCase = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } UpperCamelCase = { '''google/rembert''': 256, } class snake_case_ ( __A ): __A : Optional[int] = VOCAB_FILES_NAMES __A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , lowercase_ : Any , lowercase_ : Any=False , lowercase_ : Any=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]="[CLS]" , lowercase_ : Tuple="[SEP]" , lowercase_ : Tuple="[UNK]" , lowercase_ : Tuple="[SEP]" , lowercase_ : List[Any]="[PAD]" , lowercase_ : Optional[Any]="[CLS]" , lowercase_ : List[str]="[MASK]" , **lowercase_ : List[str] , ) -> List[str]: super().__init__( do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) lowercase__ : Dict = do_lower_case lowercase__ : Union[str, Any] = remove_space lowercase__ : Union[str, Any] = keep_accents lowercase__ : Tuple = vocab_file lowercase__ : Any = spm.SentencePieceProcessor() self.sp_model.Load(lowercase_ ) @property def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: return len(self.sp_model ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: lowercase__ : List[Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Tuple: lowercase__ : Optional[Any] = self.__dict__.copy() lowercase__ : int = None return state def __setstate__( self : Optional[int] , lowercase_ : Any ) -> List[str]: lowercase__ : Dict = d lowercase__ : Dict = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Any , lowercase_ : Any=False ) -> Union[str, Any]: lowercase__ : Optional[Any] = self.sp_model.EncodeAsPieces(lowercase_ ) return pieces def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[int] ) -> Any: return self.sp_model.PieceToId(lowercase_ ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[int] ) -> str: return self.sp_model.IdToPiece(lowercase_ ) def __UpperCamelCase ( self : int , lowercase_ : List[str] ) -> List[str]: lowercase__ : str = self.sp_model.decode_pieces(lowercase_ ) return out_string def __UpperCamelCase ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : Optional[int] = [self.sep_token_id] lowercase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self : Dict , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] def __UpperCamelCase ( self : List[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : List[str] = [self.sep_token_id] lowercase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return lowercase__ : Dict = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
333
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } UpperCamelCase = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int]): for attribute in key.split("."): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowercase__ : int = "lm_head" lowercase__ : Dict = getattr(_lowerCamelCase , _lowerCamelCase) if weight_type is not None: lowercase__ : Dict = getattr(_lowerCamelCase , _lowerCamelCase).shape else: lowercase__ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ : int = value elif weight_type == "weight_g": lowercase__ : List[Any] = value elif weight_type == "weight_v": lowercase__ : Optional[Any] = value elif weight_type == "bias": lowercase__ : Union[str, Any] = value else: lowercase__ : str = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''') def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int): lowercase__ : Union[str, Any] = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase__ : Tuple = True else: for key, mapped_key in MAPPING.items(): lowercase__ : Union[str, Any] = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: lowercase__ : Optional[Any] = True if "*" in mapped_key: lowercase__ : Dict = name.split(_lowerCamelCase)[0].split(".")[-2] lowercase__ : List[Any] = mapped_key.replace("*" , _lowerCamelCase) if "weight_g" in name: lowercase__ : Union[str, Any] = "weight_g" elif "weight_v" in name: lowercase__ : Dict = "weight_v" elif "bias" in name: lowercase__ : Any = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Dict = "weight" else: lowercase__ : Tuple = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) continue if not is_used: unused_weights.append(_lowerCamelCase) logger.warning(f'''Unused weights: {unused_weights}''') def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str]): lowercase__ : Tuple = full_name.split("conv_layers.")[-1] lowercase__ : List[str] = name.split(".") lowercase__ : Optional[Any] = int(items[0]) lowercase__ : Tuple = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ : int = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ : List[Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ : str = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ : Any = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(_lowerCamelCase) @torch.no_grad() def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Tuple=True): if config_path is not None: lowercase__ : Dict = UniSpeechConfig.from_pretrained(_lowerCamelCase) else: lowercase__ : Dict = UniSpeechConfig() if is_finetuned: if dict_path: lowercase__ : List[Any] = Dictionary.load_from_json(_lowerCamelCase) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ : Union[str, Any] = target_dict.pad_index lowercase__ : List[Any] = target_dict.bos_index lowercase__ : Tuple = target_dict.eos_index lowercase__ : List[Any] = len(target_dict.symbols) lowercase__ : Any = os.path.join(_lowerCamelCase , "vocab.json") if not os.path.isdir(_lowerCamelCase): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase)) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase) lowercase__ : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ : str = 42 lowercase__ : Optional[Any] = 43 with open(_lowerCamelCase , "w" , encoding="utf-8") as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = WavaVecaPhonemeCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) lowercase__ : Tuple = True if config.feat_extract_norm == "layer" else False lowercase__ : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) lowercase__ : str = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase) processor.save_pretrained(_lowerCamelCase) lowercase__ : List[str] = UniSpeechForCTC(_lowerCamelCase) else: lowercase__ : Dict = UniSpeechForPreTraining(_lowerCamelCase) if is_finetuned: lowercase__ , lowercase__ , lowercase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/")[:-1]), "w2v_path": checkpoint_path}) else: lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) lowercase__ : List[Any] = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) hf_unispeech.save_pretrained(_lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
333
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ ( __A ): def __init__( self : Dict , lowercase_ : int , lowercase_ : Dict=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : List[str]=True , lowercase_ : List[Any]=True , lowercase_ : List[Any]=True , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : Optional[int]=False , lowercase_ : str=False , lowercase_ : Any=False , lowercase_ : int=2 , lowercase_ : Any=99 , lowercase_ : List[Any]=0 , lowercase_ : Optional[Any]=32 , lowercase_ : Tuple=5 , lowercase_ : Tuple=4 , lowercase_ : int=0.1 , lowercase_ : int=0.1 , lowercase_ : Any=5_12 , lowercase_ : Tuple=12 , lowercase_ : List[Any]=2 , lowercase_ : List[Any]=0.02 , lowercase_ : str=3 , lowercase_ : Tuple=4 , lowercase_ : int="last" , lowercase_ : Optional[int]=None , lowercase_ : Optional[Any]=None , ) -> Union[str, Any]: lowercase__ : Optional[Any] = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Optional[Any] = seq_length lowercase__ : Tuple = is_training lowercase__ : Optional[int] = use_input_lengths lowercase__ : Union[str, Any] = use_token_type_ids lowercase__ : Dict = use_labels lowercase__ : int = gelu_activation lowercase__ : Dict = sinusoidal_embeddings lowercase__ : Union[str, Any] = causal lowercase__ : Optional[int] = asm lowercase__ : Any = n_langs lowercase__ : List[str] = vocab_size lowercase__ : Tuple = n_special lowercase__ : Union[str, Any] = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Optional[int] = max_position_embeddings lowercase__ : Optional[int] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : str = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Optional[Any] = num_choices lowercase__ : Union[str, Any] = summary_type lowercase__ : List[str] = use_proj lowercase__ : Union[str, Any] = scope def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Union[str, Any] = None if self.use_input_lengths: lowercase__ : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ : int = None if self.use_token_type_ids: lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ : Optional[Any] = None lowercase__ : Any = None lowercase__ : str = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : int , lowercase_ : Dict , ) -> List[str]: lowercase__ : str = FlaubertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : int = model(lowercase_ , lengths=lowercase_ , langs=lowercase_ ) lowercase__ : List[Any] = model(lowercase_ , langs=lowercase_ ) lowercase__ : Dict = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : int , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : str , lowercase_ : Union[str, Any] , ) -> Tuple: lowercase__ : Optional[Any] = FlaubertWithLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Dict = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : Any , lowercase_ : Any , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Any , ) -> Optional[int]: lowercase__ : Union[str, Any] = FlaubertForQuestionAnsweringSimple(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Tuple = model(lowercase_ ) lowercase__ : List[str] = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Any , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : int , ) -> Any: lowercase__ : Tuple = FlaubertForQuestionAnswering(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Dict = model(lowercase_ ) lowercase__ : List[str] = model( lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , p_mask=lowercase_ , ) lowercase__ : Optional[int] = model( lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , ) ((lowercase__) , ) : List[str] = result_with_labels.to_tuple() lowercase__ : str = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) ((lowercase__) , ) : Dict = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __UpperCamelCase ( self : int , lowercase_ : str , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : List[str] , ) -> Optional[int]: lowercase__ : Optional[int] = FlaubertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : List[str] = model(lowercase_ ) lowercase__ : List[Any] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Tuple , ) -> Union[str, Any]: lowercase__ : List[str] = self.num_labels lowercase__ : Union[str, Any] = FlaubertForTokenClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Tuple = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Any , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : str , ) -> List[Any]: lowercase__ : Union[str, Any] = self.num_choices lowercase__ : Any = FlaubertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : List[str] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : int ) -> int: lowercase__ : List[str] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Union[str, Any] = config_and_inputs lowercase__ : Tuple = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case_ ( __A ,__A ,unittest.TestCase ): __A : int = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __A : Optional[int] = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[Any] ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=False ) -> List[str]: lowercase__ : List[Any] = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) lowercase__ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowercase__ : int = FlaubertModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=lowercase_ , emb_dim=37 ) def __UpperCamelCase ( self : int ) -> List[str]: self.config_tester.run_common_tests() def __UpperCamelCase ( self : int ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase_ ) def __UpperCamelCase ( self : Dict ) -> Any: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase_ ) def __UpperCamelCase ( self : Tuple ) -> Tuple: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> str: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_ ) def __UpperCamelCase ( self : int ) -> str: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase_ ) def __UpperCamelCase ( self : int ) -> Dict: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase_ ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[str] = FlaubertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow @require_torch_gpu def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ : Optional[Any] = True lowercase__ : List[str] = model_class(config=lowercase_ ) lowercase__ : int = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = torch.jit.trace( lowercase_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase_ , os.path.join(lowercase_ , "traced_model.pt" ) ) lowercase__ : str = torch.jit.load(os.path.join(lowercase_ , "traced_model.pt" ) , map_location=lowercase_ ) loaded(inputs_dict["input_ids"].to(lowercase_ ) , inputs_dict["attention_mask"].to(lowercase_ ) ) @require_torch class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Any ) -> Optional[int]: lowercase__ : Union[str, Any] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) lowercase__ : Dict = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): lowercase__ : Union[str, Any] = model(lowercase_ )[0] lowercase__ : Any = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowercase_ ) lowercase__ : Dict = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
333
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any]): lowercase__ : Any = UniSpeechSatForSequenceClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase) lowercase__ : Union[str, Any] = downstream_dict["projector.weight"] lowercase__ : int = downstream_dict["projector.bias"] lowercase__ : int = downstream_dict["model.post_net.linear.weight"] lowercase__ : int = downstream_dict["model.post_net.linear.bias"] return model def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Dict): lowercase__ : Any = UniSpeechSatForAudioFrameClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase) lowercase__ : int = downstream_dict["model.linear.weight"] lowercase__ : str = downstream_dict["model.linear.bias"] return model def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : List[str]): lowercase__ : Tuple = UniSpeechSatForXVector.from_pretrained(_lowerCamelCase , config=_lowerCamelCase) lowercase__ : Union[str, Any] = downstream_dict["connector.weight"] lowercase__ : str = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel): lowercase__ : Tuple = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] lowercase__ : Union[str, Any] = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] lowercase__ : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] lowercase__ : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] lowercase__ : List[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] lowercase__ : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] lowercase__ : Optional[Any] = downstream_dict["objective.W"] return model @torch.no_grad() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ : str = torch.load(_lowerCamelCase , map_location="cpu") lowercase__ : Optional[Any] = checkpoint["Downstream"] lowercase__ : Dict = UniSpeechSatConfig.from_pretrained(_lowerCamelCase) lowercase__ : str = WavaVecaFeatureExtractor.from_pretrained( _lowerCamelCase , return_attention_mask=_lowerCamelCase , do_normalize=_lowerCamelCase) lowercase__ : Union[str, Any] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification"): lowercase__ : int = convert_classification(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) elif arch.endswith("ForAudioFrameClassification"): lowercase__ : List[str] = convert_diarization(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) elif arch.endswith("ForXVector"): lowercase__ : Any = convert_xvector(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''') if hf_config.use_weighted_layer_sum: lowercase__ : Tuple = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_lowerCamelCase) hf_model.save_pretrained(_lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') UpperCamelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
333
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
1
from __future__ import annotations def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : str): lowercase__ : str = get_failure_array(_lowerCamelCase) # 2) Step through text searching for pattern lowercase__ , lowercase__ : int = 0, 0 # index into text, pattern while i < len(_lowerCamelCase): if pattern[j] == text[i]: if j == (len(_lowerCamelCase) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowercase__ : List[str] = failure[j - 1] continue i += 1 return False def lowercase_ ( _lowerCamelCase : str): lowercase__ : Dict = [0] lowercase__ : Dict = 0 lowercase__ : List[str] = 1 while j < len(_lowerCamelCase): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowercase__ : Optional[int] = failure[i - 1] continue j += 1 failure.append(_lowerCamelCase) return failure if __name__ == "__main__": # Test 1) UpperCamelCase = '''abc1abc12''' UpperCamelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' UpperCamelCase = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase = '''ABABX''' UpperCamelCase = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) UpperCamelCase = '''AAAB''' UpperCamelCase = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) UpperCamelCase = '''abcdabcy''' UpperCamelCase = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) UpperCamelCase = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
333
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''PoolFormerFeatureExtractor'''] UpperCamelCase = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
1
UpperCamelCase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def lowercase_ ( _lowerCamelCase : int): lowercase__ : Any = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCamelCase = [None] * 1000_0000 UpperCamelCase = True UpperCamelCase = False def lowercase_ ( _lowerCamelCase : int): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowercase__ : List[str] = chain(next_number(_lowerCamelCase)) lowercase__ : Optional[int] = number_chain while number < 1000_0000: lowercase__ : Union[str, Any] = number_chain number *= 10 return number_chain def lowercase_ ( _lowerCamelCase : int = 1000_0000): for i in range(1 , _lowerCamelCase): if CHAINS[i] is None: chain(i + 1) return CHAINS[:number].count(_lowerCamelCase) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
333
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
1
from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase_ ( _lowerCamelCase : Dict): for param in module.parameters(): lowercase__ : Optional[int] = False def lowercase_ ( ): lowercase__ : int = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations.") return device def lowercase_ ( _lowerCamelCase : Optional[int]): lowercase__ : Union[str, Any] = plt.imshow(_lowerCamelCase) fig.axes.get_xaxis().set_visible(_lowerCamelCase) fig.axes.get_yaxis().set_visible(_lowerCamelCase) plt.show() def lowercase_ ( ): lowercase__ : Union[str, Any] = datetime.now() lowercase__ : List[str] = current_time.strftime("%H:%M:%S") return timestamp
333
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
1
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
1
