code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from maths.prime_check import is_prime
def __magic_name__ ( A ) -> int:
if not isinstance(A , A ):
snake_case = F'''Input value of [number={number}] must be an integer'''
raise TypeError(A )
if is_prime(A ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 332 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = None
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
snake_case_ = 2
@register_to_config
def __init__( self, lowercase_ = 0.02, lowercase_ = 100, lowercase_ = 1.007, lowercase_ = 80, lowercase_ = 0.05, lowercase_ = 50, ) -> Dict:
# standard deviation of the initial noise distribution
snake_case = sigma_max
# setable values
snake_case = None
snake_case = None
snake_case = None # sigma(t_i)
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> torch.FloatTensor:
return sample
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Optional[Any]:
snake_case = num_inference_steps
snake_case = np.arange(0, self.num_inference_steps )[::-1].copy()
snake_case = torch.from_numpy(lowercase_ ).to(lowercase_ )
snake_case = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
snake_case = torch.tensor(lowercase_, dtype=torch.floataa, device=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = None ) -> Tuple[torch.FloatTensor, float]:
if self.config.s_min <= sigma <= self.config.s_max:
snake_case = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1 )
else:
snake_case = 0
# sample eps ~ N(0, S_noise^2 * I)
snake_case = self.config.s_noise * randn_tensor(sample.shape, generator=lowercase_ ).to(sample.device )
snake_case = sigma + gamma * sigma
snake_case = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ = True, ) -> Union[KarrasVeOutput, Tuple]:
snake_case = sample_hat + sigma_hat * model_output
snake_case = (sample_hat - pred_original_sample) / sigma_hat
snake_case = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=lowercase_, derivative=lowercase_, pred_original_sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ = True, ) -> Union[KarrasVeOutput, Tuple]:
snake_case = sample_prev + sigma_prev * model_output
snake_case = (sample_prev - pred_original_sample) / sigma_prev
snake_case = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=lowercase_, derivative=lowercase_, pred_original_sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Any:
raise NotImplementedError()
| 332 |
'''simple docstring'''
import pytest
lowerCAmelCase_ = "__dummy_dataset1__"
lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def __magic_name__ ( ) -> List[Any]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __magic_name__ ( ) -> Union[str, Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = dataset_loading_script_name
snake_case = tmp_path / 'datasets' / script_name
script_dir.mkdir(parents=A )
snake_case = script_dir / F'''{script_name}.py'''
with open(A , 'w' ) as f:
f.write(A )
return str(A )
| 332 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
lowerCAmelCase_ = {
"vocab_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json",
"funnel-transformer/small-base": (
"https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json"
),
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json",
"funnel-transformer/large-base": (
"https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json"
),
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json"
),
},
}
lowerCAmelCase_ = {f"funnel-transformer/{name}": 5_1_2 for name in _model_names}
lowerCAmelCase_ = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_INIT_CONFIGURATION
snake_case_ = FunnelTokenizer
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = 2
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=True, lowercase_="<unk>", lowercase_="<sep>", lowercase_="<pad>", lowercase_="<cls>", lowercase_="<mask>", lowercase_="<s>", lowercase_="</s>", lowercase_=True, lowercase_=True, lowercase_=None, lowercase_="##", **lowercase_, ) -> Dict:
super().__init__(
lowercase_, tokenizer_file=lowercase_, do_lower_case=lowercase_, unk_token=lowercase_, sep_token=lowercase_, pad_token=lowercase_, cls_token=lowercase_, mask_token=lowercase_, bos_token=lowercase_, eos_token=lowercase_, clean_text=lowercase_, tokenize_chinese_chars=lowercase_, strip_accents=lowercase_, wordpieces_prefix=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase', lowercase_ ) != do_lower_case
or normalizer_state.get('strip_accents', lowercase_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars', lowercase_ ) != tokenize_chinese_chars
):
snake_case = getattr(lowercase_, normalizer_state.pop('type' ) )
snake_case = do_lower_case
snake_case = strip_accents
snake_case = tokenize_chinese_chars
snake_case = normalizer_class(**lowercase_ )
snake_case = do_lower_case
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Optional[int]:
snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
| 332 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCAmelCase_ = Lock()
def __magic_name__ ( A , A , A , A , A , A , A ) -> Any:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 1_0 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(A )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
snake_case = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
snake_case = min(A , A )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(A )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
snake_case = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
snake_case = max(A , A )
# after all swaps are performed, send the values back to main
result_pipe[1].send(A )
def __magic_name__ ( A ) -> str:
snake_case = []
snake_case = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
snake_case = temp_rs
snake_case = temp_rr
for i in range(1 , len(A ) - 1 ):
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
snake_case = temp_rs
snake_case = temp_rr
process_array_.append(
Process(
target=A , args=(
len(A ) - 1,
arr[len(A ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(A ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(A ) ):
snake_case = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __magic_name__ ( ) -> Tuple:
snake_case = list(range(1_0 , 0 , -1 ) )
print('Initial List' )
print(*A )
snake_case = odd_even_transposition(A )
print('Sorted List\n' )
print(*A )
if __name__ == "__main__":
main()
| 332 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, lowercase_, lowercase_, lowercase_, lowercase_ = None, ) -> List[str]:
super().__init__()
self.register_modules(transformer=lowercase_, vae=lowercase_, scheduler=lowercase_ )
# create a imagenet -> id dictionary for easier use
snake_case = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split(',' ):
snake_case = int(lowercase_ )
snake_case = dict(sorted(self.labels.items() ) )
def _lowerCamelCase ( self, lowercase_ ) -> List[int]:
if not isinstance(lowercase_, lowercase_ ):
snake_case = list(lowercase_ )
for l in label:
if l not in self.labels:
raise ValueError(
F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' )
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self, lowercase_, lowercase_ = 4.0, lowercase_ = None, lowercase_ = 50, lowercase_ = "pil", lowercase_ = True, ) -> Union[ImagePipelineOutput, Tuple]:
snake_case = len(lowercase_ )
snake_case = self.transformer.config.sample_size
snake_case = self.transformer.config.in_channels
snake_case = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size), generator=lowercase_, device=self.device, dtype=self.transformer.dtype, )
snake_case = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents
snake_case = torch.tensor(lowercase_, device=self.device ).reshape(-1 )
snake_case = torch.tensor([1000] * batch_size, device=self.device )
snake_case = torch.cat([class_labels, class_null], 0 ) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(lowercase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
if guidance_scale > 1:
snake_case = latent_model_input[: len(lowercase_ ) // 2]
snake_case = torch.cat([half, half], dim=0 )
snake_case = self.scheduler.scale_model_input(lowercase_, lowercase_ )
snake_case = t
if not torch.is_tensor(lowercase_ ):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
snake_case = latent_model_input.device.type == 'mps'
if isinstance(lowercase_, lowercase_ ):
snake_case = torch.floataa if is_mps else torch.floataa
else:
snake_case = torch.intaa if is_mps else torch.intaa
snake_case = torch.tensor([timesteps], dtype=lowercase_, device=latent_model_input.device )
elif len(timesteps.shape ) == 0:
snake_case = timesteps[None].to(latent_model_input.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
snake_case = timesteps.expand(latent_model_input.shape[0] )
# predict noise model_output
snake_case = self.transformer(
lowercase_, timestep=lowercase_, class_labels=lowercase_ ).sample
# perform guidance
if guidance_scale > 1:
snake_case , snake_case = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
snake_case , snake_case = torch.split(lowercase_, len(lowercase_ ) // 2, dim=0 )
snake_case = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
snake_case = torch.cat([half_eps, half_eps], dim=0 )
snake_case = torch.cat([eps, rest], dim=1 )
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
snake_case , snake_case = torch.split(lowercase_, lowercase_, dim=1 )
else:
snake_case = noise_pred
# compute previous image: x_t -> x_t-1
snake_case = self.scheduler.step(lowercase_, lowercase_, lowercase_ ).prev_sample
if guidance_scale > 1:
snake_case , snake_case = latent_model_input.chunk(2, dim=0 )
else:
snake_case = latent_model_input
snake_case = 1 / self.vae.config.scaling_factor * latents
snake_case = self.vae.decode(lowercase_ ).sample
snake_case = (samples / 2 + 0.5).clamp(0, 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
snake_case = samples.cpu().permute(0, 2, 3, 1 ).float().numpy()
if output_type == "pil":
snake_case = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=lowercase_ )
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> None:
create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] )
def __magic_name__ ( A , A , A , A , ) -> None:
if index == len(A ):
print(A )
return
for i in range(len(A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
snake_case = True
create_state_space_tree(A , A , index + 1 , A )
current_sequence.pop()
snake_case = False
lowerCAmelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 332 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''roberta'''
def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 | 1 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_ = {
"allenai/led-base-16384": 1_6_3_8_4,
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = LEDTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int:
super().__init__(
lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) )
snake_case = add_prefix_space
snake_case = pre_tok_class(**lowercase_ )
snake_case = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case = 'post_processor'
snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ )
if tokenizer_component_instance:
snake_case = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case = tuple(state['sep'] )
if "cls" in state:
snake_case = tuple(state['cls'] )
snake_case = False
if state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = add_prefix_space
snake_case = True
if state.get('trim_offsets', lowercase_ ) != trim_offsets:
snake_case = trim_offsets
snake_case = True
if changes_to_apply:
snake_case = getattr(lowercase_, state.pop('type' ) )
snake_case = component_class(**lowercase_ )
setattr(self.backend_tokenizer, lowercase_, lowercase_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value
snake_case = value
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict:
snake_case = super()._pad(
encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, )
# Load from model defaults
if return_attention_mask is None:
snake_case = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ )
if needs_to_be_padded:
snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
snake_case = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 332 | 1 |
'''simple docstring'''
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Optional[Any]:
return F'''gaussian_noise_s={seed}_shape={"_".join([str(lowercase_ ) for s in shape] )}.npy'''
def _lowerCamelCase ( self ) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def _lowerCamelCase ( self, lowercase_=0, lowercase_=(4, 4, 64, 64), lowercase_=False ) -> Tuple:
snake_case = jnp.bfloataa if fpaa else jnp.floataa
snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase_, lowercase_ ) ), dtype=lowercase_ )
return image
def _lowerCamelCase ( self, lowercase_=False, lowercase_="CompVis/stable-diffusion-v1-4" ) -> int:
snake_case = jnp.bfloataa if fpaa else jnp.floataa
snake_case = 'bf16' if fpaa else None
snake_case , snake_case = FlaxUNetaDConditionModel.from_pretrained(
lowercase_, subfolder='unet', dtype=lowercase_, revision=lowercase_ )
return model, params
def _lowerCamelCase ( self, lowercase_=0, lowercase_=(4, 77, 768), lowercase_=False ) -> Optional[Any]:
snake_case = jnp.bfloataa if fpaa else jnp.floataa
snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase_, lowercase_ ) ), dtype=lowercase_ )
return hidden_states
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]],
[17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]],
[8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]],
[3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]],
# fmt: on
] )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Optional[Any]:
snake_case , snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4', fpaa=lowercase_ )
snake_case = self.get_latents(lowercase_, fpaa=lowercase_ )
snake_case = self.get_encoder_hidden_states(lowercase_, fpaa=lowercase_ )
snake_case = model.apply(
{'params': params}, lowercase_, jnp.array(lowercase_, dtype=jnp.intaa ), encoder_hidden_states=lowercase_, ).sample
assert sample.shape == latents.shape
snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ), dtype=jnp.floataa )
snake_case = jnp.array(lowercase_, dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(lowercase_, lowercase_, atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]],
[17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]],
[8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]],
[3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]],
# fmt: on
] )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Tuple:
snake_case , snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2', fpaa=lowercase_ )
snake_case = self.get_latents(lowercase_, shape=(4, 4, 96, 96), fpaa=lowercase_ )
snake_case = self.get_encoder_hidden_states(lowercase_, shape=(4, 77, 1024), fpaa=lowercase_ )
snake_case = model.apply(
{'params': params}, lowercase_, jnp.array(lowercase_, dtype=jnp.intaa ), encoder_hidden_states=lowercase_, ).sample
assert sample.shape == latents.shape
snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ), dtype=jnp.floataa )
snake_case = jnp.array(lowercase_, dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(lowercase_, lowercase_, atol=1E-2 )
| 332 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332 | 1 |
'''simple docstring'''
class lowerCamelCase ( __lowerCAmelCase ):
pass
class lowerCamelCase ( __lowerCAmelCase ):
pass
class lowerCamelCase :
def __init__( self ) -> Dict:
snake_case = [
[],
[],
[],
]
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> None:
try:
if len(self.queues[priority] ) >= 100:
raise OverflowError('Maximum queue size is 100' )
self.queues[priority].append(lowercase_ )
except IndexError:
raise ValueError('Valid priorities are 0, 1, and 2' )
def _lowerCamelCase ( self ) -> int:
for queue in self.queues:
if queue:
return queue.pop(0 )
raise UnderFlowError('All queues are empty' )
def __str__( self ) -> str:
return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) )
class lowerCamelCase :
def __init__( self ) -> str:
snake_case = []
def _lowerCamelCase ( self, lowercase_ ) -> None:
if len(self.queue ) == 100:
raise OverFlowError('Maximum queue size is 100' )
self.queue.append(lowercase_ )
def _lowerCamelCase ( self ) -> int:
if not self.queue:
raise UnderFlowError('The queue is empty' )
else:
snake_case = min(self.queue )
self.queue.remove(lowercase_ )
return data
def __str__( self ) -> str:
return str(self.queue )
def __magic_name__ ( ) -> Dict:
snake_case = FixedPriorityQueue()
fpq.enqueue(0 , 1_0 )
fpq.enqueue(1 , 7_0 )
fpq.enqueue(0 , 1_0_0 )
fpq.enqueue(2 , 1 )
fpq.enqueue(2 , 5 )
fpq.enqueue(1 , 7 )
fpq.enqueue(2 , 4 )
fpq.enqueue(1 , 6_4 )
fpq.enqueue(0 , 1_2_8 )
print(A )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(A )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
def __magic_name__ ( ) -> Union[str, Any]:
snake_case = ElementPriorityQueue()
epq.enqueue(1_0 )
epq.enqueue(7_0 )
epq.enqueue(1_0_0 )
epq.enqueue(1 )
epq.enqueue(5 )
epq.enqueue(7 )
epq.enqueue(4 )
epq.enqueue(6_4 )
epq.enqueue(1_2_8 )
print(A )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(A )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
if __name__ == "__main__":
fixed_priority_queue()
element_priority_queue()
| 332 |
'''simple docstring'''
from pathlib import Path
import fire
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = Path(A )
snake_case = Path(A )
dest_dir.mkdir(exist_ok=A )
for path in src_dir.iterdir():
snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case = dest_dir.joinpath(path.name )
print(A )
dest_path.open('w' ).write('\n'.join(A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 | 1 |
'''simple docstring'''
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def __magic_name__ ( A=None ) -> Any:
if subparsers is not None:
snake_case = subparsers.add_parser('env' )
else:
snake_case = argparse.ArgumentParser('Accelerate env command' )
parser.add_argument(
'--config_file' , default=A , help='The config file to use for the default values in the launching script.' )
if subparsers is not None:
parser.set_defaults(func=A )
return parser
def __magic_name__ ( A ) -> str:
snake_case = torch.__version__
snake_case = torch.cuda.is_available()
snake_case = is_xpu_available()
snake_case = is_npu_available()
snake_case = 'Not found'
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(A ):
snake_case = load_config_from_file(args.config_file ).to_dict()
snake_case = {
'`Accelerate` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'Numpy version': np.__version__,
'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''',
'PyTorch XPU available': str(A ),
'PyTorch NPU available': str(A ),
'System RAM': F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''',
}
if pt_cuda_available:
snake_case = torch.cuda.get_device_name()
print('\nCopy-and-paste the text below in your GitHub issue\n' )
print('\n'.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' )
snake_case = (
'\n'.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(A , A )
else F'''\t{accelerate_config}'''
)
print(A )
snake_case = accelerate_config
return info
def __magic_name__ ( ) -> int:
snake_case = env_command_parser()
snake_case = parser.parse_args()
env_command(A )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 332 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase_ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __magic_name__ ( A , A ) -> Union[str, Any]:
inspect_dataset(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __magic_name__ ( A , A ) -> int:
inspect_metric(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_config_info(A , config_name=A )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> Any:
with pytest.raises(A ):
get_dataset_config_info(A , config_name=A )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __magic_name__ ( A , A ) -> Dict:
snake_case = get_dataset_config_names(A )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_infos(A )
assert list(infos.keys() ) == expected_configs
snake_case = expected_configs[0]
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> Any:
snake_case = get_dataset_infos(A )
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> int:
with pytest.raises(A ):
get_dataset_split_names(A , config_name=A )
| 332 | 1 |
'''simple docstring'''
from typing import List
import numpy as np
def __magic_name__ ( A ) -> int:
snake_case = {key: len(A ) for key, value in gen_kwargs.items() if isinstance(A , A )}
if len(set(lists_lengths.values() ) ) > 1:
raise RuntimeError(
(
'Sharding is ambiguous for this dataset: '
+ 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n'
+ '\n'.join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() )
+ '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, '
+ 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.'
) )
snake_case = max(lists_lengths.values() , default=0 )
return max(1 , A )
def __magic_name__ ( A , A ) -> List[range]:
snake_case = []
for group_idx in range(A ):
snake_case = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
snake_case = shards_indices_per_group[-1].stop if shards_indices_per_group else 0
snake_case = range(A , start + num_shards_to_add )
shards_indices_per_group.append(A )
return shards_indices_per_group
def __magic_name__ ( A , A ) -> List[dict]:
snake_case = _number_of_shards_in_gen_kwargs(A )
if num_shards == 1:
return [dict(A )]
else:
snake_case = _distribute_shards(num_shards=A , max_num_jobs=A )
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(A , A )
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(A ) )
]
def __magic_name__ ( A ) -> dict:
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key] , A )
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def __magic_name__ ( A , A ) -> dict:
snake_case = {len(A ) for value in gen_kwargs.values() if isinstance(A , A )}
snake_case = {}
for size in list_sizes:
snake_case = list(range(A ) )
rng.shuffle(indices_per_size[size] )
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
snake_case = dict(A )
for key, value in shuffled_kwargs.items():
if isinstance(A , A ):
snake_case = [value[i] for i in indices_per_size[len(A )]]
return shuffled_kwargs
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 | 1 |
'''simple docstring'''
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowerCAmelCase_ = logging.get_logger(__name__)
def __magic_name__ ( A , A , A , A ) -> Tuple[int, int]:
def constraint_to_multiple_of(A , A , A=0 , A=None ):
snake_case = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
snake_case = math.floor(val / multiple ) * multiple
if x < min_val:
snake_case = math.ceil(val / multiple ) * multiple
return x
snake_case = (output_size, output_size) if isinstance(A , A ) else output_size
snake_case , snake_case = get_image_size(A )
snake_case , snake_case = output_size
# determine new height and width
snake_case = output_height / input_height
snake_case = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
snake_case = scale_width
else:
# fit height
snake_case = scale_height
snake_case = constraint_to_multiple_of(scale_height * input_height , multiple=A )
snake_case = constraint_to_multiple_of(scale_width * input_width , multiple=A )
return (new_height, new_width)
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ['''pixel_values''']
def __init__( self, lowercase_ = True, lowercase_ = None, lowercase_ = PILImageResampling.BILINEAR, lowercase_ = False, lowercase_ = 1, lowercase_ = True, lowercase_ = 1 / 255, lowercase_ = True, lowercase_ = None, lowercase_ = None, **lowercase_, ) -> None:
super().__init__(**lowercase_ )
snake_case = size if size is not None else {'height': 384, 'width': 384}
snake_case = get_size_dict(lowercase_ )
snake_case = do_resize
snake_case = size
snake_case = keep_aspect_ratio
snake_case = ensure_multiple_of
snake_case = resample
snake_case = do_rescale
snake_case = rescale_factor
snake_case = do_normalize
snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = False, lowercase_ = 1, lowercase_ = PILImageResampling.BICUBIC, lowercase_ = None, **lowercase_, ) -> np.ndarray:
snake_case = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
snake_case = get_resize_output_image_size(
lowercase_, output_size=(size['height'], size['width']), keep_aspect_ratio=lowercase_, multiple=lowercase_, )
return resize(lowercase_, size=lowercase_, resample=lowercase_, data_format=lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> List[str]:
return rescale(lowercase_, scale=lowercase_, data_format=lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> np.ndarray:
return normalize(lowercase_, mean=lowercase_, std=lowercase_, data_format=lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = ChannelDimension.FIRST, **lowercase_, ) -> PIL.Image.Image:
snake_case = do_resize if do_resize is not None else self.do_resize
snake_case = size if size is not None else self.size
snake_case = get_size_dict(lowercase_ )
snake_case = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
snake_case = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
snake_case = resample if resample is not None else self.resample
snake_case = do_rescale if do_rescale is not None else self.do_rescale
snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case = do_normalize if do_normalize is not None else self.do_normalize
snake_case = image_mean if image_mean is not None else self.image_mean
snake_case = image_std if image_std is not None else self.image_std
snake_case = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
snake_case = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
snake_case = [self.resize(image=lowercase_, size=lowercase_, resample=lowercase_ ) for image in images]
if do_rescale:
snake_case = [self.rescale(image=lowercase_, scale=lowercase_ ) for image in images]
if do_normalize:
snake_case = [self.normalize(image=lowercase_, mean=lowercase_, std=lowercase_ ) for image in images]
snake_case = [to_channel_dimension_format(lowercase_, lowercase_ ) for image in images]
snake_case = {'pixel_values': images}
return BatchFeature(data=lowercase_, tensor_type=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple:
snake_case = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(lowercase_ ):
snake_case = target_sizes.numpy()
snake_case = []
for idx in range(len(lowercase_ ) ):
snake_case = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode='bilinear', align_corners=lowercase_ )
snake_case = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase_ )
else:
snake_case = logits.argmax(dim=1 )
snake_case = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 332 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase_ = False
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 12
@property
def _lowerCamelCase ( self ) -> Dict:
return 12
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, )
return model
@property
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = 12
snake_case = 12
snake_case = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
snake_case = TransformeraDModel(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipeline(
'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', )
snake_case = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 | 1 |
'''simple docstring'''
from functools import reduce
lowerCAmelCase_ = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def __magic_name__ ( A = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda A , A : str(int(A ) * int(A ) ) , n[i : i + 1_3] ) )
for i in range(len(A ) - 1_2 ) )
if __name__ == "__main__":
print(f"{solution() = }")
| 332 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''note_seq''']
def __init__( self, *lowercase_, **lowercase_ ) -> str:
requires_backends(self, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]:
requires_backends(cls, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]:
requires_backends(cls, ['note_seq'] )
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A , A ) -> float:
if discount_rate < 0:
raise ValueError('Discount rate cannot be negative' )
if not cash_flows:
raise ValueError('Cash flows list cannot be empty' )
snake_case = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(A ) )
return round(A , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 | 1 |
'''simple docstring'''
from datetime import datetime
import requests
def __magic_name__ ( A ) -> bytes:
snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url='
snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src']
return requests.get(A ).content
if __name__ == "__main__":
lowerCAmelCase_ = input("Enter Video/IGTV url: ").strip()
lowerCAmelCase_ = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4"
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(f"Done. Video saved to disk as {file_name}.")
| 332 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase_ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase_ = dataset.iloc[:, 1:2].values
lowerCAmelCase_ = dataset.iloc[:, 2].values
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase_ = PolynomialFeatures(degree=4)
lowerCAmelCase_ = poly_reg.fit_transform(X)
lowerCAmelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def __magic_name__ ( ) -> Any:
plt.scatter(A , A , color='red' )
plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ''''''
snake_case_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
snake_case_ = None # compression type in fsspec. ex: "gzip"
snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str:
super().__init__(self, **lowercase_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
snake_case = fsspec.open(
lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed.
}, **(target_options or {}), )
snake_case = os.path.basename(self.file.path.split('::' )[0] )
snake_case = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
snake_case = None
@classmethod
def _lowerCamelCase ( cls, lowercase_ ) -> Any:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowercase_ ).lstrip('/' )
def _lowerCamelCase ( self ) -> Optional[Any]:
if self.dir_cache is None:
snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
snake_case = {f['name']: f}
def _lowerCamelCase ( self, lowercase_ ) -> str:
return self.file.open().read()
def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any:
snake_case = self._strip_protocol(lowercase_ )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''bz2'''
snake_case_ = '''bz2'''
snake_case_ = '''.bz2'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''gzip'''
snake_case_ = '''gzip'''
snake_case_ = '''.gz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''lz4'''
snake_case_ = '''lz4'''
snake_case_ = '''.lz4'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xz'''
snake_case_ = '''xz'''
snake_case_ = '''.xz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''zstd'''
snake_case_ = '''zstd'''
snake_case_ = '''.zst'''
def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]:
super().__init__(
fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
snake_case = self.file.__enter__
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[Any]:
snake_case = file_
def __enter__( self ) -> Dict:
self._file.__enter__()
return self
def __exit__( self, *lowercase_, **lowercase_ ) -> Dict:
self._file.__exit__(*lowercase_, **lowercase_ )
def __iter__( self ) -> List[str]:
return iter(self._file )
def _lowerCamelCase ( self ) -> List[str]:
return next(self._file )
def __getattr__( self, lowercase_ ) -> List[Any]:
return getattr(self._file, lowercase_ )
def fixed_enter(*lowercase_, **lowercase_ ):
return WrappedFile(_enter(*lowercase_, **lowercase_ ) )
snake_case = fixed_enter
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> int:
if not nums:
return 0
snake_case = nums[0]
snake_case = 0
for num in nums[1:]:
snake_case , snake_case = (
max_excluding + num,
max(A , A ),
)
return max(A , A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A , A ) -> int | float:
if len(A ) == 0:
raise ValueError('find_max() arg is an empty sequence' )
if (
left >= len(A )
or left < -len(A )
or right >= len(A )
or right < -len(A )
):
raise IndexError('list index out of range' )
if left == right:
return nums[left]
snake_case = (left + right) >> 1 # the middle
snake_case = find_max(A , A , A ) # find max in range[left, mid]
snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 | 1 |
'''simple docstring'''
import argparse
import json
import subprocess
def __magic_name__ ( A , A ) -> Optional[Any]:
snake_case = []
snake_case = (
F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"'''
' https://api.github.com/repos/huggingface/transformers/actions/runners'
)
snake_case = subprocess.run(A , shell=A , stdout=subprocess.PIPE )
snake_case = output.stdout.decode('utf-8' )
snake_case = json.loads(A )
snake_case = status['runners']
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(A )
# save the result so we can report them on Slack
with open('offline_runners.txt' , 'w' ) as fp:
fp.write(json.dumps(A ) )
if len(A ) > 0:
snake_case = '\n'.join([x['name'] for x in offline_runners] )
raise ValueError(F'''The following runners are offline:\n{failed}''' )
if __name__ == "__main__":
def __magic_name__ ( A ) -> int:
return values.split(',' )
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--target_runners",
default=None,
type=list_str,
required=True,
help="Comma-separated list of runners to check status.",
)
parser.add_argument(
"--token", default=None, type=str, required=True, help="A token that has actions:read permission."
