code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = RoCBertTokenizer __UpperCAmelCase : Any = None __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[Any] = True __UpperCAmelCase : str = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] __a = {} __a = {} for i, value in enumerate(_a ): __a = i __a = i __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(_a , _a , ensure_ascii=_a ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(_a , _a , ensure_ascii=_a ) def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __a = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(_a , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_a ) , [5, 6, 2, 5, 7, 8] ) def __UpperCAmelCase ( self ): __a = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = RoCBertBasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = RoCBertWordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: __a = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __a = tokenizer.encode('''你好''' , add_special_tokens=_a ) __a = tokenizer.encode('''你是谁''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __UpperCAmelCase ( self ): __a = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __a = '''你好,你是谁''' __a = tokenizer.tokenize(_a ) __a = tokenizer.convert_tokens_to_ids(_a ) __a = tokenizer.convert_tokens_to_shape_ids(_a ) __a = tokenizer.convert_tokens_to_pronunciation_ids(_a ) __a = tokenizer.prepare_for_model( _a , _a , _a , add_special_tokens=_a ) __a = tokenizer.encode_plus(_a , add_special_tokens=_a ) self.assertEqual(_a , _a )
358
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
0
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> list: __a = [] __a , __a = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __a = result + left + right return input_list def lowercase ( lowerCAmelCase__ : list ) -> list: if len(lowerCAmelCase__ ) <= 1: return input_list __a = list(lowerCAmelCase__ ) # iteration for two-way merging __a = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): __a = i __a = i + p - 1 __a = (low + high + 1) // 2 __a = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): __a = i __a = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": lowercase_ = [] else: lowercase_ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
359
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = load_tool('''text-question-answering''' ) self.tool.setup() __a = load_tool('''text-question-answering''' , remote=_a ) def __UpperCAmelCase ( self ): __a = self.tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
11
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowercase_ = logging.getLogger(__name__) lowercase_ = "pytorch_model.bin" @dataclasses.dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) __UpperCAmelCase : Optional[str] = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) __UpperCAmelCase : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) __UpperCAmelCase : Optional[str] = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'A csv or a json file containing the validation data.'} ) __UpperCAmelCase : Optional[str] = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The name of the task to train on.'} , ) __UpperCAmelCase : Optional[List[str]] = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) __UpperCAmelCase : Optional[str] = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) __UpperCAmelCase : Optional[str] = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) __UpperCAmelCase : Optional[int] = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) __UpperCAmelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) __UpperCAmelCase : Optional[bool] = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) __UpperCAmelCase : Optional[bool] = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) __UpperCAmelCase : Optional[bool] = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) __UpperCAmelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) __UpperCAmelCase : Optional[int] = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) __UpperCAmelCase : Optional[int] = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Random seed for initialization.'} , ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: __a = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a = dataset.filter(lambda lowerCAmelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a = int(eval_result * len(lowerCAmelCase__ ) ) print(lowerCAmelCase__ ) __a = dataset.sort('''probability''' , reverse=lowerCAmelCase__ ) __a = dataset.select(range(lowerCAmelCase__ ) ) __a = dataset.remove_columns(['''label''', '''probability'''] ) __a = dataset.rename_column('''prediction''' , '''label''' ) __a = dataset.map(lambda lowerCAmelCase__ : {"label": idalabel[example["label"]]} ) __a = dataset.shuffle(seed=args.seed ) __a = os.path.join(lowerCAmelCase__ , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowerCAmelCase__ , index=lowerCAmelCase__ ) else: dataset.to_json(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[Any] ) -> str: __a = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a = STModelArguments(model_name_or_path=lowerCAmelCase__ ) __a = STDataArguments(train_file=lowerCAmelCase__ , infer_file=lowerCAmelCase__ ) __a = STTrainingArguments(output_dir=lowerCAmelCase__ ) __a = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowerCAmelCase__ ).items(): setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for key, value in kwargs.items(): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Sanity checks __a = {} __a = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a = args.train_file __a = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a = args.eval_file for key in data_files: __a = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: __a = extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) __a = f'''{args.output_dir}/self-train_iter-{{}}'''.format __a = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) accelerator.wait_for_everyone() __a = None __a = None __a = 0 __a = False # Show the progress bar __a = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a = data_dir_format(lowerCAmelCase__ ) assert os.path.exists(lowerCAmelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a = os.path.join(lowerCAmelCase__ , '''stage-1''' ) __a = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): arguments_dict.update({key: value} ) __a = os.path.join(lowerCAmelCase__ , '''best-checkpoint''' , lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , lowerCAmelCase__ , lowerCAmelCase__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , lowerCAmelCase__ ) finetune(**lowerCAmelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , lowerCAmelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a = os.path.join(lowerCAmelCase__ , '''best-checkpoint''' ) __a = os.path.join(lowerCAmelCase__ , '''stage-2''' ) # Update arguments_dict __a = model_path __a = data_files['''train'''] __a = current_output_dir __a = os.path.join(lowerCAmelCase__ , '''best-checkpoint''' , lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , lowerCAmelCase__ , lowerCAmelCase__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , lowerCAmelCase__ ) finetune(**lowerCAmelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , lowerCAmelCase__ ) __a = iteration __a = data_dir_format(iteration + 1 ) __a = AutoConfig.from_pretrained(os.path.join(lowerCAmelCase__ , '''best-checkpoint''' ) ) __a = config.idalabel __a = os.path.join(lowerCAmelCase__ , '''eval_results_best-checkpoint.json''' ) __a = os.path.join(lowerCAmelCase__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''r''' ) as f: __a = float(json.load(lowerCAmelCase__ )[args.eval_metric] ) __a = os.path.join(lowerCAmelCase__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(lowerCAmelCase__ ) # Loading the dataset from local csv or json files. __a = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] __a = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) shutil.copy(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowerCAmelCase__ ): shutil.copy(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.wait_for_everyone() __a = os.path.join(lowerCAmelCase__ , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a = eval_result if best_iteration is None: __a = new_iteration __a = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a = new_iteration __a = new_eval_result __a = 0 else: if new_eval_result == best_eval_result: __a = new_iteration __a = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , lowerCAmelCase__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase__ , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowerCAmelCase__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase__ , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowerCAmelCase__ , '''eval_results_best-iteration.json''' ) , )
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowercase ( ) -> Dict: __a = HfArgumentParser(lowerCAmelCase__ ) __a = parser.parse_args_into_dataclasses()[0] __a = TensorFlowBenchmark(args=lowerCAmelCase__ ) try: __a = parser.parse_args_into_dataclasses()[0] except ValueError as e: __a = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' __a = ''' '''.join(str(lowerCAmelCase__ ).split(''' ''' )[:-1] ) __a = '''''' __a = eval(str(lowerCAmelCase__ ).split(''' ''' )[-1] ) __a = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __a = full_error_msg + begin_error_msg + str(lowerCAmelCase__ ) raise ValueError(lowerCAmelCase__ ) benchmark.run() if __name__ == "__main__": main()
361
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: __a = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase ( lowerCAmelCase__ : int ) -> None: __a = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('''''' ) print(len(lowerCAmelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
11
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = XGLMTokenizer __UpperCAmelCase : Any = XGLMTokenizerFast __UpperCAmelCase : Tuple = True __UpperCAmelCase : str = True def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = XGLMTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self ): __a = '''<pad>''' __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __UpperCAmelCase ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(_a ) , 1_008 ) def __UpperCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def __UpperCAmelCase ( self ): __a = XGLMTokenizer(_a , keep_accents=_a ) __a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __UpperCAmelCase ( self ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __UpperCAmelCase ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_a , f.name ) __a = XGLMTokenizer(f.name , keep_accents=_a ) __a = pickle.dumps(_a ) pickle.loads(_a ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''I was born in 92000, and this is falsé.''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) @slow def __UpperCAmelCase ( self ): __a = '''Hello World!''' __a = [2, 31_227, 4_447, 35] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __UpperCAmelCase ( self ): __a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off __a = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __UpperCAmelCase ( self ): # fmt: off __a = { '''input_ids''': [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''facebook/xglm-564M''' , padding=_a , )
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
11
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) __UpperCAmelCase : ClassVar[Features] = Features({'audio': Audio()} ) __UpperCAmelCase : ClassVar[Features] = Features({'transcription': Value('string' )} ) __UpperCAmelCase : str = "audio" __UpperCAmelCase : str = "transcription" def __UpperCAmelCase ( self , _a ): if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , _a ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) __a = copy.deepcopy(self ) __a = self.input_schema.copy() __a = features[self.audio_column] __a = input_schema return task_template @property def __UpperCAmelCase ( self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
