code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import requests def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Any = {'Content-Type': 'application/json'} _lowerCamelCase : List[Any] = requests.post(lowercase__ , json={'text': message_body} , headers=lowercase__ ) if response.status_code != 200: _lowerCamelCase : Optional[Any] = ( 'Request to slack returned an error ' f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(lowercase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
12
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
1
"""simple docstring""" import baseaa def _snake_case ( lowercase__ ): return baseaa.baaencode(string.encode('utf-8' ) ) def _snake_case ( lowercase__ ): return baseaa.baadecode(lowercase__ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = """Hello World!""" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = VideoToVideoSDPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} lowerCamelCase__ = False # No `output_type`. lowerCamelCase__ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) _lowerCamelCase : Dict = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCamelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _lowerCamelCase : str = CLIPTextModel(lowercase ) _lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCamelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def A_ ( self , lowercase , lowercase=0 ): # 3 frames _lowerCamelCase : List[str] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) if str(lowercase ).startswith('mps' ): _lowerCamelCase : Optional[int] = torch.manual_seed(lowercase ) else: _lowerCamelCase : Tuple = torch.Generator(device=lowercase ).manual_seed(lowercase ) _lowerCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def A_ ( self ): _lowerCamelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : Optional[int] = VideoToVideoSDPipeline(**lowercase ) _lowerCamelCase : str = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = self.get_dummy_inputs(lowercase ) _lowerCamelCase : int = 'np' _lowerCamelCase : Tuple = sd_pipe(**lowercase ).frames _lowerCamelCase : str = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) _lowerCamelCase : str = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A_ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase , expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def A_ ( self ): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def A_ ( self ): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def A_ ( self ): pass def A_ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : List[Any] = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames _lowerCamelCase : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCamelCase : Optional[int] = torch.randn((1, 10, 3, 1024, 576) , generator=lowercase ) _lowerCamelCase : Optional[int] = video.to('cuda' ) _lowerCamelCase : List[str] = 'Spiderman is surfing' _lowerCamelCase : int = pipe(lowercase , video=lowercase , generator=lowercase , num_inference_steps=3 , output_type='pt' ).frames _lowerCamelCase : Any = np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowercase__ = logging.get_logger(__name__) lowercase__ = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) lowercase__ = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowercase__ = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowercase__ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) lowercase__ = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) lowercase__ = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) lowercase__ = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) lowercase__ = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) lowercase__ = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) lowercase__ = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) lowercase__ = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) lowercase__ = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) lowercase__ = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) lowercase__ = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) lowercase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowercase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowercase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowercase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowercase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowercase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowercase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowercase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowercase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowercase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowercase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowercase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowercase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowercase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_MAPPING lowercase__ = auto_class_update(FlaxAutoModel) class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowercase__ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowercase__ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowercase__ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase__ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase__ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowercase__ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase__ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowercase__ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowercase__ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase__ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowercase__ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class lowerCAmelCase__ ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowercase__ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
"""simple docstring""" import os import sys lowercase__ = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase__ = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def _snake_case ( *lowercase__ , **lowercase__ ): return AutoConfig.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _snake_case ( *lowercase__ , **lowercase__ ): return AutoTokenizer.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModel.__doc__ ) def _snake_case ( *lowercase__ , **lowercase__ ): return AutoModel.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _snake_case ( *lowercase__ , **lowercase__ ): return AutoModelForCausalLM.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _snake_case ( *lowercase__ , **lowercase__ ): return AutoModelForMaskedLM.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _snake_case ( *lowercase__ , **lowercase__ ): return AutoModelForSequenceClassification.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _snake_case ( *lowercase__ , **lowercase__ ): return AutoModelForQuestionAnswering.from_pretrained(*lowercase__ , **lowercase__ )
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
"""simple docstring""" from collections.abc import Callable import numpy as np def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCamelCase : List[Any] = np.zeros((n + 1,) ) _lowerCamelCase : List[str] = ya _lowerCamelCase : Dict = xa for k in range(lowercase__ ): _lowerCamelCase : Optional[Any] = y[k] + step_size * ode_func(lowercase__ , y[k] ) _lowerCamelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(lowercase__ , y[k] ) + ode_func(x + step_size , lowercase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ lowercase__ = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ lowercase__ = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ lowercase__ = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ lowercase__ = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def A_ ( self ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def A_ ( self , lowercase , lowercase , lowercase=[1, 10, 100] , lowercase=4 , lowercase=3.0 ): if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowercase ) as executor: _lowerCamelCase : List[str] = [] _lowerCamelCase : List[Any] = Counter() _lowerCamelCase : Tuple = 0 _lowerCamelCase : Optional[int] = defaultdict(lowercase ) for task_id, (candidates, test_case) in enumerate(zip(lowercase , lowercase ) ): for candidate in candidates: _lowerCamelCase : List[Any] = candidate + '\n' + test_case _lowerCamelCase : Optional[int] = (test_program, timeout, task_id, completion_id[task_id]) _lowerCamelCase : Tuple = executor.submit(lowercase , *lowercase ) futures.append(lowercase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowercase ): _lowerCamelCase : Optional[Any] = future.result() results[result["task_id"]].append((result['completion_id'], result) ) _lowerCamelCase, _lowerCamelCase : Dict = [], [] for result in results.values(): result.sort() _lowerCamelCase : Dict = [r[1]['passed'] for r in result] total.append(len(lowercase ) ) correct.append(sum(lowercase ) ) _lowerCamelCase : Optional[int] = np.array(lowercase ) _lowerCamelCase : Tuple = np.array(lowercase ) _lowerCamelCase : Optional[int] = k _lowerCamelCase : int = {F'''pass@{k}''': estimate_pass_at_k(lowercase , lowercase , lowercase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): def estimator(lowercase__ , lowercase__ , lowercase__ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(lowercase__ , lowercase__ ): _lowerCamelCase : List[str] = itertools.repeat(lowercase__ , len(lowercase__ ) ) else: assert len(lowercase__ ) == len(lowercase__ ) _lowerCamelCase : str = iter(lowercase__ ) return np.array([estimator(int(lowercase__ ) , int(lowercase__ ) , lowercase__ ) for n, c in zip(lowercase__ , lowercase__ )] )
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = BlenderbotConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : int = seq_length _lowerCamelCase : int = is_training _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Optional[Any] = eos_token_id _lowerCamelCase : Dict = pad_token_id _lowerCamelCase : Dict = bos_token_id def A_ ( self ): _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCamelCase : int = prepare_blenderbot_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : List[Any] = TFBlenderbotModel(config=lowercase ).get_decoder() _lowerCamelCase : Dict = inputs_dict['input_ids'] _lowerCamelCase : List[Any] = input_ids[:1, :] _lowerCamelCase : List[str] = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Tuple = inputs_dict['head_mask'] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Tuple = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Dict = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : int = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : int = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): if attention_mask is None: _lowerCamelCase : List[Any] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCamelCase : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCamelCase : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCamelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCamelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCamelCase__ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Optional[Any] = TFBlenderbotModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ["""My friends are cool but they eat too many carbs."""] lowerCamelCase__ = """facebook/blenderbot-400M-distill""" @cached_property def A_ ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def A_ ( self ): _lowerCamelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def A_ ( self ): _lowerCamelCase : Tuple = self.tokenizer(self.src_text , return_tensors='tf' ) _lowerCamelCase : str = self.model.generate( model_inputs.input_ids , ) _lowerCamelCase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """spiece.model"""} lowercase__ = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowercase__ = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowercase__ = 0 lowercase__ = 1 lowercase__ = 2 lowercase__ = 3 lowercase__ = 4 class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = """left""" def __init__( self , lowercase , lowercase=False , lowercase=True , lowercase=False , lowercase="<s>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<sep>" , lowercase="<pad>" , lowercase="<cls>" , lowercase="<mask>" , lowercase=["<eop>", "<eod>"] , lowercase = None , **lowercase , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase : str = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token _lowerCamelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase , remove_space=lowercase , keep_accents=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) _lowerCamelCase : List[str] = 3 _lowerCamelCase : List[str] = do_lower_case _lowerCamelCase : str = remove_space _lowerCamelCase : Optional[Any] = keep_accents _lowerCamelCase : Any = vocab_file _lowerCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) @property def A_ ( self ): return len(self.sp_model ) def A_ ( self ): _lowerCamelCase : Optional[Any] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCamelCase : Any = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self , lowercase ): _lowerCamelCase : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCamelCase : Any = {} _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self , lowercase ): if self.remove_space: _lowerCamelCase : Tuple = ' '.join(inputs.strip().split() ) else: _lowerCamelCase : Tuple = inputs _lowerCamelCase : Optional[int] = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _lowerCamelCase : Optional[Any] = unicodedata.normalize('NFKD' , lowercase ) _lowerCamelCase : Optional[Any] = ''.join([c for c in outputs if not unicodedata.combining(lowercase )] ) if self.do_lower_case: _lowerCamelCase : str = outputs.lower() return outputs def A_ ( self , lowercase ): _lowerCamelCase : Any = self.preprocess_text(lowercase ) _lowerCamelCase : List[Any] = self.sp_model.encode(lowercase , out_type=lowercase ) _lowerCamelCase : Any = [] for piece in pieces: if len(lowercase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCamelCase : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCamelCase : List[str] = cur_pieces[1:] else: _lowerCamelCase : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase ) else: new_pieces.append(lowercase ) return new_pieces def A_ ( self , lowercase ): return self.sp_model.PieceToId(lowercase ) def A_ ( self , lowercase ): return self.sp_model.IdToPiece(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : List[Any] = ''.join(lowercase ).replace(lowercase , ' ' ).strip() return out_string def A_ ( self , lowercase , lowercase = False , lowercase = None , lowercase = True , **lowercase , ): _lowerCamelCase : int = kwargs.pop('use_source_tokenizer' , lowercase ) _lowerCamelCase : Union[str, Any] = self.convert_ids_to_tokens(lowercase , skip_special_tokens=lowercase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Dict = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase ) ) _lowerCamelCase : str = [] sub_texts.append(lowercase ) else: current_sub_text.append(lowercase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCamelCase : List[Any] = ''.join(lowercase ) _lowerCamelCase : Dict = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCamelCase : Tuple = self.clean_up_tokenization(lowercase ) return clean_text else: return text def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A_ ( self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is not None: return ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1, 1] return ([0] * len(lowercase )) + [1, 1] def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A_ ( self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : Optional[int] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , 'wb' ) as fi: _lowerCamelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase, _lowerCamelCase : Optional[int] = len(lowercase__ ), len(grid[0] ) if ( min(lowercase__ , lowercase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _lowerCamelCase : Any = 0 count += depth_first_search(lowercase__ , row + 1 , lowercase__ , lowercase__ ) count += depth_first_search(lowercase__ , row - 1 , lowercase__ , lowercase__ ) count += depth_first_search(lowercase__ , lowercase__ , col + 1 , lowercase__ ) count += depth_first_search(lowercase__ , lowercase__ , col - 1 , lowercase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowercase__ = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """tapas""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=1024 , lowercase=[3, 256, 256, 2, 256, 256, 10] , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase=10.0 , lowercase=0 , lowercase=1.0 , lowercase=None , lowercase=1.0 , lowercase=False , lowercase=None , lowercase=1.0 , lowercase=1.0 , lowercase=False , lowercase=False , lowercase="ratio" , lowercase=None , lowercase=None , lowercase=64 , lowercase=32 , lowercase=False , lowercase=True , lowercase=False , lowercase=False , lowercase=True , lowercase=False , lowercase=None , lowercase=None , **lowercase , ): super().__init__(pad_token_id=lowercase , **lowercase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : str = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_sizes _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Optional[Any] = layer_norm_eps # Fine-tuning task hyperparameters _lowerCamelCase : int = positive_label_weight _lowerCamelCase : str = num_aggregation_labels _lowerCamelCase : List[str] = aggregation_loss_weight _lowerCamelCase : Tuple = use_answer_as_supervision _lowerCamelCase : List[str] = answer_loss_importance _lowerCamelCase : Tuple = use_normalized_answer_loss _lowerCamelCase : Optional[Any] = huber_loss_delta _lowerCamelCase : List[Any] = temperature _lowerCamelCase : Dict = aggregation_temperature _lowerCamelCase : Tuple = use_gumbel_for_cells _lowerCamelCase : Union[str, Any] = use_gumbel_for_aggregation _lowerCamelCase : Union[str, Any] = average_approximation_function _lowerCamelCase : Union[str, Any] = cell_selection_preference _lowerCamelCase : Any = answer_loss_cutoff _lowerCamelCase : List[Any] = max_num_rows _lowerCamelCase : Tuple = max_num_columns _lowerCamelCase : Dict = average_logits_per_cell _lowerCamelCase : List[str] = select_one_column _lowerCamelCase : Optional[Any] = allow_empty_column_selection _lowerCamelCase : List[str] = init_cell_selection_weights_to_zero _lowerCamelCase : Optional[int] = reset_position_index_per_cell _lowerCamelCase : Tuple = disable_per_token_loss # Aggregation hyperparameters _lowerCamelCase : Tuple = aggregation_labels _lowerCamelCase : Optional[int] = no_aggregation_label_index if isinstance(self.aggregation_labels , lowercase ): _lowerCamelCase : Dict = {int(lowercase ): v for k, v in aggregation_labels.items()}
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
1
"""simple docstring""" import numpy as np def _snake_case ( lowercase__ ): return 1 / (1 + np.exp(-vector )) def _snake_case ( lowercase__ ): return vector * sigmoid(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowercase__ = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") lowercase__ = F"https://www.google.com/search?q={query}&num=100" lowercase__ = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: lowercase__ = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: lowercase__ = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : int = int(lowercase__ ) assert noofclusters < len(lowercase__ ) # Find out the dimensionality _lowerCamelCase : int = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCamelCase : int = list(range(len(lowercase__ ) ) ) shuffle(lowercase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCamelCase : Tuple = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCamelCase : Tuple = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCamelCase : Optional[int] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCamelCase : List[Any] = tf.placeholder('float64' , [dim] ) _lowerCamelCase : str = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase__ , lowercase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCamelCase : Tuple = [tf.Variable(0 ) for i in range(len(lowercase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCamelCase : Any = tf.placeholder('int32' ) _lowerCamelCase : Union[str, Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase__ , lowercase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCamelCase : Tuple = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCamelCase : Tuple = tf.reduce_mean(lowercase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCamelCase : Dict = tf.placeholder('float' , [dim] ) _lowerCamelCase : Optional[Any] = tf.placeholder('float' , [dim] ) _lowerCamelCase : int = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase__ , lowercase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCamelCase : Any = tf.placeholder('float' , [noofclusters] ) _lowerCamelCase : List[str] = tf.argmin(lowercase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCamelCase : str = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCamelCase : Dict = 100 for _ in range(lowercase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase__ ) ): _lowerCamelCase : str = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCamelCase : List[str] = [ sess.run(lowercase__ , feed_dict={va: vect, va: sess.run(lowercase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCamelCase : int = sess.run( lowercase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase__ ): # Collect all the vectors assigned to this cluster _lowerCamelCase : int = [ vectors[i] for i in range(len(lowercase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCamelCase : Union[str, Any] = sess.run( lowercase__ , feed_dict={mean_input: array(lowercase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCamelCase : Tuple = sess.run(lowercase__ ) _lowerCamelCase : Any = sess.run(lowercase__ ) return centroids, assignments