from math import sqrt def lowercase_ ( _lowerCamelCase : int): lowercase__ : List[Any] = 0 for i in range(1 , int(sqrt(_lowerCamelCase) + 1)): if n % i == 0 and i != sqrt(_lowerCamelCase): total += i + n // i elif i == sqrt(_lowerCamelCase): total += i return total - n def lowercase_ ( _lowerCamelCase : int = 1_0000): lowercase__ : str = sum( i for i in range(1 , _lowerCamelCase) if sum_of_divisors(sum_of_divisors(_lowerCamelCase)) == i and sum_of_divisors(_lowerCamelCase) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
333
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case_ ( __A ): __A : Dict = (KDPMaDiscreteScheduler,) __A : Optional[int] = 10 def __UpperCamelCase ( self : Tuple , **lowercase_ : Tuple ) -> Union[str, Any]: lowercase__ : str = { "num_train_timesteps": 11_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def __UpperCamelCase ( self : Union[str, Any] ) -> int: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> int: for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_ ) def __UpperCamelCase ( self : Any ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: lowercase__ : List[str] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config(prediction_type="v_prediction" ) lowercase__ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase__ : Dict = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase__ : int = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : str = scheduler.scale_model_input(lowercase_ , lowercase_ ) lowercase__ : str = model(lowercase_ , lowercase_ ) lowercase__ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = output.prev_sample lowercase__ : List[str] = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : int = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2 assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def __UpperCamelCase ( self : Dict ) -> Dict: if torch_device == "mps": return lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config() lowercase__ : Any = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase__ : str = self.dummy_model() lowercase__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase__ : Optional[int] = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : List[str] = scheduler.scale_model_input(lowercase_ , lowercase_ ) lowercase__ : Any = model(lowercase_ , lowercase_ ) lowercase__ : Tuple = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Dict = output.prev_sample lowercase__ : Dict = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : List[Any] = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: if torch_device == "mps": return lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : Any = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) lowercase__ : List[Any] = self.dummy_model() lowercase__ : Tuple = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase__ : Any = scheduler.scale_model_input(lowercase_ , lowercase_ ) lowercase__ : Any = model(lowercase_ , lowercase_ ) lowercase__ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Dict = output.prev_sample lowercase__ : Tuple = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : Any = torch.mean(torch.abs(lowercase_ ) ) if str(lowercase_ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
def lowercase_ ( _lowerCamelCase : int = 100): lowercase__ : List[str] = n * (n + 1) * (2 * n + 1) / 6 lowercase__ : Optional[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares) if __name__ == "__main__": print(f"{solution() = }")
333
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class snake_case_ ( __A ,__A ,unittest.TestCase ): __A : List[Any] = IFPipeline __A : Dict = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = PipelineTesterMixin.required_optional_params - {"latents"} def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: return self._get_dummy_components() def __UpperCamelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : int=0 ) -> Union[str, Any]: if str(lowercase_ ).startswith("mps" ): lowercase__ : int = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Dict ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __UpperCamelCase ( self : int ) -> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __UpperCamelCase ( self : str ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __UpperCamelCase ( self : Any ) -> List[str]: self._test_save_load_local() def __UpperCamelCase ( self : List[Any] ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ) -> Any: # if lowercase__ : Tuple = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) lowercase__ : Dict = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=lowercase_ , tokenizer=lowercase_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) lowercase__ , lowercase__ : Optional[int] = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase__ : Tuple = None lowercase__ : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase__ : Optional[Any] = IFImgaImgPipeline(**pipe_a.components ) lowercase__ : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase__ : Tuple = IFInpaintingPipeline(**pipe_a.components ) lowercase__ : List[Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Any ) -> List[str]: # pipeline 1 _start_torch_memory_measurement() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : List[Any] = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , num_inference_steps=2 , generator=lowercase_ , output_type="np" , ) lowercase__ : Any = output.images[0] assert image.shape == (64, 64, 3) lowercase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowercase__ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) # pipeline 2 _start_torch_memory_measurement() lowercase__ : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Union[str, Any] = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type="np" , ) lowercase__ : Union[str, Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase__ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Any , lowercase_ : Dict ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() lowercase__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : str = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : str = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , num_inference_steps=2 , generator=lowercase_ , output_type="np" , ) lowercase__ : Tuple = output.images[0] assert image.shape == (64, 64, 3) lowercase__ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase__ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) # pipeline 2 _start_torch_memory_measurement() lowercase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : List[str] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Tuple = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , original_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type="np" , ) lowercase__ : Dict = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase__ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Any ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() lowercase__ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(lowercase_ ) lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : List[Any] = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , mask_image=lowercase_ , num_inference_steps=2 , generator=lowercase_ , output_type="np" , ) lowercase__ : str = output.images[0] assert image.shape == (64, 64, 3) lowercase__ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) # pipeline 2 _start_torch_memory_measurement() lowercase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Optional[int] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Tuple = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(lowercase_ ) lowercase__ : Optional[Any] = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , mask_image=lowercase_ , original_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase__ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def lowercase_ ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCamelCase = sys.version_info >= (3, 10) def lowercase_ ( _lowerCamelCase : Tuple=None , _lowerCamelCase : int=None): return field(default_factory=lambda: default , metadata=_lowerCamelCase) @dataclass class snake_case_ : __A : int __A : float __A : str __A : bool @dataclass class snake_case_ : __A : int = 42 __A : str = field(default="toto" ,metadata={"help": "help message"} ) @dataclass class snake_case_ : __A : bool = False __A : bool = True __A : Optional[bool] = None class snake_case_ ( __A ): __A : str = "titi" __A : List[str] = "toto" class snake_case_ ( __A ): __A : Optional[int] = "titi" __A : Union[str, Any] = "toto" __A : str = 42 @dataclass class snake_case_ : __A : BasicEnum = "toto" def __UpperCamelCase ( self : int ) -> List[Any]: lowercase__ : str = BasicEnum(self.foo ) @dataclass class snake_case_ : __A : MixedTypeEnum = "toto" def __UpperCamelCase ( self : str ) -> str: lowercase__ : int = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : __A : Optional[int] = None __A : Optional[float] = field(default=__A ,metadata={"help": "help message"} ) __A : Optional[str] = None __A : Optional[List[str]] = list_field(default=[] ) __A : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : __A : List[int] = list_field(default=[] ) __A : List[int] = list_field(default=[1, 2, 3] ) __A : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) __A : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : __A : List[int] = field() __A : str = field() __A : BasicEnum = field() def __UpperCamelCase ( self : Any ) -> int: lowercase__ : int = BasicEnum(self.required_enum ) @dataclass class snake_case_ : __A : int __A : "BasicEnum" = field() __A : "Optional[bool]" = None __A : "str" = field(default="toto" ,metadata={"help": "help message"} ) __A : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : __A : bool = False __A : bool = True __A : bool | None = None @dataclass class snake_case_ : __A : int | None = None __A : float | None = field(default=__A ,metadata={"help": "help message"} ) __A : str | None = None __A : list[str] | None = list_field(default=[] ) __A : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : int , lowercase_ : argparse.ArgumentParser , lowercase_ : argparse.ArgumentParser ) -> Tuple: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowercase__ : Dict = {k: v for k, v in vars(lowercase_ ).items() if k != "container"} lowercase__ : List[str] = {k: v for k, v in vars(lowercase_ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , lowercase_ ) and yy.get("choices" , lowercase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](lowercase_ ) , yy["type"](lowercase_ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> Dict: lowercase__ : Any = HfArgumentParser(lowercase_ ) lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--bar" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--baz" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--flag" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="?" ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((lowercase__) , ) : str = parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_ ) self.assertFalse(example.flag ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Optional[Any] = HfArgumentParser(lowercase_ ) lowercase__ : List[str] = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=lowercase_ ) expected.add_argument("--baz" , default="toto" , type=lowercase_ , help="help message" ) self.argparsersEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Dict: lowercase__ : Tuple = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="?" ) expected.add_argument("--baz" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=lowercase_ , dest="baz" ) expected.add_argument("--opt" , type=lowercase_ , default=lowercase_ ) lowercase__ : Union[str, Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: lowercase__ : str = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Tuple = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Union[str, Any] = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Dict = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Optional[int] = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: lowercase__ : List[Any] = HfArgumentParser(lowercase_ ) lowercase__ : Dict = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowercase__ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowercase__ : Any = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowercase__ : int = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowercase__ : Dict = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowercase__ : Dict = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __UpperCamelCase ( self : Tuple ) -> List[str]: @dataclass class snake_case_ : __A : Literal["titi", "toto", 42] = "toto" lowercase__ : Union[str, Any] = HfArgumentParser(lowercase_ ) lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowercase__ : int = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowercase__ : Tuple = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __UpperCamelCase ( self : int ) -> Optional[Any]: lowercase__ : int = HfArgumentParser(lowercase_ ) lowercase__ : Dict = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=lowercase_ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=lowercase_ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=lowercase_ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : Any = parser.parse_args([] ) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowercase__ : List[Any] = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __UpperCamelCase ( self : List[Any] ) -> int: lowercase__ : Any = argparse.ArgumentParser() expected.add_argument("--foo" , default=lowercase_ , type=lowercase_ ) expected.add_argument("--bar" , default=lowercase_ , type=lowercase_ , help="help message" ) expected.add_argument("--baz" , default=lowercase_ , type=lowercase_ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=lowercase_ ) expected.add_argument("--des" , nargs="+" , default=[] , type=lowercase_ ) lowercase__ : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: lowercase__ : Any = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : List[Any] = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[] ) ) lowercase__ : Dict = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: lowercase__ : List[str] = HfArgumentParser(lowercase_ ) lowercase__ : Any = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--required_str" , type=lowercase_ , required=lowercase_ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowercase__ : Optional[int] = HfArgumentParser(lowercase_ ) lowercase__ : Dict = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowercase_ , required=lowercase_ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=lowercase_ , ) expected.add_argument("--opt" , type=lowercase_ , default=lowercase_ ) expected.add_argument("--baz" , default="toto" , type=lowercase_ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Dict ) -> str: lowercase__ : str = HfArgumentParser(lowercase_ ) lowercase__ : List[Any] = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowercase__ : Optional[Any] = parser.parse_dict(lowercase_ )[0] lowercase__ : Dict = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowercase__ : List[Any] = HfArgumentParser(lowercase_ ) lowercase__ : Any = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: lowercase__ : Tuple = HfArgumentParser(lowercase_ ) lowercase__ : int = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Any = os.path.join(lowercase_ , "temp_json" ) os.mkdir(lowercase_ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(lowercase_ , lowercase_ ) lowercase__ : Any = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowercase__ : Optional[Any] = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : str ) -> int: lowercase__ : Tuple = HfArgumentParser(lowercase_ ) lowercase__ : Dict = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[int] = os.path.join(lowercase_ , "temp_yaml" ) os.mkdir(lowercase_ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(lowercase_ , lowercase_ ) lowercase__ : Any = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowercase__ : int = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> int: lowercase__ : List[str] = HfArgumentParser(lowercase_ ) self.assertIsNotNone(lowercase_ )
333
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : int): lowercase__ : List[Any] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" lowercase__ : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw).convert("RGB") lowercase__ : List[str] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711)), ]) lowercase__ : Optional[int] = transform(_lowerCamelCase).unsqueeze(0).to(_lowerCamelCase) return image def lowercase_ ( _lowerCamelCase : Union[str, Any]): if "visual_encoder" in key: lowercase__ : int = re.sub("visual_encoder*" , "vision_model.encoder" , _lowerCamelCase) if "blocks" in key: lowercase__ : Optional[Any] = re.sub(R"blocks" , "layers" , _lowerCamelCase) if "attn" in key: lowercase__ : Optional[Any] = re.sub(R"attn" , "self_attn" , _lowerCamelCase) if "norm1" in key: lowercase__ : List[Any] = re.sub(R"norm1" , "layer_norm1" , _lowerCamelCase) if "norm2" in key: lowercase__ : int = re.sub(R"norm2" , "layer_norm2" , _lowerCamelCase) if "encoder.norm" in key: lowercase__ : Union[str, Any] = re.sub(R"encoder.norm" , "post_layernorm" , _lowerCamelCase) if "encoder.patch_embed.proj" in key: lowercase__ : Union[str, Any] = re.sub(R"encoder.patch_embed.proj" , "embeddings.patch_embedding" , _lowerCamelCase) if "encoder.pos_embed" in key: lowercase__ : Union[str, Any] = re.sub(R"encoder.pos_embed" , "embeddings.position_embedding" , _lowerCamelCase) if "encoder.cls_token" in key: lowercase__ : Dict = re.sub(R"encoder.cls_token" , "embeddings.class_embedding" , _lowerCamelCase) if "self_attn" in key: lowercase__ : List[Any] = re.sub(R"self_attn.proj" , "self_attn.projection" , _lowerCamelCase) return key @torch.no_grad() def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int]=None): if config_path is not None: lowercase__ : int = BlipConfig.from_pretrained(_lowerCamelCase) else: lowercase__ : Optional[int] = BlipConfig(projection_dim=512 , text_config={} , vision_config={}) lowercase__ : Any = BlipForConditionalGeneration(_lowerCamelCase).eval() lowercase__ : Tuple = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" lowercase__ : Tuple = blip_decoder(pretrained=_lowerCamelCase , image_size=384 , vit="base") lowercase__ : Tuple = pt_model.eval() lowercase__ : Any = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ : Any = modified_state_dict.pop(_lowerCamelCase) lowercase__ : List[str] = rename_key(_lowerCamelCase) lowercase__ : str = value hf_model.load_state_dict(_lowerCamelCase) lowercase__ : Optional[int] = 384 lowercase__ : Optional[Any] = load_demo_image(image_size=_lowerCamelCase , device="cpu") lowercase__ : Optional[int] = BertTokenizer.from_pretrained("bert-base-uncased") lowercase__ : Union[str, Any] = tokenizer(["a picture of"]).input_ids lowercase__ : List[str] = hf_model.generate(_lowerCamelCase , _lowerCamelCase) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ : List[Any] = hf_model.generate(_lowerCamelCase) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_lowerCamelCase) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ : Tuple = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) lowercase__ : int = blip_vqa(pretrained=_lowerCamelCase , image_size=_lowerCamelCase , vit="base") vqa_model.eval() lowercase__ : Optional[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ : Dict = modified_state_dict.pop(_lowerCamelCase) lowercase__ : Tuple = rename_key(_lowerCamelCase) lowercase__ : int = value lowercase__ : Any = BlipForQuestionAnswering(_lowerCamelCase) hf_vqa_model.load_state_dict(_lowerCamelCase) lowercase__ : List[Any] = ["How many dogs are in this image?"] lowercase__ : int = tokenizer(_lowerCamelCase , return_tensors="pt").input_ids lowercase__ : int = hf_vqa_model.generate(_lowerCamelCase , _lowerCamelCase) print(tokenizer.decode(answer[0])) assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa") lowercase__ : Union[str, Any] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" lowercase__ : Optional[Any] = blip_itm(pretrained=_lowerCamelCase , image_size=_lowerCamelCase , vit="base") itm_model.eval() lowercase__ : Optional[int] = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ : Union[str, Any] = modified_state_dict.pop(_lowerCamelCase) lowercase__ : Any = rename_key(_lowerCamelCase) lowercase__ : int = value lowercase__ : Optional[Any] = BlipForImageTextRetrieval(_lowerCamelCase) lowercase__ : Tuple = ["A picture of a woman with a dog sitting in a beach"] lowercase__ : str = tokenizer( _lowerCamelCase , return_tensors="pt" , padding="max_length" , truncation=_lowerCamelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_lowerCamelCase) hf_itm_model.eval() lowercase__ : List[str] = hf_itm_model(_lowerCamelCase , _lowerCamelCase , use_itm_head=_lowerCamelCase) lowercase__ : Optional[int] = hf_itm_model(_lowerCamelCase , _lowerCamelCase , use_itm_head=_lowerCamelCase) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1)[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCamelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
333
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A ,unittest.TestCase ): __A : str = RobertaTokenizer __A : Any = RobertaTokenizerFast __A : List[Any] = True __A : str = {"cls_token": "<s>"} def __UpperCamelCase ( self : int ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : List[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : List[Any] = {"unk_token": "<unk>"} lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def __UpperCamelCase ( self : int , **lowercase_ : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : Tuple , **lowercase_ : str ) -> Dict: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Any ) -> List[str]: lowercase__ : Optional[Any] = "lower newer" lowercase__ : Dict = "lower newer" return input_text, output_text def __UpperCamelCase ( self : Tuple ) -> List[str]: lowercase__ : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Optional[int] = "lower newer" lowercase__ : Dict = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowercase__ : Optional[Any] = tokenizer.tokenize(lowercase_ ) # , add_prefix_space=True) self.assertListEqual(lowercase_ , lowercase_ ) lowercase__ : str = tokens + [tokenizer.unk_token] lowercase__ : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase__ : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=lowercase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=lowercase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __UpperCamelCase ( self : int ) -> str: lowercase__ : int = self.tokenizer_class.from_pretrained("roberta-base" ) lowercase__ : Any = tokenizer.encode("sequence builders" , add_special_tokens=lowercase_ ) lowercase__ : Optional[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase_ ) lowercase__ : Dict = tokenizer.encode( "sequence builders" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : Union[str, Any] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase__ : Any = self.get_tokenizer() lowercase__ : Dict = "Encode this sequence." lowercase__ : Dict = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments lowercase__ : str = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) lowercase__ : Tuple = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase_ , lowercase_ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) lowercase__ : List[str] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowercase__ : Any = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) # Testing spaces after special tokens lowercase__ : List[Any] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ )} ) # mask token has a left space lowercase__ : Any = tokenizer.convert_tokens_to_ids(lowercase_ ) lowercase__ : Dict = "Encode <mask> sequence" lowercase__ : Any = "Encode <mask>sequence" lowercase__ : Dict = tokenizer.encode(lowercase_ ) lowercase__ : Any = encoded.index(lowercase_ ) lowercase__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = tokenizer.encode(lowercase_ ) lowercase__ : Optional[Any] = encoded.index(lowercase_ ) lowercase__ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Tuple ) -> str: pass def __UpperCamelCase ( self : Any ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : int = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : Tuple = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : Union[str, Any] = "A, <mask> AllenNLP sentence." lowercase__ : Any = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) lowercase__ : Optional[int] = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def __UpperCamelCase ( self : Tuple ) -> Dict: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase__ : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : str = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase__ : Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , lowercase_ ) self.assertEqual(post_processor_state["add_prefix_space"] , lowercase_ ) self.assertEqual(post_processor_state["trim_offsets"] , lowercase_ ) def __UpperCamelCase ( self : str ) -> List[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowercase__ : List[str] = F'''{text_of_1_token} {text_of_1_token}''' lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Optional[Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : List[Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Optional[int] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : str = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : str = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Dict = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : List[Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : str = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , )
333
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''speechbrain/m-ctc-t-large''': '''https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json''', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class snake_case_ ( __A ): __A : List[Any] = "mctct" def __init__( self : List[str] , lowercase_ : List[str]=80_65 , lowercase_ : List[Any]=15_36 , lowercase_ : Union[str, Any]=36 , lowercase_ : Tuple=61_44 , lowercase_ : Union[str, Any]=4 , lowercase_ : Optional[Any]=3_84 , lowercase_ : Optional[int]=9_20 , lowercase_ : Dict=1E-5 , lowercase_ : List[str]=0.3 , lowercase_ : Union[str, Any]="relu" , lowercase_ : int=0.02 , lowercase_ : Union[str, Any]=0.3 , lowercase_ : List[Any]=0.3 , lowercase_ : List[str]=1 , lowercase_ : Optional[int]=0 , lowercase_ : List[str]=2 , lowercase_ : Union[str, Any]=1 , lowercase_ : int=0.3 , lowercase_ : List[str]=1 , lowercase_ : Any=(7,) , lowercase_ : Optional[int]=(3,) , lowercase_ : Tuple=80 , lowercase_ : Tuple=1 , lowercase_ : List[Any]=None , lowercase_ : Dict="sum" , lowercase_ : Optional[int]=False , **lowercase_ : str , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : Dict = vocab_size lowercase__ : str = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : Optional[Any] = intermediate_size lowercase__ : Any = num_attention_heads lowercase__ : Union[str, Any] = attention_head_dim lowercase__ : List[Any] = max_position_embeddings lowercase__ : int = layer_norm_eps lowercase__ : List[Any] = layerdrop lowercase__ : Union[str, Any] = hidden_act lowercase__ : Optional[Any] = initializer_range lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : List[Any] = pad_token_id lowercase__ : List[Any] = bos_token_id lowercase__ : Union[str, Any] = eos_token_id lowercase__ : Tuple = conv_glu_dim lowercase__ : Any = conv_dropout lowercase__ : Tuple = num_conv_layers lowercase__ : Optional[int] = input_feat_per_channel lowercase__ : Union[str, Any] = input_channels lowercase__ : List[Any] = conv_channels lowercase__ : List[Any] = ctc_loss_reduction lowercase__ : Tuple = ctc_zero_infinity # prevents config testing fail with exporting to json lowercase__ : Any = list(lowercase_ ) lowercase__ : List[Any] = list(lowercase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class snake_case_ ( __A ,unittest.TestCase ): __A : str = XLMProphetNetTokenizer __A : Tuple = False __A : str = True def __UpperCamelCase ( self : Dict ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing lowercase__ : List[str] = XLMProphetNetTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : int ) -> Tuple: lowercase__ : Optional[Any] = "[PAD]" lowercase__ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: lowercase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowercase_ ) , 10_12 ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 10_12 ) def __UpperCamelCase ( self : Any ) -> List[str]: lowercase__ : List[str] = XLMProphetNetTokenizer(lowercase_ , keep_accents=lowercase_ ) lowercase__ : int = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowercase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def __UpperCamelCase ( self : Optional[Any] ) -> int: return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def __UpperCamelCase ( self : Any ) -> Dict: lowercase__ : Optional[Any] = "Hello World!" lowercase__ : Union[str, Any] = [3_53_89, 66_72, 49, 2] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def __UpperCamelCase ( self : Tuple ) -> Optional[int]: # fmt: off lowercase__ : List[Any] = {"input_ids": [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
333
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
