code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase_ = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase_ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class lowerCamelCase ( lowerCamelCase_ ): snake_case_ = '''retribert''' def __init__( self, lowercase_=30522, lowercase_=768, lowercase_=8, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=True, lowercase_=128, lowercase_=0, **lowercase_, ) -> Optional[int]: super().__init__(pad_token_id=__snake_case, **__snake_case ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = share_encoders snake_case = projection_dim
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] lowerCAmelCase_ = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } lowerCAmelCase_ = {f"funnel-transformer/{name}": 5_1_2 for name in _model_names} lowerCAmelCase_ = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names} class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = FunnelTokenizer snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = 2 def __init__( self, lowercase_=None, lowercase_=None, lowercase_=True, lowercase_="<unk>", lowercase_="<sep>", lowercase_="<pad>", lowercase_="<cls>", lowercase_="<mask>", lowercase_="<s>", lowercase_="</s>", lowercase_=True, lowercase_=True, lowercase_=None, lowercase_="##", **lowercase_, ) -> Dict: super().__init__( lowercase_, tokenizer_file=lowercase_, do_lower_case=lowercase_, unk_token=lowercase_, sep_token=lowercase_, pad_token=lowercase_, cls_token=lowercase_, mask_token=lowercase_, bos_token=lowercase_, eos_token=lowercase_, clean_text=lowercase_, tokenize_chinese_chars=lowercase_, strip_accents=lowercase_, wordpieces_prefix=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', lowercase_ ) != do_lower_case or normalizer_state.get('strip_accents', lowercase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars', lowercase_ ) != tokenize_chinese_chars ): snake_case = getattr(lowercase_, normalizer_state.pop('type' ) ) snake_case = do_lower_case snake_case = strip_accents snake_case = tokenize_chinese_chars snake_case = normalizer_class(**lowercase_ ) snake_case = do_lower_case def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Optional[int]: snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ )
350
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self, lowercase_, lowercase_ = True, lowercase_ = None, lowercase_ = 32, lowercase_ = True, lowercase_ = 1 / 255, lowercase_ = True, lowercase_ = True, lowercase_ = [0.48_145_466, 0.4_578_275, 0.40_821_073], lowercase_ = [0.26_862_954, 0.26_130_258, 0.27_577_711], lowercase_ = True, lowercase_=7, lowercase_=30, lowercase_=400, lowercase_=3, ) -> Dict: snake_case = parent snake_case = do_resize snake_case = size if size is not None else {'shortest_edge': 288} snake_case = size_divisor snake_case = do_rescale snake_case = rescale_factor snake_case = do_normalize snake_case = do_center_crop snake_case = image_mean snake_case = image_std snake_case = do_pad snake_case = batch_size snake_case = num_channels snake_case = min_resolution snake_case = max_resolution def _lowerCamelCase ( self ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _lowerCamelCase ( self, lowercase_, lowercase_=False ) -> Optional[int]: if not batched: snake_case = self.size['shortest_edge'] snake_case = image_inputs[0] if isinstance(lowercase_, Image.Image ): snake_case , snake_case = image.size else: snake_case , snake_case = image.shape[1], image.shape[2] snake_case = size / min(lowercase_, lowercase_ ) if h < w: snake_case , snake_case = size, scale * w else: snake_case , snake_case = scale * h, size snake_case = int((1333 / 800) * size ) if max(lowercase_, lowercase_ ) > max_size: snake_case = max_size / max(lowercase_, lowercase_ ) snake_case = newh * scale snake_case = neww * scale snake_case , snake_case = int(newh + 0.5 ), int(neww + 0.5 ) snake_case , snake_case = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case = [] for image in image_inputs: snake_case , snake_case = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case = max(lowercase_, key=lambda lowercase_ : item[0] )[0] snake_case = max(lowercase_, key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ): snake_case_ = BridgeTowerImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = BridgeTowerImageProcessingTester(self ) @property def _lowerCamelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ) -> Dict: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_, 'image_mean' ) ) self.assertTrue(hasattr(lowercase_, 'image_std' ) ) self.assertTrue(hasattr(lowercase_, 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_, 'do_resize' ) ) self.assertTrue(hasattr(lowercase_, 'size' ) ) self.assertTrue(hasattr(lowercase_, 'size_divisor' ) ) def _lowerCamelCase ( self ) -> Tuple: pass def _lowerCamelCase ( self ) -> Optional[int]: # Initialize image processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_, Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched snake_case = image_processing(lowercase_, return_tensors='pt' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_, batched=lowercase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def _lowerCamelCase ( self ) -> Tuple: # Initialize image processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_, numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_, np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched snake_case = image_processing(lowercase_, return_tensors='pt' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_, batched=lowercase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def _lowerCamelCase ( self ) -> Dict: # Initialize image processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_, torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_, torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched snake_case = image_processing(lowercase_, return_tensors='pt' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_, batched=lowercase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), )
351
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(lowercase_, lowercase_, 1 ) snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ ) snake_case = nn.Convad(lowercase_, lowercase_, 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput: snake_case = self.encoder(lowercase_ ) snake_case = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(lowercase_ ) else: snake_case = h snake_case = self.post_quant_conv(lowercase_ ) snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(lowercase_ ).latents snake_case = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
332
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github lowerCAmelCase_ = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def __magic_name__ ( ) -> Union[str, Any]: snake_case = Github(os.environ['GITHUB_TOKEN'] ) snake_case = g.get_repo('huggingface/diffusers' ) snake_case = repo.get_issues(state='open' ) for issue in open_issues: snake_case = sorted(issue.get_comments() , key=lambda A : i.created_at , reverse=A ) snake_case = comments[0] if len(A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
352
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCAmelCase_ = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __magic_name__ ( UpperCamelCase_ ) -> Tuple: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): snake_case = [image] snake_case = [trans(img.convert('RGB' ) ) for img in image] snake_case = torch.stack(UpperCamelCase_ ) return image class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, lowercase_, lowercase_ ) -> Optional[int]: super().__init__() # make sure scheduler can always be converted to DDIM snake_case = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_, scheduler=lowercase_ ) def _lowerCamelCase ( self, lowercase_ ) -> Dict: if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Any: # get the original timestep using init_timestep snake_case = min(int(num_inference_steps * strength ), lowercase_ ) snake_case = max(num_inference_steps - init_timestep, 0 ) snake_case = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_=None ) -> Union[str, Any]: if not isinstance(lowercase_, (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' ) snake_case = image.to(device=lowercase_, dtype=lowercase_ ) if isinstance(lowercase_, lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case = init_latents.shape snake_case = randn_tensor(lowercase_, generator=lowercase_, device=lowercase_, dtype=lowercase_ ) # get latents print('add noise to latents at timestep', lowercase_ ) snake_case = self.scheduler.add_noise(lowercase_, lowercase_, lowercase_ ) snake_case = init_latents return latents @torch.no_grad() def __call__( self, lowercase_ = None, lowercase_ = 0.8, lowercase_ = 1, lowercase_ = None, lowercase_ = 0.0, lowercase_ = 50, lowercase_ = None, lowercase_ = "pil", lowercase_ = True, ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(lowercase_ ) # 2. Preprocess image snake_case = preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_, device=self.device ) snake_case , snake_case = self.get_timesteps(lowercase_, lowercase_, self.device ) snake_case = timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables snake_case = self.prepare_latents(lowercase_, lowercase_, lowercase_, self.unet.dtype, self.device, lowercase_ ) snake_case = latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output snake_case = self.unet(lowercase_, lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case = self.scheduler.step( lowercase_, lowercase_, lowercase_, eta=lowercase_, use_clipped_model_output=lowercase_, generator=lowercase_, ).prev_sample snake_case = (image / 2 + 0.5).clamp(0, 1 ) snake_case = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": snake_case = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
0
'''simple docstring''' from typing import List import numpy as np def __magic_name__ ( A ) -> int: snake_case = {key: len(A ) for key, value in gen_kwargs.items() if isinstance(A , A )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) snake_case = max(lists_lengths.values() , default=0 ) return max(1 , A ) def __magic_name__ ( A , A ) -> List[range]: snake_case = [] for group_idx in range(A ): snake_case = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break snake_case = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 snake_case = range(A , start + num_shards_to_add ) shards_indices_per_group.append(A ) return shards_indices_per_group def __magic_name__ ( A , A ) -> List[dict]: snake_case = _number_of_shards_in_gen_kwargs(A ) if num_shards == 1: return [dict(A )] else: snake_case = _distribute_shards(num_shards=A , max_num_jobs=A ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(A , A ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(A ) ) ] def __magic_name__ ( A ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , A ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__ ( A , A ) -> dict: snake_case = {len(A ) for value in gen_kwargs.values() if isinstance(A , A )} snake_case = {} for size in list_sizes: snake_case = list(range(A ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes snake_case = dict(A ) for key, value in shuffled_kwargs.items(): if isinstance(A , A ): snake_case = [value[i] for i in indices_per_size[len(A )]] return shuffled_kwargs
354
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
0
def __magic_name__ ( A , A , A , A ) -> Any: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: snake_case = mf_knapsack(i - 1 , A , A , A ) else: snake_case = max( mf_knapsack(i - 1 , A , A , A ) , mf_knapsack(i - 1 , A , A , j - wt[i - 1] ) + val[i - 1] , ) snake_case = val return f[i][j] def __magic_name__ ( A , A , A , A ) -> Tuple: snake_case = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: snake_case = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: snake_case = dp[i - 1][w_] return dp[n][w_], dp def __magic_name__ ( A , A , A ) -> List[Any]: if not (isinstance(A , (list, tuple) ) and isinstance(A , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) snake_case = len(A ) if num_items != len(A ): snake_case = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(A )} values''' ) raise ValueError(A ) for i in range(A ): if not isinstance(wt[i] , A ): snake_case = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(A ) snake_case , snake_case = knapsack(A , A , A , A ) snake_case = set() _construct_solution(A , A , A , A , A ) return optimal_val, example_optional_set def __magic_name__ ( A , A , A , A , A ) -> Optional[int]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(A , A , i - 1 , A , A ) else: optimal_set.add(A ) _construct_solution(A , A , i - 1 , j - wt[i - 1] , A ) if __name__ == "__main__": lowerCAmelCase_ = [3, 2, 4, 4] lowerCAmelCase_ = [4, 3, 2, 3] lowerCAmelCase_ = 4 lowerCAmelCase_ = 6 lowerCAmelCase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCAmelCase_ , lowerCAmelCase_ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCAmelCase_ , lowerCAmelCase_ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
355
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
0
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : def __init__( self, lowercase_ ) -> Any: snake_case = str(id_ ) snake_case = None snake_case = None snake_case = [] snake_case = {} # {vertex:distance} def __lt__( self, lowercase_ ) -> Optional[int]: return self.key < other.key def __repr__( self ) -> str: return self.id def _lowerCamelCase ( self, lowercase_ ) -> str: self.neighbors.append(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Union[str, Any]: snake_case = weight def __magic_name__ ( A , A , A , A ) -> List[Any]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , A ) graph[b - 1].add_edge(graph[a - 1] , A ) def __magic_name__ ( A , A ) -> list: snake_case = [] for u in graph: snake_case = math.inf snake_case = None snake_case = 0 snake_case = graph[:] while q: snake_case = min(A ) q.remove(A ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): snake_case = u snake_case = u.edges[v.id] for i in range(1 , len(A ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __magic_name__ ( A , A ) -> Iterator[tuple]: for u in graph: snake_case = math.inf snake_case = None snake_case = 0 snake_case = list(A ) hq.heapify(A ) while h: snake_case = hq.heappop(A ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): snake_case = u snake_case = u.edges[v.id] hq.heapify(A ) for i in range(1 , len(A ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_ = "pt" elif is_tf_available(): lowerCAmelCase_ = "tf" else: lowerCAmelCase_ = "jax" class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ): snake_case_ = PerceiverTokenizer snake_case_ = False def _lowerCamelCase ( self ) -> Any: super().setUp() snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self ) -> Dict: return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def _lowerCamelCase ( self, **lowercase_ ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=False, lowercase_=20, lowercase_=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. snake_case = [] for i in range(len(lowercase_ ) ): try: snake_case = tokenizer.decode([i], clean_up_tokenization_spaces=lowercase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case = list(filter(lambda lowercase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowercase_ ) ) snake_case = list(filter(lambda lowercase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowercase_ ), lowercase_ ) ) if max_length is not None and len(lowercase_ ) > max_length: snake_case = toks[:max_length] if min_length is not None and len(lowercase_ ) < min_length and len(lowercase_ ) > 0: while len(lowercase_ ) < min_length: snake_case = toks + toks # toks_str = [t[1] for t in toks] snake_case = [t[0] for t in toks] # Ensure consistency snake_case = tokenizer.decode(lowercase_, clean_up_tokenization_spaces=lowercase_ ) if " " not in output_txt and len(lowercase_ ) > 1: snake_case = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowercase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowercase_ ) ) if with_prefix_space: snake_case = ' ' + output_txt snake_case = tokenizer.encode(lowercase_, add_special_tokens=lowercase_ ) return output_txt, output_ids def _lowerCamelCase ( self ) -> List[str]: snake_case = self.perceiver_tokenizer snake_case = 'Unicode €.' snake_case = tokenizer(lowercase_ ) snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'], lowercase_ ) # decoding snake_case = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_, '[CLS]Unicode €.[SEP]' ) snake_case = tokenizer('e è é ê ë' ) snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'], lowercase_ ) # decoding snake_case = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = self.perceiver_tokenizer snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on snake_case = tokenizer(lowercase_, padding=lowercase_, return_tensors=lowercase_ ) self.assertIsInstance(lowercase_, lowercase_ ) if FRAMEWORK != "jax": snake_case = list(batch.input_ids.numpy()[0] ) else: snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase_, lowercase_ ) self.assertEqual((2, 38), batch.input_ids.shape ) self.assertEqual((2, 38), batch.attention_mask.shape ) def _lowerCamelCase ( self ) -> str: snake_case = self.perceiver_tokenizer snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case = tokenizer(lowercase_, padding=lowercase_, return_tensors=lowercase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowercase_ ) self.assertIn('attention_mask', lowercase_ ) self.assertNotIn('decoder_input_ids', lowercase_ ) self.assertNotIn('decoder_attention_mask', lowercase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.perceiver_tokenizer snake_case = [ 'Summary of the text.', 'Another summary.', ] snake_case = tokenizer( text_target=lowercase_, max_length=32, padding='max_length', truncation=lowercase_, return_tensors=lowercase_ ) self.assertEqual(32, targets['input_ids'].shape[1] ) def _lowerCamelCase ( self ) -> str: # safety check on max_len default value so we are sure the test works snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc snake_case = tempfile.mkdtemp() snake_case = ' He is very happy, UNwant\u00E9d,running' snake_case = tokenizer.encode(lowercase_, add_special_tokens=lowercase_ ) tokenizer.save_pretrained(lowercase_ ) snake_case = tokenizer.__class__.from_pretrained(lowercase_ ) snake_case = after_tokenizer.encode(lowercase_, add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_, lowercase_ ) shutil.rmtree(lowercase_ ) snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc snake_case = tempfile.mkdtemp() snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case = tokenizer.encode(lowercase_, add_special_tokens=lowercase_ ) tokenizer.save_pretrained(lowercase_ ) snake_case = tokenizer.__class__.from_pretrained(lowercase_ ) snake_case = after_tokenizer.encode(lowercase_, add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_, lowercase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) snake_case = tokenizer.__class__.from_pretrained(lowercase_, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(lowercase_ ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: snake_case = json.load(lowercase_ ) with open(os.path.join(lowercase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: snake_case = json.load(lowercase_ ) snake_case = [F'''<extra_id_{i}>''' for i in range(125 )] snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowercase_, lowercase_ ) with open(os.path.join(lowercase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowercase_, lowercase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case = tokenizer_class.from_pretrained( lowercase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowercase_ )] snake_case = tokenizer_class.from_pretrained( lowercase_, additional_special_tokens=lowercase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def _lowerCamelCase ( self ) -> Any: snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ), '�' ) def _lowerCamelCase ( self ) -> str: pass def _lowerCamelCase ( self ) -> Optional[Any]: pass def _lowerCamelCase ( self ) -> List[Any]: pass def _lowerCamelCase ( self ) -> Optional[Any]: pass def _lowerCamelCase ( self ) -> Optional[Any]: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens snake_case = self.get_tokenizers(fast=lowercase_, do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] snake_case = tokenizer.convert_tokens_to_string(lowercase_ ) self.assertIsInstance(lowercase_, lowercase_ )