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Model name or path of model to be trained."""} ) lowerCamelCase__ = field( default="""./""", metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot-clean-train""", metadata={"""help""": """Name or path of training dataset."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot-clean-valid""", metadata={"""help""": """Name or path of validation dataset."""} ) lowerCamelCase__ = field(default=2, metadata={"""help""": """Batch size for training."""} ) lowerCamelCase__ = field(default=2, metadata={"""help""": """Batch size for evaluation."""} ) lowerCamelCase__ = field(default=0.1, metadata={"""help""": """Value of weight decay."""} ) lowerCamelCase__ = field( default=1_00_00, metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) lowerCamelCase__ = field(default=2e-4, metadata={"""help""": """Learning rate fo training."""} ) lowerCamelCase__ = field(default="""cosine""", metadata={"""help""": """Learning rate."""} ) lowerCamelCase__ = field( default=7_50, metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) lowerCamelCase__ = field( default=16, metadata={"""help""": """Number of gradient accumulation steps."""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) lowerCamelCase__ = field(default=5_00_00, metadata={"""help""": """Maximum number of training steps."""} ) lowerCamelCase__ = field( default=-1, metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) lowerCamelCase__ = field(default=10_24, metadata={"""help""": """Sequence lengths used for training."""} ) lowerCamelCase__ = field(default=1, metadata={"""help""": """Training seed."""} ) lowerCamelCase__ = field( default=10_24, metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Model name or path of model to be evaluated."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot-clean-valid""", metadata={"""help""": """Name or path of validation dataset."""} ) lowerCamelCase__ = field(default=2, metadata={"""help""": """Batch size used for evaluation."""} ) lowerCamelCase__ = field( default=-1, metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) lowerCamelCase__ = field(default=10_24, metadata={"""help""": """Length of sequences to be evaluated."""} ) lowerCamelCase__ = field(default=1, metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Model name or path of model to be evaluated."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Number of workers used for code evaluation."""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Sample from the language model's output distribution."""} ) lowerCamelCase__ = field(default=0.2, metadata={"""help""": """Sampling temperature used for generation."""} ) lowerCamelCase__ = field(default=2_56, metadata={"""help""": """Maximum number of newly generated tokens."""} ) lowerCamelCase__ = field(default=0, metadata={"""help""": """Top-k parameter used for generation."""} ) lowerCamelCase__ = field(default=0.95, metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) lowerCamelCase__ = field(default=10, metadata={"""help""": """Number of generations to run in parallel."""} ) lowerCamelCase__ = field( default=2_00, metadata={"""help""": """Number of completions to generate for each sample."""} ) lowerCamelCase__ = field(default=1, metadata={"""help""": """Random seed used for evaluation."""} ) lowerCamelCase__ = field( default="""eval_results.json""", metadata={"""help""": """Random seed used for evaluation."""} ) lowerCamelCase__ = field( default="""0""", metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) lowerCamelCase__ = field( default=-1, metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) }, ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default=lowercase, metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" }, ) lowerCamelCase__ = field( default="""transformersbook/codeparrot""", metadata={"""help""": """Folder or name of dataset to process."""} ) lowerCamelCase__ = field( default="""codeparrot-clean""", metadata={"""help""": """Folder to save processed processed dataset."""} ) lowerCamelCase__ = field( default=10_00_00, metadata={"""help""": """Number of files to save per JSON output file."""} ) lowerCamelCase__ = field(default="""content""", metadata={"""help""": """Column containing text data to process."""} ) lowerCamelCase__ = field( default=10_00, metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) lowerCamelCase__ = field( default=1_00, metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) lowerCamelCase__ = field( default=0.25, metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) lowerCamelCase__ = field( default=1.5, metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) lowerCamelCase__ = field( default=0.7, metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Name or path to the tokenizer."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """If True, near-duplicate samples are removed."""} ) lowerCamelCase__ = field( default=0.85, metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""gpt2""", metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) lowerCamelCase__ = field( default="""transformersbook/codeparrot-train""", metadata={"""help""": """Dataset to train tokenizer on."""} ) lowerCamelCase__ = field(default="""content""", metadata={"""help""": """Column containing text data to process."""} ) lowerCamelCase__ = field(default=20_00_00, metadata={"""help""": """Number of examples to train tokenizer on."""} ) lowerCamelCase__ = field( default=3_27_68, metadata={"""help""": """Number of examples to train the tokenizer on."""} ) lowerCamelCase__ = field(default="""codeparrot""", metadata={"""help""": """Name of new tokenizer."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Name or path to the tokenizer."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot-clean-train""", metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) lowerCamelCase__ = field( default="""tokenized-codeparrot-train""", metadata={"""help""": """Repo name of the pretokenized data."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""gpt2-large""", metadata={"""help""": """Configuration to use for model initialization."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Tokenizer attached to model."""} ) lowerCamelCase__ = field(default="""codeparrot""", metadata={"""help""": """Name of the created model."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Push saved tokenizer to the hub."""} )
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _snake_case ( lowercase__="ro" , lowercase__="en" , lowercase__="wmt16" , lowercase__=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) _lowerCamelCase : List[Any] = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) _lowerCamelCase : List[Any] = datasets.load_dataset(lowercase__ , lowercase__ ) if save_dir is None: _lowerCamelCase : Optional[int] = f'''{dataset}-{pair}''' _lowerCamelCase : Optional[int] = Path(lowercase__ ) save_dir.mkdir(exist_ok=lowercase__ ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets _lowerCamelCase : Optional[int] = 'val' if split == 'validation' else split _lowerCamelCase : List[str] = save_dir.joinpath(f'''{fn}.source''' ) _lowerCamelCase : Union[str, Any] = save_dir.joinpath(f'''{fn}.target''' ) _lowerCamelCase : List[str] = src_path.open('w+' ) _lowerCamelCase : Union[str, Any] = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _lowerCamelCase : List[Any] = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
12
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Dict = AudioClassificationPipeline(model=lowercase , feature_extractor=lowercase ) # test with a raw waveform _lowerCamelCase : Tuple = np.zeros((34000,) ) _lowerCamelCase : str = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def A_ ( self , lowercase , lowercase ): _lowerCamelCase, _lowerCamelCase : List[Any] = examples _lowerCamelCase : Tuple = audio_classifier(lowercase ) # by default a model is initialized with num_labels=2 self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) _lowerCamelCase : List[Any] = audio_classifier(lowercase , top_k=1 ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) self.run_torchaudio(lowercase ) @require_torchaudio def A_ ( self , lowercase ): import datasets # test with a local file _lowerCamelCase : Union[str, Any] = datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) _lowerCamelCase : Dict = dataset[0]['audio']['array'] _lowerCamelCase : Any = audio_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : int = 'anton-l/wav2vec2-random-tiny-classifier' _lowerCamelCase : List[Any] = pipeline('audio-classification' , model=lowercase ) _lowerCamelCase : Tuple = np.ones((8000,) ) _lowerCamelCase : Optional[Any] = audio_classifier(lowercase , top_k=4 ) _lowerCamelCase : Optional[Any] = [ {'score': 0.08_42, 'label': 'no'}, {'score': 0.08_38, 'label': 'up'}, {'score': 0.08_37, 'label': 'go'}, {'score': 0.08_34, 'label': 'right'}, ] _lowerCamelCase : Tuple = [ {'score': 0.08_45, 'label': 'stop'}, {'score': 0.08_44, 'label': 'on'}, {'score': 0.08_41, 'label': 'right'}, {'score': 0.08_34, 'label': 'left'}, ] self.assertIn(nested_simplify(lowercase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCamelCase : Union[str, Any] = {'array': np.ones((8000,) ), 'sampling_rate': audio_classifier.feature_extractor.sampling_rate} _lowerCamelCase : Optional[Any] = audio_classifier(lowercase , top_k=4 ) self.assertIn(nested_simplify(lowercase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def A_ ( self ): import datasets _lowerCamelCase : Optional[Any] = 'superb/wav2vec2-base-superb-ks' _lowerCamelCase : Tuple = pipeline('audio-classification' , model=lowercase ) _lowerCamelCase : List[str] = datasets.load_dataset('anton-l/superb_dummy' , 'ks' , split='test' ) _lowerCamelCase : Any = np.array(dataset[3]['speech'] , dtype=np.floataa ) _lowerCamelCase : Dict = audio_classifier(lowercase , top_k=4 ) self.assertEqual( nested_simplify(lowercase , decimals=3 ) , [ {'score': 0.9_81, 'label': 'go'}, {'score': 0.0_07, 'label': 'up'}, {'score': 0.0_06, 'label': '_unknown_'}, {'score': 0.0_01, 'label': 'down'}, ] , ) @require_tf @unittest.skip('Audio classification is not implemented for TF' ) def A_ ( self ): pass
12
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
1
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowercase__ = logging.get_logger(__name__) lowercase__ = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase=None , **lowercase ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _lowerCamelCase : List[str] = model _lowerCamelCase : Dict = kwargs.get('model_save_dir' , lowercase ) _lowerCamelCase : int = kwargs.get('latest_model_name' , lowercase ) def __call__( self , **lowercase ): _lowerCamelCase : Dict = {k: np.array(lowercase ) for k, v in kwargs.items()} return self.model.run(lowercase , lowercase ) @staticmethod def A_ ( lowercase , lowercase=None , lowercase=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _lowerCamelCase : List[Any] = 'CPUExecutionProvider' return ort.InferenceSession(lowercase , providers=[provider] , sess_options=lowercase ) def A_ ( self , lowercase , lowercase = None , **lowercase ): _lowerCamelCase : Optional[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME _lowerCamelCase : Union[str, Any] = self.model_save_dir.joinpath(self.latest_model_name ) _lowerCamelCase : Any = Path(lowercase ).joinpath(lowercase ) try: shutil.copyfile(lowercase , lowercase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _lowerCamelCase : Optional[int] = self.model_save_dir.joinpath(lowercase ) if src_path.exists(): _lowerCamelCase : Union[str, Any] = Path(lowercase ).joinpath(lowercase ) try: shutil.copyfile(lowercase , lowercase ) except shutil.SameFileError: pass def A_ ( self , lowercase , **lowercase , ): if os.path.isfile(lowercase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(lowercase , exist_ok=lowercase ) # saving model weights/files self._save_pretrained(lowercase , **lowercase ) @classmethod def A_ ( cls , lowercase , lowercase = None , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ): _lowerCamelCase : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowercase ): _lowerCamelCase : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(lowercase , lowercase ) , provider=lowercase , sess_options=lowercase ) _lowerCamelCase : List[Any] = Path(lowercase ) # load model from hub else: # download model _lowerCamelCase : List[Any] = hf_hub_download( repo_id=lowercase , filename=lowercase , use_auth_token=lowercase , revision=lowercase , cache_dir=lowercase , force_download=lowercase , ) _lowerCamelCase : List[Any] = Path(lowercase ).parent _lowerCamelCase : List[str] = Path(lowercase ).name _lowerCamelCase : str = OnnxRuntimeModel.load_model(lowercase , provider=lowercase , sess_options=lowercase ) return cls(model=lowercase , **lowercase ) @classmethod def A_ ( cls , lowercase , lowercase = True , lowercase = None , lowercase = None , **lowercase , ): _lowerCamelCase : int = None if len(str(lowercase ).split('@' ) ) == 2: _lowerCamelCase, _lowerCamelCase : Union[str, Any] = model_id.split('@' ) return cls._from_pretrained( model_id=lowercase , revision=lowercase , cache_dir=lowercase , force_download=lowercase , use_auth_token=lowercase , **lowercase , )
12
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ ): if isinstance(lowercase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase__ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = None , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = True , lowercase = None , lowercase = None , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[int] = size if size is not None else {'shortest_edge': 256} _lowerCamelCase : str = get_size_dict(lowercase , default_to_square=lowercase ) _lowerCamelCase : Optional[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCamelCase : str = get_size_dict(lowercase , param_name='crop_size' ) _lowerCamelCase : int = do_resize _lowerCamelCase : Any = size _lowerCamelCase : Tuple = do_center_crop _lowerCamelCase : Optional[int] = crop_size _lowerCamelCase : List[str] = resample _lowerCamelCase : List[Any] = do_rescale _lowerCamelCase : Optional[Any] = rescale_factor _lowerCamelCase : Any = offset _lowerCamelCase : Optional[int] = do_normalize _lowerCamelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self , lowercase , lowercase , lowercase = PILImageResampling.BILINEAR , lowercase = None , **lowercase , ): _lowerCamelCase : str = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" in size: _lowerCamelCase : Optional[int] = get_resize_output_image_size(lowercase , size['shortest_edge'] , default_to_square=lowercase ) elif "height" in size and "width" in size: _lowerCamelCase : Any = (size['height'], size['width']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ): _lowerCamelCase : Any = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowercase , size=(size['height'], size['width']) , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = True , lowercase = None , **lowercase , ): _lowerCamelCase : Any = image.astype(np.floataa ) if offset: _lowerCamelCase : int = image - (scale / 2) return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ): return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. _lowerCamelCase : int = to_numpy_array(lowercase ) if do_resize: _lowerCamelCase : Optional[Any] = self.resize(image=lowercase , size=lowercase , resample=lowercase ) if do_center_crop: _lowerCamelCase : int = self.center_crop(lowercase , size=lowercase ) if do_rescale: _lowerCamelCase : Optional[Any] = self.rescale(image=lowercase , scale=lowercase , offset=lowercase ) if do_normalize: _lowerCamelCase : Optional[Any] = self.normalize(image=lowercase , mean=lowercase , std=lowercase ) _lowerCamelCase : List[str] = to_channel_dimension_format(lowercase , lowercase ) return image def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : Optional[Any] = resample if resample is not None else self.resample _lowerCamelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Tuple = offset if offset is not None else self.offset _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : str = image_std if image_std is not None else self.image_std _lowerCamelCase : List[str] = size if size is not None else self.size _lowerCamelCase : Dict = get_size_dict(lowercase , default_to_square=lowercase ) _lowerCamelCase : Any = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict = get_size_dict(lowercase , param_name='crop_size' ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) _lowerCamelCase : List[Any] = make_batched(lowercase ) _lowerCamelCase : str = [ [ self._preprocess_image( image=lowercase , do_resize=lowercase , size=lowercase , resample=lowercase , do_center_crop=lowercase , crop_size=lowercase , do_rescale=lowercase , rescale_factor=lowercase , offset=lowercase , do_normalize=lowercase , image_mean=lowercase , image_std=lowercase , data_format=lowercase , ) for img in video ] for video in videos ] _lowerCamelCase : int = {'pixel_values': videos} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
1
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Whether to use SortishSampler or not."""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" }, ) def A_ ( self ): _lowerCamelCase : Any = super().to_dict() for k, v in d.items(): if isinstance(lowercase , lowercase ): _lowerCamelCase : Tuple = v.to_dict() return d
12
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" # Lint as: python3 import itertools import os import re lowercase__ = re.compile(R"""([A-Z]+)([A-Z][a-z])""") lowercase__ = re.compile(R"""([a-z\d])([A-Z])""") lowercase__ = re.compile(R"""(?<!_)_(?!_)""") lowercase__ = re.compile(R"""(_{2,})""") lowercase__ = R"""^\w+(\.\w+)*$""" lowercase__ = R"""<>:/\|?*""" def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = _uppercase_uppercase_re.sub(r'\1_\2' , lowercase__ ) _lowerCamelCase : Dict = _lowercase_uppercase_re.sub(r'\1_\2' , lowercase__ ) return name.lower() def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = _single_underscore_re.split(lowercase__ ) _lowerCamelCase : Any = [_multiple_underscores_re.split(lowercase__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowercase__ ) if n != '' ) def _snake_case ( lowercase__ ): if os.path.basename(lowercase__ ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ ): if os.path.basename(lowercase__ ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , lowercase__ ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(lowercase__ )}-{split}''' def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): _lowerCamelCase : str = filename_prefix_for_split(lowercase__ , lowercase__ ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' _lowerCamelCase : str = os.path.join(lowercase__ , lowercase__ ) return f'''{filepath}*''' def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): _lowerCamelCase : List[Any] = filename_prefix_for_split(lowercase__ , lowercase__ ) _lowerCamelCase : Union[str, Any] = os.path.join(lowercase__ , lowercase__ ) if shard_lengths: _lowerCamelCase : int = len(lowercase__ ) _lowerCamelCase : Optional[int] = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(lowercase__ )] if filetype_suffix: _lowerCamelCase : str = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: _lowerCamelCase : Dict = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
12
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
1
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = multiprocessing.Manager() _lowerCamelCase : Tuple = manager.list() _lowerCamelCase : List[str] = multiprocessing.Process(target=lowercase__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _lowerCamelCase : Dict = shutil.rmtree _lowerCamelCase : Union[str, Any] = os.rmdir _lowerCamelCase : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _lowerCamelCase : Optional[int] = {} with swallow_io(): with time_limit(lowercase__ ): exec(lowercase__ , lowercase__ ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(f'''failed: {e}''' ) # Needed for cleaning up. _lowerCamelCase : str = rmtree _lowerCamelCase : Dict = rmdir _lowerCamelCase : List[Any] = chdir @contextlib.contextmanager def _snake_case ( lowercase__ ): def signal_handler(lowercase__ , lowercase__ ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , lowercase__ ) signal.signal(signal.SIGALRM , lowercase__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _snake_case ( ): _lowerCamelCase : List[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(lowercase__ ): with contextlib.redirect_stderr(lowercase__ ): with redirect_stdin(lowercase__ ): yield @contextlib.contextmanager def _snake_case ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(lowercase__ ): yield dirname class lowerCAmelCase__ ( lowercase ): '''simple docstring''' pass class lowerCAmelCase__ ( io.StringIO ): '''simple docstring''' def A_ ( self , *lowercase , **lowercase ): raise OSError def A_ ( self , *lowercase , **lowercase ): raise OSError def A_ ( self , *lowercase , **lowercase ): raise OSError def A_ ( self , *lowercase , **lowercase ): return False class lowerCAmelCase__ ( contextlib._RedirectStream ): # type: ignore '''simple docstring''' lowerCamelCase__ = """stdin""" @contextlib.contextmanager def _snake_case ( lowercase__ ): if root == ".": yield return _lowerCamelCase : Optional[Any] = os.getcwd() os.chdir(lowercase__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowercase__ ) def _snake_case ( lowercase__=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _lowerCamelCase : Optional[int] = None _lowerCamelCase : str = None import os _lowerCamelCase : List[Any] = '1' _lowerCamelCase : Optional[Any] = None _lowerCamelCase : List[str] = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : List[Any] = None _lowerCamelCase : List[str] = None _lowerCamelCase : int = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Tuple = None _lowerCamelCase : int = None _lowerCamelCase : str = None _lowerCamelCase : Dict = None _lowerCamelCase : List[str] = None _lowerCamelCase : List[Any] = None _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Tuple = None _lowerCamelCase : str = None _lowerCamelCase : List[Any] = None import shutil _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = None import subprocess _lowerCamelCase : List[str] = None # type: ignore _lowerCamelCase : List[str] = None import sys _lowerCamelCase : List[str] = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : str = None
12
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
1
