code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"edbeeching/decision-transformer-gym-hopper-medium": (
"https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'decision_transformer'
__UpperCAmelCase : int = ['past_key_values']
__UpperCAmelCase : Optional[int] = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _a=17 , _a=4 , _a=128 , _a=4_096 , _a=True , _a=1 , _a=1_024 , _a=3 , _a=1 , _a=None , _a="relu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=False , _a=False , **_a , ):
__a = state_dim
__a = act_dim
__a = hidden_size
__a = max_ep_len
__a = action_tanh
__a = vocab_size
__a = n_positions
__a = n_layer
__a = n_head
__a = n_inner
__a = activation_function
__a = resid_pdrop
__a = embd_pdrop
__a = attn_pdrop
__a = layer_norm_epsilon
__a = initializer_range
__a = scale_attn_weights
__a = use_cache
__a = scale_attn_by_inverse_layer_idx
__a = reorder_and_upcast_attn
__a = bos_token_id
__a = eos_token_id
super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
| 368 |
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]:
__a , __a = image.size
__a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
__a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0
__a = image[None].transpose(0 , 3 , 1 , 2 )
__a = torch.from_numpy(lowerCAmelCase__ )
return 2.0 * image - 1.0
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , ):
super().__init__()
self.register_modules(vqvae=_a , unet=_a , scheduler=_a )
@torch.no_grad()
def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ):
if isinstance(_a , PIL.Image.Image ):
__a = 1
elif isinstance(_a , torch.Tensor ):
__a = image.shape[0]
else:
raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' )
if isinstance(_a , PIL.Image.Image ):
__a = preprocess(_a )
__a , __a = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__a = (batch_size, self.unet.config.in_channels // 2, height, width)
__a = next(self.unet.parameters() ).dtype
__a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a )
__a = image.to(device=self.device , dtype=_a )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_a , device=self.device )
__a = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__a = {}
if accepts_eta:
__a = eta
for t in self.progress_bar(_a ):
# concat latents and low resolution image in the channel dimension.
__a = torch.cat([latents, image] , dim=1 )
__a = self.scheduler.scale_model_input(_a , _a )
# predict the noise residual
__a = self.unet(_a , _a ).sample
# compute the previous noisy sample x_t -> x_t-1
__a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample
# decode the image latents with the VQVAE
__a = self.vqvae.decode(_a ).sample
__a = torch.clamp(_a , -1.0 , 1.0 )
__a = image / 2 + 0.5
__a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__a = self.numpy_to_pil(_a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_a )
| 11 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {
"configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"],
"processing_layoutlmv2": ["LayoutLMv2Processor"],
"tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["LayoutLMv2TokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["LayoutLMv2FeatureExtractor"]
lowercase_ = ["LayoutLMv2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"LayoutLMv2ForQuestionAnswering",
"LayoutLMv2ForSequenceClassification",
"LayoutLMv2ForTokenClassification",
"LayoutLMv2Layer",
"LayoutLMv2Model",
"LayoutLMv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 369 |
"""simple docstring"""
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Dict = DistilBertTokenizer
__UpperCAmelCase : Any = DistilBertTokenizerFast
__UpperCAmelCase : int = True
@slow
def __UpperCAmelCase ( self ):
__a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
__a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a )
__a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a )
__a = tokenizer.build_inputs_with_special_tokens(_a )
__a = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 11 | 0 |
def lowercase ( lowerCAmelCase__ : Optional[int] = 100 ) -> int:
__a = 0
__a = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(F'''{solution() = }''')
| 370 |
"""simple docstring"""
from math import factorial, radians
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float:
__a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0)
# Converting from degrees to radians
__a = radians(lowerCAmelCase__ )
__a = angle_in_radians
__a = 3
__a = -1
for _ in range(lowerCAmelCase__ ):
result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ )
__a = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
__import__("doctest").testmod()
| 11 | 0 |
"""simple docstring"""
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowerCAmelCase ( __lowerCamelCase ):
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=False , _a=True , _a="None" , _a=3 , _a=4 , _a=None , ):
__a = parent
__a = batch_size
__a = seq_length
__a = is_training
__a = use_input_mask
__a = use_token_type_ids
__a = use_labels
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = type_sequence_label_size
__a = initializer_range
__a = num_labels
__a = num_choices
__a = relative_attention
__a = position_biased_input
__a = pos_att_type
__a = scope
def __UpperCAmelCase ( self ):
__a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__a = None
if self.use_input_mask:
__a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__a = None
if self.use_token_type_ids:
__a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__a = None
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__a = ids_tensor([self.batch_size] , self.num_choices )
__a = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCAmelCase ( self ):
return DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def __UpperCAmelCase ( self , _a ):
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ):
__a = DebertaVaModel(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase )[0]
__a = model(__lowercase , token_type_ids=__lowercase )[0]
__a = model(__lowercase )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ):
__a = DebertaVaForMaskedLM(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ):
__a = self.num_labels
__a = DebertaVaForSequenceClassification(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(__lowercase )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ):
__a = self.num_labels
__a = DebertaVaForTokenClassification(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ):
__a = DebertaVaForQuestionAnswering(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(
__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , start_positions=__lowercase , end_positions=__lowercase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ):
__a = DebertaVaForMultipleChoice(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__a = model(
__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCAmelCase ( self ):
__a = self.prepare_config_and_inputs()
(
__a
) = config_and_inputs
__a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = (
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
__UpperCAmelCase : Dict = (
{
"""feature-extraction""": DebertaVaModel,
"""fill-mask""": DebertaVaForMaskedLM,
"""question-answering""": DebertaVaForQuestionAnswering,
"""text-classification""": DebertaVaForSequenceClassification,
"""token-classification""": DebertaVaForTokenClassification,
"""zero-shot""": DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : Dict = False
__UpperCAmelCase : str = False
__UpperCAmelCase : List[str] = False
def __UpperCAmelCase ( self ):
__a = DebertaVaModelTester(self )
__a = ConfigTester(self , config_class=__lowercase , hidden_size=37 )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*__lowercase )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*__lowercase )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*__lowercase )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*__lowercase )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*__lowercase )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*__lowercase )
@slow
def __UpperCAmelCase ( self ):
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = DebertaVaModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason='''Model not available yet''' )
def __UpperCAmelCase ( self ):
pass
@slow
def __UpperCAmelCase ( self ):
__a = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' )
__a = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] )
__a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__a = model(__lowercase , attention_mask=__lowercase )[0]
# compare the actual values for a slice.
__a = torch.tensor(
[[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowercase , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
| 371 |
"""simple docstring"""
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def lowercase ( lowerCAmelCase__ : dict ) -> tuple:
return (data["data"], data["target"])
def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray:
__a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ )
# Predict target for test data
__a = xgb.predict(lowerCAmelCase__ )
__a = predictions.reshape(len(lowerCAmelCase__ ) , 1 )
return predictions
def lowercase ( ) -> None:
__a = fetch_california_housing()
__a , __a = data_handling(lowerCAmelCase__ )
__a , __a , __a , __a = train_test_split(
lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 )
__a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Error printing
print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' )
print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 11 | 0 |
"""simple docstring"""
import math
import os
import sys
def lowercase ( lowerCAmelCase__ : Dict ) -> str:
__a = ''
try:
with open(_UpperCAmelCase , '''rb''' ) as binary_file:
__a = binary_file.read()
for dat in data:
__a = f'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('''File not accessible''' )
sys.exit()
def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> None:
lexicon.pop(_UpperCAmelCase )
__a = last_match_id
if math.loga(_UpperCAmelCase ).is_integer():
for curr_key in lexicon:
__a = '0' + lexicon[curr_key]
__a = bin(_UpperCAmelCase )[2:]
def lowercase ( lowerCAmelCase__ : Dict ) -> str:
__a = {'0': '0', '1': '1'}
__a = '', ''
__a = len(_UpperCAmelCase )
for i in range(len(_UpperCAmelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__a = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
index += 1
__a = ''
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
__a = lexicon[curr_string]
result += last_match_id
return result
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] ) -> str:
__a = os.path.getsize(_UpperCAmelCase )
__a = bin(_UpperCAmelCase )[2:]
__a = len(_UpperCAmelCase )
return "0" * (length_length - 1) + file_length_binary + compressed
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> None:
__a = 8
try:
with open(_UpperCAmelCase , '''wb''' ) as opened_file:
__a = [
to_write[i : i + byte_length]
for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('''10000000''' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(_UpperCAmelCase , 2 ).to_bytes(1 , byteorder='''big''' ) )
except OSError:
print('''File not accessible''' )
sys.exit()
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any ) -> None:
__a = read_file_binary(_UpperCAmelCase )
__a = compress_data(_UpperCAmelCase )
__a = add_file_length(_UpperCAmelCase , _UpperCAmelCase )
write_file_binary(_UpperCAmelCase , _UpperCAmelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 350 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {
"configuration_efficientformer": [
"EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EfficientFormerConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["EfficientFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"EfficientFormerForImageClassification",
"EfficientFormerForImageClassificationWithTeacher",
"EfficientFormerModel",
"EfficientFormerPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEfficientFormerForImageClassification",
"TFEfficientFormerForImageClassificationWithTeacher",
"TFEfficientFormerModel",
"TFEfficientFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = OrderedDict(
[
# Base model mapping
("albert", "FlaxAlbertModel"),
("bart", "FlaxBartModel"),
("beit", "FlaxBeitModel"),
("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"),
("blenderbot", "FlaxBlenderbotModel"),
("blenderbot-small", "FlaxBlenderbotSmallModel"),
("clip", "FlaxCLIPModel"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mt5", "FlaxMT5Model"),
("opt", "FlaxOPTModel"),
("pegasus", "FlaxPegasusModel"),
("regnet", "FlaxRegNetModel"),
("resnet", "FlaxResNetModel"),
("roberta", "FlaxRobertaModel"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"),
("roformer", "FlaxRoFormerModel"),
("t5", "FlaxT5Model"),
("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"),
("vit", "FlaxViTModel"),
("wav2vec2", "FlaxWav2Vec2Model"),
("whisper", "FlaxWhisperModel"),
("xglm", "FlaxXGLMModel"),
("xlm-roberta", "FlaxXLMRobertaModel"),
]
)
__lowerCAmelCase = OrderedDict(
[
# Model for pre-training mapping
("albert", "FlaxAlbertForPreTraining"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("t5", "FlaxT5ForConditionalGeneration"),
("wav2vec2", "FlaxWav2Vec2ForPreTraining"),
("whisper", "FlaxWhisperForConditionalGeneration"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
__lowerCAmelCase = OrderedDict(
[
# Model for Masked LM mapping
("albert", "FlaxAlbertForMaskedLM"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"),
("distilbert", "FlaxDistilBertForMaskedLM"),
("electra", "FlaxElectraForMaskedLM"),
("mbart", "FlaxMBartForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
__lowerCAmelCase = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "FlaxBartForConditionalGeneration"),
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("pegasus", "FlaxPegasusForConditionalGeneration"),
("t5", "FlaxT5ForConditionalGeneration"),
]
)
__lowerCAmelCase = OrderedDict(
[
# Model for Image-classsification
("beit", "FlaxBeitForImageClassification"),
("regnet", "FlaxRegNetForImageClassification"),
("resnet", "FlaxResNetForImageClassification"),
("vit", "FlaxViTForImageClassification"),
]
)
__lowerCAmelCase = OrderedDict(
[
("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"),
]
)
__lowerCAmelCase = OrderedDict(
[
# Model for Causal LM mapping
("bart", "FlaxBartForCausalLM"),
("bert", "FlaxBertForCausalLM"),
("big_bird", "FlaxBigBirdForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),
("gptj", "FlaxGPTJForCausalLM"),
("opt", "FlaxOPTForCausalLM"),
("roberta", "FlaxRobertaForCausalLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"),
("xglm", "FlaxXGLMForCausalLM"),
("xlm-roberta", "FlaxXLMRobertaForCausalLM"),
]
)
__lowerCAmelCase = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "FlaxAlbertForSequenceClassification"),
("bart", "FlaxBartForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"),
("distilbert", "FlaxDistilBertForSequenceClassification"),
("electra", "FlaxElectraForSequenceClassification"),
("mbart", "FlaxMBartForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"),
("roformer", "FlaxRoFormerForSequenceClassification"),
("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"),
]
)
__lowerCAmelCase = OrderedDict(
[
# Model for Question Answering mapping
("albert", "FlaxAlbertForQuestionAnswering"),
("bart", "FlaxBartForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"),
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("electra", "FlaxElectraForQuestionAnswering"),
("mbart", "FlaxMBartForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"),
("roformer", "FlaxRoFormerForQuestionAnswering"),
("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"),
]
)
__lowerCAmelCase = OrderedDict(
[
# Model for Token Classification mapping
("albert", "FlaxAlbertForTokenClassification"),
("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"),
("distilbert", "FlaxDistilBertForTokenClassification"),
("electra", "FlaxElectraForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"),
("roformer", "FlaxRoFormerForTokenClassification"),
("xlm-roberta", "FlaxXLMRobertaForTokenClassification"),
]
)
__lowerCAmelCase = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "FlaxAlbertForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"),
("distilbert", "FlaxDistilBertForMultipleChoice"),
("electra", "FlaxElectraForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"),
("roformer", "FlaxRoFormerForMultipleChoice"),
("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"),
]
)
__lowerCAmelCase = OrderedDict(
[
("bert", "FlaxBertForNextSentencePrediction"),
]
)
__lowerCAmelCase = OrderedDict(
[
("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"),
("whisper", "FlaxWhisperForConditionalGeneration"),
]
)
__lowerCAmelCase = OrderedDict(
[
("whisper", "FlaxWhisperForAudioClassification"),
]
)
__lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
__lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
__lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
__lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
__lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
__lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
__lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
__lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
__lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
__lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
__lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
__lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
__lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
__lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = FLAX_MODEL_MAPPING
__lowerCAmelCase = auto_class_update(FlaxAutoModel)
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : Dict = FLAX_MODEL_FOR_PRETRAINING_MAPPING
__lowerCAmelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining")
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : List[str] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
__lowerCAmelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling")
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING
__lowerCAmelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling")
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : Tuple = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
__lowerCAmelCase = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base"
)
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__lowerCAmelCase = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="sequence classification"
)
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : str = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
__lowerCAmelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering")
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : int = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
__lowerCAmelCase = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="token classification"
)
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
__lowerCAmelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice")
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
__lowerCAmelCase = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__lowerCAmelCase = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="image classification"
)
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : Any = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
__lowerCAmelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling")
class __lowerCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
__UpperCAmelCase : List[str] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
__lowerCAmelCase = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling"
)
| 351 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json",
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json",
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json",
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'funnel'
__UpperCAmelCase : Union[str, Any] = {
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
}
def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ):
__a = vocab_size
__a = block_sizes
__a = [1] * len(_a ) if block_repeats is None else block_repeats
assert len(_a ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
__a = num_decoder_layers
__a = d_model
__a = n_head
__a = d_head
__a = d_inner
__a = hidden_act
__a = hidden_dropout
__a = attention_dropout
__a = activation_dropout
__a = initializer_range
__a = initializer_std
__a = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
__a = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
__a = attention_type
__a = separate_cls
__a = truncate_seq
__a = pool_q_only
super().__init__(**_a )
@property
def __UpperCAmelCase ( self ):
return sum(self.block_sizes )
@num_hidden_layers.setter
def __UpperCAmelCase ( self , _a ):
raise NotImplementedError(
'''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' )
@property
def __UpperCAmelCase ( self ):
return len(self.block_sizes )
@num_blocks.setter
def __UpperCAmelCase ( self , _a ):
raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
| 11 | 0 |
"""simple docstring"""
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=64 , _a=5 , _a=4 , _a=64 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ):
__a = parent
__a = batch_size
__a = seq_length
__a = is_training
__a = use_input_mask
__a = use_token_type_ids
__a = use_labels
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = type_sequence_label_size
__a = initializer_range
__a = num_labels
__a = num_choices
__a = scope
def __UpperCAmelCase ( self ):
return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' )
def __UpperCAmelCase ( self ):
__a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__a = None
if self.use_input_mask:
__a = random_attention_mask([self.batch_size, self.seq_length] )
__a = None
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__a = ids_tensor([self.batch_size] , self.num_choices )
__a = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCAmelCase ( self ):
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ):
__a = MPNetModel(config=_a )
model.to(_a )
model.eval()
__a = model(_a , _a )
__a = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ):
__a = MPNetForQuestionAnswering(config=_a )
model.to(_a )
model.eval()
__a = model(
_a , attention_mask=_a , start_positions=_a , end_positions=_a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ):
__a = self.num_labels
__a = MPNetForSequenceClassification(_a )
model.to(_a )
model.eval()
__a = model(_a , attention_mask=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ):
__a = self.num_choices
__a = MPNetForMultipleChoice(config=_a )
model.to(_a )
model.eval()
__a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__a = model(
_a , attention_mask=_a , labels=_a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ):
__a = self.num_labels
__a = MPNetForTokenClassification(config=_a )
model.to(_a )
model.eval()
__a = model(_a , attention_mask=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCAmelCase ( self ):
__a = self.prepare_config_and_inputs()
((__a) , (__a) , (__a) , (__a) , (__a) , (__a)) = config_and_inputs
__a = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = (
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
__UpperCAmelCase : Optional[int] = (
{
'feature-extraction': MPNetModel,
'fill-mask': MPNetForMaskedLM,
'question-answering': MPNetForQuestionAnswering,
'text-classification': MPNetForSequenceClassification,
'token-classification': MPNetForTokenClassification,
'zero-shot': MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : Optional[int] = False
__UpperCAmelCase : Optional[int] = True
def __UpperCAmelCase ( self ):
__a = MPNetModelTester(self )
__a = ConfigTester(self , config_class=_a , hidden_size=37 )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*_a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*_a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*_a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*_a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*_a )
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self ):
__a = MPNetModel.from_pretrained('''microsoft/mpnet-base''' )
__a = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
__a = model(_a )[0]
__a = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _a )
__a = torch.tensor(
[[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
| 352 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) )
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ):
__a = parent
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = make_divisible(512 * width_multiplier , divisor=8 )
__a = hidden_act
__a = conv_kernel_size
__a = output_stride
__a = classifier_dropout_prob
__a = use_labels
__a = is_training
__a = num_labels
__a = initializer_range
__a = scope
__a = width_multiplier
__a = ffn_dropout
__a = attn_dropout
def __UpperCAmelCase ( self ):
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels, pixel_labels
def __UpperCAmelCase ( self ):
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = MobileViTVaModel(config=_a )
model.to(_a )
model.eval()
__a = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForImageClassification(_a )
model.to(_a )
model.eval()
__a = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForSemanticSegmentation(_a )
model.to(_a )
model.eval()
__a = model(_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__a = model(_a , labels=_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self ):
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase : Union[str, Any] = (
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : List[str] = False
def __UpperCAmelCase ( self ):
__a = MobileViTVaModelTester(self )
__a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not output attentions''' )
def __UpperCAmelCase ( self ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(_a )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __UpperCAmelCase ( self ):
def check_hidden_states_output(_a , _a , _a ):
__a = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(_a , _a ) )
__a = outputs.hidden_states
__a = 5
self.assertEqual(len(_a ) , _a )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__a = 2
for i in range(len(_a ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(_a , _a , _a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_a )
@slow
def __UpperCAmelCase ( self ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = MobileViTVaModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowercase ( ) -> str:
__a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCAmelCase ( self ):
return (
MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' )
if is_vision_available()
else None
)
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to(
_a )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
# verify the logits
__a = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _a )
__a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_a )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
__a = outputs.logits
# verify the logits
__a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _a )
__a = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_a , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_a )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
__a = outputs.logits.detach().cpu()
__a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] )
__a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _a )
__a = image_processor.post_process_semantic_segmentation(outputs=_a )
__a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _a )
| 11 | 0 |
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
lowercase_ = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
lowercase_ = {
"facebook/blenderbot_small-90M": 5_1_2,
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES
__UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Dict = BlenderbotSmallTokenizer
def __init__( self , _a=None , _a=None , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|endoftext|>" , _a=False , _a=True , **_a , ):
super().__init__(
ByteLevelBPETokenizer(
vocab=_lowerCAmelCase , merges=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase , ) , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , **_lowerCAmelCase , )
__a = add_prefix_space
def __UpperCAmelCase ( self , _a , _a=None ):
__a = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def __UpperCAmelCase ( self , _a , _a = None ):
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 353 |
"""simple docstring"""
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ):
super().__init__()
if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1:
__a = (
f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'''
f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '''
'''to update the config accordingly as leaving `steps_offset` might led to incorrect results'''
''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'''
''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'''
''' file'''
)
deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = 1
__a = FrozenDict(_a )
if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False:
__a = (
f'''The configuration file of this scheduler: {scheduler} has not set the configuration'''
''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'''
''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'''
''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'''
''' Hub, it would be very nice if you could open a Pull request for the'''
''' `scheduler/scheduler_config.json` file'''
)
deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = True
__a = FrozenDict(_a )
if safety_checker is None:
logger.warning(
f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , )
def __UpperCAmelCase ( self , _a = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__a = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_a )
def __UpperCAmelCase ( self ):
self.enable_attention_slicing(_a )
def __UpperCAmelCase ( self ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
__a = torch.device('''cuda''' )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(_a , _a )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __UpperCAmelCase ( self ):
if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_a , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ):
__a = self.segmentation_processor(
text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device )
__a = self.segmentation_model(**_a )
__a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
__a = self.numpy_to_pil(_a )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
__a = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
| 11 | 0 |
"""simple docstring"""
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
lowercase_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
lowercase_ = typing.Union[np.floataa, int, float] # noqa: UP007
def lowercase ( lowerCAmelCase__ : Vector , lowerCAmelCase__ : Vector ) -> VectorOut:
return np.sqrt(np.sum((np.asarray(_A ) - np.asarray(_A )) ** 2 ) )
def lowercase ( lowerCAmelCase__ : Vector , lowerCAmelCase__ : Vector ) -> VectorOut:
return sum((va - va) ** 2 for va, va in zip(_A , _A ) ) ** (1 / 2)
if __name__ == "__main__":
def lowercase ( ) -> None:
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10000 , globals=globals() , ) )
benchmark()
| 354 |
"""simple docstring"""
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , **_a ):
super().__init__(**_a )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
# No specific FOR_XXX available yet
def __call__( self , _a , **_a ):
return super().__call__(_a , **_a )
def __UpperCAmelCase ( self , **_a ):
__a = {}
if "candidate_labels" in kwargs:
__a = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__a = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ):
if isinstance(_a , _a ):
if audio.startswith('''http://''' ) or audio.startswith('''https://''' ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__a = requests.get(_a ).content
else:
with open(_a , '''rb''' ) as f:
__a = f.read()
if isinstance(_a , _a ):
__a = ffmpeg_read(_a , self.feature_extractor.sampling_rate )
if not isinstance(_a , np.ndarray ):
raise ValueError('''We expect a numpy ndarray as input''' )
if len(audio.shape ) != 1:
raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' )
__a = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' )
__a = candidate_labels
__a = [hypothesis_template.format(_a ) for x in candidate_labels]
__a = self.tokenizer(_a , return_tensors=self.framework , padding=_a )
__a = [text_inputs]
return inputs
def __UpperCAmelCase ( self , _a ):
__a = model_inputs.pop('''candidate_labels''' )
__a = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , _a ):
__a = text_inputs[0]
else:
# Batching case.
__a = text_inputs[0][0]
__a = self.model(**_a , **_a )
__a = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_audio,
}
return model_outputs
def __UpperCAmelCase ( self , _a ):
__a = model_outputs.pop('''candidate_labels''' )
__a = model_outputs['''logits'''][0]
if self.framework == "pt":
__a = logits.softmax(dim=0 )
__a = probs.tolist()
else:
raise ValueError('''`tf` framework not supported.''' )
__a = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] )
]
return result
| 11 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
lowercase_ = logging.get_logger(__name__)
class __lowerCAmelCase ( snake_case_ ):
'''simple docstring'''
def __init__( self , *_a , **_a ):
warnings.warn(
'''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use DeiTImageProcessor instead.''' , _a , )
super().__init__(*_a , **_a )
| 355 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__a = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sgugger/tiny-distilbert-classification'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
# set architectures equal to `None`
__a = None
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , )
__a = PyTorchBenchmark(_a )
benchmark.run()
self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_a ):
self.assertTrue(hasattr(_a , '''sequential''' ) )
self.assertTrue(hasattr(_a , '''cumulative''' ) )
self.assertTrue(hasattr(_a , '''current''' ) )
self.assertTrue(hasattr(_a , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
| 11 | 0 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
super().tearDown()
gc.collect()
def __UpperCAmelCase ( self ):
__a = FlaxControlNetModel.from_pretrained(
'''lllyasviel/sd-controlnet-canny''' , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa )
__a = FlaxStableDiffusionControlNetPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCamelCase__ , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa )
__a = controlnet_params
__a = '''bird'''
__a = jax.device_count()
__a = pipe.prepare_text_inputs([prompts] * num_samples )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' )
__a = pipe.prepare_image_inputs([canny_image] * num_samples )
__a = jax.random.PRNGKey(0 )
__a = jax.random.split(lowerCamelCase__ , jax.device_count() )
__a = replicate(lowerCamelCase__ )
__a = shard(lowerCamelCase__ )
__a = shard(lowerCamelCase__ )
__a = pipe(
prompt_ids=lowerCamelCase__ , image=lowerCamelCase__ , params=lowerCamelCase__ , prng_seed=lowerCamelCase__ , num_inference_steps=50 , jit=lowerCamelCase__ , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
__a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__a = images[0, 253:256, 253:256, -1]
__a = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__a = jnp.array(
[0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
def __UpperCAmelCase ( self ):
__a = FlaxControlNetModel.from_pretrained(
'''lllyasviel/sd-controlnet-openpose''' , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa )
__a = FlaxStableDiffusionControlNetPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCamelCase__ , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa )
__a = controlnet_params
__a = '''Chef in the kitchen'''
__a = jax.device_count()
__a = pipe.prepare_text_inputs([prompts] * num_samples )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' )
__a = pipe.prepare_image_inputs([pose_image] * num_samples )
__a = jax.random.PRNGKey(0 )
__a = jax.random.split(lowerCamelCase__ , jax.device_count() )
__a = replicate(lowerCamelCase__ )
__a = shard(lowerCamelCase__ )
__a = shard(lowerCamelCase__ )
__a = pipe(
prompt_ids=lowerCamelCase__ , image=lowerCamelCase__ , params=lowerCamelCase__ , prng_seed=lowerCamelCase__ , num_inference_steps=50 , jit=lowerCamelCase__ , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
__a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__a = images[0, 253:256, 253:256, -1]
__a = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__a = jnp.array(
[[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 356 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FocalNetForImageClassification",
"FocalNetForMaskedImageModeling",
"FocalNetBackbone",
"FocalNetModel",
"FocalNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
import warnings
warnings.warn(
"memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: "
"`from accelerate import find_executable_batch_size` to avoid this warning.",
FutureWarning,
)
| 357 |
"""simple docstring"""
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a , _a , _a ):
self.assertEqual(len(_a ) , len(_a ) )
for a, b in zip(_a , _a ):
self.assertAlmostEqual(_a , _a , delta=_a )
def __UpperCAmelCase ( self ):
__a = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_a ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 )
def __UpperCAmelCase ( self ):
__a = None
ops.enable_eager_execution_internal()
__a = tf.config.list_physical_devices('''CPU''' )
if len(_a ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
__a = tf.config.list_logical_devices(device_type='''CPU''' )
__a = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
__a = GradientAccumulator()
__a = tf.Variable([4.0, 3.0] )
__a , __a = create_optimizer(5E-5 , 10 , 5 )
__a = tf.Variable([0.0, 0.0] , trainable=_a )
def accumulate_on_replica(_a ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(_a , _a ):
with strategy.scope():
__a = strategy.experimental_local_results(_a )
local_variables[0].assign(_a )
local_variables[1].assign(_a )
strategy.run(_a , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_a )
def _check_local_values(_a , _a ):
__a = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 )
self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 11 | 0 |
"""simple docstring"""
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(SCREAMING_SNAKE_CASE__ )
class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
def __init__( self , **_a ):
super().__init__(**_a )
requires_backends(self , '''vision''' )
requires_backends(self , '''torch''' )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
self.check_model_type(_a )
def __UpperCAmelCase ( self , **_a ):
__a = {}
__a = {}
__a = {}
# preprocess args
if "points_per_batch" in kwargs:
__a = kwargs['points_per_batch']
if "points_per_crop" in kwargs:
__a = kwargs['points_per_crop']
if "crops_n_layers" in kwargs:
__a = kwargs['crops_n_layers']
if "crop_overlap_ratio" in kwargs:
__a = kwargs['crop_overlap_ratio']
if "crop_n_points_downscale_factor" in kwargs:
__a = kwargs['crop_n_points_downscale_factor']
# postprocess args
if "pred_iou_thresh" in kwargs:
__a = kwargs['pred_iou_thresh']
if "stability_score_offset" in kwargs:
__a = kwargs['stability_score_offset']
if "mask_threshold" in kwargs:
__a = kwargs['mask_threshold']
if "stability_score_thresh" in kwargs:
__a = kwargs['stability_score_thresh']
if "crops_nms_thresh" in kwargs:
__a = kwargs['crops_nms_thresh']
if "output_rle_mask" in kwargs:
__a = kwargs['output_rle_mask']
if "output_bboxes_mask" in kwargs:
__a = kwargs['output_bboxes_mask']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__( self , _a , *_a , _a=None , _a=None , **_a ):
return super().__call__(_a , *_a , num_workers=_a , batch_size=_a , **_a )
def __UpperCAmelCase ( self , _a , _a=64 , _a = 0 , _a = 512 / 1_500 , _a = 32 , _a = 1 , ):
__a = load_image(_a )
__a = self.image_processor.size['longest_edge']
__a = self.image_processor.generate_crop_boxes(
_a , _a , _a , _a , _a , _a )
__a = self.image_processor(images=_a , return_tensors='''pt''' )
with self.device_placement():
if self.framework == "pt":
__a = self.get_inference_context()
with inference_context():
__a = self._ensure_tensor_on_device(_a , device=self.device )
__a = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) )
__a = image_embeddings
__a = grid_points.shape[1]
__a = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '''
'''To return all points at once, set points_per_batch to None''' )
for i in range(0 , _a , _a ):
__a = grid_points[:, i : i + points_per_batch, :, :]
__a = input_labels[:, i : i + points_per_batch]
__a = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def __UpperCAmelCase ( self , _a , _a=0.88 , _a=0.95 , _a=0 , _a=1 , ):
__a = model_inputs.pop('''input_boxes''' )
__a = model_inputs.pop('''is_last''' )
__a = model_inputs.pop('''original_sizes''' ).tolist()
__a = model_inputs.pop('''reshaped_input_sizes''' ).tolist()
__a = self.model(**_a )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
__a = model_outputs['pred_masks']
__a = self.image_processor.post_process_masks(
_a , _a , _a , _a , binarize=_a )
__a = model_outputs['iou_scores']
__a = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _a , _a , _a , _a , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def __UpperCAmelCase ( self , _a , _a=False , _a=False , _a=0.7 , ):
__a = []
__a = []
__a = []
for model_output in model_outputs:
all_scores.append(model_output.pop('''iou_scores''' ) )
all_masks.extend(model_output.pop('''masks''' ) )
all_boxes.append(model_output.pop('''boxes''' ) )
__a = torch.cat(_a )
__a = torch.cat(_a )
__a = self.image_processor.post_process_for_mask_generation(
_a , _a , _a , _a )
__a = defaultdict(_a )
for output in model_outputs:
for k, v in output.items():
extra[k].append(_a )
__a = {}
if output_rle_mask:
__a = rle_mask
if output_bboxes_mask:
__a = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 358 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
lowercase_ = None
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json",
},
}
lowercase_ = {
"facebook/mbart-large-en-ro": 1_0_2_4,
"facebook/mbart-large-cc25": 1_0_2_4,
}
# fmt: off
lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = VOCAB_FILES_NAMES
__UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : Tuple = ['input_ids', 'attention_mask']
__UpperCAmelCase : Optional[Any] = MBartTokenizer
__UpperCAmelCase : List[int] = []
__UpperCAmelCase : List[int] = []
def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ):
# Mask token behave like a normal word, i.e. include the space before it
__a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , )
__a = vocab_file
__a = False if not self.vocab_file else True
__a = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__a = {
lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__a = src_lang if src_lang is not None else '''en_XX'''
__a = self.convert_tokens_to_ids(self._src_lang )
__a = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __UpperCAmelCase ( self ):
return self._src_lang
@src_lang.setter
def __UpperCAmelCase ( self , _a ):
__a = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __UpperCAmelCase ( self , _a , _a = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __UpperCAmelCase ( self , _a , _a = None ):
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ):
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__a = src_lang
__a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a )
__a = self.convert_tokens_to_ids(_a )
__a = tgt_lang_id
return inputs
def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ):
__a = src_lang
__a = tgt_lang
return super().prepare_seqaseq_batch(_a , _a , **_a )
def __UpperCAmelCase ( self ):
return self.set_src_lang_special_tokens(self.src_lang )
def __UpperCAmelCase ( self ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __UpperCAmelCase ( self , _a ):
__a = self.convert_tokens_to_ids(_a )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self , _a ):
__a = self.convert_tokens_to_ids(_a )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self , _a , _a = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
__a = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 11 | 0 |
"""simple docstring"""
import sys
def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> Any:
__a = len(a__ )
__a = [[0 for x in range(a__ )] for x in range(a__ )]
__a = [[0 for x in range(a__ )] for x in range(a__ )]
for chain_length in range(2 , a__ ):
for a in range(1 , n - chain_length + 1 ):
__a = a + chain_length - 1
__a = sys.maxsize
for c in range(a__ , a__ ):
__a = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
__a = cost
__a = c
return matrix, sol
def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int ) -> Union[str, Any]:
if i == j:
print('''A''' + str(a__ ) , end=''' ''' )
else:
print('''(''' , end=''' ''' )
print_optiomal_solution(a__ , a__ , optimal_solution[i][j] )
print_optiomal_solution(a__ , optimal_solution[i][j] + 1 , a__ )
print(''')''' , end=''' ''' )
def lowercase ( ) -> Dict:
__a = [30, 35, 15, 5, 10, 20, 25]
__a = len(a__ )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
__a , __a = matrix_chain_order(a__ )
print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) )
print_optiomal_solution(a__ , 1 , n - 1 )
if __name__ == "__main__":
main()
| 359 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n"
class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = load_tool('''text-question-answering''' )
self.tool.setup()
__a = load_tool('''text-question-answering''' , remote=_a )
def __UpperCAmelCase ( self ):
__a = self.tool(_a , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
| 11 | 0 |
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __lowercase ):
'''simple docstring'''
__UpperCAmelCase : Any = (KDPMaDiscreteScheduler,)
__UpperCAmelCase : Dict = 1_0
def __UpperCAmelCase ( self , **_a ):
__a = {
'''num_train_timesteps''': 1_100,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**UpperCAmelCase__ )
return config
def __UpperCAmelCase ( self ):
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase__ )
def __UpperCAmelCase ( self ):
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__ )
def __UpperCAmelCase ( self ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=UpperCAmelCase__ )
def __UpperCAmelCase ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase__ )
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(prediction_type='''v_prediction''' )
__a = scheduler_class(**UpperCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
__a = self.dummy_model()
__a = self.dummy_sample_deter * scheduler.init_noise_sigma
__a = sample.to(UpperCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
__a = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ )
__a = model(UpperCAmelCase__ , UpperCAmelCase__ )
__a = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
__a = output.prev_sample
__a = torch.sum(torch.abs(UpperCAmelCase__ ) )
__a = torch.mean(torch.abs(UpperCAmelCase__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def __UpperCAmelCase ( self ):
if torch_device == "mps":
return
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config()
__a = scheduler_class(**UpperCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
__a = self.dummy_model()
__a = self.dummy_sample_deter * scheduler.init_noise_sigma
__a = sample.to(UpperCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
__a = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ )
__a = model(UpperCAmelCase__ , UpperCAmelCase__ )
__a = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
__a = output.prev_sample
__a = torch.sum(torch.abs(UpperCAmelCase__ ) )
__a = torch.mean(torch.abs(UpperCAmelCase__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def __UpperCAmelCase ( self ):
if torch_device == "mps":
return
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config()
__a = scheduler_class(**UpperCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase__ )
__a = self.dummy_model()
__a = self.dummy_sample_deter.to(UpperCAmelCase__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
__a = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ )
__a = model(UpperCAmelCase__ , UpperCAmelCase__ )
__a = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
__a = output.prev_sample
__a = torch.sum(torch.abs(UpperCAmelCase__ ) )
__a = torch.mean(torch.abs(UpperCAmelCase__ ) )
if str(UpperCAmelCase__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 360 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_blip_2": [
"BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Blip2Config",
"Blip2QFormerConfig",
"Blip2VisionConfig",
],
"processing_blip_2": ["Blip2Processor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Blip2Model",
"Blip2QFormerModel",
"Blip2PreTrainedModel",
"Blip2ForConditionalGeneration",
"Blip2VisionModel",
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
from math import loga
def lowercase ( lowerCAmelCase__ : Tuple ) -> int:
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError('''Input value must be a \'int\' type''' )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None:
__a = len(lowerCAmelCase__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(lowerCAmelCase__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , )
def lowercase ( lowerCAmelCase__ : int ) -> None:
__a = []
depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ )
# Print all the boards
for board in boards:
for column in board:
print(lowerCAmelCase__ )
print('''''' )
print(len(lowerCAmelCase__ ) , '''solutions were found.''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 11 | 0 |
"""simple docstring"""
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("0.8.3"):
raise Exception("requires gluonnlp == 0.8.3")
if version.parse(mx.__version__) != version.parse("1.5.0"):
raise Exception("requires mxnet == 1.5.0")
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
lowercase_ = 'The Nymphenburg Palace is a beautiful palace in Munich!'