357
'''simple docstring''' def __magic_name__ ( A ) -> float: return 1_0 - x * x def __magic_name__ ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('Wrong space!' ) snake_case = a while (b - a) >= 0.01: # Find middle point snake_case = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: snake_case = c else: snake_case = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
332
0
'''simple docstring''' def __magic_name__ ( A ) -> bool: snake_case = (1 + 2_4 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __magic_name__ ( A = 5_0_0_0 ) -> int: snake_case = [(i * (3 * i - 1)) // 2 for i in range(1 , A )] for i, pentagonal_i in enumerate(A ): for j in range(A , len(A ) ): snake_case = pentagonal_nums[j] snake_case = pentagonal_i + pentagonal_j snake_case = pentagonal_j - pentagonal_i if is_pentagonal(A ) and is_pentagonal(A ): return b return -1 if __name__ == "__main__": print(f"{solution() = }")
358
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
0
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> bool: return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCamelCase : def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=False, lowercase_=True, lowercase_=False, lowercase_=True, lowercase_=33, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_=None, ) -> Dict: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def _lowerCamelCase ( self ) -> Optional[int]: snake_case = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case = ids_tensor([self.batch_size], self.num_choices ) snake_case = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ) -> Optional[int]: return EsmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> List[str]: snake_case = EsmModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = model(lowercase_, attention_mask=lowercase_ ) snake_case = model(lowercase_ ) snake_case = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> str: snake_case = EsmForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> Union[str, Any]: snake_case = self.num_labels snake_case = EsmForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): snake_case_ = False snake_case_ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) snake_case_ = () snake_case_ = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True def _lowerCamelCase ( self ) -> str: snake_case = EsmModelTester(self ) snake_case = ConfigTester(self, config_class=lowercase_, hidden_size=37 ) def _lowerCamelCase ( self ) -> str: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> List[str]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case = type self.model_tester.create_and_check_model(*lowercase_ ) def _lowerCamelCase ( self ) -> int: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def _lowerCamelCase ( self ) -> Dict: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = EsmModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.model_tester.prepare_config_and_inputs()[0] snake_case = EsmEmbeddings(config=lowercase_ ) snake_case = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) snake_case = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) snake_case = create_position_ids_from_input_ids(lowercase_, model.padding_idx ) self.assertEqual(position_ids.shape, expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowercase_, lowercase_ ) ) ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs()[0] snake_case = EsmEmbeddings(config=lowercase_ ) snake_case = torch.empty(2, 4, 30 ) snake_case = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] snake_case = torch.as_tensor([expected_single_positions, expected_single_positions] ) snake_case = embeddings.create_position_ids_from_inputs_embeds(lowercase_ ) self.assertEqual(position_ids.shape, expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowercase_, lowercase_ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _lowerCamelCase ( self ) -> Tuple: pass @unittest.skip('Esm does not support embedding resizing' ) def _lowerCamelCase ( self ) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCamelCase ( self ) -> Any: pass @require_torch class lowerCamelCase ( __lowerCAmelCase ): @slow def _lowerCamelCase ( self ) -> str: with torch.no_grad(): snake_case = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() snake_case = torch.tensor([[0, 1, 2, 3, 4, 5]] ) snake_case = model(lowercase_ )[0] snake_case = 33 snake_case = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape, lowercase_ ) snake_case = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowercase_, atol=1E-4 ) ) @slow def _lowerCamelCase ( self ) -> Optional[int]: with torch.no_grad(): snake_case = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() snake_case = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) snake_case = model(lowercase_ )[0] # compare the actual values for a slice. snake_case = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowercase_, atol=1E-4 ) )
360
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, lowercase_, lowercase_, lowercase_, lowercase_ = None, ) -> List[str]: super().__init__() self.register_modules(transformer=lowercase_, vae=lowercase_, scheduler=lowercase_ ) # create a imagenet -> id dictionary for easier use snake_case = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): snake_case = int(lowercase_ ) snake_case = dict(sorted(self.labels.items() ) ) def _lowerCamelCase ( self, lowercase_ ) -> List[int]: if not isinstance(lowercase_, lowercase_ ): snake_case = list(lowercase_ ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self, lowercase_, lowercase_ = 4.0, lowercase_ = None, lowercase_ = 50, lowercase_ = "pil", lowercase_ = True, ) -> Union[ImagePipelineOutput, Tuple]: snake_case = len(lowercase_ ) snake_case = self.transformer.config.sample_size snake_case = self.transformer.config.in_channels snake_case = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size), generator=lowercase_, device=self.device, dtype=self.transformer.dtype, ) snake_case = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents snake_case = torch.tensor(lowercase_, device=self.device ).reshape(-1 ) snake_case = torch.tensor([1000] * batch_size, device=self.device ) snake_case = torch.cat([class_labels, class_null], 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: snake_case = latent_model_input[: len(lowercase_ ) // 2] snake_case = torch.cat([half, half], dim=0 ) snake_case = self.scheduler.scale_model_input(lowercase_, lowercase_ ) snake_case = t if not torch.is_tensor(lowercase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) snake_case = latent_model_input.device.type == 'mps' if isinstance(lowercase_, lowercase_ ): snake_case = torch.floataa if is_mps else torch.floataa else: snake_case = torch.intaa if is_mps else torch.intaa snake_case = torch.tensor([timesteps], dtype=lowercase_, device=latent_model_input.device ) elif len(timesteps.shape ) == 0: snake_case = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output snake_case = self.transformer( lowercase_, timestep=lowercase_, class_labels=lowercase_ ).sample # perform guidance if guidance_scale > 1: snake_case , snake_case = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] snake_case , snake_case = torch.split(lowercase_, len(lowercase_ ) // 2, dim=0 ) snake_case = uncond_eps + guidance_scale * (cond_eps - uncond_eps) snake_case = torch.cat([half_eps, half_eps], dim=0 ) snake_case = torch.cat([eps, rest], dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: snake_case , snake_case = torch.split(lowercase_, lowercase_, dim=1 ) else: snake_case = noise_pred # compute previous image: x_t -> x_t-1 snake_case = self.scheduler.step(lowercase_, lowercase_, lowercase_ ).prev_sample if guidance_scale > 1: snake_case , snake_case = latent_model_input.chunk(2, dim=0 ) else: snake_case = latent_model_input snake_case = 1 / self.vae.config.scaling_factor * latents snake_case = self.vae.decode(lowercase_ ).sample snake_case = (samples / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case = samples.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": snake_case = self.numpy_to_pil(lowercase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase_ )
361
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
0
'''simple docstring''' def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0 for i in range(n + 1 )] snake_case = 1 snake_case = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , A ): snake_case = 1 snake_case = 0 for i in range(A ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"{solution() = }")
362
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase : def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_=None, ) -> Dict: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope snake_case = self.vocab_size - 1 def _lowerCamelCase ( self ) -> int: snake_case = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case = ids_tensor([self.batch_size], self.num_choices ) snake_case = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> int: snake_case = OpenAIGPTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = model(lowercase_, token_type_ids=lowercase_, head_mask=lowercase_ ) snake_case = model(lowercase_, token_type_ids=lowercase_ ) snake_case = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> Optional[int]: snake_case = OpenAIGPTLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> List[Any]: snake_case = OpenAIGPTDoubleHeadsModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> int: snake_case = self.num_labels snake_case = OpenAIGPTForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case = model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self ) -> List[str]: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): snake_case_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case_ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_=False ) -> Union[str, Any]: snake_case = super()._prepare_for_class(lowercase_, lowercase_, return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=lowercase_, ) snake_case = inputs_dict['labels'] snake_case = inputs_dict['labels'] snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=lowercase_, ) snake_case = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) return inputs_dict def _lowerCamelCase ( self ) -> int: snake_case = OpenAIGPTModelTester(self ) snake_case = ConfigTester(self, config_class=lowercase_, n_embd=37 ) def _lowerCamelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase_ ) def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase_ ) def _lowerCamelCase ( self ) -> List[str]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase_ ) @slow def _lowerCamelCase ( self ) -> List[str]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = OpenAIGPTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self ) -> str: snake_case = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowercase_ ) snake_case = torch.tensor([[481, 4735, 544]], dtype=torch.long, device=lowercase_ ) # the president is snake_case = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case = model.generate(lowercase_, do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist(), lowercase_ )
363
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''ibert''' def __init__( self, lowercase_=30522, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=False, lowercase_="none", **lowercase_, ) -> str: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = quant_mode snake_case = force_dequant class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
364
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
0
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ): snake_case_ = FunnelTokenizer snake_case_ = FunnelTokenizerFast snake_case_ = True snake_case_ = True def _lowerCamelCase ( self ) -> str: super().setUp() snake_case = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _lowerCamelCase ( self, **lowercase_ ) -> Tuple: return FunnelTokenizer.from_pretrained(self.tmpdirname, **lowercase_ ) def _lowerCamelCase ( self, **lowercase_ ) -> Optional[int]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **lowercase_ ) def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = 'UNwant\u00E9d,running' snake_case = 'unwanted, running' return input_text, output_text def _lowerCamelCase ( self ) -> Dict: snake_case = self.tokenizer_class(self.vocab_file ) snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowercase_, ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ), [7, 4, 5, 10, 8, 9] ) def _lowerCamelCase ( self ) -> Any: snake_case = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: snake_case = tokenizer('UNwant\u00E9d,running' ) snake_case = len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'], [2] + [0] * sentence_len ) snake_case = tokenizer('UNwant\u00E9d,running', 'UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'], [2] + [0] * sentence_len + [1] * sentence_len )
365
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
0
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
367
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCAmelCase ) class lowerCamelCase ( __lowerCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization snake_case_ = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''text''': Value('''string''' )} ) snake_case_ = Features({'''labels''': ClassLabel} ) snake_case_ = '''text''' snake_case_ = '''labels''' def _lowerCamelCase ( self, lowercase_ ) -> Tuple: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column], lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) snake_case = copy.deepcopy(self ) snake_case = self.label_schema.copy() snake_case = features[self.label_column] snake_case = label_schema return task_template @property def _lowerCamelCase ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
368
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
0