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ , lowercase__=False ): _lowerCamelCase : str = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): _lowerCamelCase : Dict = 'segformer.encoder.' + key if key.startswith('backbone' ): _lowerCamelCase : Optional[int] = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] _lowerCamelCase : Union[str, Any] = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowercase__ )-1}''' ) if "norm" in key: _lowerCamelCase : Tuple = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : int = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] _lowerCamelCase : Optional[Any] = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowercase__ )-1}''' ) if "layer_norm1" in key: _lowerCamelCase : Any = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: _lowerCamelCase : Dict = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Dict = key[key.find('block' ) + len('block' )] _lowerCamelCase : str = key.replace(f'''block{idx}''' , f'''block.{int(lowercase__ )-1}''' ) if "attn.q" in key: _lowerCamelCase : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: _lowerCamelCase : List[Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: _lowerCamelCase : Tuple = key.replace('attn' , 'attention.self' ) if "fc1" in key: _lowerCamelCase : int = key.replace('fc1' , 'dense1' ) if "fc2" in key: _lowerCamelCase : Optional[Any] = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: _lowerCamelCase : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: _lowerCamelCase : List[str] = key.replace('linear_fuse.conv' , 'linear_fuse' ) _lowerCamelCase : Tuple = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Optional[int] = key[key.find('linear_c' ) + len('linear_c' )] _lowerCamelCase : Optional[int] = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowercase__ )-1}''' ) if key.startswith('head' ): _lowerCamelCase : Union[str, Any] = key.replace('head' , 'classifier' ) _lowerCamelCase : int = value return new_state_dict def _snake_case ( lowercase__ , lowercase__ ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[int] = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _lowerCamelCase : str = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : Dict = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : List[Any] = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : int = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : str = kv_bias[ config.hidden_sizes[i] : ] def _snake_case ( ): _lowerCamelCase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : Tuple = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return image @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = SegformerConfig() _lowerCamelCase : Union[str, Any] = False # set attributes based on model_name _lowerCamelCase : Union[str, Any] = 'huggingface/label-files' if "segformer" in model_name: _lowerCamelCase : Tuple = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: _lowerCamelCase : List[Any] = 150 _lowerCamelCase : Tuple = 'ade20k-id2label.json' _lowerCamelCase : str = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[Any] = 19 _lowerCamelCase : Dict = 'cityscapes-id2label.json' _lowerCamelCase : Dict = (1, 19, 128, 128) else: raise ValueError(f'''Model {model_name} not supported''' ) elif "mit" in model_name: _lowerCamelCase : List[Any] = True _lowerCamelCase : str = model_name[4:6] _lowerCamelCase : Any = 1000 _lowerCamelCase : Any = 'imagenet-1k-id2label.json' _lowerCamelCase : Union[str, Any] = (1, 1000) else: raise ValueError(f'''Model {model_name} not supported''' ) # set config attributes _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} _lowerCamelCase : Tuple = idalabel _lowerCamelCase : Tuple = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : Dict = [64, 128, 320, 512] _lowerCamelCase : List[str] = 256 elif size == "b2": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : str = 768 _lowerCamelCase : Optional[Any] = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Any = [64, 128, 320, 512] _lowerCamelCase : Any = 768 _lowerCamelCase : int = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : int = 768 _lowerCamelCase : Union[str, Any] = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : Dict = [64, 128, 320, 512] _lowerCamelCase : int = 768 _lowerCamelCase : Any = [3, 6, 40, 3] else: raise ValueError(f'''Size {size} not supported''' ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase__ , align=lowercase__ , do_random_crop=lowercase__ ) # prepare image _lowerCamelCase : Dict = prepare_img() _lowerCamelCase : Optional[Any] = image_processor(images=lowercase__ , return_tensors='pt' ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict if encoder_only: _lowerCamelCase : Any = torch.load(lowercase__ , map_location=torch.device('cpu' ) ) else: _lowerCamelCase : Dict = torch.load(lowercase__ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys _lowerCamelCase : Dict = rename_keys(lowercase__ , encoder_only=lowercase__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(lowercase__ , lowercase__ ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = SegformerForImageClassification(lowercase__ ) else: _lowerCamelCase : Optional[int] = SegformerForSemanticSegmentation(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() # forward pass _lowerCamelCase : List[Any] = model(lowercase__ ) _lowerCamelCase : Optional[Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Optional[int] = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , lowercase__ , atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1
"""simple docstring""" from bisect import bisect from itertools import accumulate def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Any = sorted(zip(lowercase__ , lowercase__ ) , key=lambda lowercase__ : x[0] / x[1] , reverse=lowercase__ ) _lowerCamelCase, _lowerCamelCase : Any = [i[0] for i in r], [i[1] for i in r] _lowerCamelCase : List[str] = list(accumulate(lowercase__ ) ) _lowerCamelCase : List[Any] = bisect(lowercase__ , lowercase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase__ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Tuple = ZeroShotClassificationPipeline( model=lowercase , tokenizer=lowercase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} ) # No kwarg _lowerCamelCase : Dict = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} ) _lowerCamelCase : List[str] = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} ) _lowerCamelCase : str = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _lowerCamelCase : List[str] = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _lowerCamelCase : int = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} ) # https://github.com/huggingface/transformers/issues/13846 _lowerCamelCase : int = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( lowercase , [ {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]} for i in range(1 ) ] , ) _lowerCamelCase : Tuple = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( lowercase , [ {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]} for i in range(2 ) ] , ) with self.assertRaises(lowercase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(lowercase ): classifier(lowercase , candidate_labels='politics' ) with self.assertRaises(lowercase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(lowercase ): classifier('Who are you voting for in 2020?' , candidate_labels=lowercase ) with self.assertRaises(lowercase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(lowercase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=lowercase , ) self.run_entailment_id(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : Any = zero_shot_classifier.model.config _lowerCamelCase : Any = config.labelaid _lowerCamelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCamelCase : List[Any] = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _lowerCamelCase : List[Any] = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _lowerCamelCase : Any = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _lowerCamelCase : Tuple = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _lowerCamelCase : int = original_labelaid self.assertEqual(lowercase , zero_shot_classifier.entailment_id ) @require_torch def A_ ( self ): _lowerCamelCase : List[Any] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def A_ ( self ): _lowerCamelCase : Tuple = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _lowerCamelCase : List[str] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def A_ ( self ): _lowerCamelCase : Optional[int] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _lowerCamelCase : Any = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def A_ ( self ): _lowerCamelCase : Any = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _lowerCamelCase : Dict = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _lowerCamelCase : Optional[int] = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowercase , ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def A_ ( self ): _lowerCamelCase : int = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _lowerCamelCase : List[str] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _lowerCamelCase : Any = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowercase , ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase__ = 16 lowercase__ = 32 def _snake_case ( lowercase__ , lowercase__ = 16 , lowercase__ = "bert-base-cased" ): _lowerCamelCase : str = AutoTokenizer.from_pretrained(lowercase__ ) _lowerCamelCase : Tuple = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowercase__ ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Any = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase : Optional[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(lowercase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _lowerCamelCase : Union[str, Any] = DataLoader( tokenized_datasets['train'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) _lowerCamelCase : Any = DataLoader( tokenized_datasets['validation'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): model.eval() _lowerCamelCase : int = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase : int = model(**lowercase__ ) _lowerCamelCase : List[str] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowerCamelCase, _lowerCamelCase : Optional[Any] = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: _lowerCamelCase : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCamelCase : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) _lowerCamelCase : List[Any] = metric.compute() return eval_metric["accuracy"] def _snake_case ( lowercase__ , lowercase__ ): # Initialize accelerator _lowerCamelCase : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase : Optional[Any] = config['lr'] _lowerCamelCase : Tuple = int(config['num_epochs'] ) _lowerCamelCase : Union[str, Any] = int(config['seed'] ) _lowerCamelCase : Any = int(config['batch_size'] ) _lowerCamelCase : Optional[Any] = args.model_name_or_path set_seed(lowercase__ ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer _lowerCamelCase : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowerCamelCase : Any = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: _lowerCamelCase : int = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _lowerCamelCase : Union[str, Any] = 1 _lowerCamelCase : str = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowerCamelCase : Tuple = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: _lowerCamelCase : Union[str, Any] = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over _lowerCamelCase : str = 0 # We also need to keep track of the stating epoch so files are named properly _lowerCamelCase : Any = 0 _lowerCamelCase : Dict = evaluate.load('glue' , 'mrpc' ) _lowerCamelCase : int = num_epochs if args.partial_train_epoch is not None: _lowerCamelCase : Tuple = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowerCamelCase : Optional[Any] = args.resume_from_checkpoint.split('epoch_' )[1] _lowerCamelCase : List[Any] = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowerCamelCase : str = int(lowercase__ ) + 1 _lowerCamelCase : Optional[Any] = evaluation_loop(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) accelerator.print('resumed checkpoint performance:' , lowercase__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: _lowerCamelCase : Tuple = json.load(lowercase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowerCamelCase : List[str] = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): _lowerCamelCase : Dict = model(**lowercase__ ) _lowerCamelCase : int = outputs.loss _lowerCamelCase : List[Any] = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowerCamelCase : Dict = f'''epoch_{epoch}''' _lowerCamelCase : Any = os.path.join(args.output_dir , lowercase__ ) accelerator.save_state(lowercase__ ) _lowerCamelCase : str = evaluation_loop(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase : Optional[int] = accuracy _lowerCamelCase : str = lr_scheduler.get_lr()[0] _lowerCamelCase : int = optimizer.param_groups[0]['lr'] _lowerCamelCase : Dict = epoch _lowerCamelCase : Tuple = overall_step accelerator.print(f'''epoch {epoch}:''' , lowercase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) def _snake_case ( ): _lowerCamelCase : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=lowercase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=lowercase__ , ) parser.add_argument( '--output_dir' , type=lowercase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=lowercase__ , default=lowercase__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=lowercase__ , default=lowercase__ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=lowercase__ , default=2 , help='Number of train epochs.' , ) _lowerCamelCase : List[Any] = parser.parse_args() _lowerCamelCase : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """xlm-prophetnet""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self , lowercase = 0.1 , lowercase = "gelu" , lowercase = 30522 , lowercase = 1024 , lowercase = 4096 , lowercase = 12 , lowercase = 16 , lowercase = 4096 , lowercase = 12 , lowercase = 16 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 512 , lowercase = 0.02 , lowercase = True , lowercase = True , lowercase = 0 , lowercase = 2 , lowercase = 32 , lowercase = 128 , lowercase = False , lowercase = 0.0 , lowercase = True , lowercase = 0 , lowercase = 1 , lowercase = 2 , **lowercase , ): _lowerCamelCase : Dict = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Optional[int] = encoder_ffn_dim _lowerCamelCase : Union[str, Any] = num_encoder_layers _lowerCamelCase : Union[str, Any] = num_encoder_attention_heads _lowerCamelCase : Optional[int] = decoder_ffn_dim _lowerCamelCase : int = num_decoder_layers _lowerCamelCase : Optional[Any] = num_decoder_attention_heads _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : Optional[Any] = init_std # Normal(0, this parameter) _lowerCamelCase : int = activation_function # parameters for xlmprophetnet _lowerCamelCase : Tuple = ngram _lowerCamelCase : Optional[Any] = num_buckets _lowerCamelCase : Optional[int] = relative_max_distance _lowerCamelCase : List[str] = disable_ngram_loss _lowerCamelCase : Tuple = eps # 3 Types of Dropout _lowerCamelCase : str = attention_dropout _lowerCamelCase : List[Any] = activation_dropout _lowerCamelCase : Any = dropout _lowerCamelCase : List[str] = use_cache super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , add_cross_attention=lowercase , decoder_start_token_id=lowercase , **lowercase , ) @property def A_ ( self ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def A_ ( self , lowercase ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """blenderbot-small""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowercase=50265 , lowercase=512 , lowercase=8 , lowercase=2048 , lowercase=16 , lowercase=8 , lowercase=2048 , lowercase=16 , lowercase=0.0 , lowercase=0.0 , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=512 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1 , lowercase=False , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=2 , **lowercase , ): _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : Dict = d_model _lowerCamelCase : int = encoder_ffn_dim _lowerCamelCase : Union[str, Any] = encoder_layers _lowerCamelCase : str = encoder_attention_heads _lowerCamelCase : Dict = decoder_ffn_dim _lowerCamelCase : int = decoder_layers _lowerCamelCase : Union[str, Any] = decoder_attention_heads _lowerCamelCase : List[Any] = dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : Optional[Any] = activation_dropout _lowerCamelCase : Optional[Any] = activation_function _lowerCamelCase : List[Any] = init_std _lowerCamelCase : int = encoder_layerdrop _lowerCamelCase : Union[str, Any] = decoder_layerdrop _lowerCamelCase : Optional[int] = use_cache _lowerCamelCase : Tuple = encoder_layers _lowerCamelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @property def A_ ( self ): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : str = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowerCamelCase : str = {0: 'batch'} _lowerCamelCase : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _lowerCamelCase : int = {0: 'batch', 1: 'decoder_sequence'} _lowerCamelCase : Any = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCamelCase : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowerCamelCase, _lowerCamelCase : Tuple = self.num_layers for i in range(lowercase ): _lowerCamelCase : List[str] = {0: 'batch', 2: 'past_sequence + sequence'} _lowerCamelCase : Optional[int] = {0: 'batch', 2: 'past_sequence + sequence'} else: _lowerCamelCase : Any = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def A_ ( self ): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : List[str] = super().outputs else: _lowerCamelCase : str = super(lowercase , self ).outputs if self.use_past: _lowerCamelCase, _lowerCamelCase : List[Any] = self.num_layers for i in range(lowercase ): _lowerCamelCase : List[str] = {0: 'batch', 2: 'past_sequence + sequence'} _lowerCamelCase : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): _lowerCamelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs _lowerCamelCase : int = seq_length if not self.use_past else 1 _lowerCamelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) _lowerCamelCase : List[Any] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCamelCase : Union[str, Any] = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCamelCase, _lowerCamelCase : Optional[Any] = common_inputs['input_ids'].shape _lowerCamelCase : str = common_inputs['decoder_input_ids'].shape[1] _lowerCamelCase, _lowerCamelCase : Optional[int] = self.num_attention_heads _lowerCamelCase : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : Optional[int] = decoder_seq_length + 3 _lowerCamelCase : List[str] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCamelCase : str = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowercase , lowercase )] , dim=1 ) _lowerCamelCase : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCamelCase, _lowerCamelCase : int = self.num_layers _lowerCamelCase : Any = min(lowercase , lowercase ) _lowerCamelCase : str = max(lowercase , lowercase ) - min_num_layers _lowerCamelCase : List[str] = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. _lowerCamelCase : Tuple = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): _lowerCamelCase : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCamelCase, _lowerCamelCase : str = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowerCamelCase : int = seqlen + 2 _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.num_layers _lowerCamelCase, _lowerCamelCase : List[Any] = self.num_attention_heads _lowerCamelCase : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : Tuple = common_inputs['attention_mask'].dtype _lowerCamelCase : int = torch.cat( [common_inputs['attention_mask'], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) _lowerCamelCase : List[str] = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase : Union[str, Any] = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase : Tuple = tokenizer.num_special_tokens_to_add(lowercase ) _lowerCamelCase : Any = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase : int = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCamelCase : Union[str, Any] = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) elif self.task == "causal-lm": _lowerCamelCase : List[str] = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: _lowerCamelCase : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A_ ( self , lowercase , lowercase , lowercase , lowercase ): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Optional[int] = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: _lowerCamelCase : Dict = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase )
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _lowerCamelCase : Dict = [[1, 2, 4], [1, 2, 3, 4]] _lowerCamelCase : str = DisjunctiveConstraint(lowercase ) self.assertTrue(isinstance(dc.token_ids , lowercase ) ) with self.assertRaises(lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def A_ ( self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _lowerCamelCase : List[str] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase ): DisjunctiveConstraint(lowercase ) # fails here def A_ ( self ): _lowerCamelCase : Union[str, Any] = [[1, 2, 3], [1, 2, 4]] _lowerCamelCase : Optional[int] = DisjunctiveConstraint(lowercase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = dc.update(1 ) _lowerCamelCase : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = dc.update(2 ) _lowerCamelCase : str = stepped is True and completed is False and reset is False self.assertTrue(lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = dc.update(3 ) _lowerCamelCase : Dict = stepped is True and completed is True and reset is False self.assertTrue(lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def A_ ( self ): _lowerCamelCase : str = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _lowerCamelCase : List[Any] = DisjunctiveConstraint(lowercase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowercase__ = TypeVar("""T""") class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : List[str] = data _lowerCamelCase : Node[T] | None = None def __str__( self ): return F'''{self.data}''' class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self ): _lowerCamelCase : Node[T] | None = None def __iter__( self ): _lowerCamelCase : List[Any] = self.top while node: yield node.data _lowerCamelCase : int = node.next def __str__( self ): return "->".join([str(lowercase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def A_ ( self ): return self.top is None def A_ ( self , lowercase ): _lowerCamelCase : Optional[int] = Node(lowercase ) if not self.is_empty(): _lowerCamelCase : Dict = self.top _lowerCamelCase : Optional[Any] = node def A_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , lowercase ) _lowerCamelCase : Dict = self.top _lowerCamelCase : int = self.top.next return pop_node.data def A_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def A_ ( self ): _lowerCamelCase : Dict = None if __name__ == "__main__": from doctest import testmod testmod()
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" from string import ascii_uppercase lowercase__ = {str(ord(c) - 55): c for c in ascii_uppercase} def _snake_case ( lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(lowercase__ , lowercase__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(lowercase__ , lowercase__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) _lowerCamelCase : Union[str, Any] = '' _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Dict = 0 while div != 1: _lowerCamelCase, _lowerCamelCase : List[str] = divmod(lowercase__ , lowercase__ ) if base >= 11 and 9 < mod < 36: _lowerCamelCase : Optional[Any] = ALPHABET_VALUES[str(lowercase__ )] else: _lowerCamelCase : Optional[Any] = str(lowercase__ ) new_value += actual_value _lowerCamelCase : str = num // base _lowerCamelCase : Optional[int] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(lowercase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
12
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _lowerCamelCase : Optional[Any] = len(lowercase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowercase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowercase__ , lowercase__ , ) def _snake_case ( lowercase__ ): _lowerCamelCase : list[list[str]] = [] depth_first_search([] , [] , [] , lowercase__ , lowercase__ ) # Print all the boards for board in boards: for column in board: print(lowercase__ ) print('' ) print(len(lowercase__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
1