)
lowerCAmelCase_ = parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 332 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
@register_to_config
def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str:
super().__init__()
# pass init params to Encoder
snake_case = Encoder(
in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, )
snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ )
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
# pass init params to Decoder
snake_case = Decoder(
in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput:
snake_case = self.encoder(lowercase_ )
snake_case = self.quant_conv(lowercase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_ )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
snake_case , snake_case , snake_case = self.quantize(lowercase_ )
else:
snake_case = h
snake_case = self.post_quant_conv(lowercase_ )
snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
snake_case = sample
snake_case = self.encode(lowercase_ ).latents
snake_case = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 332 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class lowerCamelCase ( unittest.TestCase ):
def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=4, ) -> Dict:
snake_case = parent
snake_case = batch_size
snake_case = seq_length
snake_case = is_training
snake_case = use_attention_mask
snake_case = use_token_type_ids
snake_case = use_labels
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = intermediate_size
snake_case = hidden_act
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = type_sequence_label_size
snake_case = initializer_range
snake_case = num_choices
def _lowerCamelCase ( self ) -> int:
snake_case = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
snake_case = None
if self.use_attention_mask:
snake_case = random_attention_mask([self.batch_size, self.seq_length] )
snake_case = None
if self.use_token_type_ids:
snake_case = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
snake_case = AlbertConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowercase_, initializer_range=self.initializer_range, )
return config, input_ids, token_type_ids, attention_mask
def _lowerCamelCase ( self ) -> str:
snake_case = self.prepare_config_and_inputs()
snake_case , snake_case , snake_case , snake_case = config_and_inputs
snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
snake_case_ = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowerCamelCase ( self ) -> Tuple:
snake_case = FlaxAlbertModelTester(self )
@slow
def _lowerCamelCase ( self ) -> Union[str, Any]:
for model_class_name in self.all_model_classes:
snake_case = model_class_name.from_pretrained('albert-base-v2' )
snake_case = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowercase_ )
@require_flax
class lowerCamelCase ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self ) -> List[str]:
snake_case = FlaxAlbertModel.from_pretrained('albert-base-v2' )
snake_case = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
snake_case = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
snake_case = model(lowercase_, attention_mask=lowercase_ )[0]
snake_case = (1, 11, 768)
self.assertEqual(output.shape, lowercase_ )
snake_case = np.array(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], lowercase_, atol=1E-4 ) )
| 332 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0]
snake_case = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
snake_case = 0
# the area corresponding to the grid that gives the product closest to target
snake_case = 0
# an estimate of b, using the quadratic formula
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the triangle number corresponding to b_floor
snake_case = 42
# the triangle number corresponding to b_ceil
snake_case = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
snake_case = floor(A )
snake_case = ceil(A )
snake_case = triangle_numbers[b_floor]
snake_case = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_first_guess * triangle_a
snake_case = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_second_guess * triangle_a
snake_case = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"{solution() = }")
| 332 | 1 |
'''simple docstring'''
import heapq as hq
import math
from collections.abc import Iterator
class lowerCamelCase :
def __init__( self, lowercase_ ) -> Any:
snake_case = str(id_ )
snake_case = None
snake_case = None
snake_case = []
snake_case = {} # {vertex:distance}
def __lt__( self, lowercase_ ) -> Optional[int]:
return self.key < other.key
def __repr__( self ) -> str:
return self.id
def _lowerCamelCase ( self, lowercase_ ) -> str:
self.neighbors.append(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Union[str, Any]:
snake_case = weight
def __magic_name__ ( A , A , A , A ) -> List[Any]:
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , A )
graph[b - 1].add_edge(graph[a - 1] , A )
def __magic_name__ ( A , A ) -> list:
snake_case = []
for u in graph:
snake_case = math.inf
snake_case = None
snake_case = 0
snake_case = graph[:]
while q:
snake_case = min(A )
q.remove(A )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
snake_case = u
snake_case = u.edges[v.id]
for i in range(1 , len(A ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def __magic_name__ ( A , A ) -> Iterator[tuple]:
for u in graph:
snake_case = math.inf
snake_case = None
snake_case = 0
snake_case = list(A )
hq.heapify(A )
while h:
snake_case = hq.heappop(A )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
snake_case = u
snake_case = u.edges[v.id]
hq.heapify(A )
for i in range(1 , len(A ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def __magic_name__ ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 332 | 1 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(__lowerCAmelCase )
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, **lowercase_ ) -> List[str]:
super().__init__(**lowercase_ )
requires_backends(self, 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self, lowercase_, **lowercase_ ) -> Union[str, Any]:
return super().__call__(lowercase_, **lowercase_ )
def _lowerCamelCase ( self, **lowercase_ ) -> Union[str, Any]:
snake_case = {}
if "candidate_labels" in kwargs:
snake_case = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
snake_case = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def _lowerCamelCase ( self, lowercase_, lowercase_=None, lowercase_="This is a photo of {}." ) -> Optional[int]:
snake_case = load_image(lowercase_ )
snake_case = self.image_processor(images=[image], return_tensors=self.framework )
snake_case = candidate_labels
snake_case = [hypothesis_template.format(lowercase_ ) for x in candidate_labels]
snake_case = self.tokenizer(lowercase_, return_tensors=self.framework, padding=lowercase_ )
snake_case = [text_inputs]
return inputs
def _lowerCamelCase ( self, lowercase_ ) -> Optional[int]:
snake_case = model_inputs.pop('candidate_labels' )
snake_case = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0], lowercase_ ):
snake_case = text_inputs[0]
else:
# Batching case.
snake_case = text_inputs[0][0]
snake_case = self.model(**lowercase_, **lowercase_ )
snake_case = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def _lowerCamelCase ( self, lowercase_ ) -> int:
snake_case = model_outputs.pop('candidate_labels' )
snake_case = model_outputs['logits'][0]
if self.framework == "pt":
snake_case = logits.softmax(dim=-1 ).squeeze(-1 )
snake_case = probs.tolist()
if not isinstance(lowercase_, lowercase_ ):
snake_case = [scores]
elif self.framework == "tf":
snake_case = stable_softmax(lowercase_, axis=-1 )
snake_case = probs.numpy().tolist()
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
snake_case = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(lowercase_, lowercase_ ), key=lambda lowercase_ : -x[0] )
]
return result
| 332 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
snake_case_ = field(
default=64 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
snake_case_ = field(
default=30 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
snake_case_ = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''train'''
snake_case_ = '''dev'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int:
snake_case = args
snake_case = is_language_sensitive
snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowercase_, lowercase_ ):
try:
snake_case = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
snake_case = mode
# Load data features from cache or dataset file
snake_case = 'v2' if args.version_2_with_negative else 'v1'
snake_case = os.path.join(
cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
snake_case = time.time()
snake_case = torch.load(lowercase_ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
snake_case = self.old_features['features']
snake_case = self.old_features.get('dataset', lowercase_ )
snake_case = self.old_features.get('examples', lowercase_ )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
' future run' )
else:
if mode == Split.dev:
snake_case = self.processor.get_dev_examples(args.data_dir )
else:
snake_case = self.processor.get_train_examples(args.data_dir )
snake_case , snake_case = squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, )
snake_case = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> Tuple:
return len(self.features )
def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
snake_case = self.features[i]
snake_case = torch.tensor(feature.input_ids, dtype=torch.long )
snake_case = torch.tensor(feature.attention_mask, dtype=torch.long )
snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long )
snake_case = torch.tensor(feature.cls_index, dtype=torch.long )
snake_case = torch.tensor(feature.p_mask, dtype=torch.float )
snake_case = torch.tensor(feature.is_impossible, dtype=torch.float )
snake_case = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
snake_case = torch.tensor(feature.start_position, dtype=torch.long )
snake_case = torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 332 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use VideoMAEImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def __magic_name__ ( A , A , A ) -> Any:
# Initialise PyTorch model
snake_case = BertConfig.from_json_file(A )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = BertForPreTraining(A )
# Load weights from tf checkpoint
load_tf_weights_in_bert(A , A , A )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 332 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ['''input_features''', '''attention_mask''']
def __init__( self, lowercase_=80, lowercase_=16000, lowercase_=80, lowercase_=0.0, lowercase_=True, lowercase_=True, lowercase_=True, **lowercase_, ) -> Optional[Any]:
super().__init__(feature_size=lowercase_, sampling_rate=lowercase_, padding_value=lowercase_, **lowercase_ )
snake_case = num_mel_bins
snake_case = do_ceptral_normalize
snake_case = normalize_means
snake_case = normalize_vars
snake_case = True
def _lowerCamelCase ( self, lowercase_, ) -> np.ndarray:
snake_case = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
snake_case = torch.from_numpy(lowercase_ ).unsqueeze(0 )
snake_case = ta_kaldi.fbank(lowercase_, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def _lowerCamelCase ( lowercase_, lowercase_, lowercase_ = True, lowercase_ = True, lowercase_ = 0.0, ) -> np.ndarray:
# make sure we normalize float32 arrays
if normalize_means:
snake_case = x[:input_length].mean(axis=0 )
snake_case = np.subtract(lowercase_, lowercase_ )
if normalize_vars:
snake_case = x[:input_length].std(axis=0 )
snake_case = np.divide(lowercase_, lowercase_ )
if input_length < x.shape[0]:
snake_case = padding_value
# make sure array is in float32
snake_case = x.astype(np.floataa )
return x
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[np.ndarray]:
snake_case = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(lowercase_, lowercase_, self.normalize_means, self.normalize_vars, self.padding_value )
for x, n in zip(lowercase_, lowercase_ )
]
def __call__( self, lowercase_, lowercase_ = False, lowercase_ = None, lowercase_ = False, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, **lowercase_, ) -> BatchFeature:
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
snake_case = isinstance(lowercase_, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
snake_case = is_batched_numpy or (
isinstance(lowercase_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
snake_case = [np.asarray(lowercase_, dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowercase_, np.ndarray ):
snake_case = np.asarray(lowercase_, dtype=np.floataa )
elif isinstance(lowercase_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
snake_case = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
snake_case = [raw_speech]
# extract fbank features
snake_case = [self._extract_fbank_features(lowercase_ ) for waveform in raw_speech]
# convert into correct format for padding
snake_case = BatchFeature({'input_features': features} )
snake_case = self.pad(
lowercase_, padding=lowercase_, max_length=lowercase_, truncation=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, **lowercase_, )
# make sure list is in array format
snake_case = padded_inputs.get('input_features' )
if isinstance(input_features[0], lowercase_ ):
snake_case = [np.asarray(lowercase_, dtype=np.floataa ) for feature in input_features]
snake_case = padded_inputs.get('attention_mask' )
if attention_mask is not None:
snake_case = [np.asarray(lowercase_, dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
snake_case = (
np.array(lowercase_, dtype=np.intaa )
if self._get_padding_strategies(lowercase_, max_length=lowercase_ ) is not PaddingStrategy.DO_NOT_PAD
else None
)
snake_case = self.normalize(
padded_inputs['input_features'], attention_mask=lowercase_ )
if return_tensors is not None:
snake_case = padded_inputs.convert_to_tensors(lowercase_ )
return padded_inputs
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> list:
if len(A ) == 0:
return []
snake_case , snake_case = min(A ), max(A )
snake_case = int(max_value - min_value ) + 1
snake_case = [[] for _ in range(A )]
for i in my_list:
buckets[int(i - min_value )].append(A )
return [v for bucket in buckets for v in sorted(A )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 332 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = tempfile.mkdtemp()
snake_case = BlipImageProcessor()
snake_case = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' )
snake_case = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' )
snake_case = InstructBlipProcessor(lowercase_, lowercase_, lowercase_ )
processor.save_pretrained(self.tmpdirname )
def _lowerCamelCase ( self, **lowercase_ ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname, **lowercase_ ).tokenizer
def _lowerCamelCase ( self, **lowercase_ ) -> int:
return AutoProcessor.from_pretrained(self.tmpdirname, **lowercase_ ).image_processor
def _lowerCamelCase ( self, **lowercase_ ) -> str:
return AutoProcessor.from_pretrained(self.tmpdirname, **lowercase_ ).qformer_tokenizer
def _lowerCamelCase ( self ) -> Optional[int]:
shutil.rmtree(self.tmpdirname )
def _lowerCamelCase ( self ) -> Tuple:
snake_case = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )]
snake_case = [Image.fromarray(np.moveaxis(lowercase_, 0, -1 ) ) for x in image_inputs]
return image_inputs
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = InstructBlipProcessor(
tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor(), qformer_tokenizer=self.get_qformer_tokenizer(), )
processor.save_pretrained(self.tmpdirname )
snake_case = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' )
snake_case = self.get_image_processor(do_normalize=lowercase_, padding_value=1.0 )
snake_case = InstructBlipProcessor.from_pretrained(
self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowercase_, padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer, lowercase_ )
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor, lowercase_ )
self.assertIsInstance(processor.qformer_tokenizer, lowercase_ )
def _lowerCamelCase ( self ) -> Any:
snake_case = self.get_image_processor()
snake_case = self.get_tokenizer()
snake_case = self.get_qformer_tokenizer()
snake_case = InstructBlipProcessor(
tokenizer=lowercase_, image_processor=lowercase_, qformer_tokenizer=lowercase_ )
snake_case = self.prepare_image_inputs()
snake_case = image_processor(lowercase_, return_tensors='np' )
snake_case = processor(images=lowercase_, return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = self.get_image_processor()
snake_case = self.get_tokenizer()
snake_case = self.get_qformer_tokenizer()
snake_case = InstructBlipProcessor(
tokenizer=lowercase_, image_processor=lowercase_, qformer_tokenizer=lowercase_ )
snake_case = 'lower newer'
snake_case = processor(text=lowercase_ )
snake_case = tokenizer(lowercase_, return_token_type_ids=lowercase_ )
snake_case = qformer_tokenizer(lowercase_, return_token_type_ids=lowercase_ )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key], encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key], encoded_processor['qformer_' + key] )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = self.get_image_processor()
snake_case = self.get_tokenizer()
snake_case = self.get_qformer_tokenizer()
snake_case = InstructBlipProcessor(
tokenizer=lowercase_, image_processor=lowercase_, qformer_tokenizer=lowercase_ )
snake_case = 'lower newer'
snake_case = self.prepare_image_inputs()
snake_case = processor(text=lowercase_, images=lowercase_ )
self.assertListEqual(
list(inputs.keys() ), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], )
# test if it raises when no input is passed
with pytest.raises(lowercase_ ):
processor()
def _lowerCamelCase ( self ) -> Any:
snake_case = self.get_image_processor()
snake_case = self.get_tokenizer()
snake_case = self.get_qformer_tokenizer()
snake_case = InstructBlipProcessor(
tokenizer=lowercase_, image_processor=lowercase_, qformer_tokenizer=lowercase_ )
snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
snake_case = processor.batch_decode(lowercase_ )
snake_case = tokenizer.batch_decode(lowercase_ )
self.assertListEqual(lowercase_, lowercase_ )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = self.get_image_processor()
snake_case = self.get_tokenizer()
snake_case = self.get_qformer_tokenizer()
snake_case = InstructBlipProcessor(
tokenizer=lowercase_, image_processor=lowercase_, qformer_tokenizer=lowercase_ )
snake_case = 'lower newer'
snake_case = self.prepare_image_inputs()
snake_case = processor(text=lowercase_, images=lowercase_ )
self.assertListEqual(
list(inputs.keys() ), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], )
| 332 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 332 | 1 |
'''simple docstring'''
from math import pi, sqrt
def __magic_name__ ( A ) -> float:
if num <= 0:
raise ValueError('math domain error' )
if num > 171.5:
raise OverflowError('math range error' )
elif num - int(A ) not in (0, 0.5):
raise NotImplementedError('num must be an integer or a half-integer' )
elif num == 0.5:
return sqrt(A )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def __magic_name__ ( ) -> None:
assert gamma(0.5 ) == sqrt(A )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
lowerCAmelCase_ = 1.0
while num:
lowerCAmelCase_ = float(input("Gamma of: "))
print(f"gamma({num}) = {gamma(num)}")
print("\nEnter 0 to exit...")
| 332 |
'''simple docstring'''
import pytest
lowerCAmelCase_ = "__dummy_dataset1__"
lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def __magic_name__ ( ) -> List[Any]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __magic_name__ ( ) -> Union[str, Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = dataset_loading_script_name
snake_case = tmp_path / 'datasets' / script_name
script_dir.mkdir(parents=A )
snake_case = script_dir / F'''{script_name}.py'''
with open(A , 'w' ) as f:
f.write(A )
return str(A )
| 332 | 1 |
'''simple docstring'''
from math import pi, sqrt, tan
def __magic_name__ ( A ) -> float:
if side_length < 0:
raise ValueError('surface_area_cube() only accepts non-negative values' )
return 6 * side_length**2
def __magic_name__ ( A , A , A ) -> float:
if length < 0 or breadth < 0 or height < 0:
raise ValueError('surface_area_cuboid() only accepts non-negative values' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def __magic_name__ ( A ) -> float:
if radius < 0:
raise ValueError('surface_area_sphere() only accepts non-negative values' )
return 4 * pi * radius**2
def __magic_name__ ( A ) -> float:
if radius < 0:
raise ValueError('surface_area_hemisphere() only accepts non-negative values' )
return 3 * pi * radius**2
def __magic_name__ ( A , A ) -> float:
if radius < 0 or height < 0:
raise ValueError('surface_area_cone() only accepts non-negative values' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def __magic_name__ ( A , A , A ) -> float:
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'surface_area_conical_frustum() only accepts non-negative values' )
snake_case = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def __magic_name__ ( A , A ) -> float:
if radius < 0 or height < 0:
raise ValueError('surface_area_cylinder() only accepts non-negative values' )
return 2 * pi * radius * (height + radius)
def __magic_name__ ( A , A ) -> float:
if torus_radius < 0 or tube_radius < 0:
raise ValueError('surface_area_torus() only accepts non-negative values' )
if torus_radius < tube_radius:
raise ValueError(
'surface_area_torus() does not support spindle or self intersecting tori' )
return 4 * pow(A , 2 ) * torus_radius * tube_radius
def __magic_name__ ( A , A ) -> float:
if length < 0 or width < 0:
raise ValueError('area_rectangle() only accepts non-negative values' )
return length * width
def __magic_name__ ( A ) -> float:
if side_length < 0:
raise ValueError('area_square() only accepts non-negative values' )
return side_length**2
def __magic_name__ ( A , A ) -> float:
if base < 0 or height < 0:
raise ValueError('area_triangle() only accepts non-negative values' )
return (base * height) / 2
def __magic_name__ ( A , A , A ) -> float:
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('area_triangle_three_sides() only accepts non-negative values' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('Given three sides do not form a triangle' )
snake_case = (sidea + sidea + sidea) / 2
snake_case = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def __magic_name__ ( A , A ) -> float:
if base < 0 or height < 0:
raise ValueError('area_parallelogram() only accepts non-negative values' )
return base * height
def __magic_name__ ( A , A , A ) -> float:
if basea < 0 or basea < 0 or height < 0:
raise ValueError('area_trapezium() only accepts non-negative values' )
return 1 / 2 * (basea + basea) * height
def __magic_name__ ( A ) -> float:
if radius < 0:
raise ValueError('area_circle() only accepts non-negative values' )
return pi * radius**2
def __magic_name__ ( A , A ) -> float:
if radius_x < 0 or radius_y < 0:
raise ValueError('area_ellipse() only accepts non-negative values' )
return pi * radius_x * radius_y
def __magic_name__ ( A , A ) -> float:
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('area_rhombus() only accepts non-negative values' )
return 1 / 2 * diagonal_a * diagonal_a
def __magic_name__ ( A , A ) -> float:
if not isinstance(A , A ) or sides < 3:
raise ValueError(
'area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides' )
elif length < 0:
raise ValueError(
'area_reg_polygon() only accepts non-negative values as \
length of a side' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print("[DEMO] Areas of various geometric shapes: \n")
print(f"Rectangle: {area_rectangle(1_0, 2_0) = }")
print(f"Square: {area_square(1_0) = }")
print(f"Triangle: {area_triangle(1_0, 1_0) = }")
print(f"Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }")
print(f"Parallelogram: {area_parallelogram(1_0, 2_0) = }")
print(f"Rhombus: {area_rhombus(1_0, 2_0) = }")
print(f"Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }")
print(f"Circle: {area_circle(2_0) = }")
print(f"Ellipse: {area_ellipse(1_0, 2_0) = }")
print("\nSurface Areas of various geometric shapes: \n")
print(f"Cube: {surface_area_cube(2_0) = }")
print(f"Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }")
print(f"Sphere: {surface_area_sphere(2_0) = }")
print(f"Hemisphere: {surface_area_hemisphere(2_0) = }")
print(f"Cone: {surface_area_cone(1_0, 2_0) = }")
print(f"Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }")
print(f"Cylinder: {surface_area_cylinder(1_0, 2_0) = }")
print(f"Torus: {surface_area_torus(2_0, 1_0) = }")
print(f"Equilateral Triangle: {area_reg_polygon(3, 1_0) = }")
print(f"Square: {area_reg_polygon(4, 1_0) = }")
print(f"Reqular Pentagon: {area_reg_polygon(5, 1_0) = }")
| 332 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCAmelCase_ = Lock()
def __magic_name__ ( A , A , A , A , A , A , A ) -> Any:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 1_0 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(A )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
snake_case = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
snake_case = min(A , A )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(A )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
snake_case = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
snake_case = max(A , A )
# after all swaps are performed, send the values back to main
result_pipe[1].send(A )
def __magic_name__ ( A ) -> str:
snake_case = []
snake_case = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
snake_case = temp_rs
snake_case = temp_rr
for i in range(1 , len(A ) - 1 ):
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
snake_case = temp_rs
snake_case = temp_rr
process_array_.append(
Process(
target=A , args=(
len(A ) - 1,
arr[len(A ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(A ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(A ) ):
snake_case = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __magic_name__ ( ) -> Tuple:
snake_case = list(range(1_0 , 0 , -1 ) )
print('Initial List' )
print(*A )
snake_case = odd_even_transposition(A )
print('Sorted List\n' )
print(*A )
if __name__ == "__main__":
main()
| 332 | 1 |
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
lowerCAmelCase_ = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def __magic_name__ ( ) -> Union[str, Any]:
snake_case = Github(os.environ['GITHUB_TOKEN'] )
snake_case = g.get_repo('huggingface/diffusers' )
snake_case = repo.get_issues(state='open' )
for issue in open_issues:
snake_case = sorted(issue.get_comments() , key=lambda A : i.created_at , reverse=A )
snake_case = comments[0] if len(A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='closed' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='open' )
issue.remove_from_labels('stale' )
elif (
(dt.utcnow() - issue.updated_at).days > 2_3
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
issue.add_to_labels('stale' )
if __name__ == "__main__":
main()
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> None:
create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] )
def __magic_name__ ( A , A , A , A , ) -> None:
if index == len(A ):
print(A )
return
for i in range(len(A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
snake_case = True
create_state_space_tree(A , A , index + 1 , A )
current_sequence.pop()
snake_case = False
lowerCAmelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A ) -> Optional[Any]:
snake_case = len(A )
while cur > 1:
# Find the maximum number in arr
snake_case = arr.index(max(arr[0:cur] ) )
# Reverse from 0 to mi
snake_case = arr[mi::-1] + arr[mi + 1 : len(A )]
# Reverse whole list
snake_case = arr[cur - 1 :: -1] + arr[cur : len(A )]
cur -= 1
return arr
if __name__ == "__main__":
lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip()
lowerCAmelCase_ = [int(item) for item in user_input.split(",")]
print(pancake_sort(unsorted))
| 332 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''roberta'''
def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 | 1 |
'''simple docstring'''
import heapq
import sys
import numpy as np
lowerCAmelCase_ = tuple[int, int]
class lowerCamelCase :
def __init__( self ) -> Any:
snake_case = []
snake_case = set()
def _lowerCamelCase ( self ) -> Optional[Any]:
if not self.empty():
return self.elements[0][0]
else:
return float('inf' )
def _lowerCamelCase ( self ) -> Any:
return len(self.elements ) == 0
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Union[str, Any]:
if item not in self.set:
heapq.heappush(self.elements, (priority, item) )
self.set.add(lowercase_ )
else:
# update
# print("update", item)
snake_case = []
((snake_case) , (snake_case)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((snake_case) , (snake_case)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements, (pro, xxx) )
def _lowerCamelCase ( self, lowercase_ ) -> Dict:
if item in self.set:
self.set.remove(lowercase_ )
snake_case = []
((snake_case) , (snake_case)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((snake_case) , (snake_case)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements, (prito, yyy) )
def _lowerCamelCase ( self ) -> Tuple:
return self.elements[0][1]
def _lowerCamelCase ( self ) -> Dict:
((snake_case) , (snake_case)) = heapq.heappop(self.elements )
self.set.remove(lowercase_ )
return (priority, item)
def __magic_name__ ( A , A ) -> Optional[Any]:
# euclidean distance
snake_case = np.array(A )
snake_case = np.array(A )
return np.linalg.norm(a - b )
def __magic_name__ ( A , A ) -> str:
# integer division by time variable
return consistent_heuristic(A , A ) // t
def __magic_name__ ( A , A ) -> List[Any]:
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def __magic_name__ ( A , A , A , A ) -> Dict:
snake_case = g_function[start] + Wa * heuristics[i](A , A )
return ans
def __magic_name__ ( A , A , A ) -> Optional[Any]:
snake_case = np.chararray((n, n) )
for i in range(A ):
for j in range(A ):
snake_case = '*'
for i in range(A ):
for j in range(A ):
if (j, (n - 1) - i) in blocks:
snake_case = '#'
snake_case = '-'
snake_case = back_pointer[goal]
while x != start:
((snake_case) , (snake_case)) = x
# print(x)
snake_case = '-'
snake_case = back_pointer[x]
snake_case = '-'
for i in range(A ):
for j in range(A ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=' ' )
print('<-- End position' , end=' ' )
else:
print(grid[i][j] , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
print('PATH TAKEN BY THE ALGORITHM IS:-' )