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger("transformers.models.encodec") lowerCAmelCase_ = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } lowerCAmelCase_ = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } lowerCAmelCase_ = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } lowerCAmelCase_ = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } lowerCAmelCase_ = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } lowerCAmelCase_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCAmelCase_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __magic_name__ ( A , A , A , A , A ) -> int: for attribute in key.split('.' ): snake_case = getattr(A , A ) if weight_type is not None: snake_case = getattr(A , A ).shape else: snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value elif weight_type == "running_mean": snake_case = value elif weight_type == "running_var": snake_case = value elif weight_type == "num_batches_tracked": snake_case = value elif weight_type == "weight_ih_l0": snake_case = value elif weight_type == "weight_hh_l0": snake_case = value elif weight_type == "bias_ih_l0": snake_case = value elif weight_type == "bias_hh_l0": snake_case = value elif weight_type == "weight_ih_l1": snake_case = value elif weight_type == "weight_hh_l1": snake_case = value elif weight_type == "bias_ih_l1": snake_case = value elif weight_type == "bias_hh_l1": snake_case = value else: snake_case = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def __magic_name__ ( A , A ) -> str: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case , snake_case = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = [] if model_name == "encodec_24khz" or "encodec_32khz": snake_case = MAPPING_24K elif model_name == "encodec_48khz": snake_case = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(A , A ): logger.info(F'''{name} was ignored''' ) continue snake_case = False for key, mapped_key in MAPPING.items(): if "*" in key: snake_case , snake_case = key.split('.*.' ) if prefix in name and suffix in name: snake_case = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue snake_case = True if "*" in mapped_key: snake_case = name.split(A )[0].split('.' )[-2] snake_case = mapped_key.replace('*' , A ) if "weight_g" in name: snake_case = 'weight_g' elif "weight_v" in name: snake_case = 'weight_v' elif "weight_ih_l0" in name: snake_case = 'weight_ih_l0' elif "weight_hh_l0" in name: snake_case = 'weight_hh_l0' elif "bias_ih_l0" in name: snake_case = 'bias_ih_l0' elif "bias_hh_l0" in name: snake_case = 'bias_hh_l0' elif "weight_ih_l1" in name: snake_case = 'weight_ih_l1' elif "weight_hh_l1" in name: snake_case = 'weight_hh_l1' elif "bias_ih_l1" in name: snake_case = 'bias_ih_l1' elif "bias_hh_l1" in name: snake_case = 'bias_hh_l1' elif "bias" in name: snake_case = 'bias' elif "weight" in name: snake_case = 'weight' elif "running_mean" in name: snake_case = 'running_mean' elif "running_var" in name: snake_case = 'running_var' elif "num_batches_tracked" in name: snake_case = 'num_batches_tracked' else: snake_case = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def __magic_name__ ( A , A , A , A=None , A=None , ) -> List[str]: if config_path is not None: snake_case = EncodecConfig.from_pretrained(A ) else: snake_case = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": snake_case = [8, 5, 4, 4] snake_case = [2.2] snake_case = 6_4 snake_case = 3_2_0_0_0 snake_case = 2_0_4_8 snake_case = False snake_case = False snake_case = False elif model_name == "encodec_48khz": snake_case = [8, 5, 4, 2] snake_case = [3.0, 6.0, 12.0, 24.0] snake_case = 4_8_0_0_0 snake_case = 2 snake_case = False snake_case = 'time_group_norm' snake_case = True snake_case = 1.0 snake_case = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) snake_case = EncodecModel(A ) snake_case = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(A ) snake_case = torch.load(A ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights snake_case = original_checkpoint['best_state'] recursively_load_weights(A , A , A ) model.save_pretrained(A ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(A ) model.push_to_hub(A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowerCAmelCase_ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, lowercase_, lowercase_ ) -> Tuple: super().__init__() self.register_modules(unet=lowercase_, scheduler=lowercase_ ) @torch.no_grad() def __call__( self, lowercase_ = 1, lowercase_ = None, lowercase_ = 50, lowercase_ = "pil", lowercase_ = True, **lowercase_, ) -> Union[ImagePipelineOutput, Tuple]: snake_case = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=lowercase_, ) snake_case = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case = self.unet(lowercase_, lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case = self.scheduler.step(lowercase_, lowercase_, lowercase_ ).prev_sample snake_case = (image / 2 + 0.5).clamp(0, 1 ) snake_case = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": snake_case = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowercase_ ), "This is a local test"
370
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) def __magic_name__ ( A , A ) -> str: return (preds == labels).mean() @dataclass class lowerCamelCase : snake_case_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class lowerCamelCase : snake_case_ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) snake_case_ = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __magic_name__ ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case , snake_case , snake_case = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A ) # Set seed set_seed(training_args.seed ) try: snake_case = processors[data_args.task_name]() snake_case = processor.get_labels() snake_case = len(A ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) # Get datasets snake_case = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=A , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=A , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(A ) -> Dict: snake_case = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(A , p.label_ids )} # Data collator snake_case = DataCollatorWithPadding(A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case = Trainer( model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , data_collator=A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case = trainer.evaluate() snake_case = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , A , A ) writer.write('%s = %s\n' % (key, value) ) results.update(A ) return results def __magic_name__ ( A ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def __magic_name__ ( A ) -> str: def decorator(A ): snake_case = getattr(A , 'handle_key' , [] ) handle += [key] setattr(A , 'handle_key' , A ) return func return decorator def __magic_name__ ( *A ) -> Any: def decorator(A ): snake_case = getattr(A , 'handle_key' , [] ) handle += keys setattr(A , 'handle_key' , A ) return func return decorator class lowerCamelCase ( __lowerCAmelCase ): def __new__( cls, lowercase_, lowercase_, lowercase_ ) -> Dict: snake_case = super().__new__(cls, lowercase_, lowercase_, lowercase_ ) if not hasattr(lowercase_, 'key_handler' ): setattr(lowercase_, 'key_handler', {} ) setattr(lowercase_, 'handle_input', KeyHandler.handle_input ) for value in attrs.values(): snake_case = getattr(lowercase_, 'handle_key', [] ) for key in handled_keys: snake_case = value return new_cls @staticmethod def _lowerCamelCase ( cls ) -> Union[str, Any]: snake_case = get_character() if char != KEYMAP["undefined"]: snake_case = ord(lowercase_ ) snake_case = cls.key_handler.get(lowercase_ ) if handler: snake_case = char return handler(cls ) else: return None def __magic_name__ ( cls ) -> List[str]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
350
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCamelCase : snake_case_ = 42 snake_case_ = None snake_case_ = None lowerCAmelCase_ = namedtuple("CoinsDistribResult", "moves excess") def __magic_name__ ( A ) -> int: if root is None: return 0 # Validation def count_nodes(A ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A ) != count_coins(A ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(A ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case , snake_case = get_distrib(node.left ) snake_case , snake_case = get_distrib(node.right ) snake_case = 1 - left_distrib_excess snake_case = 1 - right_distrib_excess snake_case = ( left_distrib_moves + right_distrib_moves + abs(A ) + abs(A ) ) snake_case = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A , A ) return get_distrib(A )[0] if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(lowercase_, lowercase_, 1 ) snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ ) snake_case = nn.Convad(lowercase_, lowercase_, 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput: snake_case = self.encoder(lowercase_ ) snake_case = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(lowercase_ ) else: snake_case = h snake_case = self.post_quant_conv(lowercase_ ) snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(lowercase_ ).latents snake_case = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
332
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''swin2sr''' snake_case_ = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self, lowercase_=64, lowercase_=1, lowercase_=3, lowercase_=180, lowercase_=[6, 6, 6, 6, 6, 6], lowercase_=[6, 6, 6, 6, 6, 6], lowercase_=8, lowercase_=2.0, lowercase_=True, lowercase_=0.0, lowercase_=0.0, lowercase_=0.1, lowercase_="gelu", lowercase_=False, lowercase_=0.02, lowercase_=1E-5, lowercase_=2, lowercase_=1.0, lowercase_="1conv", lowercase_="pixelshuffle", **lowercase_, ) -> Union[str, Any]: super().__init__(**lowercase_ ) snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = embed_dim snake_case = depths snake_case = len(lowercase_ ) snake_case = num_heads snake_case = window_size snake_case = mlp_ratio snake_case = qkv_bias snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = drop_path_rate snake_case = hidden_act snake_case = use_absolute_embeddings snake_case = layer_norm_eps snake_case = initializer_range snake_case = upscale snake_case = img_range snake_case = resi_connection snake_case = upsampler
352
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
0
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: snake_case = WavaVecaForSequenceClassification.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) snake_case = downstream_dict['projector.weight'] snake_case = downstream_dict['projector.bias'] snake_case = downstream_dict['model.post_net.linear.weight'] snake_case = downstream_dict['model.post_net.linear.bias'] return model def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: snake_case = WavaVecaForAudioFrameClassification.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) snake_case = downstream_dict['model.linear.weight'] snake_case = downstream_dict['model.linear.bias'] return model def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: snake_case = WavaVecaForXVector.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) snake_case = downstream_dict['connector.weight'] snake_case = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] snake_case = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] snake_case = downstream_dict['objective.W'] return model @torch.no_grad() def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: snake_case = torch.load(UpperCamelCase_ , map_location='cpu' ) snake_case = checkpoint['Downstream'] snake_case = WavaVecaConfig.from_pretrained(UpperCamelCase_ ) snake_case = WavaVecaFeatureExtractor.from_pretrained( UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , do_normalize=UpperCamelCase_ ) snake_case = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): snake_case = convert_classification(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) elif arch.endswith('ForAudioFrameClassification' ): snake_case = convert_diarization(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) elif arch.endswith('ForXVector' ): snake_case = convert_xvector(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: snake_case = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(UpperCamelCase_ ) hf_model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") lowerCAmelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
0
'''simple docstring''' def __magic_name__ ( A ) -> Optional[Any]: snake_case = len(A ) while cur > 1: # Find the maximum number in arr snake_case = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi snake_case = arr[mi::-1] + arr[mi + 1 : len(A )] # Reverse whole list snake_case = arr[cur - 1 :: -1] + arr[cur : len(A )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
354
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase_ = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
0
'''simple docstring''' import argparse import json import subprocess def __magic_name__ ( A , A ) -> Optional[Any]: snake_case = [] snake_case = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) snake_case = subprocess.run(A , shell=A , stdout=subprocess.PIPE ) snake_case = output.stdout.decode('utf-8' ) snake_case = json.loads(A ) snake_case = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(A ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(A ) ) if len(A ) > 0: snake_case = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def __magic_name__ ( A ) -> int: return values.split(',' ) lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) lowerCAmelCase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
356
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
'''simple docstring''' def __magic_name__ ( A ) -> float: return 1_0 - x * x def __magic_name__ ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('Wrong space!' ) snake_case = a while (b - a) >= 0.01: # Find middle point snake_case = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: snake_case = c else: snake_case = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
332
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __magic_name__ ( A , A , A , A , ) -> list[float]: snake_case , snake_case = coefficient_matrix.shape snake_case , snake_case = constant_matrix.shape if rowsa != colsa: snake_case = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(A ) if colsa != 1: snake_case = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(A ) if rowsa != rowsa: snake_case = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(A ) if len(A ) != rowsa: snake_case = ( 'Number of initial values must be equal to number of rows in coefficient ' F'''matrix but received {len(A )} and {rowsa}''' ) raise ValueError(A ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) snake_case = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) snake_case , snake_case = table.shape strictly_diagonally_dominant(A ) # Iterates the whole matrix for given number of times for _ in range(A ): snake_case = [] for row in range(A ): snake_case = 0 for col in range(A ): if col == row: snake_case = table[row][col] elif col == cols - 1: snake_case = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] snake_case = (temp + val) / denom new_val.append(A ) snake_case = new_val return [float(A ) for i in new_val] def __magic_name__ ( A ) -> bool: snake_case , snake_case = table.shape snake_case = True for i in range(0 , A ): snake_case = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
0
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __magic_name__ ( A ) -> float: return np.dot(A , A ) class lowerCamelCase : def __init__( self, *, lowercase_ = np.inf, lowercase_ = "linear", lowercase_ = 0.0, ) -> None: snake_case = regularization snake_case = gamma if kernel == "linear": snake_case = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma' ) if not isinstance(self.gamma, (float, int) ): raise ValueError('gamma must be float or int' ) if not self.gamma > 0: raise ValueError('gamma must be > 0' ) snake_case = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: snake_case = F'''Unknown kernel: {kernel}''' raise ValueError(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> float: return np.dot(lowercase_, lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> None: snake_case = observations snake_case = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((snake_case ) , ) = np.shape(lowercase_ ) def to_minimize(lowercase_ ) -> float: snake_case = 0 ((snake_case ) , ) = np.shape(lowercase_ ) for i in range(lowercase_ ): for j in range(lowercase_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i], observations[j] ) ) return 1 / 2 * s - sum(lowercase_ ) snake_case = LinearConstraint(lowercase_, 0, 0 ) snake_case = Bounds(0, self.regularization ) snake_case = minimize( lowercase_, np.ones(lowercase_ ), bounds=lowercase_, constraints=[ly_contraint] ).x snake_case = l_star # calculating mean offset of separation plane to points snake_case = 0 for i in range(lowercase_ ): for j in range(lowercase_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i], observations[j] ) snake_case = s / n def _lowerCamelCase ( self, lowercase_ ) -> int: snake_case = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n], lowercase_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
0
'''simple docstring''' import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __magic_name__ ( A ) -> int: snake_case = botoa.client('iam' ) snake_case = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=A , AssumeRolePolicyDocument=json.dumps(A , indent=2 ) ) snake_case = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=A , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def __magic_name__ ( A ) -> Any: snake_case = botoa.client('iam' ) return iam_client.get_role(RoleName=A )["Role"]["Arn"] def __magic_name__ ( ) -> List[str]: snake_case = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , A , ) snake_case = None if credentials_configuration == 0: snake_case = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) snake_case = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) snake_case = _ask_field('AWS Access Key ID: ' ) snake_case = aws_access_key_id snake_case = _ask_field('AWS Secret Access Key: ' ) snake_case = aws_secret_access_key snake_case = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) snake_case = aws_region snake_case = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , A , ) if role_management == 0: snake_case = _ask_field('Enter your IAM role name: ' ) else: snake_case = 'accelerate_sagemaker_execution_role' print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(A ) snake_case = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = None if is_custom_docker_image: snake_case = _ask_field('Enter your Docker image: ' , lambda A : str(A ).lower() ) snake_case = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = None if is_sagemaker_inputs_enabled: snake_case = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda A : str(A ).lower() , ) snake_case = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = None if is_sagemaker_metrics_enabled: snake_case = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda A : str(A ).lower() , ) snake_case = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) snake_case = {} snake_case = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) if use_dynamo: snake_case = 'dynamo_' snake_case = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) if use_custom_options: snake_case = _ask_options( 'Which mode do you want to use?' , A , lambda A : TORCH_DYNAMO_MODES[int(A )] , default='default' , ) snake_case = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: snake_case = _ask_options( A , A , lambda A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case = _ask_field(A , lambda A : str(A ).lower() , default='ml.p3.2xlarge' ) snake_case = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case = _ask_field( 'How many machines do you want use? [1]: ' , A , default=1 , ) snake_case = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=A , use_cpu=A , dynamo_config=A , eca_instance_type=A , profile=A , region=A , iam_role_name=A , mixed_precision=A , num_machines=A , sagemaker_inputs_file=A , sagemaker_metrics_file=A , )
360
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
0