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : List[str] = WavaVecaForSequenceClassification.from_pretrained(lowercase__ , config=lowercase__ ) _lowerCamelCase : Tuple = downstream_dict['projector.weight'] _lowerCamelCase : List[str] = downstream_dict['projector.bias'] _lowerCamelCase : Dict = downstream_dict['model.post_net.linear.weight'] _lowerCamelCase : int = downstream_dict['model.post_net.linear.bias'] return model def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = WavaVecaForAudioFrameClassification.from_pretrained(lowercase__ , config=lowercase__ ) _lowerCamelCase : Any = downstream_dict['model.linear.weight'] _lowerCamelCase : str = downstream_dict['model.linear.bias'] return model def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Dict = WavaVecaForXVector.from_pretrained(lowercase__ , config=lowercase__ ) _lowerCamelCase : str = downstream_dict['connector.weight'] _lowerCamelCase : Dict = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _lowerCamelCase : Optional[Any] = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _lowerCamelCase : Dict = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _lowerCamelCase : Optional[int] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] _lowerCamelCase : Dict = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] _lowerCamelCase : str = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] _lowerCamelCase : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] _lowerCamelCase : Tuple = downstream_dict['objective.W'] return model @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = torch.load(lowercase__ , map_location='cpu' ) _lowerCamelCase : List[Any] = checkpoint['Downstream'] _lowerCamelCase : List[str] = WavaVecaConfig.from_pretrained(lowercase__ ) _lowerCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained( lowercase__ , return_attention_mask=lowercase__ , do_normalize=lowercase__ ) _lowerCamelCase : Union[str, Any] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): _lowerCamelCase : Optional[int] = convert_classification(lowercase__ , lowercase__ , lowercase__ ) elif arch.endswith('ForAudioFrameClassification' ): _lowerCamelCase : str = convert_diarization(lowercase__ , lowercase__ , lowercase__ ) elif arch.endswith('ForXVector' ): _lowerCamelCase : List[Any] = convert_xvector(lowercase__ , lowercase__ , lowercase__ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _lowerCamelCase : Dict = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") lowercase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
12
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
1
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DebertaTokenizer lowerCamelCase__ = True lowerCamelCase__ = DebertaTokenizerFast def A_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] _lowerCamelCase : Dict = dict(zip(lowercase , range(len(lowercase ) ) ) ) _lowerCamelCase : Any = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCamelCase : Any = {'unk_token': '[UNK]'} _lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : List[str] = 'lower newer' _lowerCamelCase : List[Any] = 'lower newer' return input_text, output_text def A_ ( self ): _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = 'lower newer' _lowerCamelCase : str = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowerCamelCase : List[Any] = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : List[str] = tokenizer('Hello' , 'World' ) _lowerCamelCase : Optional[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , lowercase ) @slow def A_ ( self ): _lowerCamelCase : Optional[int] = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowerCamelCase : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) _lowerCamelCase : str = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _lowerCamelCase : List[str] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _lowerCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowercase ) _lowerCamelCase : str = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def A_ ( self ): _lowerCamelCase : List[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _lowerCamelCase : Union[str, Any] = tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowerCamelCase : int = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] _lowerCamelCase : Tuple = tokenizer(lowercase , padding=lowercase ) _lowerCamelCase : List[Any] = [tokenizer.decode(lowercase , skip_special_tokens=lowercase ) for seq in encoding['input_ids']] # fmt: off _lowerCamelCase : List[str] = { 'input_ids': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _lowerCamelCase : Any = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , lowercase ) for expected, decoded in zip(lowercase , lowercase ): self.assertEqual(lowercase , lowercase )
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" from importlib import import_module from .logging import get_logger lowercase__ = get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=None ): _lowerCamelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , lowercase , getattr(lowercase , lowercase ) ) _lowerCamelCase : Tuple = module._original_module if isinstance(lowercase , _PatchedModuleObj ) else module class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = [] def __init__( self , lowercase , lowercase , lowercase , lowercase=None ): _lowerCamelCase : int = obj _lowerCamelCase : Dict = target _lowerCamelCase : Optional[Any] = new _lowerCamelCase : Dict = target.split('.' )[0] _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : Optional[int] = attrs or [] def __enter__( self ): *_lowerCamelCase, _lowerCamelCase : Dict = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase ) ): try: _lowerCamelCase : Union[str, Any] = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _lowerCamelCase : Union[str, Any] = getattr(self.obj , lowercase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _lowerCamelCase : List[str] = obj_attr # patch at top level setattr(self.obj , lowercase , _PatchedModuleObj(lowercase , attrs=self.attrs ) ) _lowerCamelCase : List[Any] = getattr(self.obj , lowercase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase , lowercase , _PatchedModuleObj(getattr(lowercase , lowercase , lowercase ) , attrs=self.attrs ) ) _lowerCamelCase : List[str] = getattr(lowercase , lowercase ) # finally set the target attribute setattr(lowercase , lowercase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _lowerCamelCase : Any = getattr(import_module('.'.join(lowercase ) ) , lowercase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase ) is attr_value: _lowerCamelCase : Any = getattr(self.obj , lowercase ) setattr(self.obj , lowercase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _lowerCamelCase : Any = globals()['__builtins__'][target_attr] setattr(self.obj , lowercase , self.new ) else: raise RuntimeError(F'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *lowercase ): for attr in list(self.original ): setattr(self.obj , lowercase , self.original.pop(lowercase ) ) def A_ ( self ): self.__enter__() self._active_patches.append(self ) def A_ ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=3 , lowercase=32 , lowercase=3 , lowercase=10 , lowercase=[10, 20, 30, 40] , lowercase=[1, 1, 2, 1] , lowercase=True , lowercase=True , lowercase="relu" , lowercase=3 , lowercase=None , ): _lowerCamelCase : List[str] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Optional[Any] = image_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : List[Any] = embeddings_size _lowerCamelCase : Any = hidden_sizes _lowerCamelCase : Dict = depths _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Optional[Any] = num_labels _lowerCamelCase : Tuple = scope _lowerCamelCase : Optional[Any] = len(lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[str] = self.get_config() return config, pixel_values def A_ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = FlaxRegNetModel(config=lowercase ) _lowerCamelCase : str = model(lowercase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : Optional[Any] = FlaxRegNetForImageClassification(config=lowercase ) _lowerCamelCase : List[Any] = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Union[str, Any] = FlaxRegNetModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase ) def A_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self ): return def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def A_ ( self ): pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def A_ ( self ): pass def A_ ( self ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class(lowercase ) _lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A_ ( self ): def check_hidden_states_output(lowercase , lowercase , lowercase ): _lowerCamelCase : str = model_class(lowercase ) _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(lowercase , lowercase ) ) _lowerCamelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(lowercase ) , expected_num_stages + 1 ) _lowerCamelCase, _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Tuple = True check_hidden_states_output(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : Tuple = self._prepare_for_class(lowercase , lowercase ) _lowerCamelCase : Optional[int] = model_class(lowercase ) @jax.jit def model_jitted(lowercase , **lowercase ): return model(pixel_values=lowercase , **lowercase ) with self.subTest('JIT Enabled' ): _lowerCamelCase : str = model_jitted(**lowercase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCamelCase : Optional[int] = model_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( ): _lowerCamelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A_ ( self ): return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def A_ ( self ): _lowerCamelCase : int = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) _lowerCamelCase : Union[str, Any] = self.default_image_processor _lowerCamelCase : Dict = prepare_img() _lowerCamelCase : Dict = image_processor(images=lowercase , return_tensors='np' ) _lowerCamelCase : List[str] = model(**lowercase ) # verify the logits _lowerCamelCase : Optional[int] = (1, 1000) self.assertEqual(outputs.logits.shape , lowercase ) _lowerCamelCase : Optional[Any] = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowercase__ = 5_0000 lowercase__ = 5000 lowercase__ , lowercase__ = os.path.split(__file__) lowercase__ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _snake_case ( lowercase__ , lowercase__ ): for i in range(lowercase__ ): _lowerCamelCase : Union[str, Any] = dataset[i] @get_duration def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): for i in range(0 , len(lowercase__ ) , lowercase__ ): _lowerCamelCase : List[Any] = dataset[i : i + batch_size] @get_duration def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): with dataset.formatted_as(type=lowercase__ ): for i in range(lowercase__ ): _lowerCamelCase : List[Any] = dataset[i] @get_duration def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): with dataset.formatted_as(type=lowercase__ ): for i in range(0 , lowercase__ , lowercase__ ): _lowerCamelCase : Any = dataset[i : i + batch_size] def _snake_case ( ): _lowerCamelCase : Union[str, Any] = {'num examples': SPEED_TEST_N_EXAMPLES} _lowerCamelCase : List[Any] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] _lowerCamelCase : Optional[int] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) _lowerCamelCase : Optional[Any] = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) _lowerCamelCase : str = generate_example_dataset( os.path.join(lowercase__ , 'dataset.arrow' ) , lowercase__ , num_examples=lowercase__ , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(lowercase__ ) ) _lowerCamelCase : Tuple = func(lowercase__ , **lowercase__ ) print('shuffling dataset' ) _lowerCamelCase : str = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(lowercase__ ) ) _lowerCamelCase : Union[str, Any] = func( lowercase__ , **lowercase__ ) with open(lowercase__ , 'wb' ) as f: f.write(json.dumps(lowercase__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
12
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" lowercase__ = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
12
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """distilbert""" lowerCamelCase__ = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self , lowercase=30522 , lowercase=512 , lowercase=False , lowercase=6 , lowercase=12 , lowercase=768 , lowercase=4 * 768 , lowercase=0.1 , lowercase=0.1 , lowercase="gelu" , lowercase=0.02 , lowercase=0.1 , lowercase=0.2 , lowercase=0 , **lowercase , ): _lowerCamelCase : Any = vocab_size _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : Optional[int] = sinusoidal_pos_embds _lowerCamelCase : List[str] = n_layers _lowerCamelCase : Optional[Any] = n_heads _lowerCamelCase : Any = dim _lowerCamelCase : List[Any] = hidden_dim _lowerCamelCase : List[Any] = dropout _lowerCamelCase : Optional[int] = attention_dropout _lowerCamelCase : Tuple = activation _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Optional[Any] = qa_dropout _lowerCamelCase : List[str] = seq_classif_dropout super().__init__(**lowercase , pad_token_id=lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @property def A_ ( self ): if self.task == "multiple-choice": _lowerCamelCase : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCamelCase : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
12
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : list[list[int]] = [] create_all_state(1 , lowercase__ , lowercase__ , [] , lowercase__ ) return result def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): if level == 0: total_list.append(current_list[:] ) return for i in range(lowercase__ , total_number - level + 2 ): current_list.append(lowercase__ ) create_all_state(i + 1 , lowercase__ , level - 1 , lowercase__ , lowercase__ ) current_list.pop() def _snake_case ( lowercase__ ): for i in total_list: print(*lowercase__ ) if __name__ == "__main__": lowercase__ = 4 lowercase__ = 2 lowercase__ = generate_all_combinations(n, k) print_all_state(total_list)
12
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
1
"""simple docstring""" import os import sys import unittest lowercase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase__ = os.path.join(git_repo_path, """src""", """transformers""") lowercase__ = """ {0} = None """ lowercase__ = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ lowercase__ = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : List[Any] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(lowercase ) _lowerCamelCase : str = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(lowercase , 'tokenizers' ) _lowerCamelCase : Dict = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(lowercase , 'tensorflow_text' ) _lowerCamelCase : Union[str, Any] = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(lowercase , 'sentencepiece_and_tokenizers' ) _lowerCamelCase : int = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(lowercase , 'sentencepiece_and_tensorflow_text' ) _lowerCamelCase : Any = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(lowercase , 'sentencepiece_and_tokenizers_and_vision' ) def A_ ( self ): _lowerCamelCase : int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , lowercase ) self.assertIn('tensorflow_text' , lowercase ) self.assertIn('sentencepiece_and_tokenizers' , lowercase ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def A_ ( self ): _lowerCamelCase : Any = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(lowercase , '\nCONSTANT = None\n' ) _lowerCamelCase : Tuple = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( lowercase , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) _lowerCamelCase : Dict = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' _lowerCamelCase : Optional[int] = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' _lowerCamelCase : Any = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , lowercase )
12
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowercase__ = logging.getLogger(__name__) lowercase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowercase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowercase )}, ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""}, ) lowerCamelCase__ = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) def A_ ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """The input training data file (a text file)."""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) lowerCamelCase__ = field( default=5, metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" }, ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """The number of processes to use for the preprocessing."""}, ) lowerCamelCase__ = field( default=0.15, metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) }, ) def A_ ( self ): if self.train_file is not None: _lowerCamelCase : List[Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _lowerCamelCase : Optional[Any] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _snake_case ( lowercase__ , lowercase__ ): with open(lowercase__ , 'r' , encoding='utf-8' ) as f: _lowerCamelCase : Dict = [json.loads(lowercase__ ) for line in f.read().splitlines() if (len(lowercase__ ) > 0 and not line.isspace())] assert len(lowercase__ ) == len(lowercase__ ) _lowerCamelCase : Tuple = {c: dataset[c] for c in dataset.column_names} _lowerCamelCase : Tuple = refs return Dataset.from_dict(lowercase__ ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowerCamelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowerCamelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowercase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCamelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _lowerCamelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[:{data_args.validation_split_percentage}%]''' , ) _lowerCamelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[{data_args.validation_split_percentage}%:]''' , ) else: _lowerCamelCase : Union[str, Any] = {} if data_args.train_file is not None: _lowerCamelCase : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: _lowerCamelCase : List[str] = data_args.validation_file _lowerCamelCase : List[str] = data_args.train_file.split('.' )[-1] if extension == "txt": _lowerCamelCase : int = 'text' _lowerCamelCase : Tuple = load_dataset(lowercase__ , data_files=lowercase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Union[str, Any] = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _lowerCamelCase : Dict = AutoConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: _lowerCamelCase : List[str] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) _lowerCamelCase : int = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _lowerCamelCase : Dict = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowercase__ ) elif model_args.model_name_or_path: _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _lowerCamelCase : Optional[int] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _lowerCamelCase : List[Any] = AutoModelForMaskedLM.from_config(lowercase__ ) model.resize_token_embeddings(len(lowercase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _lowerCamelCase : Union[str, Any] = datasets['train'].column_names else: _lowerCamelCase : str = datasets['validation'].column_names _lowerCamelCase : List[Any] = 'text' if 'text' in column_names else column_names[0] _lowerCamelCase : Optional[Any] = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowercase__ ): # Remove empty lines _lowerCamelCase : Optional[Any] = [line for line in examples['text'] if len(lowercase__ ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=lowercase__ , truncation=lowercase__ , max_length=data_args.max_seq_length ) _lowerCamelCase : List[Any] = datasets.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _lowerCamelCase : Optional[Any] = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _lowerCamelCase : Dict = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _lowerCamelCase : int = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _lowerCamelCase : str = False # Data collator # This one will take care of randomly masking the tokens. _lowerCamelCase : Union[str, Any] = DataCollatorForWholeWordMask(tokenizer=lowercase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _lowerCamelCase : str = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowerCamelCase : Any = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _lowerCamelCase : Optional[Any] = model_args.model_name_or_path else: _lowerCamelCase : str = None _lowerCamelCase : Optional[int] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload _lowerCamelCase : List[Any] = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowercase__ , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _lowerCamelCase : List[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCamelCase : int = trainer.evaluate() _lowerCamelCase : int = math.exp(eval_output['eval_loss'] ) _lowerCamelCase : int = perplexity _lowerCamelCase : Optional[Any] = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def _snake_case ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
12
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
1
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowercase__ = None lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase__ = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowercase__ = { """facebook/nllb-large-en-ro""": 1024, """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off lowercase__ = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = NllbTokenizer lowerCamelCase__ = [] lowerCamelCase__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , lowercase=False , **lowercase , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase : List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token _lowerCamelCase : Tuple = legacy_behaviour super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , legacy_behaviour=lowercase , **lowercase , ) _lowerCamelCase : int = vocab_file _lowerCamelCase : Any = False if not self.vocab_file else True _lowerCamelCase : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCamelCase : Optional[int] = src_lang if src_lang is not None else 'eng_Latn' _lowerCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) _lowerCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self ): return self._src_lang @src_lang.setter def A_ ( self , lowercase ): _lowerCamelCase : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self , lowercase , lowercase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Optional[int] = [self.sep_token_id] _lowerCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self , lowercase , lowercase , lowercase , lowercase , **lowercase ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCamelCase : Dict = src_lang _lowerCamelCase : Optional[int] = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) _lowerCamelCase : Tuple = self.convert_tokens_to_ids(lowercase ) _lowerCamelCase : Optional[int] = tgt_lang_id return inputs def A_ ( self , lowercase , lowercase = "eng_Latn" , lowercase = None , lowercase = "fra_Latn" , **lowercase , ): _lowerCamelCase : str = src_lang _lowerCamelCase : Dict = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def A_ ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self , lowercase ): _lowerCamelCase : Dict = self.convert_tokens_to_ids(lowercase ) if self.legacy_behaviour: _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: _lowerCamelCase : Tuple = [self.cur_lang_code] _lowerCamelCase : str = [self.eos_token_id] _lowerCamelCase : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCamelCase : int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self , lowercase ): _lowerCamelCase : int = self.convert_tokens_to_ids(lowercase ) if self.legacy_behaviour: _lowerCamelCase : List[str] = [] _lowerCamelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: _lowerCamelCase : Union[str, Any] = [self.cur_lang_code] _lowerCamelCase : Optional[Any] = [self.eos_token_id] _lowerCamelCase : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCamelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCamelCase : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self , lowercase , lowercase = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return _lowerCamelCase : int = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = CLIPTokenizer lowerCamelCase__ = CLIPTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {} lowerCamelCase__ = False def A_ ( self ): super().setUp() # fmt: off _lowerCamelCase : Tuple = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowerCamelCase : Any = dict(zip(lowercase , range(len(lowercase ) ) ) ) _lowerCamelCase : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] _lowerCamelCase : List[Any] = {'unk_token': '<unk>'} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : str = 'lower newer' _lowerCamelCase : Tuple = 'lower newer' return input_text, output_text def A_ ( self ): _lowerCamelCase : Tuple = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : str = 'lower newer' _lowerCamelCase : List[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] _lowerCamelCase : List[str] = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : str = tokens + [tokenizer.unk_token] _lowerCamelCase : Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) @require_ftfy def A_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Optional[int] = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _lowerCamelCase : Any = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _lowerCamelCase : Optional[Any] = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' _lowerCamelCase : Union[str, Any] = tokenizer_s.tokenize(lowercase ) _lowerCamelCase : Tuple = tokenizer_r.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _lowerCamelCase : Optional[int] = 'xa\u0303y' + ' ' + 'x\xe3y' _lowerCamelCase : Optional[int] = tokenizer_s.tokenize(lowercase ) _lowerCamelCase : Optional[int] = tokenizer_r.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) # Test that the tokenization is identical on unicode of space type _lowerCamelCase : str = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _lowerCamelCase : Tuple = tokenizer_s.tokenize(lowercase ) _lowerCamelCase : int = tokenizer_r.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) # Test that the tokenization is identical on unicode of line break type _lowerCamelCase : Optional[int] = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _lowerCamelCase : Dict = tokenizer_s.tokenize(lowercase ) _lowerCamelCase : List[str] = tokenizer_r.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) def A_ ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : List[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase : Any = F'''{text_of_1_token} {text_of_1_token}''' _lowerCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , ) _lowerCamelCase : List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : List[Any] = F''' {text}''' _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , ) _lowerCamelCase : List[str] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) def A_ ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowercase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def A_ ( self ): super().test_tokenization_python_rust_equals() def A_ ( self ): # CLIP always lower cases letters pass