snake_case = back_pointer[goal]
while x != start:
print(A , end=' ' )
snake_case = back_pointer[x]
print(A )
sys.exit()
def __magic_name__ ( A ) -> Dict:
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def __magic_name__ ( A , A , A , A , A , A , A , A , ) -> int:
for itera in range(A ):
open_list[itera].remove_element(A )
# print("s", s)
# print("j", j)
((snake_case) , (snake_case)) = s
snake_case = (x - 1, y)
snake_case = (x + 1, y)
snake_case = (x, y + 1)
snake_case = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(A ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(A )
snake_case = -1
snake_case = float('inf' )
if valid(A ) and g_function[neighbours] > g_function[s] + 1:
snake_case = g_function[s] + 1
snake_case = s
if neighbours not in close_list_anchor:
open_list[0].put(A , key(A , 0 , A , A ) )
if neighbours not in close_list_inad:
for var in range(1 , A ):
if key(A , A , A , A ) <= Wa * key(
A , 0 , A , A ):
open_list[j].put(
A , key(A , A , A , A ) )
def __magic_name__ ( ) -> List[Any]:
snake_case = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
lowerCAmelCase_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
lowerCAmelCase_ = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(1_0, 1),
(1_1, 1),
(1_2, 1),
(1_3, 1),
(1_4, 1),
(1_5, 1),
(1_6, 1),
(1_7, 1),
(1_8, 1),
(1_9, 1),
]
lowerCAmelCase_ = make_common_ground()
lowerCAmelCase_ = blocks_blk
# hyper parameters
lowerCAmelCase_ = 1
lowerCAmelCase_ = 1
lowerCAmelCase_ = 2_0
lowerCAmelCase_ = 3 # one consistent and two other inconsistent
# start and end destination
lowerCAmelCase_ = (0, 0)
lowerCAmelCase_ = (n - 1, n - 1)
lowerCAmelCase_ = 1
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = {start: 0, goal: float('inf' )}
snake_case = {start: -1, goal: -1}
snake_case = []
snake_case = set()
for i in range(A ):
open_list.append(PriorityQueue() )
open_list[i].put(A , key(A , A , A , A ) )
snake_case = []
snake_case = []
while open_list[0].minkey() < float('inf' ):
for i in range(1 , A ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf' ):
do_something(A , A , A )
else:
snake_case , snake_case = open_list[i].top_show()
visited.add(A )
expand_state(
A , A , A , A , A , A , A , A , )
close_list_inad.append(A )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf' ):
do_something(A , A , A )
else:
snake_case = open_list[0].top_show()
visited.add(A )
expand_state(
A , 0 , A , A , A , A , A , A , )
close_list_anchor.append(A )
print('No path found to goal' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(A ):
if (j, i) in blocks:
print('#' , end=' ' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('*' , end=' ' )
else:
print('-' , end=' ' )
else:
print('*' , end=' ' )
if (j, i) == (n - 1, n - 1):
print('<-- End position' , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 332 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_ = {
"allenai/led-base-16384": 1_6_3_8_4,
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = LEDTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int:
super().__init__(
lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) )
snake_case = add_prefix_space
snake_case = pre_tok_class(**lowercase_ )
snake_case = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case = 'post_processor'
snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ )
if tokenizer_component_instance:
snake_case = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case = tuple(state['sep'] )
if "cls" in state:
snake_case = tuple(state['cls'] )
snake_case = False
if state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = add_prefix_space
snake_case = True
if state.get('trim_offsets', lowercase_ ) != trim_offsets:
snake_case = trim_offsets
snake_case = True
if changes_to_apply:
snake_case = getattr(lowercase_, state.pop('type' ) )
snake_case = component_class(**lowercase_ )
setattr(self.backend_tokenizer, lowercase_, lowercase_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value
snake_case = value
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict:
snake_case = super()._pad(
encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, )
# Load from model defaults
if return_attention_mask is None:
snake_case = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ )
if needs_to_be_padded:
snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
snake_case = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A ) -> bool:
snake_case = (1 + 2_4 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def __magic_name__ ( A = 5_0_0_0 ) -> int:
snake_case = [(i * (3 * i - 1)) // 2 for i in range(1 , A )]
for i, pentagonal_i in enumerate(A ):
for j in range(A , len(A ) ):
snake_case = pentagonal_nums[j]
snake_case = pentagonal_i + pentagonal_j
snake_case = pentagonal_j - pentagonal_i
if is_pentagonal(A ) and is_pentagonal(A ):
return b
return -1
if __name__ == "__main__":
print(f"{solution() = }")
| 332 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332 | 1 |
'''simple docstring'''
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
def __magic_name__ ( A ) -> int:
snake_case = R'\w+[.]\d+'
snake_case = re.findall(A , A )
for pat in pats:
snake_case = key.replace(A , '_'.join(pat.split('.' ) ) )
return key
def __magic_name__ ( A , A , A ) -> Any:
snake_case = pt_tuple_key[:-1] + ('scale',)
if (
any('norm' in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
snake_case = pt_tuple_key[:-1] + ('scale',)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
snake_case = pt_tuple_key[:-1] + ('scale',)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
snake_case = pt_tuple_key[:-1] + ('embedding',)
return renamed_pt_tuple_key, pt_tensor
# conv layer
snake_case = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
snake_case = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
snake_case = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight":
snake_case = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
snake_case = pt_tuple_key[:-1] + ('weight',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
snake_case = pt_tuple_key[:-1] + ('bias',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def __magic_name__ ( A , A , A=4_2 ) -> str:
# Step 1: Convert pytorch tensor to numpy
snake_case = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
snake_case = flax_model.init_weights(PRNGKey(A ) )
snake_case = flatten_dict(A )
snake_case = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
snake_case = rename_key(A )
snake_case = tuple(renamed_pt_key.split('.' ) )
# Correctly rename weight parameters
snake_case , snake_case = rename_key_and_reshape_tensor(A , A , A )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# also add unexpected weight so that warning is thrown
snake_case = jnp.asarray(A )
return unflatten_dict(A )
| 332 |
'''simple docstring'''
from pathlib import Path
import fire
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = Path(A )
snake_case = Path(A )
dest_dir.mkdir(exist_ok=A )
for path in src_dir.iterdir():
snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case = dest_dir.joinpath(path.name )
print(A )
dest_path.open('w' ).write('\n'.join(A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["XLNetTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["XLNetTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLNetForMultipleChoice",
"XLNetForQuestionAnswering",
"XLNetForQuestionAnsweringSimple",
"XLNetForSequenceClassification",
"XLNetForTokenClassification",
"XLNetLMHeadModel",
"XLNetModel",
"XLNetPreTrainedModel",
"load_tf_weights_in_xlnet",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLNetForMultipleChoice",
"TFXLNetForQuestionAnsweringSimple",
"TFXLNetForSequenceClassification",
"TFXLNetForTokenClassification",
"TFXLNetLMHeadModel",
"TFXLNetMainLayer",
"TFXLNetModel",
"TFXLNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase_ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __magic_name__ ( A , A ) -> Union[str, Any]:
inspect_dataset(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __magic_name__ ( A , A ) -> int:
inspect_metric(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_config_info(A , config_name=A )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> Any:
with pytest.raises(A ):
get_dataset_config_info(A , config_name=A )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __magic_name__ ( A , A ) -> Dict:
snake_case = get_dataset_config_names(A )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_infos(A )
assert list(infos.keys() ) == expected_configs
snake_case = expected_configs[0]
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> Any:
snake_case = get_dataset_infos(A )
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> int:
with pytest.raises(A ):
get_dataset_split_names(A , config_name=A )
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A = None , A = None , A = False , ) -> tuple[int, float, str]:
snake_case = cipher_alphabet or [chr(A ) for i in range(9_7 , 1_2_3 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
snake_case = {
'a': 0.08_497,
'b': 0.01_492,
'c': 0.02_202,
'd': 0.04_253,
'e': 0.11_162,
'f': 0.02_228,
'g': 0.02_015,
'h': 0.06_094,
'i': 0.07_546,
'j': 0.00_153,
'k': 0.01_292,
'l': 0.04_025,
'm': 0.02_406,
'n': 0.06_749,
'o': 0.07_507,
'p': 0.01_929,
'q': 0.00_095,
'r': 0.07_587,
's': 0.06_327,
't': 0.09_356,
'u': 0.02_758,
'v': 0.00_978,
'w': 0.02_560,
'x': 0.00_150,
'y': 0.01_994,
'z': 0.00_077,
}
else:
# Custom frequencies dictionary
snake_case = frequencies_dict
if not case_sensitive:
snake_case = ciphertext.lower()
# Chi squared statistic values
snake_case = {}
# cycle through all of the shifts
for shift in range(len(A ) ):
snake_case = ''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
snake_case = (alphabet_letters.index(letter.lower() ) - shift) % len(
A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
snake_case = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
snake_case = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
snake_case = decrypted_with_shift.lower().count(A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
snake_case = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
snake_case = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
snake_case = decrypted_with_shift.count(A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
snake_case = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
snake_case = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
snake_case = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(A ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
snake_case = min(
A , key=A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
snake_case
) , (
snake_case
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 | 1 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowerCAmelCase_ = "pt"
elif is_tf_available():
lowerCAmelCase_ = "tf"
else:
lowerCAmelCase_ = "jax"
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
snake_case_ = PerceiverTokenizer
snake_case_ = False
def _lowerCamelCase ( self ) -> Any:
super().setUp()
snake_case = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowerCamelCase ( self ) -> Dict:
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' )
def _lowerCamelCase ( self, **lowercase_ ) -> PerceiverTokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=False, lowercase_=20, lowercase_=5 ) -> Tuple[str, list]:
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
snake_case = []
for i in range(len(lowercase_ ) ):
try:
snake_case = tokenizer.decode([i], clean_up_tokenization_spaces=lowercase_ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
snake_case = list(filter(lambda lowercase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowercase_ ) )
snake_case = list(filter(lambda lowercase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowercase_ ), lowercase_ ) )
if max_length is not None and len(lowercase_ ) > max_length:
snake_case = toks[:max_length]
if min_length is not None and len(lowercase_ ) < min_length and len(lowercase_ ) > 0:
while len(lowercase_ ) < min_length:
snake_case = toks + toks
# toks_str = [t[1] for t in toks]
snake_case = [t[0] for t in toks]
# Ensure consistency
snake_case = tokenizer.decode(lowercase_, clean_up_tokenization_spaces=lowercase_ )
if " " not in output_txt and len(lowercase_ ) > 1:
snake_case = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowercase_ )
+ ' '
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowercase_ )
)
if with_prefix_space:
snake_case = ' ' + output_txt
snake_case = tokenizer.encode(lowercase_, add_special_tokens=lowercase_ )
return output_txt, output_ids
def _lowerCamelCase ( self ) -> List[str]:
snake_case = self.perceiver_tokenizer
snake_case = 'Unicode €.'
snake_case = tokenizer(lowercase_ )
snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['input_ids'], lowercase_ )
# decoding
snake_case = tokenizer.decode(lowercase_ )
self.assertEqual(lowercase_, '[CLS]Unicode €.[SEP]' )
snake_case = tokenizer('e è é ê ë' )
snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['input_ids'], lowercase_ )
# decoding
snake_case = tokenizer.decode(lowercase_ )
self.assertEqual(lowercase_, '[CLS]e è é ê ë[SEP]' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' )
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = self.perceiver_tokenizer
snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
snake_case = tokenizer(lowercase_, padding=lowercase_, return_tensors=lowercase_ )
self.assertIsInstance(lowercase_, lowercase_ )
if FRAMEWORK != "jax":
snake_case = list(batch.input_ids.numpy()[0] )
else:
snake_case = list(batch.input_ids.tolist()[0] )
self.assertListEqual(lowercase_, lowercase_ )
self.assertEqual((2, 38), batch.input_ids.shape )
self.assertEqual((2, 38), batch.attention_mask.shape )
def _lowerCamelCase ( self ) -> str:
snake_case = self.perceiver_tokenizer
snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
snake_case = tokenizer(lowercase_, padding=lowercase_, return_tensors=lowercase_ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids', lowercase_ )
self.assertIn('attention_mask', lowercase_ )
self.assertNotIn('decoder_input_ids', lowercase_ )
self.assertNotIn('decoder_attention_mask', lowercase_ )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = self.perceiver_tokenizer
snake_case = [
'Summary of the text.',
'Another summary.',
]
snake_case = tokenizer(
text_target=lowercase_, max_length=32, padding='max_length', truncation=lowercase_, return_tensors=lowercase_ )
self.assertEqual(32, targets['input_ids'].shape[1] )
def _lowerCamelCase ( self ) -> str:
# safety check on max_len default value so we are sure the test works
snake_case = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length, 42 )
# Now let's start the test
snake_case = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
snake_case = tempfile.mkdtemp()
snake_case = ' He is very happy, UNwant\u00E9d,running'
snake_case = tokenizer.encode(lowercase_, add_special_tokens=lowercase_ )
tokenizer.save_pretrained(lowercase_ )
snake_case = tokenizer.__class__.from_pretrained(lowercase_ )
snake_case = after_tokenizer.encode(lowercase_, add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_, lowercase_ )
shutil.rmtree(lowercase_ )
snake_case = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
snake_case = tempfile.mkdtemp()
snake_case = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
snake_case = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
snake_case = tokenizer.encode(lowercase_, add_special_tokens=lowercase_ )
tokenizer.save_pretrained(lowercase_ )
snake_case = tokenizer.__class__.from_pretrained(lowercase_ )
snake_case = after_tokenizer.encode(lowercase_, add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_, lowercase_ )
self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length, 42 )
snake_case = tokenizer.__class__.from_pretrained(lowercase_, model_max_length=43 )
self.assertEqual(tokenizer.model_max_length, 43 )
shutil.rmtree(lowercase_ )
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(lowercase_ )
with open(os.path.join(lowercase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file:
snake_case = json.load(lowercase_ )
with open(os.path.join(lowercase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file:
snake_case = json.load(lowercase_ )
snake_case = [F'''<extra_id_{i}>''' for i in range(125 )]
snake_case = added_tokens_extra_ids + [
'an_additional_special_token'
]
snake_case = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(lowercase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile:
json.dump(lowercase_, lowercase_ )
with open(os.path.join(lowercase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile:
json.dump(lowercase_, lowercase_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
snake_case = tokenizer_class.from_pretrained(
lowercase_, )
self.assertIn(
'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowercase_ )]
snake_case = tokenizer_class.from_pretrained(
lowercase_, additional_special_tokens=lowercase_, )
self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), )
def _lowerCamelCase ( self ) -> Any:
snake_case = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ), '�' )
def _lowerCamelCase ( self ) -> str:
pass
def _lowerCamelCase ( self ) -> Optional[Any]:
pass
def _lowerCamelCase ( self ) -> List[Any]:
pass
def _lowerCamelCase ( self ) -> Optional[Any]:
pass
def _lowerCamelCase ( self ) -> Optional[Any]:
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
snake_case = self.get_tokenizers(fast=lowercase_, do_lower_case=lowercase_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
snake_case = tokenizer.convert_tokens_to_string(lowercase_ )
self.assertIsInstance(lowercase_, lowercase_ )
| 332 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase_ = False
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 12
@property
def _lowerCamelCase ( self ) -> Dict:
return 12
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, )
return model
@property
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = 12
snake_case = 12
snake_case = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
snake_case = TransformeraDModel(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipeline(
'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', )
snake_case = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
lowerCAmelCase_ = TypeVar("T")
lowerCAmelCase_ = TypeVar("U")
class lowerCamelCase ( Generic[T, U] ):
def __init__( self, lowercase_, lowercase_ ) -> Tuple:
snake_case = key
snake_case = val
snake_case = None
snake_case = None
def __repr__( self ) -> str:
return (
F'''Node: key: {self.key}, val: {self.val}, '''
F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}'''
)
class lowerCamelCase ( Generic[T, U] ):
def __init__( self ) -> None:
snake_case = DoubleLinkedListNode(lowercase_, lowercase_ )
snake_case = DoubleLinkedListNode(lowercase_, lowercase_ )
snake_case , snake_case = self.rear, self.head
def __repr__( self ) -> str:
snake_case = ['DoubleLinkedList']
snake_case = self.head
while node.next is not None:
rep.append(str(lowercase_ ) )
snake_case = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowercase_ )
def _lowerCamelCase ( self, lowercase_ ) -> None:
snake_case = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
snake_case = node
snake_case = previous
snake_case = node
snake_case = self.rear
def _lowerCamelCase ( self, lowercase_ ) -> DoubleLinkedListNode[T, U] | None:
if node.prev is None or node.next is None:
return None
snake_case = node.next
snake_case = node.prev
snake_case = None
snake_case = None
return node
class lowerCamelCase ( Generic[T, U] ):
snake_case_ = {}
def __init__( self, lowercase_ ) -> Dict:
snake_case = DoubleLinkedList()
snake_case = capacity
snake_case = 0
snake_case = 0
snake_case = 0
snake_case = {}
def __repr__( self ) -> str:
return (
F'''CacheInfo(hits={self.hits}, misses={self.miss}, '''
F'''capacity={self.capacity}, current size={self.num_keys})'''
)
def __contains__( self, lowercase_ ) -> bool:
return key in self.cache
def _lowerCamelCase ( self, lowercase_ ) -> U | None:
# Note: pythonic interface would throw KeyError rather than return None
if key in self.cache:
self.hits += 1
snake_case = self.cache[key]
snake_case = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowercase_ )
return node.val
self.miss += 1
return None
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> None:
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
snake_case = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowercase_ ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
snake_case = DoubleLinkedListNode(lowercase_, lowercase_ )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
snake_case = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
snake_case = value
self.list.add(lowercase_ )
@classmethod
def _lowerCamelCase ( cls, lowercase_ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]:
def cache_decorator_inner(lowercase_ ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowercase_ ) -> U:
if func not in cls.decorator_function_to_instance_map:
snake_case = LRUCache(lowercase_ )
snake_case = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
snake_case = func(*lowercase_ )
cls.decorator_function_to_instance_map[func].put(args[0], lowercase_ )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowercase_, 'cache_info', lowercase_ ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''note_seq''']
def __init__( self, *lowercase_, **lowercase_ ) -> str:
requires_backends(self, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]:
requires_backends(cls, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]:
requires_backends(cls, ['note_seq'] )
| 332 | 1 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class lowerCamelCase ( unittest.TestCase ):
def __init__( self, lowercase_, lowercase_ = True, lowercase_ = None, lowercase_ = 32, lowercase_ = True, lowercase_ = 1 / 255, lowercase_ = True, lowercase_ = True, lowercase_ = [0.48_145_466, 0.4_578_275, 0.40_821_073], lowercase_ = [0.26_862_954, 0.26_130_258, 0.27_577_711], lowercase_ = True, lowercase_=7, lowercase_=30, lowercase_=400, lowercase_=3, ) -> Dict:
snake_case = parent
snake_case = do_resize
snake_case = size if size is not None else {'shortest_edge': 288}
snake_case = size_divisor
snake_case = do_rescale
snake_case = rescale_factor
snake_case = do_normalize
snake_case = do_center_crop
snake_case = image_mean
snake_case = image_std
snake_case = do_pad
snake_case = batch_size
snake_case = num_channels
snake_case = min_resolution
snake_case = max_resolution
def _lowerCamelCase ( self ) -> Union[str, Any]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def _lowerCamelCase ( self, lowercase_, lowercase_=False ) -> Optional[int]:
if not batched:
snake_case = self.size['shortest_edge']
snake_case = image_inputs[0]
if isinstance(lowercase_, Image.Image ):
snake_case , snake_case = image.size
else:
snake_case , snake_case = image.shape[1], image.shape[2]
snake_case = size / min(lowercase_, lowercase_ )
if h < w:
snake_case , snake_case = size, scale * w
else:
snake_case , snake_case = scale * h, size
snake_case = int((1333 / 800) * size )
if max(lowercase_, lowercase_ ) > max_size:
snake_case = max_size / max(lowercase_, lowercase_ )
snake_case = newh * scale
snake_case = neww * scale
snake_case , snake_case = int(newh + 0.5 ), int(neww + 0.5 )
snake_case , snake_case = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
snake_case = []
for image in image_inputs:
snake_case , snake_case = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case = max(lowercase_, key=lambda lowercase_ : item[0] )[0]
snake_case = max(lowercase_, key=lambda lowercase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
snake_case_ = BridgeTowerImageProcessor if is_vision_available() else None
def _lowerCamelCase ( self ) -> Union[str, Any]:
snake_case = BridgeTowerImageProcessingTester(self )
@property
def _lowerCamelCase ( self ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCamelCase ( self ) -> Dict:
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_, 'image_mean' ) )
self.assertTrue(hasattr(lowercase_, 'image_std' ) )
self.assertTrue(hasattr(lowercase_, 'do_normalize' ) )
self.assertTrue(hasattr(lowercase_, 'do_resize' ) )
self.assertTrue(hasattr(lowercase_, 'size' ) )
self.assertTrue(hasattr(lowercase_, 'size_divisor' ) )
def _lowerCamelCase ( self ) -> Tuple:
pass
def _lowerCamelCase ( self ) -> Optional[int]:
# Initialize image processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_, Image.Image )
# Test not batched input
snake_case = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
snake_case = image_processing(lowercase_, return_tensors='pt' ).pixel_values
snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_, batched=lowercase_ )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def _lowerCamelCase ( self ) -> Tuple:
# Initialize image processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_, numpify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_, np.ndarray )
# Test not batched input
snake_case = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
snake_case = image_processing(lowercase_, return_tensors='pt' ).pixel_values
snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_, batched=lowercase_ )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def _lowerCamelCase ( self ) -> Dict:
# Initialize image processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_, torchify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_, torch.Tensor )
# Test not batched input
snake_case = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
snake_case = image_processing(lowercase_, return_tensors='pt' ).pixel_values
snake_case , snake_case = self.image_processor_tester.get_expected_values(lowercase_, batched=lowercase_ )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
| 332 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 | 1 |
'''simple docstring'''
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
# TODO: is there an appropriate internal test set?
snake_case_ = '''ssube/stable-diffusion-x4-upscaler-onnx'''
def _lowerCamelCase ( self, lowercase_=0 ) -> List[str]:
snake_case = floats_tensor((1, 3, 128, 128), rng=random.Random(lowercase_ ) )
snake_case = torch.manual_seed(lowercase_ )
snake_case = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def _lowerCamelCase ( self ) -> List[str]:
snake_case = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = self.get_dummy_inputs()
snake_case = pipe(**lowercase_ ).images
snake_case = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
snake_case = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _lowerCamelCase ( self ) -> Tuple:
snake_case = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' )
snake_case = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = self.get_dummy_inputs()
snake_case = pipe(**lowercase_ ).images
snake_case = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
snake_case = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowerCamelCase ( self ) -> Dict:
snake_case = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' )
snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = self.get_dummy_inputs()
snake_case = pipe(**lowercase_ ).images
snake_case = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
snake_case = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowerCamelCase ( self ) -> str:
snake_case = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' )
snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = self.get_dummy_inputs()
snake_case = pipe(**lowercase_ ).images
snake_case = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
snake_case = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowerCamelCase ( self ) -> Union[str, Any]:
snake_case = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' )
snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = self.get_dummy_inputs()
snake_case = pipe(**lowercase_ ).images
snake_case = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
snake_case = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
@property
def _lowerCamelCase ( self ) -> int:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = ort.SessionOptions()
snake_case = False
return options
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
snake_case = init_image.resize((128, 128) )
# using the PNDM scheduler by default
snake_case = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx', provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'A fantasy landscape, trending on artstation'
snake_case = torch.manual_seed(0 )
snake_case = pipe(
prompt=lowercase_, image=lowercase_, guidance_scale=7.5, num_inference_steps=10, generator=lowercase_, output_type='np', )
snake_case = output.images
snake_case = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
snake_case = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
snake_case = init_image.resize((128, 128) )
snake_case = LMSDiscreteScheduler.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx', subfolder='scheduler' )
snake_case = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx', scheduler=lowercase_, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'A fantasy landscape, trending on artstation'
snake_case = torch.manual_seed(0 )
snake_case = pipe(
prompt=lowercase_, image=lowercase_, guidance_scale=7.5, num_inference_steps=20, generator=lowercase_, output_type='np', )
snake_case = output.images
snake_case = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
snake_case = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 332 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase_ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase_ = dataset.iloc[:, 1:2].values
lowerCAmelCase_ = dataset.iloc[:, 2].values
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase_ = PolynomialFeatures(degree=4)
lowerCAmelCase_ = poly_reg.fit_transform(X)
lowerCAmelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def __magic_name__ ( ) -> Any:
plt.scatter(A , A , color='red' )
plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''roberta'''
def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ''''''
snake_case_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
snake_case_ = None # compression type in fsspec. ex: "gzip"
snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str:
super().__init__(self, **lowercase_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
snake_case = fsspec.open(
lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed.