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCamelCase ( unittest.TestCase ): def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=4, ) -> Dict: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_attention_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_choices def _lowerCamelCase ( self ) -> int: snake_case = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case = None if self.use_attention_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowercase_, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ) -> str: snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case = config_and_inputs snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ): snake_case_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ) -> Tuple: snake_case = FlaxAlbertModelTester(self ) @slow def _lowerCamelCase ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: snake_case = model_class_name.from_pretrained('albert-base-v2' ) snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ ) @require_flax class lowerCamelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self ) -> List[str]: snake_case = FlaxAlbertModel.from_pretrained('albert-base-v2' ) snake_case = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case = model(lowercase_, attention_mask=lowercase_ )[0] snake_case = (1, 11, 768) self.assertEqual(output.shape, lowercase_ ) snake_case = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], lowercase_, atol=1E-4 ) )
361
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __magic_name__ ( A ) -> int: snake_case = R'\w+[.]\d+' snake_case = re.findall(A , A ) for pat in pats: snake_case = key.replace(A , '_'.join(pat.split('.' ) ) ) return key def __magic_name__ ( A , A , A ) -> Any: snake_case = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): snake_case = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: snake_case = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: snake_case = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer snake_case = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: snake_case = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": snake_case = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __magic_name__ ( A , A , A=4_2 ) -> str: # Step 1: Convert pytorch tensor to numpy snake_case = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params snake_case = flax_model.init_weights(PRNGKey(A ) ) snake_case = flatten_dict(A ) snake_case = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case = rename_key(A ) snake_case = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters snake_case , snake_case = rename_key_and_reshape_tensor(A , A , A ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(A ) return unflatten_dict(A )
362
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_ = 1_6 lowerCAmelCase_ = 3_2 def __magic_name__ ( A , A = 1_6 , A = "bert-base-cased" ) -> Optional[int]: snake_case = AutoTokenizer.from_pretrained(A ) snake_case = load_dataset('glue' , 'mrpc' ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case = datasets.map( A , batched=A , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(A , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. snake_case = DataLoader( tokenized_datasets['train'] , shuffle=A , collate_fn=A , batch_size=A ) snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __magic_name__ ( A , A , A , A ) -> str: model.eval() snake_case = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case = model(**A ) snake_case = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case , snake_case = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) snake_case = metric.compute() return eval_metric["accuracy"] def __magic_name__ ( A , A ) -> int: # Initialize accelerator snake_case = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case = config['lr'] snake_case = int(config['num_epochs'] ) snake_case = int(config['seed'] ) snake_case = int(config['batch_size'] ) snake_case = args.model_name_or_path set_seed(A ) snake_case , snake_case = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer snake_case = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: snake_case = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: snake_case = 1 snake_case = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: snake_case = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case , snake_case , snake_case , snake_case , snake_case = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over snake_case = 0 # We also need to keep track of the stating epoch so files are named properly snake_case = 0 snake_case = evaluate.load('glue' , 'mrpc' ) snake_case = num_epochs if args.partial_train_epoch is not None: snake_case = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case = args.resume_from_checkpoint.split('epoch_' )[1] snake_case = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case = int(A ) + 1 snake_case = evaluation_loop(A , A , A , A ) accelerator.print('resumed checkpoint performance:' , A ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: snake_case = json.load(A ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): snake_case = model(**A ) snake_case = outputs.loss snake_case = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case = F'''epoch_{epoch}''' snake_case = os.path.join(args.output_dir , A ) accelerator.save_state(A ) snake_case = evaluation_loop(A , A , A , A ) snake_case = accuracy snake_case = lr_scheduler.get_lr()[0] snake_case = optimizer.param_groups[0]['lr'] snake_case = epoch snake_case = overall_step accelerator.print(F'''epoch {epoch}:''' , A ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(A , A ) def __magic_name__ ( ) -> Any: snake_case = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=A , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A , ) parser.add_argument( '--output_dir' , type=A , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=A , default=A , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=A , default=A , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=A , default=2 , help='Number of train epochs.' , ) snake_case = parser.parse_args() snake_case = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(A , A ) if __name__ == "__main__": main()
363
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
0
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
364
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
0
'''simple docstring''' import os def __magic_name__ ( A ) -> List[Any]: snake_case = len(grid[0] ) snake_case = len(A ) snake_case = 0 snake_case = 0 snake_case = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(A ): for j in range(n_rows - 3 ): snake_case = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] snake_case = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: snake_case = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: snake_case = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) snake_case = max( A , A , A , A ) if max_product > largest: snake_case = max_product return largest def __magic_name__ ( ) -> int: snake_case = [] with open(os.path.dirname(A ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) snake_case = [[int(A ) for i in grid[j]] for j in range(len(A ) )] return largest_product(A ) if __name__ == "__main__": print(solution())
365
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
0
'''simple docstring''' lowerCAmelCase_ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase_ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase_ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
0
'''simple docstring''' import os import sys import unittest lowerCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase_ = os.path.join("tests", "models", "bert", "test_modeling_bert.py") lowerCAmelCase_ = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[Any]: snake_case = get_test_to_tester_mapping(lowercase_ ) snake_case = get_test_to_tester_mapping(lowercase_ ) snake_case = {'BertModelTest': 'BertModelTester'} snake_case = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = get_model_to_test_mapping(lowercase_ ) snake_case = get_model_to_test_mapping(lowercase_ ) snake_case = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } snake_case = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) def _lowerCamelCase ( self ) -> str: snake_case = get_model_to_tester_mapping(lowercase_ ) snake_case = get_model_to_tester_mapping(lowercase_ ) snake_case = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } snake_case = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ )
367
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( A ) -> int: if not nums: return 0 snake_case = nums[0] snake_case = 0 for num in nums[1:]: snake_case , snake_case = ( max_excluding + num, max(A , A ), ) return max(A , A ) if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __magic_name__ ( A , A = "cpu" , A = None ) -> None: snake_case = torch.load(A , map_location=A ) for k, v in tqdm(state_dict.items() ): if not isinstance(A , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) snake_case = v.half() if save_path is None: # overwrite src_path snake_case = src_path torch.save(A , A ) if __name__ == "__main__": fire.Fire(convert)
370
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCamelCase : def __init__( self, lowercase_, lowercase_=14, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=4, lowercase_=4, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=0.02, ) -> Optional[int]: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = rotary_dim snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = initializer_range snake_case = None snake_case = vocab_size - 1 snake_case = vocab_size - 1 snake_case = vocab_size - 1 def _lowerCamelCase ( self ) -> List[Any]: snake_case = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = GPTJConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, use_cache=lowercase_, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, rotary_dim=self.rotary_dim, ) return (config, input_ids, input_mask) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case = config_and_inputs snake_case = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ ) -> Dict: snake_case = 20 snake_case = model_class_name(lowercase_ ) snake_case = model.init_cache(input_ids.shape[0], lowercase_ ) snake_case = jnp.ones((input_ids.shape[0], max_decoder_length), dtype='i4' ) snake_case = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case = model( input_ids[:, :-1], attention_mask=lowercase_, past_key_values=lowercase_, position_ids=lowercase_, ) snake_case = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype='i4' ) snake_case = model( input_ids[:, -1:], attention_mask=lowercase_, past_key_values=outputs_cache.past_key_values, position_ids=lowercase_, ) snake_case = model(lowercase_ ) snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ ) -> Tuple: snake_case = 20 snake_case = model_class_name(lowercase_ ) snake_case = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )], axis=-1, ) snake_case = model.init_cache(input_ids.shape[0], lowercase_ ) snake_case = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case = model( input_ids[:, :-1], attention_mask=lowercase_, past_key_values=lowercase_, position_ids=lowercase_, ) snake_case = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype='i4' ) snake_case = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=lowercase_, position_ids=lowercase_, ) snake_case = model(lowercase_, attention_mask=lowercase_ ) snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' ) @require_flax class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _lowerCamelCase ( self ) -> Any: snake_case = FlaxGPTJModelTester(self ) def _lowerCamelCase ( self ) -> Optional[Any]: for model_class_name in self.all_model_classes: snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowercase_, lowercase_, lowercase_, lowercase_ ) def _lowerCamelCase ( self ) -> List[str]: for model_class_name in self.all_model_classes: snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowercase_, lowercase_, lowercase_, lowercase_ ) @tooslow def _lowerCamelCase ( self ) -> str: snake_case = GPTaTokenizer.from_pretrained('gpt2', pad_token='<|endoftext|>', padding_side='left' ) snake_case = tokenizer(['Hello this is a long string', 'Hey'], return_tensors='np', padding=lowercase_, truncation=lowercase_ ) snake_case = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) snake_case = False snake_case = model.config.eos_token_id snake_case = jax.jit(model.generate ) snake_case = jit_generate( inputs['input_ids'], attention_mask=inputs['attention_mask'], pad_token_id=tokenizer.pad_token_id ).sequences snake_case = tokenizer.batch_decode(lowercase_, skip_special_tokens=lowercase_ ) snake_case = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowercase_, lowercase_ ) @is_pt_flax_cross_test def _lowerCamelCase ( self ) -> Optional[Any]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case = self._prepare_for_class(lowercase_, lowercase_ ) snake_case = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case = getattr(lowercase_, lowercase_ ) snake_case , snake_case = pt_inputs['input_ids'].shape snake_case = np.random.randint(0, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(lowercase_ ): snake_case = 0 snake_case = 1 snake_case = 0 snake_case = 1 snake_case = pt_model_class(lowercase_ ).eval() snake_case = model_class(lowercase_, dtype=jnp.floataa ) snake_case = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowercase_ ) snake_case = fx_state with torch.no_grad(): snake_case = pt_model(**lowercase_ ).to_tuple() snake_case = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ), len(lowercase_ ), 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowercase_, lowercase_ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) snake_case = model_class.from_pretrained(lowercase_, from_pt=lowercase_ ) snake_case = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual( len(lowercase_ ), len(lowercase_ ), 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowercase_, lowercase_ ): self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4E-2 ) @is_pt_flax_cross_test def _lowerCamelCase ( self ) -> Dict: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case = self._prepare_for_class(lowercase_, lowercase_ ) snake_case = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case = getattr(lowercase_, lowercase_ ) snake_case = pt_model_class(lowercase_ ).eval() snake_case = model_class(lowercase_, dtype=jnp.floataa ) snake_case = load_flax_weights_in_pytorch_model(lowercase_, fx_model.params ) snake_case , snake_case = pt_inputs['input_ids'].shape snake_case = np.random.randint(0, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(lowercase_ ): snake_case = 0 snake_case = 1 snake_case = 0 snake_case = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): snake_case = pt_model(**lowercase_ ).to_tuple() snake_case = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ), len(lowercase_ ), 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowercase_, lowercase_ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) snake_case = pt_model_class.from_pretrained(lowercase_, from_flax=lowercase_ ) with torch.no_grad(): snake_case = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual( len(lowercase_ ), len(lowercase_ ), 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowercase_, lowercase_ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4E-2 ) @tooslow def _lowerCamelCase ( self ) -> List[str]: for model_class_name in self.all_model_classes: snake_case = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ )
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
'''simple docstring''' class lowerCamelCase ( __lowerCAmelCase ): pass class lowerCamelCase ( __lowerCAmelCase ): pass class lowerCamelCase : def __init__( self ) -> Dict: snake_case = [ [], [], [], ] def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> None: try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(lowercase_ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def _lowerCamelCase ( self ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class lowerCamelCase : def __init__( self ) -> str: snake_case = [] def _lowerCamelCase ( self, lowercase_ ) -> None: if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(lowercase_ ) def _lowerCamelCase ( self ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: snake_case = min(self.queue ) self.queue.remove(lowercase_ ) return data def __str__( self ) -> str: return str(self.queue ) def __magic_name__ ( ) -> Dict: snake_case = FixedPriorityQueue() fpq.enqueue(0 , 1_0 ) fpq.enqueue(1 , 7_0 ) fpq.enqueue(0 , 1_0_0 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 6_4 ) fpq.enqueue(0 , 1_2_8 ) print(A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __magic_name__ ( ) -> Union[str, Any]: snake_case = ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
350
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
0
'''simple docstring''' from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration lowerCAmelCase_ = "facebook/wmt19-en-de" lowerCAmelCase_ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model lowerCAmelCase_ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) lowerCAmelCase_ = FSMTForConditionalGeneration(config) print(f"num of params {tiny_model.num_parameters()}") # Test lowerCAmelCase_ = tokenizer(["Making tiny model"], return_tensors="pt") lowerCAmelCase_ = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save lowerCAmelCase_ = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
351
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(lowercase_, lowercase_, 1 ) snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ ) snake_case = nn.Convad(lowercase_, lowercase_, 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput: snake_case = self.encoder(lowercase_ ) snake_case = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(lowercase_ ) else: snake_case = h snake_case = self.post_quant_conv(lowercase_ ) snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(lowercase_ ).latents snake_case = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
332
0
'''simple docstring''' def __magic_name__ ( A ) -> List[Any]: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection snake_case = len(A ) snake_case = max(A ) snake_case = min(A ) # create the counting array snake_case = coll_max + 1 - coll_min snake_case = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , A ): snake_case = counting_arr[i] + counting_arr[i - 1] # create the output collection snake_case = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , A ) ): snake_case = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __magic_name__ ( A ) -> List[Any]: return "".join([chr(A ) for i in counting_sort([ord(A ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
352