363
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'vit_mae' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = decoder_num_attention_heads __a = decoder_hidden_size __a = decoder_num_hidden_layers __a = decoder_intermediate_size __a = mask_ratio __a = norm_pix_loss
11
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Dict ) -> int: __a = len(lowerCAmelCase__ ) __a = sum(lowerCAmelCase__ ) __a = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __a = True for i in range(1 , s + 1 ): __a = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __a = dp[i][j - 1] if arr[i - 1] <= j: __a = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __a = s - 2 * j break return diff
364
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
0
"""simple docstring""" import requests from bsa import BeautifulSoup def lowercase ( lowerCAmelCase__ : str = "https://www.worldometers.info/coronavirus" ) -> dict: __a = BeautifulSoup(requests.get(lowerCAmelCase__ ).text , '''html.parser''' ) __a = soup.findAll('''h1''' ) __a = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCAmelCase__ , lowerCAmelCase__ )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
365
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : str = 2 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ): if trained_betas is not None: __a = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCAmelCase ( self , _a , _a=None ): if schedule_timesteps is None: __a = self.timesteps __a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a = 1 if len(_a ) > 1 else 0 else: __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __a = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _a , _a , ): __a = self.index_for_timestep(_a ) if self.state_in_first_order: __a = self.sigmas[step_index] else: __a = self.sigmas_interpol[step_index] __a = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _a , _a = None , _a = None , ): __a = num_inference_steps __a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a = torch.from_numpy(np.log(_a ) ).to(_a ) __a = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __a = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a = torch.cat([timesteps[:1], interleaved_timesteps] ) __a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a ): # get log sigma __a = sigma.log() # get distribution __a = log_sigma - self.log_sigmas[:, None] # get sigmas range __a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a = low_idx + 1 __a = self.log_sigmas[low_idx] __a = self.log_sigmas[high_idx] # interpolate sigmas __a = (low - log_sigma) / (low - high) __a = w.clamp(0 , 1 ) # transform interpolation to time range __a = (1 - w) * low_idx + w * high_idx __a = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ): return self.sample is None def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ): __a = self.index_for_timestep(_a ) # advance index counter by 1 __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a = self.sigmas[step_index] __a = self.sigmas_interpol[step_index + 1] __a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a = self.sigmas[step_index - 1] __a = self.sigmas_interpol[step_index] __a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a = 0 __a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a = sigma_interpol - sigma_hat # store for 2nd order step __a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a = sigma_next - sigma_hat __a = self.sample __a = None __a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a = self.timesteps.to(original_samples.device ) __a = timesteps.to(original_samples.device ) __a = [self.index_for_timestep(_a , _a ) for t in timesteps] __a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a = sigma.unsqueeze(-1 ) __a = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
11
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'rwkv' __UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ): __a = vocab_size __a = context_length __a = hidden_size __a = num_hidden_layers __a = attention_hidden_size if attention_hidden_size is not None else hidden_size __a = intermediate_size if intermediate_size is not None else 4 * hidden_size __a = layer_norm_epsilon __a = rescale_every __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
11
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } lowercase_ = { "facebook/nllb-large-en-ro": 1_0_2_4, "facebook/nllb-200-distilled-600M": 1_0_2_4, } # fmt: off lowercase_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[str] = ['input_ids', 'attention_mask'] __UpperCAmelCase : Any = NllbTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a=False , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token __a = legacy_behaviour super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''eng_Latn''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "eng_Latn" , _a = None , _a = "fra_Latn" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: __a = [] __a = [self.eos_token_id, self.cur_lang_code] else: __a = [self.cur_lang_code] __a = [self.eos_token_id] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: __a = [] __a = [self.eos_token_id, self.cur_lang_code] else: __a = [self.cur_lang_code] __a = [self.eos_token_id] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
367
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = (UnCLIPScheduler,) def __UpperCAmelCase ( self , **_a ): __a = { '''num_train_timesteps''': 1_000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_a ) return config def __UpperCAmelCase ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __UpperCAmelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a ) def __UpperCAmelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __UpperCAmelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_a ) def __UpperCAmelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a ) def __UpperCAmelCase ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a , prev_timestep=_a ) def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''fixed_small_log''' ) __a = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''learned_range''' ) __a = scheduler_class(**_a ) __a = 0.5 assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_a ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_a ) - -0.001_0011 < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) # 2. predict previous mean of sample x_t-1 __a = scheduler.step(_a , _a , _a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) scheduler.set_timesteps(25 ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) if i + 1 == timesteps.shape[0]: __a = None else: __a = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __a = scheduler.step( _a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): pass
11
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowercase_ = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") lowercase_ = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowercase_ = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowercase_ = sorted(arg_to_scheduler.keys()) lowercase_ = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self , _a , _a=None , _a="base" , _a=None , _a=None , _a=None , **_a , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_a ) __a = 0 __a = Path(self.hparams.output_dir ) __a = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __a = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=_a , **_a , ) else: __a = config __a = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , _a , _a ): assert hasattr(self.config , _a ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , _a , getattr(self.hparams , _a ) ) if tokenizer is None: __a = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_a , ) else: __a = tokenizer __a = MODEL_MODES[mode] if model is None: __a = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_a , ) else: __a = model def __UpperCAmelCase ( self , *_a , **_a ): __a = self.model_type.from_pretrained(*_a , **_a ) def __UpperCAmelCase ( self ): __a = arg_to_scheduler[self.hparams.lr_scheduler] __a = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __a = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def __UpperCAmelCase ( self ): __a = self.model __a = ['''bias''', '''LayerNorm.weight'''] __a = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: __a = Adafactor( _a , lr=self.hparams.learning_rate , scale_parameter=_a , relative_step=_a ) else: __a = AdamW( _a , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __a = optimizer __a = self.get_lr_scheduler() return [optimizer], [scheduler] def __UpperCAmelCase ( self , _a , _a ): return self.validation_step(_a , _a ) def __UpperCAmelCase ( self , _a ): return self.validation_end(_a ) def __UpperCAmelCase ( self ): __a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __UpperCAmelCase ( self , _a ): if stage == "test": __a = len(self.test_dataloader().dataset ) else: __a = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=_a ) __a = len(self.train_dataloader().dataset ) def __UpperCAmelCase ( self , _a , _a , _a = False ): raise NotImplementedError('''You must implement this for your task''' ) def __UpperCAmelCase ( self ): return self.train_loader def __UpperCAmelCase ( self ): return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=_a ) def __UpperCAmelCase ( self ): return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=_a ) def __UpperCAmelCase ( self , _a ): return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( _a , list(filter(_a , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __UpperCAmelCase ( self , _a ): __a = self.output_dir.joinpath('''best_tfmr''' ) __a = self.step_count self.model.save_pretrained(_a ) self.tokenizer.save_pretrained(_a ) @staticmethod def __UpperCAmelCase ( _a , _a ): parser.add_argument( '''--model_name_or_path''' , default=_a , type=_a , required=_a , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=_a , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=_a , type=_a , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''cache''' ) , type=_a , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=_a , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=_a , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=_a , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=_a , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=_a , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=_a , metavar=_a , type=_a , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=_a , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=_a , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=_a , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=_a , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=_a ) parser.add_argument('''--train_batch_size''' , default=32 , type=_a ) parser.add_argument('''--eval_batch_size''' , default=32 , type=_a ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class __lowerCAmelCase ( pl.Callback ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a ): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_a ) class __lowerCAmelCase ( pl.Callback ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a ): __a = trainer.lr_schedulers[0]['''scheduler'''] __a = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_a ) def __UpperCAmelCase ( self , _a , _a ): rank_zero_info('''***** Validation results *****''' ) __a = trainer.callback_metrics # Log results for key in sorted(_a ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(_a , str(metrics[key] ) ) ) def __UpperCAmelCase ( self , _a , _a ): rank_zero_info('''***** Test results *****''' ) __a = trainer.callback_metrics # Log and save results to file __a = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(_a , '''w''' ) as writer: for key in sorted(_a ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(_a , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(_a , str(metrics[key] ) ) ) def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase__ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase__ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase__ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase__ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase__ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase__ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase__ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase__ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase__ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def lowercase ( lowerCAmelCase__ : BaseTransformer , lowerCAmelCase__ : argparse.Namespace , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : int=[] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : str , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __a = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase__ ) # add custom checkpoints if checkpoint_callback is None: __a = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase__ ) if logging_callback is None: __a = LoggingCallback() __a = {} if args.fpaa: __a = 16 if args.gpus > 1: __a = '''auto''' __a = '''ddp''' __a = args.accumulate_grad_batches __a = None __a = '''auto''' __a = pl.Trainer.from_argparse_args( lowerCAmelCase__ , weights_summary=lowerCAmelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase__ , ) if args.do_train: trainer.fit(lowerCAmelCase__ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
368
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0 __a = image[None].transpose(0 , 3 , 1 , 2 ) __a = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , ): super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , PIL.Image.Image ): __a = 1 elif isinstance(_a , torch.Tensor ): __a = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' ) if isinstance(_a , PIL.Image.Image ): __a = preprocess(_a ) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters() ).dtype __a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __a = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1 ) __a = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __a = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(_a ).sample __a = torch.clamp(_a , -1.0 , 1.0 ) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
11
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_attention_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_choices def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_attention_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = True __a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = True __UpperCAmelCase : List[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self ): __a = FlaxRobertaPreLayerNormModelTester(self ) @slow def __UpperCAmelCase ( self ): for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=_a ) __a = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=_a ) __a = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __a = model(_a )[0] __a = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _a ) # compare the actual values for a slice. __a = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=_a ) __a = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __a = model(_a )[0] # compare the actual values for a slice. __a = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
369
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = DistilBertTokenizer __UpperCAmelCase : Any = DistilBertTokenizerFast __UpperCAmelCase : int = True @slow def __UpperCAmelCase ( self ): __a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
11
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
370
"""simple docstring""" from math import factorial, radians def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float: __a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians __a = radians(lowerCAmelCase__ ) __a = angle_in_radians __a = 3 __a = -1 for _ in range(lowerCAmelCase__ ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ ) __a = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __import__("doctest").testmod()
11
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(lowerCAmelCase__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase ( lowerCAmelCase__ : dict ) -> tuple: return (data["data"], data["target"]) def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray: __a = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ ) # Predict target for test data __a = xgb.predict(lowerCAmelCase__ ) __a = predictions.reshape(len(lowerCAmelCase__ ) , 1 ) return predictions def lowercase ( ) -> None: __a = fetch_california_housing() __a , __a = data_handling(lowerCAmelCase__ ) __a , __a , __a , __a = train_test_split( lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 ) __a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
11
0
"""simple docstring""" from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase_ = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any=None ) -> Any: require_version(deps[pkg] , lowerCAmelCase__ )
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
"""simple docstring""" import itertools import os import re __lowerCAmelCase = re.compile(r"([A-Z]+)([A-Z][a-z])") __lowerCAmelCase = re.compile(r"([a-z\d])([A-Z])") __lowerCAmelCase = re.compile(r"(?<!_)_(?!_)") __lowerCAmelCase = re.compile(r"(_{2,})") __lowerCAmelCase = r"^\w+(\.\w+)*$" __lowerCAmelCase = r"<>:/\|?*" def lowercase ( lowerCAmelCase__ : List[Any] ) -> Optional[int]: __a = _uppercase_uppercase_re.sub(r'''\1_\2''' , lowerCAmelCase__ ) __a = _lowercase_uppercase_re.sub(r'''\1_\2''' , lowerCAmelCase__ ) return name.lower() def lowercase ( lowerCAmelCase__ : Tuple ) -> Union[str, Any]: __a = _single_underscore_re.split(lowerCAmelCase__ ) __a = [_multiple_underscores_re.split(lowerCAmelCase__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowerCAmelCase__ ) if n != '''''' ) def lowercase ( lowerCAmelCase__ : List[Any] ) -> Optional[Any]: if os.path.basename(lowerCAmelCase__ ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ) -> Tuple: if os.path.basename(lowerCAmelCase__ ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , lowerCAmelCase__ ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(lowerCAmelCase__ )}-{split}''' def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int]=None ) -> Dict: __a = filename_prefix_for_split(lowerCAmelCase__ , lowerCAmelCase__ ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' __a = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) return f'''{filepath}*''' def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Any=None ) -> Optional[int]: __a = filename_prefix_for_split(lowerCAmelCase__ , lowerCAmelCase__ ) __a = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if shard_lengths: __a = len(lowerCAmelCase__ ) __a = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(lowerCAmelCase__ )] if filetype_suffix: __a = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: __a = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
351
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'funnel' __UpperCAmelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = block_sizes __a = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __a = num_decoder_layers __a = d_model __a = n_head __a = d_head __a = d_inner __a = hidden_act __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = initializer_range __a = initializer_std __a = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __a = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __a = attention_type __a = separate_cls __a = truncate_seq __a = pool_q_only super().__init__(**_a ) @property def __UpperCAmelCase ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __UpperCAmelCase ( self ): return len(self.block_sizes ) @num_blocks.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
11
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowercase_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowercase_ = typing.Union[np.floataa, int, float] # noqa: UP007 def lowercase ( lowerCAmelCase__ : Vector , lowerCAmelCase__ : Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(lowerCAmelCase__ ) - np.asarray(lowerCAmelCase__ )) ** 2 ) ) def lowercase ( lowerCAmelCase__ : Vector , lowerCAmelCase__ : Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def lowercase ( ) -> None: from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10000 , globals=globals() , ) ) benchmark()
352
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) __a = image_processor.post_process_semantic_segmentation(outputs=_a ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
11
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase_ = parser.parse_args() lowercase_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase_ = CLIPImageProcessor() lowercase_ = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
353
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def __UpperCAmelCase ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __UpperCAmelCase ( self ): self.enable_attention_slicing(_a ) def __UpperCAmelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): __a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __a = self.segmentation_model(**_a ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
11
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a=None , _a=None ): __a = start __a = end __a = val __a = (start + end) // 2 __a = left __a = right def __repr__( self ): return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = collection __a = function if self.collection: __a = self._build_tree(0 , len(_a ) - 1 ) def __UpperCAmelCase ( self , _a , _a ): self._update_tree(self.root , _a , _a ) def __UpperCAmelCase ( self , _a , _a ): return self._query_range(self.root , _a , _a ) def __UpperCAmelCase ( self , _a , _a ): if start == end: return SegmentTreeNode(_a , _a , self.collection[start] ) __a = (start + end) // 2 __a = self._build_tree(_a , _a ) __a = self._build_tree(mid + 1 , _a ) return SegmentTreeNode(_a , _a , self.fn(left.val , right.val ) , _a , _a ) def __UpperCAmelCase ( self , _a , _a , _a ): if node.start == i and node.end == i: __a = val return if i <= node.mid: self._update_tree(node.left , _a , _a ) else: self._update_tree(node.right , _a , _a ) __a = self.fn(node.left.val , node.right.val ) def __UpperCAmelCase ( self , _a , _a , _a ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _a , _a ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _a , node.mid ) , self._query_range(node.right , node.mid + 1 , _a ) , ) else: # range in right child tree return self._query_range(node.right , _a , _a ) def __UpperCAmelCase ( self ): if self.root is not None: __a = Queue() queue.put(self.root ) while not queue.empty(): __a = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 5_0) lowercase_ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
354