def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]:
__a = {
'''attention_cell''': '''multi_head''',
'''num_layers''': 4,
'''units''': 1024,
'''hidden_size''': 768,
'''max_length''': 512,
'''num_heads''': 8,
'''scaled''': True,
'''dropout''': 0.1,
'''use_residual''': True,
'''embed_size''': 1024,
'''embed_dropout''': 0.1,
'''word_embed''': None,
'''layer_norm_eps''': 1e-5,
'''token_type_vocab_size''': 2,
}
__a = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
__a = BERTEncoder(
attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=lowercase__ , output_all_encodings=lowercase__ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , lowercase__ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
__a = '''openwebtext_ccnews_stories_books_cased'''
# Specify download folder to Gluonnlp's vocab
__a = os.path.join(get_home_dir() , '''models''' )
__a = _load_vocab(lowercase__ , lowercase__ , lowercase__ , cls=lowercase__ )
__a = nlp.model.BERTModel(
lowercase__ , len(lowercase__ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=lowercase__ , use_token_type_embed=lowercase__ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=lowercase__ , use_decoder=lowercase__ , )
original_bort.load_parameters(lowercase__ , cast_dtype=lowercase__ , ignore_extra=lowercase__ )
__a = original_bort._collect_params_with_prefix()
# Build our config 🤗
__a = {
'''architectures''': ['''BertForMaskedLM'''],
'''attention_probs_dropout_prob''': predefined_args['''dropout'''],
'''hidden_act''': '''gelu''',
'''hidden_dropout_prob''': predefined_args['''dropout'''],
'''hidden_size''': predefined_args['''embed_size'''],
'''initializer_range''': 0.02,
'''intermediate_size''': predefined_args['''hidden_size'''],
'''layer_norm_eps''': predefined_args['''layer_norm_eps'''],
'''max_position_embeddings''': predefined_args['''max_length'''],
'''model_type''': '''bort''',
'''num_attention_heads''': predefined_args['''num_heads'''],
'''num_hidden_layers''': predefined_args['''num_layers'''],
'''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa
'''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa
'''vocab_size''': len(lowercase__ ),
}
__a = BertConfig.from_dict(lowercase__ )
__a = BertForMaskedLM(lowercase__ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCAmelCase__ : str ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ):
__a = hf_param.shape
__a = to_torch(params[gluon_param] )
__a = gluon_param.shape
assert (
shape_hf == shape_gluon
), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'''
return gluon_param
__a = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' )
__a = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' )
__a = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' )
__a = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
__a = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
__a = hf_bort_model.bert.encoder.layer[i]
# self attention
__a = layer.attention.self
__a = check_and_map_params(
self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' )
__a = check_and_map_params(
self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' )
__a = check_and_map_params(
self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' )
__a = check_and_map_params(
self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' )
__a = check_and_map_params(
self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' )
__a = check_and_map_params(
self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' )
# self attention output
__a = layer.attention.output
__a = check_and_map_params(
self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' )
__a = check_and_map_params(
self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' )
__a = check_and_map_params(
self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' )
__a = check_and_map_params(
self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' )
# intermediate
__a = layer.intermediate
__a = check_and_map_params(
intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' )
__a = check_and_map_params(
intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' )
# output
__a = layer.output
__a = check_and_map_params(
bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' )
__a = check_and_map_params(
bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' )
__a = check_and_map_params(
bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' )
__a = check_and_map_params(
bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
__a = RobertaTokenizer.from_pretrained('''roberta-base''' )
__a = tokenizer.encode_plus(lowercase__ )['''input_ids''']
# Get gluon output
__a = mx.nd.array([input_ids] )
__a = original_bort(inputs=lowercase__ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowercase__ )
__a = BertModel.from_pretrained(lowercase__ )
hf_bort_model.eval()
__a = tokenizer.encode_plus(lowercase__ , return_tensors='''pt''' )
__a = hf_bort_model(**lowercase__ )[0]
__a = output_gluon[0].asnumpy()
__a = output_hf[0].detach().numpy()
__a = np.max(np.abs(hf_layer - gluon_layer ) ).item()
__a = np.allclose(lowercase__ , lowercase__ , atol=1e-3 )
if success:
print('''✔️ Both model do output the same tensors''' )
else:
print('''❌ Both model do **NOT** output the same tensors''' )
print('''Absolute difference is:''' , lowercase__ )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowercase_ = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 362 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowercase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 11 | 0 |
"""simple docstring"""
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def lowercase ( lowerCAmelCase__ : Optional[int] ) -> Optional[Any]:
__a = fname.split(os.path.sep )[-1]
return re.search(r'''^(.*)_\d+\.jpg$''' , __snake_case ).groups()[0]
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a=None , _a=None ):
__a = file_names
__a = image_transform
__a = label_to_id
def __len__( self ):
return len(self.file_names )
def __getitem__( self , _a ):
__a = self.file_names[idx]
__a = PIL.Image.open(_SCREAMING_SNAKE_CASE )
__a = raw_image.convert('''RGB''' )
if self.image_transform is not None:
__a = self.image_transform(_SCREAMING_SNAKE_CASE )
__a = extract_label(_SCREAMING_SNAKE_CASE )
if self.label_to_id is not None:
__a = self.label_to_id[label]
return {"image": image, "label": label}
def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
# Initialize accelerator
if args.with_tracking:
__a = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir )
else:
__a = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__a = config["lr"]
__a = int(config['''num_epochs'''] )
__a = int(config['''seed'''] )
__a = int(config['''batch_size'''] )
__a = config["image_size"]
if not isinstance(__snake_case , (list, tuple) ):
__a = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , '''isdigit''' ):
if args.checkpointing_steps == "epoch":
__a = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
__a = int(args.checkpointing_steps )
else:
raise ValueError(
f'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' )
else:
__a = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
__a = os.path.split(__snake_case )[-1].split('''.''' )[0]
accelerator.init_trackers(__snake_case , __snake_case )
# Grab all the image filenames
__a = [os.path.join(args.data_dir , __snake_case ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )]
# Build the label correspondences
__a = [extract_label(__snake_case ) for fname in file_names]
__a = list(set(__snake_case ) )
id_to_label.sort()
__a = {lbl: i for i, lbl in enumerate(__snake_case )}
# Set the seed before splitting the data.
np.random.seed(__snake_case )
torch.manual_seed(__snake_case )
torch.cuda.manual_seed_all(__snake_case )
# Split our filenames between train and validation
__a = np.random.permutation(len(__snake_case ) )
__a = int(0.8 * len(__snake_case ) )
__a = random_perm[:cut]
__a = random_perm[cut:]
# For training we use a simple RandomResizedCrop
__a = Compose([RandomResizedCrop(__snake_case , scale=(0.5, 1.0) ), ToTensor()] )
__a = PetsDataset(
[file_names[i] for i in train_split] , image_transform=__snake_case , label_to_id=__snake_case )
# For evaluation, we use a deterministic Resize
__a = Compose([Resize(__snake_case ), ToTensor()] )
__a = PetsDataset([file_names[i] for i in eval_split] , image_transform=__snake_case , label_to_id=__snake_case )
# Instantiate dataloaders.
__a = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 )
__a = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__a = create_model('''resnet50d''' , pretrained=__snake_case , num_classes=len(__snake_case ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__a = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
__a = False
for param in model.get_classifier().parameters():
__a = True
# We normalize the batches of images to be a bit faster.
__a = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device )
__a = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
__a = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
__a = OneCycleLR(optimizer=__snake_case , max_lr=__snake_case , epochs=__snake_case , steps_per_epoch=len(__snake_case ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__a = accelerator.prepare(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
# We need to keep track of how many total steps we have iterated over
__a = 0
# We also need to keep track of the starting epoch so files are named properly
__a = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f'''Resumed from checkpoint: {args.resume_from_checkpoint}''' )
accelerator.load_state(args.resume_from_checkpoint )
__a = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
__a = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
__a = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
__a = os.path.splitext(__snake_case )[0]
if "epoch" in training_difference:
__a = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1
__a = None
else:
__a = int(training_difference.replace('''step_''' , '''''' ) )
__a = resume_step // len(__snake_case )
resume_step -= starting_epoch * len(__snake_case )
# Now we train the model
for epoch in range(__snake_case , __snake_case ):
model.train()
if args.with_tracking:
__a = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
__a = accelerator.skip_first_batches(__snake_case , __snake_case )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
__a = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
__a = {k: v.to(accelerator.device ) for k, v in batch.items()}
__a = (batch["image"] - mean) / std
__a = model(__snake_case )
__a = torch.nn.functional.cross_entropy(__snake_case , batch['''label'''] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(__snake_case )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(__snake_case , __snake_case ):
__a = f'''step_{overall_step}'''
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
__a = os.path.join(args.output_dir , __snake_case )
accelerator.save_state(__snake_case )
model.eval()
__a = 0
__a = 0
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
__a = {k: v.to(accelerator.device ) for k, v in batch.items()}
__a = (batch["image"] - mean) / std
with torch.no_grad():
__a = model(__snake_case )
__a = outputs.argmax(dim=-1 )
__a = accelerator.gather_for_metrics((predictions, batch['''label''']) )
__a = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
__a = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}: {100 * eval_metric:.2f}''' )
if args.with_tracking:
accelerator.log(
{
'''accuracy''': 100 * eval_metric,
'''train_loss''': total_loss.item() / len(__snake_case ),
'''epoch''': epoch,
} , step=__snake_case , )
if checkpointing_steps == "epoch":
__a = f'''epoch_{epoch}'''
if args.output_dir is not None:
__a = os.path.join(args.output_dir , __snake_case )
accelerator.save_state(__snake_case )
if args.with_tracking:
accelerator.end_training()
def lowercase ( ) -> Tuple:
__a = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument('''--data_dir''' , required=__snake_case , help='''The data folder on disk.''' )
parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' )
parser.add_argument(
'''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
parser.add_argument(
'''--checkpointing_steps''' , type=__snake_case , default=__snake_case , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , )
parser.add_argument(
'''--output_dir''' , type=__snake_case , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--resume_from_checkpoint''' , type=__snake_case , default=__snake_case , help='''If the training should continue from a checkpoint folder.''' , )
parser.add_argument(
'''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , )
parser.add_argument(
'''--project_dir''' , type=__snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , )
__a = parser.parse_args()
__a = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224}
training_function(__snake_case , __snake_case )
if __name__ == "__main__":
main()
| 363 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = 'vit_mae'
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = initializer_range
__a = layer_norm_eps
__a = image_size
__a = patch_size
__a = num_channels
__a = qkv_bias
__a = decoder_num_attention_heads
__a = decoder_hidden_size
__a = decoder_num_hidden_layers
__a = decoder_intermediate_size
__a = mask_ratio
__a = norm_pix_loss
| 11 | 0 |
"""simple docstring"""
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Tuple = inspect.getfile(accelerate.test_utils )
__UpperCAmelCase : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] )
__UpperCAmelCase : List[str] = ["accelerate", "launch"]
__UpperCAmelCase : List[Any] = Path.home() / ".cache/huggingface/accelerate"
__UpperCAmelCase : Tuple = "default_config.yaml"
__UpperCAmelCase : Tuple = config_folder / config_file
__UpperCAmelCase : int = config_folder / "_default_config.yaml"
__UpperCAmelCase : Optional[Any] = Path('tests/test_configs' )
@classmethod
def __UpperCAmelCase ( cls ):
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def __UpperCAmelCase ( cls ):
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def __UpperCAmelCase ( self ):
__a = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def __UpperCAmelCase ( self ):
for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ):
with self.subTest(config_file=lowerCamelCase_ ):
execute_subprocess_async(
self.base_cmd + ['''--config_file''', str(lowerCamelCase_ ), self.test_file_path] , env=os.environ.copy() )
def __UpperCAmelCase ( self ):
execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() )
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = "test-tpu"
__UpperCAmelCase : Optional[int] = "us-central1-a"
__UpperCAmelCase : Dict = "ls"
__UpperCAmelCase : Optional[int] = ["accelerate", "tpu-config"]
__UpperCAmelCase : Optional[Any] = "cd /usr/share"
__UpperCAmelCase : Optional[Any] = "tests/test_samples/test_command_file.sh"
__UpperCAmelCase : int = "Running gcloud compute tpus tpu-vm ssh"
def __UpperCAmelCase ( self ):
__a = run_command(
self.cmd
+ ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=lowerCamelCase_ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , )
def __UpperCAmelCase ( self ):
__a = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command''',
self.command,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=lowerCamelCase_ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , )
def __UpperCAmelCase ( self ):
__a = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=lowerCamelCase_ )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , )
def __UpperCAmelCase ( self ):
__a = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=lowerCamelCase_ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , )
def __UpperCAmelCase ( self ):
__a = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--command''',
self.command,
'''--command''',
'''echo \"Hello World\"''',
'''--debug''',
] , return_stdout=lowerCamelCase_ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , lowerCamelCase_ , )
def __UpperCAmelCase ( self ):
__a = run_command(
self.cmd
+ ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=lowerCamelCase_ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , )
def __UpperCAmelCase ( self ):
__a = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command_file''',
self.command_file,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=lowerCamelCase_ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , )
def __UpperCAmelCase ( self ):
__a = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=lowerCamelCase_ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , )
def __UpperCAmelCase ( self ):
__a = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--install_accelerate''',
'''--accelerate_version''',
'''12.0.0''',
'''--debug''',
] , return_stdout=lowerCamelCase_ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , )
| 364 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = ['image_processor', 'tokenizer']
__UpperCAmelCase : str = 'LayoutLMv3ImageProcessor'
__UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast')
def __init__( self , _a=None , _a=None , **_a ):
__a = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
__a = kwargs.pop('''feature_extractor''' )
__a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
# first, apply the image processor
__a = self.image_processor(images=_a , return_tensors=_a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_a , _a ):
__a = [text] # add batch dimension (as the image processor always adds a batch dimension)
__a = features['''words''']
__a = self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel values
__a = features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
__a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] )
__a = images
return encoded_inputs
def __UpperCAmelCase ( self , _a , _a ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
__a = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_a ) != len(_a ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f''' {len(_a )} and {len(_a )}''' )
return images_with_overflow
def __UpperCAmelCase ( self , *_a , **_a ):
return self.tokenizer.batch_decode(*_a , **_a )
def __UpperCAmelCase ( self , *_a , **_a ):
return self.tokenizer.decode(*_a , **_a )
@property
def __UpperCAmelCase ( self ):
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def __UpperCAmelCase ( self ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def __UpperCAmelCase ( self ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 11 | 0 |
"""simple docstring"""
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
lowercase_ = datasets.load_iris()
lowercase_ = np.array(data["data"])
lowercase_ = np.array(data["target"])
lowercase_ = data["""target_names"""]
lowercase_ = train_test_split(X, y)
def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]:
return np.linalg.norm(np.array(SCREAMING_SNAKE_CASE_ ) - np.array(SCREAMING_SNAKE_CASE_ ) )
def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=5 ) -> Tuple:
__a = zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# List of distances of all points from the point to be classified
__a = []
for data_point in data:
__a = euclidean_distance(data_point[0] , SCREAMING_SNAKE_CASE_ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
__a = [i[1] for i in sorted(SCREAMING_SNAKE_CASE_ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__a = Counter(SCREAMING_SNAKE_CASE_ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 365 |
"""simple docstring"""
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(lowerCAmelCase__ : int ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
__a = []
for i in range(lowerCAmelCase__ ):
__a = i / num_diffusion_timesteps
__a = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) )
return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers]
__UpperCAmelCase : str = 2
@register_to_config
def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ):
if trained_betas is not None:
__a = torch.tensor(_a , dtype=torch.floataa )
elif beta_schedule == "linear":
__a = torch.linspace(_a , _a , _a , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__a = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__a = betas_for_alpha_bar(_a )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
__a = 1.0 - self.betas
__a = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_a , _a , _a )
def __UpperCAmelCase ( self , _a , _a=None ):
if schedule_timesteps is None:
__a = self.timesteps
__a = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
__a = 1 if len(_a ) > 1 else 0
else:
__a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep
__a = self._index_counter[timestep_int]
return indices[pos].item()
@property
def __UpperCAmelCase ( self ):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def __UpperCAmelCase ( self , _a , _a , ):
__a = self.index_for_timestep(_a )
if self.state_in_first_order:
__a = self.sigmas[step_index]
else:
__a = self.sigmas_interpol[step_index]
__a = sample / ((sigma**2 + 1) ** 0.5)
return sample
def __UpperCAmelCase ( self , _a , _a = None , _a = None , ):
__a = num_inference_steps
__a = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
__a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy()
elif self.config.timestep_spacing == "leading":
__a = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
__a = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a )
timesteps -= 1
else:
raise ValueError(
f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
__a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
__a = torch.from_numpy(np.log(_a ) ).to(_a )
__a = np.interp(_a , np.arange(0 , len(_a ) ) , _a )
__a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
__a = torch.from_numpy(_a ).to(device=_a )
# interpolate sigmas
__a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp()
__a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
__a = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(_a ).startswith('''mps''' ):
# mps does not support float64
__a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa )
else:
__a = torch.from_numpy(_a ).to(_a )
# interpolate timesteps
__a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype )
__a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten()
__a = torch.cat([timesteps[:1], interleaved_timesteps] )
__a = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
__a = defaultdict(_a )
def __UpperCAmelCase ( self , _a ):
# get log sigma
__a = sigma.log()
# get distribution
__a = log_sigma - self.log_sigmas[:, None]
# get sigmas range
__a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
__a = low_idx + 1
__a = self.log_sigmas[low_idx]
__a = self.log_sigmas[high_idx]
# interpolate sigmas
__a = (low - log_sigma) / (low - high)
__a = w.clamp(0 , 1 )
# transform interpolation to time range
__a = (1 - w) * low_idx + w * high_idx
__a = t.view(sigma.shape )
return t
@property
def __UpperCAmelCase ( self ):
return self.sample is None
def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ):
__a = self.index_for_timestep(_a )
# advance index counter by 1
__a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
__a = self.sigmas[step_index]
__a = self.sigmas_interpol[step_index + 1]
__a = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
__a = self.sigmas[step_index - 1]
__a = self.sigmas_interpol[step_index]
__a = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
__a = 0
__a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
__a = sigma_hat if self.state_in_first_order else sigma_interpol
__a = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
__a = sigma_hat if self.state_in_first_order else sigma_interpol
__a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError('''prediction_type not implemented yet: sample''' )
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
__a = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
__a = sigma_interpol - sigma_hat
# store for 2nd order step
__a = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
__a = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
__a = sigma_next - sigma_hat
__a = self.sample
__a = None
__a = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_a )
def __UpperCAmelCase ( self , _a , _a , _a , ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
__a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_a ):
# mps does not support float64
__a = self.timesteps.to(original_samples.device , dtype=torch.floataa )
__a = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
__a = self.timesteps.to(original_samples.device )
__a = timesteps.to(original_samples.device )
__a = [self.index_for_timestep(_a , _a ) for t in timesteps]
__a = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
__a = sigma.unsqueeze(-1 )
__a = original_samples + noise * sigma
return noisy_samples
def __len__( self ):
return self.config.num_train_timesteps
| 11 | 0 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"google/pix2struct-textcaps-base": (
"https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json"
),
}
class __lowerCAmelCase ( lowerCamelCase_ ):
'''simple docstring'''
__UpperCAmelCase : Dict = """pix2struct_text_model"""
__UpperCAmelCase : str = ["""past_key_values"""]
__UpperCAmelCase : Dict = {
"""hidden_size""": """hidden_size""",
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self , _a=50_244 , _a=768 , _a=64 , _a=2_048 , _a=12 , _a=12 , _a=32 , _a=128 , _a=0.1 , _a=1E-6 , _a=1.0 , _a="gelu_new" , _a=0 , _a=False , _a=0 , _a=1 , _a=False , _a=True , **_a , ):
__a = vocab_size
__a = hidden_size
__a = d_kv
__a = d_ff
__a = num_layers
__a = num_heads
__a = relative_attention_num_buckets
__a = relative_attention_max_distance
__a = dropout_rate
__a = layer_norm_epsilon
__a = initializer_factor
__a = use_cache
__a = eos_token_id
__a = decoder_start_token_id
# for backwards compatibility
__a = dense_act_fn
super().__init__(
pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , is_decoder=_UpperCAmelCase , **_UpperCAmelCase , )
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_UpperCAmelCase )
__a , __a = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
__a = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class __lowerCAmelCase ( lowerCamelCase_ ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """pix2struct_vision_model"""
def __init__( self , _a=768 , _a=768 , _a=2_048 , _a=64 , _a=12 , _a=12 , _a="gelu_new" , _a=1E-6 , _a=0.0 , _a=0.0 , _a=1E-10 , _a=1.0 , _a=4_096 , _a=32 , _a=128 , **_a , ):
super().__init__(**_UpperCAmelCase )
__a = hidden_size
__a = patch_embed_hidden_size
__a = d_ff
__a = dropout_rate
__a = num_hidden_layers
__a = num_attention_heads
__a = initializer_range
__a = initializer_factor
__a = attention_dropout
__a = layer_norm_eps
__a = dense_act_fn
__a = seq_len
__a = relative_attention_num_buckets
__a = relative_attention_max_distance
__a = d_kv
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_UpperCAmelCase )
__a , __a = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
__a = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class __lowerCAmelCase ( lowerCamelCase_ ):
'''simple docstring'''
__UpperCAmelCase : str = """pix2struct"""
__UpperCAmelCase : Union[str, Any] = True
def __init__( self , _a=None , _a=None , _a=1.0 , _a=0.02 , _a=False , _a=False , _a=True , **_a , ):
super().__init__(tie_word_embeddings=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase )
if text_config is None:
__a = {}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' )
if vision_config is None:
__a = {}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' )
__a = PixaStructTextConfig(**_UpperCAmelCase )
__a = PixaStructVisionConfig(**_UpperCAmelCase )
__a = self.text_config.decoder_start_token_id
__a = self.text_config.pad_token_id
__a = self.text_config.eos_token_id
__a = initializer_factor
__a = initializer_range
__a = self.initializer_range
__a = self.initializer_range
__a = is_vqa
@classmethod
def __UpperCAmelCase ( cls , _a , _a , **_a ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.text_config.to_dict()
__a = self.vision_config.to_dict()
__a = self.__class__.model_type
return output
| 366 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
"RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
"RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
"RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
"RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
"RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
"RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
"RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
"RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
"RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Any = 'rwkv'
__UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'}
def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ):
__a = vocab_size
__a = context_length
__a = hidden_size
__a = num_hidden_layers
__a = attention_hidden_size if attention_hidden_size is not None else hidden_size
__a = intermediate_size if intermediate_size is not None else 4 * hidden_size
__a = layer_norm_epsilon
__a = rescale_every
__a = use_cache
__a = bos_token_id
__a = eos_token_id
super().__init__(
tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
| 11 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
'''configuration_jukebox''': [
'''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''JukeboxConfig''',
'''JukeboxPriorConfig''',
'''JukeboxVQVAEConfig''',
],
'''tokenization_jukebox''': ['''JukeboxTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
'''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''JukeboxModel''',
'''JukeboxPreTrainedModel''',
'''JukeboxVQVAE''',
'''JukeboxPrior''',
]
if TYPE_CHECKING:
from .configuration_jukebox import (
JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
JukeboxConfig,
JukeboxPriorConfig,
JukeboxVQVAEConfig,
)
from .tokenization_jukebox import JukeboxTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_jukebox import (
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
JukeboxModel,
JukeboxPreTrainedModel,
JukeboxPrior,
JukeboxVQVAE,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 367 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[str] = (UnCLIPScheduler,)
def __UpperCAmelCase ( self , **_a ):
__a = {
'''num_train_timesteps''': 1_000,
'''variance_type''': '''fixed_small_log''',
'''clip_sample''': True,
'''clip_sample_range''': 1.0,
'''prediction_type''': '''epsilon''',
}
config.update(**_a )
return config
def __UpperCAmelCase ( self ):
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_a )
def __UpperCAmelCase ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_a )
def __UpperCAmelCase ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_a )
def __UpperCAmelCase ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=_a )
def __UpperCAmelCase ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_a )
def __UpperCAmelCase ( self ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_a , prev_timestep=_a )
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(variance_type='''fixed_small_log''' )
__a = scheduler_class(**_a )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(variance_type='''learned_range''' )
__a = scheduler_class(**_a )
__a = 0.5
assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=_a ) - -5.799_8052 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=_a ) - -0.001_0011 < 1E-5
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config()
__a = scheduler_class(**_a )
__a = scheduler.timesteps
__a = self.dummy_model()
__a = self.dummy_sample_deter
__a = torch.manual_seed(0 )
for i, t in enumerate(_a ):
# 1. predict noise residual
__a = model(_a , _a )
# 2. predict previous mean of sample x_t-1
__a = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
__a = pred_prev_sample
__a = torch.sum(torch.abs(_a ) )
__a = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 252.268_2495 ) < 1E-2
assert abs(result_mean.item() - 0.328_4743 ) < 1E-3
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config()
__a = scheduler_class(**_a )
scheduler.set_timesteps(25 )
__a = scheduler.timesteps
__a = self.dummy_model()
__a = self.dummy_sample_deter
__a = torch.manual_seed(0 )
for i, t in enumerate(_a ):
# 1. predict noise residual
__a = model(_a , _a )
if i + 1 == timesteps.shape[0]:
__a = None
else:
__a = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
__a = scheduler.step(
_a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample
__a = pred_prev_sample
__a = torch.sum(torch.abs(_a ) )
__a = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 258.204_4983 ) < 1E-2
assert abs(result_mean.item() - 0.336_2038 ) < 1E-3
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
pass
| 11 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {
"configuration_owlvit": [
"OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"OwlViTConfig",
"OwlViTOnnxConfig",
"OwlViTTextConfig",
"OwlViTVisionConfig",
],
"processing_owlvit": ["OwlViTProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["OwlViTFeatureExtractor"]
lowercase_ = ["OwlViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OwlViTModel",
"OwlViTPreTrainedModel",
"OwlViTTextModel",
"OwlViTVisionModel",
"OwlViTForObjectDetection",
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 368 |
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]:
__a , __a = image.size
__a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
__a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0
__a = image[None].transpose(0 , 3 , 1 , 2 )
__a = torch.from_numpy(lowerCAmelCase__ )
return 2.0 * image - 1.0
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , ):
super().__init__()
self.register_modules(vqvae=_a , unet=_a , scheduler=_a )
@torch.no_grad()
def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ):
if isinstance(_a , PIL.Image.Image ):
__a = 1
elif isinstance(_a , torch.Tensor ):
__a = image.shape[0]
else:
raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' )
if isinstance(_a , PIL.Image.Image ):
__a = preprocess(_a )
__a , __a = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__a = (batch_size, self.unet.config.in_channels // 2, height, width)
__a = next(self.unet.parameters() ).dtype
__a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a )
__a = image.to(device=self.device , dtype=_a )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_a , device=self.device )
__a = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__a = {}
if accepts_eta:
__a = eta
for t in self.progress_bar(_a ):