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : def __init__( self, lowercase_, lowercase_=13, lowercase_=32, lowercase_=3, lowercase_=4, lowercase_=[10, 20, 30, 40], lowercase_=[2, 2, 3, 2], lowercase_=True, lowercase_=True, lowercase_=37, lowercase_="gelu", lowercase_=10, lowercase_=0.02, lowercase_=["stage2", "stage3", "stage4"], lowercase_=3, lowercase_=None, ) -> Union[str, Any]: snake_case = parent snake_case = batch_size snake_case = image_size snake_case = num_channels snake_case = num_stages snake_case = hidden_sizes snake_case = depths snake_case = is_training snake_case = use_labels snake_case = intermediate_size snake_case = hidden_act snake_case = type_sequence_label_size snake_case = initializer_range snake_case = out_features snake_case = num_labels snake_case = scope snake_case = num_stages def _lowerCamelCase ( self ) -> str: snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ) -> int: return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def _lowerCamelCase ( self ) -> Dict: return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=lowercase_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=lowercase_, loss_ignore_index=255, num_labels=self.num_labels, ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> List[str]: snake_case = UperNetForSemanticSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = model(lowercase_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowerCamelCase ( self ) -> str: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): snake_case_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () snake_case_ = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _lowerCamelCase ( self ) -> str: snake_case = UperNetModelTester(self ) snake_case = ConfigTester(self, config_class=lowercase_, has_text_modality=lowercase_, hidden_size=37 ) def _lowerCamelCase ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self ) -> Any: return def _lowerCamelCase ( self ) -> int: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(lowercase_ ) snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1], lowercase_ ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def _lowerCamelCase ( self ) -> List[str]: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def _lowerCamelCase ( self ) -> int: pass @unittest.skip(reason='UperNet does not have a base model' ) def _lowerCamelCase ( self ) -> Any: pass @unittest.skip(reason='UperNet does not have a base model' ) def _lowerCamelCase ( self ) -> Any: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCamelCase ( self ) -> Optional[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCamelCase ( self ) -> Optional[Any]: pass def _lowerCamelCase ( self ) -> Optional[int]: def check_hidden_states_output(lowercase_, lowercase_, lowercase_ ): snake_case = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case = model(**self._prepare_for_class(lowercase_, lowercase_ ) ) snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case = self.model_tester.num_stages self.assertEqual(len(lowercase_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = True check_hidden_states_output(lowercase_, lowercase_, lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case = True check_hidden_states_output(lowercase_, lowercase_, lowercase_ ) def _lowerCamelCase ( self ) -> Any: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = _config_zero_init(lowercase_ ) snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: snake_case = model_class(config=lowercase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @unittest.skip(reason='UperNet does not have tied weights' ) def _lowerCamelCase ( self ) -> Optional[int]: pass @slow def _lowerCamelCase ( self ) -> Optional[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = UperNetForSemanticSegmentation.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __magic_name__ ( ) -> str: snake_case = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) snake_case = Image.open(UpperCamelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Tuple: snake_case = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) snake_case = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowercase_ ) snake_case = prepare_img() snake_case = processor(images=lowercase_, return_tensors='pt' ).to(lowercase_ ) with torch.no_grad(): snake_case = model(**lowercase_ ) snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, lowercase_ ) snake_case = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], lowercase_, atol=1E-4 ) ) def _lowerCamelCase ( self ) -> Dict: snake_case = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) snake_case = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowercase_ ) snake_case = prepare_img() snake_case = processor(images=lowercase_, return_tensors='pt' ).to(lowercase_ ) with torch.no_grad(): snake_case = model(**lowercase_ ) snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, lowercase_ ) snake_case = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], lowercase_, atol=1E-4 ) )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
0
'''simple docstring''' import math import random def __magic_name__ ( A , A = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCAmelCase_ = 0.02 def __magic_name__ ( A , A ) -> float: snake_case = float(2 * (random.randint(1 , 1_0_0 )) - 1 ) for _ in range(A ): # Forward propagation snake_case = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? snake_case = (expected / 1_0_0) - layer_a # Error delta snake_case = layer_1_error * sigmoid_function(A , A ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_0_0 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = int(input("Expected value: ")) lowerCAmelCase_ = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
354
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
0
def __magic_name__ ( A ) -> list: if any(not isinstance(A , A ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(A ) ): for i, (rod_upper, rod_lower) in enumerate(zip(A , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
355
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __magic_name__ ( A ) -> List[Any]: snake_case = 3_8_4 if "tiny" in model_name: snake_case = [3, 3, 9, 3] snake_case = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: snake_case = [3, 3, 2_7, 3] snake_case = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: snake_case = [3, 3, 2_7, 3] snake_case = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] snake_case = 5_1_2 if "large" in model_name: snake_case = [3, 3, 2_7, 3] snake_case = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] snake_case = 7_6_8 if "xlarge" in model_name: snake_case = [3, 3, 2_7, 3] snake_case = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] snake_case = 1_0_2_4 # set label information snake_case = 1_5_0 snake_case = 'huggingface/label-files' snake_case = 'ade20k-id2label.json' snake_case = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = {v: k for k, v in idalabel.items()} snake_case = ConvNextConfig( depths=A , hidden_sizes=A , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) snake_case = UperNetConfig( backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , ) return config def __magic_name__ ( A ) -> Dict: snake_case = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def __magic_name__ ( A , A , A ) -> int: snake_case = dct.pop(A ) snake_case = val def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } snake_case = model_name_to_url[model_name] snake_case = torch.hub.load_state_dict_from_url(A , map_location='cpu' )['state_dict'] snake_case = get_upernet_config(A ) snake_case = UperNetForSemanticSegmentation(A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): snake_case = state_dict.pop(A ) if "bn" in key: snake_case = key.replace('bn' , 'batch_norm' ) snake_case = val # rename keys snake_case = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) model.load_state_dict(A ) # verify on image snake_case = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' snake_case = Image.open(requests.get(A , stream=A ).raw ).convert('RGB' ) snake_case = SegformerImageProcessor() snake_case = processor(A , return_tensors='pt' ).pixel_values with torch.no_grad(): snake_case = model(A ) if model_name == "upernet-convnext-tiny": snake_case = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": snake_case = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": snake_case = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": snake_case = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": snake_case = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f"upernet-convnext-{size}" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCAmelCase_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
356
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = (DDPMScheduler,) def _lowerCamelCase ( self, **lowercase_ ) -> List[str]: snake_case = { 'num_train_timesteps': 1000, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**lowercase_ ) return config def _lowerCamelCase ( self ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def _lowerCamelCase ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_, beta_end=lowercase_ ) def _lowerCamelCase ( self ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def _lowerCamelCase ( self ) -> str: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase_ ) def _lowerCamelCase ( self ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase_, prediction_type=lowercase_, sample_max_value=lowercase_, ) def _lowerCamelCase ( self ) -> List[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def _lowerCamelCase ( self ) -> Tuple: for t in [0, 500, 999]: self.check_over_forward(time_step=lowercase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _lowerCamelCase ( self ) -> int: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) snake_case = len(lowercase_ ) snake_case = self.dummy_model() snake_case = self.dummy_sample_deter snake_case = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual snake_case = model(lowercase_, lowercase_ ) # 2. predict previous mean of sample x_t-1 snake_case = scheduler.step(lowercase_, lowercase_, lowercase_, generator=lowercase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case = pred_prev_sample snake_case = torch.sum(torch.abs(lowercase_ ) ) snake_case = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def _lowerCamelCase ( self ) -> List[Any]: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config(prediction_type='v_prediction' ) snake_case = scheduler_class(**lowercase_ ) snake_case = len(lowercase_ ) snake_case = self.dummy_model() snake_case = self.dummy_sample_deter snake_case = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual snake_case = model(lowercase_, lowercase_ ) # 2. predict previous mean of sample x_t-1 snake_case = scheduler.step(lowercase_, lowercase_, lowercase_, generator=lowercase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case = pred_prev_sample snake_case = torch.sum(torch.abs(lowercase_ ) ) snake_case = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def _lowerCamelCase ( self ) -> List[Any]: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) snake_case = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowercase_ ) snake_case = scheduler.timesteps for i, timestep in enumerate(lowercase_ ): if i == len(lowercase_ ) - 1: snake_case = -1 else: snake_case = timesteps[i + 1] snake_case = scheduler.previous_timestep(lowercase_ ) snake_case = prev_t.item() self.assertEqual(lowercase_, lowercase_ ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) snake_case = [100, 87, 50, 51, 0] with self.assertRaises(lowercase_, msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=lowercase_ ) def _lowerCamelCase ( self ) -> Dict: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) snake_case = [100, 87, 50, 1, 0] snake_case = len(lowercase_ ) with self.assertRaises(lowercase_, msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=lowercase_, timesteps=lowercase_ ) def _lowerCamelCase ( self ) -> Any: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) snake_case = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase_, msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}', ): scheduler.set_timesteps(timesteps=lowercase_ )
357
'''simple docstring''' def __magic_name__ ( A ) -> float: return 1_0 - x * x def __magic_name__ ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('Wrong space!' ) snake_case = a while (b - a) >= 0.01: # Find middle point snake_case = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: snake_case = c else: snake_case = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
332
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase_ = 2_5_0_0_0_4 lowerCAmelCase_ = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ): snake_case_ = MBartaaTokenizer snake_case_ = MBartaaTokenizerFast snake_case_ = True snake_case_ = True def _lowerCamelCase ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = MBartaaTokenizer(lowercase_, src_lang='en_XX', tgt_lang='ro_RO', keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ) -> str: snake_case = '<s>' snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ), lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ), lowercase_ ) def _lowerCamelCase ( self ) -> List[str]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '<s>' ) self.assertEqual(vocab_keys[1], '<pad>' ) self.assertEqual(vocab_keys[-1], '<mask>' ) self.assertEqual(len(lowercase_ ), 1054 ) def _lowerCamelCase ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size, 1054 ) def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = MBartaaTokenizer(lowercase_, src_lang='en_XX', tgt_lang='ro_RO', keep_accents=lowercase_ ) snake_case = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) snake_case = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_, [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'], ) snake_case = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) snake_case = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_, [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'], ) @slow def _lowerCamelCase ( self ) -> str: # fmt: off snake_case = {'input_ids': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_, model_name='facebook/mbart-large-50', revision='d3913889c59cd5c9e456b269c376325eabad57e2', ) def _lowerCamelCase ( self ) -> Dict: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case = self.rust_tokenizer_class.from_pretrained(lowercase_, **lowercase_ ) snake_case = self.tokenizer_class.from_pretrained(lowercase_, **lowercase_ ) snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(lowercase_ ) snake_case = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) snake_case = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowercase_, lowercase_ ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(lowercase_ ) snake_case = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_, lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(lowercase_, legacy_format=lowercase_ ) snake_case = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_, lowercase_ ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(lowercase_ ) snake_case = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_, lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(lowercase_, legacy_format=lowercase_ ) snake_case = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(lowercase_ ) snake_case = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_, lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): snake_case_ = '''facebook/mbart-large-50-one-to-many-mmt''' snake_case_ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] snake_case_ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] snake_case_ = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def _lowerCamelCase ( cls ) -> str: snake_case = MBartaaTokenizer.from_pretrained( cls.checkpoint_name, src_lang='en_XX', tgt_lang='ro_RO' ) snake_case = 1 return cls def _lowerCamelCase ( self ) -> str: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'], 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'], 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'], 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'], 250038 ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, lowercase_ ) def _lowerCamelCase ( self ) -> List[Any]: self.assertIn(lowercase_, self.tokenizer.all_special_ids ) snake_case = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] snake_case = self.tokenizer.decode(lowercase_, skip_special_tokens=lowercase_ ) snake_case = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_, lowercase_ ) self.assertNotIn(self.tokenizer.eos_token, lowercase_ ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0], lowercase_ ) snake_case = 10 snake_case = self.tokenizer(lowercase_, max_length=lowercase_, truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[0], lowercase_ ) self.assertEqual(ids[-1], 2 ) self.assertEqual(len(lowercase_ ), lowercase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ), [250053, 250001] ) def _lowerCamelCase ( self ) -> int: snake_case = tempfile.mkdtemp() snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) snake_case = MBartaaTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, lowercase_ ) @require_torch def _lowerCamelCase ( self ) -> List[str]: snake_case = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=lowercase_, return_tensors='pt' ) snake_case = shift_tokens_right(batch['labels'], self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _lowerCamelCase ( self ) -> List[str]: snake_case = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=lowercase_, truncation=lowercase_, max_length=len(self.expected_src_tokens ), return_tensors='pt', ) snake_case = shift_tokens_right(batch['labels'], self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_, lowercase_ ) self.assertEqual((2, 14), batch.input_ids.shape ) self.assertEqual((2, 14), batch.attention_mask.shape ) snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, lowercase_ ) self.assertEqual(2, batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.tokenizer(self.src_text, padding=lowercase_, truncation=lowercase_, max_length=3, return_tensors='pt' ) snake_case = self.tokenizer( text_target=self.tgt_text, padding=lowercase_, truncation=lowercase_, max_length=10, return_tensors='pt' ) snake_case = targets['input_ids'] snake_case = shift_tokens_right(lowercase_, self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def _lowerCamelCase ( self ) -> List[str]: snake_case = self.tokenizer._build_translation_inputs( 'A test', return_tensors='pt', src_lang='en_XX', tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(lowercase_ ), { # en_XX, A, test, EOS 'input_ids': [[250004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, }, )