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , **_a ): __a = {} if "candidate_labels" in kwargs: __a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ): if isinstance(_a , _a ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(_a ).content else: with open(_a , '''rb''' ) as f: __a = f.read() if isinstance(_a , _a ): __a = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a = candidate_labels __a = [hypothesis_template.format(_a ) for x in candidate_labels] __a = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) __a = [text_inputs] return inputs def __UpperCAmelCase ( self , _a ): __a = model_inputs.pop('''candidate_labels''' ) __a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _a ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**_a , **_a ) __a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , _a ): __a = model_outputs.pop('''candidate_labels''' ) __a = model_outputs['''logits'''][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
11
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=32 , _a=2 , _a=3 , _a=16 , _a=[1, 2, 1] , _a=[2, 2, 4] , _a=2 , _a=2.0 , _a=True , _a=0.0 , _a=0.0 , _a=0.1 , _a="gelu" , _a=False , _a=True , _a=0.02 , _a=1E-5 , _a=True , _a=None , _a=True , _a=10 , _a=8 , _a=["stage1", "stage2", "stage3"] , _a=[1, 2, 3] , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = embed_dim __a = depths __a = num_heads __a = window_size __a = mlp_ratio __a = qkv_bias __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = drop_path_rate __a = hidden_act __a = use_absolute_embeddings __a = patch_norm __a = layer_norm_eps __a = initializer_range __a = is_training __a = scope __a = use_labels __a = type_sequence_label_size __a = encoder_stride __a = out_features __a = out_indices def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __UpperCAmelCase ( self , _a , _a , _a ): __a = MaskFormerSwinModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) __a = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __a = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __UpperCAmelCase ( self , _a , _a , _a ): __a = MaskFormerSwinBackbone(config=_a ) model.to(_a ) model.eval() __a = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_a ): __a = ['''stem'''] __a = MaskFormerSwinBackbone(config=_a ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __UpperCAmelCase : Optional[Any] = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} __UpperCAmelCase : Dict = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MaskFormerSwinModelTester(self ) __a = ConfigTester(self , config_class=_a , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ): return def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) @unittest.skip('''Swin does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Swin does not support feedforward chunking''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_a ) , _a ) # Swin has a different seq_length __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __a = True self.check_hidden_states_output(_a , _a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(_a , _a , _a , _a ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __a = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __a = True self.check_hidden_states_output(_a , _a , _a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(_a , _a , _a , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_a ): __a = 0 return t def check_equivalence(_a , _a , _a , _a={} ): with torch.no_grad(): __a = model(**_a , return_dict=_a , **_a ) __a = model(**_a , return_dict=_a , **_a ).to_tuple() def recursive_check(_a , _a ): if isinstance(_a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_a , _a ): recursive_check(_a , _a ) elif isinstance(_a , _a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_a , _a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_a ) , set_nan_tensor_to_zero(_a ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_a ).any()} and `inf`: {torch.isinf(_a )}. Dict has''' f''' `nan`: {torch.isnan(_a ).any()} and `inf`: {torch.isinf(_a )}.''' ) , ) recursive_check(_a , _a ) for model_class in self.all_model_classes: __a = model_class(_a ) model.to(_a ) model.eval() __a = self._prepare_for_class(_a , _a ) __a = self._prepare_for_class(_a , _a ) check_equivalence(_a , _a , _a ) __a = self._prepare_for_class(_a , _a , return_labels=_a ) __a = self._prepare_for_class(_a , _a , return_labels=_a ) check_equivalence(_a , _a , _a ) __a = self._prepare_for_class(_a , _a ) __a = self._prepare_for_class(_a , _a ) check_equivalence(_a , _a , _a , {'''output_hidden_states''': True} ) __a = self._prepare_for_class(_a , _a , return_labels=_a ) __a = self._prepare_for_class(_a , _a , return_labels=_a ) check_equivalence(_a , _a , _a , {'''output_hidden_states''': True} ) @require_torch class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () __UpperCAmelCase : Union[str, Any] = MaskFormerSwinConfig def __UpperCAmelCase ( self ): __a = MaskFormerSwinModelTester(self ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: __a = backbone_class(_a ) backbone.to(_a ) backbone.eval() __a = backbone(**_a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __a = backbone(**_a , output_hidden_states=_a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __a , __a , __a = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __a = backbone(**_a , output_attentions=_a ) self.assertIsNotNone(outputs.attentions )
355
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __a = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sgugger/tiny-distilbert-classification''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` __a = None __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , ) __a = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , '''sequential''' ) ) self.assertTrue(hasattr(_a , '''cumulative''' ) ) self.assertTrue(hasattr(_a , '''current''' ) ) self.assertTrue(hasattr(_a , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
11
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") lowercase_ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __UpperCAmelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The input training data file (a text file).'} ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) __UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __UpperCAmelCase ( self ): if self.train_file is not None: __a = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __a = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : PreTrainedTokenizerBase __UpperCAmelCase : Union[bool, str, PaddingStrategy] = True __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[int] = None def __call__( self , _a ): __a = '''label''' if '''label''' in features[0].keys() else '''labels''' __a = [feature.pop(_a ) for feature in features] __a = len(_a ) __a = len(features[0]['''input_ids'''] ) __a = [ [{k: v[i] for k, v in feature.items()} for i in range(_a )] for feature in features ] __a = list(chain(*_a ) ) __a = self.tokenizer.pad( _a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten __a = {k: v.view(_a , _a , -1 ) for k, v in batch.items()} # Add back labels __a = torch.tensor(_a , dtype=torch.intaa ) return batch def lowercase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __a = {} if data_args.train_file is not None: __a = data_args.train_file if data_args.validation_file is not None: __a = data_args.validation_file __a = data_args.train_file.split('''.''' )[-1] __a = load_dataset( lowerCAmelCase__ , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __a = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __a = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __a = [f'''ending{i}''' for i in range(4 )] __a = '''sent1''' __a = '''sent2''' if data_args.max_seq_length is None: __a = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) __a = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __a = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCAmelCase__ : List[Any] ): __a = [[context] * 4 for context in examples[context_name]] __a = examples[question_header_name] __a = [ [f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCAmelCase__ ) ] # Flatten out __a = list(chain(*lowerCAmelCase__ ) ) __a = list(chain(*lowerCAmelCase__ ) ) # Tokenize __a = tokenizer( lowerCAmelCase__ , lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) __a = raw_datasets['''train'''] if data_args.max_train_samples is not None: __a = min(len(lowerCAmelCase__ ) , data_args.max_train_samples ) __a = train_dataset.select(range(lowerCAmelCase__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): __a = train_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) __a = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: __a = min(len(lowerCAmelCase__ ) , data_args.max_eval_samples ) __a = eval_dataset.select(range(lowerCAmelCase__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): __a = eval_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __a = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCAmelCase__ : int ): __a , __a = eval_predictions __a = np.argmax(lowerCAmelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __a = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , ) # Training if training_args.do_train: __a = None if training_args.resume_from_checkpoint is not None: __a = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a = last_checkpoint __a = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload __a = train_result.metrics __a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) __a = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics('''train''' , lowerCAmelCase__ ) trainer.save_metrics('''train''' , lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __a = trainer.evaluate() __a = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) __a = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' , lowerCAmelCase__ ) trainer.save_metrics('''eval''' , lowerCAmelCase__ ) __a = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
356
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int ) -> bool: if num < 0: return False __a = num __a = 0 while num > 0: __a = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a , _a ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def __UpperCAmelCase ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __UpperCAmelCase ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a , _a ): with strategy.scope(): __a = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a , _a ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
11
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase_ = TypeVar("T") class __lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self , _a , _a ): __a = None __a = len(_a ) __a = [any_type for _ in range(self.N )] + arr __a = fnc self.build() def __UpperCAmelCase ( self ): for p in range(self.N - 1 , 0 , -1 ): __a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , _a , _a ): p += self.N __a = v while p > 1: __a = p // 2 __a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , _a , _a ): # noqa: E741 __a , __a = l + self.N, r + self.N __a = None while l <= r: if l % 2 == 1: __a = self.st[l] if res is None else self.fn(_a , self.st[l] ) if r % 2 == 0: __a = self.st[r] if res is None else self.fn(_a , self.st[r] ) __a , __a = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase_ = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] lowercase_ = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } lowercase_ = SegmentTree(test_array, min) lowercase_ = SegmentTree(test_array, max) lowercase_ = SegmentTree(test_array, lambda a, b: a + b) def lowercase ( ) -> None: for i in range(len(lowerCAmelCase__ ) ): for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): __a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) __a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) __a = reduce(lambda lowerCAmelCase__ , lowerCAmelCase__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert max_range == max_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert sum_range == sum_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) test_all_segments() for index, value in test_updates.items(): lowercase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