# concat latents and low resolution image in the channel dimension.
__a = torch.cat([latents, image] , dim=1 )
__a = self.scheduler.scale_model_input(_a , _a )
# predict the noise residual
__a = self.unet(_a , _a ).sample
# compute the previous noisy sample x_t -> x_t-1
__a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample
# decode the image latents with the VQVAE
__a = self.vqvae.decode(_a ).sample
__a = torch.clamp(_a , -1.0 , 1.0 )
__a = image / 2 + 0.5
__a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__a = self.numpy_to_pil(_a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_a )
| 11 | 0 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : int = 1000 ) -> int:
__a = -1
__a = 0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
__a = (n * n - 2 * a * n) // (2 * n - 2 * a)
__a = n - a - b
if c * c == (a * a + b * b):
__a = a * b * c
if candidate >= product:
__a = candidate
return product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 369 |
"""simple docstring"""
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Dict = DistilBertTokenizer
__UpperCAmelCase : Any = DistilBertTokenizerFast
__UpperCAmelCase : int = True
@slow
def __UpperCAmelCase ( self ):
__a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
__a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a )
__a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a )
__a = tokenizer.build_inputs_with_special_tokens(_a )
__a = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 11 | 0 |
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"tensor(bool)": np.bool_,
"tensor(int8)": np.inta,
"tensor(uint8)": np.uinta,
"tensor(int16)": np.intaa,
"tensor(uint16)": np.uintaa,
"tensor(int32)": np.intaa,
"tensor(uint32)": np.uintaa,
"tensor(int64)": np.intaa,
"tensor(uint64)": np.uintaa,
"tensor(float16)": np.floataa,
"tensor(float)": np.floataa,
"tensor(double)": np.floataa,
}
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a=None , **_a ):
logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' )
__a = model
__a = kwargs.get('''model_save_dir''' , _SCREAMING_SNAKE_CASE )
__a = kwargs.get('''latest_model_name''' , _SCREAMING_SNAKE_CASE )
def __call__( self , **_a ):
__a = {k: np.array(_SCREAMING_SNAKE_CASE ) for k, v in kwargs.items()}
return self.model.run(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@staticmethod
def __UpperCAmelCase ( _a , _a=None , _a=None ):
if provider is None:
logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' )
__a = '''CPUExecutionProvider'''
return ort.InferenceSession(_SCREAMING_SNAKE_CASE , providers=[provider] , sess_options=_SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self , _a , _a = None , **_a ):
__a = file_name if file_name is not None else ONNX_WEIGHTS_NAME
__a = self.model_save_dir.joinpath(self.latest_model_name )
__a = Path(_SCREAMING_SNAKE_CASE ).joinpath(_SCREAMING_SNAKE_CASE )
try:
shutil.copyfile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
__a = self.model_save_dir.joinpath(_SCREAMING_SNAKE_CASE )
if src_path.exists():
__a = Path(_SCREAMING_SNAKE_CASE ).joinpath(_SCREAMING_SNAKE_CASE )
try:
shutil.copyfile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
except shutil.SameFileError:
pass
def __UpperCAmelCase ( self , _a , **_a , ):
if os.path.isfile(_SCREAMING_SNAKE_CASE ):
logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
# saving model weights/files
self._save_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@classmethod
def __UpperCAmelCase ( cls , _a , _a = None , _a = None , _a = False , _a = None , _a = None , _a = None , _a = None , **_a , ):
__a = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_SCREAMING_SNAKE_CASE ):
__a = OnnxRuntimeModel.load_model(
os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , provider=_SCREAMING_SNAKE_CASE , sess_options=_SCREAMING_SNAKE_CASE )
__a = Path(_SCREAMING_SNAKE_CASE )
# load model from hub
else:
# download model
__a = hf_hub_download(
repo_id=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , )
__a = Path(_SCREAMING_SNAKE_CASE ).parent
__a = Path(_SCREAMING_SNAKE_CASE ).name
__a = OnnxRuntimeModel.load_model(_SCREAMING_SNAKE_CASE , provider=_SCREAMING_SNAKE_CASE , sess_options=_SCREAMING_SNAKE_CASE )
return cls(model=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@classmethod
def __UpperCAmelCase ( cls , _a , _a = True , _a = None , _a = None , **_a , ):
__a = None
if len(str(_SCREAMING_SNAKE_CASE ).split('''@''' ) ) == 2:
__a = model_id.split('''@''' )
return cls._from_pretrained(
model_id=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
| 370 |
"""simple docstring"""
from math import factorial, radians
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float:
__a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0)
# Converting from degrees to radians
__a = radians(lowerCAmelCase__ )
__a = angle_in_radians
__a = 3
__a = -1
for _ in range(lowerCAmelCase__ ):
result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ )
__a = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
__import__("doctest").testmod()
| 11 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ) -> int:
__a = MobileBertConfig.from_json_file(lowerCamelCase__ )
print(f'''Building PyTorch model from configuration: {config}''' )
__a = MobileBertForPreTraining(lowerCamelCase__ )
# Load weights from tf checkpoint
__a = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , lowerCamelCase__ )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowercase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 371 |
"""simple docstring"""
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def lowercase ( lowerCAmelCase__ : dict ) -> tuple:
return (data["data"], data["target"])
def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray:
__a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ )
# Predict target for test data
__a = xgb.predict(lowerCAmelCase__ )
__a = predictions.reshape(len(lowerCAmelCase__ ) , 1 )
return predictions
def lowercase ( ) -> None:
__a = fetch_california_housing()
__a , __a = data_handling(lowerCAmelCase__ )
__a , __a , __a , __a = train_test_split(
lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 )
__a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Error printing
print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' )
print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 11 | 0 |
"""simple docstring"""
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
lowercase_ = logging.getLogger(__name__)
lowercase_ = "pytorch_model.bin"
@dataclasses.dataclass
class __lowerCAmelCase :
'''simple docstring'''
__UpperCAmelCase : str = dataclasses.field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} )
__UpperCAmelCase : Optional[str] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , )
@dataclasses.dataclass
class __lowerCAmelCase :
'''simple docstring'''
__UpperCAmelCase : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} )
__UpperCAmelCase : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} )
__UpperCAmelCase : Optional[str] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'A csv or a json file containing the validation data.'} )
__UpperCAmelCase : Optional[str] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The name of the task to train on.'} , )
__UpperCAmelCase : Optional[List[str]] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The list of labels for the task.'} )
@dataclasses.dataclass
class __lowerCAmelCase :
'''simple docstring'''
__UpperCAmelCase : str = dataclasses.field(
metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} )
__UpperCAmelCase : Optional[str] = dataclasses.field(
default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} )
__UpperCAmelCase : Optional[str] = dataclasses.field(
default='no' , metadata={
'help': 'The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]'
} , )
__UpperCAmelCase : Optional[int] = dataclasses.field(
default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , )
__UpperCAmelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={
'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.'
} , )
__UpperCAmelCase : Optional[bool] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , )
__UpperCAmelCase : Optional[bool] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , )
__UpperCAmelCase : Optional[bool] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , )
__UpperCAmelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , )
__UpperCAmelCase : Optional[int] = dataclasses.field(
default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , )
__UpperCAmelCase : Optional[int] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Random seed for initialization.'} , )
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> Any:
__a = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
__a = dataset.filter(lambda lowerCAmelCase__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
__a = int(eval_result * len(_SCREAMING_SNAKE_CASE ) )
print(_SCREAMING_SNAKE_CASE )
__a = dataset.sort('''probability''' , reverse=_SCREAMING_SNAKE_CASE )
__a = dataset.select(range(_SCREAMING_SNAKE_CASE ) )
__a = dataset.remove_columns(['''label''', '''probability'''] )
__a = dataset.rename_column('''prediction''' , '''label''' )
__a = dataset.map(lambda lowerCAmelCase__ : {"label": idalabel[example["label"]]} )
__a = dataset.shuffle(seed=args.seed )
__a = os.path.join(_SCREAMING_SNAKE_CASE , f'''train_pseudo.{args.data_file_extension}''' )
if args.data_file_extension == "csv":
dataset.to_csv(_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE )
else:
dataset.to_json(_SCREAMING_SNAKE_CASE )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Union[str, Any] ) -> str:
__a = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
__a = STModelArguments(model_name_or_path=_SCREAMING_SNAKE_CASE )
__a = STDataArguments(train_file=_SCREAMING_SNAKE_CASE , infer_file=_SCREAMING_SNAKE_CASE )
__a = STTrainingArguments(output_dir=_SCREAMING_SNAKE_CASE )
__a = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(_SCREAMING_SNAKE_CASE ).items():
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for key, value in kwargs.items():
if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Sanity checks
__a = {}
__a = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
__a = args.train_file
__a = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
__a = args.eval_file
for key in data_files:
__a = data_files[key].split('''.''' )[-1]
assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.'''
if args.data_file_extension is None:
__a = extension
else:
assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.'''
assert (
args.eval_metric in datasets.list_metrics()
), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'''
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info('''Creating the initial data directory for self-training...''' )
__a = f'''{args.output_dir}/self-train_iter-{{}}'''.format
__a = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE )
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
__a = None
__a = None
__a = 0
__a = False
# Show the progress bar
__a = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
__a = data_dir_format(_SCREAMING_SNAKE_CASE )
assert os.path.exists(_SCREAMING_SNAKE_CASE )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
__a = os.path.join(_SCREAMING_SNAKE_CASE , '''stage-1''' )
__a = {
"accelerator": accelerator,
"model_name_or_path": args.model_name_or_path,
"cache_dir": args.cache_dir,
"do_train": True,
"train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"],
"do_eval": True if args.eval_file is not None else False,
"eval_file": data_files["eval"],
"do_predict": True,
"infer_file": data_files["infer"],
"task_name": args.task_name,
"label_list": args.label_list,
"output_dir": current_output_dir,
"eval_metric": args.eval_metric,
"evaluation_strategy": args.evaluation_strategy,
"early_stopping_patience": args.early_stopping_patience,
"early_stopping_threshold": args.early_stopping_threshold,
"seed": args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
arguments_dict.update({key: value} )
__a = os.path.join(_SCREAMING_SNAKE_CASE , '''best-checkpoint''' , _SCREAMING_SNAKE_CASE )
if os.path.exists(_SCREAMING_SNAKE_CASE ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , _SCREAMING_SNAKE_CASE )
finetune(**_SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
assert os.path.exists(_SCREAMING_SNAKE_CASE )
logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , _SCREAMING_SNAKE_CASE )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
__a = os.path.join(_SCREAMING_SNAKE_CASE , '''best-checkpoint''' )
__a = os.path.join(_SCREAMING_SNAKE_CASE , '''stage-2''' )
# Update arguments_dict
__a = model_path
__a = data_files["train"]
__a = current_output_dir
__a = os.path.join(_SCREAMING_SNAKE_CASE , '''best-checkpoint''' , _SCREAMING_SNAKE_CASE )
if os.path.exists(_SCREAMING_SNAKE_CASE ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , _SCREAMING_SNAKE_CASE )
finetune(**_SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
assert os.path.exists(_SCREAMING_SNAKE_CASE )
logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , _SCREAMING_SNAKE_CASE )
__a = iteration
__a = data_dir_format(iteration + 1 )
__a = AutoConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , '''best-checkpoint''' ) )
__a = config.idalabel
__a = os.path.join(_SCREAMING_SNAKE_CASE , '''eval_results_best-checkpoint.json''' )
__a = os.path.join(_SCREAMING_SNAKE_CASE , '''test_results_best-checkpoint.json''' )
assert os.path.exists(_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , '''r''' ) as f:
__a = float(json.load(_SCREAMING_SNAKE_CASE )[args.eval_metric] )
__a = os.path.join(_SCREAMING_SNAKE_CASE , '''infer_output_best-checkpoint.csv''' )
assert os.path.exists(_SCREAMING_SNAKE_CASE )
# Loading the dataset from local csv or json files.
__a = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )["data"]
__a = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )["data"]
if accelerator.is_main_process:
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f'''eval_results_iter-{iteration}.json''' ) )
if os.path.exists(_SCREAMING_SNAKE_CASE ):
shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f'''test_results_iter-{iteration}.json''' ) )
create_pseudo_labeled_data(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
__a = os.path.join(_SCREAMING_SNAKE_CASE , f'''train_pseudo.{args.data_file_extension}''' )
if args.evaluation_strategy != IntervalStrategy.NO.value:
__a = eval_result
if best_iteration is None:
__a = new_iteration
__a = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
__a = new_iteration
__a = new_eval_result
__a = 0
else:
if new_eval_result == best_eval_result:
__a = new_iteration
__a = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
__a = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info('''Best iteration: %d''' , _SCREAMING_SNAKE_CASE )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , _SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(_SCREAMING_SNAKE_CASE , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(_SCREAMING_SNAKE_CASE , '''eval_results_best-iteration.json''' ) , )
else:
# Assume that the last iteration is the best
logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , _SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(_SCREAMING_SNAKE_CASE , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(_SCREAMING_SNAKE_CASE , '''eval_results_best-iteration.json''' ) , )
| 350 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {
"configuration_efficientformer": [
"EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EfficientFormerConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["EfficientFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"EfficientFormerForImageClassification",
"EfficientFormerForImageClassificationWithTeacher",
"EfficientFormerModel",
"EfficientFormerPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEfficientFormerForImageClassification",
"TFEfficientFormerForImageClassificationWithTeacher",
"TFEfficientFormerModel",
"TFEfficientFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = KandinskyVaaImgaImgPipeline
__UpperCAmelCase : Optional[Any] = ['image_embeds', 'negative_image_embeds', 'image']
__UpperCAmelCase : Dict = [
'image_embeds',
'negative_image_embeds',
'image',
]
__UpperCAmelCase : Any = [
'generator',
'height',
'width',
'strength',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
__UpperCAmelCase : List[str] = False
@property
def __UpperCAmelCase ( self ):
return 32
@property
def __UpperCAmelCase ( self ):
return 32
@property
def __UpperCAmelCase ( self ):
return self.time_input_dim
@property
def __UpperCAmelCase ( self ):
return self.time_input_dim * 4
@property
def __UpperCAmelCase ( self ):
return 100
@property
def __UpperCAmelCase ( self ):
torch.manual_seed(0 )
__a = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
__a = UNetaDConditionModel(**_a )
return model
@property
def __UpperCAmelCase ( self ):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def __UpperCAmelCase ( self ):
torch.manual_seed(0 )
__a = VQModel(**self.dummy_movq_kwargs )
return model
def __UpperCAmelCase ( self ):
__a = self.dummy_unet
__a = self.dummy_movq
__a = {
'''num_train_timesteps''': 1_000,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.0_0085,
'''beta_end''': 0.012,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
__a = DDIMScheduler(**_a )
__a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def __UpperCAmelCase ( self , _a , _a=0 ):
__a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a )
__a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_a )
# create init_image
__a = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a )
__a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((256, 256) )
if str(_a ).startswith('''mps''' ):
__a = torch.manual_seed(_a )
else:
__a = torch.Generator(device=_a ).manual_seed(_a )
__a = {
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 10,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def __UpperCAmelCase ( self ):
__a = '''cpu'''
__a = self.get_dummy_components()
__a = self.pipeline_class(**_a )
__a = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
__a = pipe(**self.get_dummy_inputs(_a ) )
__a = output.images
__a = pipe(
**self.get_dummy_inputs(_a ) , return_dict=_a , )[0]
__a = image[0, -3:, -3:, -1]
__a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__a = np.array(
[0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self ):
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_img2img_frog.npy''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
__a = '''A red cartoon frog, 4k'''
__a = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(_a )
__a = KandinskyVaaImgaImgPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa )
__a = pipeline.to(_a )
pipeline.set_progress_bar_config(disable=_a )
__a = torch.Generator(device='''cpu''' ).manual_seed(0 )
__a = pipe_prior(
_a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
__a = pipeline(
image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , )
__a = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_a , _a )
| 351 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json",
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json",
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json",
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'funnel'
__UpperCAmelCase : Union[str, Any] = {
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
}
def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ):
__a = vocab_size
__a = block_sizes
__a = [1] * len(_a ) if block_repeats is None else block_repeats
assert len(_a ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
__a = num_decoder_layers
__a = d_model
__a = n_head
__a = d_head
__a = d_inner
__a = hidden_act
__a = hidden_dropout
__a = attention_dropout
__a = activation_dropout
__a = initializer_range
__a = initializer_std
__a = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
__a = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
__a = attention_type
__a = separate_cls
__a = truncate_seq
__a = pool_q_only
super().__init__(**_a )
@property
def __UpperCAmelCase ( self ):
return sum(self.block_sizes )
@num_hidden_layers.setter
def __UpperCAmelCase ( self , _a ):
raise NotImplementedError(
'''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' )
@property
def __UpperCAmelCase ( self ):
return len(self.block_sizes )
@num_blocks.setter
def __UpperCAmelCase ( self , _a ):
raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
| 11 | 0 |
"""simple docstring"""
from scipy.stats import pearsonr
import datasets
lowercase_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
lowercase_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
lowercase_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float''' ),
'''references''': datasets.Value('''float''' ),
} ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def __UpperCAmelCase ( self , _a , _a , _a=False ):
if return_pvalue:
__a = pearsonr(_a , _a )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(_a , _a )[0] )}
| 352 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) )
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ):
__a = parent
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = make_divisible(512 * width_multiplier , divisor=8 )
__a = hidden_act
__a = conv_kernel_size
__a = output_stride
__a = classifier_dropout_prob
__a = use_labels
__a = is_training
__a = num_labels
__a = initializer_range
__a = scope
__a = width_multiplier
__a = ffn_dropout
__a = attn_dropout
def __UpperCAmelCase ( self ):
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels, pixel_labels
def __UpperCAmelCase ( self ):
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = MobileViTVaModel(config=_a )
model.to(_a )
model.eval()
__a = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForImageClassification(_a )
model.to(_a )
model.eval()
__a = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForSemanticSegmentation(_a )
model.to(_a )
model.eval()
__a = model(_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__a = model(_a , labels=_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self ):
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase : Union[str, Any] = (
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : List[str] = False
def __UpperCAmelCase ( self ):
__a = MobileViTVaModelTester(self )
__a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not output attentions''' )
def __UpperCAmelCase ( self ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(_a )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __UpperCAmelCase ( self ):
def check_hidden_states_output(_a , _a , _a ):
__a = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(_a , _a ) )
__a = outputs.hidden_states
__a = 5
self.assertEqual(len(_a ) , _a )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__a = 2
for i in range(len(_a ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(_a , _a , _a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_a )
@slow
def __UpperCAmelCase ( self ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = MobileViTVaModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowercase ( ) -> str:
__a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCAmelCase ( self ):
return (
MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' )
if is_vision_available()
else None
)
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to(
_a )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
# verify the logits
__a = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _a )
__a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_a )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
__a = outputs.logits
# verify the logits
__a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _a )
__a = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_a , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_a )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
__a = outputs.logits.detach().cpu()
__a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] )
__a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _a )
__a = image_processor.post_process_semantic_segmentation(outputs=_a )
__a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _a )
| 11 | 0 |
def lowercase ( lowerCAmelCase__ : int = 10 , lowerCAmelCase__ : int = 22 ) -> int:
__a = range(1 , _lowerCAmelCase )
__a = range(1 , _lowerCAmelCase )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(F'''{solution(1_0, 2_2) = }''')
| 353 |
"""simple docstring"""
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ):
super().__init__()
if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1:
__a = (
f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'''
f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '''
'''to update the config accordingly as leaving `steps_offset` might led to incorrect results'''
''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'''
''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'''
''' file'''
)
deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = 1
__a = FrozenDict(_a )
if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False:
__a = (
f'''The configuration file of this scheduler: {scheduler} has not set the configuration'''
''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'''
''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'''
''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'''
''' Hub, it would be very nice if you could open a Pull request for the'''
''' `scheduler/scheduler_config.json` file'''
)
deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = True
__a = FrozenDict(_a )
if safety_checker is None:
logger.warning(
f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , )
def __UpperCAmelCase ( self , _a = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__a = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_a )
def __UpperCAmelCase ( self ):
self.enable_attention_slicing(_a )
def __UpperCAmelCase ( self ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
__a = torch.device('''cuda''' )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(_a , _a )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __UpperCAmelCase ( self ):
if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_a , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ):
__a = self.segmentation_processor(
text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device )
__a = self.segmentation_model(**_a )
__a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
__a = self.numpy_to_pil(_a )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
__a = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
| 11 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a ):
__a = value
__a = None
__a = None
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a ):
__a = tree
def __UpperCAmelCase ( self , _a ):
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self ):
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 354 |
"""simple docstring"""
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , **_a ):
super().__init__(**_a )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
# No specific FOR_XXX available yet
def __call__( self , _a , **_a ):
return super().__call__(_a , **_a )
def __UpperCAmelCase ( self , **_a ):
__a = {}
if "candidate_labels" in kwargs:
__a = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__a = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ):
if isinstance(_a , _a ):
if audio.startswith('''http://''' ) or audio.startswith('''https://''' ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__a = requests.get(_a ).content
else:
with open(_a , '''rb''' ) as f:
__a = f.read()
if isinstance(_a , _a ):
__a = ffmpeg_read(_a , self.feature_extractor.sampling_rate )
if not isinstance(_a , np.ndarray ):
raise ValueError('''We expect a numpy ndarray as input''' )
if len(audio.shape ) != 1:
raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' )
__a = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' )
__a = candidate_labels
__a = [hypothesis_template.format(_a ) for x in candidate_labels]
__a = self.tokenizer(_a , return_tensors=self.framework , padding=_a )
__a = [text_inputs]
return inputs
def __UpperCAmelCase ( self , _a ):
__a = model_inputs.pop('''candidate_labels''' )
__a = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , _a ):
__a = text_inputs[0]
else:
# Batching case.
__a = text_inputs[0][0]
__a = self.model(**_a , **_a )
__a = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_audio,
}
return model_outputs
def __UpperCAmelCase ( self , _a ):
__a = model_outputs.pop('''candidate_labels''' )
__a = model_outputs['''logits'''][0]
if self.framework == "pt":
__a = logits.softmax(dim=0 )
__a = probs.tolist()
else:
raise ValueError('''`tf` framework not supported.''' )
__a = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] )
]
return result
| 11 | 0 |
"""simple docstring"""
from datetime import datetime
import requests
def lowercase ( lowerCAmelCase__ : Dict ) -> bytes:
__a = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url='''
__a = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src''']
return requests.get(__UpperCAmelCase ).content
if __name__ == "__main__":
lowercase_ = input("Enter Video/IGTV url: ").strip()
lowercase_ = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(F'''Done. Video saved to disk as {file_name}.''')
| 355 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__a = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sgugger/tiny-distilbert-classification'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
# set architectures equal to `None`
__a = None
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , )
__a = PyTorchBenchmark(_a )
benchmark.run()
self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_a ):
self.assertTrue(hasattr(_a , '''sequential''' ) )
self.assertTrue(hasattr(_a , '''cumulative''' ) )
self.assertTrue(hasattr(_a , '''current''' ) )
self.assertTrue(hasattr(_a , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
| 11 | 0 |
"""simple docstring"""
import logging
from transformers.configuration_utils import PretrainedConfig
lowercase_ = logging.getLogger(__name__)
class __lowerCAmelCase ( A__ ):
'''simple docstring'''
__UpperCAmelCase : str = 'masked_bert'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="topK" , _a="constant" , _a=0.0 , **_a , ):
super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = pruning_method
__a = mask_init
__a = mask_scale
| 356 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FocalNetForImageClassification",
"FocalNetForMaskedImageModeling",
"FocalNetBackbone",
"FocalNetModel",
"FocalNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : Dict ) -> Any:
__a = int(A_ )
if decimal in (0, 1): # Exit cases for the recursion
return str(A_ )
__a = divmod(A_ , 2 )
return binary_recursive(A_ ) + str(A_ )
def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> Any:
__a = str(A_ ).strip()
if not number:
raise ValueError('''No input value was provided''' )
__a = '''-''' if number.startswith('''-''' ) else ''''''
__a = number.lstrip('''-''' )
if not number.isnumeric():
raise ValueError('''Input value is not an integer''' )
return f'''{negative}0b{binary_recursive(int(A_ ) )}'''
if __name__ == "__main__":
from doctest import testmod
testmod()
| 357 |
"""simple docstring"""
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a , _a , _a ):
self.assertEqual(len(_a ) , len(_a ) )
for a, b in zip(_a , _a ):
self.assertAlmostEqual(_a , _a , delta=_a )
def __UpperCAmelCase ( self ):
__a = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_a ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 )
def __UpperCAmelCase ( self ):
__a = None
ops.enable_eager_execution_internal()
__a = tf.config.list_physical_devices('''CPU''' )
if len(_a ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
__a = tf.config.list_logical_devices(device_type='''CPU''' )
__a = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
__a = GradientAccumulator()
__a = tf.Variable([4.0, 3.0] )
__a , __a = create_optimizer(5E-5 , 10 , 5 )
__a = tf.Variable([0.0, 0.0] , trainable=_a )
def accumulate_on_replica(_a ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(_a , _a ):
with strategy.scope():
__a = strategy.experimental_local_results(_a )
local_variables[0].assign(_a )
local_variables[1].assign(_a )
strategy.run(_a , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_a )
def _check_local_values(_a , _a ):
__a = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 )
self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 11 | 0 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , )
@pytest.mark.usefixtures('sm_env' )
@parameterized_class(
[
{
'framework': 'pytorch',
'script': 'run_glue.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6},
},
{
'framework': 'pytorch',
'script': 'run_ddp.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6},
},
{
'framework': 'tensorflow',
'script': 'run_tf_dist.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7},
},
] )
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
if self.framework == "pytorch":
subprocess.run(
f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=__A , )
assert hasattr(self , '''env''' )
def __UpperCAmelCase ( self , _a ):
__a = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}'''
# distributed data settings
__a = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__A , instance_count=__A , instance_type=self.instance_type , debugger_hook_config=__A , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__A , py_version='''py36''' , )
def __UpperCAmelCase ( self , _a ):
TrainingJobAnalytics(__A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(2,)] )
def __UpperCAmelCase ( self , _a ):
# create estimator
__a = self.create_estimator(__A )
# run training
estimator.fit()
# result dataframe
__a = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
__a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__a = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __A )
| 358 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
lowercase_ = None
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json",
},
}
lowercase_ = {
"facebook/mbart-large-en-ro": 1_0_2_4,
"facebook/mbart-large-cc25": 1_0_2_4,
}
# fmt: off
lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = VOCAB_FILES_NAMES
__UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : Tuple = ['input_ids', 'attention_mask']
__UpperCAmelCase : Optional[Any] = MBartTokenizer
__UpperCAmelCase : List[int] = []
__UpperCAmelCase : List[int] = []
def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ):
# Mask token behave like a normal word, i.e. include the space before it
__a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , )
__a = vocab_file
__a = False if not self.vocab_file else True
__a = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__a = {
lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__a = src_lang if src_lang is not None else '''en_XX'''
__a = self.convert_tokens_to_ids(self._src_lang )
__a = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __UpperCAmelCase ( self ):
return self._src_lang
@src_lang.setter
def __UpperCAmelCase ( self , _a ):
__a = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __UpperCAmelCase ( self , _a , _a = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __UpperCAmelCase ( self , _a , _a = None ):
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ):
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__a = src_lang
__a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a )
__a = self.convert_tokens_to_ids(_a )
__a = tgt_lang_id
return inputs
def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ):
__a = src_lang
__a = tgt_lang
return super().prepare_seqaseq_batch(_a , _a , **_a )
def __UpperCAmelCase ( self ):
return self.set_src_lang_special_tokens(self.src_lang )
def __UpperCAmelCase ( self ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __UpperCAmelCase ( self , _a ):
__a = self.convert_tokens_to_ids(_a )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self , _a ):
__a = self.convert_tokens_to_ids(_a )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self , _a , _a = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
__a = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 11 | 0 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowercase_ = 1_6
lowercase_ = 3_2
def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]:
__a = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
__a = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__a = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__a = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowerCAmelCase__ : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
__a = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
__a = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
return train_dataloader, eval_dataloader
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple ) -> List[str]:
model.eval()
__a = 0
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__a = model(**lowerCAmelCase__ )
__a = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__a = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowerCAmelCase__ ) - 1:
__a = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__a = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , )
__a = metric.compute()
return eval_metric["accuracy"]
def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]:
# Initialize accelerator
__a = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__a = config["""lr"""]
__a = int(config['''num_epochs'''] )
__a = int(config['''seed'''] )
__a = int(config['''batch_size'''] )
__a = args.model_name_or_path
set_seed(lowerCAmelCase__ )
__a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
# Instantiate optimizer
__a = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ )
if accelerator.state.deepspeed_plugin is not None:
__a = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
__a = 1
__a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__a = get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , )
else:
__a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__a = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# We need to keep track of how many total steps we have iterated over
__a = 0
# We also need to keep track of the stating epoch so files are named properly
__a = 0
__a = evaluate.load('''glue''' , '''mrpc''' )
__a = num_epochs
if args.partial_train_epoch is not None:
__a = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
__a = args.resume_from_checkpoint.split('''epoch_''' )[1]
__a = """"""
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
__a = int(lowerCAmelCase__ ) + 1
__a = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
accelerator.print('''resumed checkpoint performance:''' , lowerCAmelCase__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f:
__a = json.load(lowerCAmelCase__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
__a = {}
for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ):
model.train()
for step, batch in enumerate(lowerCAmelCase__ ):
__a = model(**lowerCAmelCase__ )
__a = outputs.loss
__a = loss / gradient_accumulation_steps
accelerator.backward(lowerCAmelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
__a = f'''epoch_{epoch}'''
__a = os.path.join(args.output_dir , lowerCAmelCase__ )
accelerator.save_state(lowerCAmelCase__ )
__a = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__a = accuracy
__a = lr_scheduler.get_lr()[0]
__a = optimizer.param_groups[0]["""lr"""]
__a = epoch
__a = overall_step
accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , '''w''' ) as f:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( ) -> str:
__a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , )
parser.add_argument(
'''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--resume_from_checkpoint''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''If the training should continue from a checkpoint folder.''' , )
parser.add_argument(
'''--partial_train_epoch''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''If passed, the training will stop after this number of epochs.''' , )
parser.add_argument(
'''--num_epochs''' , type=lowerCAmelCase__ , default=2 , help='''Number of train epochs.''' , )
__a = parser.parse_args()
__a = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 359 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n"
class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = load_tool('''text-question-answering''' )
self.tool.setup()
__a = load_tool('''text-question-answering''' , remote=_a )
def __UpperCAmelCase ( self ):
__a = self.tool(_a , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
| 11 | 0 |
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Path , lowerCAmelCase__ : str = None , lowerCAmelCase__ : str = None , lowerCAmelCase__ : str = None , ) -> str:
if config_name_or_path is None:
__a = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base'''
if generator_tokenizer_name_or_path is None:
__a = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
__a = question_encoder_name_or_path
__a = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration
# Save model.
__a = RagConfig.from_pretrained(_a )
__a = AutoConfig.from_pretrained(_a )
__a = AutoConfig.from_pretrained(_a )
__a = gen_config
__a = question_encoder_config
__a = model_class.from_pretrained_question_encoder_generator(
_a , _a , config=_a )
rag_model.save_pretrained(_a )
# Sanity check.
model_class.from_pretrained(_a )
# Save tokenizers.
__a = AutoTokenizer.from_pretrained(_a )
gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' )
__a = AutoTokenizer.from_pretrained(_a )
question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token"],
required=True,
type=str,
help="RAG model type: rag_sequence, rag_token",
)
parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.")
parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier")
parser.add_argument(
"--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier"
)
parser.add_argument(
"--generator_tokenizer_name_or_path",
type=str,
help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``",
)
parser.add_argument(
"--question_encoder_tokenizer_name_or_path",
type=str,
help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``",
)
parser.add_argument(
"--config_name_or_path",
type=str,
help=(
"Identifier of the model config to use, if not provided, resolves to a base config for a given"
" ``model_type``"
),
)
lowercase_ = parser.parse_args()
lowercase_ = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 360 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_blip_2": [
"BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Blip2Config",
"Blip2QFormerConfig",
"Blip2VisionConfig",
],
"processing_blip_2": ["Blip2Processor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Blip2Model",
"Blip2QFormerModel",
"Blip2PreTrainedModel",
"Blip2ForConditionalGeneration",
"Blip2VisionModel",
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : int ) -> list:
if len(__lowerCAmelCase ) <= 1:
return [tuple(__lowerCAmelCase )]
__a = []
def generate(lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , __lowerCAmelCase )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
__a = arr[k - 1], arr[i]
else: # k is odd
__a = arr[k - 1], arr[0]
generate(k - 1 , __lowerCAmelCase )
generate(len(__lowerCAmelCase ) , __lowerCAmelCase )
return res
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item) for item in user_input.split(",")]
print(heaps(arr))
| 361 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None:
__a = len(lowerCAmelCase__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(lowerCAmelCase__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , )
def lowercase ( lowerCAmelCase__ : int ) -> None:
__a = []
depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ )
# Print all the boards
for board in boards:
for column in board:
print(lowerCAmelCase__ )
print('''''' )
print(len(lowerCAmelCase__ ) , '''solutions were found.''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 11 | 0 |
"""simple docstring"""
import os
import pytest
from transformers.dynamic_module_utils import get_imports
lowercase_ = '''
import os
'''
lowercase_ = '''
def foo():
import os
return False
'''
lowercase_ = '''
def foo():
def bar():
if True:
import os
return False
return bar()
'''
lowercase_ = '''
import os
try:
import bar
except ImportError:
raise ValueError()
'''
lowercase_ = '''
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
'''
lowercase_ = '''
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
'''
lowercase_ = '''
import os
try:
import bar
except ImportError as e:
raise ValueError()
'''
lowercase_ = '''
import os
try:
import bar
except:
raise ValueError()
'''
lowercase_ = '''
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
'''
lowercase_ = '''
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
'''
lowercase_ = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , _lowercase )
def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]:
__a = os.path.join(_lowercase , '''test_file.py''' )
with open(_lowercase , '''w''' ) as _tmp_file:
_tmp_file.write(_lowercase )
__a = get_imports(_lowercase )
assert parsed_imports == ["os"]
| 362 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowercase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 11 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
lowercase_ = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["""SpeechEncoderDecoderModel"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["""FlaxSpeechEncoderDecoderModel"""]
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 363 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = 'vit_mae'
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = initializer_range
__a = layer_norm_eps
__a = image_size
__a = patch_size
__a = num_channels
__a = qkv_bias
__a = decoder_num_attention_heads
__a = decoder_hidden_size
__a = decoder_num_hidden_layers
__a = decoder_intermediate_size
__a = mask_ratio
__a = norm_pix_loss
| 11 | 0 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
__lowerCAmelCase = "\\n Text data.\n Second line of data."
__lowerCAmelCase = "file"
@pytest.fixture(scope='''session''' )
def lowercase ( lowerCAmelCase__ : str ) -> Optional[int]:
__a = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''')
__a = bytes(snake_case__ , '''utf-8''' )
with zstd.open(snake_case__ , '''wb''' ) as f:
f.write(snake_case__ )
return path
@pytest.fixture
def lowercase ( lowerCAmelCase__ : List[Any] ) -> List[Any]:
with open(os.path.join(tmpfs.local_root_dir , snake_case__ ) , '''w''' ) as f:
f.write(snake_case__ )
return FILE_PATH
@pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] )
def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ) -> Optional[Any]:
__a = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path}
__a = input_paths[compression_format]
__a = tmp_path / '''cache'''
__a = DownloadConfig(cache_dir=snake_case__ , extract_compressed_file=snake_case__ )
__a = cached_path(snake_case__ , download_config=snake_case__ )
with open(snake_case__ ) as f:
__a = f.read()
with open(snake_case__ ) as f:
__a = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize('''default_extracted''' , [True, False] )
@pytest.mark.parametrize('''default_cache_dir''' , [True, False] )
def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ) -> List[str]:
__a = '''custom_cache'''
__a = '''custom_extracted_dir'''
__a = tmp_path / '''custom_extracted_path'''
if default_extracted:
__a = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''')
else:
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , snake_case__ )
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(snake_case__ ) )
__a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
__a = xz_file
__a = (
DownloadConfig(extract_compressed_file=snake_case__ )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=snake_case__ )
)
__a = cached_path(snake_case__ , download_config=snake_case__ )
assert Path(snake_case__ ).parent.parts[-2:] == expected
def lowercase ( lowerCAmelCase__ : Tuple ) -> Union[str, Any]:
# absolute path
__a = str(Path(snake_case__ ).resolve() )
assert cached_path(snake_case__ ) == text_file
# relative path
__a = str(Path(snake_case__ ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(snake_case__ ) == text_file
def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]:
# absolute path
__a = str(tmp_path.resolve() / '''__missing_file__.txt''' )
with pytest.raises(snake_case__ ):
cached_path(snake_case__ )
# relative path
__a = '''./__missing_file__.txt'''
with pytest.raises(snake_case__ ):
cached_path(snake_case__ )
def lowercase ( lowerCAmelCase__ : int ) -> Union[str, Any]:
__a = get_from_cache(f'''tmp://{tmpfs_file}''' )
with open(snake_case__ ) as f:
__a = f.read()
assert output_file_content == FILE_CONTENT
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ )
def lowercase ( ) -> List[str]:
with pytest.raises(snake_case__ ):
cached_path('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ )
def lowercase ( lowerCAmelCase__ : List[str] ) -> Tuple:
__a = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(snake_case__ ):
http_get('''https://huggingface.co''' , temp_file=snake_case__ )
with pytest.raises(snake_case__ ):
http_head('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ )
def lowercase ( lowerCAmelCase__ : Optional[int] ) -> List[Any]:
__a = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(snake_case__ ):
ftp_get('''ftp://huggingface.co''' , temp_file=snake_case__ )
with pytest.raises(snake_case__ ):
ftp_head('''ftp://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ )
def lowercase ( lowerCAmelCase__ : int ) -> int:
__a = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(snake_case__ ):
fsspec_get('''s3://huggingface.co''' , temp_file=snake_case__ )
with pytest.raises(snake_case__ ):
fsspec_head('''s3://huggingface.co''' )
| 364 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = ['image_processor', 'tokenizer']
__UpperCAmelCase : str = 'LayoutLMv3ImageProcessor'
__UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast')
def __init__( self , _a=None , _a=None , **_a ):
__a = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
__a = kwargs.pop('''feature_extractor''' )
__a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
# first, apply the image processor
__a = self.image_processor(images=_a , return_tensors=_a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_a , _a ):
__a = [text] # add batch dimension (as the image processor always adds a batch dimension)
__a = features['''words''']
__a = self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel values
__a = features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
__a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] )
__a = images
return encoded_inputs
def __UpperCAmelCase ( self , _a , _a ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
__a = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_a ) != len(_a ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f''' {len(_a )} and {len(_a )}''' )
return images_with_overflow
def __UpperCAmelCase ( self , *_a , **_a ):
return self.tokenizer.batch_decode(*_a , **_a )
def __UpperCAmelCase ( self , *_a , **_a ):
return self.tokenizer.decode(*_a , **_a )
@property
def __UpperCAmelCase ( self ):
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def __UpperCAmelCase ( self ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def __UpperCAmelCase ( self ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 11 | 0 |
"""simple docstring"""
from math import isqrt, loga
def lowercase ( lowerCAmelCase__ : int ) -> Optional[int]:
__a = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , lowerCAmelCase__ , lowerCAmelCase__ ):
__a = False
return [i for i in range(2 , lowerCAmelCase__ ) if is_prime[i]]
def lowercase ( lowerCAmelCase__ : int = 800800 , lowerCAmelCase__ : int = 800800 ) -> Optional[Any]:
__a = degree * loga(lowerCAmelCase__ )
__a = int(lowerCAmelCase__ )
__a = calculate_prime_numbers(lowerCAmelCase__ )
__a = 0
__a = 0
__a = len(lowerCAmelCase__ ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 365 |
"""simple docstring"""
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(lowerCAmelCase__ : int ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
__a = []
for i in range(lowerCAmelCase__ ):
__a = i / num_diffusion_timesteps
__a = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) )
return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers]
__UpperCAmelCase : str = 2
@register_to_config
def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ):
if trained_betas is not None:
__a = torch.tensor(_a , dtype=torch.floataa )
elif beta_schedule == "linear":
__a = torch.linspace(_a , _a , _a , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__a = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__a = betas_for_alpha_bar(_a )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
__a = 1.0 - self.betas
__a = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_a , _a , _a )
def __UpperCAmelCase ( self , _a , _a=None ):
if schedule_timesteps is None:
__a = self.timesteps
__a = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
__a = 1 if len(_a ) > 1 else 0
else:
__a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep
__a = self._index_counter[timestep_int]
return indices[pos].item()
@property
def __UpperCAmelCase ( self ):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def __UpperCAmelCase ( self , _a , _a , ):
__a = self.index_for_timestep(_a )
if self.state_in_first_order:
__a = self.sigmas[step_index]
else:
__a = self.sigmas_interpol[step_index]
__a = sample / ((sigma**2 + 1) ** 0.5)
return sample
def __UpperCAmelCase ( self , _a , _a = None , _a = None , ):
__a = num_inference_steps
__a = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
__a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy()
elif self.config.timestep_spacing == "leading":
__a = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
__a = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a )
timesteps -= 1
else:
raise ValueError(
f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
__a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
__a = torch.from_numpy(np.log(_a ) ).to(_a )
__a = np.interp(_a , np.arange(0 , len(_a ) ) , _a )
__a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
__a = torch.from_numpy(_a ).to(device=_a )
# interpolate sigmas
__a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp()
__a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
__a = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(_a ).startswith('''mps''' ):
# mps does not support float64
__a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa )
else:
__a = torch.from_numpy(_a ).to(_a )
# interpolate timesteps
__a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype )
__a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten()
__a = torch.cat([timesteps[:1], interleaved_timesteps] )
__a = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
__a = defaultdict(_a )
def __UpperCAmelCase ( self , _a ):
# get log sigma
__a = sigma.log()
# get distribution
__a = log_sigma - self.log_sigmas[:, None]
# get sigmas range
__a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
__a = low_idx + 1
__a = self.log_sigmas[low_idx]
__a = self.log_sigmas[high_idx]
# interpolate sigmas
__a = (low - log_sigma) / (low - high)
__a = w.clamp(0 , 1 )
# transform interpolation to time range
__a = (1 - w) * low_idx + w * high_idx
__a = t.view(sigma.shape )
return t
@property
def __UpperCAmelCase ( self ):
return self.sample is None
def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ):
__a = self.index_for_timestep(_a )
# advance index counter by 1
__a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
__a = self.sigmas[step_index]
__a = self.sigmas_interpol[step_index + 1]
__a = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
__a = self.sigmas[step_index - 1]
__a = self.sigmas_interpol[step_index]
__a = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
__a = 0
__a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
__a = sigma_hat if self.state_in_first_order else sigma_interpol
__a = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
__a = sigma_hat if self.state_in_first_order else sigma_interpol
__a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError('''prediction_type not implemented yet: sample''' )
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
__a = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
__a = sigma_interpol - sigma_hat
# store for 2nd order step
__a = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
__a = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
__a = sigma_next - sigma_hat
__a = self.sample
__a = None
__a = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_a )
def __UpperCAmelCase ( self , _a , _a , _a , ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
__a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_a ):
# mps does not support float64
__a = self.timesteps.to(original_samples.device , dtype=torch.floataa )
__a = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
__a = self.timesteps.to(original_samples.device )
__a = timesteps.to(original_samples.device )
__a = [self.index_for_timestep(_a , _a ) for t in timesteps]
__a = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
__a = sigma.unsqueeze(-1 )
__a = original_samples + noise * sigma
return noisy_samples
def __len__( self ):
return self.config.num_train_timesteps
| 11 | 0 |
"""simple docstring"""
import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
lowercase_ = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Union[str, Any]=True ) -> Union[str, Any]:
if model_type not in MODEL_CLASSES:
raise ValueError(f'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__a = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
__a = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , force_download=not use_cached_models )
__a = config_class.from_json_file(SCREAMING_SNAKE_CASE__ )
__a = True
__a = True
print(f'''Building TensorFlow model from configuration: {config}''' )
__a = model_class(SCREAMING_SNAKE_CASE__ )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
__a = cached_file(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
__a = load_pytorch_checkpoint_in_tfa_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if compare_with_pt_model:
__a = tf_model(tf_model.dummy_inputs , training=SCREAMING_SNAKE_CASE__ ) # build the network
__a = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' )
__a = pt_model_class.from_pretrained(
pretrained_model_name_or_path=SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ , state_dict=SCREAMING_SNAKE_CASE__ )
with torch.no_grad():
__a = pt_model(**pt_model.dummy_inputs )
__a = pto[0].numpy()
__a = tfo[0].numpy()
__a = np.amax(np.abs(np_pt - np_tf ) )
print(f'''Max absolute difference between models outputs {diff}''' )
assert diff <= 2e-2, f'''Error, model absolute difference is >2e-2: {diff}'''
# Save pytorch-model
print(f'''Save TensorFlow model to {tf_dump_path}''' )
tf_model.save_weights(SCREAMING_SNAKE_CASE__ , save_format='''h5''' )
def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=False , ) -> List[str]:
if args_model_type is None:
__a = list(MODEL_CLASSES.keys() )
else:
__a = [args_model_type]
for j, model_type in enumerate(SCREAMING_SNAKE_CASE__ , start=1 ):
print('''=''' * 100 )
print(f''' Converting model type {j}/{len(SCREAMING_SNAKE_CASE__ )}: {model_type}''' )
print('''=''' * 100 )
if model_type not in MODEL_CLASSES:
raise ValueError(f'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__a = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
__a = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
__a = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , start=1 ):
print('''-''' * 100 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(f''' Skipping finetuned checkpoint {model_shortcut_name}''' )
continue
__a = model_shortcut_name
elif only_convert_finetuned_models:
print(f''' Skipping not finetuned checkpoint {model_shortcut_name}''' )
continue
print(
f''' Converting checkpoint {i}/{len(SCREAMING_SNAKE_CASE__ )}: {model_shortcut_name} - model_type {model_type}''' )
print('''-''' * 100 )
if config_shortcut_name in aws_config_map:
__a = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , force_download=not use_cached_models )
else:
__a = config_shortcut_name
if model_shortcut_name in aws_model_maps:
__a = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , force_download=not use_cached_models )
else:
__a = model_shortcut_name
if os.path.isfile(SCREAMING_SNAKE_CASE__ ):
__a = '''converted_model'''
convert_pt_checkpoint_to_tf(
model_type=SCREAMING_SNAKE_CASE__ , pytorch_checkpoint_path=SCREAMING_SNAKE_CASE__ , config_file=SCREAMING_SNAKE_CASE__ , tf_dump_path=os.path.join(SCREAMING_SNAKE_CASE__ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=SCREAMING_SNAKE_CASE__ , )
if remove_cached_files:
os.remove(SCREAMING_SNAKE_CASE__ )
os.remove(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
lowercase_ = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 366 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
"RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
"RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
"RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
"RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
"RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
"RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
"RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
"RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
"RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Any = 'rwkv'
__UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'}
def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ):
__a = vocab_size
__a = context_length
__a = hidden_size
__a = num_hidden_layers
__a = attention_hidden_size if attention_hidden_size is not None else hidden_size
__a = intermediate_size if intermediate_size is not None else 4 * hidden_size
__a = layer_norm_epsilon
__a = rescale_every
__a = use_cache
__a = bos_token_id
__a = eos_token_id
super().__init__(
tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
| 11 | 0 |
"""simple docstring"""
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger()
@dataclass
class __lowerCAmelCase :
'''simple docstring'''
__UpperCAmelCase : nn.Module
__UpperCAmelCase : List[nn.Module] = field(default_factory=_a )
__UpperCAmelCase : list = field(default_factory=_a )
def __UpperCAmelCase ( self , _a , _a , _a ):
__a = len(list(m.modules() ) ) == 1 or isinstance(_a , nn.Convad ) or isinstance(_a , nn.BatchNormad )
if has_not_submodules:
self.traced.append(_a )
def __call__( self , _a ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(_a )
[x.remove() for x in self.handles]
return self
@property
def __UpperCAmelCase ( self ):
return list(filter(lambda _a : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class __lowerCAmelCase :
'''simple docstring'''
__UpperCAmelCase : nn.Module
__UpperCAmelCase : nn.Module
__UpperCAmelCase : int = 0
__UpperCAmelCase : List = field(default_factory=_a )
__UpperCAmelCase : List = field(default_factory=_a )
def __call__( self , _a ):
__a = Tracker(self.dest )(_a ).parametrized
__a = Tracker(self.src )(_a ).parametrized
__a = list(filter(lambda _a : type(_a ) not in self.src_skip , _a ) )
__a = list(filter(lambda _a : type(_a ) not in self.dest_skip , _a ) )
if len(_a ) != len(_a ):
raise Exception(
f'''Numbers of operations are different. Source module has {len(_a )} operations while'''
f''' destination module has {len(_a )}.''' )
for dest_m, src_m in zip(_a , _a ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'''Transfered from={src_m} to={dest_m}''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple = True ) -> Optional[Any]:
print(f'''Converting {name}...''' )
with torch.no_grad():
__a = timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ ).eval()
__a = ResNetForImageClassification(lowerCamelCase_ ).eval()
__a = ModuleTransfer(src=lowerCamelCase_ , dest=lowerCamelCase_ )
__a = torch.randn((1, 3, 224, 224) )
module_transfer(lowerCamelCase_ )
assert torch.allclose(from_model(lowerCamelCase_ ) , our_model(lowerCamelCase_ ).logits ), "The model logits don't match the original one."
__a = f'''resnet{'-'.join(name.split('resnet' ) )}'''
print(lowerCamelCase_ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=lowerCamelCase_ , )
# we can use the convnext one
__a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=lowerCamelCase_ , )
print(f'''Pushed {checkpoint_name}''' )
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Dict = True ) -> List[str]:
__a = 'imagenet-1k-id2label.json'
__a = 1000
__a = (1, num_labels)
__a = 'huggingface/label-files'
__a = num_labels
__a = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) )
__a = {int(lowerCamelCase_ ): v for k, v in idalabel.items()}
__a = idalabel
__a = {v: k for k, v in idalabel.items()}
__a = partial(lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ )
__a = {
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
}
if model_name:
convert_weight_and_push(lowerCamelCase_ , names_to_config[model_name] , lowerCamelCase_ , lowerCamelCase_ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
return config, expected_shape
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported resnet* architecture,"
" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
lowercase_ = parser.parse_args()
lowercase_ = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 367 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[str] = (UnCLIPScheduler,)
def __UpperCAmelCase ( self , **_a ):
__a = {
'''num_train_timesteps''': 1_000,
'''variance_type''': '''fixed_small_log''',
'''clip_sample''': True,
'''clip_sample_range''': 1.0,
'''prediction_type''': '''epsilon''',
}
config.update(**_a )
return config
def __UpperCAmelCase ( self ):
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_a )
def __UpperCAmelCase ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_a )
def __UpperCAmelCase ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_a )
def __UpperCAmelCase ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=_a )
def __UpperCAmelCase ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_a )
def __UpperCAmelCase ( self ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_a , prev_timestep=_a )
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(variance_type='''fixed_small_log''' )
__a = scheduler_class(**_a )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(variance_type='''learned_range''' )
__a = scheduler_class(**_a )
__a = 0.5
assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=_a ) - -5.799_8052 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=_a ) - -0.001_0011 < 1E-5
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config()
__a = scheduler_class(**_a )
__a = scheduler.timesteps
__a = self.dummy_model()
__a = self.dummy_sample_deter
__a = torch.manual_seed(0 )
for i, t in enumerate(_a ):
# 1. predict noise residual
__a = model(_a , _a )
# 2. predict previous mean of sample x_t-1
__a = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
__a = pred_prev_sample
__a = torch.sum(torch.abs(_a ) )
__a = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 252.268_2495 ) < 1E-2
assert abs(result_mean.item() - 0.328_4743 ) < 1E-3
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config()
__a = scheduler_class(**_a )
scheduler.set_timesteps(25 )
__a = scheduler.timesteps
__a = self.dummy_model()
__a = self.dummy_sample_deter
__a = torch.manual_seed(0 )
for i, t in enumerate(_a ):
# 1. predict noise residual
__a = model(_a , _a )
if i + 1 == timesteps.shape[0]:
__a = None
else:
__a = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
__a = scheduler.step(
_a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample
__a = pred_prev_sample
__a = torch.sum(torch.abs(_a ) )
__a = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 258.204_4983 ) < 1E-2
assert abs(result_mean.item() - 0.336_2038 ) < 1E-3
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
pass
| 11 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
lowercase_ = None
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model",
"albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model",
"albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model",
"albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model",
"albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model",
"albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model",
"albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model",
"albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model",
},
"tokenizer_file": {
"albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json",
"albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json",
"albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json",
"albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json",
"albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json",
"albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json",
"albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json",
"albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json",
},
}
lowercase_ = {
"albert-base-v1": 5_1_2,
"albert-large-v1": 5_1_2,
"albert-xlarge-v1": 5_1_2,
"albert-xxlarge-v1": 5_1_2,
"albert-base-v2": 5_1_2,
"albert-large-v2": 5_1_2,
"albert-xlarge-v2": 5_1_2,
"albert-xxlarge-v2": 5_1_2,
}
lowercase_ = "▁"
class __lowerCAmelCase ( __a ):
'''simple docstring'''
__UpperCAmelCase : Any = VOCAB_FILES_NAMES
__UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : List[str] = AlbertTokenizer
def __init__( self , _a=None , _a=None , _a=True , _a=True , _a=False , _a="[CLS]" , _a="[SEP]" , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ):
__a = (
AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ , normalized=UpperCamelCase__ )
if isinstance(UpperCamelCase__ , UpperCamelCase__ )
else mask_token
)
super().__init__(
UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , )
__a = do_lower_case
__a = remove_space
__a = keep_accents
__a = vocab_file
__a = False if not self.vocab_file else True
def __UpperCAmelCase ( self , _a , _a = None ):
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __UpperCAmelCase ( self , _a , _a = None ):
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __UpperCAmelCase ( self , _a , _a = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(UpperCamelCase__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__a = os.path.join(
UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ):
copyfile(self.vocab_file , UpperCamelCase__ )
return (out_vocab_file,)
| 368 |
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]:
__a , __a = image.size
__a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
__a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0
__a = image[None].transpose(0 , 3 , 1 , 2 )
__a = torch.from_numpy(lowerCAmelCase__ )
return 2.0 * image - 1.0
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , ):
super().__init__()
self.register_modules(vqvae=_a , unet=_a , scheduler=_a )
@torch.no_grad()
def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ):
if isinstance(_a , PIL.Image.Image ):
__a = 1
elif isinstance(_a , torch.Tensor ):
__a = image.shape[0]
else:
raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' )
if isinstance(_a , PIL.Image.Image ):
__a = preprocess(_a )
__a , __a = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__a = (batch_size, self.unet.config.in_channels // 2, height, width)
__a = next(self.unet.parameters() ).dtype
__a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a )
__a = image.to(device=self.device , dtype=_a )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_a , device=self.device )
__a = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__a = {}
if accepts_eta:
__a = eta
for t in self.progress_bar(_a ):
# concat latents and low resolution image in the channel dimension.
__a = torch.cat([latents, image] , dim=1 )
__a = self.scheduler.scale_model_input(_a , _a )
# predict the noise residual
__a = self.unet(_a , _a ).sample
# compute the previous noisy sample x_t -> x_t-1
__a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample
# decode the image latents with the VQVAE
__a = self.vqvae.decode(_a ).sample
__a = torch.clamp(_a , -1.0 , 1.0 )
__a = image / 2 + 0.5
__a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__a = self.numpy_to_pil(_a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_a )
| 11 | 0 |
"""simple docstring"""
import re
import string
import numpy as np
import datasets
lowercase_ = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n'
lowercase_ = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n'
lowercase_ = '\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , reference_urls=[] , )
def __UpperCAmelCase ( self , _a , _a , _a=None , _a=False , _a=False , _a=False , ):
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
__a = np.array([re.sub(_lowercase , '''''' , _lowercase ) for x in predictions] )
__a = np.array([re.sub(_lowercase , '''''' , _lowercase ) for x in references] )
else:
__a = np.asarray(_lowercase )
__a = np.asarray(_lowercase )
if ignore_case:
__a = np.char.lower(_lowercase )
__a = np.char.lower(_lowercase )
if ignore_punctuation:
__a = string.punctuation.maketrans('''''' , '''''' , string.punctuation )
__a = np.char.translate(_lowercase , table=_lowercase )
__a = np.char.translate(_lowercase , table=_lowercase )
if ignore_numbers:
__a = string.digits.maketrans('''''' , '''''' , string.digits )
__a = np.char.translate(_lowercase , table=_lowercase )
__a = np.char.translate(_lowercase , table=_lowercase )
__a = predictions == references
return {"exact_match": np.mean(_lowercase ) * 100}
| 369 |
"""simple docstring"""
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Dict = DistilBertTokenizer
__UpperCAmelCase : Any = DistilBertTokenizerFast
__UpperCAmelCase : int = True
@slow
def __UpperCAmelCase ( self ):
__a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
__a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a )
__a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a )
__a = tokenizer.build_inputs_with_special_tokens(_a )
__a = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 11 | 0 |
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : tuple , lowerCAmelCase__ : Path , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=False , ) -> Union[str, Any]:
output_path.parent.mkdir(parents=a__ , exist_ok=a__ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , use_external_data_format=a__ , enable_onnx_checker=a__ , opset_version=a__ , )
else:
export(
a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , opset_version=a__ , )
@torch.no_grad()
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ) -> int:
__a = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
__a = '''cuda'''
elif fpaa and not torch.cuda.is_available():
raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' )
else:
__a = '''cpu'''
__a = Path(a__ )
# VAE DECODER
__a = AutoencoderKL.from_pretrained(model_path + '''/vae''' )
__a = vae_decoder.config.latent_channels
# forward only through the decoder part
__a = vae_decoder.decode
onnx_export(
a__ , model_args=(
torch.randn(1 , a__ , 25 , 25 ).to(device=a__ , dtype=a__ ),
False,
) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={
'''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''},
} , opset=a__ , )
del vae_decoder
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=1_4,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowercase_ = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 370 |
"""simple docstring"""
from math import factorial, radians
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float:
__a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0)
# Converting from degrees to radians
__a = radians(lowerCAmelCase__ )
__a = angle_in_radians
__a = 3
__a = -1
for _ in range(lowerCAmelCase__ ):
result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ )
__a = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
__import__("doctest").testmod()
| 11 | 0 |
"""simple docstring"""
import comet # From: unbabel-comet
import torch
import datasets
lowercase_ = datasets.logging.get_logger(__name__)
lowercase_ = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n"
lowercase_ = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n"
lowercase_ = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''sources''': datasets.Value('''string''' , id='''sequence''' ),
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[
'''https://github.com/Unbabel/COMET''',
'''https://www.aclweb.org/anthology/2020.emnlp-main.213/''',
'''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''',
] , )
def __UpperCAmelCase ( self , _a ):
if self.config_name == "default":
__a = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) )
else:
__a = comet.load_from_checkpoint(comet.download_model(self.config_name ) )
def __UpperCAmelCase ( self , _a , _a , _a , _a=None , _a=False ):
if gpus is None:
__a = 1 if torch.cuda.is_available() else 0
__a = {'src': sources, 'mt': predictions, 'ref': references}
__a = [dict(zip(_A , _A ) ) for t in zip(*data.values() )]
__a = self.scorer.predict(_A , gpus=_A , progress_bar=_A )
return {"mean_score": mean_score, "scores": scores}
| 371 |
"""simple docstring"""
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def lowercase ( lowerCAmelCase__ : dict ) -> tuple:
return (data["data"], data["target"])
def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray:
__a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ )
# Predict target for test data
__a = xgb.predict(lowerCAmelCase__ )
__a = predictions.reshape(len(lowerCAmelCase__ ) , 1 )
return predictions
def lowercase ( ) -> None:
__a = fetch_california_housing()
__a , __a = data_handling(lowerCAmelCase__ )
__a , __a , __a , __a = train_test_split(
lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 )
__a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Error printing
print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' )
print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 11 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class __lowerCAmelCase ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = 'roformer'
def __init__( self , _a=50_000 , _a=None , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1_536 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a=False , _a=True , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size if embedding_size is None else embedding_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = rotary_value
__a = use_cache
class __lowerCAmelCase ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def __UpperCAmelCase ( self ):
if self.task == "multiple-choice":
__a = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__a = {0: """batch""", 1: """sequence"""}
__a = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 350 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {
"configuration_efficientformer": [
"EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EfficientFormerConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["EfficientFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"EfficientFormerForImageClassification",
"EfficientFormerForImageClassificationWithTeacher",
"EfficientFormerModel",
"EfficientFormerPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEfficientFormerForImageClassification",
"TFEfficientFormerForImageClassificationWithTeacher",
"TFEfficientFormerModel",
"TFEfficientFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
__lowerCAmelCase = TypeVar("T")
def lowercase ( lowerCAmelCase__ : int ) -> Any:
return (position - 1) // 2
def lowercase ( lowerCAmelCase__ : int ) -> Optional[int]:
return (2 * position) + 1
def lowercase ( lowerCAmelCase__ : int ) -> Union[str, Any]:
return (2 * position) + 2
class __lowerCAmelCase ( Generic[T] ):
'''simple docstring'''
def __init__( self ):
__a = []
__a = {}
__a = 0
def __len__( self ):
return self.elements
def __repr__( self ):
return str(self.heap )
def __UpperCAmelCase ( self ):
# Check if the priority queue is empty
return self.elements == 0
def __UpperCAmelCase ( self , _a , _a ):
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
__a = self.elements
self.elements += 1
self._bubble_up(snake_case_ )
def __UpperCAmelCase ( self ):
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
__a = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
__a = self.heap[0]
self._bubble_down(snake_case_ )
return elem
def __UpperCAmelCase ( self , _a , _a ):
# Update the weight of the given key
__a = self.position_map[elem]
__a = (elem, weight)
if position > 0:
__a = get_parent_position(snake_case_ )
__a = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(snake_case_ )
else:
self._bubble_down(snake_case_ )
else:
self._bubble_down(snake_case_ )
def __UpperCAmelCase ( self , _a ):
# Place a node at the proper position (upward movement) [to be used internally
# only]
__a = self.position_map[elem]
if curr_pos == 0:
return None
__a = get_parent_position(snake_case_ )
__a = self.heap[curr_pos]
__a = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(snake_case_ , snake_case_ )
return self._bubble_up(snake_case_ )
return None
def __UpperCAmelCase ( self , _a ):
# Place a node at the proper position (downward movement) [to be used
# internally only]
__a = self.position_map[elem]
__a = self.heap[curr_pos]
__a = get_child_left_position(snake_case_ )
__a = get_child_right_position(snake_case_ )
if child_left_position < self.elements and child_right_position < self.elements:
__a = self.heap[child_left_position]
__a = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(snake_case_ , snake_case_ )
return self._bubble_down(snake_case_ )
if child_left_position < self.elements:
__a = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(snake_case_ , snake_case_ )
return self._bubble_down(snake_case_ )
else:
return None
if child_right_position < self.elements:
__a = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(snake_case_ , snake_case_ )
return self._bubble_down(snake_case_ )
return None
def __UpperCAmelCase ( self , _a , _a ):
# Swap the nodes at the given positions
__a = self.heap[nodea_pos][0]
__a = self.heap[nodea_pos][0]
__a = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
__a = nodea_pos
__a = nodea_pos
class __lowerCAmelCase ( Generic[T] ):
'''simple docstring'''
def __init__( self ):
__a = {}
__a = 0
def __repr__( self ):
return str(self.connections )
def __len__( self ):
return self.nodes
def __UpperCAmelCase ( self , _a ):
# Add a node in the graph if it is not in the graph
if node not in self.connections:
__a = {}
self.nodes += 1
def __UpperCAmelCase ( self , _a , _a , _a ):
# Add an edge between 2 nodes in the graph
self.add_node(snake_case_ )
self.add_node(snake_case_ )
__a = weight
__a = weight
def lowercase ( lowerCAmelCase__ : GraphUndirectedWeighted[T] , ) -> int:
__a = {node: maxsize for node in graph.connections}
__a = {node: None for node in graph.connections}
__a = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(lowerCAmelCase__ , lowerCAmelCase__ )
if priority_queue.is_empty():
return dist, parent
# initialization
__a = priority_queue.extract_min()
__a = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] )
__a = node
# running prim's algorithm
while not priority_queue.is_empty():
__a = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] )
__a = node
return dist, parent
| 351 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json",
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json",
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json",
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'funnel'
__UpperCAmelCase : Union[str, Any] = {
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
}
def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ):
__a = vocab_size
__a = block_sizes
__a = [1] * len(_a ) if block_repeats is None else block_repeats
assert len(_a ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
__a = num_decoder_layers
__a = d_model
__a = n_head
__a = d_head
__a = d_inner
__a = hidden_act
__a = hidden_dropout
__a = attention_dropout
__a = activation_dropout
__a = initializer_range
__a = initializer_std
__a = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
__a = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
__a = attention_type
__a = separate_cls
__a = truncate_seq
__a = pool_q_only
super().__init__(**_a )
@property
def __UpperCAmelCase ( self ):
return sum(self.block_sizes )
@num_hidden_layers.setter
def __UpperCAmelCase ( self , _a ):
raise NotImplementedError(
'''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' )
@property
def __UpperCAmelCase ( self ):
return len(self.block_sizes )
@num_blocks.setter
def __UpperCAmelCase ( self , _a ):
raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
| 11 | 0 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
warnings.warn(
'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '
'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.' , __SCREAMING_SNAKE_CASE , )
| 352 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) )
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ):
__a = parent
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = make_divisible(512 * width_multiplier , divisor=8 )
__a = hidden_act
__a = conv_kernel_size
__a = output_stride
__a = classifier_dropout_prob
__a = use_labels
__a = is_training
__a = num_labels
__a = initializer_range
__a = scope
__a = width_multiplier
__a = ffn_dropout
__a = attn_dropout
def __UpperCAmelCase ( self ):
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels, pixel_labels
def __UpperCAmelCase ( self ):
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = MobileViTVaModel(config=_a )
model.to(_a )
model.eval()
__a = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForImageClassification(_a )
model.to(_a )
model.eval()
__a = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForSemanticSegmentation(_a )
model.to(_a )
model.eval()
__a = model(_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__a = model(_a , labels=_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self ):
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase : Union[str, Any] = (
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : List[str] = False
def __UpperCAmelCase ( self ):
__a = MobileViTVaModelTester(self )
__a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not output attentions''' )
def __UpperCAmelCase ( self ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(_a )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __UpperCAmelCase ( self ):
def check_hidden_states_output(_a , _a , _a ):
__a = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(_a , _a ) )
__a = outputs.hidden_states
__a = 5
self.assertEqual(len(_a ) , _a )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__a = 2
for i in range(len(_a ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(_a , _a , _a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_a )
@slow
def __UpperCAmelCase ( self ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = MobileViTVaModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowercase ( ) -> str:
__a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCAmelCase ( self ):
return (
MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' )
if is_vision_available()
else None
)
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to(
_a )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
# verify the logits
__a = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _a )
__a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_a )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
__a = outputs.logits
# verify the logits
__a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _a )
__a = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_a , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_a )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
__a = outputs.logits.detach().cpu()
__a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] )
__a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _a )
__a = image_processor.post_process_semantic_segmentation(outputs=_a )
__a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _a )
| 11 | 0 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , _a=1_000 , ):
__a = parent
__a = batch_size
__a = seq_length
__a = is_training
__a = use_input_mask
__a = use_token_type_ids
__a = use_labels
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = type_sequence_label_size
__a = initializer_range
__a = num_labels
__a = num_choices
__a = scope
__a = range_bbox
def __UpperCAmelCase ( self ):
__a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
__a = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__a = bbox[i, j, 3]
__a = bbox[i, j, 1]
__a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__a = bbox[i, j, 2]
__a = bbox[i, j, 0]
__a = t
__a = tf.convert_to_tensor(a__ )
__a = None
if self.use_input_mask:
__a = random_attention_mask([self.batch_size, self.seq_length] )
__a = None
if self.use_token_type_ids:
__a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__a = None
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__a = ids_tensor([self.batch_size] , self.num_choices )
__a = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a ):
__a = TFLayoutLMModel(config=a__ )
__a = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ )
__a = model(a__ , a__ , token_type_ids=a__ )
__a = model(a__ , a__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a ):
__a = TFLayoutLMForMaskedLM(config=a__ )
__a = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a ):
__a = self.num_labels
__a = TFLayoutLMForSequenceClassification(config=a__ )
__a = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a ):
__a = self.num_labels
__a = TFLayoutLMForTokenClassification(config=a__ )
__a = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a ):
__a = TFLayoutLMForQuestionAnswering(config=a__ )
__a = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self ):
__a = self.prepare_config_and_inputs()
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) = config_and_inputs
__a = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_tf
class __lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
__UpperCAmelCase : List[Any] = (
{
"feature-extraction": TFLayoutLMModel,
"fill-mask": TFLayoutLMForMaskedLM,
"text-classification": TFLayoutLMForSequenceClassification,
"token-classification": TFLayoutLMForTokenClassification,
"zero-shot": TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : int = True
__UpperCAmelCase : List[str] = 1_0
def __UpperCAmelCase ( self ):
__a = TFLayoutLMModelTester(self )
__a = ConfigTester(self , config_class=a__ , hidden_size=37 )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*a__ )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*a__ )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a__ )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a__ )
@slow
def __UpperCAmelCase ( self ):
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = TFLayoutLMModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
@unittest.skip('''Onnx compliancy broke with TF 2.10''' )
def __UpperCAmelCase ( self ):
pass
def lowercase ( ) -> Optional[int]:
__a = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231
__a = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
__a = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231
__a = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
__a = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self ):
__a = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' )
__a , __a , __a , __a , __a = prepare_layoutlm_batch_inputs()
# forward pass
__a = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ )
# test the sequence output on [0, :3, :3]
__a = tf.convert_to_tensor(
[[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1E-3 ) )
# test the pooled output on [1, :3]
__a = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , a__ , atol=1E-3 ) )
@slow
def __UpperCAmelCase ( self ):
__a = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2 )
__a , __a , __a , __a , __a = prepare_layoutlm_batch_inputs()
# forward pass
__a = model(
input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
__a = outputs.loss
__a = (2,)
self.assertEqual(loss.shape , a__ )
# test the shape of the logits
__a = outputs.logits
__a = (2, 2)
self.assertEqual(logits.shape , a__ )
@slow
def __UpperCAmelCase ( self ):
__a = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=13 )
__a , __a , __a , __a , __a = prepare_layoutlm_batch_inputs()
# forward pass
__a = model(
input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ )
# test the shape of the logits
__a = outputs.logits
__a = tf.convert_to_tensor((2, 25, 13) )
self.assertEqual(logits.shape , a__ )
@slow
def __UpperCAmelCase ( self ):
__a = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' )
__a , __a , __a , __a , __a = prepare_layoutlm_batch_inputs()
# forward pass
__a = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ )
# test the shape of the logits
__a = tf.convert_to_tensor((2, 25) )
self.assertEqual(outputs.start_logits.shape , a__ )
self.assertEqual(outputs.end_logits.shape , a__ )
| 353 |
"""simple docstring"""
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ):
super().__init__()
if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1:
__a = (
f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'''
f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '''
'''to update the config accordingly as leaving `steps_offset` might led to incorrect results'''
''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'''
''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'''
''' file'''
)
deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = 1
__a = FrozenDict(_a )
if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False:
__a = (
f'''The configuration file of this scheduler: {scheduler} has not set the configuration'''
''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'''
''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'''
''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'''
''' Hub, it would be very nice if you could open a Pull request for the'''
''' `scheduler/scheduler_config.json` file'''
)
deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = True
__a = FrozenDict(_a )
if safety_checker is None:
logger.warning(
f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , )
def __UpperCAmelCase ( self , _a = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__a = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_a )
def __UpperCAmelCase ( self ):
self.enable_attention_slicing(_a )
def __UpperCAmelCase ( self ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
__a = torch.device('''cuda''' )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(_a , _a )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __UpperCAmelCase ( self ):
if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_a , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ):
__a = self.segmentation_processor(
text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device )
__a = self.segmentation_model(**_a )
__a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
__a = self.numpy_to_pil(_a )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
__a = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
| 11 | 0 |
"""simple docstring"""
import argparse
from collections import defaultdict
import yaml
lowercase_ = "docs/source/en/_toctree.yml"
def lowercase ( lowerCAmelCase__ : List[str] ) -> int:
__a = defaultdict(lowerCAmelCase__ )
__a = []
__a = []
for doc in doc_list:
if "local" in doc:
counts[doc["local"]] += 1
if doc["title"].lower() == "overview":
overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} )
else:
new_doc_list.append(lowerCAmelCase__ )
__a = new_doc_list
__a = [key for key, value in counts.items() if value > 1]
__a = []
for duplicate_key in duplicates:
__a = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} )
if len(lowerCAmelCase__ ) > 1:
raise ValueError(
f'''{duplicate_key} is present several times in the documentation table of content at '''
'''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '''
'''others.''' )
# Only add this once
new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] )
__a = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : s["title"].lower() )
# "overview" gets special treatment and is always first
if len(lowerCAmelCase__ ) > 1:
raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' )
overview_doc.extend(lowerCAmelCase__ )
# Sort
return overview_doc
def lowercase ( lowerCAmelCase__ : List[str]=False ) -> Tuple:
with open(lowerCAmelCase__ , encoding='''utf-8''' ) as f:
__a = yaml.safe_load(f.read() )
# Get to the API doc
__a = 0
while content[api_idx]["title"] != "API":
api_idx += 1
__a = content[api_idx]['''sections''']
# Then to the model doc
__a = 0
while api_doc[scheduler_idx]["title"] != "Schedulers":
scheduler_idx += 1
__a = api_doc[scheduler_idx]['''sections''']
__a = clean_doc_toc(lowerCAmelCase__ )
__a = False
if new_scheduler_doc != scheduler_doc:
__a = True
if overwrite:
__a = new_scheduler_doc
if diff:
if overwrite:
__a = api_doc
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
def lowercase ( lowerCAmelCase__ : int=False ) -> List[Any]:
with open(lowerCAmelCase__ , encoding='''utf-8''' ) as f:
__a = yaml.safe_load(f.read() )
# Get to the API doc
__a = 0
while content[api_idx]["title"] != "API":
api_idx += 1
__a = content[api_idx]['''sections''']
# Then to the model doc
__a = 0
while api_doc[pipeline_idx]["title"] != "Pipelines":
pipeline_idx += 1
__a = False
__a = api_doc[pipeline_idx]['''sections''']
__a = []
# sort sub pipeline docs
for pipeline_doc in pipeline_docs:
if "section" in pipeline_doc:
__a = pipeline_doc['''section''']
__a = clean_doc_toc(lowerCAmelCase__ )
if overwrite:
__a = new_sub_pipeline_doc
new_pipeline_docs.append(lowerCAmelCase__ )
# sort overall pipeline doc
__a = clean_doc_toc(lowerCAmelCase__ )
if new_pipeline_docs != pipeline_docs:
__a = True
if overwrite:
__a = new_pipeline_docs
if diff:
if overwrite:
__a = api_doc
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowercase_ = parser.parse_args()
check_scheduler_doc(args.fix_and_overwrite)
check_pipeline_doc(args.fix_and_overwrite)
| 354 |
"""simple docstring"""
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , **_a ):
super().__init__(**_a )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
# No specific FOR_XXX available yet
def __call__( self , _a , **_a ):
return super().__call__(_a , **_a )
def __UpperCAmelCase ( self , **_a ):
__a = {}
if "candidate_labels" in kwargs:
__a = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__a = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ):
if isinstance(_a , _a ):
if audio.startswith('''http://''' ) or audio.startswith('''https://''' ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__a = requests.get(_a ).content
else:
with open(_a , '''rb''' ) as f:
__a = f.read()
if isinstance(_a , _a ):
__a = ffmpeg_read(_a , self.feature_extractor.sampling_rate )
if not isinstance(_a , np.ndarray ):
raise ValueError('''We expect a numpy ndarray as input''' )
if len(audio.shape ) != 1:
raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' )
__a = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' )
__a = candidate_labels
__a = [hypothesis_template.format(_a ) for x in candidate_labels]
__a = self.tokenizer(_a , return_tensors=self.framework , padding=_a )
__a = [text_inputs]
return inputs
def __UpperCAmelCase ( self , _a ):
__a = model_inputs.pop('''candidate_labels''' )
__a = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , _a ):
__a = text_inputs[0]
else:
# Batching case.
__a = text_inputs[0][0]
__a = self.model(**_a , **_a )
__a = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_audio,
}
return model_outputs
def __UpperCAmelCase ( self , _a ):
__a = model_outputs.pop('''candidate_labels''' )
__a = model_outputs['''logits'''][0]
if self.framework == "pt":
__a = logits.softmax(dim=0 )
__a = probs.tolist()
else:
raise ValueError('''`tf` framework not supported.''' )
__a = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] )
]
return result
| 11 | 0 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class __lowerCAmelCase ( lowerCamelCase__ ):
'''simple docstring'''
__UpperCAmelCase : Tuple = 'unispeech-sat'
def __init__( self , _a=32 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.1 , _a=0.1 , _a=0.02 , _a=1E-5 , _a="group" , _a="gelu" , _a=(512, 512, 512, 512, 512, 512, 512) , _a=(5, 2, 2, 2, 2, 2, 2) , _a=(10, 3, 3, 3, 3, 2, 2) , _a=False , _a=128 , _a=16 , _a=False , _a=True , _a=0.05 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=0 , _a=320 , _a=2 , _a=0.1 , _a=100 , _a=256 , _a=256 , _a=0.1 , _a="mean" , _a=False , _a=False , _a=256 , _a=(512, 512, 512, 512, 1_500) , _a=(5, 3, 3, 1, 1) , _a=(1, 2, 3, 1, 1) , _a=512 , _a=0 , _a=1 , _a=2 , _a=504 , **_a , ):
super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase )
__a = hidden_size
__a = feat_extract_norm
__a = feat_extract_activation
__a = list(__lowerCamelCase )
__a = list(__lowerCamelCase )
__a = list(__lowerCamelCase )
__a = conv_bias
__a = num_conv_pos_embeddings
__a = num_conv_pos_embedding_groups
__a = len(self.conv_dim )
__a = num_hidden_layers
__a = intermediate_size
__a = hidden_act
__a = num_attention_heads
__a = hidden_dropout
__a = attention_dropout
__a = activation_dropout
__a = feat_proj_dropout
__a = final_dropout
__a = layerdrop
__a = layer_norm_eps
__a = initializer_range
__a = vocab_size
__a = num_clusters
__a = do_stable_layer_norm
__a = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__a = apply_spec_augment
__a = mask_time_prob
__a = mask_time_length
__a = mask_time_min_masks
__a = mask_feature_prob
__a = mask_feature_length
__a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__a = num_codevectors_per_group
__a = num_codevector_groups
__a = contrastive_logits_temperature
__a = feat_quantizer_dropout
__a = num_negatives
__a = codevector_dim
__a = proj_codevector_dim
__a = diversity_loss_weight
# ctc loss
__a = ctc_loss_reduction
__a = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__a = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__a = list(__lowerCamelCase )
__a = list(__lowerCamelCase )
__a = list(__lowerCamelCase )
__a = xvector_output_dim
@property
def __UpperCAmelCase ( self ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 355 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__a = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sgugger/tiny-distilbert-classification'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
# set architectures equal to `None`
__a = None
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , )
__a = PyTorchBenchmark(_a )
benchmark.run()
self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_a ):
self.assertTrue(hasattr(_a , '''sequential''' ) )
self.assertTrue(hasattr(_a , '''cumulative''' ) )
self.assertTrue(hasattr(_a , '''current''' ) )
self.assertTrue(hasattr(_a , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
| 11 | 0 |
"""simple docstring"""
from __future__ import annotations
from math import pi
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> dict[str, float]:
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if inductance < 0:
raise ValueError('''Inductance cannot be negative''' )
if frequency < 0:
raise ValueError('''Frequency cannot be negative''' )
if reactance < 0:
raise ValueError('''Inductive reactance cannot be negative''' )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 356 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FocalNetForImageClassification",
"FocalNetForMaskedImageModeling",
"FocalNetBackbone",
"FocalNetModel",
"FocalNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowercase_ = logging.get_logger(__name__)
def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Tuple:
def constraint_to_multiple_of(lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : Optional[Any]=None ):
__a = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
__a = math.floor(val / multiple ) * multiple
if x < min_val:
__a = math.ceil(val / multiple ) * multiple
return x
__a = (output_size, output_size) if isinstance(_A , _A ) else output_size
__a = get_image_size(_A )
__a = output_size
# determine new height and width
__a = output_height / input_height
__a = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
__a = scale_width
else:
# fit height
__a = scale_height
__a = constraint_to_multiple_of(scale_height * input_height , multiple=_A )
__a = constraint_to_multiple_of(scale_width * input_width , multiple=_A )
return (new_height, new_width)
class __lowerCAmelCase ( lowerCamelCase__ ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = ['pixel_values']
def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = False , _a = 1 , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , **_a , ):
super().__init__(**__snake_case )
__a = size if size is not None else {'height': 384, 'width': 384}
__a = get_size_dict(__snake_case )
__a = do_resize
__a = size
__a = keep_aspect_ratio
__a = ensure_multiple_of
__a = resample
__a = do_rescale
__a = rescale_factor
__a = do_normalize
__a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __UpperCAmelCase ( self , _a , _a , _a = False , _a = 1 , _a = PILImageResampling.BICUBIC , _a = None , **_a , ):
__a = get_size_dict(__snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
__a = get_resize_output_image_size(
__snake_case , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=__snake_case , multiple=__snake_case , )
return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case )
def __UpperCAmelCase ( self , _a , _a , _a = None , **_a , ):
return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case )
def __UpperCAmelCase ( self , _a , _a , _a , _a = None , **_a , ):
return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case )
def __UpperCAmelCase ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ):
__a = do_resize if do_resize is not None else self.do_resize
__a = size if size is not None else self.size
__a = get_size_dict(__snake_case )
__a = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
__a = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
__a = resample if resample is not None else self.resample
__a = do_rescale if do_rescale is not None else self.do_rescale
__a = rescale_factor if rescale_factor is not None else self.rescale_factor
__a = do_normalize if do_normalize is not None else self.do_normalize
__a = image_mean if image_mean is not None else self.image_mean
__a = image_std if image_std is not None else self.image_std
__a = make_list_of_images(__snake_case )
if not valid_images(__snake_case ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
__a = [to_numpy_array(__snake_case ) for image in images]
if do_resize:
__a = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images]
if do_rescale:
__a = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images]
if do_normalize:
__a = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images]
__a = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images]
__a = {'pixel_values': images}
return BatchFeature(data=__snake_case , tensor_type=__snake_case )
def __UpperCAmelCase ( self , _a , _a = None ):
__a = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(__snake_case ) != len(__snake_case ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(__snake_case ):
__a = target_sizes.numpy()
__a = []
for idx in range(len(__snake_case ) ):
__a = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__snake_case )
__a = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(__snake_case )
else:
__a = logits.argmax(dim=1 )
__a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 357 |
"""simple docstring"""
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a , _a , _a ):
self.assertEqual(len(_a ) , len(_a ) )
for a, b in zip(_a , _a ):
self.assertAlmostEqual(_a , _a , delta=_a )
def __UpperCAmelCase ( self ):
__a = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_a ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 )
def __UpperCAmelCase ( self ):
__a = None
ops.enable_eager_execution_internal()
__a = tf.config.list_physical_devices('''CPU''' )
if len(_a ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
__a = tf.config.list_logical_devices(device_type='''CPU''' )
__a = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
__a = GradientAccumulator()
__a = tf.Variable([4.0, 3.0] )
__a , __a = create_optimizer(5E-5 , 10 , 5 )
__a = tf.Variable([0.0, 0.0] , trainable=_a )
def accumulate_on_replica(_a ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(_a , _a ):
with strategy.scope():
__a = strategy.experimental_local_results(_a )
local_variables[0].assign(_a )
local_variables[1].assign(_a )
strategy.run(_a , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_a )
def _check_local_values(_a , _a ):
__a = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 )
self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 11 | 0 |
"""simple docstring"""
import re
def lowercase ( lowerCAmelCase__ : int ) -> Optional[int]:
if len(re.findall('''[ATCG]''' , lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ):
raise ValueError('''Invalid Strand''' )
return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 358 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
lowercase_ = None
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json",
},
}
lowercase_ = {
"facebook/mbart-large-en-ro": 1_0_2_4,
"facebook/mbart-large-cc25": 1_0_2_4,
}
# fmt: off
lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = VOCAB_FILES_NAMES
__UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : Tuple = ['input_ids', 'attention_mask']
__UpperCAmelCase : Optional[Any] = MBartTokenizer
__UpperCAmelCase : List[int] = []
__UpperCAmelCase : List[int] = []
def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ):
# Mask token behave like a normal word, i.e. include the space before it
__a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , )
__a = vocab_file
__a = False if not self.vocab_file else True
__a = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__a = {
lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__a = src_lang if src_lang is not None else '''en_XX'''
__a = self.convert_tokens_to_ids(self._src_lang )
__a = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __UpperCAmelCase ( self ):
return self._src_lang
@src_lang.setter
def __UpperCAmelCase ( self , _a ):
__a = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __UpperCAmelCase ( self , _a , _a = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __UpperCAmelCase ( self , _a , _a = None ):
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ):
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__a = src_lang
__a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a )
__a = self.convert_tokens_to_ids(_a )
__a = tgt_lang_id
return inputs
def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ):
__a = src_lang
__a = tgt_lang
return super().prepare_seqaseq_batch(_a , _a , **_a )
def __UpperCAmelCase ( self ):
return self.set_src_lang_special_tokens(self.src_lang )
def __UpperCAmelCase ( self ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __UpperCAmelCase ( self , _a ):
__a = self.convert_tokens_to_ids(_a )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self , _a ):
__a = self.convert_tokens_to_ids(_a )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self , _a , _a = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
__a = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 11 | 0 |
"""simple docstring"""
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=224 , _a=1_000 , _a=[3, 3, 6, 4] , _a=[48, 56, 112, 220] , ):
__a = parent
__a = batch_size
__a = num_channels
__a = is_training
__a = use_labels
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = num_labels
__a = image_size
__a = layer_depths
__a = embed_dims
def __UpperCAmelCase ( self ):
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels
def __UpperCAmelCase ( self ):
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=a__ , layer_scale_init_value=1E-5 , )
def __UpperCAmelCase ( self , _a , _a , _a ):
__a = SwiftFormerModel(config=a__ )
model.to(a__ )
model.eval()
__a = model(a__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def __UpperCAmelCase ( self , _a , _a , _a ):
__a = self.num_labels
__a = SwiftFormerForImageClassification(a__ )
model.to(a__ )
model.eval()
__a = model(a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
__a = SwiftFormerForImageClassification(a__ )
model.to(a__ )
model.eval()
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self ):
((__a) , (__a) , (__a)) = self.prepare_config_and_inputs()
__a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __a , __a , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
__UpperCAmelCase : Union[str, Any] = (
{"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Dict = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Optional[int] = False
def __UpperCAmelCase ( self ):
__a = SwiftFormerModelTester(self )
__a = ConfigTester(
self , config_class=a__ , has_text_modality=a__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' )
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(a__ )
__a = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a__ , nn.Linear ) )
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(a__ )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , a__ )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a__ )
@slow
def __UpperCAmelCase ( self ):
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = SwiftFormerModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
@unittest.skip(reason='''SwiftFormer does not output attentions''' )
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
def check_hidden_states_output(_a , _a , _a ):
__a = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(a__ , a__ ) )
__a = outputs.hidden_states
__a = 8
self.assertEqual(len(a__ ) , a__ ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(a__ ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(a__ , a__ , a__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(a__ , a__ , a__ )
def __UpperCAmelCase ( self ):
def _config_zero_init(_a ):
__a = copy.deepcopy(a__ )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(a__ , a__ , 1E-10 )
if isinstance(getattr(a__ , a__ , a__ ) , a__ ):
__a = _config_zero_init(getattr(a__ , a__ ) )
setattr(a__ , a__ , a__ )
return configs_no_init
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
__a = _config_zero_init(a__ )
for model_class in self.all_model_classes:
__a = model_class(config=a__ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __UpperCAmelCase ( self ):
pass
def lowercase ( ) -> str:
__a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCAmelCase ( self ):
return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None
@slow
def __UpperCAmelCase ( self ):
__a = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(a__ )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ )
# forward pass
with torch.no_grad():
__a = model(**a__ )
# verify the logits
__a = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , a__ )
__a = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(a__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) )
| 359 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n"
class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = load_tool('''text-question-answering''' )
self.tool.setup()
__a = load_tool('''text-question-answering''' , remote=_a )
def __UpperCAmelCase ( self ):
__a = self.tool(_a , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
| 11 | 0 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> List[Any]:
def get_masked_lm_array(lowerCAmelCase__ : str ):
__a = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__a = tf.train.load_variable(lowerCAmelCase__ , lowerCAmelCase__ )
if "kernel" in name:
__a = array.transpose()
return torch.from_numpy(lowerCAmelCase__ )
def get_encoder_array(lowerCAmelCase__ : str ):
__a = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__a = tf.train.load_variable(lowerCAmelCase__ , lowerCAmelCase__ )
if "kernel" in name:
__a = array.transpose()
return torch.from_numpy(lowerCAmelCase__ )
def get_encoder_layer_array(lowerCAmelCase__ : int , lowerCAmelCase__ : str ):
__a = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__a = tf.train.load_variable(lowerCAmelCase__ , lowerCAmelCase__ )
if "kernel" in name:
__a = array.transpose()
return torch.from_numpy(lowerCAmelCase__ )
def get_encoder_attention_layer_array(lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Any ):
__a = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__a = tf.train.load_variable(lowerCAmelCase__ , lowerCAmelCase__ )
__a = array.reshape(lowerCAmelCase__ )
if "kernel" in name:
__a = array.transpose()
return torch.from_numpy(lowerCAmelCase__ )
print(f'''Loading model based on config from {config_path}...''' )
__a = BertConfig.from_json_file(lowerCAmelCase__ )
__a = BertForMaskedLM(lowerCAmelCase__ )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__a = model.bert.encoder.layer[layer_index]
# Self-attention
__a = layer.attention.self
__a = get_encoder_attention_layer_array(
lowerCAmelCase__ , '''_query_dense/kernel''' , self_attn.query.weight.data.shape )
__a = get_encoder_attention_layer_array(
lowerCAmelCase__ , '''_query_dense/bias''' , self_attn.query.bias.data.shape )
__a = get_encoder_attention_layer_array(
lowerCAmelCase__ , '''_key_dense/kernel''' , self_attn.key.weight.data.shape )
__a = get_encoder_attention_layer_array(
lowerCAmelCase__ , '''_key_dense/bias''' , self_attn.key.bias.data.shape )
__a = get_encoder_attention_layer_array(
lowerCAmelCase__ , '''_value_dense/kernel''' , self_attn.value.weight.data.shape )
__a = get_encoder_attention_layer_array(
lowerCAmelCase__ , '''_value_dense/bias''' , self_attn.value.bias.data.shape )
# Self-attention Output
__a = layer.attention.output
__a = get_encoder_attention_layer_array(
lowerCAmelCase__ , '''_output_dense/kernel''' , self_output.dense.weight.data.shape )
__a = get_encoder_attention_layer_array(
lowerCAmelCase__ , '''_output_dense/bias''' , self_output.dense.bias.data.shape )
__a = get_encoder_layer_array(lowerCAmelCase__ , '''_attention_layer_norm/gamma''' )
__a = get_encoder_layer_array(lowerCAmelCase__ , '''_attention_layer_norm/beta''' )
# Intermediate
__a = layer.intermediate
__a = get_encoder_layer_array(lowerCAmelCase__ , '''_intermediate_dense/kernel''' )
__a = get_encoder_layer_array(lowerCAmelCase__ , '''_intermediate_dense/bias''' )
# Output
__a = layer.output
__a = get_encoder_layer_array(lowerCAmelCase__ , '''_output_dense/kernel''' )
__a = get_encoder_layer_array(lowerCAmelCase__ , '''_output_dense/bias''' )
__a = get_encoder_layer_array(lowerCAmelCase__ , '''_output_layer_norm/gamma''' )
__a = get_encoder_layer_array(lowerCAmelCase__ , '''_output_layer_norm/beta''' )
# Embeddings
__a = get_encoder_array('''_position_embedding_layer/embeddings''' )
__a = get_encoder_array('''_type_embedding_layer/embeddings''' )
__a = get_encoder_array('''_embedding_norm_layer/gamma''' )
__a = get_encoder_array('''_embedding_norm_layer/beta''' )
# LM Head
__a = model.cls.predictions.transform
__a = get_masked_lm_array('''dense/kernel''' )
__a = get_masked_lm_array('''dense/bias''' )
__a = get_masked_lm_array('''layer_norm/gamma''' )
__a = get_masked_lm_array('''layer_norm/beta''' )
__a = get_masked_lm_array('''embedding_table''' )
# Pooling
__a = BertPooler(config=lowerCAmelCase__ )
__a = get_encoder_array('''_pooler_layer/kernel''' )
__a = get_encoder_array('''_pooler_layer/bias''' )
# Export final model
model.save_pretrained(lowerCAmelCase__ )
# Integration test - should load without any errors ;)
__a = BertForMaskedLM.from_pretrained(lowerCAmelCase__ )
print(new_model.eval() )
print('''Model conversion was done sucessfully!''' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
lowercase_ = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 360 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_blip_2": [
"BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Blip2Config",
"Blip2QFormerConfig",
"Blip2VisionConfig",
],
"processing_blip_2": ["Blip2Processor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Blip2Model",
"Blip2QFormerModel",
"Blip2PreTrainedModel",
"Blip2ForConditionalGeneration",
"Blip2VisionModel",
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
lowercase_ = "https://openaipublic.azureedge.net/jukebox/models/"
lowercase_ = {
"jukebox-1b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"1b_lyrics/prior_level_2.pth.tar",
],
"jukebox-5b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"5b_lyrics/prior_level_2.pth.tar",
],
}
def lowercase ( lowerCAmelCase__ : List[Any] ) -> Optional[Any]:
if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10:
__a = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' )
elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10:
__a = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' )
elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10:
__a = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' )
elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10:
__a = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' )
if "conditioner_blocks.0." in key:
__a = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' )
if "prime_prior" in key:
__a = key.replace('''prime_prior''' , '''encoder''' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
__a = key.replace('''.emb.''' , '''.''' )
if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('''.k''' , '''.codebook''' )
if "y_emb." in key:
return key.replace('''y_emb.''' , '''metadata_embedding.''' )
if "x_emb.emb." in key:
__a = key.replace('''0.x_emb.emb''' , '''embed_tokens''' )
if "prime_state_ln" in key:
return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' )
if ".ln" in key:
return key.replace('''.ln''' , '''.layer_norm''' )
if "_ln" in key:
return key.replace('''_ln''' , '''_layer_norm''' )
if "prime_state_proj" in key:
return key.replace('''prime_state_proj''' , '''encoder.proj_in''' )
if "prime_x_out" in key:
return key.replace('''prime_x_out''' , '''encoder.lm_head''' )
if "prior.x_out" in key:
return key.replace('''x_out''' , '''fc_proj_out''' )
if "x_emb" in key:
return key.replace('''x_emb''' , '''embed_tokens''' )
return key
def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any ) -> Tuple:
__a = {}
import re
__a = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
__a = re.compile(
r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
__a = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
__a = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
__a = re.compile(
r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
__a = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
__a = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' )
__a = re.compile(
r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
__a = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(__snake_case ):
__a = re_encoder_block_conv_in.match(__snake_case )
__a = regex_match.groups()
__a = int(groups[2] ) * 2 + int(groups[3] )
__a = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'''
__a = re_encoder_block_conv_in.sub(__snake_case , __snake_case )
elif re_encoder_block_resnet.fullmatch(__snake_case ):
__a = re_encoder_block_resnet.match(__snake_case )
__a = regex_match.groups()
__a = int(groups[2] ) * 2 + int(groups[3] )
__a = {'''1''': 1, '''3''': 2}[groups[-2]]
__a = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'''
__a = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
__a = prefix + resnet_block
__a = re_encoder_block_resnet.sub(__snake_case , __snake_case )
elif re_encoder_block_proj_out.fullmatch(__snake_case ):
__a = re_encoder_block_proj_out.match(__snake_case )
__a = regex_match.groups()
__a = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'''
__a = re_encoder_block_proj_out.sub(__snake_case , __snake_case )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(__snake_case ):
__a = re_decoder_block_conv_out.match(__snake_case )
__a = regex_match.groups()
__a = int(groups[2] ) * 2 + int(groups[3] ) - 2
__a = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'''
__a = re_decoder_block_conv_out.sub(__snake_case , __snake_case )
elif re_decoder_block_resnet.fullmatch(__snake_case ):
__a = re_decoder_block_resnet.match(__snake_case )
__a = regex_match.groups()
__a = int(groups[2] ) * 2 + int(groups[3] ) - 2
__a = {'''1''': 1, '''3''': 2}[groups[-2]]
__a = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'''
__a = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
__a = prefix + resnet_block
__a = re_decoder_block_resnet.sub(__snake_case , __snake_case )
elif re_decoder_block_proj_in.fullmatch(__snake_case ):
__a = re_decoder_block_proj_in.match(__snake_case )
__a = regex_match.groups()
__a = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'''
__a = re_decoder_block_proj_in.sub(__snake_case , __snake_case )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(__snake_case ):
__a = re_prior_cond_conv_out.match(__snake_case )
__a = regex_match.groups()
__a = int(groups[1] ) * 2 + int(groups[2] ) - 2
__a = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'''
__a = re_prior_cond_conv_out.sub(__snake_case , __snake_case )
elif re_prior_cond_resnet.fullmatch(__snake_case ):