358
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCAmelCase_ = ["text", "image", "audio"] def __magic_name__ ( A ) -> Optional[int]: snake_case = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(A , A ): inputs.append(create_inputs(A ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def __magic_name__ ( A ) -> int: snake_case = [] for output in outputs: if isinstance(A , (str, AgentText) ): output_types.append('text' ) elif isinstance(A , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(A , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class lowerCamelCase : def _lowerCamelCase ( self ) -> Any: self.assertTrue(hasattr(self.tool, 'inputs' ) ) self.assertTrue(hasattr(self.tool, 'outputs' ) ) snake_case = self.tool.inputs for _input in inputs: if isinstance(_input, lowercase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _lowerCamelCase ( self ) -> List[str]: snake_case = create_inputs(self.tool.inputs ) snake_case = self.tool(*lowercase_ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case = [outputs] self.assertListEqual(output_types(lowercase_ ), self.tool.outputs ) def _lowerCamelCase ( self ) -> Optional[int]: self.assertTrue(hasattr(self.tool, 'description' ) ) self.assertTrue(hasattr(self.tool, 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def _lowerCamelCase ( self ) -> Any: snake_case = create_inputs(self.tool.inputs ) snake_case = self.tool(*lowercase_ ) if not isinstance(lowercase_, lowercase_ ): snake_case = [outputs] self.assertEqual(len(lowercase_ ), len(self.tool.outputs ) ) for output, output_type in zip(lowercase_, self.tool.outputs ): snake_case = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowercase_, lowercase_ ) ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = create_inputs(self.tool.inputs ) snake_case = [] for _input, input_type in zip(lowercase_, self.tool.inputs ): if isinstance(lowercase_, lowercase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case = self.tool(*lowercase_ ) if not isinstance(lowercase_, lowercase_ ): snake_case = [outputs] self.assertEqual(len(lowercase_ ), len(self.tool.outputs ) )
359
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
0
'''simple docstring''' import pprint import requests lowerCAmelCase_ = "https://zenquotes.io/api" def __magic_name__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def __magic_name__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": lowerCAmelCase_ = random_quotes() pprint.pprint(response)
360
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
361
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
0
'''simple docstring''' import os def __magic_name__ ( A = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(A ) , A ) ) as input_file: snake_case = [ [int(A ) for element in line.split(',' )] for line in input_file.readlines() ] snake_case = len(A ) snake_case = len(matrix[0] ) snake_case = [[-1 for _ in range(A )] for _ in range(A )] for i in range(A ): snake_case = matrix[i][0] for j in range(1 , A ): for i in range(A ): snake_case = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , A ): snake_case = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): snake_case = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"{solution() = }")
362
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
0
'''simple docstring''' import numpy as np def __magic_name__ ( A ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
0
'''simple docstring''' from __future__ import annotations class lowerCamelCase : def __init__( self, lowercase_ = 0 ) -> Optional[int]: snake_case = key def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> list[str]: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) snake_case = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_ ) ^ key ) for ch in content] def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> list[str]: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) snake_case = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_ ) ^ key ) for ch in content] def _lowerCamelCase ( self, lowercase_, lowercase_ = 0 ) -> str: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) snake_case = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case = '' for ch in content: ans += chr(ord(lowercase_ ) ^ key ) return ans def _lowerCamelCase ( self, lowercase_, lowercase_ = 0 ) -> str: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) snake_case = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case = '' for ch in content: ans += chr(ord(lowercase_ ) ^ key ) return ans def _lowerCamelCase ( self, lowercase_, lowercase_ = 0 ) -> bool: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) try: with open(lowercase_ ) as fin, open('encrypt.out', 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowercase_, lowercase_ ) ) except OSError: return False return True def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> bool: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) try: with open(lowercase_ ) as fin, open('decrypt.out', 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowercase_, lowercase_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
364
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = UniSpeechSatForSequenceClassification.from_pretrained(A , config=A ) snake_case = downstream_dict['projector.weight'] snake_case = downstream_dict['projector.bias'] snake_case = downstream_dict['model.post_net.linear.weight'] snake_case = downstream_dict['model.post_net.linear.bias'] return model def __magic_name__ ( A , A , A ) -> Optional[Any]: snake_case = UniSpeechSatForAudioFrameClassification.from_pretrained(A , config=A ) snake_case = downstream_dict['model.linear.weight'] snake_case = downstream_dict['model.linear.bias'] return model def __magic_name__ ( A , A , A ) -> int: snake_case = UniSpeechSatForXVector.from_pretrained(A , config=A ) snake_case = downstream_dict['connector.weight'] snake_case = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] snake_case = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] snake_case = downstream_dict['objective.W'] return model @torch.no_grad() def __magic_name__ ( A , A , A , A ) -> Optional[Any]: snake_case = torch.load(A , map_location='cpu' ) snake_case = checkpoint['Downstream'] snake_case = UniSpeechSatConfig.from_pretrained(A ) snake_case = WavaVecaFeatureExtractor.from_pretrained( A , return_attention_mask=A , do_normalize=A ) snake_case = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): snake_case = convert_classification(A , A , A ) elif arch.endswith('ForAudioFrameClassification' ): snake_case = convert_diarization(A , A , A ) elif arch.endswith('ForXVector' ): snake_case = convert_xvector(A , A , A ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: snake_case = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(A ) hf_model.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") lowerCAmelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
0
'''simple docstring''' import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __magic_name__ ( A=None ) -> Any: if subparsers is not None: snake_case = subparsers.add_parser('env' ) else: snake_case = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file' , default=A , help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=A ) return parser def __magic_name__ ( A ) -> str: snake_case = torch.__version__ snake_case = torch.cuda.is_available() snake_case = is_xpu_available() snake_case = is_npu_available() snake_case = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(A ): snake_case = load_config_from_file(args.config_file ).to_dict() snake_case = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''', 'PyTorch XPU available': str(A ), 'PyTorch NPU available': str(A ), 'System RAM': F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: snake_case = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) snake_case = ( '\n'.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(A , A ) else F'''\t{accelerate_config}''' ) print(A ) snake_case = accelerate_config return info def __magic_name__ ( ) -> int: snake_case = env_command_parser() snake_case = parser.parse_args() env_command(A ) return 0 if __name__ == "__main__": raise SystemExit(main())
367
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
0
'''simple docstring''' lowerCAmelCase_ = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase_ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase_ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
368
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
0
'''simple docstring''' from functools import reduce lowerCAmelCase_ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __magic_name__ ( A = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda A , A : str(int(A ) * int(A ) ) , n[i : i + 1_3] ) ) for i in range(len(A ) - 1_2 ) ) if __name__ == "__main__": print(f"{solution() = }")
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
0
'''simple docstring''' import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
370
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__) class lowerCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): snake_case_ = None snake_case_ = None class lowerCamelCase ( folder_based_builder.FolderBasedBuilder ): snake_case_ = datasets.Audio() snake_case_ = '''audio''' snake_case_ = AudioFolderConfig snake_case_ = 42 # definition at the bottom of the script snake_case_ = AudioClassification(audio_column='''audio''' , label_column='''label''' ) lowerCAmelCase_ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] lowerCAmelCase_ = AUDIO_EXTENSIONS
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
'''simple docstring''' def __magic_name__ ( A ) -> list[int]: snake_case = len(A ) for i in range(A ): for j in range(i + 1 , A ): if numbers[j] < numbers[i]: snake_case , snake_case = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
350
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
351
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(lowercase_, lowercase_, 1 ) snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ ) snake_case = nn.Convad(lowercase_, lowercase_, 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput: snake_case = self.encoder(lowercase_ ) snake_case = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(lowercase_ ) else: snake_case = h snake_case = self.post_quant_conv(lowercase_ ) snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(lowercase_ ).latents snake_case = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
332
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __magic_name__ ( A ) -> Union[str, Any]: snake_case , snake_case = image.size snake_case , snake_case = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 snake_case = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) snake_case = np.array(A ).astype(np.floataa ) / 255.0 snake_case = image[None].transpose(0 , 3 , 1 , 2 ) snake_case = torch.from_numpy(A ) return 2.0 * image - 1.0 class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, lowercase_, lowercase_, lowercase_, ) -> Dict: super().__init__() self.register_modules(vqvae=lowercase_, unet=lowercase_, scheduler=lowercase_ ) @torch.no_grad() def __call__( self, lowercase_ = None, lowercase_ = 1, lowercase_ = 100, lowercase_ = 0.0, lowercase_ = None, lowercase_ = "pil", lowercase_ = True, ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowercase_, PIL.Image.Image ): snake_case = 1 elif isinstance(lowercase_, torch.Tensor ): snake_case = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowercase_ )}''' ) if isinstance(lowercase_, PIL.Image.Image ): snake_case = preprocess(lowercase_ ) snake_case , snake_case = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image snake_case = (batch_size, self.unet.config.in_channels // 2, height, width) snake_case = next(self.unet.parameters() ).dtype snake_case = randn_tensor(lowercase_, generator=lowercase_, device=self.device, dtype=lowercase_ ) snake_case = image.to(device=self.device, dtype=lowercase_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowercase_, device=self.device ) snake_case = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case = {} if accepts_eta: snake_case = eta for t in self.progress_bar(lowercase_ ): # concat latents and low resolution image in the channel dimension. snake_case = torch.cat([latents, image], dim=1 ) snake_case = self.scheduler.scale_model_input(lowercase_, lowercase_ ) # predict the noise residual snake_case = self.unet(lowercase_, lowercase_ ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case = self.scheduler.step(lowercase_, lowercase_, lowercase_, **lowercase_ ).prev_sample # decode the image latents with the VQVAE snake_case = self.vqvae.decode(lowercase_ ).sample snake_case = torch.clamp(lowercase_, -1.0, 1.0 ) snake_case = image / 2 + 0.5 snake_case = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": snake_case = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
352
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
0
'''simple docstring''' from torch import nn def __magic_name__ ( UpperCamelCase_ ) -> int: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
0
'''simple docstring''' import math def __magic_name__ ( A , A ) -> int: snake_case = len(A ) snake_case = int(math.floor(math.sqrt(A ) ) ) snake_case = 0 while arr[min(A , A ) - 1] < x: snake_case = step step += int(math.floor(math.sqrt(A ) ) ) if prev >= n: return -1 while arr[prev] < x: snake_case = prev + 1 if prev == min(A , A ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(",")] lowerCAmelCase_ = int(input("Enter the number to be searched:\n")) lowerCAmelCase_ = jump_search(arr, x) if res == -1: print("Number not found!") else: print(f"Number {x} is at index {res}")
354
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
0
def __magic_name__ ( A = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: try: snake_case = int(A ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) snake_case = 1 snake_case = 2 while i * i <= n: while n % i == 0: snake_case = i n //= i i += 1 if n > 1: snake_case = n return int(A ) if __name__ == "__main__": print(f"{solution() = }")
355
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
0
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __magic_name__ ( ) -> Optional[int]: raise RuntimeError('CUDA out of memory.' ) class lowerCamelCase ( nn.Module ): def __init__( self ) -> Optional[int]: super().__init__() snake_case = nn.Linear(3, 4 ) snake_case = nn.BatchNormad(4 ) snake_case = nn.Linear(4, 5 ) def _lowerCamelCase ( self, lowercase_ ) -> str: return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Tuple: snake_case = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowercase_, [128, 64, 32, 16, 8] ) def _lowerCamelCase ( self ) -> Tuple: snake_case = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_, lowercase_ ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga snake_case , snake_case = mock_training_loop_function('hello' ) self.assertListEqual(lowercase_, [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga], [8, 'hello'] ) def _lowerCamelCase ( self ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowercase_ ): pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.', cm.exception.args[0] ) def _lowerCamelCase ( self ) -> Tuple: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.', cm.exception.args[0] ) def _lowerCamelCase ( self ) -> Any: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_, lowercase_, lowercase_ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function(128, 'hello', 'world' ) self.assertIn('Batch size was passed into `f`', cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')', cm.exception.args[0] ) def _lowerCamelCase ( self ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!', cm.exception.args[0] ) @require_cuda def _lowerCamelCase ( self ) -> int: snake_case = torch.cuda.memory_allocated() snake_case = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated(), lowercase_ ) snake_case = release_memory(lowercase_ ) self.assertEqual(torch.cuda.memory_allocated(), lowercase_ )
356
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
0
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __magic_name__ ( A ) -> tuple: return (data["data"], data["target"]) def __magic_name__ ( A , A ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(A , A ) return classifier def __magic_name__ ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(A ) snake_case , snake_case , snake_case , snake_case = train_test_split( A , A , test_size=0.25 ) snake_case = iris['target_names'] # Create an XGBoost Classifier from the training data snake_case = xgboost(A , A ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A , A , A , display_labels=A , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
357
'''simple docstring''' def __magic_name__ ( A ) -> float: return 1_0 - x * x def __magic_name__ ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('Wrong space!' ) snake_case = a while (b - a) >= 0.01: # Find middle point snake_case = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: snake_case = c else: snake_case = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
332
0
'''simple docstring''' from collections import defaultdict def __magic_name__ ( A , A ) -> bool: snake_case = first_str.lower().strip() snake_case = second_str.lower().strip() # Remove whitespace snake_case = first_str.replace(' ' , '' ) snake_case = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(A ) != len(A ): return False # Default values for count should be 0 snake_case = defaultdict(A ) # For each character in input strings, # increment count in the corresponding for i in range(len(A ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase_ = input("Enter the first string ").strip() lowerCAmelCase_ = input("Enter the second string ").strip() lowerCAmelCase_ = check_anagrams(input_a, input_b) print(f"{input_a} and {input_b} are {'' if status else 'not '}anagrams.")