358
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
0
"""simple docstring""" from collections import namedtuple lowercase_ = namedtuple("from_to", "from_ to") lowercase_ = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1_0_0_0), "kilolitre": from_to(1, 1), "gallon": from_to(0.00454, 264.172), "cubicyard": from_to(0.76455, 1.30795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.000236588, 4226.75), } def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ''', '''.join(lowerCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ''', '''.join(lowerCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = load_tool('''text-question-answering''' ) self.tool.setup() __a = load_tool('''text-question-answering''' , remote=_a ) def __UpperCAmelCase ( self ): __a = self.tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
11
0
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ = object() # For specifying empty leaf dict `{}` lowercase_ = object() def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] ) -> Optional[int]: __a = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(lowerCAmelCase__ ) - len(lowerCAmelCase__ ) + 1 ): __a = [x.match(lowerCAmelCase__ ) for x, y in zip(lowerCAmelCase__ , ks[i:] )] if matches and all(lowerCAmelCase__ ): return True return False def lowercase ( lowerCAmelCase__ : List[Any] ) -> Any: def replace(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ): for rule, replacement in rules: if _match(lowerCAmelCase__ , lowerCAmelCase__ ): return replacement return val return replace def lowercase ( ) -> List[Any]: return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , lowerCAmelCase__ )), (("transformer", "wte", "embedding"), P('''mp''' , lowerCAmelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowerCAmelCase__ , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , lowerCAmelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowerCAmelCase__ , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , lowerCAmelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a = _get_partition_rules() __a = _replacement_rules(lowerCAmelCase__ ) __a = {k: _unmatched for k in flatten_dict(lowerCAmelCase__ )} __a = {k: replace(lowerCAmelCase__ , lowerCAmelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowerCAmelCase__ ) )
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'roformer' def __init__( self , _a=50_000 , _a=None , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1_536 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a=False , _a=True , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size if embedding_size is None else embedding_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = rotary_value __a = use_cache class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} __a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
361
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: __a = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase ( lowerCAmelCase__ : int ) -> None: __a = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('''''' ) print(len(lowerCAmelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
11
0
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict=None ) -> Tuple: __a = None if token is not None: __a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} __a = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __a = requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__ ).json() __a = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __a = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(lowerCAmelCase__ ): __a = requests.get(url + f'''&page={i + 2}''' , headers=lowerCAmelCase__ ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Any: __a = None if token is not None: __a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} __a = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' __a = requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__ ).json() __a = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) __a = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(lowerCAmelCase__ ): __a = requests.get(url + f'''&page={i + 2}''' , headers=lowerCAmelCase__ ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: __a = None if token is not None: __a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} __a = requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__ , allow_redirects=lowerCAmelCase__ ) __a = result.headers['''Location'''] __a = requests.get(lowerCAmelCase__ , allow_redirects=lowerCAmelCase__ ) __a = os.path.join(lowerCAmelCase__ , f'''{artifact_name}.zip''' ) with open(lowerCAmelCase__ , '''wb''' ) as fp: fp.write(response.content ) def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict=None ) -> Optional[Any]: __a = [] __a = [] __a = None with zipfile.ZipFile(lowerCAmelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(lowerCAmelCase__ ) as f: for line in f: __a = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __a = line[: line.index(''': ''' )] __a = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed __a = line[len('''FAILED ''' ) :] failed_tests.append(lowerCAmelCase__ ) elif filename == "job_name.txt": __a = line if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(lowerCAmelCase__ )} for `errors` ''' f'''and {len(lowerCAmelCase__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' ''' problem.''' ) __a = None if job_name and job_links: __a = job_links.get(lowerCAmelCase__ , lowerCAmelCase__ ) # A list with elements of the form (line of error, error, failed test) __a = [x + [y] + [job_link] for x, y in zip(lowerCAmelCase__ , lowerCAmelCase__ )] return result def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]=None ) -> Any: __a = [] __a = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for p in os.listdir(lowerCAmelCase__ ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(lowerCAmelCase__ , job_links=lowerCAmelCase__ ) ) return errors def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=None ) -> List[str]: __a = Counter() counter.update([x[1] for x in logs] ) __a = counter.most_common() __a = {} for error, count in counts: if error_filter is None or error not in error_filter: __a = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} __a = dict(sorted(r.items() , key=lambda lowerCAmelCase__ : item[1]["count"] , reverse=lowerCAmelCase__ ) ) return r def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> int: __a = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): __a = test.split('''/''' )[2] else: __a = None return test def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None ) -> str: __a = [(x[0], x[1], get_model(x[2] )) for x in logs] __a = [x for x in logs if x[2] is not None] __a = {x[2] for x in logs} __a = {} for test in tests: __a = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __a = counter.most_common() __a = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __a = sum(error_counts.values() ) if n_errors > 0: __a = {'''count''': n_errors, '''errors''': error_counts} __a = dict(sorted(r.items() , key=lambda lowerCAmelCase__ : item[1]["count"] , reverse=lowerCAmelCase__ ) ) return r def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> List[str]: __a = '''| no. | error | status |''' __a = '''|-:|:-|:-|''' __a = [header, sep] for error in reduced_by_error: __a = reduced_by_error[error]['''count'''] __a = f'''| {count} | {error[:100]} | |''' lines.append(lowerCAmelCase__ ) return "\n".join(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : int ) -> Optional[Any]: __a = '''| model | no. of errors | major error | count |''' __a = '''|-:|-:|-:|-:|''' __a = [header, sep] for model in reduced_by_model: __a = reduced_by_model[model]['''count'''] __a , __a = list(reduced_by_model[model]['''errors'''].items() )[0] __a = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(lowerCAmelCase__ ) return "\n".join(lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") lowercase_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowercase_ = get_job_links(args.workflow_run_id, token=args.token) lowercase_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowercase_ = k.find(" / ") lowercase_ = k[index + len(" / ") :] lowercase_ = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowercase_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowercase_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowercase_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowercase_ = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowercase_ = reduce_by_error(errors) lowercase_ = reduce_by_model(errors) lowercase_ = make_github_table(reduced_by_error) lowercase_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
11
0
"""simple docstring""" from math import factorial def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float ) -> float: if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) __a = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __a = float(factorial(lowerCAmelCase__ ) ) coefficient /= factorial(lowerCAmelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
363
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'vit_mae' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = decoder_num_attention_heads __a = decoder_hidden_size __a = decoder_num_hidden_layers __a = decoder_intermediate_size __a = mask_ratio __a = norm_pix_loss
11
0
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] ) -> List[Any]: # Load checkpoint __a = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) __a = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository __a = {} for k, v in state_dict.items(): if "pred_layer" in k: __a = v else: __a = v __a = chkpt['''params'''] __a = {n: v for n, v in config.items() if not isinstance(lowerCAmelCase__ , (torch.FloatTensor, numpy.ndarray) )} __a = chkpt['''dico_word2id'''] __a = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model __a = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __a = pytorch_dump_folder_path + '''/''' + CONFIG_NAME __a = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , indent=2 ) + '''\n''' ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , indent=2 ) + '''\n''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
364
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
0
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = ComputeEnvironment.AMAZON_SAGEMAKER __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[Any] = 'ml.p3.2xlarge' __UpperCAmelCase : List[str] = 'accelerate_sagemaker_execution_role' __UpperCAmelCase : Optional[Any] = 'hf-sm' __UpperCAmelCase : Optional[int] = 'us-east-1' __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : List[str] = 'accelerate-sagemaker-1' __UpperCAmelCase : int = '1.6' __UpperCAmelCase : List[Any] = '4.4' __UpperCAmelCase : Any = 'train.py' __UpperCAmelCase : Tuple = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] __UpperCAmelCase : Optional[Any] = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , _a ) assert isinstance(converted_args['''do_train'''] , _a ) assert isinstance(converted_args['''epochs'''] , _a ) assert isinstance(converted_args['''learning_rate'''] , _a ) assert isinstance(converted_args['''max_steps'''] , _a ) with pytest.raises(_a ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
365