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _lowerCamelCase : Union[str, Any] = str(bin(lowercase__ ) )[2:] # remove the leading "0b" _lowerCamelCase : List[Any] = str(bin(lowercase__ ) )[2:] # remove the leading "0b" _lowerCamelCase : List[str] = max(len(lowercase__ ) , len(lowercase__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(lowercase__ ) * abs(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowercase__ = importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowercase__ = spec.loader.load_module() lowercase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowercase__ = re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowercase__ = { """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def _snake_case ( ): _lowerCamelCase : List[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): _lowerCamelCase : Any = False # source code of `config_class` _lowerCamelCase : Union[str, Any] = inspect.getsource(lowercase__ ) _lowerCamelCase : Optional[Any] = _re_checkpoint.findall(lowercase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _lowerCamelCase, _lowerCamelCase : int = checkpoint # verify the checkpoint name corresponds to the checkpoint link _lowerCamelCase : Optional[Any] = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: _lowerCamelCase : int = True break _lowerCamelCase : Optional[int] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowercase__ ) if len(lowercase__ ) > 0: _lowerCamelCase : Any = '\n'.join(sorted(lowercase__ ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
"""simple docstring""" from torch import nn def _snake_case ( lowercase__ ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowercase__ = 1.054571817E-34 # unit of ℏ : J * s lowercase__ = 3E8 # unit of c : m * s^-1 def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: _lowerCamelCase : List[str] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCamelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCamelCase : List[str] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """deberta-v2""" def __init__( self , lowercase=128100 , lowercase=1536 , lowercase=24 , lowercase=24 , lowercase=6144 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=0 , lowercase=0.02 , lowercase=1E-7 , lowercase=False , lowercase=-1 , lowercase=0 , lowercase=True , lowercase=None , lowercase=0 , lowercase="gelu" , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : int = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : Dict = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : int = relative_attention _lowerCamelCase : int = max_relative_positions _lowerCamelCase : int = pad_token_id _lowerCamelCase : int = position_biased_input # Backwards compatibility if type(lowercase ) == str: _lowerCamelCase : Optional[int] = [x.strip() for x in pos_att_type.lower().split('|' )] _lowerCamelCase : List[str] = pos_att_type _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Any = kwargs.get('pooler_hidden_size' , lowercase ) _lowerCamelCase : Optional[Any] = pooler_dropout _lowerCamelCase : Dict = pooler_hidden_act class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @property def A_ ( self ): if self.task == "multiple-choice": _lowerCamelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCamelCase : str = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def A_ ( self ): return 12 def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 3 , lowercase = 40 , lowercase = 40 , lowercase = None , ): _lowerCamelCase : Optional[Any] = super().generate_dummy_inputs(preprocessor=lowercase , framework=lowercase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
12
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
1
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowercase__ = get_logger(__name__) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=0 ): os.makedirs(lowercase__ , exist_ok=lowercase__ ) with FSDP.state_dict_type( lowercase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowerCamelCase : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowerCamelCase : Dict = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _lowerCamelCase : str = os.path.join(lowercase__ , lowercase__ ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(lowercase__ , lowercase__ ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowerCamelCase : str = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _lowerCamelCase : Optional[Any] = os.path.join(lowercase__ , lowercase__ ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(lowercase__ , lowercase__ ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowerCamelCase : List[Any] = os.path.join(lowercase__ , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) logger.info(f'''Saving model to {ckpt_dir}''' ) _lowerCamelCase : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=lowercase__ , storage_writer=dist_cp.FileSystemWriter(lowercase__ ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( lowercase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowercase__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return _lowerCamelCase : int = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _lowerCamelCase : List[Any] = os.path.join(lowercase__ , lowercase__ ) logger.info(f'''Loading model from {input_model_file}''' ) _lowerCamelCase : Optional[Any] = torch.load(lowercase__ ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowerCamelCase : Dict = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _lowerCamelCase : Tuple = os.path.join(lowercase__ , lowercase__ ) logger.info(f'''Loading model from {input_model_file}''' ) _lowerCamelCase : Union[str, Any] = torch.load(lowercase__ ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowerCamelCase : Any = ( os.path.join(lowercase__ , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) _lowerCamelCase : Optional[int] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=lowercase__ , storage_reader=dist_cp.FileSystemReader(lowercase__ ) , planner=DefaultLoadPlanner() , ) _lowerCamelCase : Dict = state_dict['model'] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=0 ): os.makedirs(lowercase__ , exist_ok=lowercase__ ) with FSDP.state_dict_type( lowercase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowerCamelCase : Optional[int] = FSDP.optim_state_dict(lowercase__ , lowercase__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _lowerCamelCase : int = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _lowerCamelCase : Optional[int] = os.path.join(lowercase__ , lowercase__ ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(lowercase__ , lowercase__ ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: _lowerCamelCase : Union[str, Any] = os.path.join(lowercase__ , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(lowercase__ ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( lowercase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowerCamelCase : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _lowerCamelCase : Union[str, Any] = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _lowerCamelCase : Optional[Any] = os.path.join(lowercase__ , lowercase__ ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) _lowerCamelCase : int = torch.load(lowercase__ ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: _lowerCamelCase : Any = ( os.path.join(lowercase__ , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) _lowerCamelCase : List[str] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(lowercase__ ) , ) _lowerCamelCase : Dict = optim_state['optimizer'] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) _lowerCamelCase : List[str] = FSDP.optim_state_dict_to_load(lowercase__ , lowercase__ , lowercase__ ) optimizer.load_state_dict(lowercase__ )
12
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ShapEPipeline lowerCamelCase__ = ["""prompt"""] lowerCamelCase__ = ["""prompt"""] lowerCamelCase__ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCamelCase__ = False @property def A_ ( self ): return 32 @property def A_ ( self ): return 32 @property def A_ ( self ): return self.time_input_dim * 4 @property def A_ ( self ): return 8 @property def A_ ( self ): _lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase ) @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _lowerCamelCase : List[str] = PriorTransformer(**lowercase ) return model @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _lowerCamelCase : Union[str, Any] = ShapERenderer(**lowercase ) return model def A_ ( self ): _lowerCamelCase : int = self.dummy_prior _lowerCamelCase : Optional[Any] = self.dummy_text_encoder _lowerCamelCase : List[str] = self.dummy_tokenizer _lowerCamelCase : List[Any] = self.dummy_renderer _lowerCamelCase : int = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) _lowerCamelCase : List[Any] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def A_ ( self , lowercase , lowercase=0 ): if str(lowercase ).startswith('mps' ): _lowerCamelCase : Tuple = torch.manual_seed(lowercase ) else: _lowerCamelCase : Dict = torch.Generator(device=lowercase ).manual_seed(lowercase ) _lowerCamelCase : List[Any] = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def A_ ( self ): _lowerCamelCase : Any = 'cpu' _lowerCamelCase : Union[str, Any] = self.get_dummy_components() _lowerCamelCase : Union[str, Any] = self.pipeline_class(**lowercase ) _lowerCamelCase : Optional[Any] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = pipe(**self.get_dummy_inputs(lowercase ) ) _lowerCamelCase : str = output.images[0] _lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCamelCase : str = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A_ ( self ): _lowerCamelCase : int = torch_device == 'cpu' _lowerCamelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def A_ ( self ): _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Union[str, Any] = self.pipeline_class(**lowercase ) _lowerCamelCase : Dict = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : Tuple = 2 _lowerCamelCase : List[Any] = self.get_dummy_inputs(lowercase ) for key in inputs.keys(): if key in self.batch_params: _lowerCamelCase : Optional[Any] = batch_size * [inputs[key]] _lowerCamelCase : Union[str, Any] = pipe(**lowercase , num_images_per_prompt=lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) _lowerCamelCase : List[Any] = ShapEPipeline.from_pretrained('openai/shap-e' ) _lowerCamelCase : Union[str, Any] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : str = torch.Generator(device=lowercase ).manual_seed(0 ) _lowerCamelCase : str = pipe( 'a shark' , generator=lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase )
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A_ ( self ): _lowerCamelCase : Dict = 1 _lowerCamelCase : Optional[int] = 3 _lowerCamelCase : str = (32, 32) _lowerCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowercase ) @property def A_ ( self ): def extract(*lowercase , **lowercase ): class lowerCAmelCase__ : '''simple docstring''' def __init__( self ): _lowerCamelCase : Any = torch.ones([0] ) def A_ ( self , lowercase ): self.pixel_values.to(lowercase ) return self return Out() return extract def A_ ( self ): _lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : int = self.dummy_cond_unet _lowerCamelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowercase , set_alpha_to_one=lowercase , ) _lowerCamelCase : List[Any] = self.dummy_vae _lowerCamelCase : int = self.dummy_text_encoder _lowerCamelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _lowerCamelCase : str = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) _lowerCamelCase : Dict = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : List[str] = 'A painting of a squirrel eating a burger' _lowerCamelCase : str = torch.Generator(device=lowercase ).manual_seed(0 ) _lowerCamelCase : Dict = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _lowerCamelCase : List[str] = output.images _lowerCamelCase : Optional[Any] = torch.Generator(device=lowercase ).manual_seed(0 ) _lowerCamelCase : Union[str, Any] = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowercase , )[0] _lowerCamelCase : str = image[0, -3:, -3:, -1] _lowerCamelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : str = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : List[Any] = self.dummy_cond_unet _lowerCamelCase : Tuple = PNDMScheduler(skip_prk_steps=lowercase ) _lowerCamelCase : List[str] = self.dummy_vae _lowerCamelCase : List[str] = self.dummy_text_encoder _lowerCamelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _lowerCamelCase : str = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) _lowerCamelCase : Optional[int] = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = 'A painting of a squirrel eating a burger' _lowerCamelCase : int = torch.Generator(device=lowercase ).manual_seed(0 ) _lowerCamelCase : List[Any] = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _lowerCamelCase : Union[str, Any] = output.images _lowerCamelCase : str = torch.Generator(device=lowercase ).manual_seed(0 ) _lowerCamelCase : Any = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowercase , )[0] _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCamelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : str = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowercase ) assert isinstance(lowercase , lowercase ) assert isinstance(pipe.scheduler , lowercase ) assert pipe.safety_checker is None _lowerCamelCase : Any = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase ) _lowerCamelCase : Dict = StableDiffusionPipeline.from_pretrained(lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowerCamelCase : Tuple = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def A_ ( self ): _lowerCamelCase : int = self.dummy_cond_unet _lowerCamelCase : Optional[int] = PNDMScheduler(skip_prk_steps=lowercase ) _lowerCamelCase : Any = self.dummy_vae _lowerCamelCase : Union[str, Any] = self.dummy_text_encoder _lowerCamelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _lowerCamelCase : Optional[Any] = unet.half() _lowerCamelCase : Any = vae.half() _lowerCamelCase : Tuple = bert.half() # make sure here that pndm scheduler skips prk _lowerCamelCase : Tuple = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) _lowerCamelCase : Optional[Any] = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Any = 'A painting of a squirrel eating a burger' _lowerCamelCase : List[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowercase ) _lowerCamelCase : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCamelCase : Any = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _lowerCamelCase : Dict = 4003660346 _lowerCamelCase : str = 7 # without safety guidance (sld_guidance_scale = 0) _lowerCamelCase : Dict = torch.manual_seed(lowercase ) _lowerCamelCase : List[Any] = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCamelCase : int = output.images _lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] _lowerCamelCase : List[str] = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _lowerCamelCase : str = torch.manual_seed(lowercase ) _lowerCamelCase : Optional[int] = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCamelCase : Dict = output.images _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] _lowerCamelCase : List[str] = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowercase ) _lowerCamelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCamelCase : Dict = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : int = 'padme amidala taking a bath artwork, safe for work, no nudity' _lowerCamelCase : Tuple = 2734971755 _lowerCamelCase : Tuple = 7 _lowerCamelCase : Optional[int] = torch.manual_seed(lowercase ) _lowerCamelCase : Tuple = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCamelCase : int = output.images _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] _lowerCamelCase : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _lowerCamelCase : Tuple = torch.manual_seed(lowercase ) _lowerCamelCase : Any = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCamelCase : Union[str, Any] = output.images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] _lowerCamelCase : Optional[int] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase : Tuple = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _lowerCamelCase : Union[str, Any] = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Optional[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _lowerCamelCase : int = 1044355234 _lowerCamelCase : Any = 12 _lowerCamelCase : List[Any] = torch.manual_seed(lowercase ) _lowerCamelCase : Tuple = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCamelCase : Union[str, Any] = output.images _lowerCamelCase : List[str] = image[0, -3:, -3:, -1] _lowerCamelCase : Union[str, Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _lowerCamelCase : Union[str, Any] = torch.manual_seed(lowercase ) _lowerCamelCase : Dict = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCamelCase : str = output.images _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCamelCase : int = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
"""simple docstring""" def _snake_case ( lowercase__ ): _lowerCamelCase : str = len(lowercase__ ) for _ in range(lowercase__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: _lowerCamelCase, _lowerCamelCase : Optional[Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": lowercase__ = list(range(10, 0, -1)) print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = torch.load(lowercase__ , map_location='cpu' ) if "model" in sd.keys(): _lowerCamelCase : Tuple = torch.load(lowercase__ , map_location='cpu' )['model'] # pop unnecessary weights _lowerCamelCase : int = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) _lowerCamelCase : List[Any] = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : int = sd.pop(lowercase__ ) _lowerCamelCase : Union[str, Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Any = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : List[str] = key.replace('.qkv_proj.' , '.q_proj.' ) _lowerCamelCase : Optional[int] = key.replace('.qkv_proj.' , '.k_proj.' ) _lowerCamelCase : List[Any] = key.replace('.qkv_proj.' , '.v_proj.' ) _lowerCamelCase : str = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = torch.split(lowercase__ , depth // 3 , dim=0 ) _lowerCamelCase : Any = q _lowerCamelCase : Optional[Any] = k _lowerCamelCase : Tuple = v del sd[key] return sd @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__=None ): _lowerCamelCase : Optional[Any] = load_checkpoint(lowercase__ ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(lowercase__ ) else: _lowerCamelCase : Dict = OPTConfig() _lowerCamelCase : Any = OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") lowercase__ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
12
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowercase__ = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def _snake_case ( lowercase__ , lowercase__ ): warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , 'sklearn' ) return (preds == labels).mean() def _snake_case ( lowercase__ , lowercase__ ): warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , 'sklearn' ) _lowerCamelCase : Optional[int] = simple_accuracy(lowercase__ , lowercase__ ) _lowerCamelCase : int = fa_score(y_true=lowercase__ , y_pred=lowercase__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _snake_case ( lowercase__ , lowercase__ ): warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , 'sklearn' ) _lowerCamelCase : str = pearsonr(lowercase__ , lowercase__ )[0] _lowerCamelCase : Tuple = spearmanr(lowercase__ , lowercase__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , 'sklearn' ) assert len(lowercase__ ) == len(lowercase__ ), f'''Predictions and labels have mismatched lengths {len(lowercase__ )} and {len(lowercase__ )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(lowercase__ , lowercase__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "mrpc": return acc_and_fa(lowercase__ , lowercase__ ) elif task_name == "sts-b": return pearson_and_spearman(lowercase__ , lowercase__ ) elif task_name == "qqp": return acc_and_fa(lowercase__ , lowercase__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "rte": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "hans": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} else: raise KeyError(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , 'sklearn' ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError(f'''Predictions and labels have mismatched lengths {len(lowercase__ )} and {len(lowercase__ )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} else: raise KeyError(lowercase__ )