358
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
0
'''simple docstring''' def __magic_name__ ( A ) -> int: snake_case = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __magic_name__ ( A = 1_0_0 ) -> int: snake_case = 1 snake_case = 2 for i in range(2 , max_n + 1 ): snake_case = pre_numerator snake_case = 2 * i // 3 if i % 3 == 0 else 1 snake_case = cur_numerator snake_case = e_cont * pre_numerator + temp return sum_digits(A ) if __name__ == "__main__": print(f"{solution() = }")
359
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
0
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = ["model.decoder.embed_positions.weights"] def __magic_name__ ( A ) -> int: if "emb" in name: snake_case = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: snake_case = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: snake_case = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: snake_case = name.replace('linear1' , 'fc1' ) if "linear2" in name: snake_case = name.replace('linear2' , 'fc2' ) if "norm1" in name: snake_case = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: snake_case = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: snake_case = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: snake_case = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: snake_case = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: snake_case = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def __magic_name__ ( A , A ) -> Tuple[Dict, Dict]: snake_case = list(state_dict.keys() ) snake_case = {} for key in keys: snake_case = state_dict.pop(A ) snake_case = rename_keys(A ) if "in_proj_weight" in key: # split fused qkv proj snake_case = val[:hidden_size, :] snake_case = val[hidden_size : 2 * hidden_size, :] snake_case = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case = val else: snake_case = val return state_dict, enc_dec_proj_state_dict def __magic_name__ ( A ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values snake_case = 1_0_2_4 snake_case = 2_4 snake_case = 1_6 elif checkpoint == "medium": snake_case = 1_5_3_6 snake_case = 4_8 snake_case = 2_4 elif checkpoint == "large": snake_case = 2_0_4_8 snake_case = 4_8 snake_case = 3_2 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) snake_case = MusicgenDecoderConfig( hidden_size=A , ffn_dim=hidden_size * 4 , num_hidden_layers=A , num_attention_heads=A , ) return config @torch.no_grad() def __magic_name__ ( A , A=None , A=None , A="cpu" ) -> Any: snake_case = MusicGen.get_pretrained(A , device=A ) snake_case = decoder_config_from_checkpoint(A ) snake_case = fairseq_model.lm.state_dict() snake_case , snake_case = rename_state_dict( A , hidden_size=decoder_config.hidden_size ) snake_case = TaEncoderModel.from_pretrained('t5-base' ) snake_case = EncodecModel.from_pretrained('facebook/encodec_32khz' ) snake_case = MusicgenForCausalLM(A ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case , snake_case = decoder.load_state_dict(A , strict=A ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(A ) if len(A ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(A ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model snake_case = MusicgenForConditionalGeneration(text_encoder=A , audio_encoder=A , decoder=A ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(A ) # check we can do a forward pass snake_case = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case = model(input_ids=A , decoder_input_ids=A ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError('Incorrect shape for logits' ) # now construct the processor snake_case = AutoTokenizer.from_pretrained('t5-base' ) snake_case = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) snake_case = MusicgenProcessor(feature_extractor=A , tokenizer=A ) # set the appropriate bos/pad token ids snake_case = 2_0_4_8 snake_case = 2_0_4_8 # set other default generation config params snake_case = int(3_0 * audio_encoder.config.frame_rate ) snake_case = True snake_case = 3.0 if pytorch_dump_folder is not None: Path(A ).mkdir(exist_ok=A ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(A ) processor.save_pretrained(A ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(A ) processor.push_to_hub(A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCAmelCase_ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
360
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
0
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
361
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase_ = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
0
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
363
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
0
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCAmelCase_ = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCAmelCase_ = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( A ) -> List[Any]: snake_case = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=A )[0] @deprecated(A , 'Please use tf.data to implement this functionality.' ) def __magic_name__ ( A ) -> Optional[int]: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=A ) as bytestream: snake_case = _readaa(A ) if magic != 2_0_5_1: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) snake_case = _readaa(A ) snake_case = _readaa(A ) snake_case = _readaa(A ) snake_case = bytestream.read(rows * cols * num_images ) snake_case = numpy.frombuffer(A , dtype=numpy.uinta ) snake_case = data.reshape(A , A , A , 1 ) return data @deprecated(A , 'Please use tf.one_hot on tensors.' ) def __magic_name__ ( A , A ) -> Union[str, Any]: snake_case = labels_dense.shape[0] snake_case = numpy.arange(A ) * num_classes snake_case = numpy.zeros((num_labels, num_classes) ) snake_case = 1 return labels_one_hot @deprecated(A , 'Please use tf.data to implement this functionality.' ) def __magic_name__ ( A , A=False , A=1_0 ) -> Dict: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=A ) as bytestream: snake_case = _readaa(A ) if magic != 2_0_4_9: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) snake_case = _readaa(A ) snake_case = bytestream.read(A ) snake_case = numpy.frombuffer(A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(A , A ) return labels class lowerCamelCase : @deprecated( lowercase_, 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.', ) def __init__( self, lowercase_, lowercase_, lowercase_=False, lowercase_=False, lowercase_=dtypes.floataa, lowercase_=True, lowercase_=None, ) -> Dict: snake_case , snake_case = random_seed.get_seed(lowercase_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) snake_case = dtypes.as_dtype(lowercase_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: snake_case = 10000 snake_case = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' snake_case = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 snake_case = images.reshape( images.shape[0], images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. snake_case = images.astype(numpy.floataa ) snake_case = numpy.multiply(lowercase_, 1.0 / 255.0 ) snake_case = images snake_case = labels snake_case = 0 snake_case = 0 @property def _lowerCamelCase ( self ) -> Dict: return self._images @property def _lowerCamelCase ( self ) -> int: return self._labels @property def _lowerCamelCase ( self ) -> Union[str, Any]: return self._num_examples @property def _lowerCamelCase ( self ) -> List[str]: return self._epochs_completed def _lowerCamelCase ( self, lowercase_, lowercase_=False, lowercase_=True ) -> List[str]: if fake_data: snake_case = [1] * 784 snake_case = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowercase_ )], [fake_label for _ in range(lowercase_ )], ) snake_case = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase_ ) snake_case = self.images[perma] snake_case = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch snake_case = self._num_examples - start snake_case = self._images[start : self._num_examples] snake_case = self._labels[start : self._num_examples] # Shuffle the data if shuffle: snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase_ ) snake_case = self.images[perm] snake_case = self.labels[perm] # Start next epoch snake_case = 0 snake_case = batch_size - rest_num_examples snake_case = self._index_in_epoch snake_case = self._images[start:end] snake_case = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part), axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part), axis=0 ), ) else: self._index_in_epoch += batch_size snake_case = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(A , 'Please write your own downloading logic.' ) def __magic_name__ ( A , A , A ) -> str: if not gfile.Exists(A ): gfile.MakeDirs(A ) snake_case = os.path.join(A , A ) if not gfile.Exists(A ): urllib.request.urlretrieve(A , A ) # noqa: S310 with gfile.GFile(A ) as f: snake_case = f.size() print('Successfully downloaded' , A , A , 'bytes.' ) return filepath @deprecated( A , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def __magic_name__ ( A , A=False , A=False , A=dtypes.floataa , A=True , A=5_0_0_0 , A=None , A=DEFAULT_SOURCE_URL , ) -> Tuple: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=A , one_hot=A , dtype=A , seed=A ) snake_case = fake() snake_case = fake() snake_case = fake() return _Datasets(train=A , validation=A , test=A ) if not source_url: # empty string check snake_case = DEFAULT_SOURCE_URL snake_case = 'train-images-idx3-ubyte.gz' snake_case = 'train-labels-idx1-ubyte.gz' snake_case = 't10k-images-idx3-ubyte.gz' snake_case = 't10k-labels-idx1-ubyte.gz' snake_case = _maybe_download( A , A , source_url + train_images_file ) with gfile.Open(A , 'rb' ) as f: snake_case = _extract_images(A ) snake_case = _maybe_download( A , A , source_url + train_labels_file ) with gfile.Open(A , 'rb' ) as f: snake_case = _extract_labels(A , one_hot=A ) snake_case = _maybe_download( A , A , source_url + test_images_file ) with gfile.Open(A , 'rb' ) as f: snake_case = _extract_images(A ) snake_case = _maybe_download( A , A , source_url + test_labels_file ) with gfile.Open(A , 'rb' ) as f: snake_case = _extract_labels(A , one_hot=A ) if not 0 <= validation_size <= len(A ): snake_case = ( 'Validation size should be between 0 and ' F'''{len(A )}. Received: {validation_size}.''' ) raise ValueError(A ) snake_case = train_images[:validation_size] snake_case = train_labels[:validation_size] snake_case = train_images[validation_size:] snake_case = train_labels[validation_size:] snake_case = {'dtype': dtype, 'reshape': reshape, 'seed': seed} snake_case = _DataSet(A , A , **A ) snake_case = _DataSet(A , A , **A ) snake_case = _DataSet(A , A , **A ) return _Datasets(train=A , validation=A , test=A )
364
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
0
'''simple docstring''' def __magic_name__ ( A = 3 , A = 7 , A = 1_0_0_0_0_0_0 ) -> int: snake_case = 0 snake_case = 1 for current_denominator in range(1 , limit + 1 ): snake_case = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: snake_case = current_numerator snake_case = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
365
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
0
'''simple docstring''' import os from pathlib import Path def __magic_name__ ( ) -> str: from torch.utils.cpp_extension import load snake_case = Path(A ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' snake_case = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , A , with_cuda=A , extra_include_paths=[str(A )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
0
'''simple docstring''' from datetime import datetime import requests def __magic_name__ ( A ) -> bytes: snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(A ).content if __name__ == "__main__": lowerCAmelCase_ = input("Enter Video/IGTV url: ").strip() lowerCAmelCase_ = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f"Done. Video saved to disk as {file_name}.")
367
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ): snake_case_ = ShapEPipeline snake_case_ = ['''prompt'''] snake_case_ = ['''prompt'''] snake_case_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def _lowerCamelCase ( self ) -> List[str]: return 32 @property def _lowerCamelCase ( self ) -> List[str]: return 32 @property def _lowerCamelCase ( self ) -> int: return self.time_input_dim * 4 @property def _lowerCamelCase ( self ) -> List[str]: return 8 @property def _lowerCamelCase ( self ) -> Dict: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(lowercase_ ) @property def _lowerCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } snake_case = PriorTransformer(**lowercase_ ) return model @property def _lowerCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } snake_case = ShapERenderer(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Any: snake_case = self.dummy_prior snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_renderer snake_case = HeunDiscreteScheduler( beta_schedule='exp', num_train_timesteps=1024, prediction_type='sample', use_karras_sigmas=lowercase_, clip_sample=lowercase_, clip_sample_range=1.0, ) snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def _lowerCamelCase ( self, lowercase_, lowercase_=0 ) -> str: if str(lowercase_ ).startswith('mps' ): snake_case = torch.manual_seed(lowercase_ ) else: snake_case = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def _lowerCamelCase ( self ) -> str: snake_case = 'cpu' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**lowercase_ ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = pipe(**self.get_dummy_inputs(lowercase_ ) ) snake_case = output.images[0] snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) snake_case = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> int: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = torch_device == 'cpu' snake_case = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowercase_, relax_max_difference=lowercase_, ) def _lowerCamelCase ( self ) -> Tuple: snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**lowercase_ ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 1 snake_case = 2 snake_case = self.get_dummy_inputs(lowercase_ ) for key in inputs.keys(): if key in self.batch_params: snake_case = batch_size * [inputs[key]] snake_case = pipe(**lowercase_, num_images_per_prompt=lowercase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> List[Any]: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( 'a shark', generator=lowercase_, guidance_scale=15.0, num_inference_steps=64, frame_size=64, output_type='np', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase_, lowercase_ )
368
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''sew-d''' def __init__( self, lowercase_=32, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_=2, lowercase_=512, lowercase_=256, lowercase_=True, lowercase_=True, lowercase_=("p2c", "c2p"), lowercase_="layer_norm", lowercase_="gelu_python", lowercase_=0.1, lowercase_=0.1, lowercase_=0.1, lowercase_=0.0, lowercase_=0.1, lowercase_=0.02, lowercase_=1E-7, lowercase_=1E-5, lowercase_="group", lowercase_="gelu", lowercase_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), lowercase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), lowercase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), lowercase_=False, lowercase_=128, lowercase_=16, lowercase_=True, lowercase_=0.05, lowercase_=10, lowercase_=2, lowercase_=0.0, lowercase_=10, lowercase_=0, lowercase_="mean", lowercase_=False, lowercase_=False, lowercase_=256, lowercase_=0, lowercase_=1, lowercase_=2, **lowercase_, ) -> Optional[Any]: super().__init__(**lowercase_, pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_ ) snake_case = hidden_size snake_case = feat_extract_norm snake_case = feat_extract_activation snake_case = list(lowercase_ ) snake_case = list(lowercase_ ) snake_case = list(lowercase_ ) snake_case = conv_bias snake_case = num_conv_pos_embeddings snake_case = num_conv_pos_embedding_groups snake_case = len(self.conv_dim ) snake_case = num_hidden_layers snake_case = intermediate_size snake_case = squeeze_factor snake_case = max_position_embeddings snake_case = position_buckets snake_case = share_att_key snake_case = relative_attention snake_case = norm_rel_ebd snake_case = list(lowercase_ ) snake_case = hidden_act snake_case = num_attention_heads snake_case = hidden_dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = feat_proj_dropout snake_case = final_dropout snake_case = layer_norm_eps snake_case = feature_layer_norm_eps snake_case = initializer_range snake_case = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case = apply_spec_augment snake_case = mask_time_prob snake_case = mask_time_length snake_case = mask_time_min_masks snake_case = mask_feature_prob snake_case = mask_feature_length snake_case = mask_feature_min_masks # ctc loss snake_case = ctc_loss_reduction snake_case = ctc_zero_infinity # sequence classification snake_case = use_weighted_layer_sum snake_case = classifier_proj_size @property def _lowerCamelCase ( self ) -> Optional[Any]: return functools.reduce(operator.mul, self.conv_stride, 1 )
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
0
'''simple docstring''' lowerCAmelCase_ = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase_ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase_ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
370