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : str = 2 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ): if trained_betas is not None: __a = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCAmelCase ( self , _a , _a=None ): if schedule_timesteps is None: __a = self.timesteps __a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a = 1 if len(_a ) > 1 else 0 else: __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __a = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _a , _a , ): __a = self.index_for_timestep(_a ) if self.state_in_first_order: __a = self.sigmas[step_index] else: __a = self.sigmas_interpol[step_index] __a = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _a , _a = None , _a = None , ): __a = num_inference_steps __a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a = torch.from_numpy(np.log(_a ) ).to(_a ) __a = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __a = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a = torch.cat([timesteps[:1], interleaved_timesteps] ) __a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a ): # get log sigma __a = sigma.log() # get distribution __a = log_sigma - self.log_sigmas[:, None] # get sigmas range __a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a = low_idx + 1 __a = self.log_sigmas[low_idx] __a = self.log_sigmas[high_idx] # interpolate sigmas __a = (low - log_sigma) / (low - high) __a = w.clamp(0 , 1 ) # transform interpolation to time range __a = (1 - w) * low_idx + w * high_idx __a = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ): return self.sample is None def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ): __a = self.index_for_timestep(_a ) # advance index counter by 1 __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a = self.sigmas[step_index] __a = self.sigmas_interpol[step_index + 1] __a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a = self.sigmas[step_index - 1] __a = self.sigmas_interpol[step_index] __a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a = 0 __a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a = sigma_interpol - sigma_hat # store for 2nd order step __a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a = sigma_next - sigma_hat __a = self.sample __a = None __a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a = self.timesteps.to(original_samples.device ) __a = timesteps.to(original_samples.device ) __a = [self.index_for_timestep(_a , _a ) for t in timesteps] __a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a = sigma.unsqueeze(-1 ) __a = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
11
0
"""simple docstring""" lowercase_ = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } lowercase_ = {value: key for key, value in encode_dict.items()} def lowercase ( lowerCAmelCase__ : str ) -> str: __a = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def lowercase ( lowerCAmelCase__ : str ) -> str: if set(lowerCAmelCase__ ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) __a = '''''' for word in coded.split(): while len(lowerCAmelCase__ ) != 0: decoded += decode_dict[word[:5]] __a = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'rwkv' __UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ): __a = vocab_size __a = context_length __a = hidden_size __a = num_hidden_layers __a = attention_hidden_size if attention_hidden_size is not None else hidden_size __a = intermediate_size if intermediate_size is not None else 4 * hidden_size __a = layer_norm_epsilon __a = rescale_every __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
11
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
367
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = (UnCLIPScheduler,) def __UpperCAmelCase ( self , **_a ): __a = { '''num_train_timesteps''': 1_000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_a ) return config def __UpperCAmelCase ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __UpperCAmelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a ) def __UpperCAmelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __UpperCAmelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_a ) def __UpperCAmelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a ) def __UpperCAmelCase ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a , prev_timestep=_a ) def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''fixed_small_log''' ) __a = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''learned_range''' ) __a = scheduler_class(**_a ) __a = 0.5 assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_a ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_a ) - -0.001_0011 < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) # 2. predict previous mean of sample x_t-1 __a = scheduler.step(_a , _a , _a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) scheduler.set_timesteps(25 ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) if i + 1 == timesteps.shape[0]: __a = None else: __a = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __a = scheduler.step( _a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): pass
11
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" lowercase_ = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" lowercase_ = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __UpperCAmelCase ( self , _a , _a , _a = False , _a = False , _a = False , _a = False , ): __a = len(references[0] ) if any(len(_a ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __a = [[refs[i] for refs in references] for i in range(_a )] __a = TER( normalized=_a , no_punct=_a , asian_support=_a , case_sensitive=_a , ) __a = sb_ter.corpus_score(_a , _a ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
368
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0 __a = image[None].transpose(0 , 3 , 1 , 2 ) __a = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , ): super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , PIL.Image.Image ): __a = 1 elif isinstance(_a , torch.Tensor ): __a = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' ) if isinstance(_a , PIL.Image.Image ): __a = preprocess(_a ) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters() ).dtype __a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __a = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1 ) __a = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __a = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(_a ).sample __a = torch.clamp(_a , -1.0 , 1.0 ) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
11
0
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a , _a ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def __UpperCAmelCase ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __UpperCAmelCase ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a , _a ): with strategy.scope(): __a = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a , _a ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
369
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = DistilBertTokenizer __UpperCAmelCase : Any = DistilBertTokenizerFast __UpperCAmelCase : int = True @slow def __UpperCAmelCase ( self ): __a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
11
0
from __future__ import annotations lowercase_ = "#" class __lowerCAmelCase : '''simple docstring''' def __init__( self ): __a = {} def __UpperCAmelCase ( self , _a ): __a = self._trie for char in text: if char not in trie: __a = {} __a = trie[char] __a = True def __UpperCAmelCase ( self , _a ): __a = self._trie for char in prefix: if char in trie: __a = trie[char] else: return [] return self._elements(_a ) def __UpperCAmelCase ( self , _a ): __a = [] for c, v in d.items(): __a = [''' '''] if c == END else [(c + s) for s in self._elements(_a )] result.extend(_a ) return tuple(_a ) lowercase_ = Trie() lowercase_ = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def lowercase ( lowerCAmelCase__ : str ) -> tuple: __a = trie.find_word(lowerCAmelCase__ ) return tuple(string + word for word in suffixes ) def lowercase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
370
"""simple docstring""" from math import factorial, radians def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float: __a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians __a = radians(lowerCAmelCase__ ) __a = angle_in_radians __a = 3 __a = -1 for _ in range(lowerCAmelCase__ ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ ) __a = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __import__("doctest").testmod()
11
0
"""simple docstring""" from collections.abc import Callable import numpy as np def lowercase ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> np.ndarray: __a = int(np.ceil((x_end - xa) / step_size ) ) __a = np.zeros((n + 1,) ) __a = ya __a = xa for k in range(lowerCAmelCase__ ): __a = y[k] + step_size * ode_func(lowerCAmelCase__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase ( lowerCAmelCase__ : dict ) -> tuple: return (data["data"], data["target"]) def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray: __a = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ ) # Predict target for test data __a = xgb.predict(lowerCAmelCase__ ) __a = predictions.reshape(len(lowerCAmelCase__ ) , 1 ) return predictions def lowercase ( ) -> None: __a = fetch_california_housing() __a , __a = data_handling(lowerCAmelCase__ ) __a , __a , __a , __a = train_test_split( lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 ) __a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
11
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = (EulerDiscreteScheduler,) __UpperCAmelCase : int = 1_0 def __UpperCAmelCase ( self , **_a ): __a = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_a ) return config def __UpperCAmelCase ( self ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __UpperCAmelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def __UpperCAmelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def __UpperCAmelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) __a = torch.manual_seed(0 ) __a = self.dummy_model() __a = self.dummy_sample_deter * scheduler.init_noise_sigma __a = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): __a = scheduler.scale_model_input(_a , _a ) __a = model(_a , _a ) __a = scheduler.step(_a , _a , _a , generator=_a ) __a = output.prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) __a = torch.manual_seed(0 ) __a = self.dummy_model() __a = self.dummy_sample_deter * scheduler.init_noise_sigma __a = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): __a = scheduler.scale_model_input(_a , _a ) __a = model(_a , _a ) __a = scheduler.step(_a , _a , _a , generator=_a ) __a = output.prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2_676E-06 ) < 1E-3 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) __a = torch.manual_seed(0 ) __a = self.dummy_model() __a = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __a = sample.to(_a ) for t in scheduler.timesteps: __a = scheduler.scale_model_input(_a , _a ) __a = model(_a , _a ) __a = scheduler.step(_a , _a , _a , generator=_a ) __a = output.prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) __a = torch.manual_seed(0 ) __a = self.dummy_model() __a = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __a = sample.to(_a ) for t in scheduler.timesteps: __a = scheduler.scale_model_input(_a , _a ) __a = model(_a , _a ) __a = scheduler.step(_a , _a , _a , generator=_a ) __a = output.prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __lowerCAmelCase = None __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } __lowerCAmelCase = { "albert-base-v1": 5_1_2, "albert-large-v1": 5_1_2, "albert-xlarge-v1": 5_1_2, "albert-xxlarge-v1": 5_1_2, "albert-base-v2": 5_1_2, "albert-large-v2": 5_1_2, "albert-xlarge-v2": 5_1_2, "albert-xxlarge-v2": 5_1_2, } __lowerCAmelCase = "▁" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : int = AlbertTokenizer def __init__( self , _a=None , _a=None , _a=True , _a=True , _a=False , _a="[CLS]" , _a="[SEP]" , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
351