}, **(target_options or {}), )
snake_case = os.path.basename(self.file.path.split('::' )[0] )
snake_case = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
snake_case = None
@classmethod
def _lowerCamelCase ( cls, lowercase_ ) -> Any:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowercase_ ).lstrip('/' )
def _lowerCamelCase ( self ) -> Optional[Any]:
if self.dir_cache is None:
snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
snake_case = {f['name']: f}
def _lowerCamelCase ( self, lowercase_ ) -> str:
return self.file.open().read()
def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any:
snake_case = self._strip_protocol(lowercase_ )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''bz2'''
snake_case_ = '''bz2'''
snake_case_ = '''.bz2'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''gzip'''
snake_case_ = '''gzip'''
snake_case_ = '''.gz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''lz4'''
snake_case_ = '''lz4'''
snake_case_ = '''.lz4'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xz'''
snake_case_ = '''xz'''
snake_case_ = '''.xz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''zstd'''
snake_case_ = '''zstd'''
snake_case_ = '''.zst'''
def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]:
super().__init__(
fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
snake_case = self.file.__enter__
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[Any]:
snake_case = file_
def __enter__( self ) -> Dict:
self._file.__enter__()
return self
def __exit__( self, *lowercase_, **lowercase_ ) -> Dict:
self._file.__exit__(*lowercase_, **lowercase_ )
def __iter__( self ) -> List[str]:
return iter(self._file )
def _lowerCamelCase ( self ) -> List[str]:
return next(self._file )
def __getattr__( self, lowercase_ ) -> List[Any]:
return getattr(self._file, lowercase_ )
def fixed_enter(*lowercase_, **lowercase_ ):
return WrappedFile(_enter(*lowercase_, **lowercase_ ) )
snake_case = fixed_enter
| 332 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"caidas/swin2sr-classicalsr-x2-64": (
"https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json"
),
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''swin2sr'''
snake_case_ = {
'''hidden_size''': '''embed_dim''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self, lowercase_=64, lowercase_=1, lowercase_=3, lowercase_=180, lowercase_=[6, 6, 6, 6, 6, 6], lowercase_=[6, 6, 6, 6, 6, 6], lowercase_=8, lowercase_=2.0, lowercase_=True, lowercase_=0.0, lowercase_=0.0, lowercase_=0.1, lowercase_="gelu", lowercase_=False, lowercase_=0.02, lowercase_=1E-5, lowercase_=2, lowercase_=1.0, lowercase_="1conv", lowercase_="pixelshuffle", **lowercase_, ) -> Union[str, Any]:
super().__init__(**lowercase_ )
snake_case = image_size
snake_case = patch_size
snake_case = num_channels
snake_case = embed_dim
snake_case = depths
snake_case = len(lowercase_ )
snake_case = num_heads
snake_case = window_size
snake_case = mlp_ratio
snake_case = qkv_bias
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = drop_path_rate
snake_case = hidden_act
snake_case = use_absolute_embeddings
snake_case = layer_norm_eps
snake_case = initializer_range
snake_case = upscale
snake_case = img_range
snake_case = resi_connection
snake_case = upsampler
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A , A ) -> int | float:
if len(A ) == 0:
raise ValueError('find_max() arg is an empty sequence' )
if (
left >= len(A )
or left < -len(A )
or right >= len(A )
or right < -len(A )
):
raise IndexError('list index out of range' )
if left == right:
return nums[left]
snake_case = (left + right) >> 1 # the middle
snake_case = find_max(A , A , A ) # find max in range[left, mid]
snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A , A ) -> str:
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(A , int(b / 2 ) ) * actual_power(A , int(b / 2 ) )
else:
return a * actual_power(A , int(b / 2 ) ) * actual_power(A , int(b / 2 ) )
def __magic_name__ ( A , A ) -> float:
if b < 0:
return 1 / actual_power(A , A )
return actual_power(A , A )
if __name__ == "__main__":
print(power(-2, -3))
| 332 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
@register_to_config
def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str:
super().__init__()
# pass init params to Encoder
snake_case = Encoder(
in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, )
snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ )
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
# pass init params to Decoder
snake_case = Decoder(
in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput:
snake_case = self.encoder(lowercase_ )
snake_case = self.quant_conv(lowercase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_ )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
snake_case , snake_case , snake_case = self.quantize(lowercase_ )
else:
snake_case = h
snake_case = self.post_quant_conv(lowercase_ )
snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
snake_case = sample
snake_case = self.encode(lowercase_ ).latents
snake_case = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 332 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
lowerCAmelCase_ = {
"configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoForCausalLM",
"GPTNeoForQuestionAnswering",
"GPTNeoForSequenceClassification",
"GPTNeoForTokenClassification",
"GPTNeoModel",
"GPTNeoPreTrainedModel",
"load_tf_weights_in_gpt_neo",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"FlaxGPTNeoForCausalLM",
"FlaxGPTNeoModel",
"FlaxGPTNeoPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0]
snake_case = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
snake_case = 0
# the area corresponding to the grid that gives the product closest to target
snake_case = 0
# an estimate of b, using the quadratic formula
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the triangle number corresponding to b_floor
snake_case = 42
# the triangle number corresponding to b_ceil
snake_case = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
snake_case = floor(A )
snake_case = ceil(A )
snake_case = triangle_numbers[b_floor]
snake_case = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_first_guess * triangle_a
snake_case = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_second_guess * triangle_a
snake_case = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"{solution() = }")
| 332 | 1 |
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = ["model.decoder.embed_positions.weights"]
def __magic_name__ ( A ) -> int:
if "emb" in name:
snake_case = name.replace('emb' , 'model.decoder.embed_tokens' )
if "transformer" in name:
snake_case = name.replace('transformer' , 'model.decoder' )
if "cross_attention" in name:
snake_case = name.replace('cross_attention' , 'encoder_attn' )
if "linear1" in name:
snake_case = name.replace('linear1' , 'fc1' )
if "linear2" in name:
snake_case = name.replace('linear2' , 'fc2' )
if "norm1" in name:
snake_case = name.replace('norm1' , 'self_attn_layer_norm' )
if "norm_cross" in name:
snake_case = name.replace('norm_cross' , 'encoder_attn_layer_norm' )
if "norm2" in name:
snake_case = name.replace('norm2' , 'final_layer_norm' )
if "out_norm" in name:
snake_case = name.replace('out_norm' , 'model.decoder.layer_norm' )
if "linears" in name:
snake_case = name.replace('linears' , 'lm_heads' )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' )
return name
def __magic_name__ ( A , A ) -> Tuple[Dict, Dict]:
snake_case = list(state_dict.keys() )
snake_case = {}
for key in keys:
snake_case = state_dict.pop(A )
snake_case = rename_keys(A )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case = val[:hidden_size, :]
snake_case = val[hidden_size : 2 * hidden_size, :]
snake_case = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case = val
else:
snake_case = val
return state_dict, enc_dec_proj_state_dict
def __magic_name__ ( A ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case = 1_0_2_4
snake_case = 2_4
snake_case = 1_6
elif checkpoint == "medium":
snake_case = 1_5_3_6
snake_case = 4_8
snake_case = 2_4
elif checkpoint == "large":
snake_case = 2_0_4_8
snake_case = 4_8
snake_case = 3_2
else:
raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' )
snake_case = MusicgenDecoderConfig(
hidden_size=A , ffn_dim=hidden_size * 4 , num_hidden_layers=A , num_attention_heads=A , )
return config
@torch.no_grad()
def __magic_name__ ( A , A=None , A=None , A="cpu" ) -> Any:
snake_case = MusicGen.get_pretrained(A , device=A )
snake_case = decoder_config_from_checkpoint(A )
snake_case = fairseq_model.lm.state_dict()
snake_case , snake_case = rename_state_dict(
A , hidden_size=decoder_config.hidden_size )
snake_case = TaEncoderModel.from_pretrained('t5-base' )
snake_case = EncodecModel.from_pretrained('facebook/encodec_32khz' )
snake_case = MusicgenForCausalLM(A ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case , snake_case = decoder.load_state_dict(A , strict=A )
for key in missing_keys.copy():
if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(A )
if len(A ) > 0:
raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' )
if len(A ) > 0:
raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' )
# init the composite model
snake_case = MusicgenForConditionalGeneration(text_encoder=A , audio_encoder=A , decoder=A )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(A )
# check we can do a forward pass
snake_case = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case = model(input_ids=A , decoder_input_ids=A ).logits
if logits.shape != (8, 1, 2_0_4_8):
raise ValueError('Incorrect shape for logits' )
# now construct the processor
snake_case = AutoTokenizer.from_pretrained('t5-base' )
snake_case = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' )
snake_case = MusicgenProcessor(feature_extractor=A , tokenizer=A )
# set the appropriate bos/pad token ids
snake_case = 2_0_4_8
snake_case = 2_0_4_8
# set other default generation config params
snake_case = int(3_0 * audio_encoder.config.frame_rate )
snake_case = True
snake_case = 3.0
if pytorch_dump_folder is not None:
Path(A ).mkdir(exist_ok=A )
logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' )
model.save_pretrained(A )
processor.save_pretrained(A )
if repo_id:
logger.info(F'''Pushing model {checkpoint} to {repo_id}''' )
model.push_to_hub(A )
processor.push_to_hub(A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
lowerCAmelCase_ = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 332 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xmod'''
def __init__( self, lowercase_=30522, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, lowercase_=False, lowercase_=2, lowercase_=False, lowercase_=True, lowercase_=True, lowercase_=("en_XX",), lowercase_=None, **lowercase_, ) -> List[Any]:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
snake_case = pre_norm
snake_case = adapter_reduction_factor
snake_case = adapter_layer_norm
snake_case = adapter_reuse_layer_norm
snake_case = ln_before_adapter
snake_case = list(lowercase_ )
snake_case = default_language
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
snake_case_ = field(
default=64 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
snake_case_ = field(
default=30 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
snake_case_ = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''train'''
snake_case_ = '''dev'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int:
snake_case = args
snake_case = is_language_sensitive
snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowercase_, lowercase_ ):
try:
snake_case = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
snake_case = mode
# Load data features from cache or dataset file
snake_case = 'v2' if args.version_2_with_negative else 'v1'
snake_case = os.path.join(
cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
snake_case = time.time()
snake_case = torch.load(lowercase_ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
snake_case = self.old_features['features']
snake_case = self.old_features.get('dataset', lowercase_ )
snake_case = self.old_features.get('examples', lowercase_ )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
' future run' )
else:
if mode == Split.dev:
snake_case = self.processor.get_dev_examples(args.data_dir )
else:
snake_case = self.processor.get_train_examples(args.data_dir )
snake_case , snake_case = squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, )
snake_case = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> Tuple:
return len(self.features )
def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
snake_case = self.features[i]
snake_case = torch.tensor(feature.input_ids, dtype=torch.long )
snake_case = torch.tensor(feature.attention_mask, dtype=torch.long )
snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long )
snake_case = torch.tensor(feature.cls_index, dtype=torch.long )
snake_case = torch.tensor(feature.p_mask, dtype=torch.float )
snake_case = torch.tensor(feature.is_impossible, dtype=torch.float )
snake_case = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
snake_case = torch.tensor(feature.start_position, dtype=torch.long )
snake_case = torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 332 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
def __magic_name__ ( A ) -> List[int]:
if isinstance(A , np.ndarray ):
return list(tensor.shape )
snake_case = tf.shape(A )
if tensor.shape == tf.TensorShape(A ):
return dynamic
snake_case = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(A )]
def __magic_name__ ( A , A = None , A = None ) -> tf.Tensor:
return tf.nn.softmax(logits=logits + 1E-9 , axis=A , name=A )
def __magic_name__ ( A , A , A , A=1E-5 , A=-1 ) -> Any:
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(A , A ):
raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' )
# Get mean and variance on the axis to be normalized
snake_case , snake_case = tf.nn.moments(A , axes=[axis] , keepdims=A )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
snake_case = [1] * inputs.shape.rank
snake_case = shape_list(A )[axis]
snake_case = tf.reshape(A , A )
snake_case = tf.reshape(A , A )
# Compute layer normalization using the batch_normalization
# function.
snake_case = tf.nn.batch_normalization(
A , A , A , offset=A , scale=A , variance_epsilon=A , )
return outputs
def __magic_name__ ( A , A=0 , A=-1 ) -> Tuple:
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
snake_case = tf.shape(A )
snake_case = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
snake_case = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(A , A )
def __magic_name__ ( A ) -> tf.Tensor:
if not isinstance(A , tf.Tensor ):
snake_case = tf.convert_to_tensor(A ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
snake_case = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
snake_case = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
snake_case = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def __magic_name__ ( A , A , A = "input_ids" ) -> None:
tf.debugging.assert_less(
A , tf.cast(A , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(A )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def __magic_name__ ( A , A , A ) -> Dict:
snake_case = 6_4_5_1_2
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
snake_case = [x for x in data if len(A ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'The following attributes cannot be saved to HDF5 file because '
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
snake_case = np.asarray(A )
snake_case = 1
snake_case = np.array_split(A , A )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
snake_case = np.array_split(A , A )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(A ):
snake_case = chunk_data
else:
snake_case = data
def __magic_name__ ( A , A ) -> Tuple:
if name in group.attrs:
snake_case = [n.decode('utf8' ) if hasattr(A , 'decode' ) else n for n in group.attrs[name]]
else:
snake_case = []
snake_case = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('utf8' ) if hasattr(A , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] )
chunk_id += 1
return data
def __magic_name__ ( A ) -> Union[str, Any]:
def _expand_single_ad_tensor(A ):
if isinstance(A , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(A , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , A )
| 332 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def __magic_name__ ( A , A , A ) -> Any:
# Initialise PyTorch model
snake_case = BertConfig.from_json_file(A )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = BertForPreTraining(A )
# Load weights from tf checkpoint
load_tf_weights_in_bert(A , A , A )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 332 | 1 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> Any:
snake_case = 1
snake_case = 3
snake_case = (32, 32)
snake_case = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(lowercase_ )
return image
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, )
return model
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, )
return model
@property
def _lowerCamelCase ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> int:
def extract(*lowercase_, **lowercase_ ):
class lowerCamelCase :
def __init__( self ) -> int:
snake_case = torch.ones([0] )
def _lowerCamelCase ( self, lowercase_ ) -> Tuple:
self.pixel_values.to(lowercase_ )
return self
return Out()
return extract
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator
snake_case = self.dummy_cond_unet
snake_case = DDIMScheduler(
beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowercase_, set_alpha_to_one=lowercase_, )
snake_case = self.dummy_vae
snake_case = self.dummy_text_encoder
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
# make sure here that pndm scheduler skips prk
snake_case = StableDiffusionPipeline(
unet=lowercase_, scheduler=lowercase_, vae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, safety_checker=lowercase_, feature_extractor=self.dummy_extractor, )
snake_case = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'A painting of a squirrel eating a burger'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = sd_pipe([prompt], generator=lowercase_, guidance_scale=6.0, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = sd_pipe(
[prompt], generator=lowercase_, guidance_scale=6.0, num_inference_steps=2, output_type='np', return_dict=lowercase_, )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Dict:
snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator
snake_case = self.dummy_cond_unet
snake_case = PNDMScheduler(skip_prk_steps=lowercase_ )
snake_case = self.dummy_vae
snake_case = self.dummy_text_encoder
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
# make sure here that pndm scheduler skips prk
snake_case = StableDiffusionPipeline(
unet=lowercase_, scheduler=lowercase_, vae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, safety_checker=lowercase_, feature_extractor=self.dummy_extractor, )
snake_case = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'A painting of a squirrel eating a burger'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = sd_pipe([prompt], generator=lowercase_, guidance_scale=6.0, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = sd_pipe(
[prompt], generator=lowercase_, guidance_scale=6.0, num_inference_steps=2, output_type='np', return_dict=lowercase_, )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = StableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-lms-pipe', safety_checker=lowercase_ )
assert isinstance(lowercase_, lowercase_ )
assert isinstance(pipe.scheduler, lowercase_ )
assert pipe.safety_checker is None
snake_case = pipe('example prompt', num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowercase_ )
snake_case = StableDiffusionPipeline.from_pretrained(lowercase_ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
snake_case = pipe('example prompt', num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU' )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = self.dummy_cond_unet
snake_case = PNDMScheduler(skip_prk_steps=lowercase_ )
snake_case = self.dummy_vae
snake_case = self.dummy_text_encoder
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
# put models in fp16
snake_case = unet.half()
snake_case = vae.half()
snake_case = bert.half()
# make sure here that pndm scheduler skips prk
snake_case = StableDiffusionPipeline(
unet=lowercase_, scheduler=lowercase_, vae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, safety_checker=lowercase_, feature_extractor=self.dummy_extractor, )
snake_case = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'A painting of a squirrel eating a burger'
snake_case = sd_pipe([prompt], num_inference_steps=2, output_type='np' ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5', safety_checker=lowercase_ )
snake_case = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
snake_case = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = (
'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'
' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'
' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'
' children from bahnhof zoo, detailed '
)
snake_case = 4003660346
snake_case = 7
# without safety guidance (sld_guidance_scale = 0)
snake_case = torch.manual_seed(lowercase_ )
snake_case = sd_pipe(
[prompt], generator=lowercase_, guidance_scale=lowercase_, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=0, )
snake_case = output.images
snake_case = image[0, -3:, -3:, -1]
snake_case = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
snake_case = torch.manual_seed(lowercase_ )
snake_case = sd_pipe(
[prompt], generator=lowercase_, guidance_scale=lowercase_, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, )
snake_case = output.images
snake_case = image[0, -3:, -3:, -1]
snake_case = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> int:
snake_case = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5', safety_checker=lowercase_ )
snake_case = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
snake_case = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'padme amidala taking a bath artwork, safe for work, no nudity'
snake_case = 2734971755
snake_case = 7
snake_case = torch.manual_seed(lowercase_ )
snake_case = sd_pipe(
[prompt], generator=lowercase_, guidance_scale=lowercase_, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=0, )
snake_case = output.images
snake_case = image[0, -3:, -3:, -1]
snake_case = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
snake_case = torch.manual_seed(lowercase_ )
snake_case = sd_pipe(
[prompt], generator=lowercase_, guidance_scale=lowercase_, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, )
snake_case = output.images
snake_case = image[0, -3:, -3:, -1]
snake_case = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' )
snake_case = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = (
'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'
' leyendecker'
)
snake_case = 1044355234
snake_case = 12
snake_case = torch.manual_seed(lowercase_ )
snake_case = sd_pipe(
[prompt], generator=lowercase_, guidance_scale=lowercase_, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=0, )
snake_case = output.images
snake_case = image[0, -3:, -3:, -1]
snake_case = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
snake_case = torch.manual_seed(lowercase_ )
snake_case = sd_pipe(
[prompt], generator=lowercase_, guidance_scale=lowercase_, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, )
snake_case = output.images
snake_case = image[0, -3:, -3:, -1]
snake_case = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> list:
if len(A ) == 0:
return []
snake_case , snake_case = min(A ), max(A )
snake_case = int(max_value - min_value ) + 1
snake_case = [[] for _ in range(A )]
for i in my_list:
buckets[int(i - min_value )].append(A )
return [v for bucket in buckets for v in sorted(A )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A ) -> list[int]:
snake_case = [0 for i in range(len(A ) )]
# initialize interval's left pointer and right pointer
snake_case , snake_case = 0, 0
for i in range(1 , len(A ) ):
# case when current index is inside the interval
if i <= right_pointer:
snake_case = min(right_pointer - i + 1 , z_result[i - left_pointer] )
snake_case = min_edge
while go_next(A , A , A ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
snake_case , snake_case = i, i + z_result[i] - 1
return z_result
def __magic_name__ ( A , A , A ) -> bool:
return i + z_result[i] < len(A ) and s[z_result[i]] == s[i + z_result[i]]
def __magic_name__ ( A , A ) -> int:
snake_case = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
snake_case = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(A ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 332 | 1 |
'''simple docstring'''
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version(">=", FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
lowerCAmelCase_ = get_logger(__name__)
def __magic_name__ ( A , A , A , A , A=0 ) -> Tuple:
os.makedirs(A , exist_ok=A )
with FSDP.state_dict_type(
A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin'''
snake_case = os.path.join(A , A )
if accelerator.process_index == 0:
logger.info(F'''Saving model to {output_model_file}''' )
torch.save(A , A )
logger.info(F'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case = (
F'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
snake_case = os.path.join(A , A )
logger.info(F'''Saving model to {output_model_file}''' )
torch.save(A , A )
logger.info(F'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case = os.path.join(A , F'''{MODEL_NAME}_{model_index}''' )
os.makedirs(A , exist_ok=A )
logger.info(F'''Saving model to {ckpt_dir}''' )
snake_case = {'model': state_dict}
dist_cp.save_state_dict(
state_dict=A , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , )
logger.info(F'''Model saved to {ckpt_dir}''' )
def __magic_name__ ( A , A , A , A , A=0 ) -> str:
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(A ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'Set the `sync_module_states` flag to `True` so that model states are synced across processes when '
'initializing FSDP object' )
return
snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin'''
snake_case = os.path.join(A , A )
logger.info(F'''Loading model from {input_model_file}''' )
snake_case = torch.load(A )
logger.info(F'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case = (
F'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
snake_case = os.path.join(A , A )
logger.info(F'''Loading model from {input_model_file}''' )
snake_case = torch.load(A )
logger.info(F'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case = (
os.path.join(A , F'''{MODEL_NAME}_{model_index}''' )
if F'''{MODEL_NAME}''' not in input_dir
else input_dir
)
logger.info(F'''Loading model from {ckpt_dir}''' )
snake_case = {'model': model.state_dict()}
dist_cp.load_state_dict(
state_dict=A , storage_reader=dist_cp.FileSystemReader(A ) , planner=DefaultLoadPlanner() , )
snake_case = state_dict['model']
logger.info(F'''Model loaded from {ckpt_dir}''' )
model.load_state_dict(A )
def __magic_name__ ( A , A , A , A , A , A=0 ) -> Optional[Any]:
os.makedirs(A , exist_ok=A )
with FSDP.state_dict_type(
A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case = FSDP.optim_state_dict(A , A )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
snake_case = (
F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
snake_case = os.path.join(A , A )
logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' )
torch.save(A , A )
logger.info(F'''Optimizer state saved in {output_optimizer_file}''' )
else:
snake_case = os.path.join(A , F'''{OPTIMIZER_NAME}_{optimizer_index}''' )
os.makedirs(A , exist_ok=A )
logger.info(F'''Saving Optimizer state to {ckpt_dir}''' )
dist_cp.save_state_dict(
state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , )
logger.info(F'''Optimizer state saved in {ckpt_dir}''' )
def __magic_name__ ( A , A , A , A , A , A=0 ) -> int:
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
snake_case = (
F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
snake_case = os.path.join(A , A )
logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' )
snake_case = torch.load(A )
logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' )
else:
snake_case = (
os.path.join(A , F'''{OPTIMIZER_NAME}_{optimizer_index}''' )
if F'''{OPTIMIZER_NAME}''' not in input_dir
else input_dir
)
logger.info(F'''Loading Optimizer from {ckpt_dir}''' )
snake_case = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(A ) , )
snake_case = optim_state['optimizer']
logger.info(F'''Optimizer loaded from {ckpt_dir}''' )
snake_case = FSDP.optim_state_dict_to_load(A , A , A )
optimizer.load_state_dict(A )
| 332 |
'''simple docstring'''
import pytest
lowerCAmelCase_ = "__dummy_dataset1__"
lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def __magic_name__ ( ) -> List[Any]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __magic_name__ ( ) -> Union[str, Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = dataset_loading_script_name
snake_case = tmp_path / 'datasets' / script_name
script_dir.mkdir(parents=A )
snake_case = script_dir / F'''{script_name}.py'''
with open(A , 'w' ) as f:
f.write(A )
return str(A )
| 332 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTMAEForPreTraining",
"ViTMAELayer",
"ViTMAEModel",
"ViTMAEPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"TFViTMAEForPreTraining",
"TFViTMAEModel",
"TFViTMAEPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCAmelCase_ = Lock()
def __magic_name__ ( A , A , A , A , A , A , A ) -> Any:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 1_0 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(A )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
snake_case = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
snake_case = min(A , A )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(A )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
snake_case = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
snake_case = max(A , A )
# after all swaps are performed, send the values back to main
result_pipe[1].send(A )
def __magic_name__ ( A ) -> str:
snake_case = []
snake_case = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
snake_case = temp_rs
snake_case = temp_rr
for i in range(1 , len(A ) - 1 ):
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
snake_case = temp_rs
snake_case = temp_rr
process_array_.append(
Process(
target=A , args=(
len(A ) - 1,
arr[len(A ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(A ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(A ) ):
snake_case = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __magic_name__ ( ) -> Tuple:
snake_case = list(range(1_0 , 0 , -1 ) )
print('Initial List' )
print(*A )
snake_case = odd_even_transposition(A )
print('Sorted List\n' )
print(*A )
if __name__ == "__main__":
main()
| 332 | 1 |
'''simple docstring'''
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, lowercase_, lowercase_ ) -> Tuple:
super().__init__()
self.register_modules(unet=lowercase_, scheduler=lowercase_ )
@torch.no_grad()
def __call__( self, lowercase_ = 1, lowercase_ = None, lowercase_ = 50, lowercase_ = "pil", lowercase_ = True, **lowercase_, ) -> Union[ImagePipelineOutput, Tuple]:
snake_case = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=lowercase_, )
snake_case = image.to(self.device )
# set step values
self.scheduler.set_timesteps(lowercase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
snake_case = self.unet(lowercase_, lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
snake_case = self.scheduler.step(lowercase_, lowercase_, lowercase_ ).prev_sample
snake_case = (image / 2 + 0.5).clamp(0, 1 )
snake_case = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
snake_case = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=lowercase_ ), "This is a local test"
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> None:
create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] )
def __magic_name__ ( A , A , A , A , ) -> None:
if index == len(A ):
print(A )
return
for i in range(len(A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
snake_case = True
create_state_space_tree(A , A , index + 1 , A )
current_sequence.pop()
snake_case = False
lowerCAmelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 332 | 1 |
'''simple docstring'''
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
lowerCAmelCase_ = getLogger(__name__)
def __magic_name__ ( A , A , A , A = 8 , A = 1_0_2_4 , A="val" , A=None , A=False , A="summarization" , A=None , A=1 , A = None , A="" , **A , ) -> Dict:
snake_case = str(A )
assert local_rank is not None
torch.distributed.init_process_group(backend='nccl' , rank=A )
snake_case = Path(A )
snake_case = save_dir.joinpath(F'''rank_{local_rank}_output.json''' )
torch.cuda.set_device(A )
snake_case = AutoModelForSeqaSeqLM.from_pretrained(A ).cuda()
if fpaa:
snake_case = model.half()
# determine if we need to increase num_beams
use_task_specific_params(A , A ) # update config with task specific params
snake_case = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
snake_case = num_return_sequences
snake_case = AutoTokenizer.from_pretrained(A )
logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
if max_source_length is None:
snake_case = tokenizer.model_max_length
if prefix is None:
snake_case = prefix or getattr(model.config , 'prefix' , '' ) or ''
snake_case = SeqaSeqDataset(
A , A , A , max_target_length=1_0_2_4 , type_path=A , n_obs=A , prefix=A , **A , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
snake_case = ds.make_sortish_sampler(A , distributed=A , add_extra_examples=A , shuffle=A )
snake_case = DataLoader(A , sampler=A , batch_size=A , collate_fn=ds.collate_fn )
snake_case = []
for batch in tqdm(A ):
snake_case = model.generate(
input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=A , num_beams=A , **A , )
snake_case = tokenizer.batch_decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A )
snake_case = batch['ids']
if num_return_sequences > 1:
snake_case = chunks(A , A ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(A ):
results.append({'pred': pred, 'id': ids[i].item()} )
save_json(A , A )
return results, sampler.num_replicas
def __magic_name__ ( ) -> Any:
snake_case = argparse.ArgumentParser(
epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' )
parser.add_argument('--data_dir' , type=A , help='like cnn_dm/test.source' )
parser.add_argument(
'--model_name' , type=A , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , )
parser.add_argument('--save_dir' , type=A , help='where to save' , default='tmp_gen' )
parser.add_argument('--max_source_length' , type=A , default=A )
parser.add_argument(
'--type_path' , type=A , default='test' , help='which subset to evaluate typically train/val/test' )
parser.add_argument('--task' , type=A , default='summarization' , help='used for task_specific_params + metrics' )
parser.add_argument('--bs' , type=A , default=8 , required=A , help='batch size' )
parser.add_argument(
'--local_rank' , type=A , default=-1 , required=A , help='should be passed by distributed.launch' )
parser.add_argument(
'--n_obs' , type=A , default=A , required=A , help='How many observations. Defaults to all.' )
parser.add_argument(
'--num_return_sequences' , type=A , default=1 , required=A , help='How many sequences to return' )
parser.add_argument(
'--sync_timeout' , type=A , default=6_0_0 , required=A , help='How long should master process wait for other processes to finish.' , )
parser.add_argument('--src_lang' , type=A , default=A , required=A )
parser.add_argument('--tgt_lang' , type=A , default=A , required=A )
parser.add_argument(
'--prefix' , type=A , required=A , default=A , help='will be added to the begininng of src examples' )
parser.add_argument('--fp16' , action='store_true' )
parser.add_argument('--debug' , action='store_true' )
snake_case = time.time()
snake_case , snake_case = parser.parse_known_args()
snake_case = parse_numeric_n_bool_cl_kwargs(A )
if generate_kwargs and args.local_rank <= 0:
print(F'''parsed the following generate kwargs: {generate_kwargs}''' )
snake_case = Path(args.save_dir + '_tmp' )
Path(A ).mkdir(exist_ok=A ) # this handles locking.