1
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
1
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def lowercase_ ( _lowerCamelCase : Optional[int]): if hor == 128: lowercase__ : Dict = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") lowercase__ : Union[str, Any] = (32, 128, 256) lowercase__ : Dict = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: lowercase__ : Tuple = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") lowercase__ : Union[str, Any] = (32, 64, 128, 256) lowercase__ : Union[str, Any] = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") lowercase__ : Union[str, Any] = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''') lowercase__ : Union[str, Any] = model.state_dict() lowercase__ : List[Any] = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_5536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } lowercase__ : Tuple = UNetaDModel(**_lowerCamelCase) print(f'''length of state dict: {len(state_dict.keys())}''') print(f'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') lowercase__ : List[str] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): lowercase__ : Dict = state_dict.pop(_lowerCamelCase) hf_value_function.load_state_dict(_lowerCamelCase) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''') with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , "w") as f: json.dump(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( ): lowercase__ : List[str] = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_5536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } lowercase__ : List[str] = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch") lowercase__ : str = model lowercase__ : Optional[int] = UNetaDModel(**_lowerCamelCase) print(f'''length of state dict: {len(state_dict.keys())}''') print(f'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') lowercase__ : Optional[Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): lowercase__ : Any = state_dict.pop(_lowerCamelCase) hf_value_function.load_state_dict(_lowerCamelCase) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin") with open("hub/hopper-medium-v2/value_function/config.json" , "w") as f: json.dump(_lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": unet(32) # unet(128) value_function()
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) class snake_case_ ( __A ,__A ): __A : Optional[Any] = "maskformer-swin" __A : Optional[int] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : int , lowercase_ : Any=2_24 , lowercase_ : Optional[Any]=4 , lowercase_ : Optional[int]=3 , lowercase_ : Dict=96 , lowercase_ : Optional[int]=[2, 2, 6, 2] , lowercase_ : int=[3, 6, 12, 24] , lowercase_ : Optional[Any]=7 , lowercase_ : Any=4.0 , lowercase_ : Tuple=True , lowercase_ : List[Any]=0.0 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : Any=False , lowercase_ : List[Any]=0.02 , lowercase_ : Optional[Any]=1E-5 , lowercase_ : str=None , lowercase_ : Dict=None , **lowercase_ : List[Any] , ) -> str: super().__init__(**lowercase_ ) lowercase__ : List[Any] = image_size lowercase__ : List[str] = patch_size lowercase__ : Dict = num_channels lowercase__ : List[Any] = embed_dim lowercase__ : str = depths lowercase__ : List[str] = len(lowercase_ ) lowercase__ : str = num_heads lowercase__ : int = window_size lowercase__ : Optional[Any] = mlp_ratio lowercase__ : Union[str, Any] = qkv_bias lowercase__ : Any = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : str = drop_path_rate lowercase__ : Optional[Any] = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase__ : str = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowercase__ : Dict = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowercase__ , lowercase__ : List[str] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
333
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]=7): lowercase__ : Any = None if token is not None: lowercase__ : List[str] = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ : Tuple = "636036" lowercase__ : int = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ : List[str] = requests.get(_lowerCamelCase , headers=_lowerCamelCase).json() return result["workflow_runs"] def lowercase_ ( _lowerCamelCase : Tuple): lowercase__ : Tuple = get_daily_ci_runs(_lowerCamelCase) lowercase__ : List[str] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ : List[str] = workflow_run["id"] break return workflow_run_id def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Tuple): lowercase__ : Tuple = get_last_daily_ci_runs(_lowerCamelCase) if workflow_run_id is not None: lowercase__ : Optional[Any] = get_artifacts_links(worflow_run_id=_lowerCamelCase , token=_lowerCamelCase) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ : List[Any] = artifacts_links[artifact_name] download_artifact( artifact_name=_lowerCamelCase , artifact_url=_lowerCamelCase , output_dir=_lowerCamelCase , token=_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : str): get_last_daily_ci_artifacts(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) lowercase__ : Optional[int] = {} for artifact_name in artifact_names: lowercase__ : str = os.path.join(_lowerCamelCase , f'''{artifact_name}.zip''') if os.path.isfile(_lowerCamelCase): lowercase__ : Optional[int] = {} with zipfile.ZipFile(_lowerCamelCase) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase): # read the file with z.open(_lowerCamelCase) as f: lowercase__ : Dict = f.read().decode("UTF-8") return results
333
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
1
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int): lowercase__ : list[list[str]] = [[] for _ in range(_lowerCamelCase)] lowercase__ : Optional[Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative") if key == 1 or len(_lowerCamelCase) <= key: return input_string for position, character in enumerate(_lowerCamelCase): lowercase__ : Optional[int] = position % (lowest * 2) # puts it in bounds lowercase__ : Optional[int] = min(_lowerCamelCase , lowest * 2 - num) # creates zigzag pattern temp_grid[num].append(_lowerCamelCase) lowercase__ : Dict = ["".join(_lowerCamelCase) for row in temp_grid] lowercase__ : Tuple = "".join(_lowerCamelCase) return output_string def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int): lowercase__ : Optional[int] = [] lowercase__ : Any = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative") if key == 1: return input_string lowercase__ : list[list[str]] = [[] for _ in range(_lowerCamelCase)] # generates template for position in range(len(_lowerCamelCase)): lowercase__ : Optional[int] = position % (lowest * 2) # puts it in bounds lowercase__ : Optional[int] = min(_lowerCamelCase , lowest * 2 - num) # creates zigzag pattern temp_grid[num].append("*") lowercase__ : Optional[Any] = 0 for row in temp_grid: # fills in the characters lowercase__ : str = input_string[counter : counter + len(_lowerCamelCase)] grid.append(list(_lowerCamelCase)) counter += len(_lowerCamelCase) lowercase__ : Optional[int] = "" # reads as zigzag for position in range(len(_lowerCamelCase)): lowercase__ : int = position % (lowest * 2) # puts it in bounds lowercase__ : List[Any] = min(_lowerCamelCase , lowest * 2 - num) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0) return output_string def lowercase_ ( _lowerCamelCase : str): lowercase__ : Tuple = {} for key_guess in range(1 , len(_lowerCamelCase)): # tries every key lowercase__ : int = decrypt(_lowerCamelCase , _lowerCamelCase) return results if __name__ == "__main__": import doctest doctest.testmod()
333
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
1
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
1
UpperCamelCase = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' UpperCamelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] UpperCamelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
333
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
1
# Lint as: python3 import itertools import os import re UpperCamelCase = re.compile(R'''([A-Z]+)([A-Z][a-z])''') UpperCamelCase = re.compile(R'''([a-z\d])([A-Z])''') UpperCamelCase = re.compile(R'''(?<!_)_(?!_)''') UpperCamelCase = re.compile(R'''(_{2,})''') UpperCamelCase = R'''^\w+(\.\w+)*$''' UpperCamelCase = R'''<>:/\|?*''' def lowercase_ ( _lowerCamelCase : List[str]): lowercase__ : Optional[Any] = _uppercase_uppercase_re.sub(R"\1_\2" , _lowerCamelCase) lowercase__ : Union[str, Any] = _lowercase_uppercase_re.sub(R"\1_\2" , _lowerCamelCase) return name.lower() def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : Tuple = _single_underscore_re.split(_lowerCamelCase) lowercase__ : str = [_multiple_underscores_re.split(_lowerCamelCase) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_lowerCamelCase) if n != "") def lowercase_ ( _lowerCamelCase : Union[str, Any]): if os.path.basename(_lowerCamelCase) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''') return camelcase_to_snakecase(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any]): if os.path.basename(_lowerCamelCase) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''') if not re.match(_split_re , _lowerCamelCase): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''') return f'''{filename_prefix_for_name(_lowerCamelCase)}-{split}''' def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : str=None): lowercase__ : int = filename_prefix_for_split(_lowerCamelCase , _lowerCamelCase) if filetype_suffix: prefix += f'''.{filetype_suffix}''' lowercase__ : Tuple = os.path.join(_lowerCamelCase , _lowerCamelCase) return f'''{filepath}*''' def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : str=None , _lowerCamelCase : Dict=None): lowercase__ : Any = filename_prefix_for_split(_lowerCamelCase , _lowerCamelCase) lowercase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase) if shard_lengths: lowercase__ : int = len(_lowerCamelCase) lowercase__ : Any = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(_lowerCamelCase)] if filetype_suffix: lowercase__ : Optional[Any] = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: lowercase__ : str = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
333