12
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
1
"""simple docstring""" import csv import tweepy # Twitter API credentials lowercase__ = """""" lowercase__ = """""" lowercase__ = """""" lowercase__ = """""" def _snake_case ( lowercase__ ): # authorize twitter, initialize tweepy _lowerCamelCase : int = tweepy.OAuthHandler(lowercase__ , lowercase__ ) auth.set_access_token(lowercase__ , lowercase__ ) _lowerCamelCase : Optional[Any] = tweepy.API(lowercase__ ) # initialize a list to hold all the tweepy Tweets _lowerCamelCase : Optional[int] = [] # make initial request for most recent tweets (200 is the maximum allowed count) _lowerCamelCase : List[str] = api.user_timeline(screen_name=lowercase__ , count=200 ) # save most recent tweets alltweets.extend(lowercase__ ) # save the id of the oldest tweet less one _lowerCamelCase : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase__ ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _lowerCamelCase : List[str] = api.user_timeline( screen_name=lowercase__ , count=200 , max_id=lowercase__ ) # save most recent tweets alltweets.extend(lowercase__ ) # update the id of the oldest tweet less one _lowerCamelCase : Optional[Any] = alltweets[-1].id - 1 print(f'''...{len(lowercase__ )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _lowerCamelCase : Any = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' , 'w' ) as f: _lowerCamelCase : Tuple = csv.writer(lowercase__ ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowercase__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
12
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
1
"""simple docstring""" class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Optional[Any] = n _lowerCamelCase : Tuple = [None] * self.n _lowerCamelCase : Any = 0 # index of the first element _lowerCamelCase : Any = 0 _lowerCamelCase : Optional[int] = 0 def __len__( self ): return self.size def A_ ( self ): return self.size == 0 def A_ ( self ): return False if self.is_empty() else self.array[self.front] def A_ ( self , lowercase ): if self.size >= self.n: raise Exception('QUEUE IS FULL' ) _lowerCamelCase : str = data _lowerCamelCase : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def A_ ( self ): if self.size == 0: raise Exception('UNDERFLOW' ) _lowerCamelCase : Union[str, Any] = self.array[self.front] _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = (self.front + 1) % self.n self.size -= 1 return temp
12
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """umt5""" lowerCamelCase__ = ["""past_key_values"""] def __init__( self , lowercase=250112 , lowercase=512 , lowercase=64 , lowercase=1024 , lowercase=8 , lowercase=None , lowercase=6 , lowercase=32 , lowercase=128 , lowercase=0.1 , lowercase=1E-6 , lowercase=1.0 , lowercase="gated-gelu" , lowercase=True , lowercase=True , lowercase="T5Tokenizer" , lowercase=True , lowercase=0 , lowercase=1 , lowercase=0 , **lowercase , ): super().__init__( is_encoder_decoder=lowercase , tokenizer_class=lowercase , tie_word_embeddings=lowercase , pad_token_id=lowercase , eos_token_id=lowercase , decoder_start_token_id=lowercase , **lowercase , ) _lowerCamelCase : Any = vocab_size _lowerCamelCase : str = d_model _lowerCamelCase : Dict = d_kv _lowerCamelCase : Tuple = d_ff _lowerCamelCase : Tuple = num_layers _lowerCamelCase : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCamelCase : Any = num_heads _lowerCamelCase : Optional[Any] = relative_attention_num_buckets _lowerCamelCase : List[str] = relative_attention_max_distance _lowerCamelCase : int = dropout_rate _lowerCamelCase : Union[str, Any] = layer_norm_epsilon _lowerCamelCase : int = initializer_factor _lowerCamelCase : List[Any] = feed_forward_proj _lowerCamelCase : Any = use_cache _lowerCamelCase : int = self.feed_forward_proj.split('-' ) _lowerCamelCase : Optional[int] = act_info[-1] _lowerCamelCase : List[str] = act_info[0] == 'gated' if len(lowercase ) > 1 and act_info[0] != "gated" or len(lowercase ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": _lowerCamelCase : Dict = 'gelu_new' @property def A_ ( self ): return self.d_model @property def A_ ( self ): return self.num_heads @property def A_ ( self ): return self.num_layers class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A_ ( self ): _lowerCamelCase : Optional[int] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: _lowerCamelCase : Any = 'past_encoder_sequence + sequence' _lowerCamelCase : Optional[Any] = {0: 'batch'} _lowerCamelCase : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _lowerCamelCase : Tuple = {0: 'batch', 1: 'decoder_sequence'} _lowerCamelCase : List[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A_ ( self ): return 13 @property def A_ ( self ): return 5E-4
12
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import heapq def _snake_case ( lowercase__ ): _lowerCamelCase : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase__ , [-1 * len(lowercase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices _lowerCamelCase : Any = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _lowerCamelCase : List[Any] = heapq.heappop(lowercase__ )[1][0] chosen_vertices.add(lowercase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _lowerCamelCase : List[str] = elem[1][1].index(lowercase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
12
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
1
"""simple docstring""" import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _snake_case ( lowercase__ ): _lowerCamelCase : int = tmp_path / 'file.csv' _lowerCamelCase : int = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return str(lowercase__ ) @pytest.fixture def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = tmp_path / 'malformed_file.csv' _lowerCamelCase : Dict = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return str(lowercase__ ) @pytest.fixture def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = tmp_path / 'csv_with_image.csv' _lowerCamelCase : List[Any] = textwrap.dedent( f'''\ image {image_file} ''' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return str(lowercase__ ) @pytest.fixture def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = tmp_path / 'csv_with_label.csv' _lowerCamelCase : int = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return str(lowercase__ ) @pytest.fixture def _snake_case ( lowercase__ ): _lowerCamelCase : str = tmp_path / 'csv_with_int_list.csv' _lowerCamelCase : List[Any] = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return str(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Any = Csv() _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowercase__ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(lowercase__ ) in record.message for record in caplog.records ) @require_pil def _snake_case ( lowercase__ ): with open(lowercase__ , encoding='utf-8' ) as f: _lowerCamelCase : Optional[int] = f.read().splitlines()[1] _lowerCamelCase : Tuple = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) _lowerCamelCase : Optional[int] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() _lowerCamelCase : Tuple = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def _snake_case ( lowercase__ ): with open(lowercase__ , encoding='utf-8' ) as f: _lowerCamelCase : Dict = f.read().splitlines()[1:] _lowerCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) _lowerCamelCase : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(lowercase__ ) for label in labels] def _snake_case ( lowercase__ ): _lowerCamelCase : List[str] = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda lowercase__ : [int(lowercase__ ) for i in x.split()]} ) _lowerCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : str = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) _lowerCamelCase : str = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
12
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
1
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
12
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
1
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowercase__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _snake_case ( lowercase__ ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): return max(metric_fn(lowercase__ , lowercase__ ) for gt in ground_truths ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = [line.strip() for line in open(lowercase__ , 'r' ).readlines()] _lowerCamelCase : Optional[Any] = [] if args.gold_data_mode == "qa": _lowerCamelCase : int = pd.read_csv(lowercase__ , sep='\t' , header=lowercase__ ) for answer_list in data[1]: _lowerCamelCase : Optional[int] = ast.literal_eval(lowercase__ ) answers.append(lowercase__ ) else: _lowerCamelCase : List[Any] = [line.strip() for line in open(lowercase__ , 'r' ).readlines()] _lowerCamelCase : Union[str, Any] = [[reference] for reference in references] _lowerCamelCase : List[str] = 0 for prediction, ground_truths in zip(lowercase__ , lowercase__ ): total += 1 em += metric_max_over_ground_truths(lowercase__ , lowercase__ , lowercase__ ) fa += metric_max_over_ground_truths(lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase : Optional[Any] = 1_0_0.0 * em / total _lowerCamelCase : Any = 1_0_0.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Any = args.k _lowerCamelCase : Dict = [line.strip() for line in open(lowercase__ , 'r' ).readlines()] _lowerCamelCase : Optional[Any] = [line.strip() for line in open(lowercase__ , 'r' ).readlines()] _lowerCamelCase : int = 0 for hypo, reference in zip(lowercase__ , lowercase__ ): _lowerCamelCase : int = set(hypo.split('\t' )[:k] ) _lowerCamelCase : Any = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCamelCase : str = 1_0_0.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): def strip_title(lowercase__ ): if title.startswith('"' ): _lowerCamelCase : List[str] = title[1:] if title.endswith('"' ): _lowerCamelCase : Union[str, Any] = title[:-1] return title _lowerCamelCase : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowercase__ , return_tensors='pt' , padding=lowercase__ , truncation=lowercase__ , )['input_ids'].to(args.device ) _lowerCamelCase : Optional[int] = rag_model.rag.question_encoder(lowercase__ ) _lowerCamelCase : Optional[Any] = question_enc_outputs[0] _lowerCamelCase : Any = rag_model.retriever( lowercase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) _lowerCamelCase : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCamelCase : List[Any] = [] for docs in all_docs: _lowerCamelCase : List[Any] = [strip_title(lowercase__ ) for title in docs['title']] provenance_strings.append('\t'.join(lowercase__ ) ) return provenance_strings def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): with torch.no_grad(): _lowerCamelCase : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowercase__ , return_tensors='pt' , padding=lowercase__ , truncation=lowercase__ ) _lowerCamelCase : List[Any] = inputs_dict.input_ids.to(args.device ) _lowerCamelCase : Optional[int] = inputs_dict.attention_mask.to(args.device ) _lowerCamelCase : Optional[int] = rag_model.generate( # rag_model overwrites generate lowercase__ , attention_mask=lowercase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowercase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCamelCase : Optional[int] = rag_model.retriever.generator_tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__ ) if args.print_predictions: for q, a in zip(lowercase__ , lowercase__ ): logger.info('Q: {} - A: {}'.format(lowercase__ , lowercase__ ) ) return answers def _snake_case ( ): _lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=lowercase__ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=lowercase__ , choices=['exact', 'compressed', 'legacy'] , type=lowercase__ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=lowercase__ , type=lowercase__ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=lowercase__ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=lowercase__ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=lowercase__ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=lowercase__ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=lowercase__ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=lowercase__ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=lowercase__ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=lowercase__ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=lowercase__ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : Any = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = {} if args.model_type is None: _lowerCamelCase : List[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): _lowerCamelCase : Tuple = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration _lowerCamelCase : str = args.n_docs if args.index_name is not None: _lowerCamelCase : List[str] = args.index_name if args.index_path is not None: _lowerCamelCase : Union[str, Any] = args.index_path else: _lowerCamelCase : List[Any] = BartForConditionalGeneration _lowerCamelCase : Optional[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , lowercase__ ) _lowerCamelCase : str = get_scores if args.eval_mode == 'e2e' else get_precision_at_k _lowerCamelCase : List[Any] = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(lowercase__ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(lowercase__ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): _lowerCamelCase : Any = RagRetriever.from_pretrained(lowercase__ , **lowercase__ ) _lowerCamelCase : Optional[int] = model_class.from_pretrained(lowercase__ , retriever=lowercase__ , **lowercase__ ) model.retriever.init_retrieval() else: _lowerCamelCase : Dict = model_class.from_pretrained(lowercase__ , **lowercase__ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: _lowerCamelCase : Union[str, Any] = [] for line in tqdm(lowercase__ ): questions.append(line.strip() ) if len(lowercase__ ) == args.eval_batch_size: _lowerCamelCase : List[str] = evaluate_batch_fn(lowercase__ , lowercase__ , lowercase__ ) preds_file.write('\n'.join(lowercase__ ) + '\n' ) preds_file.flush() _lowerCamelCase : Dict = [] if len(lowercase__ ) > 0: _lowerCamelCase : Optional[Any] = evaluate_batch_fn(lowercase__ , lowercase__ , lowercase__ ) preds_file.write('\n'.join(lowercase__ ) ) preds_file.flush() score_fn(lowercase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowercase__ = get_args() main(args)
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _snake_case ( lowercase__ ): _lowerCamelCase : str = [False] * len(lowercase__ ) _lowerCamelCase : Optional[int] = [-1] * len(lowercase__ ) def dfs(lowercase__ , lowercase__ ): _lowerCamelCase : Optional[int] = True _lowerCamelCase : Union[str, Any] = c for u in graph[v]: if not visited[u]: dfs(lowercase__ , 1 - c ) for i in range(len(lowercase__ ) ): if not visited[i]: dfs(lowercase__ , 0 ) for i in range(len(lowercase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowercase__ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
"""simple docstring""" lowercase__ = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] lowercase__ = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] lowercase__ = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] lowercase__ = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] lowercase__ = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] lowercase__ = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] lowercase__ = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] lowercase__ = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""image_processor""", """tokenizer"""] lowerCamelCase__ = """Pix2StructImageProcessor""" lowerCamelCase__ = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , lowercase , lowercase ): _lowerCamelCase : List[str] = False super().__init__(lowercase , lowercase ) def __call__( self , lowercase=None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 2048 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _lowerCamelCase : str = self.tokenizer _lowerCamelCase : Tuple = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _lowerCamelCase : List[str] = self.image_processor( lowercase , return_tensors=lowercase , max_patches=lowercase , **lowercase ) else: # add pixel_values and bbox _lowerCamelCase : Optional[Any] = self.image_processor( lowercase , return_tensors=lowercase , max_patches=lowercase , header_text=lowercase , **lowercase ) if text is not None and not self.image_processor.is_vqa: _lowerCamelCase : Union[str, Any] = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) if "attention_mask" in text_encoding: _lowerCamelCase : Optional[int] = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _lowerCamelCase : Optional[Any] = text_encoding.pop('input_ids' ) else: _lowerCamelCase : List[str] = None if text_encoding is not None: encoding_image_processor.update(lowercase ) return encoding_image_processor def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.tokenizer.model_input_names _lowerCamelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
"""simple docstring""" lowercase__ = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor lowercase__ = random.Random() def _snake_case ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ): if rng is None: _lowerCamelCase : List[str] = global_rng _lowerCamelCase : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=7 , lowercase=400 , lowercase=2000 , lowercase=24 , lowercase=24 , lowercase=0.0 , lowercase=16000 , lowercase=True , lowercase=True , ): _lowerCamelCase : Any = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : str = min_seq_length _lowerCamelCase : str = max_seq_length _lowerCamelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase : str = feature_size _lowerCamelCase : int = num_mel_bins _lowerCamelCase : str = padding_value _lowerCamelCase : int = sampling_rate _lowerCamelCase : Optional[int] = return_attention_mask _lowerCamelCase : str = do_normalize def A_ ( self ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A_ ( self , lowercase=False , lowercase=False ): def _flatten(lowercase ): return list(itertools.chain(*lowercase ) ) if equal_length: _lowerCamelCase : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCamelCase : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCamelCase : Dict = [np.asarray(lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = SpeechaTextFeatureExtractor if is_speech_available() else None def A_ ( self ): _lowerCamelCase : str = SpeechaTextFeatureExtractionTester(self ) def A_ ( self , lowercase ): self.assertTrue(np.all(np.mean(lowercase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase , axis=0 ) - 1 ) < 1E-3 ) ) def A_ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCamelCase : Dict = [np.asarray(lowercase ) for speech_input in speech_inputs] # Test feature size _lowerCamelCase : Optional[int] = feature_extractor(lowercase , padding=lowercase , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input _lowerCamelCase : Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _lowerCamelCase : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-3 ) ) # Test batched _lowerCamelCase : Union[str, Any] = feature_extractor(lowercase , return_tensors='np' ).input_features _lowerCamelCase : List[str] = feature_extractor(lowercase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase , lowercase ): self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _lowerCamelCase : List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowerCamelCase : Dict = np.asarray(lowercase ) _lowerCamelCase : str = feature_extractor(lowercase , return_tensors='np' ).input_features _lowerCamelCase : Any = feature_extractor(lowercase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase , lowercase ): self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-3 ) ) def A_ ( self ): _lowerCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCamelCase : str = ['longest', 'max_length', 'do_not_pad'] _lowerCamelCase : List[Any] = [None, 16, None] for max_length, padding in zip(lowercase , lowercase ): _lowerCamelCase : List[Any] = feature_extractor( lowercase , padding=lowercase , max_length=lowercase , return_attention_mask=lowercase ) _lowerCamelCase : str = inputs.input_features _lowerCamelCase : Tuple = inputs.attention_mask _lowerCamelCase : Dict = [np.sum(lowercase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCamelCase : List[str] = ['longest', 'max_length', 'do_not_pad'] _lowerCamelCase : Optional[Any] = [None, 16, None] for max_length, padding in zip(lowercase , lowercase ): _lowerCamelCase : Tuple = feature_extractor( lowercase , max_length=lowercase , padding=lowercase , return_tensors='np' , return_attention_mask=lowercase ) _lowerCamelCase : List[str] = inputs.input_features _lowerCamelCase : Optional[Any] = inputs.attention_mask _lowerCamelCase : str = [np.sum(lowercase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCamelCase : Union[str, Any] = feature_extractor( lowercase , padding='max_length' , max_length=4 , truncation=lowercase , return_tensors='np' , return_attention_mask=lowercase , ) _lowerCamelCase : Dict = inputs.input_features _lowerCamelCase : List[Any] = inputs.attention_mask _lowerCamelCase : Optional[int] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def A_ ( self ): _lowerCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCamelCase : Optional[int] = feature_extractor( lowercase , padding='longest' , max_length=4 , truncation=lowercase , return_tensors='np' , return_attention_mask=lowercase , ) _lowerCamelCase : Tuple = inputs.input_features _lowerCamelCase : Optional[int] = inputs.attention_mask _lowerCamelCase : List[Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) _lowerCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCamelCase : Tuple = feature_extractor( lowercase , padding='longest' , max_length=16 , truncation=lowercase , return_tensors='np' , return_attention_mask=lowercase , ) _lowerCamelCase : List[str] = inputs.input_features _lowerCamelCase : Tuple = inputs.attention_mask _lowerCamelCase : Optional[Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def A_ ( self ): import torch _lowerCamelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : Dict = np.random.rand(100 , 32 ).astype(np.floataa ) _lowerCamelCase : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase : Union[str, Any] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowerCamelCase : Any = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def A_ ( self , lowercase ): from datasets import load_dataset _lowerCamelCase : Union[str, Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _lowerCamelCase : Union[str, Any] = ds.sort('id' ).select(range(lowercase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def A_ ( self ): # fmt: off _lowerCamelCase : Tuple = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on _lowerCamelCase : List[Any] = self._load_datasamples(1 ) _lowerCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : List[Any] = feature_extractor(lowercase , return_tensors='pt' ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , lowercase , atol=1E-4 ) )