snake_case = list(json_save_dir.glob('rank_*.json' ) )
if intermediate_files:
raise ValueError(F'''Found files at {json_save_dir} please move or remove them.''' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
snake_case = {}
if args.src_lang is not None:
snake_case = args.src_lang
if args.tgt_lang is not None:
snake_case = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=A )
snake_case , snake_case = eval_data_dir(
args.data_dir , A , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=A , **A , )
if args.local_rank <= 0:
snake_case = Path(args.save_dir )
save_dir.mkdir(exist_ok=A )
snake_case = gather_results_from_each_node(A , A , args.sync_timeout )
snake_case = combine_partial_results(A )
if args.num_return_sequences > 1:
snake_case = save_dir.joinpath('pseudolabel_results.json' )
print(F'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' )
save_json(A , A )
return
snake_case = Path(args.data_dir ).joinpath(args.type_path + '.target' )
with open(A ) as f:
snake_case = [x.rstrip() for x in f.readlines()][: len(A )]
# Calculate metrics, save metrics, and save _generations.txt
snake_case = 'translation' in args.task
snake_case = calculate_bleu if calc_bleu else calculate_rouge
snake_case = 'bleu' if calc_bleu else 'rouge'
snake_case = score_fn(A , A )
snake_case = len(A )
snake_case = time.time() - start_time
snake_case = round(runtime / metrics['n_obs'] , 4 )
snake_case = num_replicas
# TODO(@stas00): add whatever metadata to metrics
snake_case = save_dir.joinpath(F'''{args.type_path}_{metric_name}.json''' )
save_json(A , A , indent=A )
print(A )
write_txt_file(A , save_dir.joinpath(F'''{args.type_path}_generations.txt''' ) )
if args.debug:
write_txt_file(A , save_dir.joinpath(F'''{args.type_path}.target''' ) )
else:
shutil.rmtree(A )
def __magic_name__ ( A ) -> List:
snake_case = []
for partial_result in partial_results:
records.extend(A )
snake_case = sorted(A , key=lambda A : x["id"] )
snake_case = [x['pred'] for x in records]
return preds
def __magic_name__ ( A , A , A ) -> List[Dict[str, List]]:
# WAIT FOR lots of .json files
snake_case = time.time()
logger.info('waiting for all nodes to finish' )
snake_case = None
while (time.time() - start_wait) < timeout:
snake_case = list(save_dir.glob('rank_*.json' ) )
if len(A ) < num_replicas:
continue
try:
# make sure all json files are fully saved
snake_case = lmap(A , A )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError('Rank 0 gave up on waiting for other processes' )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 332 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''roberta'''
def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
snake_case_ = '''maskformer-swin'''
snake_case_ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self, lowercase_=224, lowercase_=4, lowercase_=3, lowercase_=96, lowercase_=[2, 2, 6, 2], lowercase_=[3, 6, 12, 24], lowercase_=7, lowercase_=4.0, lowercase_=True, lowercase_=0.0, lowercase_=0.0, lowercase_=0.1, lowercase_="gelu", lowercase_=False, lowercase_=0.02, lowercase_=1E-5, lowercase_=None, lowercase_=None, **lowercase_, ) -> Any:
super().__init__(**lowercase_ )
snake_case = image_size
snake_case = patch_size
snake_case = num_channels
snake_case = embed_dim
snake_case = depths
snake_case = len(lowercase_ )
snake_case = num_heads
snake_case = window_size
snake_case = mlp_ratio
snake_case = qkv_bias
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = drop_path_rate
snake_case = hidden_act
snake_case = use_absolute_embeddings
snake_case = layer_norm_eps
snake_case = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
snake_case = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
snake_case = ['stem'] + [F'''stage{idx}''' for idx in range(1, len(lowercase_ ) + 1 )]
snake_case , snake_case = get_aligned_output_features_output_indices(
out_features=lowercase_, out_indices=lowercase_, stage_names=self.stage_names )
| 332 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_ = {
"allenai/led-base-16384": 1_6_3_8_4,
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = LEDTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int:
super().__init__(
lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) )
snake_case = add_prefix_space
snake_case = pre_tok_class(**lowercase_ )
snake_case = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case = 'post_processor'
snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ )
if tokenizer_component_instance:
snake_case = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case = tuple(state['sep'] )
if "cls" in state:
snake_case = tuple(state['cls'] )
snake_case = False
if state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = add_prefix_space
snake_case = True
if state.get('trim_offsets', lowercase_ ) != trim_offsets:
snake_case = trim_offsets
snake_case = True
if changes_to_apply:
snake_case = getattr(lowercase_, state.pop('type' ) )
snake_case = component_class(**lowercase_ )
setattr(self.backend_tokenizer, lowercase_, lowercase_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value
snake_case = value
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict:
snake_case = super()._pad(
encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, )
# Load from model defaults
if return_attention_mask is None:
snake_case = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ )
if needs_to_be_padded:
snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
snake_case = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 332 | 1 |
'''simple docstring'''
import argparse
lowerCAmelCase_ = "docs/source/_static/js/custom.js"
def __magic_name__ ( A ) -> Optional[int]:
with open(A , encoding='utf-8' , newline='\n' ) as f:
snake_case = f.readlines()
snake_case = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
snake_case = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(A , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument("--version", help="Release version.")
lowerCAmelCase_ = parser.parse_args()
update_custom_js(args.version)
| 332 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A , A ) -> int:
while second != 0:
snake_case = first & second
first ^= second
snake_case = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase_ = int(input("Enter the first number: ").strip())
lowerCAmelCase_ = int(input("Enter the second number: ").strip())
print(f"{add(first, second) = }")
| 332 |
'''simple docstring'''
from pathlib import Path
import fire
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = Path(A )
snake_case = Path(A )
dest_dir.mkdir(exist_ok=A )
for path in src_dir.iterdir():
snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case = dest_dir.joinpath(path.name )
print(A )
dest_path.open('w' ).write('\n'.join(A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A , A = 0 ) -> list:
snake_case = length or len(A )
snake_case = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
snake_case , snake_case = list_data[i + 1], list_data[i]
snake_case = True
return list_data if not swapped else bubble_sort(A , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase_ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __magic_name__ ( A , A ) -> Union[str, Any]:
inspect_dataset(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __magic_name__ ( A , A ) -> int:
inspect_metric(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_config_info(A , config_name=A )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> Any:
with pytest.raises(A ):
get_dataset_config_info(A , config_name=A )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __magic_name__ ( A , A ) -> Dict:
snake_case = get_dataset_config_names(A )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_infos(A )
assert list(infos.keys() ) == expected_configs
snake_case = expected_configs[0]
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> Any:
snake_case = get_dataset_infos(A )
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> int:
with pytest.raises(A ):
get_dataset_split_names(A , config_name=A )
| 332 | 1 |
'''simple docstring'''
from typing import List
from .keymap import KEYMAP, get_character
def __magic_name__ ( A ) -> str:
def decorator(A ):
snake_case = getattr(A , 'handle_key' , [] )
handle += [key]
setattr(A , 'handle_key' , A )
return func
return decorator
def __magic_name__ ( *A ) -> Any:
def decorator(A ):
snake_case = getattr(A , 'handle_key' , [] )
handle += keys
setattr(A , 'handle_key' , A )
return func
return decorator
class lowerCamelCase ( __lowerCAmelCase ):
def __new__( cls, lowercase_, lowercase_, lowercase_ ) -> Dict:
snake_case = super().__new__(cls, lowercase_, lowercase_, lowercase_ )
if not hasattr(lowercase_, 'key_handler' ):
setattr(lowercase_, 'key_handler', {} )
setattr(lowercase_, 'handle_input', KeyHandler.handle_input )
for value in attrs.values():
snake_case = getattr(lowercase_, 'handle_key', [] )
for key in handled_keys:
snake_case = value
return new_cls
@staticmethod
def _lowerCamelCase ( cls ) -> Union[str, Any]:
snake_case = get_character()
if char != KEYMAP["undefined"]:
snake_case = ord(lowercase_ )
snake_case = cls.key_handler.get(lowercase_ )
if handler:
snake_case = char
return handler(cls )
else:
return None
def __magic_name__ ( cls ) -> List[str]:
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
import time
import numpy as np
lowerCAmelCase_ = [8, 5, 9, 7]
lowerCAmelCase_ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
lowerCAmelCase_ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowerCamelCase :
def __init__( self, lowercase_, lowercase_, lowercase_, ) -> None:
snake_case = claim_vector
snake_case = allocated_resources_table
snake_case = maximum_claim_table
def _lowerCamelCase ( self ) -> list[int]:
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def _lowerCamelCase ( self ) -> list[int]:
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def _lowerCamelCase ( self ) -> list[list[int]]:
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(lowercase_ ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def _lowerCamelCase ( self ) -> dict[int, list[int]]:
return {self.__need().index(lowercase_ ): i for i in self.__need()}
def _lowerCamelCase ( self, **lowercase_ ) -> None:
snake_case = self.__need()
snake_case = self.__allocated_resources_table
snake_case = self.__available_resources()
snake_case = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('_' * 50 + '\n' )
while need_list:
snake_case = False
for each_need in need_list:
snake_case = True
for index, need in enumerate(lowercase_ ):
if need > available_resources[index]:
snake_case = False
break
if execution:
snake_case = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
snake_case = original_need_index
print(F'''Process {process_number + 1} is executing.''' )
# remove the process run from stack
need_list.remove(lowercase_ )
# update available/freed resources stack
snake_case = np.array(lowercase_ ) + np.array(
alloc_resources_table[process_number] )
print(
'Updated available resource stack for processes: '
+ ' '.join([str(lowercase_ ) for x in available_resources] ) )
break
if safe:
print('The process is in a safe state.\n' )
else:
print('System in unsafe state. Aborting...\n' )
break
def _lowerCamelCase ( self ) -> str:
print(' ' * 9 + 'Allocated Resource Table' )
for item in self.__allocated_resources_table:
print(
F'''P{self.__allocated_resources_table.index(lowercase_ ) + 1}'''
+ ' '.join(F'''{it:>8}''' for it in item )
+ '\n' )
print(' ' * 9 + 'System Resource Table' )
for item in self.__maximum_claim_table:
print(
F'''P{self.__maximum_claim_table.index(lowercase_ ) + 1}'''
+ ' '.join(F'''{it:>8}''' for it in item )
+ '\n' )
print(
'Current Usage by Active Processes: '
+ ' '.join(str(lowercase_ ) for x in self.__claim_vector ) )
print(
'Initial Available Resources: '
+ ' '.join(str(lowercase_ ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase_ = False
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 12
@property
def _lowerCamelCase ( self ) -> Dict:
return 12
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, )
return model
@property
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = 12
snake_case = 12
snake_case = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
snake_case = TransformeraDModel(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipeline(
'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', )
snake_case = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"facebook/data2vec-vision-base-ft": (
"https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"
),
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''data2vec-vision'''
def __init__( self, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.0, lowercase_=0.0, lowercase_=0.02, lowercase_=1E-12, lowercase_=224, lowercase_=16, lowercase_=3, lowercase_=False, lowercase_=False, lowercase_=False, lowercase_=False, lowercase_=0.1, lowercase_=0.1, lowercase_=True, lowercase_=[3, 5, 7, 11], lowercase_=[1, 2, 3, 6], lowercase_=True, lowercase_=0.4, lowercase_=256, lowercase_=1, lowercase_=False, lowercase_=255, **lowercase_, ) -> List[Any]:
super().__init__(**lowercase_ )
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = intermediate_size
snake_case = hidden_act
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = image_size
snake_case = patch_size
snake_case = num_channels
snake_case = use_mask_token
snake_case = use_absolute_position_embeddings
snake_case = use_relative_position_bias
snake_case = use_shared_relative_position_bias
snake_case = layer_scale_init_value
snake_case = drop_path_rate
snake_case = use_mean_pooling
# decode head attributes (semantic segmentation)
snake_case = out_indices
snake_case = pool_scales
# auxiliary head attributes (semantic segmentation)
snake_case = use_auxiliary_head
snake_case = auxiliary_loss_weight
snake_case = auxiliary_channels
snake_case = auxiliary_num_convs
snake_case = auxiliary_concat_input
snake_case = semantic_loss_ignore_index
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = version.parse('''1.11''' )
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def _lowerCamelCase ( self ) -> float:
return 1E-4
| 332 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''note_seq''']
def __init__( self, *lowercase_, **lowercase_ ) -> str:
requires_backends(self, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]:
requires_backends(cls, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]:
requires_backends(cls, ['note_seq'] )
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A = 1_0 , A = 1_0_0_0 , A = True ) -> int:
assert (
isinstance(A , A )
and isinstance(A , A )
and isinstance(A , A )
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' )
return min_val if option else max_val
def __magic_name__ ( A , A ) -> int:
return int((number_a + number_a) / 2 )
def __magic_name__ ( A , A , A ) -> None:
assert (
isinstance(A , A ) and isinstance(A , A ) and isinstance(A , A )
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError('argument value for lower and higher must be(lower > higher)' )
if not lower < to_guess < higher:
raise ValueError(
'guess value must be within the range of lower and higher value' )
def answer(A ) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print('started...' )
snake_case = lower
snake_case = higher
snake_case = []
while True:
snake_case = get_avg(A , A )
last_numbers.append(A )
if answer(A ) == "low":
snake_case = number
elif answer(A ) == "high":
snake_case = number
else:
break
print(F'''guess the number : {last_numbers[-1]}''' )
print(F'''details : {last_numbers!s}''' )
def __magic_name__ ( ) -> None:
snake_case = int(input('Enter lower value : ' ).strip() )
snake_case = int(input('Enter high value : ' ).strip() )
snake_case = int(input('Enter value to guess : ' ).strip() )
guess_the_number(A , A , A )
if __name__ == "__main__":
main()
| 332 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 | 1 |
'''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
snake_case_ = BarthezTokenizer
snake_case_ = BarthezTokenizerFast
snake_case_ = True
snake_case_ = True
def _lowerCamelCase ( self ) -> int:
super().setUp()
snake_case = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname, legacy_format=lowercase_ )
snake_case = tokenizer
def _lowerCamelCase ( self ) -> Any:
snake_case = '<pad>'
snake_case = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ), lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ), lowercase_ )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0], '<s>' )
self.assertEqual(vocab_keys[1], '<pad>' )
self.assertEqual(vocab_keys[-1], '<mask>' )
self.assertEqual(len(lowercase_ ), 101122 )
def _lowerCamelCase ( self ) -> List[str]:
self.assertEqual(self.get_tokenizer().vocab_size, 101122 )
@require_torch
def _lowerCamelCase ( self ) -> str:
snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
snake_case = [0, 57, 3018, 70307, 91, 2]
snake_case = self.tokenizer(
lowercase_, max_length=len(lowercase_ ), padding=lowercase_, truncation=lowercase_, return_tensors='pt' )
self.assertIsInstance(lowercase_, lowercase_ )
self.assertEqual((2, 6), batch.input_ids.shape )
self.assertEqual((2, 6), batch.attention_mask.shape )
snake_case = batch.input_ids.tolist()[0]
self.assertListEqual(lowercase_, lowercase_ )
def _lowerCamelCase ( self ) -> Tuple:
if not self.test_rust_tokenizer:
return
snake_case = self.get_tokenizer()
snake_case = self.get_rust_tokenizer()
snake_case = 'I was born in 92000, and this is falsé.'
snake_case = tokenizer.tokenize(lowercase_ )
snake_case = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_, lowercase_ )
snake_case = tokenizer.encode(lowercase_, add_special_tokens=lowercase_ )
snake_case = rust_tokenizer.encode(lowercase_, add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_, lowercase_ )
snake_case = self.get_rust_tokenizer()
snake_case = tokenizer.encode(lowercase_ )
snake_case = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_, lowercase_ )
@slow
def _lowerCamelCase ( self ) -> str:
# fmt: off
snake_case = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
snake_case = [
'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '
'utilisé principalement dans le domaine du traitement automatique des langues (TAL).',
'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '
'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '
'telles que la traduction et la synthèse de texte.',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase_, model_name='moussaKam/mbarthez', revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6', sequences=lowercase_, )
| 332 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase_ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase_ = dataset.iloc[:, 1:2].values
lowerCAmelCase_ = dataset.iloc[:, 2].values
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase_ = PolynomialFeatures(degree=4)
lowerCAmelCase_ = poly_reg.fit_transform(X)
lowerCAmelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def __magic_name__ ( ) -> Any:
plt.scatter(A , A , color='red' )
plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A , A , A ) -> float:
if principal <= 0:
raise Exception('Principal borrowed must be > 0' )
if rate_per_annum < 0:
raise Exception('Rate of interest must be >= 0' )
if years_to_repay <= 0 or not isinstance(A , A ):
raise Exception('Years to repay must be an integer > 0' )
# Yearly rate is divided by 12 to get monthly rate
snake_case = rate_per_annum / 1_2
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
snake_case = years_to_repay * 1_2
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ''''''
snake_case_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
snake_case_ = None # compression type in fsspec. ex: "gzip"
snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str:
super().__init__(self, **lowercase_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
snake_case = fsspec.open(
lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed.