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : int ) -> Union[str, Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowercase__ : Dict = [[1, 2, 4], [1, 2, 3, 4]] lowercase__ : Optional[int] = DisjunctiveConstraint(lowercase_ ) self.assertTrue(isinstance(dc.token_ids , lowercase_ ) ) with self.assertRaises(lowercase_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __UpperCamelCase ( self : Dict ) -> int: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowercase__ : Dict = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase_ ): DisjunctiveConstraint(lowercase_ ) # fails here def __UpperCamelCase ( self : Tuple ) -> Any: lowercase__ : Tuple = [[1, 2, 3], [1, 2, 4]] lowercase__ : str = DisjunctiveConstraint(lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Tuple = dc.update(1 ) lowercase__ : Any = stepped is True and completed is False and reset is False self.assertTrue(lowercase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase__ , lowercase__ , lowercase__ : Tuple = dc.update(2 ) lowercase__ : Union[str, Any] = stepped is True and completed is False and reset is False self.assertTrue(lowercase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase__ , lowercase__ , lowercase__ : List[str] = dc.update(3 ) lowercase__ : Optional[Any] = stepped is True and completed is True and reset is False self.assertTrue(lowercase_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __UpperCamelCase ( self : List[str] ) -> Tuple: lowercase__ : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase__ : Dict = DisjunctiveConstraint(lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase__ , lowercase__ , lowercase__ : int = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase__ , lowercase__ , lowercase__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase__ , lowercase__ , lowercase__ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
333
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class snake_case_ ( unittest.TestCase ,__A ): def __UpperCamelCase ( self : Tuple ) -> Any: lowercase__ : Union[str, Any] = load_tool("text-classification" ) self.tool.setup() lowercase__ : List[str] = load_tool("text-classification" , remote=lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : List[str] = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowercase_ , "positive" ) def __UpperCamelCase ( self : List[str] ) -> Tuple: lowercase__ : Union[str, Any] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowercase_ , "positive" ) def __UpperCamelCase ( self : str ) -> str: lowercase__ : int = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowercase_ , "positive" ) def __UpperCamelCase ( self : List[str] ) -> str: lowercase__ : Optional[int] = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowercase_ , "positive" )
333
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
1
from math import factorial, pi def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : int = 30): if not isinstance(_lowerCamelCase , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_lowerCamelCase , _lowerCamelCase) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") lowercase__ : Optional[int] = float(_lowerCamelCase) lowercase__ : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_lowerCamelCase)) def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : int = 30): if not isinstance(_lowerCamelCase , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_lowerCamelCase , _lowerCamelCase) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") lowercase__ : Optional[Any] = float(_lowerCamelCase) lowercase__ : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_lowerCamelCase)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
333
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class snake_case_ ( __A ): __A : Dict = "altclip_text_model" def __init__( self : Optional[int] , lowercase_ : List[Any]=25_00_02 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=24 , lowercase_ : Dict=16 , lowercase_ : List[str]=40_96 , lowercase_ : Any="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Optional[Any]=5_14 , lowercase_ : Optional[Any]=1 , lowercase_ : Tuple=0.02 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Optional[Any]=1E-05 , lowercase_ : Optional[Any]=1 , lowercase_ : List[str]=0 , lowercase_ : Tuple=2 , lowercase_ : str="absolute" , lowercase_ : Tuple=True , lowercase_ : List[Any]=7_68 , **lowercase_ : int , ) -> Union[str, Any]: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowercase__ : Optional[int] = vocab_size lowercase__ : str = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : Tuple = hidden_act lowercase__ : Optional[int] = intermediate_size lowercase__ : Tuple = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Optional[int] = max_position_embeddings lowercase__ : Optional[Any] = type_vocab_size lowercase__ : Dict = initializer_range lowercase__ : Tuple = initializer_factor lowercase__ : List[str] = layer_norm_eps lowercase__ : int = position_embedding_type lowercase__ : str = use_cache lowercase__ : Any = project_dim class snake_case_ ( __A ): __A : Any = "altclip_vision_model" def __init__( self : Optional[int] , lowercase_ : Any=7_68 , lowercase_ : str=30_72 , lowercase_ : Dict=5_12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[int]=3 , lowercase_ : Optional[int]=2_24 , lowercase_ : str=32 , lowercase_ : int="quick_gelu" , lowercase_ : Any=1E-5 , lowercase_ : str=0.0 , lowercase_ : Any=0.02 , lowercase_ : Optional[Any]=1.0 , **lowercase_ : List[str] , ) -> List[Any]: super().__init__(**lowercase_ ) lowercase__ : int = hidden_size lowercase__ : Any = intermediate_size lowercase__ : Any = projection_dim lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = num_channels lowercase__ : Tuple = patch_size lowercase__ : Dict = image_size lowercase__ : Dict = initializer_range lowercase__ : str = initializer_factor lowercase__ : Dict = attention_dropout lowercase__ : List[Any] = layer_norm_eps lowercase__ : str = hidden_act @classmethod def __UpperCamelCase ( cls : Tuple , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) lowercase__ , lowercase__ : Union[str, Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": lowercase__ : Any = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class snake_case_ ( __A ): __A : Optional[int] = "altclip" __A : Tuple = True def __init__( self : Tuple , lowercase_ : str=None , lowercase_ : List[str]=None , lowercase_ : List[Any]=7_68 , lowercase_ : Union[str, Any]=2.65_92 , **lowercase_ : Optional[Any] ) -> Optional[int]: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). lowercase__ : Any = kwargs.pop("text_config_dict" , lowercase_ ) lowercase__ : str = kwargs.pop("vision_config_dict" , lowercase_ ) super().__init__(**lowercase_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowercase__ : Optional[int] = {} # This is the complete result when using `text_config_dict`. lowercase__ : int = AltCLIPTextConfig(**lowercase_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowercase__ : Tuple = ( F'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' F'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowercase__ : str = ( F'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' F'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(lowercase_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowercase__ : List[Any] = {} # This is the complete result when using `vision_config_dict`. lowercase__ : Optional[Any] = AltCLIPVisionConfig(**lowercase_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowercase__ : Optional[Any] = { str(lowercase_ ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowercase__ : Union[str, Any] = ( F'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' F'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowercase__ : Optional[Any] = ( F'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' F'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(lowercase_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowercase__ : int = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: lowercase__ : Tuple = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) lowercase__ : Dict = AltCLIPTextConfig(**lowercase_ ) lowercase__ : Any = AltCLIPVisionConfig(**lowercase_ ) lowercase__ : Dict = projection_dim lowercase__ : Tuple = logit_scale_init_value lowercase__ : Optional[Any] = 1.0 @classmethod def __UpperCamelCase ( cls : List[str] , lowercase_ : AltCLIPTextConfig , lowercase_ : AltCLIPVisionConfig , **lowercase_ : Any ) -> Dict: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: lowercase__ : str = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.text_config.to_dict() lowercase__ : int = self.vision_config.to_dict() lowercase__ : Dict = self.__class__.model_type return output
333