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("""fixtures""") lowercase__ = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") lowercase__ = get_tests_dir("""fixtures/dummy-config.json""") class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : str = 0 def A_ ( self ): _lowerCamelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : Tuple = AutoFeatureExtractor.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : int = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _lowerCamelCase : str = AutoFeatureExtractor.from_pretrained(lowercase ).to_dict() config_dict.pop('feature_extractor_type' ) _lowerCamelCase : List[str] = WavaVecaFeatureExtractor(**lowercase ) # save in new folder model_config.save_pretrained(lowercase ) config.save_pretrained(lowercase ) _lowerCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(lowercase ) # make sure private variable is not incorrectly saved _lowerCamelCase : Union[str, Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): with self.assertRaisesRegex( lowercase , 'bert-base is not a local folder and is not a valid model identifier' ): _lowerCamelCase : int = AutoFeatureExtractor.from_pretrained('bert-base' ) def A_ ( self ): with self.assertRaisesRegex( lowercase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _lowerCamelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase , revision='aaaaaa' ) def A_ ( self ): with self.assertRaisesRegex( lowercase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): _lowerCamelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def A_ ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase ): _lowerCamelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase ): _lowerCamelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase ) _lowerCamelCase : int = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase ) _lowerCamelCase : Any = AutoFeatureExtractor.from_pretrained(lowercase , trust_remote_code=lowercase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def A_ ( self ): try: AutoConfig.register('custom' , lowercase ) AutoFeatureExtractor.register(lowercase , lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase ): AutoFeatureExtractor.register(lowercase , lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : List[Any] = CustomFeatureExtractor.from_pretrained(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase ) _lowerCamelCase : Optional[int] = AutoFeatureExtractor.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def A_ ( self ): class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = True try: AutoConfig.register('custom' , lowercase ) AutoFeatureExtractor.register(lowercase , lowercase ) # If remote code is not set, the default is to use local _lowerCamelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _lowerCamelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _lowerCamelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
"""simple docstring""" def _snake_case ( lowercase__ ): if any(not isinstance(lowercase__ , lowercase__ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(lowercase__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowercase__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" import math import os import sys def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = '' try: with open(lowercase__ , 'rb' ) as binary_file: _lowerCamelCase : Union[str, Any] = binary_file.read() for dat in data: _lowerCamelCase : List[str] = f'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): lexicon.pop(lowercase__ ) _lowerCamelCase : Dict = last_match_id if math.loga(lowercase__ ).is_integer(): for curr_key in lexicon: _lowerCamelCase : int = '0' + lexicon[curr_key] _lowerCamelCase : Any = bin(lowercase__ )[2:] def _snake_case ( lowercase__ ): _lowerCamelCase : List[str] = {'0': '0', '1': '1'} _lowerCamelCase, _lowerCamelCase : List[Any] = '', '' _lowerCamelCase : Dict = len(lowercase__ ) for i in range(len(lowercase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCamelCase : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) index += 1 _lowerCamelCase : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _lowerCamelCase : Optional[Any] = lexicon[curr_string] result += last_match_id return result def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : str = os.path.getsize(lowercase__ ) _lowerCamelCase : Any = bin(lowercase__ )[2:] _lowerCamelCase : Union[str, Any] = len(lowercase__ ) return "0" * (length_length - 1) + file_length_binary + compressed def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Optional[int] = 8 try: with open(lowercase__ , 'wb' ) as opened_file: _lowerCamelCase : List[str] = [ to_write[i : i + byte_length] for i in range(0 , len(lowercase__ ) , lowercase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowercase__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Any = read_file_binary(lowercase__ ) _lowerCamelCase : Dict = compress_data(lowercase__ ) _lowerCamelCase : List[str] = add_file_length(lowercase__ , lowercase__ ) write_file_binary(lowercase__ , lowercase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
12
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
1
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = seq_length _lowerCamelCase : Optional[Any] = is_training _lowerCamelCase : Any = use_attention_mask _lowerCamelCase : Any = use_token_type_ids _lowerCamelCase : Dict = use_labels _lowerCamelCase : Any = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : List[Any] = type_sequence_label_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[Any] = num_choices def A_ ( self ): _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : List[str] = None if self.use_attention_mask: _lowerCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowercase , ) return config, input_ids, attention_mask def A_ ( self ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : Optional[int] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def A_ ( self ): _lowerCamelCase : Dict = FlaxDistilBertModelTester(self ) @slow def A_ ( self ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('distilbert-base-uncased' ) _lowerCamelCase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : List[Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) _lowerCamelCase : str = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCamelCase : Dict = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Dict = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : str = (1, 11, 768) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : Tuple = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
1
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = RoFormerTokenizer lowerCamelCase__ = RoFormerTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def A_ ( self ): super().setUp() def A_ ( self , **lowercase ): return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **lowercase ) def A_ ( self , **lowercase ): return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **lowercase ) def A_ ( self ): _lowerCamelCase : str = '永和服装饰品有限公司,今天天气非常好' _lowerCamelCase : Optional[int] = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def A_ ( self ): _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase, _lowerCamelCase : List[str] = self.get_chinese_input_output_texts() _lowerCamelCase : List[Any] = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , output_text.split() ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def A_ ( self ): _lowerCamelCase : int = self.get_rust_tokenizer() _lowerCamelCase, _lowerCamelCase : int = self.get_chinese_input_output_texts() _lowerCamelCase : int = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , output_text.split() ) _lowerCamelCase : List[Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Tuple = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def A_ ( self ): pass def A_ ( self ): pass def A_ ( self ): pass
12
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = KandinskyVaaImgaImgPipeline lowerCamelCase__ = ["""image_embeds""", """negative_image_embeds""", """image"""] lowerCamelCase__ = [ """image_embeds""", """negative_image_embeds""", """image""", ] lowerCamelCase__ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCamelCase__ = False @property def A_ ( self ): return 32 @property def A_ ( self ): return 32 @property def A_ ( self ): return self.time_input_dim @property def A_ ( self ): return self.time_input_dim * 4 @property def A_ ( self ): return 100 @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : int = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCamelCase : Union[str, Any] = UNetaDConditionModel(**lowercase ) return model @property def A_ ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def A_ ( self ): _lowerCamelCase : str = self.dummy_unet _lowerCamelCase : Union[str, Any] = self.dummy_movq _lowerCamelCase : str = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowerCamelCase : Union[str, Any] = DDIMScheduler(**lowercase ) _lowerCamelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def A_ ( self , lowercase , lowercase=0 ): _lowerCamelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase ) ).to(lowercase ) _lowerCamelCase : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase ) # create init_image _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase ) ).to(lowercase ) _lowerCamelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase : Any = Image.fromarray(np.uinta(lowercase ) ).convert('RGB' ).resize((256, 256) ) if str(lowercase ).startswith('mps' ): _lowerCamelCase : int = torch.manual_seed(lowercase ) else: _lowerCamelCase : int = torch.Generator(device=lowercase ).manual_seed(lowercase ) _lowerCamelCase : List[str] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def A_ ( self ): _lowerCamelCase : List[Any] = 'cpu' _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : List[Any] = self.pipeline_class(**lowercase ) _lowerCamelCase : Dict = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Any = pipe(**self.get_dummy_inputs(lowercase ) ) _lowerCamelCase : List[Any] = output.images _lowerCamelCase : Dict = pipe( **self.get_dummy_inputs(lowercase ) , return_dict=lowercase , )[0] _lowerCamelCase : int = image[0, -3:, -3:, -1] _lowerCamelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : Union[str, Any] = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) _lowerCamelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCamelCase : List[str] = 'A red cartoon frog, 4k' _lowerCamelCase : str = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase ) _lowerCamelCase : List[str] = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) _lowerCamelCase : Dict = pipeline.to(lowercase ) pipeline.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCamelCase, _lowerCamelCase : List[str] = pipe_prior( lowercase , generator=lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCamelCase : Optional[int] = pipeline( image=lowercase , image_embeds=lowercase , negative_image_embeds=lowercase , generator=lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) _lowerCamelCase : Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase , lowercase )
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """gpt_neo""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , lowercase=50257 , lowercase=2048 , lowercase=2048 , lowercase=24 , lowercase=[[["global", "local"], 12]] , lowercase=16 , lowercase=None , lowercase=256 , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=50256 , lowercase=50256 , **lowercase , ): _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Dict = num_layers _lowerCamelCase : Optional[int] = num_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : List[Any] = window_size _lowerCamelCase : Optional[Any] = activation_function _lowerCamelCase : List[Any] = resid_dropout _lowerCamelCase : Any = embed_dropout _lowerCamelCase : str = attention_dropout _lowerCamelCase : int = classifier_dropout _lowerCamelCase : Any = layer_norm_epsilon _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : int = use_cache _lowerCamelCase : Dict = bos_token_id _lowerCamelCase : Dict = eos_token_id _lowerCamelCase : Tuple = attention_types _lowerCamelCase : Optional[int] = self.expand_attention_types_params(lowercase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) @staticmethod def A_ ( lowercase ): _lowerCamelCase : Optional[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): import torch _lowerCamelCase : List[Any] = input.size() _lowerCamelCase : Dict = len(lowercase__ ) _lowerCamelCase : Optional[Any] = shape[dimension] _lowerCamelCase : int = torch.arange(0 , lowercase__ , lowercase__ ) _lowerCamelCase : Dict = torch.div(sizedim - size , lowercase__ , rounding_mode='floor' ) + 1 _lowerCamelCase : Dict = torch.arange(lowercase__ ) + low_indices[:min_length][:, None] _lowerCamelCase : Dict = [slice(lowercase__ )] * rank _lowerCamelCase : str = indices _lowerCamelCase : Optional[Any] = input[s] _lowerCamelCase : str = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ ): import torch _lowerCamelCase : Optional[Any] = torch.arange(1 , lowercase__ ) _lowerCamelCase : List[str] = torch.remainder(lowercase__ , lowercase__ ) _lowerCamelCase : Optional[Any] = remainders == 0 _lowerCamelCase : Union[str, Any] = candidates[divisor_indices] _lowerCamelCase : List[str] = torch.max(lowercase__ ) return largest_divisor, torch.div(lowercase__ , lowercase__ , rounding_mode='floor' ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @property def A_ ( self ): _lowerCamelCase : List[str] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowercase , direction='inputs' ) _lowerCamelCase : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: _lowerCamelCase : Dict = {0: 'batch', 1: 'sequence'} return common_inputs @property def A_ ( self ): return self._config.num_heads def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): _lowerCamelCase : Dict = super(lowercase , self ).generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) # We need to order the input in the way they appears in the forward() _lowerCamelCase : Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCamelCase, _lowerCamelCase : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowerCamelCase : Any = seqlen + 2 _lowerCamelCase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCamelCase : int = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers ) ] _lowerCamelCase : int = common_inputs['attention_mask'] if self.use_past: _lowerCamelCase : int = ordered_inputs['attention_mask'].dtype _lowerCamelCase : int = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) return ordered_inputs @property def A_ ( self ): return 13
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ ): # Checks if the entire collection has been sorted if len(lowercase__ ) <= 1 or n <= 1: return insert_next(lowercase__ , n - 1 ) rec_insertion_sort(lowercase__ , n - 1 ) def _snake_case ( lowercase__ , lowercase__ ): # Checks order between adjacent elements if index >= len(lowercase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _lowerCamelCase, _lowerCamelCase : Optional[Any] = ( collection[index], collection[index - 1], ) insert_next(lowercase__ , index + 1 ) if __name__ == "__main__": lowercase__ = input("""Enter integers separated by spaces: """) lowercase__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
12
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.0 , lowercase=0.1 , lowercase=True , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : Any = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : Union[str, Any] = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Optional[Any] = use_input_mask _lowerCamelCase : Any = use_token_type_ids _lowerCamelCase : int = use_labels _lowerCamelCase : int = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Dict = intermediate_multiple_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Optional[int] = hidden_dropout _lowerCamelCase : Tuple = attention_dropout _lowerCamelCase : int = weight_tying _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : List[str] = type_sequence_label_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[str] = num_labels _lowerCamelCase : str = num_choices _lowerCamelCase : List[str] = scope def A_ ( self ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Any = None if self.use_input_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Any = self.get_config() return config, input_ids, input_mask, token_labels def A_ ( self ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCamelCase : str = True return config, input_ids, input_mask, token_labels def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = GPTNeoXJapaneseModel(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[int] = model(lowercase , attention_mask=lowercase ) _lowerCamelCase : Tuple = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Tuple = True _lowerCamelCase : str = GPTNeoXJapaneseModel(lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Dict = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : str = GPTNeoXJapaneseForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : List[Any] = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Optional[Any] = GPTNeoXJapaneseForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() # first forward pass _lowerCamelCase : List[Any] = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCamelCase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCamelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCamelCase : Tuple = model(lowercase , attention_mask=lowercase , output_hidden_states=lowercase ) _lowerCamelCase : Any = output_from_no_past['hidden_states'][0] _lowerCamelCase : Optional[Any] = model( lowercase , attention_mask=lowercase , past_key_values=lowercase , output_hidden_states=lowercase , )['hidden_states'][0] # select random slice _lowerCamelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCamelCase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1E-3 ) ) def A_ ( self ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase__ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Tuple = GPTNeoXJapaneseModelTester(self ) _lowerCamelCase : Optional[int] = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowercase , lowercase , lowercase ) def A_ ( self ): # This regression test was failing with PyTorch < 1.3 _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCamelCase : int = None self.model_tester.create_and_check_model_as_decoder(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowercase ) @slow def A_ ( self ): _lowerCamelCase : Union[str, Any] = 'abeja/gpt-neox-japanese-2.7b' _lowerCamelCase : List[str] = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] _lowerCamelCase : Any = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] _lowerCamelCase : List[Any] = GPTNeoXJapaneseTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Any = GPTNeoXJapaneseForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : str = [] for prompt in prompts: _lowerCamelCase : Union[str, Any] = tokenizer(lowercase , return_tensors='pt' ).input_ids _lowerCamelCase : Tuple = model.generate(lowercase , max_length=50 ) _lowerCamelCase : str = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """speech_to_text_2""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowercase=10000 , lowercase=6 , lowercase=2048 , lowercase=4 , lowercase=0.0 , lowercase=True , lowercase="relu" , lowercase=256 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=2 , lowercase=True , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=1024 , **lowercase , ): _lowerCamelCase : Any = vocab_size _lowerCamelCase : Optional[Any] = d_model _lowerCamelCase : str = decoder_ffn_dim _lowerCamelCase : Tuple = decoder_layers _lowerCamelCase : str = decoder_attention_heads _lowerCamelCase : Dict = dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : Any = activation_dropout _lowerCamelCase : Optional[Any] = activation_function _lowerCamelCase : Dict = init_std _lowerCamelCase : Union[str, Any] = decoder_layerdrop _lowerCamelCase : Any = use_cache _lowerCamelCase : Dict = decoder_layers _lowerCamelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : Optional[int] = max_target_positions super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , decoder_start_token_id=lowercase , **lowercase , )
12
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
1
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") lowercase__ = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") lowercase__ = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = CamembertTokenizer lowerCamelCase__ = CamembertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def A_ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Optional[int] = CamembertTokenizer(lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self ): _lowerCamelCase : Optional[int] = '<pad>' _lowerCamelCase : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def A_ ( self ): _lowerCamelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowercase ) , 1004 ) def A_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def A_ ( self ): _lowerCamelCase : List[Any] = CamembertTokenizer(lowercase ) tokenizer.save_pretrained(self.tmpdirname ) _lowerCamelCase : int = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _lowerCamelCase : Any = 'I was born in 92000, and this is falsé.' _lowerCamelCase : str = tokenizer.encode(lowercase ) _lowerCamelCase : List[str] = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(lowercase ) _lowerCamelCase : Optional[Any] = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) def A_ ( self ): if not self.test_rust_tokenizer: return _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() _lowerCamelCase : List[Any] = 'I was born in 92000, and this is falsé.' _lowerCamelCase : Union[str, Any] = tokenizer.tokenize(lowercase ) _lowerCamelCase : List[Any] = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : str = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : List[str] = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : Optional[int] = self.get_rust_tokenizer() _lowerCamelCase : Any = tokenizer.encode(lowercase ) _lowerCamelCase : str = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) @slow def A_ ( self ): # fmt: off _lowerCamelCase : Union[str, Any] = {'input_ids': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _lowerCamelCase : List[Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=lowercase , )
12
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
1