}, **(target_options or {}), )
snake_case = os.path.basename(self.file.path.split('::' )[0] )
snake_case = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
snake_case = None
@classmethod
def _lowerCamelCase ( cls, lowercase_ ) -> Any:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowercase_ ).lstrip('/' )
def _lowerCamelCase ( self ) -> Optional[Any]:
if self.dir_cache is None:
snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
snake_case = {f['name']: f}
def _lowerCamelCase ( self, lowercase_ ) -> str:
return self.file.open().read()
def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any:
snake_case = self._strip_protocol(lowercase_ )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''bz2'''
snake_case_ = '''bz2'''
snake_case_ = '''.bz2'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''gzip'''
snake_case_ = '''gzip'''
snake_case_ = '''.gz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''lz4'''
snake_case_ = '''lz4'''
snake_case_ = '''.lz4'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xz'''
snake_case_ = '''xz'''
snake_case_ = '''.xz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''zstd'''
snake_case_ = '''zstd'''
snake_case_ = '''.zst'''
def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]:
super().__init__(
fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
snake_case = self.file.__enter__
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[Any]:
snake_case = file_
def __enter__( self ) -> Dict:
self._file.__enter__()
return self
def __exit__( self, *lowercase_, **lowercase_ ) -> Dict:
self._file.__exit__(*lowercase_, **lowercase_ )
def __iter__( self ) -> List[str]:
return iter(self._file )
def _lowerCamelCase ( self ) -> List[str]:
return next(self._file )
def __getattr__( self, lowercase_ ) -> List[Any]:
return getattr(self._file, lowercase_ )
def fixed_enter(*lowercase_, **lowercase_ ):
return WrappedFile(_enter(*lowercase_, **lowercase_ ) )
snake_case = fixed_enter
| 332 | 1 |
'''simple docstring'''
import os
def __magic_name__ ( A = "input.txt" ) -> int:
with open(os.path.join(os.path.dirname(A ) , A ) ) as input_file:
snake_case = [
[int(A ) for element in line.split(',' )]
for line in input_file.readlines()
]
snake_case = len(A )
snake_case = len(matrix[0] )
snake_case = [[-1 for _ in range(A )] for _ in range(A )]
for i in range(A ):
snake_case = matrix[i][0]
for j in range(1 , A ):
for i in range(A ):
snake_case = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , A ):
snake_case = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
snake_case = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f"{solution() = }")
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A , A ) -> int | float:
if len(A ) == 0:
raise ValueError('find_max() arg is an empty sequence' )
if (
left >= len(A )
or left < -len(A )
or right >= len(A )
or right < -len(A )
):
raise IndexError('list index out of range' )
if left == right:
return nums[left]
snake_case = (left + right) >> 1 # the middle
snake_case = find_max(A , A , A ) # find max in range[left, mid]
snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 | 1 |
'''simple docstring'''
lowerCAmelCase_ = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase_ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase_ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 332 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
@register_to_config
def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str:
super().__init__()
# pass init params to Encoder
snake_case = Encoder(
in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, )
snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ )
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
# pass init params to Decoder
snake_case = Decoder(
in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput:
snake_case = self.encoder(lowercase_ )
snake_case = self.quant_conv(lowercase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_ )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
snake_case , snake_case , snake_case = self.quantize(lowercase_ )
else:
snake_case = h
snake_case = self.post_quant_conv(lowercase_ )
snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
snake_case = sample
snake_case = self.encode(lowercase_ ).latents
snake_case = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 332 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
snake_case_ = KandinskyVaaImgaImgPipeline
snake_case_ = ['''image_embeds''', '''negative_image_embeds''', '''image''']
snake_case_ = [
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
snake_case_ = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
snake_case_ = False
@property
def _lowerCamelCase ( self ) -> Optional[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> int:
return self.time_input_dim
@property
def _lowerCamelCase ( self ) -> Tuple:
return self.time_input_dim * 4
@property
def _lowerCamelCase ( self ) -> Tuple:
return 100
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = {
'in_channels': 4,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
snake_case = UNetaDConditionModel(**lowercase_ )
return model
@property
def _lowerCamelCase ( self ) -> Tuple:
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = VQModel(**self.dummy_movq_kwargs )
return model
def _lowerCamelCase ( self ) -> str:
snake_case = self.dummy_unet
snake_case = self.dummy_movq
snake_case = {
'num_train_timesteps': 1000,
'beta_schedule': 'linear',
'beta_start': 0.00_085,
'beta_end': 0.012,
'clip_sample': False,
'set_alpha_to_one': False,
'steps_offset': 0,
'prediction_type': 'epsilon',
'thresholding': False,
}
snake_case = DDIMScheduler(**lowercase_ )
snake_case = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def _lowerCamelCase ( self, lowercase_, lowercase_=0 ) -> str:
snake_case = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowercase_ ) ).to(lowercase_ )
snake_case = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to(
lowercase_ )
# create init_image
snake_case = floats_tensor((1, 3, 64, 64), rng=random.Random(lowercase_ ) ).to(lowercase_ )
snake_case = image.cpu().permute(0, 2, 3, 1 )[0]
snake_case = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((256, 256) )
if str(lowercase_ ).startswith('mps' ):
snake_case = torch.manual_seed(lowercase_ )
else:
snake_case = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
snake_case = {
'image': init_image,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 10,
'guidance_scale': 7.0,
'strength': 0.2,
'output_type': 'np',
}
return inputs
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**lowercase_ )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = pipe(**self.get_dummy_inputs(lowercase_ ) )
snake_case = output.images
snake_case = pipe(
**self.get_dummy_inputs(lowercase_ ), return_dict=lowercase_, )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array(
[0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> int:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_img2img_frog.npy' )
snake_case = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
snake_case = 'A red cartoon frog, 4k'
snake_case = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa )
pipe_prior.to(lowercase_ )
snake_case = KandinskyVaaImgaImgPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder', torch_dtype=torch.floataa )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
snake_case = torch.Generator(device='cpu' ).manual_seed(0 )
snake_case , snake_case = pipe_prior(
lowercase_, generator=lowercase_, num_inference_steps=5, negative_prompt='', ).to_tuple()
snake_case = pipeline(
image=lowercase_, image_embeds=lowercase_, negative_image_embeds=lowercase_, generator=lowercase_, num_inference_steps=100, height=768, width=768, strength=0.2, output_type='np', )
snake_case = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowercase_, lowercase_ )
| 332 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0]
snake_case = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
snake_case = 0
# the area corresponding to the grid that gives the product closest to target
snake_case = 0
# an estimate of b, using the quadratic formula
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the triangle number corresponding to b_floor
snake_case = 42
# the triangle number corresponding to b_ceil
snake_case = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
snake_case = floor(A )
snake_case = ceil(A )
snake_case = triangle_numbers[b_floor]
snake_case = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_first_guess * triangle_a
snake_case = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_second_guess * triangle_a
snake_case = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"{solution() = }")
| 332 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "spiece.model"}
lowerCAmelCase_ = {
"vocab_file": {
"albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model",
"albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model",
"albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model",
"albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model",
"albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model",
"albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model",
"albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model",
"albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model",
}
}
lowerCAmelCase_ = {
"albert-base-v1": 5_1_2,
"albert-large-v1": 5_1_2,
"albert-xlarge-v1": 5_1_2,
"albert-xxlarge-v1": 5_1_2,
"albert-base-v2": 5_1_2,
"albert-large-v2": 5_1_2,
"albert-xlarge-v2": 5_1_2,
"albert-xxlarge-v2": 5_1_2,
}
lowerCAmelCase_ = "▁"
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self, lowercase_, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_="[CLS]", lowercase_="[SEP]", lowercase_="<unk>", lowercase_="[SEP]", lowercase_="<pad>", lowercase_="[CLS]", lowercase_="[MASK]", lowercase_ = None, **lowercase_, ) -> None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
snake_case = (
AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_, normalized=lowercase_ )
if isinstance(lowercase_, lowercase_ )
else mask_token
)
snake_case = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowercase_, remove_space=lowercase_, keep_accents=lowercase_, bos_token=lowercase_, eos_token=lowercase_, unk_token=lowercase_, sep_token=lowercase_, pad_token=lowercase_, cls_token=lowercase_, mask_token=lowercase_, sp_model_kwargs=self.sp_model_kwargs, **lowercase_, )
snake_case = do_lower_case
snake_case = remove_space
snake_case = keep_accents
snake_case = vocab_file
snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
return len(self.sp_model )
def _lowerCamelCase ( self ) -> int:
snake_case = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> str:
snake_case = self.__dict__.copy()
snake_case = None
return state
def __setstate__( self, lowercase_ ) -> Optional[Any]:
snake_case = d
# for backward compatibility
if not hasattr(self, 'sp_model_kwargs' ):
snake_case = {}
snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCamelCase ( self, lowercase_ ) -> List[Any]:
if self.remove_space:
snake_case = ' '.join(inputs.strip().split() )
else:
snake_case = inputs
snake_case = outputs.replace('``', '"' ).replace('\'\'', '"' )
if not self.keep_accents:
snake_case = unicodedata.normalize('NFKD', lowercase_ )
snake_case = ''.join([c for c in outputs if not unicodedata.combining(lowercase_ )] )
if self.do_lower_case:
snake_case = outputs.lower()
return outputs
def _lowerCamelCase ( self, lowercase_ ) -> List[str]:
snake_case = self.preprocess_text(lowercase_ )
snake_case = self.sp_model.encode(lowercase_, out_type=lowercase_ )
snake_case = []
for piece in pieces:
if len(lowercase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit():
snake_case = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_, '' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case = cur_pieces[1:]
else:
snake_case = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(lowercase_ )
else:
new_pieces.append(lowercase_ )
return new_pieces
def _lowerCamelCase ( self, lowercase_ ) -> int:
return self.sp_model.PieceToId(lowercase_ )
def _lowerCamelCase ( self, lowercase_ ) -> Tuple:
return self.sp_model.IdToPiece(lowercase_ )
def _lowerCamelCase ( self, lowercase_ ) -> str:
snake_case = []
snake_case = ''
snake_case = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase_ ) + token
snake_case = True
snake_case = []
else:
current_sub_tokens.append(lowercase_ )
snake_case = False
out_string += self.sp_model.decode(lowercase_ )
return out_string.strip()
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_, token_ids_a=lowercase_, already_has_special_tokens=lowercase_ )
if token_ids_a is not None:
return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1]
return [1] + ([0] * len(lowercase_ )) + [1]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
if not os.path.isdir(lowercase_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case = os.path.join(
lowercase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, lowercase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase_, 'wb' ) as fi:
snake_case = self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
return (out_vocab_file,)
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 332 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase_ = {
"configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST",
"NezhaForNextSentencePrediction",
"NezhaForMaskedLM",
"NezhaForPreTraining",
"NezhaForMultipleChoice",
"NezhaForQuestionAnswering",
"NezhaForSequenceClassification",
"NezhaForTokenClassification",
"NezhaModel",
"NezhaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
snake_case_ = field(
default=64 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
snake_case_ = field(
default=30 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
snake_case_ = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''train'''
snake_case_ = '''dev'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int:
snake_case = args
snake_case = is_language_sensitive
snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowercase_, lowercase_ ):
try:
snake_case = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
snake_case = mode
# Load data features from cache or dataset file
snake_case = 'v2' if args.version_2_with_negative else 'v1'
snake_case = os.path.join(
cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
snake_case = time.time()
snake_case = torch.load(lowercase_ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
snake_case = self.old_features['features']
snake_case = self.old_features.get('dataset', lowercase_ )
snake_case = self.old_features.get('examples', lowercase_ )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
' future run' )
else:
if mode == Split.dev:
snake_case = self.processor.get_dev_examples(args.data_dir )
else:
snake_case = self.processor.get_train_examples(args.data_dir )
snake_case , snake_case = squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, )
snake_case = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> Tuple:
return len(self.features )
def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
snake_case = self.features[i]
snake_case = torch.tensor(feature.input_ids, dtype=torch.long )
snake_case = torch.tensor(feature.attention_mask, dtype=torch.long )
snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long )
snake_case = torch.tensor(feature.cls_index, dtype=torch.long )
snake_case = torch.tensor(feature.p_mask, dtype=torch.float )
snake_case = torch.tensor(feature.is_impossible, dtype=torch.float )
snake_case = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
snake_case = torch.tensor(feature.start_position, dtype=torch.long )
snake_case = torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 332 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase_ = logging.get_logger(__name__)
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = UniSpeechSatForSequenceClassification.from_pretrained(A , config=A )
snake_case = downstream_dict['projector.weight']
snake_case = downstream_dict['projector.bias']
snake_case = downstream_dict['model.post_net.linear.weight']
snake_case = downstream_dict['model.post_net.linear.bias']
return model
def __magic_name__ ( A , A , A ) -> Optional[Any]:
snake_case = UniSpeechSatForAudioFrameClassification.from_pretrained(A , config=A )
snake_case = downstream_dict['model.linear.weight']
snake_case = downstream_dict['model.linear.bias']
return model
def __magic_name__ ( A , A , A ) -> int:
snake_case = UniSpeechSatForXVector.from_pretrained(A , config=A )
snake_case = downstream_dict['connector.weight']
snake_case = downstream_dict['connector.bias']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
snake_case = downstream_dict[
F'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
snake_case = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight']
snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias']
snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight']
snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias']
snake_case = downstream_dict['objective.W']
return model
@torch.no_grad()
def __magic_name__ ( A , A , A , A ) -> Optional[Any]:
snake_case = torch.load(A , map_location='cpu' )
snake_case = checkpoint['Downstream']
snake_case = UniSpeechSatConfig.from_pretrained(A )
snake_case = WavaVecaFeatureExtractor.from_pretrained(
A , return_attention_mask=A , do_normalize=A )
snake_case = hf_config.architectures[0]
if arch.endswith('ForSequenceClassification' ):
snake_case = convert_classification(A , A , A )
elif arch.endswith('ForAudioFrameClassification' ):
snake_case = convert_diarization(A , A , A )
elif arch.endswith('ForXVector' ):
snake_case = convert_xvector(A , A , A )
else:
raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' )
if hf_config.use_weighted_layer_sum:
snake_case = checkpoint['Featurizer']['weights']
hf_feature_extractor.save_pretrained(A )
hf_model.save_pretrained(A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
lowerCAmelCase_ = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 332 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def __magic_name__ ( A , A , A ) -> Any:
# Initialise PyTorch model
snake_case = BertConfig.from_json_file(A )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = BertForPreTraining(A )
# Load weights from tf checkpoint
load_tf_weights_in_bert(A , A , A )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> list:
if len(A ) == 0:
return []
snake_case , snake_case = min(A ), max(A )
snake_case = int(max_value - min_value ) + 1
snake_case = [[] for _ in range(A )]
for i in my_list:
buckets[int(i - min_value )].append(A )
return [v for bucket in buckets for v in sorted(A )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> list:
if len(A ) == 0:
return []
snake_case , snake_case = min(A ), max(A )
snake_case = int(max_value - min_value ) + 1
snake_case = [[] for _ in range(A )]
for i in my_list:
buckets[int(i - min_value )].append(A )
return [v for bucket in buckets for v in sorted(A )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 332 | 1 |
'''simple docstring'''
lowerCAmelCase_ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase_ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase_ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 332 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 332 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''sew-d'''
def __init__( self, lowercase_=32, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_=2, lowercase_=512, lowercase_=256, lowercase_=True, lowercase_=True, lowercase_=("p2c", "c2p"), lowercase_="layer_norm", lowercase_="gelu_python", lowercase_=0.1, lowercase_=0.1, lowercase_=0.1, lowercase_=0.0, lowercase_=0.1, lowercase_=0.02, lowercase_=1E-7, lowercase_=1E-5, lowercase_="group", lowercase_="gelu", lowercase_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), lowercase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), lowercase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), lowercase_=False, lowercase_=128, lowercase_=16, lowercase_=True, lowercase_=0.05, lowercase_=10, lowercase_=2, lowercase_=0.0, lowercase_=10, lowercase_=0, lowercase_="mean", lowercase_=False, lowercase_=False, lowercase_=256, lowercase_=0, lowercase_=1, lowercase_=2, **lowercase_, ) -> Optional[Any]:
super().__init__(**lowercase_, pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_ )
snake_case = hidden_size
snake_case = feat_extract_norm
snake_case = feat_extract_activation
snake_case = list(lowercase_ )
snake_case = list(lowercase_ )
snake_case = list(lowercase_ )
snake_case = conv_bias
snake_case = num_conv_pos_embeddings
snake_case = num_conv_pos_embedding_groups
snake_case = len(self.conv_dim )
snake_case = num_hidden_layers
snake_case = intermediate_size
snake_case = squeeze_factor
snake_case = max_position_embeddings
snake_case = position_buckets
snake_case = share_att_key
snake_case = relative_attention
snake_case = norm_rel_ebd
snake_case = list(lowercase_ )
snake_case = hidden_act
snake_case = num_attention_heads
snake_case = hidden_dropout
snake_case = attention_dropout
snake_case = activation_dropout
snake_case = feat_proj_dropout
snake_case = final_dropout
snake_case = layer_norm_eps
snake_case = feature_layer_norm_eps
snake_case = initializer_range
snake_case = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
snake_case = apply_spec_augment
snake_case = mask_time_prob
snake_case = mask_time_length
snake_case = mask_time_min_masks
snake_case = mask_feature_prob
snake_case = mask_feature_length
snake_case = mask_feature_min_masks
# ctc loss
snake_case = ctc_loss_reduction
snake_case = ctc_zero_infinity
# sequence classification
snake_case = use_weighted_layer_sum
snake_case = classifier_proj_size
@property
def _lowerCamelCase ( self ) -> Optional[Any]:
return functools.reduce(operator.mul, self.conv_stride, 1 )
| 332 |
'''simple docstring'''
import pytest
lowerCAmelCase_ = "__dummy_dataset1__"
lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def __magic_name__ ( ) -> List[Any]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __magic_name__ ( ) -> Union[str, Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = dataset_loading_script_name
snake_case = tmp_path / 'datasets' / script_name
script_dir.mkdir(parents=A )
snake_case = script_dir / F'''{script_name}.py'''
with open(A , 'w' ) as f:
f.write(A )
return str(A )
| 332 | 1 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''Speech2TextFeatureExtractor'''
snake_case_ = '''Speech2TextTokenizer'''
def __init__( self, lowercase_, lowercase_ ) -> Union[str, Any]:
super().__init__(lowercase_, lowercase_ )
snake_case = self.feature_extractor
snake_case = False
def __call__( self, *lowercase_, **lowercase_ ) -> Optional[Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*lowercase_, **lowercase_ )
if "raw_speech" in kwargs:
warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' )
snake_case = kwargs.pop('raw_speech' )
else:
snake_case = kwargs.pop('audio', lowercase_ )
snake_case = kwargs.pop('sampling_rate', lowercase_ )
snake_case = kwargs.pop('text', lowercase_ )
if len(lowercase_ ) > 0:
snake_case = args[0]
snake_case = args[1:]
if audio is None and text is None:
raise ValueError('You need to specify either an `audio` or `text` input to process.' )
if audio is not None:
snake_case = self.feature_extractor(lowercase_, *lowercase_, sampling_rate=lowercase_, **lowercase_ )
if text is not None:
snake_case = self.tokenizer(lowercase_, **lowercase_ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case = encodings['input_ids']
return inputs
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Any:
return self.tokenizer.batch_decode(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> str:
return self.tokenizer.decode(*lowercase_, **lowercase_ )
@contextmanager
def _lowerCamelCase ( self ) -> int:
warnings.warn(
'`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '
'labels by using the argument `text` of the regular `__call__` method (either in the same call as '
'your audio inputs, or in a separate call.' )
snake_case = True
snake_case = self.tokenizer
yield
snake_case = self.feature_extractor
snake_case = False
| 332 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCAmelCase_ = Lock()
def __magic_name__ ( A , A , A , A , A , A , A ) -> Any:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 1_0 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(A )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
snake_case = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
snake_case = min(A , A )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(A )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
snake_case = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
snake_case = max(A , A )
# after all swaps are performed, send the values back to main
result_pipe[1].send(A )
def __magic_name__ ( A ) -> str:
snake_case = []
snake_case = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
snake_case = temp_rs
snake_case = temp_rr
for i in range(1 , len(A ) - 1 ):
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
snake_case = temp_rs
snake_case = temp_rr
process_array_.append(
Process(
target=A , args=(
len(A ) - 1,
arr[len(A ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(A ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(A ) ):
snake_case = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __magic_name__ ( ) -> Tuple:
snake_case = list(range(1_0 , 0 , -1 ) )
print('Initial List' )
print(*A )
snake_case = odd_even_transposition(A )
print('Sorted List\n' )
print(*A )
if __name__ == "__main__":
main()
| 332 | 1 |
'''simple docstring'''
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
lowerCAmelCase_ = "bert-base-cased"
lowerCAmelCase_ = "google/pegasus-xsum"
lowerCAmelCase_ = [" Sam ate lunch today.", "Sams lunch ingredients."]
lowerCAmelCase_ = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
lowerCAmelCase_ = "patrickvonplaten/t5-tiny-random"
lowerCAmelCase_ = "sshleifer/bart-tiny-random"
lowerCAmelCase_ = "sshleifer/tiny-mbart"
lowerCAmelCase_ = "sshleifer/tiny-marian-en-de"
def __magic_name__ ( A , A ) -> Optional[Any]:
snake_case = '\n'.join(A )
Path(A ).open('w' ).writelines(A )
def __magic_name__ ( A ) -> int:
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(A , F'''{split}.source''' ) , A )
_dump_articles(os.path.join(A , F'''{split}.target''' ) , A )
return tmp_dir
class lowerCamelCase ( __lowerCAmelCase ):
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
], )
@slow
def _lowerCamelCase ( self, lowercase_ ) -> Optional[int]:
snake_case = AutoTokenizer.from_pretrained(lowercase_ )
snake_case = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
snake_case = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES )
snake_case = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES )
snake_case = 4
snake_case = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
snake_case , snake_case = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error.
snake_case = SeqaSeqDataset(
lowercase_, data_dir=lowercase_, type_path='train', max_source_length=lowercase_, max_target_length=lowercase_, src_lang=lowercase_, tgt_lang=lowercase_, )
snake_case = DataLoader(lowercase_, batch_size=2, collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(lowercase_, lowercase_ )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
snake_case = shift_tokens_right(batch['labels'], tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def _lowerCamelCase ( self, lowercase_ ) -> Optional[int]:
snake_case = AutoTokenizer.from_pretrained(lowercase_ )
snake_case = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
snake_case = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES )
snake_case = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES )
snake_case = 4
snake_case = LegacySeqaSeqDataset(
lowercase_, data_dir=lowercase_, type_path='train', max_source_length=20, max_target_length=lowercase_, )
snake_case = DataLoader(lowercase_, batch_size=2, collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def _lowerCamelCase ( self ) -> Tuple:
snake_case = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' )
snake_case = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
snake_case = tmp_dir.joinpath('train.source' ).open().readlines()
snake_case = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(lowercase_, lowercase_, 128, lowercase_ )
snake_case = {x.name for x in tmp_dir.iterdir()}
snake_case = {x.name for x in save_dir.iterdir()}
snake_case = save_dir.joinpath('train.source' ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(lowercase_ ) < len(lowercase_ )
assert len(lowercase_ ) == 1
assert len(packed_examples[0] ) == sum(len(lowercase_ ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE, reason='This test requires fairseq' )
def _lowerCamelCase ( self ) -> Optional[int]:
if not FAIRSEQ_AVAILABLE:
return
snake_case , snake_case , snake_case = self._get_dataset(max_len=64 )
snake_case = 64
snake_case = ds.make_dynamic_sampler(lowercase_, required_batch_size_multiple=lowercase_ )
snake_case = [len(lowercase_ ) for x in batch_sampler]
assert len(set(lowercase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(lowercase_ ) == len(lowercase_ ) # no dropped or added examples
snake_case = DataLoader(lowercase_, batch_sampler=lowercase_, collate_fn=ds.collate_fn, num_workers=2 )
snake_case = []
snake_case = []
for batch in data_loader:
snake_case = batch['input_ids'].shape
snake_case = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
snake_case = np.product(batch['input_ids'].shape )
num_src_per_batch.append(lowercase_ )
if num_src_tokens > (max_tokens * 1.1):
failures.append(lowercase_ )
assert num_src_per_batch[0] == max(lowercase_ )
if failures:
raise AssertionError(F'''too many tokens in {len(lowercase_ )} batches''' )
def _lowerCamelCase ( self ) -> Any:
snake_case , snake_case , snake_case = self._get_dataset(max_len=512 )
snake_case = 2
snake_case = ds.make_sortish_sampler(lowercase_, shuffle=lowercase_ )
snake_case = DataLoader(lowercase_, batch_size=lowercase_, collate_fn=ds.collate_fn, num_workers=2 )
snake_case = DataLoader(lowercase_, batch_size=lowercase_, collate_fn=ds.collate_fn, num_workers=2, sampler=lowercase_ )
snake_case = tokenizer.pad_token_id
def count_pad_tokens(lowercase_, lowercase_="input_ids" ):
return [batch[k].eq(lowercase_ ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(lowercase_, k='labels' ) ) < sum(count_pad_tokens(lowercase_, k='labels' ) )
assert sum(count_pad_tokens(lowercase_ ) ) < sum(count_pad_tokens(lowercase_ ) )
assert len(lowercase_ ) == len(lowercase_ )
def _lowerCamelCase ( self, lowercase_=1000, lowercase_=128 ) -> List[Any]:
if os.getenv('USE_REAL_DATA', lowercase_ ):
snake_case = 'examples/seq2seq/wmt_en_ro'
snake_case = max_len * 2 * 64
if not Path(lowercase_ ).joinpath('train.len' ).exists():
save_len_file(lowercase_, lowercase_ )
else:
snake_case = 'examples/seq2seq/test_data/wmt_en_ro'
snake_case = max_len * 4
save_len_file(lowercase_, lowercase_ )
snake_case = AutoTokenizer.from_pretrained(lowercase_ )
snake_case = SeqaSeqDataset(
lowercase_, data_dir=lowercase_, type_path='train', max_source_length=lowercase_, max_target_length=lowercase_, n_obs=lowercase_, )
return ds, max_tokens, tokenizer
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case , snake_case , snake_case = self._get_dataset()
snake_case = set(DistributedSortishSampler(lowercase_, 256, num_replicas=2, rank=0, add_extra_examples=lowercase_ ) )
snake_case = set(DistributedSortishSampler(lowercase_, 256, num_replicas=2, rank=1, add_extra_examples=lowercase_ ) )
assert idsa.intersection(lowercase_ ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
], )
def _lowerCamelCase ( self, lowercase_ ) -> Optional[Any]:
snake_case = AutoTokenizer.from_pretrained(lowercase_, use_fast=lowercase_ )
if tok_name == MBART_TINY:
snake_case = SeqaSeqDataset(
lowercase_, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ), type_path='train', max_source_length=4, max_target_length=8, src_lang='EN', tgt_lang='FR', )
snake_case = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
snake_case = SeqaSeqDataset(
lowercase_, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ), type_path='train', max_source_length=4, max_target_length=8, )
snake_case = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(lowercase_ ) == 1 if tok_name == BART_TINY else len(lowercase_ ) == 0
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> None:
create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] )
def __magic_name__ ( A , A , A , A , ) -> None:
if index == len(A ):
print(A )
return
for i in range(len(A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
snake_case = True
create_state_space_tree(A , A , index + 1 , A )
current_sequence.pop()
snake_case = False
lowerCAmelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 332 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json",
# See all SEW models at https://huggingface.co/models?filter=sew
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''sew'''
def __init__( self, lowercase_=32, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_=2, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=0.1, lowercase_=0.0, lowercase_=0.1, lowercase_=0.1, lowercase_=0.02, lowercase_=1E-5, lowercase_="group", lowercase_="gelu", lowercase_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), lowercase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), lowercase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), lowercase_=False, lowercase_=128, lowercase_=16, lowercase_=True, lowercase_=0.05, lowercase_=10, lowercase_=2, lowercase_=0.0, lowercase_=10, lowercase_=0, lowercase_="mean", lowercase_=False, lowercase_=False, lowercase_=256, lowercase_=0, lowercase_=1, lowercase_=2, **lowercase_, ) -> List[Any]:
super().__init__(**lowercase_, pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_ )
snake_case = hidden_size
snake_case = feat_extract_norm
snake_case = feat_extract_activation
snake_case = list(lowercase_ )
snake_case = list(lowercase_ )
snake_case = list(lowercase_ )
snake_case = conv_bias
snake_case = num_conv_pos_embeddings
snake_case = num_conv_pos_embedding_groups
snake_case = len(self.conv_dim )
snake_case = num_hidden_layers
snake_case = intermediate_size
snake_case = squeeze_factor
snake_case = hidden_act
snake_case = num_attention_heads
snake_case = hidden_dropout
snake_case = attention_dropout
snake_case = activation_dropout
snake_case = feat_proj_dropout
snake_case = final_dropout
snake_case = layerdrop
snake_case = layer_norm_eps
snake_case = initializer_range
snake_case = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
snake_case = apply_spec_augment
snake_case = mask_time_prob
snake_case = mask_time_length
snake_case = mask_time_min_masks
snake_case = mask_feature_prob
snake_case = mask_feature_length
snake_case = mask_feature_min_masks
# ctc loss
snake_case = ctc_loss_reduction
snake_case = ctc_zero_infinity
# sequence classification
snake_case = use_weighted_layer_sum
snake_case = classifier_proj_size
@property
def _lowerCamelCase ( self ) -> Union[str, Any]:
return functools.reduce(operator.mul, self.conv_stride, 1 )
| 332 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''roberta'''
def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 | 1 |
'''simple docstring'''
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowerCamelCase ( unittest.TestCase ):
snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> int:
snake_case = hf_hub_download(
repo_id='nateraw/video-demo', filename='archery.mp4', repo_type='dataset' )
snake_case = VideoClassificationPipeline(model=lowercase_, image_processor=lowercase_, top_k=2 )
snake_case = [
example_video_filepath,
'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4',
]
return video_classifier, examples
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> List[str]:
for example in examples:
snake_case = video_classifier(lowercase_ )
self.assertEqual(
lowercase_, [
{'score': ANY(lowercase_ ), 'label': ANY(lowercase_ )},
{'score': ANY(lowercase_ ), 'label': ANY(lowercase_ )},
], )
@require_torch
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification'
snake_case = VideoMAEFeatureExtractor(
size={'shortest_edge': 10}, crop_size={'height': 10, 'width': 10} )
snake_case = pipeline(
'video-classification', model=lowercase_, feature_extractor=lowercase_, frame_sampling_rate=4 )
snake_case = hf_hub_download(repo_id='nateraw/video-demo', filename='archery.mp4', repo_type='dataset' )
snake_case = video_classifier(lowercase_, top_k=2 )
self.assertEqual(
nested_simplify(lowercase_, decimals=4 ), [{'score': 0.5_199, 'label': 'LABEL_0'}, {'score': 0.4_801, 'label': 'LABEL_1'}], )
snake_case = video_classifier(
[
video_file_path,
video_file_path,
], top_k=2, )
self.assertEqual(
nested_simplify(lowercase_, decimals=4 ), [
[{'score': 0.5_199, 'label': 'LABEL_0'}, {'score': 0.4_801, 'label': 'LABEL_1'}],
[{'score': 0.5_199, 'label': 'LABEL_0'}, {'score': 0.4_801, 'label': 'LABEL_1'}],
], )
@require_tf
def _lowerCamelCase ( self ) -> str:
pass
| 332 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_ = {
"allenai/led-base-16384": 1_6_3_8_4,
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = LEDTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int:
super().__init__(
lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) )
snake_case = add_prefix_space
snake_case = pre_tok_class(**lowercase_ )
snake_case = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case = 'post_processor'
snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ )
if tokenizer_component_instance:
snake_case = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case = tuple(state['sep'] )
if "cls" in state:
snake_case = tuple(state['cls'] )
snake_case = False
if state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = add_prefix_space
snake_case = True
if state.get('trim_offsets', lowercase_ ) != trim_offsets:
snake_case = trim_offsets
snake_case = True
if changes_to_apply:
snake_case = getattr(lowercase_, state.pop('type' ) )
snake_case = component_class(**lowercase_ )
setattr(self.backend_tokenizer, lowercase_, lowercase_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value
snake_case = value
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict:
snake_case = super()._pad(
encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, )
# Load from model defaults
if return_attention_mask is None:
snake_case = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ )
if needs_to_be_padded:
snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
snake_case = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 332 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self, lowercase_ ) -> Any:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'], model_result['ss'] ):
snake_case = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(lowercase_ )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> str:
snake_case = 'sgugger/tiny-distilbert-classification'
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, only_pretrain_model=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, torchscript=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == 'cpu', 'Cant do half precision' )
def _lowerCamelCase ( self ) -> Any:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, fpaa=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = AutoConfig.from_pretrained(lowercase_ )
# set architectures equal to `None`
snake_case = None
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_, configs=[config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> str:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == 'cpu', 'Can\'t do half precision' )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], fpaa=lowercase_, multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowerCamelCase ( self ) -> str:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_, configs=[config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'sshleifer/tinier_bart'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_, configs=[config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> str:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_, configs=[config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowerCamelCase ( self ) -> int:
snake_case = 'sshleifer/tinier_bart'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_, configs=[config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, save_to_csv=lowercase_, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(lowercase_, 'inf_time.csv' ), train_memory_csv_file=os.path.join(lowercase_, 'train_mem.csv' ), inference_memory_csv_file=os.path.join(lowercase_, 'inf_mem.csv' ), train_time_csv_file=os.path.join(lowercase_, 'train_time.csv' ), env_info_csv_file=os.path.join(lowercase_, 'env.csv' ), multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_ )
benchmark.run()
self.assertTrue(Path(os.path.join(lowercase_, 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase_, 'train_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase_, 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase_, 'train_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase_, 'env.csv' ) ).exists() )
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(lowercase_ ):
self.assertTrue(hasattr(lowercase_, 'sequential' ) )
self.assertTrue(hasattr(lowercase_, 'cumulative' ) )
self.assertTrue(hasattr(lowercase_, 'current' ) )
self.assertTrue(hasattr(lowercase_, 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(lowercase_, 'log.txt' ), log_print=lowercase_, trace_memory_line_by_line=lowercase_, multi_process=lowercase_, )
snake_case = PyTorchBenchmark(lowercase_ )
snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(lowercase_, 'log.txt' ) ).exists() )
| 332 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332 | 1 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=__lowerCAmelCase )
class lowerCamelCase ( __lowerCAmelCase ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
snake_case_ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
snake_case_ = Features({'''text''': Value('''string''' )} )
snake_case_ = Features({'''summary''': Value('''string''' )} )
snake_case_ = "text"
snake_case_ = "summary"
@property
def _lowerCamelCase ( self ) -> Dict[str, str]:
return {self.text_column: "text", self.summary_column: "summary"}
| 332 |
'''simple docstring'''
from pathlib import Path
import fire
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = Path(A )
snake_case = Path(A )
dest_dir.mkdir(exist_ok=A )
for path in src_dir.iterdir():
snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case = dest_dir.joinpath(path.name )
print(A )
dest_path.open('w' ).write('\n'.join(A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A , A ) -> int | float:
if len(A ) == 0:
raise ValueError('find_max() arg is an empty sequence' )
if (
left >= len(A )
or left < -len(A )
or right >= len(A )
or right < -len(A )
):
raise IndexError('list index out of range' )
if left == right:
return nums[left]
snake_case = (left + right) >> 1 # the middle
snake_case = find_max(A , A , A ) # find max in range[left, mid]
snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase_ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __magic_name__ ( A , A ) -> Union[str, Any]:
inspect_dataset(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __magic_name__ ( A , A ) -> int:
inspect_metric(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_config_info(A , config_name=A )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> Any:
with pytest.raises(A ):
get_dataset_config_info(A , config_name=A )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __magic_name__ ( A , A ) -> Dict:
snake_case = get_dataset_config_names(A )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_infos(A )
assert list(infos.keys() ) == expected_configs
snake_case = expected_configs[0]
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> Any:
snake_case = get_dataset_infos(A )
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> int:
with pytest.raises(A ):
get_dataset_split_names(A , config_name=A )
| 332 | 1 |
'''simple docstring'''
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
snake_case_ = KandinskyVaaControlnetImgaImgPipeline
snake_case_ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
snake_case_ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
snake_case_ = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
snake_case_ = False
@property
def _lowerCamelCase ( self ) -> Optional[int]:
return 32
@property
def _lowerCamelCase ( self ) -> Dict:
return 32
@property
def _lowerCamelCase ( self ) -> List[str]:
return self.time_input_dim
@property
def _lowerCamelCase ( self ) -> Tuple:
return self.time_input_dim * 4
@property
def _lowerCamelCase ( self ) -> str:
return 100
@property
def _lowerCamelCase ( self ) -> Any:
torch.manual_seed(0 )
snake_case = {
'in_channels': 8,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image_hint',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
snake_case = UNetaDConditionModel(**lowercase_ )
return model
@property
def _lowerCamelCase ( self ) -> str:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = VQModel(**self.dummy_movq_kwargs )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = self.dummy_unet
snake_case = self.dummy_movq
snake_case = {
'num_train_timesteps': 1000,
'beta_schedule': 'linear',
'beta_start': 0.00_085,
'beta_end': 0.012,
'clip_sample': False,
'set_alpha_to_one': False,
'steps_offset': 0,
'prediction_type': 'epsilon',
'thresholding': False,
}
snake_case = DDIMScheduler(**lowercase_ )
snake_case = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def _lowerCamelCase ( self, lowercase_, lowercase_=0 ) -> Dict:
snake_case = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowercase_ ) ).to(lowercase_ )
snake_case = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to(
lowercase_ )
# create init_image
snake_case = floats_tensor((1, 3, 64, 64), rng=random.Random(lowercase_ ) ).to(lowercase_ )
snake_case = image.cpu().permute(0, 2, 3, 1 )[0]
snake_case = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((256, 256) )
# create hint
snake_case = floats_tensor((1, 3, 64, 64), rng=random.Random(lowercase_ ) ).to(lowercase_ )
if str(lowercase_ ).startswith('mps' ):
snake_case = torch.manual_seed(lowercase_ )
else:
snake_case = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
snake_case = {
'image': init_image,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'hint': hint,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 10,
'guidance_scale': 7.0,
'strength': 0.2,
'output_type': 'np',
}
return inputs
def _lowerCamelCase ( self ) -> int:
snake_case = 'cpu'
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**lowercase_ )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = pipe(**self.get_dummy_inputs(lowercase_ ) )
snake_case = output.images
snake_case = pipe(
**self.get_dummy_inputs(lowercase_ ), return_dict=lowercase_, )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array(
[0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> List[str]:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' )
snake_case = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
snake_case = init_image.resize((512, 512) )
snake_case = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/hint_image_cat.png' )
snake_case = torch.from_numpy(np.array(lowercase_ ) ).float() / 255.0
snake_case = hint.permute(2, 0, 1 ).unsqueeze(0 )
snake_case = 'A robot, 4k photo'
snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa )
pipe_prior.to(lowercase_ )
snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
snake_case = torch.Generator(device='cpu' ).manual_seed(0 )
snake_case , snake_case = pipe_prior(
lowercase_, image=lowercase_, strength=0.85, generator=lowercase_, negative_prompt='', ).to_tuple()
snake_case = pipeline(
image=lowercase_, image_embeds=lowercase_, negative_image_embeds=lowercase_, hint=lowercase_, generator=lowercase_, num_inference_steps=100, height=512, width=512, strength=0.5, output_type='np', )
snake_case = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(lowercase_, lowercase_ )
| 332 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase_ = False
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 12
@property
def _lowerCamelCase ( self ) -> Dict:
return 12
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, )
return model
@property
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = 12
snake_case = 12
snake_case = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
snake_case = TransformeraDModel(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipeline(
'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', )
snake_case = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''note_seq''']
def __init__( self, *lowercase_, **lowercase_ ) -> str:
requires_backends(self, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]:
requires_backends(cls, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]:
requires_backends(cls, ['note_seq'] )
| 332 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''note_seq''']
def __init__( self, *lowercase_, **lowercase_ ) -> str:
requires_backends(self, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]:
requires_backends(cls, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]:
requires_backends(cls, ['note_seq'] )
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( ) -> Tuple:
snake_case = []
snake_case = 1
while len(A ) < 1E6:
constant.append(str(A ) )
i += 1
snake_case = ''.join(A )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[9_9] )
* int(constant[9_9_9] )
* int(constant[9_9_9_9] )
* int(constant[9_9_9_9_9] )
* int(constant[9_9_9_9_9_9] )
)
if __name__ == "__main__":
print(solution())
| 332 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 | 1 |
'''simple docstring'''
from collections.abc import Callable
def __magic_name__ ( A , A , A ) -> float:
snake_case = a
snake_case = b
if function(A ) == 0: # one of the a or b is a root for the function
return a
elif function(A ) == 0:
return b
elif (
function(A ) * function(A ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
snake_case = start + (end - start) / 2.0
while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7
if function(A ) == 0:
return mid
elif function(A ) * function(A ) < 0:
snake_case = mid
else:
snake_case = mid
snake_case = start + (end - start) / 2.0
return mid
def __magic_name__ ( A ) -> float:
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_0_0_0))
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase_ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase_ = dataset.iloc[:, 1:2].values
lowerCAmelCase_ = dataset.iloc[:, 2].values
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase_ = PolynomialFeatures(degree=4)
lowerCAmelCase_ = poly_reg.fit_transform(X)
lowerCAmelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def __magic_name__ ( ) -> Any:
plt.scatter(A , A , color='red' )
plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 | 1 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase_ = logging.getLogger(__name__)
def __magic_name__ ( A , A ) -> str:
return (preds == labels).mean()
@dataclass
class lowerCamelCase :
snake_case_ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class lowerCamelCase :
snake_case_ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} )
snake_case_ = field(metadata={'''help''': '''Should contain the data files for the task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def __magic_name__ ( ) -> List[str]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
snake_case , snake_case , snake_case = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , A )
# Set seed
set_seed(training_args.seed )
try:
snake_case = processors[data_args.task_name]()
snake_case = processor.get_labels()
snake_case = len(A )
except KeyError:
raise ValueError('Task not found: %s' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
snake_case = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , )
# Get datasets
snake_case = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=A , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
snake_case = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=A , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(A ) -> Dict:
snake_case = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(A , p.label_ids )}
# Data collator
snake_case = DataCollatorWithPadding(A , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
snake_case = Trainer(
model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , data_collator=A , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
snake_case = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
snake_case = trainer.evaluate()
snake_case = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_master():
with open(A , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , A , A )
writer.write('%s = %s\n' % (key, value) )
results.update(A )
return results
def __magic_name__ ( A ) -> Tuple:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 332 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ''''''
snake_case_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
snake_case_ = None # compression type in fsspec. ex: "gzip"
snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str:
super().__init__(self, **lowercase_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
snake_case = fsspec.open(
lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed.
}, **(target_options or {}), )
snake_case = os.path.basename(self.file.path.split('::' )[0] )
snake_case = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
snake_case = None
@classmethod
def _lowerCamelCase ( cls, lowercase_ ) -> Any:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowercase_ ).lstrip('/' )
def _lowerCamelCase ( self ) -> Optional[Any]:
if self.dir_cache is None:
snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
snake_case = {f['name']: f}
def _lowerCamelCase ( self, lowercase_ ) -> str:
return self.file.open().read()
def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any:
snake_case = self._strip_protocol(lowercase_ )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''bz2'''
snake_case_ = '''bz2'''
snake_case_ = '''.bz2'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''gzip'''
snake_case_ = '''gzip'''
snake_case_ = '''.gz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''lz4'''
snake_case_ = '''lz4'''
snake_case_ = '''.lz4'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xz'''
snake_case_ = '''xz'''
snake_case_ = '''.xz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''zstd'''
snake_case_ = '''zstd'''
snake_case_ = '''.zst'''
def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]:
super().__init__(
fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
snake_case = self.file.__enter__
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[Any]:
snake_case = file_
def __enter__( self ) -> Dict:
self._file.__enter__()
return self
def __exit__( self, *lowercase_, **lowercase_ ) -> Dict:
self._file.__exit__(*lowercase_, **lowercase_ )
def __iter__( self ) -> List[str]:
return iter(self._file )
def _lowerCamelCase ( self ) -> List[str]:
return next(self._file )
def __getattr__( self, lowercase_ ) -> List[Any]:
return getattr(self._file, lowercase_ )
def fixed_enter(*lowercase_, **lowercase_ ):
return WrappedFile(_enter(*lowercase_, **lowercase_ ) )
snake_case = fixed_enter
| 332 | 1 |
'''simple docstring'''
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
@register_to_config
def __init__( self, lowercase_ = 768, ) -> str:
super().__init__()
snake_case = nn.Parameter(torch.zeros(1, lowercase_ ) )
snake_case = nn.Parameter(torch.ones(1, lowercase_ ) )
def _lowerCamelCase ( self, lowercase_ = None, lowercase_ = None, ) -> Optional[int]:
snake_case = nn.Parameter(self.mean.to(lowercase_ ).to(lowercase_ ) )
snake_case = nn.Parameter(self.std.to(lowercase_ ).to(lowercase_ ) )
return self
def _lowerCamelCase ( self, lowercase_ ) -> Tuple:
snake_case = (embeds - self.mean) * 1.0 / self.std
return embeds
def _lowerCamelCase ( self, lowercase_ ) -> Optional[int]:
snake_case = (embeds * self.std) + self.mean
return embeds
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A , A ) -> int | float:
if len(A ) == 0:
raise ValueError('find_max() arg is an empty sequence' )
if (
left >= len(A )
or left < -len(A )
or right >= len(A )
or right < -len(A )
):
raise IndexError('list index out of range' )
if left == right:
return nums[left]
snake_case = (left + right) >> 1 # the middle
snake_case = find_max(A , A , A ) # find max in range[left, mid]
snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 | 1 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
lowerCAmelCase_ = None
lowerCAmelCase_ = {
"7B": 1_1_0_0_8,
"13B": 1_3_8_2_4,
"30B": 1_7_9_2_0,
"65B": 2_2_0_1_6,
"70B": 2_8_6_7_2,
}
lowerCAmelCase_ = {
"7B": 1,
"7Bf": 1,
"13B": 2,
"13Bf": 2,
"30B": 4,
"65B": 8,
"70B": 8,
"70Bf": 8,
}
def __magic_name__ ( A , A=1 , A=2_5_6 ) -> Tuple:
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def __magic_name__ ( A ) -> List[str]:
with open(A , 'r' ) as f:
return json.load(A )
def __magic_name__ ( A , A ) -> str:
with open(A , 'w' ) as f:
json.dump(A , A )
def __magic_name__ ( A , A , A , A=True ) -> Optional[Any]:
os.makedirs(A , exist_ok=A )
snake_case = os.path.join(A , 'tmp' )
os.makedirs(A , exist_ok=A )
snake_case = read_json(os.path.join(A , 'params.json' ) )
snake_case = NUM_SHARDS[model_size]
snake_case = params['n_layers']
snake_case = params['n_heads']
snake_case = n_heads // num_shards
snake_case = params['dim']
snake_case = dim // n_heads
snake_case = 10_000.0
snake_case = 1.0 / (base ** (torch.arange(0 , A , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
snake_case = params['n_kv_heads'] # for GQA / MQA
snake_case = n_heads_per_shard // num_key_value_heads
snake_case = dim // num_key_value_heads
else: # compatibility with other checkpoints
snake_case = n_heads
snake_case = n_heads_per_shard
snake_case = dim
# permute for sliced rotary
def permute(A , A=n_heads , A=dim , A=dim ):
return w.view(A , dima // n_heads // 2 , 2 , A ).transpose(1 , 2 ).reshape(A , A )
print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
snake_case = torch.load(os.path.join(A , 'consolidated.00.pth' ) , map_location='cpu' )
else:
# Sharded
snake_case = [
torch.load(os.path.join(A , F'''consolidated.{i:02d}.pth''' ) , map_location='cpu' )
for i in range(A )
]
snake_case = 0
snake_case = {'weight_map': {}}
for layer_i in range(A ):
snake_case = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'''
if model_size == "7B":
# Unsharded
snake_case = {
F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute(
loaded[F'''layers.{layer_i}.attention.wq.weight'''] ),
F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute(
loaded[F'''layers.{layer_i}.attention.wk.weight'''] ),
F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''],
F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''],
F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''],
F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''],
F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''],
F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''],
F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
snake_case = {
F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][
F'''layers.{layer_i}.attention_norm.weight'''
].clone(),
F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][
F'''layers.{layer_i}.ffn_norm.weight'''
].clone(),
}
snake_case = permute(
torch.cat(
[
loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(A , A , A )
for i in range(A )
] , dim=0 , ).reshape(A , A ) )
snake_case = permute(
torch.cat(
[
loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view(
A , A , A )
for i in range(A )
] , dim=0 , ).reshape(A , A ) , A , A , A , )
snake_case = torch.cat(
[
loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view(
A , A , A )
for i in range(A )
] , dim=0 , ).reshape(A , A )
snake_case = torch.cat(
[loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(A )] , dim=1 )
snake_case = torch.cat(
[loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(A )] , dim=0 )
snake_case = torch.cat(
[loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(A )] , dim=1 )
snake_case = torch.cat(
[loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(A )] , dim=0 )
snake_case = inv_freq
for k, v in state_dict.items():
snake_case = filename
param_count += v.numel()
torch.save(A , os.path.join(A , A ) )
snake_case = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'''
if model_size == "7B":
# Unsharded
snake_case = {
'model.embed_tokens.weight': loaded['tok_embeddings.weight'],
'model.norm.weight': loaded['norm.weight'],
'lm_head.weight': loaded['output.weight'],
}
else:
snake_case = {
'model.norm.weight': loaded[0]['norm.weight'],
'model.embed_tokens.weight': torch.cat(
[loaded[i]['tok_embeddings.weight'] for i in range(A )] , dim=1 ),
'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(A )] , dim=0 ),
}
for k, v in state_dict.items():
snake_case = filename
param_count += v.numel()
torch.save(A , os.path.join(A , A ) )
# Write configs
snake_case = {'total_size': param_count * 2}
write_json(A , os.path.join(A , 'pytorch_model.bin.index.json' ) )
snake_case = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1
snake_case = params['multiple_of'] if 'multiple_of' in params else 2_5_6
snake_case = LlamaConfig(
hidden_size=A , intermediate_size=compute_intermediate_size(A , A , A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=A , )
config.save_pretrained(A )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('Loading the checkpoint in a Llama model.' )
snake_case = LlamaForCausalLM.from_pretrained(A , torch_dtype=torch.floataa , low_cpu_mem_usage=A )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('Saving in the Transformers format.' )
model.save_pretrained(A , safe_serialization=A )
shutil.rmtree(A )
def __magic_name__ ( A , A ) -> Tuple:
# Initialize the tokenizer based on the `spm` model
snake_case = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' )
snake_case = tokenizer_class(A )
tokenizer.save_pretrained(A )
def __magic_name__ ( ) -> List[str]:
snake_case = argparse.ArgumentParser()
parser.add_argument(
'--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , )
parser.add_argument(
'--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , )
parser.add_argument(
'--output_dir' , help='Location to write HF model and tokenizer' , )
parser.add_argument('--safe_serialization' , type=A , help='Whether or not to save using `safetensors`.' )
snake_case = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
snake_case = os.path.join(args.input_dir , 'tokenizer.model' )
write_tokenizer(args.output_dir , A )
if __name__ == "__main__":
main()
| 332 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
@register_to_config
def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str:
super().__init__()
# pass init params to Encoder
snake_case = Encoder(
in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, )
snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ )
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
# pass init params to Decoder
snake_case = Decoder(
in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput:
snake_case = self.encoder(lowercase_ )
snake_case = self.quant_conv(lowercase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_ )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
snake_case , snake_case , snake_case = self.quantize(lowercase_ )
else:
snake_case = h
snake_case = self.post_quant_conv(lowercase_ )
snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
snake_case = sample
snake_case = self.encode(lowercase_ ).latents
snake_case = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 332 | 1 |
'''simple docstring'''
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def __magic_name__ ( A ) -> str:
return EnvironmentCommand()
def __magic_name__ ( A ) -> int:
return EnvironmentCommand(args.accelerate_config_file )
class lowerCamelCase ( __lowerCAmelCase ):
@staticmethod
def _lowerCamelCase ( lowercase_ ) -> Dict:
snake_case = parser.add_parser('env' )
download_parser.set_defaults(func=lowercase_ )
download_parser.add_argument(
'--accelerate-config_file', default=lowercase_, help='The accelerate config file to use for the default values in the launching script.', )
download_parser.set_defaults(func=lowercase_ )
def __init__( self, lowercase_, *lowercase_ ) -> None:
snake_case = accelerate_config_file
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = 'not installed'
if is_safetensors_available():
import safetensors
snake_case = safetensors.__version__
elif importlib.util.find_spec('safetensors' ) is not None:
import safetensors
snake_case = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
snake_case = 'not installed'
snake_case = snake_case = 'not found'
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
snake_case = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(lowercase_ ):
snake_case = load_config_from_file(self._accelerate_config_file ).to_dict()
snake_case = (
'\n'.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(lowercase_, lowercase_ )
else F'''\t{accelerate_config}'''
)
snake_case = 'not installed'
snake_case = 'NA'
if is_torch_available():
import torch
snake_case = torch.__version__
snake_case = torch.cuda.is_available()
snake_case = 'not installed'
snake_case = 'NA'
if is_tf_available():
import tensorflow as tf
snake_case = tf.__version__
try:
# deprecated in v2.1
snake_case = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
snake_case = bool(tf.config.list_physical_devices('GPU' ) )
snake_case = 'not installed'
snake_case = 'not installed'
snake_case = 'not installed'
snake_case = 'NA'
if is_flax_available():
import flax
import jax
import jaxlib
snake_case = flax.__version__
snake_case = jax.__version__
snake_case = jaxlib.__version__
snake_case = jax.lib.xla_bridge.get_backend().platform
snake_case = {
'`transformers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'Huggingface_hub version': huggingface_hub.__version__,
'Safetensors version': F'''{safetensors_version}''',
'Accelerate version': F'''{accelerate_version}''',
'Accelerate config': F'''{accelerate_config_str}''',
'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''',
'Tensorflow version (GPU?)': F'''{tf_version} ({tf_cuda_available})''',
'Flax version (CPU?/GPU?/TPU?)': F'''{flax_version} ({jax_backend})''',
'Jax version': F'''{jax_version}''',
'JaxLib version': F'''{jaxlib_version}''',
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(lowercase_ ) )
return info
@staticmethod
def _lowerCamelCase ( lowercase_ ) -> int:
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 332 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0]
snake_case = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
snake_case = 0
# the area corresponding to the grid that gives the product closest to target
snake_case = 0
# an estimate of b, using the quadratic formula
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the triangle number corresponding to b_floor
snake_case = 42
# the triangle number corresponding to b_ceil
snake_case = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
snake_case = floor(A )
snake_case = ceil(A )
snake_case = triangle_numbers[b_floor]
snake_case = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_first_guess * triangle_a
snake_case = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_second_guess * triangle_a
snake_case = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"{solution() = }")
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0]
snake_case = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
snake_case = 0
# the area corresponding to the grid that gives the product closest to target
snake_case = 0
# an estimate of b, using the quadratic formula
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the triangle number corresponding to b_floor
snake_case = 42
# the triangle number corresponding to b_ceil
snake_case = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
snake_case = floor(A )
snake_case = ceil(A )
snake_case = triangle_numbers[b_floor]
snake_case = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_first_guess * triangle_a
snake_case = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_second_guess * triangle_a
snake_case = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"{solution() = }")
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 332 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase_ = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowerCAmelCase_ = 2_5_0_0_0_4
lowerCAmelCase_ = 2_5_0_0_2_0
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
snake_case_ = MBartaaTokenizer
snake_case_ = MBartaaTokenizerFast
snake_case_ = True
snake_case_ = True
def _lowerCamelCase ( self ) -> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
snake_case = MBartaaTokenizer(lowercase_, src_lang='en_XX', tgt_lang='ro_RO', keep_accents=lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def _lowerCamelCase ( self ) -> str:
snake_case = '<s>'
snake_case = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ), lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ), lowercase_ )
def _lowerCamelCase ( self ) -> List[str]:
snake_case = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0], '<s>' )
self.assertEqual(vocab_keys[1], '<pad>' )
self.assertEqual(vocab_keys[-1], '<mask>' )
self.assertEqual(len(lowercase_ ), 1054 )
def _lowerCamelCase ( self ) -> Optional[int]:
self.assertEqual(self.get_tokenizer().vocab_size, 1054 )
def _lowerCamelCase ( self ) -> Union[str, Any]:
snake_case = MBartaaTokenizer(lowercase_, src_lang='en_XX', tgt_lang='ro_RO', keep_accents=lowercase_ )
snake_case = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_, ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], )
snake_case = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_, [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'], )
snake_case = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(
lowercase_, [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
], )
snake_case = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_, [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'], )
@slow
def _lowerCamelCase ( self ) -> str:
# fmt: off
snake_case = {'input_ids': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_, model_name='facebook/mbart-large-50', revision='d3913889c59cd5c9e456b269c376325eabad57e2', )
def _lowerCamelCase ( self ) -> Dict:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
snake_case = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
snake_case = self.rust_tokenizer_class.from_pretrained(lowercase_, **lowercase_ )
snake_case = self.tokenizer_class.from_pretrained(lowercase_, **lowercase_ )
snake_case = tempfile.mkdtemp()
snake_case = tokenizer_r.save_pretrained(lowercase_ )