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } UpperCamelCase = '''▁''' # Segments (not really needed) UpperCamelCase = 0 UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 3 UpperCamelCase = 4 class snake_case_ ( __A ): __A : str = VOCAB_FILES_NAMES __A : Any = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[str] = "left" __A : Dict = XLNetTokenizer def __init__( self : Optional[Any] , lowercase_ : Any=None , lowercase_ : Optional[int]=None , lowercase_ : Optional[Any]=False , lowercase_ : str=True , lowercase_ : Dict=False , lowercase_ : List[Any]="<s>" , lowercase_ : List[str]="</s>" , lowercase_ : Tuple="<unk>" , lowercase_ : str="<sep>" , lowercase_ : Dict="<pad>" , lowercase_ : str="<cls>" , lowercase_ : Union[str, Any]="<mask>" , lowercase_ : Dict=["<eop>", "<eod>"] , **lowercase_ : Optional[int] , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Optional[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( vocab_file=lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) lowercase__ : List[str] = 3 lowercase__ : int = do_lower_case lowercase__ : Union[str, Any] = remove_space lowercase__ : Tuple = keep_accents lowercase__ : Union[str, Any] = vocab_file lowercase__ : Dict = False if not self.vocab_file else True def __UpperCamelCase ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : Any = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __UpperCamelCase ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : Dict = [self.sep_token_id] lowercase__ : Optional[int] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : str = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
333
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCamelCase = '''bart''' UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase) def lowercase_ ( ): if LOAD_DENSE_INDEX: lowercase__ : int = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased") lowercase__ : List[str] = AutoModel.from_pretrained("yjernite/retribert-base-uncased").to("cuda:0") lowercase__ : Optional[int] = qar_model.eval() else: lowercase__ , lowercase__ : Any = (None, None) if MODEL_TYPE == "bart": lowercase__ : str = AutoTokenizer.from_pretrained("yjernite/bart_eli5") lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5").to("cuda:0") lowercase__ : Union[str, Any] = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth") sas_model.load_state_dict(save_dict["model"]) lowercase__ : Union[str, Any] = sas_model.eval() else: lowercase__ , lowercase__ : Union[str, Any] = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0") return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase) def lowercase_ ( ): if LOAD_DENSE_INDEX: lowercase__ : Any = faiss.StandardGpuResources() lowercase__ : int = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0")["train"] lowercase__ : int = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) lowercase__ : List[Any] = faiss.IndexFlatIP(128) lowercase__ : str = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase) wikiaab_gpu_index_flat.add(_lowerCamelCase) # TODO fix for larger GPU else: lowercase__ , lowercase__ : str = (None, None) lowercase__ : int = Elasticsearch([{"host": "localhost", "port": "9200"}]) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase) def lowercase_ ( ): lowercase__ : Any = datasets.load_dataset("eli5" , name="LFQA_reddit") lowercase__ : Optional[int] = elia["train_eli5"] lowercase__ : Optional[int] = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128)) lowercase__ : Optional[Any] = faiss.IndexFlatIP(128) eli5_train_q_index.add(_lowerCamelCase) return (elia_train, eli5_train_q_index) UpperCamelCase , UpperCamelCase , UpperCamelCase = load_indexes() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = load_models() UpperCamelCase , UpperCamelCase = load_train_data() def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : List[Any]=10): lowercase__ : Dict = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase) lowercase__ , lowercase__ : Optional[Any] = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase) lowercase__ : str = [elia_train[int(_lowerCamelCase)] for i in I[0]] return nn_examples def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any]="wiki40b" , _lowerCamelCase : int="dense" , _lowerCamelCase : Optional[Any]=10): if source == "none": lowercase__ , lowercase__ : str = (" <P> ".join(["" for _ in range(11)]).strip(), []) else: if method == "dense": lowercase__ , lowercase__ : Tuple = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : Dict = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="english_wiki40b_snippets_100w" , n_results=_lowerCamelCase , ) lowercase__ : Optional[Any] = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] lowercase__ : int = "question: {} context: {}".format(_lowerCamelCase , _lowerCamelCase) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase: None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase: None), }) def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int]=64 , _lowerCamelCase : Optional[int]=256 , _lowerCamelCase : Dict=False , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : List[str]=0.95 , _lowerCamelCase : int=0.8): with torch.no_grad(): lowercase__ : int = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="cuda:0" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar UpperCamelCase = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' UpperCamelCase = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCamelCase = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCamelCase = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] UpperCamelCase = st.sidebar.checkbox('''Demo options''') if demo_options: UpperCamelCase = st.sidebar.selectbox( '''''', action_list, index=3, ) UpperCamelCase = action_list.index(action_st) UpperCamelCase = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) UpperCamelCase = show_type == '''Show full text of passages''' else: UpperCamelCase = 3 UpperCamelCase = True UpperCamelCase = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: UpperCamelCase = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) UpperCamelCase = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) UpperCamelCase = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: UpperCamelCase = '''wiki40b''' UpperCamelCase = '''dense''' UpperCamelCase = '''beam''' UpperCamelCase = 2 UpperCamelCase = 64 UpperCamelCase = 256 UpperCamelCase = None UpperCamelCase = None UpperCamelCase = st.sidebar.checkbox('''Generation options''') if generate_options: UpperCamelCase = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) UpperCamelCase = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) UpperCamelCase = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCamelCase = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCamelCase = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCamelCase = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCamelCase = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCamelCase = None # start main text UpperCamelCase = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] UpperCamelCase = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCamelCase = st.text_input('''Enter your question here:''', '''''') else: UpperCamelCase = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": UpperCamelCase , UpperCamelCase = make_support(question, source=wiki_source, method='''dense''', n_results=10) UpperCamelCase , UpperCamelCase = make_support(question, source=wiki_source, method='''sparse''', n_results=10) UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCamelCase = support_list[:10] UpperCamelCase = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: UpperCamelCase , UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCamelCase , UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): UpperCamelCase = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) UpperCamelCase = res[1].strip() if sec_titles == "": UpperCamelCase = '''[{}]({})'''.format(res[0], wiki_url) else: UpperCamelCase = sec_titles.split(''' & ''') UpperCamelCase = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: UpperCamelCase = find_nearest_training(question) UpperCamelCase = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) UpperCamelCase = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) UpperCamelCase = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
333
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(__A ) class snake_case_ ( __A ): def __init__( self : Any , *lowercase_ : Optional[int] , **lowercase_ : Any ) -> str: super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , "vision" ) self.check_model_type(lowercase_ ) def __call__( self : Tuple , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ) -> Any: return super().__call__(lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : int , **lowercase_ : str ) -> Union[str, Any]: return {}, {}, {} def __UpperCamelCase ( self : List[str] , lowercase_ : Any ) -> Dict: lowercase__ : Any = load_image(lowercase_ ) lowercase__ : Tuple = image.size lowercase__ : Optional[Any] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) return model_inputs def __UpperCamelCase ( self : Dict , lowercase_ : str ) -> Dict: lowercase__ : Union[str, Any] = self.model(**lowercase_ ) return model_outputs def __UpperCamelCase ( self : str , lowercase_ : str ) -> Dict: lowercase__ : Union[str, Any] = model_outputs.predicted_depth lowercase__ : Any = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=lowercase_ ) lowercase__ : Optional[Any] = prediction.squeeze().cpu().numpy() lowercase__ : Optional[Any] = (output * 2_55 / np.max(lowercase_ )).astype("uint8" ) lowercase__ : int = Image.fromarray(lowercase_ ) lowercase__ : Dict = {} lowercase__ : Tuple = predicted_depth lowercase__ : Dict = depth return output_dict
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
1
def lowercase_ ( _lowerCamelCase : int): lowercase__ : List[str] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def lowercase_ ( _lowerCamelCase : int = 100): lowercase__ : Any = 1 lowercase__ : str = 2 for i in range(2 , max_n + 1): lowercase__ : List[str] = pre_numerator lowercase__ : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 lowercase__ : Any = cur_numerator lowercase__ : List[str] = e_cont * pre_numerator + temp return sum_digits(_lowerCamelCase) if __name__ == "__main__": print(f"{solution() = }")
333
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
1