"""simple docstring""" from __future__ import annotations import queue class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Optional[int] = data _lowerCamelCase : List[Any] = None _lowerCamelCase : Tuple = None def _snake_case ( ): print('\n********Press N to stop entering at any point of time********\n' ) _lowerCamelCase : Dict = input('Enter the value of the root node: ' ).strip().lower() _lowerCamelCase : queue.Queue = queue.Queue() _lowerCamelCase : List[str] = TreeNode(int(lowercase__ ) ) q.put(lowercase__ ) while not q.empty(): _lowerCamelCase : Union[str, Any] = q.get() _lowerCamelCase : Optional[int] = f'''Enter the left node of {node_found.data}: ''' _lowerCamelCase : Union[str, Any] = input(lowercase__ ).strip().lower() or 'n' if check == "n": return tree_node _lowerCamelCase : List[str] = TreeNode(int(lowercase__ ) ) _lowerCamelCase : int = left_node q.put(lowercase__ ) _lowerCamelCase : List[str] = f'''Enter the right node of {node_found.data}: ''' _lowerCamelCase : Optional[int] = input(lowercase__ ).strip().lower() or 'n' if check == "n": return tree_node _lowerCamelCase : str = TreeNode(int(lowercase__ ) ) _lowerCamelCase : Dict = right_node q.put(lowercase__ ) raise def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ) or not node: return _lowerCamelCase : queue.Queue = queue.Queue() q.put(lowercase__ ) while not q.empty(): _lowerCamelCase : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ) or not node: return _lowerCamelCase : queue.Queue = queue.Queue() q.put(lowercase__ ) while not q.empty(): _lowerCamelCase : Optional[int] = [] while not q.empty(): _lowerCamelCase : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowercase__ ) def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ) or not node: return _lowerCamelCase : list[TreeNode] = [] _lowerCamelCase : Tuple = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(lowercase__ ) _lowerCamelCase : Dict = n.left # end of while means current node doesn't have left child _lowerCamelCase : Union[str, Any] = stack.pop() # start to traverse its right child _lowerCamelCase : Tuple = n.right def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ) or not node: return _lowerCamelCase : list[TreeNode] = [] _lowerCamelCase : Dict = node while n or stack: while n: stack.append(lowercase__ ) _lowerCamelCase : int = n.left _lowerCamelCase : Dict = stack.pop() print(n.data , end=',' ) _lowerCamelCase : Union[str, Any] = n.right def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ) or not node: return _lowerCamelCase, _lowerCamelCase : str = [], [] _lowerCamelCase : List[Any] = node stacka.append(lowercase__ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCamelCase : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowercase__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def _snake_case ( lowercase__ = "" , lowercase__=50 , lowercase__="*" ): if not s: return "\n" + width * char _lowerCamelCase, _lowerCamelCase : int = divmod(width - len(lowercase__ ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowercase__ = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
12
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = """google/mobilebert-uncased""" def A_ ( self ): super().setUp() _lowerCamelCase : Tuple = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _lowerCamelCase : List[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def A_ ( self , lowercase ): _lowerCamelCase : Union[str, Any] = 'UNwant\u00E9d,running' _lowerCamelCase : Optional[Any] = 'unwanted, running' return input_text, output_text def A_ ( self ): _lowerCamelCase : Tuple = self.tokenizer_class(self.vocab_file ) _lowerCamelCase : List[Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowercase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [9, 6, 7, 12, 10, 11] ) def A_ ( self ): if not self.test_rust_tokenizer: return _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : List[str] = self.get_rust_tokenizer() _lowerCamelCase : List[str] = 'UNwant\u00E9d,running' _lowerCamelCase : Union[str, Any] = tokenizer.tokenize(lowercase ) _lowerCamelCase : Any = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : int = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : List[str] = self.get_rust_tokenizer() _lowerCamelCase : List[Any] = tokenizer.encode(lowercase ) _lowerCamelCase : int = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) # With lower casing _lowerCamelCase : Dict = self.get_tokenizer(do_lower_case=lowercase ) _lowerCamelCase : Tuple = self.get_rust_tokenizer(do_lower_case=lowercase ) _lowerCamelCase : Any = 'UNwant\u00E9d,running' _lowerCamelCase : List[Any] = tokenizer.tokenize(lowercase ) _lowerCamelCase : Optional[Any] = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : List[Any] = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : Optional[int] = self.get_rust_tokenizer() _lowerCamelCase : str = tokenizer.encode(lowercase ) _lowerCamelCase : int = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def A_ ( self ): _lowerCamelCase : Optional[int] = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self ): _lowerCamelCase : Optional[int] = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self ): _lowerCamelCase : Optional[Any] = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self ): _lowerCamelCase : str = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self ): _lowerCamelCase : List[str] = BasicTokenizer(do_lower_case=lowercase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def A_ ( self ): _lowerCamelCase : Any = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _lowerCamelCase : Optional[int] = {} for i, token in enumerate(lowercase ): _lowerCamelCase : Optional[Any] = i _lowerCamelCase : Tuple = WordpieceTokenizer(vocab=lowercase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def A_ ( self ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def A_ ( self ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def A_ ( self ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : str = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowercase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def A_ ( self ): _lowerCamelCase : List[str] = self.tokenizer_class.from_pretrained('google/mobilebert-uncased' ) _lowerCamelCase : List[str] = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) _lowerCamelCase : Any = tokenizer.build_inputs_with_special_tokens(lowercase ) _lowerCamelCase : int = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def A_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _lowerCamelCase : Optional[Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _lowerCamelCase : Optional[Any] = tokenizer_r.encode_plus( lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase , ) _lowerCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(lowercase , 'do_lower_case' ) else False _lowerCamelCase : int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def A_ ( self ): _lowerCamelCase : Optional[int] = ['的', '人', '有'] _lowerCamelCase : str = ''.join(lowercase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : int = True _lowerCamelCase : Optional[Any] = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _lowerCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _lowerCamelCase : List[str] = tokenizer_p.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : List[str] = tokenizer_r.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Any = tokenizer_r.convert_ids_to_tokens(lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(lowercase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : Tuple = False _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _lowerCamelCase : List[str] = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer_r.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Dict = tokenizer_p.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Tuple = tokenizer_r.convert_ids_to_tokens(lowercase ) _lowerCamelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(lowercase ) # it is expected that only the first Chinese character is not preceded by "##". _lowerCamelCase : Any = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowercase ) ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , lowercase )
12
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
1
"""simple docstring""" from collections import namedtuple lowercase__ = namedtuple("""from_to""", """from_ to""") lowercase__ = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00454, 264.172), """cubicyard""": from_to(0.76455, 1.30795), """cubicfoot""": from_to(0.028, 35.3147), """cup""": from_to(0.000236588, 4226.75), } def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ', '.join(lowercase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ', '.join(lowercase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
1
"""simple docstring""" import math def _snake_case ( lowercase__ , lowercase__ ): return math.pow(lowercase__ , 2 ) - a def _snake_case ( lowercase__ ): return 2 * x def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = 2.0 while start <= a: _lowerCamelCase : List[Any] = math.pow(lowercase__ , 2 ) return start def _snake_case ( lowercase__ , lowercase__ = 9999 , lowercase__ = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ): if a < 0: raise ValueError('math domain error' ) _lowerCamelCase : Optional[Any] = get_initial_point(lowercase__ ) for _ in range(lowercase__ ): _lowerCamelCase : Dict = value _lowerCamelCase : Optional[Any] = value - fx(lowercase__ , lowercase__ ) / fx_derivative(lowercase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
12
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
1
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
"""simple docstring""" import functools def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : int = len(lowercase__ ) _lowerCamelCase : Any = len(lowercase__ ) @functools.cache def min_distance(lowercase__ , lowercase__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _lowerCamelCase : int = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowercase__ ) , 1 + min_distance(lowercase__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
"""simple docstring""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( ): _lowerCamelCase : str = input('Enter message: ' ) _lowerCamelCase : Optional[int] = input('Enter key [alphanumeric]: ' ) _lowerCamelCase : Dict = input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): _lowerCamelCase : Union[str, Any] = 'encrypt' _lowerCamelCase : List[Any] = encrypt_message(lowercase__ , lowercase__ ) elif mode.lower().startswith('d' ): _lowerCamelCase : List[str] = 'decrypt' _lowerCamelCase : Any = decrypt_message(lowercase__ , lowercase__ ) print(f'''\n{mode.title()}ed message:''' ) print(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ ): return translate_message(lowercase__ , lowercase__ , 'encrypt' ) def _snake_case ( lowercase__ , lowercase__ ): return translate_message(lowercase__ , lowercase__ , 'decrypt' ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = 0 _lowerCamelCase : List[Any] = key.upper() for symbol in message: _lowerCamelCase : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowercase__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowercase__ ): _lowerCamelCase : Optional[Any] = 0 else: translated.append(lowercase__ ) return "".join(lowercase__ ) if __name__ == "__main__": main()
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
"""simple docstring""" from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = SMALL_MODEL_IDENTIFIER _lowerCamelCase : List[str] = 'pt' _lowerCamelCase : int = 'tf' def A_ ( self , lowercase ): _lowerCamelCase : Tuple = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=lowercase ) model_tf.save_pretrained(lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = 'mock_framework' # Framework provided - return whatever the user provides _lowerCamelCase : List[Any] = FeaturesManager.determine_framework(self.test_model , lowercase ) self.assertEqual(lowercase , lowercase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase ) _lowerCamelCase : Tuple = FeaturesManager.determine_framework(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase ) _lowerCamelCase : Dict = FeaturesManager.determine_framework(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) def A_ ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase ) _lowerCamelCase : Optional[int] = FeaturesManager.determine_framework(lowercase ) self.assertEqual(lowercase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase ) _lowerCamelCase : List[str] = FeaturesManager.determine_framework(lowercase ) self.assertEqual(lowercase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowercase ): _lowerCamelCase : int = FeaturesManager.determine_framework(lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = MagicMock(return_value=lowercase ) with patch('transformers.onnx.features.is_tf_available' , lowercase ): _lowerCamelCase : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCamelCase : Tuple = MagicMock(return_value=lowercase ) with patch('transformers.onnx.features.is_torch_available' , lowercase ): _lowerCamelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCamelCase : Tuple = MagicMock(return_value=lowercase ) _lowerCamelCase : Tuple = MagicMock(return_value=lowercase ) with patch('transformers.onnx.features.is_tf_available' , lowercase ), patch( 'transformers.onnx.features.is_torch_available' , lowercase ): _lowerCamelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase , self.framework_pt ) # Both not in environment -> raise error _lowerCamelCase : Tuple = MagicMock(return_value=lowercase ) _lowerCamelCase : Tuple = MagicMock(return_value=lowercase ) with patch('transformers.onnx.features.is_tf_available' , lowercase ), patch( 'transformers.onnx.features.is_torch_available' , lowercase ): with self.assertRaises(lowercase ): _lowerCamelCase : Optional[Any] = FeaturesManager.determine_framework(self.test_model )
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): _lowerCamelCase : List[Any] = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _lowerCamelCase : str = { 'a': 0.0_8_4_9_7, 'b': 0.0_1_4_9_2, 'c': 0.0_2_2_0_2, 'd': 0.0_4_2_5_3, 'e': 0.1_1_1_6_2, 'f': 0.0_2_2_2_8, 'g': 0.0_2_0_1_5, 'h': 0.0_6_0_9_4, 'i': 0.0_7_5_4_6, 'j': 0.0_0_1_5_3, 'k': 0.0_1_2_9_2, 'l': 0.0_4_0_2_5, 'm': 0.0_2_4_0_6, 'n': 0.0_6_7_4_9, 'o': 0.0_7_5_0_7, 'p': 0.0_1_9_2_9, 'q': 0.0_0_0_9_5, 'r': 0.0_7_5_8_7, 's': 0.0_6_3_2_7, 't': 0.0_9_3_5_6, 'u': 0.0_2_7_5_8, 'v': 0.0_0_9_7_8, 'w': 0.0_2_5_6_0, 'x': 0.0_0_1_5_0, 'y': 0.0_1_9_9_4, 'z': 0.0_0_0_7_7, } else: # Custom frequencies dictionary _lowerCamelCase : Tuple = frequencies_dict if not case_sensitive: _lowerCamelCase : List[Any] = ciphertext.lower() # Chi squared statistic values _lowerCamelCase : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): _lowerCamelCase : int = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _lowerCamelCase : int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _lowerCamelCase : Optional[Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _lowerCamelCase : Optional[Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _lowerCamelCase : Any = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _lowerCamelCase : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula _lowerCamelCase : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _lowerCamelCase : str = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _lowerCamelCase : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula _lowerCamelCase : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _lowerCamelCase : Tuple = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ ) -> tuple[float, str]: return chi_squared_statistic_values[key] _lowerCamelCase : int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( _lowerCamelCase ), ( _lowerCamelCase ), ) : str = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """spiece.model"""} lowercase__ = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 lowercase__ = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } lowercase__ = """▁""" class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase , lowercase="</s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase=100 , lowercase=None , lowercase = None , lowercase=True , **lowercase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _lowerCamelCase : Optional[int] = [F'''<extra_id_{i}>''' for i in range(lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _lowerCamelCase : str = len(set(filter(lambda lowercase : bool('extra_id' in str(lowercase ) ) , lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) _lowerCamelCase : Optional[int] = legacy _lowerCamelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , extra_ids=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , legacy=lowercase , **lowercase , ) _lowerCamelCase : Union[str, Any] = vocab_file _lowerCamelCase : Optional[Any] = extra_ids _lowerCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) @staticmethod def A_ ( lowercase , lowercase , lowercase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _lowerCamelCase : str = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , lowercase , ) return max_model_length @property def A_ ( self ): return self.sp_model.get_piece_size() + self._extra_ids def A_ ( self ): _lowerCamelCase : Dict = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase )) + [1] return ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1] def A_ ( self ): return list( set(filter(lambda lowercase : bool(re.search(r'<extra_id_\d+>' , lowercase ) ) is not None , self.additional_special_tokens ) ) ) def A_ ( self ): return [self._convert_token_to_id(lowercase ) for token in self.get_sentinel_tokens()] def A_ ( self , lowercase ): if len(lowercase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Optional[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Tuple = self._add_eos_if_not_present(lowercase ) if token_ids_a is None: return token_ids_a else: _lowerCamelCase : Tuple = self._add_eos_if_not_present(lowercase ) return token_ids_a + token_ids_a def __getstate__( self ): _lowerCamelCase : Optional[Any] = self.__dict__.copy() _lowerCamelCase : int = None return state def __setstate__( self , lowercase ): _lowerCamelCase : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCamelCase : str = {} _lowerCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self , lowercase , **lowercase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _lowerCamelCase : Optional[int] = SPIECE_UNDERLINE + text.replace(lowercase , ' ' ) return super().tokenize(lowercase , **lowercase ) def A_ ( self , lowercase , **lowercase ): if not self.legacy: _lowerCamelCase : Tuple = text.startswith(lowercase ) if is_first: _lowerCamelCase : List[Any] = text[1:] _lowerCamelCase : str = self.sp_model.encode(lowercase , out_type=lowercase ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(lowercase ): _lowerCamelCase : Union[str, Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def A_ ( self , lowercase ): if token.startswith('<extra_id_' ): _lowerCamelCase : int = re.match(r'<extra_id_(\d+)>' , lowercase ) _lowerCamelCase : List[str] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowercase ) def A_ ( self , lowercase ): if index < self.sp_model.get_piece_size(): _lowerCamelCase : Optional[Any] = self.sp_model.IdToPiece(lowercase ) else: _lowerCamelCase : Any = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def A_ ( self , lowercase ): _lowerCamelCase : List[str] = [] _lowerCamelCase : List[Any] = '' _lowerCamelCase : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : List[str] = [] else: current_sub_tokens.append(lowercase ) _lowerCamelCase : Tuple = False out_string += self.sp_model.decode(lowercase ) return out_string.strip() def A_ ( self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : List[str] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , 'wb' ) as fi: _lowerCamelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """yolos""" def __init__( self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=[512, 864] , lowercase=16 , lowercase=3 , lowercase=True , lowercase=100 , lowercase=True , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=0.1 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Any = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : List[str] = layer_norm_eps _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : Union[str, Any] = patch_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : List[Any] = qkv_bias _lowerCamelCase : List[str] = num_detection_tokens _lowerCamelCase : List[str] = use_mid_position_embeddings _lowerCamelCase : str = auxiliary_loss # Hungarian matcher _lowerCamelCase : List[str] = class_cost _lowerCamelCase : Union[str, Any] = bbox_cost _lowerCamelCase : Optional[Any] = giou_cost # Loss coefficients _lowerCamelCase : Optional[Any] = bbox_loss_coefficient _lowerCamelCase : Optional[Any] = giou_loss_coefficient _lowerCamelCase : Tuple = eos_coefficient class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = version.parse("""1.11""" ) @property def A_ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A_ ( self ): return 1E-4 @property def A_ ( self ): return 12
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
1
"""simple docstring""" from PIL import Image def _snake_case ( lowercase__ , lowercase__ ): def brightness(lowercase__ ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(lowercase__ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowercase__ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """vision-encoder-decoder""" lowerCamelCase__ = True def __init__( self , **lowercase ): super().__init__(**lowercase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'''A configuraton of type {self.model_type} cannot be instantiated because ''' F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _lowerCamelCase : Dict = kwargs.pop('encoder' ) _lowerCamelCase : Any = encoder_config.pop('model_type' ) _lowerCamelCase : str = kwargs.pop('decoder' ) _lowerCamelCase : Optional[Any] = decoder_config.pop('model_type' ) _lowerCamelCase : Tuple = AutoConfig.for_model(lowercase , **lowercase ) _lowerCamelCase : Tuple = AutoConfig.for_model(lowercase , **lowercase ) _lowerCamelCase : Dict = True @classmethod def A_ ( cls , lowercase , lowercase , **lowercase ): logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCamelCase : Tuple = True _lowerCamelCase : Optional[int] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowercase ) def A_ ( self ): _lowerCamelCase : int = copy.deepcopy(self.__dict__ ) _lowerCamelCase : List[Any] = self.encoder.to_dict() _lowerCamelCase : Union[str, Any] = self.decoder.to_dict() _lowerCamelCase : Dict = self.__class__.model_type return output class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = version.parse("""1.11""" ) @property def A_ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A_ ( self ): return 1E-4 @property def A_ ( self ): return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @property def A_ ( self ): _lowerCamelCase : Optional[int] = OrderedDict() _lowerCamelCase : int = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowerCamelCase : Tuple = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowerCamelCase : Any = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): import torch _lowerCamelCase : str = OrderedDict() _lowerCamelCase : Union[str, Any] = super().generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = dummy_input['input_ids'].shape _lowerCamelCase : Optional[Any] = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCamelCase : Optional[int] = dummy_input.pop('input_ids' ) _lowerCamelCase : str = dummy_input.pop('attention_mask' ) _lowerCamelCase : int = torch.zeros(lowercase ) return common_inputs class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @property def A_ ( self ): pass def A_ ( self , lowercase ): return VisionEncoderDecoderEncoderOnnxConfig(lowercase ) def A_ ( self , lowercase , lowercase , lowercase = "default" ): _lowerCamelCase : str = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowercase , lowercase )
12
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
1