snake_case = tokenizer_p.save_pretrained(lowercase_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
snake_case = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(lowercase_, lowercase_ )
# Checks everything loads correctly in the same way
snake_case = tokenizer_r.from_pretrained(lowercase_ )
snake_case = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_, lowercase_ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowercase_ )
# Save tokenizer rust, legacy_format=True
snake_case = tempfile.mkdtemp()
snake_case = tokenizer_r.save_pretrained(lowercase_, legacy_format=lowercase_ )
snake_case = tokenizer_p.save_pretrained(lowercase_ )
# Checks it save with the same files
self.assertSequenceEqual(lowercase_, lowercase_ )
# Checks everything loads correctly in the same way
snake_case = tokenizer_r.from_pretrained(lowercase_ )
snake_case = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_, lowercase_ ) )
shutil.rmtree(lowercase_ )
# Save tokenizer rust, legacy_format=False
snake_case = tempfile.mkdtemp()
snake_case = tokenizer_r.save_pretrained(lowercase_, legacy_format=lowercase_ )
snake_case = tokenizer_p.save_pretrained(lowercase_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
snake_case = tokenizer_r.from_pretrained(lowercase_ )
snake_case = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_, lowercase_ ) )
shutil.rmtree(lowercase_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( unittest.TestCase ):
snake_case_ = '''facebook/mbart-large-50-one-to-many-mmt'''
snake_case_ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
snake_case_ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
snake_case_ = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2]
@classmethod
def _lowerCamelCase ( cls ) -> str:
snake_case = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name, src_lang='en_XX', tgt_lang='ro_RO' )
snake_case = 1
return cls
def _lowerCamelCase ( self ) -> str:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'], 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'], 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'], 250020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'], 250038 )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens, lowercase_ )
def _lowerCamelCase ( self ) -> List[Any]:
self.assertIn(lowercase_, self.tokenizer.all_special_ids )
snake_case = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
snake_case = self.tokenizer.decode(lowercase_, skip_special_tokens=lowercase_ )
snake_case = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=lowercase_ )
self.assertEqual(lowercase_, lowercase_ )
self.assertNotIn(self.tokenizer.eos_token, lowercase_ )
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = ['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0], lowercase_ )
snake_case = 10
snake_case = self.tokenizer(lowercase_, max_length=lowercase_, truncation=lowercase_ ).input_ids[0]
self.assertEqual(ids[0], lowercase_ )
self.assertEqual(ids[-1], 2 )
self.assertEqual(len(lowercase_ ), lowercase_ )
def _lowerCamelCase ( self ) -> Optional[Any]:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ), [250053, 250001] )
def _lowerCamelCase ( self ) -> int:
snake_case = tempfile.mkdtemp()
snake_case = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowercase_ )
snake_case = MBartaaTokenizer.from_pretrained(lowercase_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids, lowercase_ )
@require_torch
def _lowerCamelCase ( self ) -> List[str]:
snake_case = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=lowercase_, return_tensors='pt' )
snake_case = shift_tokens_right(batch['labels'], self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def _lowerCamelCase ( self ) -> List[str]:
snake_case = self.tokenizer(
self.src_text, text_target=self.tgt_text, padding=lowercase_, truncation=lowercase_, max_length=len(self.expected_src_tokens ), return_tensors='pt', )
snake_case = shift_tokens_right(batch['labels'], self.tokenizer.pad_token_id )
self.assertIsInstance(lowercase_, lowercase_ )
self.assertEqual((2, 14), batch.input_ids.shape )
self.assertEqual((2, 14), batch.attention_mask.shape )
snake_case = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens, lowercase_ )
self.assertEqual(2, batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = self.tokenizer(self.src_text, padding=lowercase_, truncation=lowercase_, max_length=3, return_tensors='pt' )
snake_case = self.tokenizer(
text_target=self.tgt_text, padding=lowercase_, truncation=lowercase_, max_length=10, return_tensors='pt' )
snake_case = targets['input_ids']
snake_case = shift_tokens_right(lowercase_, self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1], 3 )
self.assertEqual(batch.decoder_input_ids.shape[1], 10 )
@require_torch
def _lowerCamelCase ( self ) -> List[str]:
snake_case = self.tokenizer._build_translation_inputs(
'A test', return_tensors='pt', src_lang='en_XX', tgt_lang='ar_AR' )
self.assertEqual(
nested_simplify(lowercase_ ), {
# en_XX, A, test, EOS
'input_ids': [[250004, 62, 3034, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 250001,
}, )
| 332 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
snake_case_ = field(
default=64 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
snake_case_ = field(
default=30 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
snake_case_ = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''train'''
snake_case_ = '''dev'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int:
snake_case = args
snake_case = is_language_sensitive
snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowercase_, lowercase_ ):
try:
snake_case = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
snake_case = mode
# Load data features from cache or dataset file
snake_case = 'v2' if args.version_2_with_negative else 'v1'
snake_case = os.path.join(
cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
snake_case = time.time()
snake_case = torch.load(lowercase_ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
snake_case = self.old_features['features']
snake_case = self.old_features.get('dataset', lowercase_ )
snake_case = self.old_features.get('examples', lowercase_ )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
' future run' )
else:
if mode == Split.dev:
snake_case = self.processor.get_dev_examples(args.data_dir )
else:
snake_case = self.processor.get_train_examples(args.data_dir )
snake_case , snake_case = squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, )
snake_case = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> Tuple:
return len(self.features )
def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
snake_case = self.features[i]
snake_case = torch.tensor(feature.input_ids, dtype=torch.long )
snake_case = torch.tensor(feature.attention_mask, dtype=torch.long )
snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long )
snake_case = torch.tensor(feature.cls_index, dtype=torch.long )
snake_case = torch.tensor(feature.p_mask, dtype=torch.float )
snake_case = torch.tensor(feature.is_impossible, dtype=torch.float )
snake_case = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
snake_case = torch.tensor(feature.start_position, dtype=torch.long )
snake_case = torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def __magic_name__ ( A , A , A , A , ) -> list[float]:
snake_case , snake_case = coefficient_matrix.shape
snake_case , snake_case = constant_matrix.shape
if rowsa != colsa:
snake_case = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'''
raise ValueError(A )
if colsa != 1:
snake_case = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}'''
raise ValueError(A )
if rowsa != rowsa:
snake_case = (
'Coefficient and constant matrices dimensions must be nxn and nx1 but '
F'''received {rowsa}x{colsa} and {rowsa}x{colsa}'''
)
raise ValueError(A )
if len(A ) != rowsa:
snake_case = (
'Number of initial values must be equal to number of rows in coefficient '
F'''matrix but received {len(A )} and {rowsa}'''
)
raise ValueError(A )
if iterations <= 0:
raise ValueError('Iterations must be at least 1' )
snake_case = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
snake_case , snake_case = table.shape
strictly_diagonally_dominant(A )
# Iterates the whole matrix for given number of times
for _ in range(A ):
snake_case = []
for row in range(A ):
snake_case = 0
for col in range(A ):
if col == row:
snake_case = table[row][col]
elif col == cols - 1:
snake_case = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
snake_case = (temp + val) / denom
new_val.append(A )
snake_case = new_val
return [float(A ) for i in new_val]
def __magic_name__ ( A ) -> bool:
snake_case , snake_case = table.shape
snake_case = True
for i in range(0 , A ):
snake_case = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError('Coefficient matrix is not strictly diagonally dominant' )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def __magic_name__ ( A , A , A ) -> Any:
# Initialise PyTorch model
snake_case = BertConfig.from_json_file(A )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = BertForPreTraining(A )
# Load weights from tf checkpoint
load_tf_weights_in_bert(A , A , A )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 332 | 1 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase :
def __init__( self, lowercase_, lowercase_=13, lowercase_=32, lowercase_=3, lowercase_=4, lowercase_=[10, 20, 30, 40], lowercase_=[2, 2, 3, 2], lowercase_=True, lowercase_=True, lowercase_=37, lowercase_="gelu", lowercase_=10, lowercase_=0.02, lowercase_=["stage2", "stage3", "stage4"], lowercase_=3, lowercase_=None, ) -> Union[str, Any]:
snake_case = parent
snake_case = batch_size
snake_case = image_size
snake_case = num_channels
snake_case = num_stages
snake_case = hidden_sizes
snake_case = depths
snake_case = is_training
snake_case = use_labels
snake_case = intermediate_size
snake_case = hidden_act
snake_case = type_sequence_label_size
snake_case = initializer_range
snake_case = out_features
snake_case = num_labels
snake_case = scope
snake_case = num_stages
def _lowerCamelCase ( self ) -> str:
snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case = None
if self.use_labels:
snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size )
snake_case = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self ) -> int:
return ConvNextConfig(
num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, )
def _lowerCamelCase ( self ) -> Dict:
return UperNetConfig(
backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=lowercase_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=lowercase_, loss_ignore_index=255, num_labels=self.num_labels, )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> List[str]:
snake_case = UperNetForSemanticSegmentation(config=lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case = model(lowercase_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def _lowerCamelCase ( self ) -> str:
snake_case = self.prepare_config_and_inputs()
(
(
snake_case
) , (
snake_case
) , (
snake_case
) ,
) = config_and_inputs
snake_case = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
snake_case_ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
snake_case_ = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {}
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def _lowerCamelCase ( self ) -> str:
snake_case = UperNetModelTester(self )
snake_case = ConfigTester(self, config_class=lowercase_, has_text_modality=lowercase_, hidden_size=37 )
def _lowerCamelCase ( self ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self ) -> Any:
return
def _lowerCamelCase ( self ) -> int:
snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case = model_class(lowercase_ )
snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case = [*signature.parameters.keys()]
snake_case = ['pixel_values']
self.assertListEqual(arg_names[:1], lowercase_ )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ )
@unittest.skip(reason='UperNet does not use inputs_embeds' )
def _lowerCamelCase ( self ) -> List[str]:
pass
@unittest.skip(reason='UperNet does not support input and output embeddings' )
def _lowerCamelCase ( self ) -> int:
pass
@unittest.skip(reason='UperNet does not have a base model' )
def _lowerCamelCase ( self ) -> Any:
pass
@unittest.skip(reason='UperNet does not have a base model' )
def _lowerCamelCase ( self ) -> Any:
pass
@require_torch_multi_gpu
@unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _lowerCamelCase ( self ) -> Optional[Any]:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _lowerCamelCase ( self ) -> Optional[Any]:
pass
def _lowerCamelCase ( self ) -> Optional[int]:
def check_hidden_states_output(lowercase_, lowercase_, lowercase_ ):
snake_case = model_class(lowercase_ )
model.to(lowercase_ )
model.eval()
with torch.no_grad():
snake_case = model(**self._prepare_for_class(lowercase_, lowercase_ ) )
snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case = self.model_tester.num_stages
self.assertEqual(len(lowercase_ ), expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case = True
check_hidden_states_output(lowercase_, lowercase_, lowercase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case = True
check_hidden_states_output(lowercase_, lowercase_, lowercase_ )
def _lowerCamelCase ( self ) -> Any:
snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common()
snake_case = _config_zero_init(lowercase_ )
snake_case = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
snake_case = model_class(config=lowercase_ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', )
@unittest.skip(reason='UperNet does not have tied weights' )
def _lowerCamelCase ( self ) -> Optional[int]:
pass
@slow
def _lowerCamelCase ( self ) -> Optional[Any]:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case = UperNetForSemanticSegmentation.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
def __magic_name__ ( ) -> str:
snake_case = hf_hub_download(
repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' )
snake_case = Image.open(A ).convert('RGB' )
return image
@require_torch
@require_vision
@slow
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Tuple:
snake_case = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' )
snake_case = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowercase_ )
snake_case = prepare_img()
snake_case = processor(images=lowercase_, return_tensors='pt' ).to(lowercase_ )
with torch.no_grad():
snake_case = model(**lowercase_ )
snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape, lowercase_ )
snake_case = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(lowercase_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], lowercase_, atol=1E-4 ) )
def _lowerCamelCase ( self ) -> Dict:
snake_case = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' )
snake_case = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowercase_ )
snake_case = prepare_img()
snake_case = processor(images=lowercase_, return_tensors='pt' ).to(lowercase_ )
with torch.no_grad():
snake_case = model(**lowercase_ )
snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape, lowercase_ )
snake_case = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(lowercase_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], lowercase_, atol=1E-4 ) )
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> list:
if len(A ) == 0:
return []
snake_case , snake_case = min(A ), max(A )
snake_case = int(max_value - min_value ) + 1
snake_case = [[] for _ in range(A )]
for i in my_list:
buckets[int(i - min_value )].append(A )
return [v for bucket in buckets for v in sorted(A )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 332 | 1 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def __magic_name__ ( A ) -> List[Any]:
snake_case = 3_8_4
if "tiny" in model_name:
snake_case = [3, 3, 9, 3]
snake_case = [9_6, 1_9_2, 3_8_4, 7_6_8]
if "small" in model_name:
snake_case = [3, 3, 2_7, 3]
snake_case = [9_6, 1_9_2, 3_8_4, 7_6_8]
if "base" in model_name:
snake_case = [3, 3, 2_7, 3]
snake_case = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4]
snake_case = 5_1_2
if "large" in model_name:
snake_case = [3, 3, 2_7, 3]
snake_case = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6]
snake_case = 7_6_8
if "xlarge" in model_name:
snake_case = [3, 3, 2_7, 3]
snake_case = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8]
snake_case = 1_0_2_4
# set label information
snake_case = 1_5_0
snake_case = 'huggingface/label-files'
snake_case = 'ade20k-id2label.json'
snake_case = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = {v: k for k, v in idalabel.items()}
snake_case = ConvNextConfig(
depths=A , hidden_sizes=A , out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
snake_case = UperNetConfig(
backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , )
return config
def __magic_name__ ( A ) -> Dict:
snake_case = []
# fmt: off
# stem
rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') )
rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') )
rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') )
rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
('decode_head.conv_seg.weight', 'decode_head.classifier.weight'),
('decode_head.conv_seg.bias', 'decode_head.classifier.bias'),
('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'),
('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'),
] )
# fmt: on
return rename_keys
def __magic_name__ ( A , A , A ) -> int:
snake_case = dct.pop(A )
snake_case = val
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = {
'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth',
'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth',
'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth',
'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth',
'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth',
}
snake_case = model_name_to_url[model_name]
snake_case = torch.hub.load_state_dict_from_url(A , map_location='cpu' )['state_dict']
snake_case = get_upernet_config(A )
snake_case = UperNetForSemanticSegmentation(A )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
snake_case = state_dict.pop(A )
if "bn" in key:
snake_case = key.replace('bn' , 'batch_norm' )
snake_case = val
# rename keys
snake_case = create_rename_keys(A )
for src, dest in rename_keys:
rename_key(A , A , A )
model.load_state_dict(A )
# verify on image
snake_case = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
snake_case = Image.open(requests.get(A , stream=A ).raw ).convert('RGB' )
snake_case = SegformerImageProcessor()
snake_case = processor(A , return_tensors='pt' ).pixel_values
with torch.no_grad():
snake_case = model(A )
if model_name == "upernet-convnext-tiny":
snake_case = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
snake_case = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
snake_case = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
snake_case = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
snake_case = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print('Logits:' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(A )
print(F'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(A )
if push_to_hub:
print(F'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(F'''openmmlab/{model_name}''' )
processor.push_to_hub(F'''openmmlab/{model_name}''' )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-convnext-tiny",
type=str,
choices=[f"upernet-convnext-{size}" for size in ["tiny", "small", "base", "large", "xlarge"]],
help="Name of the ConvNext UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCAmelCase_ = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 332 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 332 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
lowerCAmelCase_ = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 |
'''simple docstring'''
import pytest
lowerCAmelCase_ = "__dummy_dataset1__"
lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def __magic_name__ ( ) -> List[Any]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __magic_name__ ( ) -> Union[str, Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = dataset_loading_script_name
snake_case = tmp_path / 'datasets' / script_name
script_dir.mkdir(parents=A )
snake_case = script_dir / F'''{script_name}.py'''
with open(A , 'w' ) as f:
f.write(A )
return str(A )
| 332 | 1 |
'''simple docstring'''
import math
import unittest
def __magic_name__ ( A ) -> bool:
assert isinstance(A , A ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> List[str]:
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def _lowerCamelCase ( self ) -> List[str]:
with self.assertRaises(lowercase_ ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ), 'Zero doesn\'t have any positive factors, primes must have exactly two.', )
self.assertFalse(
is_prime(1 ), 'One only has 1 positive factor, primes must have exactly two.', )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 332 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCAmelCase_ = Lock()
def __magic_name__ ( A , A , A , A , A , A , A ) -> Any:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 1_0 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(A )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
snake_case = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
snake_case = min(A , A )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(A )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
snake_case = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
snake_case = max(A , A )
# after all swaps are performed, send the values back to main
result_pipe[1].send(A )
def __magic_name__ ( A ) -> str:
snake_case = []
snake_case = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
snake_case = temp_rs
snake_case = temp_rr
for i in range(1 , len(A ) - 1 ):
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
snake_case = temp_rs
snake_case = temp_rr
process_array_.append(
Process(
target=A , args=(
len(A ) - 1,
arr[len(A ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(A ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(A ) ):
snake_case = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __magic_name__ ( ) -> Tuple:
snake_case = list(range(1_0 , 0 , -1 ) )
print('Initial List' )
print(*A )
snake_case = odd_even_transposition(A )
print('Sorted List\n' )
print(*A )
if __name__ == "__main__":
main()
| 332 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DonutImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> None:
create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] )
def __magic_name__ ( A , A , A , A , ) -> None:
if index == len(A ):
print(A )
return
for i in range(len(A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
snake_case = True
create_state_space_tree(A , A , index + 1 , A )
current_sequence.pop()
snake_case = False
lowerCAmelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 332 | 1 |
'''simple docstring'''
import os
from collections.abc import Iterator
def __magic_name__ ( A = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(A ):
snake_case = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(A )[1] in (".py", ".ipynb"):
yield os.path.join(A , A ).lstrip('./' )
def __magic_name__ ( A ) -> Dict:
return F'''{i * " "}*''' if i else "\n##"
def __magic_name__ ( A , A ) -> str:
snake_case = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(A ) or old_parts[i] != new_part) and new_part:
print(F'''{md_prefix(A )} {new_part.replace("_" , " " ).title()}''' )
return new_path
def __magic_name__ ( A = "." ) -> None:
snake_case = ''
for filepath in sorted(good_file_paths(A ) ):
snake_case , snake_case = os.path.split(A )
if filepath != old_path:
snake_case = print_path(A , A )
snake_case = (filepath.count(os.sep ) + 1) if filepath else 0
snake_case = F'''{filepath}/{filename}'''.replace(' ' , '%20' )
snake_case = os.path.splitext(filename.replace('_' , ' ' ).title() )[0]
print(F'''{md_prefix(A )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md(".")
| 332 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''roberta'''
def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 | 1 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
snake_case_ = field(
default=64 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
snake_case_ = field(
default=30 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
snake_case_ = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''train'''
snake_case_ = '''dev'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int:
snake_case = args
snake_case = is_language_sensitive
snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowercase_, lowercase_ ):
try:
snake_case = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
snake_case = mode
# Load data features from cache or dataset file
snake_case = 'v2' if args.version_2_with_negative else 'v1'
snake_case = os.path.join(
cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
snake_case = time.time()
snake_case = torch.load(lowercase_ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
snake_case = self.old_features['features']
snake_case = self.old_features.get('dataset', lowercase_ )
snake_case = self.old_features.get('examples', lowercase_ )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
' future run' )
else:
if mode == Split.dev:
snake_case = self.processor.get_dev_examples(args.data_dir )
else:
snake_case = self.processor.get_train_examples(args.data_dir )
snake_case , snake_case = squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, )
snake_case = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> Tuple:
return len(self.features )
def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
snake_case = self.features[i]
snake_case = torch.tensor(feature.input_ids, dtype=torch.long )
snake_case = torch.tensor(feature.attention_mask, dtype=torch.long )
snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long )
snake_case = torch.tensor(feature.cls_index, dtype=torch.long )
snake_case = torch.tensor(feature.p_mask, dtype=torch.float )
snake_case = torch.tensor(feature.is_impossible, dtype=torch.float )
snake_case = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
snake_case = torch.tensor(feature.start_position, dtype=torch.long )
snake_case = torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 332 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_ = {
"allenai/led-base-16384": 1_6_3_8_4,
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = LEDTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int:
super().__init__(
lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) )
snake_case = add_prefix_space
snake_case = pre_tok_class(**lowercase_ )
snake_case = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case = 'post_processor'
snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ )
if tokenizer_component_instance:
snake_case = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case = tuple(state['sep'] )
if "cls" in state:
snake_case = tuple(state['cls'] )
snake_case = False
if state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = add_prefix_space
snake_case = True
if state.get('trim_offsets', lowercase_ ) != trim_offsets:
snake_case = trim_offsets
snake_case = True
if changes_to_apply:
snake_case = getattr(lowercase_, state.pop('type' ) )
snake_case = component_class(**lowercase_ )
setattr(self.backend_tokenizer, lowercase_, lowercase_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value
snake_case = value
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict:
snake_case = super()._pad(
encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, )
# Load from model defaults
if return_attention_mask is None:
snake_case = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ )
if needs_to_be_padded:
snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
snake_case = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 332 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCAmelCase_ = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A , A ) -> Any:
_enforce_args(A , A )
if n == 0:
return 0
snake_case = float('-inf' )
for i in range(1 , n + 1 ):
snake_case = max(
A , prices[i - 1] + naive_cut_rod_recursive(n - i , A ) )
return max_revue
def __magic_name__ ( A , A ) -> Optional[Any]:
_enforce_args(A , A )
snake_case = [float('-inf' ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(A , A , A )
def __magic_name__ ( A , A , A ) -> int:
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
snake_case = float('-inf' )
for i in range(1 , n + 1 ):
snake_case = max(
A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , A , A ) , )
snake_case = max_revenue
return max_rev[n]
def __magic_name__ ( A , A ) -> Dict:
_enforce_args(A , A )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
snake_case = [float('-inf' ) for _ in range(n + 1 )]
snake_case = 0
for i in range(1 , n + 1 ):
snake_case = max_rev[i]
for j in range(1 , i + 1 ):
snake_case = max(A , prices[j - 1] + max_rev[i - j] )
snake_case = max_revenue_i
return max_rev[n]
def __magic_name__ ( A , A ) -> str:
if n < 0:
snake_case = F'''n must be greater than or equal to 0. Got n = {n}'''
raise ValueError(A )
if n > len(A ):
snake_case = (
'Each integral piece of rod must have a corresponding price. '
F'''Got n = {n} but length of prices = {len(A )}'''
)
raise ValueError(A )
def __magic_name__ ( ) -> Union[str, Any]:
snake_case = [6, 1_0, 1_2, 1_5, 2_0, 2_3]
snake_case = len(A )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
snake_case = 3_6
snake_case = top_down_cut_rod(A , A )
snake_case = bottom_up_cut_rod(A , A )
snake_case = naive_cut_rod_recursive(A , A )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 332 |
'''simple docstring'''
from pathlib import Path
import fire
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = Path(A )
snake_case = Path(A )
dest_dir.mkdir(exist_ok=A )
for path in src_dir.iterdir():
snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case = dest_dir.joinpath(path.name )
print(A )
dest_path.open('w' ).write('\n'.join(A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 | 1 |
'''simple docstring'''
import json
import logging
import os
import sys
from time import time
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, require_torch_tpu
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase_ = logging.getLogger()
def __magic_name__ ( A ) -> int:
snake_case = {}
snake_case = os.path.join(A , 'all_results.json' )
if os.path.exists(A ):
with open(A , 'r' ) as f:
snake_case = json.load(A )
else:
raise ValueError(F'''can\'t find {path}''' )
return results
lowerCAmelCase_ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@require_torch_tpu
class lowerCamelCase ( __lowerCAmelCase ):
def _lowerCamelCase ( self ) -> str:
import xla_spawn
snake_case = self.get_auto_remove_tmp_dir()
snake_case = F'''
./examples/pytorch/text-classification/run_glue.py
--num_cores=8
./examples/pytorch/text-classification/run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--debug tpu_metrics_debug
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
'''.split()
with patch.object(lowercase_, 'argv', lowercase_ ):
snake_case = time()
xla_spawn.main()
snake_case = time()
snake_case = get_results(lowercase_ )
self.assertGreaterEqual(result['eval_accuracy'], 0.75 )
# Assert that the script takes less than 500 seconds to make sure it doesn't hang.
self.assertLess(end - start, 500 )
def _lowerCamelCase ( self ) -> Any:
import xla_spawn
snake_case = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split()
with patch.object(lowercase_, 'argv', lowercase_ ):
xla_spawn.main()
| 332 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase_ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __magic_name__ ( A , A ) -> Union[str, Any]:
inspect_dataset(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __magic_name__ ( A , A ) -> int:
inspect_metric(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_config_info(A , config_name=A )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> Any:
with pytest.raises(A ):
get_dataset_config_info(A , config_name=A )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __magic_name__ ( A , A ) -> Dict:
snake_case = get_dataset_config_names(A )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_infos(A )
assert list(infos.keys() ) == expected_configs
snake_case = expected_configs[0]
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> Any:
snake_case = get_dataset_infos(A )
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> int:
with pytest.raises(A ):
get_dataset_split_names(A , config_name=A )
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import gcd
def __magic_name__ ( A , A = 2 , A = 1 , A = 3 , ) -> int | None:
# A value less than 2 can cause an infinite loop in the algorithm.
if num < 2:
raise ValueError('The input value cannot be less than 2' )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(A , A , A ) -> int:
return (pow(A , 2 ) + step) % modulus
for _ in range(A ):
# These track the position within the cycle detection logic.
snake_case = seed
snake_case = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
snake_case = rand_fn(A , A , A )
snake_case = rand_fn(A , A , A )
snake_case = rand_fn(A , A , A )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
snake_case = gcd(hare - tortoise , A )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
snake_case = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
lowerCAmelCase_ = parser.parse_args()
lowerCAmelCase_ = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(f"{args.num} is probably prime")
else:
lowerCAmelCase_ = args.num // divisor
print(f"{args.num} = {divisor} * {quotient}")
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
"configuration_xmod": [
"XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XmodConfig",
"XmodOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"XMOD_PRETRAINED_MODEL_ARCHIVE_LIST",
"XmodForCausalLM",
"XmodForMaskedLM",
"XmodForMultipleChoice",
"XmodForQuestionAnswering",
"XmodForSequenceClassification",
"XmodForTokenClassification",
"XmodModel",
"XmodPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase_ = False
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 12
@property
def _lowerCamelCase ( self ) -> Dict:
return 12
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, )
return model
@property
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = 12
snake_case = 12
snake_case = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
snake_case = TransformeraDModel(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipeline(
'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', )
snake_case = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 | 1 |
'''simple docstring'''
import pytest
lowerCAmelCase_ = "__dummy_dataset1__"
lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def __magic_name__ ( ) -> List[Any]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __magic_name__ ( ) -> Union[str, Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = dataset_loading_script_name
snake_case = tmp_path / 'datasets' / script_name
script_dir.mkdir(parents=A )
snake_case = script_dir / F'''{script_name}.py'''
with open(A , 'w' ) as f:
f.write(A )
return str(A )
| 332 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''note_seq''']
def __init__( self, *lowercase_, **lowercase_ ) -> str:
requires_backends(self, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]:
requires_backends(cls, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]:
requires_backends(cls, ['note_seq'] )
| 332 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.