__a = re_prior_cond_resnet.match(__snake_case )
__a = regex_match.groups()
__a = int(groups[1] ) * 2 + int(groups[2] ) - 2
__a = {'''1''': 1, '''3''': 2}[groups[-2]]
__a = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.'''
__a = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
__a = prefix + resnet_block
__a = re_prior_cond_resnet.sub(__snake_case , __snake_case )
elif re_prior_cond_proj_in.fullmatch(__snake_case ):
__a = re_prior_cond_proj_in.match(__snake_case )
__a = regex_match.groups()
__a = f'''conditioner_blocks.upsampler.proj_in.{groups[-1]}'''
__a = re_prior_cond_proj_in.sub(__snake_case , __snake_case )
# keep original key
else:
__a = original_key
__a = replace_key(__snake_case )
if f'''{key_prefix}.{key}''' not in model_state_dict or key is None:
print(f'''failed converting {original_key} to {key}, does not match''' )
# handle missmatched shape
elif value.shape != model_state_dict[f'''{key_prefix}.{key}'''].shape:
__a = model_state_dict[f'''{key_prefix}.{key}''']
print(f'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' )
__a = original_key
__a = original_key
__a = value
return new_dict
@torch.no_grad()
def lowercase ( lowerCAmelCase__ : str=None , lowerCAmelCase__ : List[str]=None ) -> Optional[Any]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ):
__a = requests.get(f'''{PREFIX}{file}''' , allow_redirects=__snake_case )
os.makedirs(f'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case )
open(f'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content )
__a = MODEL_MAPPING[model_name.split('''/''' )[-1]]
__a = JukeboxConfig.from_pretrained(__snake_case )
__a = JukeboxModel(__snake_case )
__a = []
__a = {}
for i, dict_name in enumerate(__snake_case ):
__a = torch.load(f'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model''']
__a = {}
for k in old_dic.keys():
if k.endswith('''.b''' ):
__a = old_dic[k]
elif k.endswith('''.w''' ):
__a = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
__a = old_dic[k]
else:
__a = old_dic[k]
__a = '''vqvae''' if i == 0 else f'''priors.{3 - i}'''
__a = fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case )
weight_dict.append(__snake_case )
__a = weight_dict.pop(0 )
model.vqvae.load_state_dict(__snake_case )
for i in range(len(__snake_case ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
with open(f'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile:
json.dump(__snake_case , __snake_case )
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__snake_case )
return weight_dict
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="jukebox-5b-lyrics",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="jukebox-5b-lyrics-converted",
type=str,
help="Path to the output PyTorch model directory.",
)
lowercase_ = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 361 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None:
__a = len(lowerCAmelCase__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(lowerCAmelCase__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , )
def lowercase ( lowerCAmelCase__ : int ) -> None:
__a = []
depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ )
# Print all the boards
for board in boards:
for column in board:
print(lowerCAmelCase__ )
print('''''' )
print(len(lowerCAmelCase__ ) , '''solutions were found.''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 11 | 0 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=_snake_case )
class __lowerCAmelCase ( _snake_case ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} )
__UpperCAmelCase : Optional[Any] = Features({'audio': Audio()} )
__UpperCAmelCase : int = Features({'labels': ClassLabel} )
__UpperCAmelCase : Tuple = 'audio'
__UpperCAmelCase : Dict = 'labels'
def __UpperCAmelCase ( self , _a ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , UpperCamelCase__ ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__a = copy.deepcopy(self )
__a = self.label_schema.copy()
__a = features[self.label_column]
__a = label_schema
return task_template
@property
def __UpperCAmelCase ( self ):
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 362 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowercase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 11 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __lowerCAmelCase ( snake_case__ ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_A , '''width_multiplier''' ) )
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ):
__a = parent
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = make_divisible(512 * width_multiplier , divisor=8 )
__a = hidden_act
__a = conv_kernel_size
__a = output_stride
__a = classifier_dropout_prob
__a = use_labels
__a = is_training
__a = num_labels
__a = initializer_range
__a = scope
__a = width_multiplier
__a = ffn_dropout
__a = attn_dropout
def __UpperCAmelCase ( self ):
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels, pixel_labels
def __UpperCAmelCase ( self ):
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = MobileViTVaModel(config=_A )
model.to(_A )
model.eval()
__a = model(_A )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForImageClassification(_A )
model.to(_A )
model.eval()
__a = model(_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForSemanticSegmentation(_A )
model.to(_A )
model.eval()
__a = model(_A )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__a = model(_A , labels=_A )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self ):
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Tuple = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase : Dict = (
{
"""feature-extraction""": MobileViTVaModel,
"""image-classification""": MobileViTVaForImageClassification,
"""image-segmentation""": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : List[Any] = False
__UpperCAmelCase : Dict = False
__UpperCAmelCase : Any = False
__UpperCAmelCase : Tuple = False
def __UpperCAmelCase ( self ):
__a = MobileViTVaModelTester(self )
__a = MobileViTVaConfigTester(self , config_class=_A , has_text_modality=_A )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not output attentions''' )
def __UpperCAmelCase ( self ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(_A )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _A )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __UpperCAmelCase ( self ):
def check_hidden_states_output(_a , _a , _a ):
__a = model_class(_A )
model.to(_A )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(_A , _A ) )
__a = outputs.hidden_states
__a = 5
self.assertEqual(len(_A ) , _A )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__a = 2
for i in range(len(_A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(_A , _A , _A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(_A , _A , _A )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_A )
@slow
def __UpperCAmelCase ( self ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = MobileViTVaModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def lowercase ( ) -> Optional[int]:
__a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCAmelCase ( self ):
return (
MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' )
if is_vision_available()
else None
)
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to(
_A )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=_A , return_tensors='''pt''' ).to(_A )
# forward pass
with torch.no_grad():
__a = model(**_A )
# verify the logits
__a = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _A )
__a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_A )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_A , return_tensors='''pt''' ).to(_A )
# forward pass
with torch.no_grad():
__a = model(**_A )
__a = outputs.logits
# verify the logits
__a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _A )
__a = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_A , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _A , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_A )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_A , return_tensors='''pt''' ).to(_A )
# forward pass
with torch.no_grad():
__a = model(**_A )
__a = outputs.logits.detach().cpu()
__a = image_processor.post_process_semantic_segmentation(outputs=_A , target_sizes=[(50, 60)] )
__a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _A )
__a = image_processor.post_process_semantic_segmentation(outputs=_A )
__a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _A )
| 363 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = 'vit_mae'
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = initializer_range
__a = layer_norm_eps
__a = image_size
__a = patch_size
__a = num_channels
__a = qkv_bias
__a = decoder_num_attention_heads
__a = decoder_hidden_size
__a = decoder_num_hidden_layers
__a = decoder_intermediate_size
__a = mask_ratio
__a = norm_pix_loss
| 11 | 0 |
"""simple docstring"""
from collections.abc import Sequence
def lowercase ( lowerCAmelCase__ : Sequence[float] , lowerCAmelCase__ : bool = False ) -> float:
if not arr:
return 0
__a = 0 if allow_empty_subarrays else float('''-inf''' )
__a = 0.0
for num in arr:
__a = max(0 if allow_empty_subarrays else num , curr_sum + num )
__a = max(snake_case__ , snake_case__ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
__lowerCAmelCase = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F'''{max_subarray_sum(nums) = }''')
| 364 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = ['image_processor', 'tokenizer']
__UpperCAmelCase : str = 'LayoutLMv3ImageProcessor'
__UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast')
def __init__( self , _a=None , _a=None , **_a ):
__a = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
__a = kwargs.pop('''feature_extractor''' )
__a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
# first, apply the image processor
__a = self.image_processor(images=_a , return_tensors=_a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_a , _a ):
__a = [text] # add batch dimension (as the image processor always adds a batch dimension)
__a = features['''words''']
__a = self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel values
__a = features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
__a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] )
__a = images
return encoded_inputs
def __UpperCAmelCase ( self , _a , _a ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
__a = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_a ) != len(_a ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f''' {len(_a )} and {len(_a )}''' )
return images_with_overflow
def __UpperCAmelCase ( self , *_a , **_a ):
return self.tokenizer.batch_decode(*_a , **_a )
def __UpperCAmelCase ( self , *_a , **_a ):
return self.tokenizer.decode(*_a , **_a )
@property
def __UpperCAmelCase ( self ):
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def __UpperCAmelCase ( self ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def __UpperCAmelCase ( self ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 11 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = CycleDiffusionPipeline
__UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'negative_prompt',
'height',
'width',
'negative_prompt_embeds',
}
__UpperCAmelCase : Optional[int] = PipelineTesterMixin.required_optional_params - {'latents'}
__UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} )
__UpperCAmelCase : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS
__UpperCAmelCase : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def __UpperCAmelCase ( self ):
torch.manual_seed(0 )
__a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
__a = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=1_000 , clip_sample=_a , set_alpha_to_one=_a , )
torch.manual_seed(0 )
__a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__a = CLIPTextModel(_a )
__a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __UpperCAmelCase ( self , _a , _a=0 ):
__a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
__a = image / 2 + 0.5
if str(_a ).startswith('''mps''' ):
__a = torch.manual_seed(_a )
else:
__a = torch.Generator(device=_a ).manual_seed(_a )
__a = {
'''prompt''': '''An astronaut riding an elephant''',
'''source_prompt''': '''An astronaut riding a horse''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''eta''': 0.1,
'''strength''': 0.8,
'''guidance_scale''': 3,
'''source_guidance_scale''': 1,
'''output_type''': '''numpy''',
}
return inputs
def __UpperCAmelCase ( self ):
__a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = CycleDiffusionPipeline(**_a )
__a = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
__a = self.get_dummy_inputs(_a )
__a = pipe(**_a )
__a = output.images
__a = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__a = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def __UpperCAmelCase ( self ):
__a = self.get_dummy_components()
for name, module in components.items():
if hasattr(_a , '''half''' ):
__a = module.half()
__a = CycleDiffusionPipeline(**_a )
__a = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
__a = self.get_dummy_inputs(_a )
__a = pipe(**_a )
__a = output.images
__a = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__a = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def __UpperCAmelCase ( self ):
return super().test_save_load_local()
@unittest.skip('''non-deterministic pipeline''' )
def __UpperCAmelCase ( self ):
return super().test_inference_batch_single_identical()
@skip_mps
def __UpperCAmelCase ( self ):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def __UpperCAmelCase ( self ):
return super().test_save_load_optional_components()
@skip_mps
def __UpperCAmelCase ( self ):
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' )
__a = init_image.resize((512, 512) )
__a = '''CompVis/stable-diffusion-v1-4'''
__a = DDIMScheduler.from_pretrained(_a , subfolder='''scheduler''' )
__a = CycleDiffusionPipeline.from_pretrained(
_a , scheduler=_a , safety_checker=_a , torch_dtype=torch.floataa , revision='''fp16''' )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''A black colored car'''
__a = '''A blue colored car'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , source_prompt=_a , image=_a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_a , output_type='''np''' , )
__a = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5E-1
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' )
__a = init_image.resize((512, 512) )
__a = '''CompVis/stable-diffusion-v1-4'''
__a = DDIMScheduler.from_pretrained(_a , subfolder='''scheduler''' )
__a = CycleDiffusionPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''A black colored car'''
__a = '''A blue colored car'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , source_prompt=_a , image=_a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_a , output_type='''np''' , )
__a = output.images
assert np.abs(image - expected_image ).max() < 2E-2
| 365 |
"""simple docstring"""
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(lowerCAmelCase__ : int ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
__a = []
for i in range(lowerCAmelCase__ ):
__a = i / num_diffusion_timesteps
__a = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) )
return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers]
__UpperCAmelCase : str = 2
@register_to_config
def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ):
if trained_betas is not None:
__a = torch.tensor(_a , dtype=torch.floataa )
elif beta_schedule == "linear":
__a = torch.linspace(_a , _a , _a , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__a = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__a = betas_for_alpha_bar(_a )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
__a = 1.0 - self.betas
__a = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_a , _a , _a )
def __UpperCAmelCase ( self , _a , _a=None ):
if schedule_timesteps is None:
__a = self.timesteps
__a = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
__a = 1 if len(_a ) > 1 else 0
else:
__a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep
__a = self._index_counter[timestep_int]
return indices[pos].item()
@property
def __UpperCAmelCase ( self ):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def __UpperCAmelCase ( self , _a , _a , ):
__a = self.index_for_timestep(_a )
if self.state_in_first_order:
__a = self.sigmas[step_index]
else:
__a = self.sigmas_interpol[step_index]
__a = sample / ((sigma**2 + 1) ** 0.5)
return sample
def __UpperCAmelCase ( self , _a , _a = None , _a = None , ):
__a = num_inference_steps
__a = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
__a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy()
elif self.config.timestep_spacing == "leading":
__a = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
__a = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a )
timesteps -= 1
else:
raise ValueError(
f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
__a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
__a = torch.from_numpy(np.log(_a ) ).to(_a )
__a = np.interp(_a , np.arange(0 , len(_a ) ) , _a )
__a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
__a = torch.from_numpy(_a ).to(device=_a )
# interpolate sigmas
__a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp()
__a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
__a = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(_a ).startswith('''mps''' ):
# mps does not support float64
__a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa )
else:
__a = torch.from_numpy(_a ).to(_a )
# interpolate timesteps
__a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype )
__a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten()
__a = torch.cat([timesteps[:1], interleaved_timesteps] )
__a = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
__a = defaultdict(_a )
def __UpperCAmelCase ( self , _a ):
# get log sigma
__a = sigma.log()
# get distribution
__a = log_sigma - self.log_sigmas[:, None]
# get sigmas range
__a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
__a = low_idx + 1
__a = self.log_sigmas[low_idx]
__a = self.log_sigmas[high_idx]
# interpolate sigmas
__a = (low - log_sigma) / (low - high)
__a = w.clamp(0 , 1 )
# transform interpolation to time range
__a = (1 - w) * low_idx + w * high_idx
__a = t.view(sigma.shape )
return t
@property
def __UpperCAmelCase ( self ):
return self.sample is None
def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ):
__a = self.index_for_timestep(_a )
# advance index counter by 1
__a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
__a = self.sigmas[step_index]
__a = self.sigmas_interpol[step_index + 1]
__a = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
__a = self.sigmas[step_index - 1]
__a = self.sigmas_interpol[step_index]
__a = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
__a = 0
__a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
__a = sigma_hat if self.state_in_first_order else sigma_interpol
__a = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
__a = sigma_hat if self.state_in_first_order else sigma_interpol
__a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError('''prediction_type not implemented yet: sample''' )
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
__a = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
__a = sigma_interpol - sigma_hat
# store for 2nd order step
__a = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
__a = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
__a = sigma_next - sigma_hat
__a = self.sample
__a = None
__a = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_a )
def __UpperCAmelCase ( self , _a , _a , _a , ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
__a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_a ):
# mps does not support float64
__a = self.timesteps.to(original_samples.device , dtype=torch.floataa )
__a = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
__a = self.timesteps.to(original_samples.device )
__a = timesteps.to(original_samples.device )
__a = [self.index_for_timestep(_a , _a ) for t in timesteps]
__a = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
__a = sigma.unsqueeze(-1 )
__a = original_samples + noise * sigma
return noisy_samples
def __len__( self ):
return self.config.num_train_timesteps
| 11 | 0 |
"""simple docstring"""
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import is_speech_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import WhisperFeatureExtractor
if is_torch_available():
import torch
lowercase_ = random.Random()
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=1.0 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : int=None ) -> str:
if rng is None:
__a = global_rng
__a = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , _a , _a=7 , _a=400 , _a=2_000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4_000 , _a=False , _a=True , ):
__a = parent
__a = batch_size
__a = min_seq_length
__a = max_seq_length
__a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__a = padding_value
__a = sampling_rate
__a = return_attention_mask
__a = do_normalize
__a = feature_size
__a = chunk_length
__a = hop_length
def __UpperCAmelCase ( self ):
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def __UpperCAmelCase ( self , _a=False , _a=False ):
def _flatten(_a ):
return list(itertools.chain(*__lowercase ) )
if equal_length:
__a = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
__a = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
__a = [np.asarray(__lowercase ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None
def __UpperCAmelCase ( self ):
__a = WhisperFeatureExtractionTester(self )
def __UpperCAmelCase ( self ):
__a = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__a = feat_extract_first.save_pretrained(__lowercase )[0]
check_json_file_has_correct_format(__lowercase )
__a = self.feature_extraction_class.from_pretrained(__lowercase )
__a = feat_extract_first.to_dict()
__a = feat_extract_second.to_dict()
__a = feat_extract_first.mel_filters
__a = feat_extract_second.mel_filters
self.assertTrue(np.allclose(__lowercase , __lowercase ) )
self.assertEqual(__lowercase , __lowercase )
def __UpperCAmelCase ( self ):
__a = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__a = os.path.join(__lowercase , '''feat_extract.json''' )
feat_extract_first.to_json_file(__lowercase )
__a = self.feature_extraction_class.from_json_file(__lowercase )
__a = feat_extract_first.to_dict()
__a = feat_extract_second.to_dict()
__a = feat_extract_first.mel_filters
__a = feat_extract_second.mel_filters
self.assertTrue(np.allclose(__lowercase , __lowercase ) )
self.assertEqual(__lowercase , __lowercase )
def __UpperCAmelCase ( self ):
# Tests that all call wrap to encode_plus and batch_encode_plus
__a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__a = [np.asarray(__lowercase ) for speech_input in speech_inputs]
# Test feature size
__a = feature_extractor(__lowercase , padding='''max_length''' , return_tensors='''np''' ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames )
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size )
# Test not batched input
__a = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features
__a = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features
self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) )
# Test batched
__a = feature_extractor(__lowercase , return_tensors='''np''' ).input_features
__a = feature_extractor(__lowercase , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ):
self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
__a = [floats_list((1, x) )[0] for x in (800, 800, 800)]
__a = np.asarray(__lowercase )
__a = feature_extractor(__lowercase , return_tensors='''np''' ).input_features
__a = feature_extractor(__lowercase , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ):
self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) )
# Test truncation required
__a = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )]
__a = [np.asarray(__lowercase ) for speech_input in speech_inputs]
__a = [x[: feature_extractor.n_samples] for x in speech_inputs]
__a = [np.asarray(__lowercase ) for speech_input in speech_inputs_truncated]
__a = feature_extractor(__lowercase , return_tensors='''np''' ).input_features
__a = feature_extractor(__lowercase , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ):
self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) )
def __UpperCAmelCase ( self ):
import torch
__a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__a = np.random.rand(100 , 32 ).astype(np.floataa )
__a = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__a = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
__a = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def __UpperCAmelCase ( self , _a ):
__a = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
# automatic decoding with librispeech
__a = ds.sort('''id''' ).select(range(__lowercase ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def __UpperCAmelCase ( self ):
# fmt: off
__a = torch.tensor(
[
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
] )
# fmt: on
__a = self._load_datasamples(1 )
__a = WhisperFeatureExtractor()
__a = feature_extractor(__lowercase , return_tensors='''pt''' ).input_features
self.assertEqual(input_features.shape , (1, 80, 3_000) )
self.assertTrue(torch.allclose(input_features[0, 0, :30] , __lowercase , atol=1E-4 ) )
def __UpperCAmelCase ( self ):
__a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__a = self._load_datasamples(1 )[0]
__a = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue
__a = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__lowercase )[0]
self.assertTrue(np.all(np.mean(__lowercase ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(__lowercase ) - 1 ) < 1E-3 ) )
| 366 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
"RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
"RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
"RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
"RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
"RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
"RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
"RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
"RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
"RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Any = 'rwkv'
__UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'}
def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ):
__a = vocab_size
__a = context_length
__a = hidden_size
__a = num_hidden_layers
__a = attention_hidden_size if attention_hidden_size is not None else hidden_size
__a = intermediate_size if intermediate_size is not None else 4 * hidden_size
__a = layer_norm_epsilon
__a = rescale_every
__a = use_cache
__a = bos_token_id
__a = eos_token_id
super().__init__(
tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
| 11 | 0 |
"""simple docstring"""
import json
import os
import tempfile
from transformers.testing_utils import check_json_file_has_correct_format
class __lowerCAmelCase :
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = None
def __UpperCAmelCase ( self ):
__a = self.feature_extraction_class(**self.feat_extract_dict )
__a = json.loads(feat_extract.to_json_string() )
for key, value in self.feat_extract_dict.items():
self.assertEqual(obj[key] , __a )
def __UpperCAmelCase ( self ):
__a = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__a = os.path.join(__a , '''feat_extract.json''' )
feat_extract_first.to_json_file(__a )
__a = self.feature_extraction_class.from_json_file(__a )
self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() )
def __UpperCAmelCase ( self ):
__a = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__a = feat_extract_first.save_pretrained(__a )[0]
check_json_file_has_correct_format(__a )
__a = self.feature_extraction_class.from_pretrained(__a )
self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() )
def __UpperCAmelCase ( self ):
__a = self.feature_extraction_class()
self.assertIsNotNone(__a )
| 367 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[str] = (UnCLIPScheduler,)
def __UpperCAmelCase ( self , **_a ):
__a = {
'''num_train_timesteps''': 1_000,
'''variance_type''': '''fixed_small_log''',
'''clip_sample''': True,
'''clip_sample_range''': 1.0,
'''prediction_type''': '''epsilon''',
}
config.update(**_a )
return config
def __UpperCAmelCase ( self ):
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_a )
def __UpperCAmelCase ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_a )
def __UpperCAmelCase ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_a )
def __UpperCAmelCase ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=_a )
def __UpperCAmelCase ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_a )
def __UpperCAmelCase ( self ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_a , prev_timestep=_a )
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(variance_type='''fixed_small_log''' )
__a = scheduler_class(**_a )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(variance_type='''learned_range''' )
__a = scheduler_class(**_a )
__a = 0.5
assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=_a ) - -5.799_8052 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=_a ) - -0.001_0011 < 1E-5
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config()
__a = scheduler_class(**_a )
__a = scheduler.timesteps
__a = self.dummy_model()
__a = self.dummy_sample_deter
__a = torch.manual_seed(0 )
for i, t in enumerate(_a ):
# 1. predict noise residual
__a = model(_a , _a )
# 2. predict previous mean of sample x_t-1
__a = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
__a = pred_prev_sample
__a = torch.sum(torch.abs(_a ) )
__a = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 252.268_2495 ) < 1E-2
assert abs(result_mean.item() - 0.328_4743 ) < 1E-3
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config()
__a = scheduler_class(**_a )
scheduler.set_timesteps(25 )
__a = scheduler.timesteps
__a = self.dummy_model()
__a = self.dummy_sample_deter
__a = torch.manual_seed(0 )
for i, t in enumerate(_a ):
# 1. predict noise residual
__a = model(_a , _a )
if i + 1 == timesteps.shape[0]:
__a = None
else:
__a = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
__a = scheduler.step(
_a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample
__a = pred_prev_sample
__a = torch.sum(torch.abs(_a ) )
__a = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 258.204_4983 ) < 1E-2
assert abs(result_mean.item() - 0.336_2038 ) < 1E-3
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
pass
| 11 | 0 |
from __future__ import annotations
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a ):
__a = data
__a = None
__a = None
def lowercase ( lowerCAmelCase__ : Tuple ) -> None: # In Order traversal of the tree
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def lowercase ( lowerCAmelCase__ : str ) -> int:
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def lowercase ( lowerCAmelCase__ : str ) -> bool:
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def lowercase ( ) -> None: # Main function for testing.
__a = Node(1 )
__a = Node(2 )
__a = Node(3 )
__a = Node(4 )
__a = Node(5 )
__a = Node(6 )
__a = Node(7 )
__a = Node(8 )
__a = Node(9 )
print(is_full_binary_tree(lowerCAmelCase_ ) )
print(depth_of_tree(lowerCAmelCase_ ) )
print('''Tree is: ''' )
display(lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 368 |
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]:
__a , __a = image.size
__a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
__a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0
__a = image[None].transpose(0 , 3 , 1 , 2 )
__a = torch.from_numpy(lowerCAmelCase__ )
return 2.0 * image - 1.0
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , ):
super().__init__()
self.register_modules(vqvae=_a , unet=_a , scheduler=_a )
@torch.no_grad()
def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ):
if isinstance(_a , PIL.Image.Image ):
__a = 1
elif isinstance(_a , torch.Tensor ):
__a = image.shape[0]
else:
raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' )
if isinstance(_a , PIL.Image.Image ):
__a = preprocess(_a )
__a , __a = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__a = (batch_size, self.unet.config.in_channels // 2, height, width)
__a = next(self.unet.parameters() ).dtype
__a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a )
__a = image.to(device=self.device , dtype=_a )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_a , device=self.device )
__a = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__a = {}
if accepts_eta:
__a = eta
for t in self.progress_bar(_a ):
# concat latents and low resolution image in the channel dimension.
__a = torch.cat([latents, image] , dim=1 )
__a = self.scheduler.scale_model_input(_a , _a )
# predict the noise residual
__a = self.unet(_a , _a ).sample
# compute the previous noisy sample x_t -> x_t-1
__a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample
# decode the image latents with the VQVAE
__a = self.vqvae.decode(_a ).sample
__a = torch.clamp(_a , -1.0 , 1.0 )
__a = image / 2 + 0.5
__a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__a = self.numpy_to_pil(_a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_a )
| 11 | 0 |
"""simple docstring"""
import sys
import turtle
def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , ) -> None:
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(__SCREAMING_SNAKE_CASE , get_mid(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , get_mid(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , depth - 1 )
triangle(__SCREAMING_SNAKE_CASE , get_mid(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , get_mid(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , depth - 1 )
triangle(__SCREAMING_SNAKE_CASE , get_mid(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , get_mid(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
lowercase_ = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
lowercase_ = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 369 |
"""simple docstring"""
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Dict = DistilBertTokenizer
__UpperCAmelCase : Any = DistilBertTokenizerFast
__UpperCAmelCase : int = True
@slow
def __UpperCAmelCase ( self ):
__a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
__a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a )
__a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a )
__a = tokenizer.build_inputs_with_special_tokens(_a )
__a = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 11 | 0 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowercase_ = ''''''
lowercase_ = ''''''
lowercase_ = ''''''
lowercase_ = 1 # (0 is vertical, 1 is horizontal)
def lowercase ( ) -> Union[str, Any]:
__a , __a = get_dataset(__lowerCAmelCase , __lowerCAmelCase )
print('''Processing...''' )
__a , __a , __a = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for index, image in enumerate(__lowerCAmelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__a = random_chars(32 )
__a = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__a = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' )
__a = []
for anno in new_annos[index]:
__a = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(__lowerCAmelCase )
with open(f'''/{file_root}.txt''' , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> Union[str, Any]:
__a = []
__a = []
for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ):
__a = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(__lowerCAmelCase ) as in_file:
__a = in_file.readlines()
__a = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' )
__a = []
for obj_list in obj_lists:
__a = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__lowerCAmelCase )
labels.append(__lowerCAmelCase )
return img_paths, labels
def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int = 1 ) -> Optional[int]:
__a = []
__a = []
__a = []
for idx in range(len(__lowerCAmelCase ) ):
__a = []
__a = img_list[idx]
path_list.append(__lowerCAmelCase )
__a = anno_list[idx]
__a = cva.imread(__lowerCAmelCase )
if flip_type == 1:
__a = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__a = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__a = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__a = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__lowerCAmelCase )
new_imgs_list.append(__lowerCAmelCase )
return new_imgs_list, new_annos_lists, path_list
def lowercase ( lowerCAmelCase__ : int = 32 ) -> Any:
assert number_char > 1, "The number of character should greater than 1"
__a = ascii_lowercase + digits
return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 370 |
"""simple docstring"""
from math import factorial, radians
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float:
__a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0)
# Converting from degrees to radians
__a = radians(lowerCAmelCase__ )
__a = angle_in_radians
__a = 3
__a = -1
for _ in range(lowerCAmelCase__ ):
result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ )
__a = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
__import__("doctest").testmod()
| 11 | 0 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"CarlCochet/trajectory-transformer-halfcheetah-medium-v2": (
"https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class __lowerCAmelCase ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = "trajectory_transformer"
__UpperCAmelCase : Union[str, Any] = ["past_key_values"]
__UpperCAmelCase : int = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , _a=100 , _a=5 , _a=1 , _a=1 , _a=249 , _a=6 , _a=17 , _a=25 , _a=4 , _a=4 , _a=128 , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0006 , _a=512 , _a=0.02 , _a=1E-12 , _a=1 , _a=True , _a=1 , _a=50_256 , _a=50_256 , **_a , ):
__a = vocab_size
__a = action_weight
__a = reward_weight
__a = value_weight
__a = max_position_embeddings
__a = block_size
__a = action_dim
__a = observation_dim
__a = transition_dim
__a = learning_rate
__a = n_layer
__a = n_head
__a = n_embd
__a = embd_pdrop
__a = attn_pdrop
__a = resid_pdrop
__a = initializer_range
__a = layer_norm_eps
__a = kaiming_initializer_range
__a = use_cache
super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
| 371 |
"""simple docstring"""
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def lowercase ( lowerCAmelCase__ : dict ) -> tuple:
return (data["data"], data["target"])
def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray:
__a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ )
# Predict target for test data
__a = xgb.predict(lowerCAmelCase__ )
__a = predictions.reshape(len(lowerCAmelCase__ ) , 1 )
return predictions
def lowercase ( ) -> None:
__a = fetch_california_housing()
__a , __a = data_handling(lowerCAmelCase__ )
__a , __a , __a , __a = train_test_split(
lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 )
__a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Error printing
print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' )
print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 11 | 0 |
"""simple docstring"""
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(lowerCAmelCase__ : int ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
__a = []
for i in range(lowerCAmelCase__ ):
__a = i / num_diffusion_timesteps
__a = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) )
return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers]
__UpperCAmelCase : str = 2
@register_to_config
def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ):
if trained_betas is not None:
__a = torch.tensor(_a , dtype=torch.floataa )
elif beta_schedule == "linear":
__a = torch.linspace(_a , _a , _a , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__a = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__a = betas_for_alpha_bar(_a )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
__a = 1.0 - self.betas
__a = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_a , _a , _a )
def __UpperCAmelCase ( self , _a , _a=None ):
if schedule_timesteps is None:
__a = self.timesteps
__a = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
__a = 1 if len(_a ) > 1 else 0
else:
__a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep
__a = self._index_counter[timestep_int]
return indices[pos].item()
@property
def __UpperCAmelCase ( self ):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def __UpperCAmelCase ( self , _a , _a , ):
__a = self.index_for_timestep(_a )
if self.state_in_first_order:
__a = self.sigmas[step_index]
else:
__a = self.sigmas_interpol[step_index]
__a = sample / ((sigma**2 + 1) ** 0.5)
return sample
def __UpperCAmelCase ( self , _a , _a = None , _a = None , ):
__a = num_inference_steps
__a = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
__a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy()
elif self.config.timestep_spacing == "leading":
__a = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
__a = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a )
timesteps -= 1
else:
raise ValueError(
f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
__a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
__a = torch.from_numpy(np.log(_a ) ).to(_a )
__a = np.interp(_a , np.arange(0 , len(_a ) ) , _a )
__a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
__a = torch.from_numpy(_a ).to(device=_a )
# interpolate sigmas
__a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp()
__a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
__a = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(_a ).startswith('''mps''' ):
# mps does not support float64
__a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa )
else:
__a = torch.from_numpy(_a ).to(_a )
# interpolate timesteps
__a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype )
__a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten()
__a = torch.cat([timesteps[:1], interleaved_timesteps] )
__a = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
__a = defaultdict(_a )
def __UpperCAmelCase ( self , _a ):
# get log sigma
__a = sigma.log()
# get distribution
__a = log_sigma - self.log_sigmas[:, None]
# get sigmas range
__a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
__a = low_idx + 1
__a = self.log_sigmas[low_idx]
__a = self.log_sigmas[high_idx]
# interpolate sigmas
__a = (low - log_sigma) / (low - high)
__a = w.clamp(0 , 1 )
# transform interpolation to time range
__a = (1 - w) * low_idx + w * high_idx
__a = t.view(sigma.shape )
return t
@property
def __UpperCAmelCase ( self ):
return self.sample is None
def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ):
__a = self.index_for_timestep(_a )
# advance index counter by 1
__a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
__a = self.sigmas[step_index]
__a = self.sigmas_interpol[step_index + 1]
__a = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
__a = self.sigmas[step_index - 1]
__a = self.sigmas_interpol[step_index]
__a = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
__a = 0
__a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
__a = sigma_hat if self.state_in_first_order else sigma_interpol
__a = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
__a = sigma_hat if self.state_in_first_order else sigma_interpol
__a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError('''prediction_type not implemented yet: sample''' )
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
__a = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
__a = sigma_interpol - sigma_hat
# store for 2nd order step
__a = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
__a = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
__a = sigma_next - sigma_hat
__a = self.sample
__a = None
__a = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_a )
def __UpperCAmelCase ( self , _a , _a , _a , ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
__a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_a ):
# mps does not support float64
__a = self.timesteps.to(original_samples.device , dtype=torch.floataa )
__a = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
__a = self.timesteps.to(original_samples.device )
__a = timesteps.to(original_samples.device )
__a = [self.index_for_timestep(_a , _a ) for t in timesteps]
__a = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
__a = sigma.unsqueeze(-1 )
__a = original_samples + noise * sigma
return noisy_samples
def __len__( self ):
return self.config.num_train_timesteps
| 350 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {
"configuration_efficientformer": [
"EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EfficientFormerConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["EfficientFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"EfficientFormerForImageClassification",
"EfficientFormerForImageClassificationWithTeacher",
"EfficientFormerModel",
"EfficientFormerPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEfficientFormerForImageClassification",
"TFEfficientFormerForImageClassificationWithTeacher",
"TFEfficientFormerModel",
"TFEfficientFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCAmelCase = {
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 351 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json",
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json",
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json",
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'funnel'
__UpperCAmelCase : Union[str, Any] = {
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
}
def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ):
__a = vocab_size
__a = block_sizes
__a = [1] * len(_a ) if block_repeats is None else block_repeats
assert len(_a ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
__a = num_decoder_layers
__a = d_model
__a = n_head
__a = d_head
__a = d_inner
__a = hidden_act
__a = hidden_dropout
__a = attention_dropout
__a = activation_dropout
__a = initializer_range
__a = initializer_std
__a = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
__a = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
__a = attention_type
__a = separate_cls
__a = truncate_seq
__a = pool_q_only
super().__init__(**_a )
@property
def __UpperCAmelCase ( self ):
return sum(self.block_sizes )
@num_hidden_layers.setter
def __UpperCAmelCase ( self , _a ):
raise NotImplementedError(
'''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' )
@property
def __UpperCAmelCase ( self ):
return len(self.block_sizes )
@num_blocks.setter
def __UpperCAmelCase ( self , _a ):
raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
| 11 | 0 |
"""simple docstring"""
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
lowercase_ = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
lowercase_ = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
lowercase_ = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] , )
def __UpperCAmelCase ( self , _a , _a , _a=None , _a=None , _a=None , _a=None , _a="auto" , _a=-1 , _a=0.9 , _a=5 , _a=500 , _a="gpt2-large" , _a=-1 , _a=1_024 , _a=25 , _a=5 , _a=True , _a=25 , ):
__a = compute_mauve(
p_text=_a , q_text=_a , p_features=_a , q_features=_a , p_tokens=_a , q_tokens=_a , num_buckets=_a , pca_max_data=_a , kmeans_explained_var=_a , kmeans_num_redo=_a , kmeans_max_iter=_a , featurize_model_name=_a , device_id=_a , max_text_length=_a , divergence_curve_discretization_size=_a , mauve_scaling_factor=_a , verbose=_a , seed=_a , )
return out
| 352 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) )
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ):
__a = parent
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = make_divisible(512 * width_multiplier , divisor=8 )
__a = hidden_act
__a = conv_kernel_size
__a = output_stride
__a = classifier_dropout_prob
__a = use_labels
__a = is_training
__a = num_labels
__a = initializer_range
__a = scope
__a = width_multiplier
__a = ffn_dropout
__a = attn_dropout
def __UpperCAmelCase ( self ):
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels, pixel_labels
def __UpperCAmelCase ( self ):
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = MobileViTVaModel(config=_a )
model.to(_a )
model.eval()
__a = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForImageClassification(_a )
model.to(_a )
model.eval()
__a = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForSemanticSegmentation(_a )
model.to(_a )
model.eval()
__a = model(_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__a = model(_a , labels=_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self ):
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase : Union[str, Any] = (
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : List[str] = False
def __UpperCAmelCase ( self ):
__a = MobileViTVaModelTester(self )
__a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not output attentions''' )
def __UpperCAmelCase ( self ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(_a )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __UpperCAmelCase ( self ):
def check_hidden_states_output(_a , _a , _a ):
__a = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(_a , _a ) )
__a = outputs.hidden_states
__a = 5
self.assertEqual(len(_a ) , _a )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__a = 2
for i in range(len(_a ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(_a , _a , _a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_a )
@slow
def __UpperCAmelCase ( self ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = MobileViTVaModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowercase ( ) -> str:
__a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCAmelCase ( self ):
return (
MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' )
if is_vision_available()
else None
)
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to(
_a )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
# verify the logits
__a = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _a )
__a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_a )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
__a = outputs.logits
# verify the logits
__a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _a )
__a = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_a , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_a )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
__a = outputs.logits.detach().cpu()
__a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] )
__a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _a )
__a = image_processor.post_process_semantic_segmentation(outputs=_a )
__a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _a )
| 11 | 0 |
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
lowercase_ = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , *_a , **_a ):
warnings.warn(
'''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use BeitImageProcessor instead.''' , _a , )
super().__init__(*_a , **_a )
| 353 |
"""simple docstring"""
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ):
super().__init__()
if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1:
__a = (
f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'''
f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '''
'''to update the config accordingly as leaving `steps_offset` might led to incorrect results'''
''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'''
''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'''
''' file'''
)
deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = 1
__a = FrozenDict(_a )
if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False:
__a = (
f'''The configuration file of this scheduler: {scheduler} has not set the configuration'''
''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'''
''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'''
''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'''
''' Hub, it would be very nice if you could open a Pull request for the'''
''' `scheduler/scheduler_config.json` file'''
)
deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = True
__a = FrozenDict(_a )
if safety_checker is None:
logger.warning(
f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , )
def __UpperCAmelCase ( self , _a = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__a = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_a )
def __UpperCAmelCase ( self ):
self.enable_attention_slicing(_a )
def __UpperCAmelCase ( self ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
__a = torch.device('''cuda''' )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(_a , _a )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __UpperCAmelCase ( self ):
if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_a , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ):
__a = self.segmentation_processor(
text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device )
__a = self.segmentation_model(**_a )
__a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
__a = self.numpy_to_pil(_a )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
__a = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
| 11 | 0 |
"""simple docstring"""
from .data_collator import (
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSeqaSeq,
DataCollatorForSOP,
DataCollatorForTokenClassification,
DataCollatorForWholeWordMask,
DataCollatorWithPadding,
DefaultDataCollator,
default_data_collator,
)
from .metrics import glue_compute_metrics, xnli_compute_metrics
from .processors import (
DataProcessor,
InputExample,
InputFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadVaProcessor,
SquadVaProcessor,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
| 354 |
"""simple docstring"""
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , **_a ):
super().__init__(**_a )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
# No specific FOR_XXX available yet
def __call__( self , _a , **_a ):
return super().__call__(_a , **_a )
def __UpperCAmelCase ( self , **_a ):
__a = {}
if "candidate_labels" in kwargs:
__a = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__a = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ):
if isinstance(_a , _a ):
if audio.startswith('''http://''' ) or audio.startswith('''https://''' ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__a = requests.get(_a ).content
else:
with open(_a , '''rb''' ) as f:
__a = f.read()
if isinstance(_a , _a ):
__a = ffmpeg_read(_a , self.feature_extractor.sampling_rate )
if not isinstance(_a , np.ndarray ):
raise ValueError('''We expect a numpy ndarray as input''' )
if len(audio.shape ) != 1:
raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' )
__a = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' )
__a = candidate_labels
__a = [hypothesis_template.format(_a ) for x in candidate_labels]
__a = self.tokenizer(_a , return_tensors=self.framework , padding=_a )
__a = [text_inputs]
return inputs
def __UpperCAmelCase ( self , _a ):
__a = model_inputs.pop('''candidate_labels''' )
__a = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , _a ):
__a = text_inputs[0]
else:
# Batching case.
__a = text_inputs[0][0]
__a = self.model(**_a , **_a )
__a = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_audio,
}
return model_outputs
def __UpperCAmelCase ( self , _a ):
__a = model_outputs.pop('''candidate_labels''' )
__a = model_outputs['''logits'''][0]
if self.framework == "pt":
__a = logits.softmax(dim=0 )
__a = probs.tolist()
else:
raise ValueError('''`tf` framework not supported.''' )
__a = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] )
]
return result
| 11 | 0 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : int = 600851475143 ) -> int:
try:
__a = int(lowerCAmelCase__ )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
__a = 1
__a = 2
while i * i <= n:
while n % i == 0:
__a = i
n //= i
i += 1
if n > 1:
__a = n
return int(lowerCAmelCase__ )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 355 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__a = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sgugger/tiny-distilbert-classification'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
# set architectures equal to `None`
__a = None
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , )
__a = PyTorchBenchmark(_a )
benchmark.run()
self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_a ):
self.assertTrue(hasattr(_a , '''sequential''' ) )
self.assertTrue(hasattr(_a , '''cumulative''' ) )
self.assertTrue(hasattr(_a , '''current''' ) )
self.assertTrue(hasattr(_a , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
| 11 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[str] = 'xlm'
__UpperCAmelCase : int = {
'hidden_size': 'emb_dim',
'num_attention_heads': 'n_heads',
'num_hidden_layers': 'n_layers',
'n_words': 'vocab_size', # For backward compatibility
}
def __init__( self , _a=30_145 , _a=2_048 , _a=12 , _a=16 , _a=0.1 , _a=0.1 , _a=True , _a=False , _a=False , _a=False , _a=1 , _a=True , _a=512 , _a=2_048**-0.5 , _a=1E-12 , _a=0.02 , _a=0 , _a=1 , _a=2 , _a=3 , _a=5 , _a=True , _a="first" , _a=True , _a=None , _a=True , _a=0.1 , _a=5 , _a=5 , _a=0 , _a=0 , _a=2 , _a=0 , **_a , ):
__a = vocab_size
__a = emb_dim
__a = n_layers
__a = n_heads
__a = dropout
__a = attention_dropout
__a = gelu_activation
__a = sinusoidal_embeddings
__a = causal
__a = asm
__a = n_langs
__a = use_lang_emb
__a = layer_norm_eps
__a = bos_index
__a = eos_index
__a = pad_index
__a = unk_index
__a = mask_index
__a = is_encoder
__a = max_position_embeddings
__a = embed_init_std
__a = init_std
__a = summary_type
__a = summary_use_proj
__a = summary_activation
__a = summary_proj_to_labels
__a = summary_first_dropout
__a = start_n_top
__a = end_n_top
__a = mask_token_id
__a = lang_id
if "n_words" in kwargs:
__a = kwargs['''n_words''']
super().__init__(pad_token_id=_a , bos_token_id=_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def __UpperCAmelCase ( self ):
if self.task == "multiple-choice":
__a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 356 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FocalNetForImageClassification",
"FocalNetForMaskedImageModeling",
"FocalNetBackbone",
"FocalNetModel",
"FocalNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
import socket
def lowercase ( ) -> Dict:
__a = socket.socket(socket.AF_INET , socket.SOCK_STREAM )
__a = socket.gethostname()
__a = 12312
sock.connect((host, port) )
sock.send(b'''Hello server!''' )
with open('''Received_file''' , '''wb''' ) as out_file:
print('''File opened''' )
print('''Receiving data...''' )
while True:
__a = sock.recv(1024 )
if not data:
break
out_file.write(lowerCAmelCase__ )
print('''Successfully received the file''' )
sock.close()
print('''Connection closed''' )
if __name__ == "__main__":
main()
| 357 |
"""simple docstring"""
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a , _a , _a ):
self.assertEqual(len(_a ) , len(_a ) )
for a, b in zip(_a , _a ):
self.assertAlmostEqual(_a , _a , delta=_a )
def __UpperCAmelCase ( self ):
__a = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_a ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 )
def __UpperCAmelCase ( self ):
__a = None
ops.enable_eager_execution_internal()
__a = tf.config.list_physical_devices('''CPU''' )
if len(_a ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
__a = tf.config.list_logical_devices(device_type='''CPU''' )
__a = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
__a = GradientAccumulator()
__a = tf.Variable([4.0, 3.0] )
__a , __a = create_optimizer(5E-5 , 10 , 5 )
__a = tf.Variable([0.0, 0.0] , trainable=_a )
def accumulate_on_replica(_a ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(_a , _a ):
with strategy.scope():
__a = strategy.experimental_local_results(_a )
local_variables[0].assign(_a )
local_variables[1].assign(_a )
strategy.run(_a , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_a )
def _check_local_values(_a , _a ):
__a = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 )
self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 11 | 0 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = ['image_processor', 'tokenizer']
__UpperCAmelCase : str = 'LayoutLMv3ImageProcessor'
__UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast')
def __init__( self , _a=None , _a=None , **_a ):
__a = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
__a = kwargs.pop('''feature_extractor''' )
__a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
# first, apply the image processor
__a = self.image_processor(images=_a , return_tensors=_a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_a , _a ):
__a = [text] # add batch dimension (as the image processor always adds a batch dimension)
__a = features['''words''']
__a = self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel values
__a = features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
__a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] )
__a = images
return encoded_inputs
def __UpperCAmelCase ( self , _a , _a ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
__a = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_a ) != len(_a ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f''' {len(_a )} and {len(_a )}''' )
return images_with_overflow
def __UpperCAmelCase ( self , *_a , **_a ):
return self.tokenizer.batch_decode(*_a , **_a )
def __UpperCAmelCase ( self , *_a , **_a ):
return self.tokenizer.decode(*_a , **_a )
@property
def __UpperCAmelCase ( self ):
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def __UpperCAmelCase ( self ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def __UpperCAmelCase ( self ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 358 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
lowercase_ = None
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json",
},
}
lowercase_ = {
"facebook/mbart-large-en-ro": 1_0_2_4,
"facebook/mbart-large-cc25": 1_0_2_4,
}
# fmt: off
lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = VOCAB_FILES_NAMES
__UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : Tuple = ['input_ids', 'attention_mask']
__UpperCAmelCase : Optional[Any] = MBartTokenizer
__UpperCAmelCase : List[int] = []
__UpperCAmelCase : List[int] = []
def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ):
# Mask token behave like a normal word, i.e. include the space before it
__a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , )
__a = vocab_file
__a = False if not self.vocab_file else True
__a = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__a = {
lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__a = src_lang if src_lang is not None else '''en_XX'''
__a = self.convert_tokens_to_ids(self._src_lang )
__a = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __UpperCAmelCase ( self ):
return self._src_lang
@src_lang.setter
def __UpperCAmelCase ( self , _a ):
__a = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __UpperCAmelCase ( self , _a , _a = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __UpperCAmelCase ( self , _a , _a = None ):
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ):
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__a = src_lang
__a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a )
__a = self.convert_tokens_to_ids(_a )
__a = tgt_lang_id
return inputs
def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ):
__a = src_lang
__a = tgt_lang
return super().prepare_seqaseq_batch(_a , _a , **_a )
def __UpperCAmelCase ( self ):
return self.set_src_lang_special_tokens(self.src_lang )
def __UpperCAmelCase ( self ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __UpperCAmelCase ( self , _a ):
__a = self.convert_tokens_to_ids(_a )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self , _a ):
__a = self.convert_tokens_to_ids(_a )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self , _a , _a = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
__a = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 11 | 0 |
"""simple docstring"""
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
lowercase_ = TypeVar("T")
class __lowerCAmelCase ( Generic[T] ):
'''simple docstring'''
__UpperCAmelCase : deque[T] # Cache store of keys
__UpperCAmelCase : set[T] # References of the keys in cache
__UpperCAmelCase : int = 1_0 # Maximum capacity of cache
def __init__( self , _a ):
__a = deque()
__a = set()
if not n:
__a = sys.maxsize
elif n < 0:
raise ValueError('''n should be an integer greater than 0.''' )
else:
__a = n
def __UpperCAmelCase ( self , _a ):
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
__a = self.dq_store.pop()
self.key_reference.remove(_a )
else:
self.dq_store.remove(_a )
self.dq_store.appendleft(_a )
self.key_reference.add(_a )
def __UpperCAmelCase ( self ):
for k in self.dq_store:
print(_a )
def __repr__( self ):
return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase_ = LRUCache(4)
lru_cache.refer("A")
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer("A")
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 359 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n"
class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = load_tool('''text-question-answering''' )
self.tool.setup()
__a = load_tool('''text-question-answering''' , remote=_a )
def __UpperCAmelCase ( self ):
__a = self.tool(_a , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
| 11 | 0 |
lowercase_ = [
"Audio",
"Array2D",
"Array3D",
"Array4D",
"Array5D",
"ClassLabel",
"Features",
"Sequence",
"Value",
"Image",
"Translation",
"TranslationVariableLanguages",
]
from .audio import Audio
from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value
from .image import Image
from .translation import Translation, TranslationVariableLanguages
| 360 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_blip_2": [
"BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Blip2Config",
"Blip2QFormerConfig",
"Blip2VisionConfig",
],
"processing_blip_2": ["Blip2Processor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Blip2Model",
"Blip2QFormerModel",
"Blip2PreTrainedModel",
"Blip2ForConditionalGeneration",
"Blip2VisionModel",
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowercase_ = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ['pixel_values']
def __init__( self , _a = True , _a = 1 / 255 , _a = True , _a = 8 , **_a , ):
super().__init__(**_a )
__a = do_rescale
__a = rescale_factor
__a = do_pad
__a = pad_size
def __UpperCAmelCase ( self , _a , _a , _a = None , **_a ):
return rescale(_a , scale=_a , data_format=_a , **_a )
def __UpperCAmelCase ( self , _a , _a , _a = None ):
__a , __a = get_image_size(_a )
__a = (old_height // size + 1) * size - old_height
__a = (old_width // size + 1) * size - old_width
return pad(_a , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=_a )
def __UpperCAmelCase ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ):
__a = do_rescale if do_rescale is not None else self.do_rescale
__a = rescale_factor if rescale_factor is not None else self.rescale_factor
__a = do_pad if do_pad is not None else self.do_pad
__a = pad_size if pad_size is not None else self.pad_size
__a = make_list_of_images(_a )
if not valid_images(_a ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
__a = [to_numpy_array(_a ) for image in images]
if do_rescale:
__a = [self.rescale(image=_a , scale=_a ) for image in images]
if do_pad:
__a = [self.pad(_a , size=_a ) for image in images]
__a = [to_channel_dimension_format(_a , _a ) for image in images]
__a = {'''pixel_values''': images}
return BatchFeature(data=_a , tensor_type=_a )
| 361 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None:
__a = len(lowerCAmelCase__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(lowerCAmelCase__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , )
def lowercase ( lowerCAmelCase__ : int ) -> None:
__a = []
depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ )
# Print all the boards
for board in boards:
for column in board:
print(lowerCAmelCase__ )
print('''''' )
print(len(lowerCAmelCase__ ) , '''solutions were found.''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 11 | 0 |
"""simple docstring"""
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@parameterized.expand([(None,), ('''foo.json''',)] )
def __UpperCAmelCase ( self , _a ):
__a = GenerationConfig(
do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_a , config_name=_a )
__a = GenerationConfig.from_pretrained(_a , config_name=_a )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , _a )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , _a )
def __UpperCAmelCase ( self ):
__a = AutoConfig.from_pretrained('''gpt2''' )
__a = GenerationConfig.from_model_config(_a )
__a = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(_a , _a )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def __UpperCAmelCase ( self ):
__a = GenerationConfig()
__a = {
'''max_new_tokens''': 1_024,
'''foo''': '''bar''',
}
__a = copy.deepcopy(_a )
__a = generation_config.update(**_a )
# update_kwargs was not modified (no side effects)
self.assertEqual(_a , _a )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(_a , {'''foo''': '''bar'''} )
def __UpperCAmelCase ( self ):
__a = GenerationConfig()
__a = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(_a )
__a = GenerationConfig.from_pretrained(_a )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
__a = GenerationConfig.from_model_config(_a )
assert not hasattr(_a , '''foo''' ) # no new kwargs should be initialized if from config
def __UpperCAmelCase ( self ):
__a = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , _a )
self.assertEqual(default_config.num_beams , 1 )
__a = GenerationConfig(
do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , _a )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_a )
__a = GenerationConfig.from_pretrained(_a , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , _a )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def __UpperCAmelCase ( cls ):
__a = TOKEN
HfFolder.save_token(_a )
@classmethod
def __UpperCAmelCase ( cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def __UpperCAmelCase ( self ):
__a = GenerationConfig(
do_sample=_a , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
__a = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_a , getattr(_a , _a ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_a , repo_id='''test-generation-config''' , push_to_hub=_a , use_auth_token=self._token )
__a = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_a , getattr(_a , _a ) )
def __UpperCAmelCase ( self ):
__a = GenerationConfig(
do_sample=_a , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
__a = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_a , getattr(_a , _a ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_a , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=_a , use_auth_token=self._token )
__a = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_a , getattr(_a , _a ) )
| 362 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowercase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 11 | 0 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__a = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sgugger/tiny-distilbert-classification'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
# set architectures equal to `None`
__a = None
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , )
__a = PyTorchBenchmark(_a )
benchmark.run()
self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_a ):
self.assertTrue(hasattr(_a , '''sequential''' ) )
self.assertTrue(hasattr(_a , '''cumulative''' ) )
self.assertTrue(hasattr(_a , '''current''' ) )
self.assertTrue(hasattr(_a , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
| 363 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = 'vit_mae'
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = initializer_range
__a = layer_norm_eps
__a = image_size
__a = patch_size
__a = num_channels
__a = qkv_bias
__a = decoder_num_attention_heads
__a = decoder_hidden_size
__a = decoder_num_hidden_layers
__a = decoder_intermediate_size
__a = mask_ratio
__a = norm_pix_loss
| 11 | 0 |
"""simple docstring"""
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a ):
# we need a list not a string, so do something to change the type
__a = arr.split(''',''' )
def __UpperCAmelCase ( self ):
__a = [int(self.array[0] )] * len(self.array )
__a = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
__a = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
__a = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
__lowerCAmelCase = input("please input some numbers:")
__lowerCAmelCase = SubArray(whole_array)
__lowerCAmelCase = array.solve_sub_array()
print(("the results is:", re))
| 364 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = ['image_processor', 'tokenizer']
__UpperCAmelCase : str = 'LayoutLMv3ImageProcessor'
__UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast')
def __init__( self , _a=None , _a=None , **_a ):
__a = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
__a = kwargs.pop('''feature_extractor''' )
__a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
# first, apply the image processor
__a = self.image_processor(images=_a , return_tensors=_a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_a , _a ):
__a = [text] # add batch dimension (as the image processor always adds a batch dimension)
__a = features['''words''']
__a = self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel values
__a = features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
__a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] )
__a = images
return encoded_inputs
def __UpperCAmelCase ( self , _a , _a ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
__a = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_a ) != len(_a ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f''' {len(_a )} and {len(_a )}''' )
return images_with_overflow
def __UpperCAmelCase ( self , *_a , **_a ):
return self.tokenizer.batch_decode(*_a , **_a )
def __UpperCAmelCase ( self , *_a , **_a ):
return self.tokenizer.decode(*_a , **_a )
@property
def __UpperCAmelCase ( self ):
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def __UpperCAmelCase ( self ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def __UpperCAmelCase ( self ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 11 | 0 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowercase_ = "platform"
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __lowerCAmelCase :
'''simple docstring'''
__UpperCAmelCase : List[str] = PegasusConfig
__UpperCAmelCase : Dict = {}
__UpperCAmelCase : str = 'gelu'
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , ):
__a = parent
__a = batch_size
__a = seq_length
__a = is_training
__a = use_labels
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = eos_token_id
__a = pad_token_id
__a = bos_token_id
def __UpperCAmelCase ( self ):
__a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__a = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__a = np.concatenate([input_ids, eos_tensor] , axis=1 )
__a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__a = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__a = prepare_pegasus_inputs_dict(_a , _a , _a )
return config, inputs_dict
def __UpperCAmelCase ( self , _a , _a , _a ):
__a = 20
__a = model_class_name(_a )
__a = model.encode(inputs_dict['''input_ids'''] )
__a , __a = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
__a = model.init_cache(decoder_input_ids.shape[0] , _a , _a )
__a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
__a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__a = model.decode(
decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , )
__a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
__a = model.decode(
decoder_input_ids[:, -1:] , _a , decoder_attention_mask=_a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_a , )
__a = model.decode(_a , _a )
__a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def __UpperCAmelCase ( self , _a , _a , _a ):
__a = 20
__a = model_class_name(_a )
__a = model.encode(inputs_dict['''input_ids'''] )
__a , __a = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
__a = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__a = model.init_cache(decoder_input_ids.shape[0] , _a , _a )
__a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__a = model.decode(
decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , )
__a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
__a = model.decode(
decoder_input_ids[:, -1:] , _a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_a , decoder_position_ids=_a , )
__a = model.decode(_a , _a , decoder_attention_mask=_a )
__a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[int]=None , ) -> str:
if attention_mask is None:
__a = np.not_equal(lowerCAmelCase__ , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__a = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__UpperCAmelCase : Optional[Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : List[str] = False
def __UpperCAmelCase ( self ):
__a = FlaxPegasusModelTester(self )
__a = ConfigTester(self , config_class=_a )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_a , _a , _a )
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_a , _a , _a )
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__a = self._prepare_for_class(_a , _a )
__a = model_class(_a )
@jax.jit
def encode_jitted(_a , _a=None , **_a ):
return model.encode(input_ids=_a , attention_mask=_a )
with self.subTest('''JIT Enabled''' ):
__a = encode_jitted(**_a ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
__a = encode_jitted(**_a ).to_tuple()
self.assertEqual(len(_a ) , len(_a ) )
for jitted_output, output in zip(_a , _a ):
self.assertEqual(jitted_output.shape , output.shape )
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__a = model_class(_a )
__a = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] )
__a = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(_a , _a , _a ):
return model.decode(
decoder_input_ids=_a , decoder_attention_mask=_a , encoder_outputs=_a , )
with self.subTest('''JIT Enabled''' ):
__a = decode_jitted(**_a ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
__a = decode_jitted(**_a ).to_tuple()
self.assertEqual(len(_a ) , len(_a ) )
for jitted_output, output in zip(_a , _a ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __UpperCAmelCase ( self ):
for model_class_name in self.all_model_classes:
__a = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=_a )
__a = np.ones((1, 1) )
__a = model(_a )
self.assertIsNotNone(_a )
@slow
def __UpperCAmelCase ( self ):
__a = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' )
__a = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' )
__a = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
__a = [
'''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''',
'''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''',
]
__a = tokenizer(_a , return_tensors='''np''' , truncation=_a , max_length=512 , padding=_a )
__a = model.generate(**_a , num_beams=2 ).sequences
__a = tokenizer.batch_decode(_a , skip_special_tokens=_a )
assert tgt_text == decoded
| 365 |
"""simple docstring"""
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(lowerCAmelCase__ : int ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
__a = []
for i in range(lowerCAmelCase__ ):
__a = i / num_diffusion_timesteps
__a = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) )
return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers]
__UpperCAmelCase : str = 2
@register_to_config
def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ):
if trained_betas is not None:
__a = torch.tensor(_a , dtype=torch.floataa )
elif beta_schedule == "linear":
__a = torch.linspace(_a , _a , _a , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__a = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__a = betas_for_alpha_bar(_a )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
__a = 1.0 - self.betas
__a = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_a , _a , _a )
def __UpperCAmelCase ( self , _a , _a=None ):
if schedule_timesteps is None:
__a = self.timesteps
__a = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
__a = 1 if len(_a ) > 1 else 0
else:
__a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep
__a = self._index_counter[timestep_int]
return indices[pos].item()
@property
def __UpperCAmelCase ( self ):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def __UpperCAmelCase ( self , _a , _a , ):
__a = self.index_for_timestep(_a )
if self.state_in_first_order:
__a = self.sigmas[step_index]
else:
__a = self.sigmas_interpol[step_index]
__a = sample / ((sigma**2 + 1) ** 0.5)
return sample
def __UpperCAmelCase ( self , _a , _a = None , _a = None , ):
__a = num_inference_steps
__a = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
__a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy()
elif self.config.timestep_spacing == "leading":
__a = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
__a = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a )
timesteps -= 1
else:
raise ValueError(
f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
__a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
__a = torch.from_numpy(np.log(_a ) ).to(_a )
__a = np.interp(_a , np.arange(0 , len(_a ) ) , _a )
__a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
__a = torch.from_numpy(_a ).to(device=_a )
# interpolate sigmas
__a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp()
__a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
__a = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(_a ).startswith('''mps''' ):
# mps does not support float64
__a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa )
else:
__a = torch.from_numpy(_a ).to(_a )
# interpolate timesteps
__a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype )
__a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten()
__a = torch.cat([timesteps[:1], interleaved_timesteps] )
__a = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
__a = defaultdict(_a )
def __UpperCAmelCase ( self , _a ):
# get log sigma
__a = sigma.log()
# get distribution
__a = log_sigma - self.log_sigmas[:, None]
# get sigmas range
__a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
__a = low_idx + 1
__a = self.log_sigmas[low_idx]
__a = self.log_sigmas[high_idx]
# interpolate sigmas
__a = (low - log_sigma) / (low - high)
__a = w.clamp(0 , 1 )
# transform interpolation to time range
__a = (1 - w) * low_idx + w * high_idx
__a = t.view(sigma.shape )
return t
@property
def __UpperCAmelCase ( self ):
return self.sample is None
def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ):
__a = self.index_for_timestep(_a )
# advance index counter by 1
__a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
__a = self.sigmas[step_index]
__a = self.sigmas_interpol[step_index + 1]
__a = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
__a = self.sigmas[step_index - 1]
__a = self.sigmas_interpol[step_index]
__a = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
__a = 0
__a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
__a = sigma_hat if self.state_in_first_order else sigma_interpol
__a = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
__a = sigma_hat if self.state_in_first_order else sigma_interpol
__a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError('''prediction_type not implemented yet: sample''' )
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
__a = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
__a = sigma_interpol - sigma_hat
# store for 2nd order step
__a = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
__a = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
__a = sigma_next - sigma_hat
__a = self.sample
__a = None
__a = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_a )
def __UpperCAmelCase ( self , _a , _a , _a , ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
__a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_a ):
# mps does not support float64
__a = self.timesteps.to(original_samples.device , dtype=torch.floataa )
__a = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
__a = self.timesteps.to(original_samples.device )
__a = timesteps.to(original_samples.device )
__a = [self.index_for_timestep(_a , _a ) for t in timesteps]
__a = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
__a = sigma.unsqueeze(-1 )
__a = original_samples + noise * sigma
return noisy_samples
def __len__( self ):
return self.config.num_train_timesteps
| 11 | 0 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
"tokenizer_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json",
},
}
lowercase_ = {
"gpt2": 1_0_2_4,
"gpt2-medium": 1_0_2_4,
"gpt2-large": 1_0_2_4,
"gpt2-xl": 1_0_2_4,
"distilgpt2": 1_0_2_4,
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES
__UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Union[str, Any] = ['input_ids', 'attention_mask']
__UpperCAmelCase : Optional[int] = GPTaTokenizer
def __init__( self , _a=None , _a=None , _a=None , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|endoftext|>" , _a=False , **_a , ):
super().__init__(
_a , _a , tokenizer_file=_a , unk_token=_a , bos_token=_a , eos_token=_a , add_prefix_space=_a , **_a , )
__a = kwargs.pop('''add_bos_token''' , _a )
__a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , _a ) != add_prefix_space:
__a = getattr(_a , pre_tok_state.pop('''type''' ) )
__a = add_prefix_space
__a = pre_tok_class(**_a )
__a = add_prefix_space
def __UpperCAmelCase ( self , *_a , **_a ):
__a = kwargs.get('''is_split_into_words''' , _a )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*_a , **_a )
def __UpperCAmelCase ( self , *_a , **_a ):
__a = kwargs.get('''is_split_into_words''' , _a )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*_a , **_a )
def __UpperCAmelCase ( self , _a , _a = None ):
__a = self._tokenizer.model.save(_a , name=_a )
return tuple(_a )
def __UpperCAmelCase ( self , _a ):
__a = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] )
if len(_a ) > self.model_max_length:
__a = input_ids[-self.model_max_length :]
return input_ids
| 366 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
"RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
"RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
"RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
"RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
"RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
"RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
"RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
"RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
"RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Any = 'rwkv'
__UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'}
def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ):
__a = vocab_size
__a = context_length
__a = hidden_size
__a = num_hidden_layers
__a = attention_hidden_size if attention_hidden_size is not None else hidden_size
__a = intermediate_size if intermediate_size is not None else 4 * hidden_size
__a = layer_norm_epsilon
__a = rescale_every
__a = use_cache
__a = bos_token_id
__a = eos_token_id
super().__init__(
tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
| 11 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"],
"tokenization_electra": ["ElectraTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["ElectraTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"ElectraForCausalLM",
"ElectraForMaskedLM",
"ElectraForMultipleChoice",
"ElectraForPreTraining",
"ElectraForQuestionAnswering",
"ElectraForSequenceClassification",
"ElectraForTokenClassification",
"ElectraModel",
"ElectraPreTrainedModel",
"load_tf_weights_in_electra",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFElectraForMaskedLM",
"TFElectraForMultipleChoice",
"TFElectraForPreTraining",
"TFElectraForQuestionAnswering",
"TFElectraForSequenceClassification",
"TFElectraForTokenClassification",
"TFElectraModel",
"TFElectraPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxElectraForCausalLM",
"FlaxElectraForMaskedLM",
"FlaxElectraForMultipleChoice",
"FlaxElectraForPreTraining",
"FlaxElectraForQuestionAnswering",
"FlaxElectraForSequenceClassification",
"FlaxElectraForTokenClassification",
"FlaxElectraModel",
"FlaxElectraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 367 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[str] = (UnCLIPScheduler,)
def __UpperCAmelCase ( self , **_a ):
__a = {
'''num_train_timesteps''': 1_000,
'''variance_type''': '''fixed_small_log''',
'''clip_sample''': True,
'''clip_sample_range''': 1.0,
'''prediction_type''': '''epsilon''',
}
config.update(**_a )
return config
def __UpperCAmelCase ( self ):
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_a )
def __UpperCAmelCase ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_a )
def __UpperCAmelCase ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_a )
def __UpperCAmelCase ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=_a )
def __UpperCAmelCase ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_a )
def __UpperCAmelCase ( self ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_a , prev_timestep=_a )
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(variance_type='''fixed_small_log''' )
__a = scheduler_class(**_a )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(variance_type='''learned_range''' )
__a = scheduler_class(**_a )
__a = 0.5
assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=_a ) - -5.799_8052 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=_a ) - -0.001_0011 < 1E-5
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config()
__a = scheduler_class(**_a )
__a = scheduler.timesteps
__a = self.dummy_model()
__a = self.dummy_sample_deter
__a = torch.manual_seed(0 )
for i, t in enumerate(_a ):
# 1. predict noise residual
__a = model(_a , _a )
# 2. predict previous mean of sample x_t-1
__a = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
__a = pred_prev_sample
__a = torch.sum(torch.abs(_a ) )
__a = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 252.268_2495 ) < 1E-2
assert abs(result_mean.item() - 0.328_4743 ) < 1E-3
def __UpperCAmelCase ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config()
__a = scheduler_class(**_a )
scheduler.set_timesteps(25 )
__a = scheduler.timesteps
__a = self.dummy_model()
__a = self.dummy_sample_deter
__a = torch.manual_seed(0 )
for i, t in enumerate(_a ):
# 1. predict noise residual
__a = model(_a , _a )
if i + 1 == timesteps.shape[0]:
__a = None
else:
__a = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
__a = scheduler.step(
_a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample
__a = pred_prev_sample
__a = torch.sum(torch.abs(_a ) )
__a = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 258.204_4983 ) < 1E-2
assert abs(result_mean.item() - 0.336_2038 ) < 1E-3
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
pass
| 11 | 0 |
import pickle
import numpy as np
from matplotlib import pyplot as plt
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a=0.2 , _a=0.2 ):
__a = bp_numa
__a = bp_numa
__a = bp_numa
__a = conva_get[:2]
__a = conva_get[2]
__a = size_pa
__a = rate_w
__a = rate_t
__a = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
__a = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
__a = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
__a = -2 * np.random.rand(self.conva[1] ) + 1
__a = -2 * np.random.rand(self.num_bpa ) + 1
__a = -2 * np.random.rand(self.num_bpa ) + 1
def __UpperCAmelCase ( self , _a ):
# save model dict with pickle
__a = {
'''num_bp1''': self.num_bpa,
'''num_bp2''': self.num_bpa,
'''num_bp3''': self.num_bpa,
'''conv1''': self.conva,
'''step_conv1''': self.step_conva,
'''size_pooling1''': self.size_poolinga,
'''rate_weight''': self.rate_weight,
'''rate_thre''': self.rate_thre,
'''w_conv1''': self.w_conva,
'''wkj''': self.wkj,
'''vji''': self.vji,
'''thre_conv1''': self.thre_conva,
'''thre_bp2''': self.thre_bpa,
'''thre_bp3''': self.thre_bpa,
}
with open(_a , '''wb''' ) as f:
pickle.dump(_a , _a )
print(f'''Model saved: {save_path}''' )
@classmethod
def __UpperCAmelCase ( cls , _a ):
# read saved model
with open(_a , '''rb''' ) as f:
__a = pickle.load(_a ) # noqa: S301
__a = model_dic.get('''conv1''' )
conv_get.append(model_dic.get('''step_conv1''' ) )
__a = model_dic.get('''size_pooling1''' )
__a = model_dic.get('''num_bp1''' )
__a = model_dic.get('''num_bp2''' )
__a = model_dic.get('''num_bp3''' )
__a = model_dic.get('''rate_weight''' )
__a = model_dic.get('''rate_thre''' )
# create model instance
__a = CNN(_a , _a , _a , _a , _a , _a , _a )
# modify model parameter
__a = model_dic.get('''w_conv1''' )
__a = model_dic.get('''wkj''' )
__a = model_dic.get('''vji''' )
__a = model_dic.get('''thre_conv1''' )
__a = model_dic.get('''thre_bp2''' )
__a = model_dic.get('''thre_bp3''' )
return conv_ins
def __UpperCAmelCase ( self , _a ):
return 1 / (1 + np.exp(-1 * x ))
def __UpperCAmelCase ( self , _a ):
return round(_a , 3 )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a ):
# convolution process
__a = convs[0]
__a = convs[1]
__a = np.shape(_a )[0]
# get the data slice of original image data, data_focus
__a = []
for i_focus in range(0 , size_data - size_conv + 1 , _a ):
for j_focus in range(0 , size_data - size_conv + 1 , _a ):
__a = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(_a )
# calculate the feature map of every single kernel, and saved as list of matrix
__a = []
__a = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(_a ):
__a = []
for i_focus in range(len(_a ) ):
__a = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(_a ) )
__a = np.asmatrix(_a ).reshape(
_a , _a )
data_featuremap.append(_a )
# expanding the data slice to One dimenssion
__a = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(_a ) )
__a = np.asarray(_a )
return focus_list, data_featuremap
def __UpperCAmelCase ( self , _a , _a , _a="average_pool" ):
# pooling process
__a = len(featuremaps[0] )
__a = int(size_map / size_pooling )
__a = []
for i_map in range(len(_a ) ):
__a = featuremaps[i_map]
__a = []
for i_focus in range(0 , _a , _a ):
for j_focus in range(0 , _a , _a ):
__a = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(_a ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(_a ) )
__a = np.asmatrix(_a ).reshape(_a , _a )
featuremap_pooled.append(_a )
return featuremap_pooled
def __UpperCAmelCase ( self , _a ):
# expanding three dimension data to one dimension list
__a = []
for i in range(len(_a ) ):
__a = np.shape(data[i] )
__a = data[i].reshape(1 , shapes[0] * shapes[1] )
__a = data_listed.getA().tolist()[0]
data_expanded.extend(_a )
__a = np.asarray(_a )
return data_expanded
def __UpperCAmelCase ( self , _a ):
# expanding matrix to one dimension list
__a = np.asarray(_a )
__a = np.shape(_a )
__a = data_mat.reshape(1 , shapes[0] * shapes[1] )
return data_expanded
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a ):
__a = []
__a = 0
for i_map in range(_a ):
__a = np.ones((size_map, size_map) )
for i in range(0 , _a , _a ):
for j in range(0 , _a , _a ):
__a = pd_pool[
i_pool
]
__a = i_pool + 1
__a = np.multiply(
_a , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) )
pd_all.append(_a )
return pd_all
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a=bool ):
# model traning
print('''----------------------Start Training-------------------------''' )
print((''' - - Shape: Train_Data ''', np.shape(_a )) )
print((''' - - Shape: Teach_Data ''', np.shape(_a )) )
__a = 0
__a = []
__a = 10_000
while rp < n_repeat and mse >= error_accuracy:
__a = 0
print(f'''-------------Learning Time {rp}--------------''' )
for p in range(len(_a ) ):
# print('------------Learning Image: %d--------------'%p)
__a = np.asmatrix(datas_train[p] )
__a = np.asarray(datas_teach[p] )
__a , __a = self.convolute(
_a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
__a = self.pooling(_a , self.size_poolinga )
__a = np.shape(_a )
__a = self._expand(_a )
__a = data_bp_input
__a = np.dot(_a , self.vji.T ) - self.thre_bpa
__a = self.sig(_a )
__a = np.dot(_a , self.wkj.T ) - self.thre_bpa
__a = self.sig(_a )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
__a = np.multiply(
(data_teach - bp_outa) , np.multiply(_a , (1 - bp_outa) ) )
__a = np.multiply(
np.dot(_a , self.wkj ) , np.multiply(_a , (1 - bp_outa) ) )
__a = np.dot(_a , self.vji )
__a = pd_i_all / (self.size_poolinga * self.size_poolinga)
__a = pd_conva_pooled.T.getA().tolist()
__a = self._calculate_gradient_from_pool(
_a , _a , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
__a = self._expand_mat(pd_conva_all[k_conv] )
__a = self.rate_weight * np.dot(_a , _a )
__a = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
__a = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
__a = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
__a = self.vji + pd_j_all.T * bp_outa * self.rate_weight
__a = self.thre_bpa - pd_k_all * self.rate_thre
__a = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
__a = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
__a = rp + 1
__a = error_count / patterns
all_mse.append(_a )
def draw_error():
__a = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(_a , '''+-''' )
plt.plot(_a , '''r--''' )
plt.xlabel('''Learning Times''' )
plt.ylabel('''All_mse''' )
plt.grid(_a , alpha=0.5 )
plt.show()
print('''------------------Training Complished---------------------''' )
print((''' - - Training epoch: ''', rp, f''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def __UpperCAmelCase ( self , _a ):
# model predict
__a = []
print('''-------------------Start Testing-------------------------''' )
print((''' - - Shape: Test_Data ''', np.shape(_a )) )
for p in range(len(_a ) ):
__a = np.asmatrix(datas_test[p] )
__a , __a = self.convolute(
_a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
__a = self.pooling(_a , self.size_poolinga )
__a = self._expand(_a )
__a = data_bp_input
__a = bp_outa * self.vji.T - self.thre_bpa
__a = self.sig(_a )
__a = bp_outa * self.wkj.T - self.thre_bpa
__a = self.sig(_a )
produce_out.extend(bp_outa.getA().tolist() )
__a = [list(map(self.do_round , _a ) ) for each in produce_out]
return np.asarray(_a )
def __UpperCAmelCase ( self , _a ):
# return the data of image after convoluting process so we can check it out
__a = np.asmatrix(_a )
__a , __a = self.convolute(
_a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
__a = self.pooling(_a , self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 368 |
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]:
__a , __a = image.size
__a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
__a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0
__a = image[None].transpose(0 , 3 , 1 , 2 )
__a = torch.from_numpy(lowerCAmelCase__ )
return 2.0 * image - 1.0
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , ):
super().__init__()
self.register_modules(vqvae=_a , unet=_a , scheduler=_a )
@torch.no_grad()
def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ):
if isinstance(_a , PIL.Image.Image ):
__a = 1
elif isinstance(_a , torch.Tensor ):
__a = image.shape[0]
else:
raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' )
if isinstance(_a , PIL.Image.Image ):
__a = preprocess(_a )
__a , __a = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__a = (batch_size, self.unet.config.in_channels // 2, height, width)
__a = next(self.unet.parameters() ).dtype
__a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a )
__a = image.to(device=self.device , dtype=_a )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_a , device=self.device )
__a = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__a = {}
if accepts_eta:
__a = eta
for t in self.progress_bar(_a ):