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'funnel' __UpperCAmelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = block_sizes __a = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __a = num_decoder_layers __a = d_model __a = n_head __a = d_head __a = d_inner __a = hidden_act __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = initializer_range __a = initializer_std __a = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __a = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __a = attention_type __a = separate_cls __a = truncate_seq __a = pool_q_only super().__init__(**_a ) @property def __UpperCAmelCase ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __UpperCAmelCase ( self ): return len(self.block_sizes ) @num_blocks.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
11
0
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) lowercase_ = logging.getLogger(__name__) def lowercase ( lowerCAmelCase__ : str ) -> Optional[int]: __a = git.Repo(search_parent_directories=lowerCAmelCase__ ) __a = { '''repo_id''': str(lowerCAmelCase__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(lowerCAmelCase__ , '''git_log.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=4 ) def lowercase ( lowerCAmelCase__ : int ) -> List[str]: if params.n_gpu <= 0: __a = 0 __a = -1 __a = True __a = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 __a = int(os.environ['''WORLD_SIZE'''] ) __a = int(os.environ['''N_GPU_NODE'''] ) __a = int(os.environ['''RANK'''] ) # number of nodes / node ID __a = params.world_size // params.n_gpu_per_node __a = params.global_rank // params.n_gpu_per_node __a = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 __a = 1 __a = 0 __a = 0 __a = 0 __a = 1 __a = 1 __a = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __a = params.node_id == 0 and params.local_rank == 0 __a = params.n_nodes > 1 # summary __a = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
352
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) __a = image_processor.post_process_semantic_segmentation(outputs=_a ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
11
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowercase_ = logging.get_logger(__name__) lowercase_ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase ( lowerCAmelCase__ : str ) -> int: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __a = model_type_to_module_name(lowerCAmelCase__ ) __a = importlib.import_module(f'''.{module_name}''' , '''transformers.models''' ) try: return getattr(lowerCAmelCase__ , lowerCAmelCase__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase__ , '''__name__''' , lowerCAmelCase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __a = importlib.import_module('''transformers''' ) if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): return getattr(lowerCAmelCase__ , lowerCAmelCase__ ) return None def lowercase ( lowerCAmelCase__ : Union[str, os.PathLike] , lowerCAmelCase__ : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[Dict[str, str]] = None , lowerCAmelCase__ : Optional[Union[bool, str]] = None , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : bool = False , **lowerCAmelCase__ : List[Any] , ) -> Tuple: __a = get_file_from_repo( lowerCAmelCase__ , lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(lowerCAmelCase__ , encoding='''utf-8''' ) as reader: return json.load(lowerCAmelCase__ ) class __lowerCAmelCase : '''simple docstring''' def __init__( self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_a ) def __UpperCAmelCase ( cls , _a , **_a ): __a = kwargs.pop('''config''' , _a ) __a = kwargs.pop('''trust_remote_code''' , _a ) __a = True __a , __a = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) __a = config_dict.get('''feature_extractor_type''' , _a ) __a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): __a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): __a = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` __a = getattr(_a , '''feature_extractor_type''' , _a ) if hasattr(_a , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: __a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: __a = feature_extractor_class_from_name(_a ) __a = feature_extractor_auto_map is not None __a = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING __a = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: __a = get_class_from_dynamic_module( _a , _a , **_a ) __a = kwargs.pop('''code_revision''' , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: __a = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( f'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' f'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def __UpperCAmelCase ( _a , _a ): FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
353
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def __UpperCAmelCase ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __UpperCAmelCase ( self ): self.enable_attention_slicing(_a ) def __UpperCAmelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): __a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __a = self.segmentation_model(**_a ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
11
0
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = BioGptModel(config=_a ) model.to(_a ) model.eval() __a = model(_a , attention_mask=_a ) __a = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): __a = BioGptForCausalLM(config=_a ) model.to(_a ) model.eval() __a = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , *_a ): __a = BioGptModel(config=_a ) model.to(_a ) model.eval() # create attention mask __a = torch.ones(input_ids.shape , dtype=torch.long , device=_a ) __a = self.seq_length // 2 __a = 0 # first forward pass __a , __a = model(_a , attention_mask=_a ).to_tuple() # create hypothetical next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __a = ids_tensor((1,) , _a ).item() + 1 __a = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __a = random_other_next_tokens # append to next input_ids and attn_mask __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_a )] , dim=1 , ) # get two different outputs __a = model(_a , attention_mask=_a )['''last_hidden_state'''] __a = model(_a , past_key_values=_a , attention_mask=_a )['''last_hidden_state'''] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, -1, random_slice_idx].detach() __a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , *_a ): __a = BioGptModel(config=_a ).to(_a ).eval() __a = torch.ones(input_ids.shape , dtype=torch.long , device=_a ) # first forward pass __a = model(_a , attention_mask=_a , use_cache=_a ) __a , __a = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __a = model(_a , attention_mask=_a )['''last_hidden_state'''] __a = model(_a , attention_mask=_a , past_key_values=_a )[ '''last_hidden_state''' ] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , *_a , _a=False ): __a = BioGptForCausalLM(_a ) model.to(_a ) if gradient_checkpointing: model.gradient_checkpointing_enable() __a = model(_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __UpperCAmelCase ( self , _a , *_a ): __a = BioGptModel(_a ) __a = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , *_a ): __a = self.num_labels __a = BioGptForTokenClassification(_a ) model.to(_a ) model.eval() __a = model(_a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __UpperCAmelCase : List[Any] = (BioGptForCausalLM,) if is_torch_available() else () __UpperCAmelCase : str = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Dict = False def __UpperCAmelCase ( self ): __a = BioGptModelTester(self ) __a = ConfigTester(self , config_class=_a , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a = type self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_a , gradient_checkpointing=_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_a ) @slow def __UpperCAmelCase ( self ): __a = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_a ) __a = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __a = '''left''' # Define PAD Token = EOS Token = 50256 __a = tokenizer.eos_token __a = model.config.eos_token_id # use different length sentences to test batching __a = [ '''Hello, my dog is a little''', '''Today, I''', ] __a = tokenizer(_a , return_tensors='''pt''' , padding=_a ) __a = inputs['''input_ids'''].to(_a ) __a = model.generate( input_ids=_a , attention_mask=inputs['''attention_mask'''].to(_a ) , ) __a = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_a ) __a = model.generate(input_ids=_a ) __a = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __a = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_a ) __a = model.generate(input_ids=_a , max_length=model.config.max_length - num_paddings ) __a = tokenizer.batch_decode(_a , skip_special_tokens=_a ) __a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_a ) __a = tokenizer.decode(output_padded[0] , skip_special_tokens=_a ) __a = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , [non_padded_sentence, padded_sentence] ) @slow def __UpperCAmelCase ( self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = BioGptModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = input_dict['''input_ids'''] __a = input_ids.ne(1 ).to(_a ) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a = BioGptForSequenceClassification(_a ) model.to(_a ) model.eval() __a = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = '''multi_label_classification''' __a = input_dict['''input_ids'''] __a = input_ids.ne(1 ).to(_a ) __a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __a = BioGptForSequenceClassification(_a ) model.to(_a ) model.eval() __a = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) __a = torch.tensor([[2, 4_805, 9, 656, 21]] ) __a = model(_a )[0] __a = 42_384 __a = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _a ) __a = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __a = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_a ) torch.manual_seed(0 ) __a = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_a ) __a = model.generate( **_a , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=_a , ) __a = tokenizer.decode(output_ids[0] , skip_special_tokens=_a ) __a = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_a , _a )
354
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , **_a ): __a = {} if "candidate_labels" in kwargs: __a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ): if isinstance(_a , _a ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(_a ).content else: with open(_a , '''rb''' ) as f: __a = f.read() if isinstance(_a , _a ): __a = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a = candidate_labels __a = [hypothesis_template.format(_a ) for x in candidate_labels] __a = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) __a = [text_inputs] return inputs def __UpperCAmelCase ( self , _a ): __a = model_inputs.pop('''candidate_labels''' ) __a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _a ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**_a , **_a ) __a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , _a ): __a = model_outputs.pop('''candidate_labels''' ) __a = model_outputs['''logits'''][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
11
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __a = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sgugger/tiny-distilbert-classification''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` __a = None __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , ) __a = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , '''sequential''' ) ) self.assertTrue(hasattr(_a , '''cumulative''' ) ) self.assertTrue(hasattr(_a , '''current''' ) ) self.assertTrue(hasattr(_a , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
11