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''sew''' def __init__( self, lowercase_=32, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_=2, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=0.1, lowercase_=0.0, lowercase_=0.1, lowercase_=0.1, lowercase_=0.02, lowercase_=1E-5, lowercase_="group", lowercase_="gelu", lowercase_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), lowercase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), lowercase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), lowercase_=False, lowercase_=128, lowercase_=16, lowercase_=True, lowercase_=0.05, lowercase_=10, lowercase_=2, lowercase_=0.0, lowercase_=10, lowercase_=0, lowercase_="mean", lowercase_=False, lowercase_=False, lowercase_=256, lowercase_=0, lowercase_=1, lowercase_=2, **lowercase_, ) -> List[Any]: super().__init__(**lowercase_, pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_ ) snake_case = hidden_size snake_case = feat_extract_norm snake_case = feat_extract_activation snake_case = list(lowercase_ ) snake_case = list(lowercase_ ) snake_case = list(lowercase_ ) snake_case = conv_bias snake_case = num_conv_pos_embeddings snake_case = num_conv_pos_embedding_groups snake_case = len(self.conv_dim ) snake_case = num_hidden_layers snake_case = intermediate_size snake_case = squeeze_factor snake_case = hidden_act snake_case = num_attention_heads snake_case = hidden_dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = feat_proj_dropout snake_case = final_dropout snake_case = layerdrop snake_case = layer_norm_eps snake_case = initializer_range snake_case = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case = apply_spec_augment snake_case = mask_time_prob snake_case = mask_time_length snake_case = mask_time_min_masks snake_case = mask_feature_prob snake_case = mask_feature_length snake_case = mask_feature_min_masks # ctc loss snake_case = ctc_loss_reduction snake_case = ctc_zero_infinity # sequence classification snake_case = use_weighted_layer_sum snake_case = classifier_proj_size @property def _lowerCamelCase ( self ) -> Union[str, Any]: return functools.reduce(operator.mul, self.conv_stride, 1 )
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
'''simple docstring''' from manim import * class lowerCamelCase ( __lowerCAmelCase ): def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = Rectangle(height=0.5, width=0.5 ) snake_case = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) snake_case = [mem.copy() for i in range(6 )] snake_case = [mem.copy() for i in range(6 )] snake_case = VGroup(*lowercase_ ).arrange(lowercase_, buff=0 ) snake_case = VGroup(*lowercase_ ).arrange(lowercase_, buff=0 ) snake_case = VGroup(lowercase_, lowercase_ ).arrange(lowercase_, buff=0 ) snake_case = Text('CPU', font_size=24 ) snake_case = Group(lowercase_, lowercase_ ).arrange(lowercase_, buff=0.5, aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) snake_case = [mem.copy() for i in range(1 )] snake_case = VGroup(*lowercase_ ).arrange(lowercase_, buff=0 ) snake_case = Text('GPU', font_size=24 ) snake_case = Group(lowercase_, lowercase_ ).arrange(lowercase_, buff=0.5, aligned_edge=lowercase_ ) gpu.align_to(lowercase_, lowercase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowercase_ ) snake_case = [mem.copy() for i in range(6 )] snake_case = VGroup(*lowercase_ ).arrange(lowercase_, buff=0 ) snake_case = Text('Model', font_size=24 ) snake_case = Group(lowercase_, lowercase_ ).arrange(lowercase_, buff=0.5, aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowercase_, run_time=1 ), Create(lowercase_, run_time=1 ), Create(lowercase_, run_time=1 ), ) snake_case = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''', font_size=24, ) snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=18, ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_, run_time=2.5 ), Write(lowercase_ ), Write(lowercase_ ) ) self.add(lowercase_ ) snake_case = [] snake_case = [] snake_case = [] for i, rect in enumerate(lowercase_ ): snake_case = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0.0 ).set_fill(lowercase_, opacity=0.7 ) cpu_target.move_to(lowercase_ ) cpu_target.generate_target() snake_case = 0.46 / 4 snake_case = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=lowercase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=lowercase_, buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=lowercase_, buff=0.0 ) cpu_targs.append(lowercase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowercase_ ) ) second_animations.append(MoveToTarget(lowercase_, run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
350
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
0
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
351
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(lowercase_, lowercase_, 1 ) snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ ) snake_case = nn.Convad(lowercase_, lowercase_, 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput: snake_case = self.encoder(lowercase_ ) snake_case = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(lowercase_ ) else: snake_case = h snake_case = self.post_quant_conv(lowercase_ ) snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(lowercase_ ).latents snake_case = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
332
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
352
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = tempfile.mkdtemp() snake_case = BlipImageProcessor() snake_case = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) snake_case = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) snake_case = InstructBlipProcessor(lowercase_, lowercase_, lowercase_ ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self, **lowercase_ ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname, **lowercase_ ).tokenizer def _lowerCamelCase ( self, **lowercase_ ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname, **lowercase_ ).image_processor def _lowerCamelCase ( self, **lowercase_ ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname, **lowercase_ ).qformer_tokenizer def _lowerCamelCase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ) -> Tuple: snake_case = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] snake_case = [Image.fromarray(np.moveaxis(lowercase_, 0, -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = InstructBlipProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor(), qformer_tokenizer=self.get_qformer_tokenizer(), ) processor.save_pretrained(self.tmpdirname ) snake_case = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) snake_case = self.get_image_processor(do_normalize=lowercase_, padding_value=1.0 ) snake_case = InstructBlipProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowercase_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowercase_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowercase_ ) self.assertIsInstance(processor.qformer_tokenizer, lowercase_ ) def _lowerCamelCase ( self ) -> Any: snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = self.get_qformer_tokenizer() snake_case = InstructBlipProcessor( tokenizer=lowercase_, image_processor=lowercase_, qformer_tokenizer=lowercase_ ) snake_case = self.prepare_image_inputs() snake_case = image_processor(lowercase_, return_tensors='np' ) snake_case = processor(images=lowercase_, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = self.get_qformer_tokenizer() snake_case = InstructBlipProcessor( tokenizer=lowercase_, image_processor=lowercase_, qformer_tokenizer=lowercase_ ) snake_case = 'lower newer' snake_case = processor(text=lowercase_ ) snake_case = tokenizer(lowercase_, return_token_type_ids=lowercase_ ) snake_case = qformer_tokenizer(lowercase_, return_token_type_ids=lowercase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key], encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key], encoded_processor['qformer_' + key] ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = self.get_qformer_tokenizer() snake_case = InstructBlipProcessor( tokenizer=lowercase_, image_processor=lowercase_, qformer_tokenizer=lowercase_ ) snake_case = 'lower newer' snake_case = self.prepare_image_inputs() snake_case = processor(text=lowercase_, images=lowercase_ ) self.assertListEqual( list(inputs.keys() ), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def _lowerCamelCase ( self ) -> Any: snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = self.get_qformer_tokenizer() snake_case = InstructBlipProcessor( tokenizer=lowercase_, image_processor=lowercase_, qformer_tokenizer=lowercase_ ) snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case = processor.batch_decode(lowercase_ ) snake_case = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_, lowercase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = self.get_qformer_tokenizer() snake_case = InstructBlipProcessor( tokenizer=lowercase_, image_processor=lowercase_, qformer_tokenizer=lowercase_ ) snake_case = 'lower newer' snake_case = self.prepare_image_inputs() snake_case = processor(text=lowercase_, images=lowercase_ ) self.assertListEqual( list(inputs.keys() ), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
0
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Optional[Any]: return F'''gaussian_noise_s={seed}_shape={"_".join([str(lowercase_ ) for s in shape] )}.npy''' def _lowerCamelCase ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() def _lowerCamelCase ( self, lowercase_=0, lowercase_=(4, 4, 64, 64), lowercase_=False ) -> Tuple: snake_case = jnp.bfloataa if fpaa else jnp.floataa snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase_, lowercase_ ) ), dtype=lowercase_ ) return image def _lowerCamelCase ( self, lowercase_=False, lowercase_="CompVis/stable-diffusion-v1-4" ) -> int: snake_case = jnp.bfloataa if fpaa else jnp.floataa snake_case = 'bf16' if fpaa else None snake_case , snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase_, subfolder='unet', dtype=lowercase_, revision=lowercase_ ) return model, params def _lowerCamelCase ( self, lowercase_=0, lowercase_=(4, 77, 768), lowercase_=False ) -> Optional[Any]: snake_case = jnp.bfloataa if fpaa else jnp.floataa snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase_, lowercase_ ) ), dtype=lowercase_ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Optional[Any]: snake_case , snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4', fpaa=lowercase_ ) snake_case = self.get_latents(lowercase_, fpaa=lowercase_ ) snake_case = self.get_encoder_hidden_states(lowercase_, fpaa=lowercase_ ) snake_case = model.apply( {'params': params}, lowercase_, jnp.array(lowercase_, dtype=jnp.intaa ), encoder_hidden_states=lowercase_, ).sample assert sample.shape == latents.shape snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ), dtype=jnp.floataa ) snake_case = jnp.array(lowercase_, dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase_, lowercase_, atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Tuple: snake_case , snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2', fpaa=lowercase_ ) snake_case = self.get_latents(lowercase_, shape=(4, 4, 96, 96), fpaa=lowercase_ ) snake_case = self.get_encoder_hidden_states(lowercase_, shape=(4, 77, 1024), fpaa=lowercase_ ) snake_case = model.apply( {'params': params}, lowercase_, jnp.array(lowercase_, dtype=jnp.intaa ), encoder_hidden_states=lowercase_, ).sample assert sample.shape == latents.shape snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ), dtype=jnp.floataa ) snake_case = jnp.array(lowercase_, dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase_, lowercase_, atol=1E-2 )
354
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): snake_case_ = '''maskformer-swin''' snake_case_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self, lowercase_=224, lowercase_=4, lowercase_=3, lowercase_=96, lowercase_=[2, 2, 6, 2], lowercase_=[3, 6, 12, 24], lowercase_=7, lowercase_=4.0, lowercase_=True, lowercase_=0.0, lowercase_=0.0, lowercase_=0.1, lowercase_="gelu", lowercase_=False, lowercase_=0.02, lowercase_=1E-5, lowercase_=None, lowercase_=None, **lowercase_, ) -> Any: super().__init__(**lowercase_ ) snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = embed_dim snake_case = depths snake_case = len(lowercase_ ) snake_case = num_heads snake_case = window_size snake_case = mlp_ratio snake_case = qkv_bias snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = drop_path_rate snake_case = hidden_act snake_case = use_absolute_embeddings snake_case = layer_norm_eps snake_case = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) snake_case = ['stem'] + [F'''stage{idx}''' for idx in range(1, len(lowercase_ ) + 1 )] snake_case , snake_case = get_aligned_output_features_output_indices( out_features=lowercase_, out_indices=lowercase_, stage_names=self.stage_names )
355
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
356
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
0
'''simple docstring''' from collections.abc import Callable def __magic_name__ ( A , A , A ) -> float: snake_case = a snake_case = b if function(A ) == 0: # one of the a or b is a root for the function return a elif function(A ) == 0: return b elif ( function(A ) * function(A ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: snake_case = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(A ) == 0: return mid elif function(A ) * function(A ) < 0: snake_case = mid else: snake_case = mid snake_case = start + (end - start) / 2.0 return mid def __magic_name__ ( A ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
357
'''simple docstring''' def __magic_name__ ( A ) -> float: return 1_0 - x * x def __magic_name__ ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('Wrong space!' ) snake_case = a while (b - a) >= 0.01: # Find middle point snake_case = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: snake_case = c else: snake_case = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
332
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
358
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCamelCase : snake_case_ = 42 snake_case_ = None snake_case_ = None def __magic_name__ ( ) -> Node | None: snake_case = Node(1 ) snake_case = Node(2 ) snake_case = Node(3 ) snake_case = Node(4 ) snake_case = Node(5 ) return tree def __magic_name__ ( A ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __magic_name__ ( A ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __magic_name__ ( A ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __magic_name__ ( A ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def __magic_name__ ( A ) -> Sequence[Node | None]: snake_case = [] if root is None: return output snake_case = deque([root] ) while process_queue: snake_case = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __magic_name__ ( A , A ) -> Sequence[Node | None]: snake_case = [] def populate_output(A , A ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(A , A ) return output def __magic_name__ ( A , A ) -> Sequence[Node | None]: snake_case = [] def populate_output(A , A ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(A , A ) return output def __magic_name__ ( A ) -> Sequence[Node | None] | list[Any]: if root is None: return [] snake_case = [] snake_case = 0 snake_case = height(A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A , A ) ) snake_case = 1 else: output.append(get_nodes_from_right_to_left(A , A ) ) snake_case = 0 return output def __magic_name__ ( ) -> None: # Main function for testing. snake_case = make_tree() print(F'''In-order Traversal: {inorder(A )}''' ) print(F'''Pre-order Traversal: {preorder(A )}''' ) print(F'''Post-order Traversal: {postorder(A )}''' , '\n' ) print(F'''Height of Tree: {height(A )}''' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(A ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(A ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(A , level=A ) ) print('\nZigZag order Traversal: ' ) print(zigzag(A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
359
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''Wav2Vec2FeatureExtractor''' snake_case_ = '''AutoTokenizer''' def __init__( self, lowercase_, lowercase_ ) -> str: super().__init__(lowercase_, lowercase_ ) snake_case = self.feature_extractor snake_case = False @classmethod def _lowerCamelCase ( cls, lowercase_, **lowercase_ ) -> Optional[Any]: try: return super().from_pretrained(lowercase_, **lowercase_ ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ', lowercase_, ) snake_case = WavaVecaFeatureExtractor.from_pretrained(lowercase_, **lowercase_ ) snake_case = WavaVecaCTCTokenizer.from_pretrained(lowercase_, **lowercase_ ) return cls(feature_extractor=lowercase_, tokenizer=lowercase_ ) def __call__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase_, **lowercase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) snake_case = kwargs.pop('raw_speech' ) else: snake_case = kwargs.pop('audio', lowercase_ ) snake_case = kwargs.pop('sampling_rate', lowercase_ ) snake_case = kwargs.pop('text', lowercase_ ) if len(lowercase_ ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: snake_case = self.feature_extractor(lowercase_, *lowercase_, sampling_rate=lowercase_, **lowercase_ ) if text is not None: snake_case = self.tokenizer(lowercase_, **lowercase_ ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings['input_ids'] return inputs def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowercase_, **lowercase_ ) snake_case = kwargs.pop('input_features', lowercase_ ) snake_case = kwargs.pop('labels', lowercase_ ) if len(lowercase_ ) > 0: snake_case = args[0] snake_case = args[1:] if input_features is not None: snake_case = self.feature_extractor.pad(lowercase_, *lowercase_, **lowercase_ ) if labels is not None: snake_case = self.tokenizer.pad(lowercase_, **lowercase_ ) if labels is None: return input_features elif input_features is None: return labels else: snake_case = labels['input_ids'] return input_features def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Optional[int]: return self.tokenizer.batch_decode(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Optional[Any]: return self.tokenizer.decode(*lowercase_, **lowercase_ ) @contextmanager def _lowerCamelCase ( self ) -> Union[str, Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) snake_case = True snake_case = self.tokenizer yield snake_case = self.feature_extractor snake_case = False
360
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
0