# concat latents and low resolution image in the channel dimension.
__a = torch.cat([latents, image] , dim=1 )
__a = self.scheduler.scale_model_input(_a , _a )
# predict the noise residual
__a = self.unet(_a , _a ).sample
# compute the previous noisy sample x_t -> x_t-1
__a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample
# decode the image latents with the VQVAE
__a = self.vqvae.decode(_a ).sample
__a = torch.clamp(_a , -1.0 , 1.0 )
__a = image / 2 + 0.5
__a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__a = self.numpy_to_pil(_a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_a )
| 11 | 0 |
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a=2 , _a=3 , _a=64 , _a=None ):
__a = np.random.default_rng(_a )
__a = length
__a = rng.normal(size=(length,) ).astype(np.floataa )
__a = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ):
return self.length
def __getitem__( self , _a ):
return {"x": self.x[i], "y": self.y[i]}
class __lowerCAmelCase ( torch.nn.Module ):
'''simple docstring'''
def __init__( self , _a=0 , _a=0 , _a=False ):
super().__init__()
__a = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__a = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__a = True
def __UpperCAmelCase ( self , _a=None ):
if self.first_batch:
print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' )
__a = False
return x * self.a[0] + self.b[0]
class __lowerCAmelCase ( torch.nn.Module ):
'''simple docstring'''
def __init__( self , _a=0 , _a=0 , _a=False ):
super().__init__()
__a = torch.nn.Parameter(torch.tensor(_a ).float() )
__a = torch.nn.Parameter(torch.tensor(_a ).float() )
__a = True
def __UpperCAmelCase ( self , _a=None ):
if self.first_batch:
print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' )
__a = False
return x * self.a + self.b
def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int = 16 ) -> List[str]:
from datasets import load_dataset
from transformers import AutoTokenizer
__a = AutoTokenizer.from_pretrained('''bert-base-cased''' )
__a = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''}
__a = load_dataset('''csv''' , data_files=lowerCAmelCase__ )
__a = datasets['''train'''].unique('''label''' )
__a = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : int ):
# max_length=None => use the model max length (it's actually the default)
__a = tokenizer(
examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' )
if "label" in examples:
__a = [label_to_id[l] for l in examples['''label''']]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__a = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , )
def collate_fn(lowerCAmelCase__ : List[Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
__a = DataLoader(tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__a = DataLoader(tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 369 |
"""simple docstring"""
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Dict = DistilBertTokenizer
__UpperCAmelCase : Any = DistilBertTokenizerFast
__UpperCAmelCase : int = True
@slow
def __UpperCAmelCase ( self ):
__a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
__a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a )
__a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a )
__a = tokenizer.build_inputs_with_special_tokens(_a )
__a = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 11 | 0 |
lowercase_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
lowercase_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
lowercase_ = {
0: "Sunday",
1: "Monday",
2: "Tuesday",
3: "Wednesday",
4: "Thursday",
5: "Friday",
6: "Saturday",
}
def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> str:
assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
__a = year // 100
__a = (5 * (century % 4) + 2) % 7
__a = year % 100
__a = centurian % 12
__a = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__a = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__a = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 370 |
"""simple docstring"""
from math import factorial, radians
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float:
__a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0)
# Converting from degrees to radians
__a = radians(lowerCAmelCase__ )
__a = angle_in_radians
__a = 3
__a = -1
for _ in range(lowerCAmelCase__ ):
result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ )
__a = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
__import__("doctest").testmod()
| 11 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = 'dandelin/vilt-b32-finetuned-vqa'
__UpperCAmelCase : int = (
'This is a tool that answers a question about an image. It takes an input named `image` which should be the '
'image containing the information, as well as a `question` which should be the question in English. It '
'returns a text that is the answer to the question.'
)
__UpperCAmelCase : Any = 'image_qa'
__UpperCAmelCase : Union[str, Any] = AutoProcessor
__UpperCAmelCase : str = AutoModelForVisualQuestionAnswering
__UpperCAmelCase : List[str] = ['image', 'text']
__UpperCAmelCase : List[str] = ['text']
def __init__( self , *_a , **_a ):
requires_backends(self , ['''vision'''] )
super().__init__(*_a , **_a )
def __UpperCAmelCase ( self , _a , _a ):
return self.pre_processor(_a , _a , return_tensors='''pt''' )
def __UpperCAmelCase ( self , _a ):
with torch.no_grad():
return self.model(**_a ).logits
def __UpperCAmelCase ( self , _a ):
__a = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 371 |
"""simple docstring"""
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def lowercase ( lowerCAmelCase__ : dict ) -> tuple:
return (data["data"], data["target"])
def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray:
__a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ )
# Predict target for test data
__a = xgb.predict(lowerCAmelCase__ )
__a = predictions.reshape(len(lowerCAmelCase__ ) , 1 )
return predictions
def lowercase ( ) -> None:
__a = fetch_california_housing()
__a , __a = data_handling(lowerCAmelCase__ )
__a , __a , __a , __a = train_test_split(
lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 )
__a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Error printing
print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' )
print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 11 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] ) -> List[str]:
__a = UniSpeechSatForSequenceClassification.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__ )
__a = downstream_dict['''projector.weight''']
__a = downstream_dict['''projector.bias''']
__a = downstream_dict['''model.post_net.linear.weight''']
__a = downstream_dict['''model.post_net.linear.bias''']
return model
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ) -> Tuple:
__a = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__ )
__a = downstream_dict['''model.linear.weight''']
__a = downstream_dict['''model.linear.bias''']
return model
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any ) -> Tuple:
__a = UniSpeechSatForXVector.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__ )
__a = downstream_dict['''connector.weight''']
__a = downstream_dict['''connector.bias''']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
__a = downstream_dict[
f'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
__a = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
__a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight''']
__a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias''']
__a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight''']
__a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias''']
__a = downstream_dict['''objective.W''']
return model
@torch.no_grad()
def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> Tuple:
__a = torch.load(lowerCAmelCase__ , map_location='''cpu''' )
__a = checkpoint['''Downstream''']
__a = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ )
__a = WavaVecaFeatureExtractor.from_pretrained(
lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ )
__a = hf_config.architectures[0]
if arch.endswith('''ForSequenceClassification''' ):
__a = convert_classification(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
elif arch.endswith('''ForAudioFrameClassification''' ):
__a = convert_diarization(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
elif arch.endswith('''ForXVector''' ):
__a = convert_xvector(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
else:
raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' )
if hf_config.use_weighted_layer_sum:
__a = checkpoint['''Featurizer''']['''weights''']
hf_feature_extractor.save_pretrained(lowerCAmelCase__ )
hf_model.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
lowercase_ = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 350 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {
"configuration_efficientformer": [
"EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EfficientFormerConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["EfficientFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"EfficientFormerForImageClassification",
"EfficientFormerForImageClassificationWithTeacher",
"EfficientFormerModel",
"EfficientFormerPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEfficientFormerForImageClassification",
"TFEfficientFormerForImageClassificationWithTeacher",
"TFEfficientFormerModel",
"TFEfficientFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = 10
def __UpperCAmelCase ( self ):
__a = [1, 2, 3, 4]
__a = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a )
def __UpperCAmelCase ( self ):
__a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
__a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a )
def __UpperCAmelCase ( self ):
__a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
__a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a )
def __UpperCAmelCase ( self ):
__a = '''It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this.'''
__a , __a = process_story(_a )
self.assertEqual(_a , [] )
def __UpperCAmelCase ( self ):
__a = ''''''
__a , __a = process_story(_a )
self.assertEqual(_a , [] )
self.assertEqual(_a , [] )
def __UpperCAmelCase ( self ):
__a = (
'''It was the year of Our Lord one thousand seven hundred and '''
'''seventy-five\n\nSpiritual revelations were conceded to England '''
'''at that favoured period, as at this.\n@highlight\n\nIt was the best of times'''
)
__a , __a = process_story(_a )
__a = [
'''It was the year of Our Lord one thousand seven hundred and seventy-five.''',
'''Spiritual revelations were conceded to England at that favoured period, as at this.''',
]
self.assertEqual(_a , _a )
__a = ['''It was the best of times.''']
self.assertEqual(_a , _a )
def __UpperCAmelCase ( self ):
__a = torch.tensor([1, 2, 3, 4] )
__a = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(_a , 0 ).numpy() , expected.numpy() )
def __UpperCAmelCase ( self ):
__a = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
__a = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_a , 23 ).numpy() , expected.numpy() )
def __UpperCAmelCase ( self ):
__a = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
__a = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_a , 1 ).numpy() , expected.numpy() )
def __UpperCAmelCase ( self ):
__a = 101
__a = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
__a = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
__a = compute_token_type_ids(_a , _a )
np.testing.assert_array_equal(_a , _a )
| 351 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json",
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json",
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json",
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'funnel'
__UpperCAmelCase : Union[str, Any] = {
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
}
def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ):
__a = vocab_size
__a = block_sizes
__a = [1] * len(_a ) if block_repeats is None else block_repeats
assert len(_a ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
__a = num_decoder_layers
__a = d_model
__a = n_head
__a = d_head
__a = d_inner
__a = hidden_act
__a = hidden_dropout
__a = attention_dropout
__a = activation_dropout
__a = initializer_range
__a = initializer_std
__a = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
__a = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
__a = attention_type
__a = separate_cls
__a = truncate_seq
__a = pool_q_only
super().__init__(**_a )
@property
def __UpperCAmelCase ( self ):
return sum(self.block_sizes )
@num_hidden_layers.setter
def __UpperCAmelCase ( self , _a ):
raise NotImplementedError(
'''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' )
@property
def __UpperCAmelCase ( self ):
return len(self.block_sizes )
@num_blocks.setter
def __UpperCAmelCase ( self , _a ):
raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
| 11 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( lowerCAmelCase__ : list ) -> float:
if not nums:
raise ValueError('''List is empty''' )
return sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 352 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) )
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ):
__a = parent
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = make_divisible(512 * width_multiplier , divisor=8 )
__a = hidden_act
__a = conv_kernel_size
__a = output_stride
__a = classifier_dropout_prob
__a = use_labels
__a = is_training
__a = num_labels
__a = initializer_range
__a = scope
__a = width_multiplier
__a = ffn_dropout
__a = attn_dropout
def __UpperCAmelCase ( self ):
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels, pixel_labels
def __UpperCAmelCase ( self ):
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = MobileViTVaModel(config=_a )
model.to(_a )
model.eval()
__a = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForImageClassification(_a )
model.to(_a )
model.eval()
__a = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self , _a , _a , _a , _a ):
__a = self.num_labels
__a = MobileViTVaForSemanticSegmentation(_a )
model.to(_a )
model.eval()
__a = model(_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__a = model(_a , labels=_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCAmelCase ( self ):
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase : Union[str, Any] = (
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : List[str] = False
def __UpperCAmelCase ( self ):
__a = MobileViTVaModelTester(self )
__a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip(reason='''MobileViTV2 does not output attentions''' )
def __UpperCAmelCase ( self ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' )
def __UpperCAmelCase ( self ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __UpperCAmelCase ( self ):
pass
def __UpperCAmelCase ( self ):
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(_a )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __UpperCAmelCase ( self ):
def check_hidden_states_output(_a , _a , _a ):
__a = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(_a , _a ) )
__a = outputs.hidden_states
__a = 5
self.assertEqual(len(_a ) , _a )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__a = 2
for i in range(len(_a ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(_a , _a , _a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_a )
@slow
def __UpperCAmelCase ( self ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = MobileViTVaModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowercase ( ) -> str:
__a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCAmelCase ( self ):
return (
MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' )
if is_vision_available()
else None
)
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to(
_a )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
# verify the logits
__a = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _a )
__a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_a )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
__a = outputs.logits
# verify the logits
__a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _a )
__a = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_a , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ):
__a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = model.to(_a )
__a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
__a = prepare_img()
__a = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
__a = model(**_a )
__a = outputs.logits.detach().cpu()
__a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] )
__a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _a )
__a = image_processor.post_process_semantic_segmentation(outputs=_a )
__a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _a )
| 11 | 0 |
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
lowercase_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class __lowerCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , _a ):
super().__init__()
__a = torchvision.models.resnetaaa(pretrained=_a )
__a = list(model.children() )[:-2]
__a = nn.Sequential(*_a )
__a = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def __UpperCAmelCase ( self , _a ):
# Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048
__a = self.pool(self.model(_a ) )
__a = torch.flatten(_a , start_dim=2 )
__a = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a ):
__a = [json.loads(_a ) for l in open(_a )]
__a = os.path.dirname(_a )
__a = tokenizer
__a = labels
__a = len(_a )
__a = max_seq_length
__a = transforms
def __len__( self ):
return len(self.data )
def __getitem__( self , _a ):
__a = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=_a ) )
__a , __a , __a = sentence[0], sentence[1:-1], sentence[-1]
__a = sentence[: self.max_seq_length]
__a = torch.zeros(self.n_classes )
__a = 1
__a = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' )
__a = self.transforms(_a )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def __UpperCAmelCase ( self ):
__a = Counter()
for row in self.data:
label_freqs.update(row['''label'''] )
return label_freqs
def lowercase ( lowerCAmelCase__ : List[str] ) -> int:
__a = [len(row['''sentence'''] ) for row in batch]
__a , __a = len(lowerCAmelCase__ ), max(lowerCAmelCase__ )
__a = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.long )
__a = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ):
__a = input_row['''sentence''']
__a = 1
__a = torch.stack([row['''image'''] for row in batch] )
__a = torch.stack([row['''label'''] for row in batch] )
__a = torch.stack([row['''image_start_token'''] for row in batch] )
__a = torch.stack([row['''image_end_token'''] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def lowercase ( ) -> int:
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def lowercase ( ) -> str:
return transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ),
] )
| 353 |
"""simple docstring"""
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ):
super().__init__()
if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1:
__a = (
f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'''
f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '''
'''to update the config accordingly as leaving `steps_offset` might led to incorrect results'''
''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'''
''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'''
''' file'''
)
deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = 1
__a = FrozenDict(_a )
if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False:
__a = (
f'''The configuration file of this scheduler: {scheduler} has not set the configuration'''
''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'''
''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'''
''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'''
''' Hub, it would be very nice if you could open a Pull request for the'''
''' `scheduler/scheduler_config.json` file'''
)
deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = True
__a = FrozenDict(_a )
if safety_checker is None:
logger.warning(
f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , )
def __UpperCAmelCase ( self , _a = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__a = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_a )
def __UpperCAmelCase ( self ):
self.enable_attention_slicing(_a )
def __UpperCAmelCase ( self ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
__a = torch.device('''cuda''' )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(_a , _a )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __UpperCAmelCase ( self ):
if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_a , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ):
__a = self.segmentation_processor(
text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device )
__a = self.segmentation_model(**_a )
__a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
__a = self.numpy_to_pil(_a )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
__a = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
| 11 | 0 |
"""simple docstring"""
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler")
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a , _a = True , _a = False ):
__a = scheduler
__a = optimizers if isinstance(_a , (list, tuple) ) else [optimizers]
__a = split_batches
__a = step_with_optimizer
__a = GradientState()
def __UpperCAmelCase ( self , *_a , **_a ):
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_a , **_a )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_a , **_a )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__a = AcceleratorState().num_processes
for _ in range(_a ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , '''total_steps''' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_a , **_a )
else:
self.scheduler.step(*_a , **_a )
def __UpperCAmelCase ( self ):
return self.scheduler.get_last_lr()
def __UpperCAmelCase ( self ):
return self.scheduler.state_dict()
def __UpperCAmelCase ( self , _a ):
self.scheduler.load_state_dict(_a )
def __UpperCAmelCase ( self ):
return self.scheduler.get_lr()
def __UpperCAmelCase ( self , *_a , **_a ):
return self.scheduler.print_lr(*_a , **_a )
| 354 |
"""simple docstring"""
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , **_a ):
super().__init__(**_a )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
# No specific FOR_XXX available yet
def __call__( self , _a , **_a ):
return super().__call__(_a , **_a )
def __UpperCAmelCase ( self , **_a ):
__a = {}
if "candidate_labels" in kwargs:
__a = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__a = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ):
if isinstance(_a , _a ):
if audio.startswith('''http://''' ) or audio.startswith('''https://''' ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__a = requests.get(_a ).content
else:
with open(_a , '''rb''' ) as f:
__a = f.read()
if isinstance(_a , _a ):
__a = ffmpeg_read(_a , self.feature_extractor.sampling_rate )
if not isinstance(_a , np.ndarray ):
raise ValueError('''We expect a numpy ndarray as input''' )
if len(audio.shape ) != 1:
raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' )
__a = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' )
__a = candidate_labels
__a = [hypothesis_template.format(_a ) for x in candidate_labels]
__a = self.tokenizer(_a , return_tensors=self.framework , padding=_a )
__a = [text_inputs]
return inputs
def __UpperCAmelCase ( self , _a ):
__a = model_inputs.pop('''candidate_labels''' )
__a = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , _a ):
__a = text_inputs[0]
else:
# Batching case.
__a = text_inputs[0][0]
__a = self.model(**_a , **_a )
__a = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_audio,
}
return model_outputs
def __UpperCAmelCase ( self , _a ):
__a = model_outputs.pop('''candidate_labels''' )
__a = model_outputs['''logits'''][0]
if self.framework == "pt":
__a = logits.softmax(dim=0 )
__a = probs.tolist()
else:
raise ValueError('''`tf` framework not supported.''' )
__a = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] )
]
return result
| 11 | 0 |
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]:
__a , __a = image.size
__a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
__a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0
__a = image[None].transpose(0 , 3 , 1 , 2 )
__a = torch.from_numpy(lowerCAmelCase__ )
return 2.0 * image - 1.0
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , ):
super().__init__()
self.register_modules(vqvae=_a , unet=_a , scheduler=_a )
@torch.no_grad()
def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ):
if isinstance(_a , PIL.Image.Image ):
__a = 1
elif isinstance(_a , torch.Tensor ):
__a = image.shape[0]
else:
raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' )
if isinstance(_a , PIL.Image.Image ):
__a = preprocess(_a )
__a , __a = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__a = (batch_size, self.unet.config.in_channels // 2, height, width)
__a = next(self.unet.parameters() ).dtype
__a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a )
__a = image.to(device=self.device , dtype=_a )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_a , device=self.device )
__a = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__a = {}
if accepts_eta:
__a = eta
for t in self.progress_bar(_a ):
# concat latents and low resolution image in the channel dimension.
__a = torch.cat([latents, image] , dim=1 )
__a = self.scheduler.scale_model_input(_a , _a )
# predict the noise residual
__a = self.unet(_a , _a ).sample
# compute the previous noisy sample x_t -> x_t-1
__a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample
# decode the image latents with the VQVAE
__a = self.vqvae.decode(_a ).sample
__a = torch.clamp(_a , -1.0 , 1.0 )
__a = image / 2 + 0.5
__a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__a = self.numpy_to_pil(_a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_a )
| 355 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__a = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sgugger/tiny-distilbert-classification'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
# set architectures equal to `None`
__a = None
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , )
__a = PyTorchBenchmark(_a )
benchmark.run()
self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_a ):
self.assertTrue(hasattr(_a , '''sequential''' ) )
self.assertTrue(hasattr(_a , '''cumulative''' ) )
self.assertTrue(hasattr(_a , '''current''' ) )
self.assertTrue(hasattr(_a , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
| 11 | 0 |
"""simple docstring"""
import argparse
import json
import os
import time
import zipfile
from get_ci_error_statistics import download_artifact, get_artifacts_links
from transformers import logging
lowercase_ = logging.get_logger(__name__)
def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ) -> Dict:
__a = set()
__a = []
def parse_line(lowerCAmelCase__ : Any ):
for line in fp:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__a = line.decode('''UTF-8''' )
if "warnings summary (final)" in line:
continue
# This means we are outside the body of a warning
elif not line.startswith(''' ''' ):
# process a single warning and move it to `selected_warnings`.
if len(lowerCAmelCase__ ) > 0:
__a = '''\n'''.join(lowerCAmelCase__ )
# Only keep the warnings specified in `targets`
if any(f''': {x}: ''' in warning for x in targets ):
selected_warnings.add(lowerCAmelCase__ )
buffer.clear()
continue
else:
__a = line.strip()
buffer.append(lowerCAmelCase__ )
if from_gh:
for filename in os.listdir(lowerCAmelCase__ ):
__a = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
if not os.path.isdir(lowerCAmelCase__ ):
# read the file
if filename != "warnings.txt":
continue
with open(lowerCAmelCase__ ) as fp:
parse_line(lowerCAmelCase__ )
else:
try:
with zipfile.ZipFile(lowerCAmelCase__ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowerCAmelCase__ ):
# read the file
if filename != "warnings.txt":
continue
with z.open(lowerCAmelCase__ ) as fp:
parse_line(lowerCAmelCase__ )
except Exception:
logger.warning(
f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' )
return selected_warnings
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
__a = set()
__a = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for p in os.listdir(lowerCAmelCase__ ) if (p.endswith('''.zip''' ) or from_gh)]
for p in paths:
selected_warnings.update(extract_warnings_from_single_artifact(lowerCAmelCase__ , lowerCAmelCase__ ) )
return selected_warnings
if __name__ == "__main__":
def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> int:
return values.split(''',''' )
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
# optional parameters
parser.add_argument(
"--targets",
default="DeprecationWarning,UserWarning,FutureWarning",
type=list_str,
help="Comma-separated list of target warning(s) which we want to extract.",
)
parser.add_argument(
"--from_gh",
action="store_true",
help="If running from a GitHub action workflow and collecting warnings from its artifacts.",
)
lowercase_ = parser.parse_args()
lowercase_ = args.from_gh
if from_gh:
# The artifacts have to be downloaded using `actions/download-artifact@v3`
pass
else:
os.makedirs(args.output_dir, exist_ok=True)
# get download links
lowercase_ = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
# download artifacts
for idx, (name, url) in enumerate(artifacts.items()):
print(name)
print(url)
print("=" * 8_0)
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
# extract warnings from artifacts
lowercase_ = extract_warnings(args.output_dir, args.targets)
lowercase_ = sorted(selected_warnings)
with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp:
json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
| 356 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FocalNetForImageClassification",
"FocalNetForMaskedImageModeling",
"FocalNetBackbone",
"FocalNetModel",
"FocalNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 | 0 |
"""simple docstring"""
lowercase_ = {
"meter": "m",
"kilometer": "km",
"megametre": "Mm",
"gigametre": "Gm",
"terametre": "Tm",
"petametre": "Pm",
"exametre": "Em",
"zettametre": "Zm",
"yottametre": "Ym",
}
# Exponent of the factor(meter)
lowercase_ = {
"m": 0,
"km": 3,
"Mm": 6,
"Gm": 9,
"Tm": 1_2,
"Pm": 1_5,
"Em": 1_8,
"Zm": 2_1,
"Ym": 2_4,
}
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> float:
__a = from_type.lower().strip('''s''' )
__a = to_type.lower().strip('''s''' )
__a = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ )
__a = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ )
if from_sanitized not in METRIC_CONVERSION:
__a = (
f'''Invalid \'from_type\' value: {from_type!r}.\n'''
f'''Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}'''
)
raise ValueError(lowerCAmelCase__ )
if to_sanitized not in METRIC_CONVERSION:
__a = (
f'''Invalid \'to_type\' value: {to_type!r}.\n'''
f'''Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}'''
)
raise ValueError(lowerCAmelCase__ )
__a = METRIC_CONVERSION[from_sanitized]
__a = METRIC_CONVERSION[to_sanitized]
__a = 1
if from_exponent > to_exponent:
__a = from_exponent - to_exponent
else:
__a = -(to_exponent - from_exponent)
return value * pow(10 , lowerCAmelCase__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 357 |
"""simple docstring"""
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a , _a , _a ):
self.assertEqual(len(_a ) , len(_a ) )
for a, b in zip(_a , _a ):
self.assertAlmostEqual(_a , _a , delta=_a )
def __UpperCAmelCase ( self ):
__a = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_a ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 )
def __UpperCAmelCase ( self ):
__a = None
ops.enable_eager_execution_internal()
__a = tf.config.list_physical_devices('''CPU''' )
if len(_a ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
__a = tf.config.list_logical_devices(device_type='''CPU''' )
__a = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
__a = GradientAccumulator()
__a = tf.Variable([4.0, 3.0] )
__a , __a = create_optimizer(5E-5 , 10 , 5 )
__a = tf.Variable([0.0, 0.0] , trainable=_a )
def accumulate_on_replica(_a ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(_a , _a ):
with strategy.scope():
__a = strategy.experimental_local_results(_a )
local_variables[0].assign(_a )
local_variables[1].assign(_a )
strategy.run(_a , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_a )
def _check_local_values(_a , _a ):
__a = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 )
self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 11 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.