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __a = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(_a )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _a , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self ): __a = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __a = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(_a )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _a , atol=1E-3 ) )
356
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "spiece.model"} lowercase_ = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } lowercase_ = { "albert-base-v1": 5_1_2, "albert-large-v1": 5_1_2, "albert-xlarge-v1": 5_1_2, "albert-xxlarge-v1": 5_1_2, "albert-base-v2": 5_1_2, "albert-large-v2": 5_1_2, "albert-xlarge-v2": 5_1_2, "albert-xxlarge-v2": 5_1_2, } lowercase_ = "▁" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a=True , _a=True , _a=False , _a="[CLS]" , _a="[SEP]" , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , _a = None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def __UpperCAmelCase ( self ): return len(self.sp_model ) def __UpperCAmelCase ( self ): __a = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __a = self.__dict__.copy() __a = None return state def __setstate__( self , _a ): __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self , _a ): if self.remove_space: __a = ''' '''.join(inputs.strip().split() ) else: __a = inputs __a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __a = unicodedata.normalize('''NFKD''' , _a ) __a = ''''''.join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: __a = outputs.lower() return outputs def __UpperCAmelCase ( self , _a ): __a = self.preprocess_text(_a ) __a = self.sp_model.encode(_a , out_type=_a ) __a = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __a = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __a = cur_pieces[1:] else: __a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def __UpperCAmelCase ( self , _a ): return self.sp_model.PieceToId(_a ) def __UpperCAmelCase ( self , _a ): return self.sp_model.IdToPiece(_a ) def __UpperCAmelCase ( self , _a ): __a = [] __a = '''''' __a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token __a = True __a = [] else: current_sub_tokens.append(_a ) __a = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
357
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a , _a ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def __UpperCAmelCase ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __UpperCAmelCase ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a , _a ): with strategy.scope(): __a = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a , _a ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
11
0
"""simple docstring""" from __future__ import annotations from typing import Any class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a = 0 ): __a , __a = row, column __a = [[default_value for c in range(_a )] for r in range(_a )] def __str__( self ): __a = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __a = 0 for row_vector in self.array: for obj in row_vector: __a = max(_a , len(str(_a ) ) ) __a = f'''%{max_element_length}s''' # Make string and return def single_line(_a ) -> str: nonlocal string_format_identifier __a = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_a ) for row_vector in self.array ) return s def __repr__( self ): return str(self ) def __UpperCAmelCase ( self , _a ): if not (isinstance(_a , (list, tuple) ) and len(_a ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , _a ): assert self.validate_indicies(_a ) return self.array[loc[0]][loc[1]] def __setitem__( self , _a , _a ): assert self.validate_indicies(_a ) __a = value def __add__( self , _a ): assert isinstance(_a , _a ) assert self.row == another.row and self.column == another.column # Add __a = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __a = self[r, c] + another[r, c] return result def __neg__( self ): __a = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __a = -self[r, c] return result def __sub__( self , _a ): return self + (-another) def __mul__( self , _a ): if isinstance(_a , (int, float) ): # Scalar multiplication __a = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __a = self[r, c] * another return result elif isinstance(_a , _a ): # Matrix multiplication assert self.column == another.row __a = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __a = f'''Unsupported type given for another ({type(_a )})''' raise TypeError(_a ) def __UpperCAmelCase ( self ): __a = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __a = self[r, c] return result def __UpperCAmelCase ( self , _a , _a ): assert isinstance(_a , _a ) and isinstance(_a , _a ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __a = v.transpose() __a = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase ( ) -> None: # a^(-1) __a = Matrix(3 , 3 , 0 ) for i in range(3 ): __a = 1 print(f'''a^(-1) is {ainv}''' ) # u, v __a = Matrix(3 , 1 , 0 ) __a , __a , __a = 1, 2, -3 __a = Matrix(3 , 1 , 0 ) __a , __a , __a = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) def lowercase ( ) -> None: import doctest doctest.testmod() testa()
358
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: return int(input_a == input_a == 0 ) def lowercase ( ) -> None: print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(f'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(f'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(f'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
359
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = load_tool('''text-question-answering''' ) self.tool.setup() __a = load_tool('''text-question-answering''' , remote=_a ) def __UpperCAmelCase ( self ): __a = self.tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
11
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase_ = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'timesformer' def __init__( self , _a=224 , _a=16 , _a=3 , _a=8 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-6 , _a=True , _a="divided_space_time" , _a=0 , **_a , ): super().__init__(**_a ) __a = image_size __a = patch_size __a = num_channels __a = num_frames __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = qkv_bias __a = attention_type __a = drop_path_rate
361
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: __a = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase ( lowerCAmelCase__ : int ) -> None: __a = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('''''' ) print(len(lowerCAmelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
11
0
"""simple docstring""" class __lowerCAmelCase : '''simple docstring''' def __init__( self ): __a = {} def __UpperCAmelCase ( self ): print(self.vertex ) for i in self.vertex: print(_a , ''' -> ''' , ''' -> '''.join([str(_a ) for j in self.vertex[i]] ) ) def __UpperCAmelCase ( self , _a , _a ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_a ) else: # else make a new vertex __a = [to_vertex] def __UpperCAmelCase ( self ): # visited array for storing already visited nodes __a = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_a , _a ) def __UpperCAmelCase ( self , _a , _a ): # mark start vertex as visited __a = True print(_a , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_a , _a ) if __name__ == "__main__": lowercase_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
11
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'vit_mae' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = decoder_num_attention_heads __a = decoder_hidden_size __a = decoder_num_hidden_layers __a = decoder_intermediate_size __a = mask_ratio __a = norm_pix_loss
11
0
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = '''hf-internal-testing/tiny-random-t5''' __a = AutoTokenizer.from_pretrained(_a ) __a = AutoModelForSeqaSeqLM.from_pretrained(_a ) __a = tokenizer('''This is me''' , return_tensors='''pt''' ) __a = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __a = model.generate(**_a ) __a = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a ) __a = AutoModelForSeqaSeqLM.from_pretrained(_a ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __a = model_reloaded.generate(**_a ) self.assertTrue(torch.allclose(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''hf-internal-testing/tiny-random-t5''' __a = AutoModelForSeqaSeqLM.from_pretrained(_a ) __a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_a ): model.save_pretrained(_a ) __a = model.reverse_bettertransformer() model.save_pretrained(_a )
364
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
0
"""simple docstring""" from math import factorial, radians def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float: __a = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __a = radians(lowerCAmelCase__ ) __a = angle_in_radians __a = 3 __a = -1 for _ in range(lowerCAmelCase__ ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ ) __a = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __import__("doctest").testmod()
365
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : str = 2 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ): if trained_betas is not None: __a = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCAmelCase ( self , _a , _a=None ): if schedule_timesteps is None: __a = self.timesteps __a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a = 1 if len(_a ) > 1 else 0 else: __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __a = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _a , _a , ): __a = self.index_for_timestep(_a ) if self.state_in_first_order: __a = self.sigmas[step_index] else: __a = self.sigmas_interpol[step_index] __a = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _a , _a = None , _a = None , ): __a = num_inference_steps __a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a = torch.from_numpy(np.log(_a ) ).to(_a ) __a = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __a = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a = torch.cat([timesteps[:1], interleaved_timesteps] ) __a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a ): # get log sigma __a = sigma.log() # get distribution __a = log_sigma - self.log_sigmas[:, None] # get sigmas range __a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a = low_idx + 1 __a = self.log_sigmas[low_idx] __a = self.log_sigmas[high_idx] # interpolate sigmas __a = (low - log_sigma) / (low - high) __a = w.clamp(0 , 1 ) # transform interpolation to time range __a = (1 - w) * low_idx + w * high_idx __a = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ): return self.sample is None def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ): __a = self.index_for_timestep(_a ) # advance index counter by 1 __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a = self.sigmas[step_index] __a = self.sigmas_interpol[step_index + 1] __a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a = self.sigmas[step_index - 1] __a = self.sigmas_interpol[step_index] __a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a = 0 __a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a = sigma_interpol - sigma_hat # store for 2nd order step __a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a = sigma_next - sigma_hat __a = self.sample __a = None __a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a = self.timesteps.to(original_samples.device ) __a = timesteps.to(original_samples.device ) __a = [self.index_for_timestep(_a , _a ) for t in timesteps] __a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a = sigma.unsqueeze(-1 ) __a = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
11
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 'roc_bert' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=True , _a=0 , _a="absolute" , _a=None , _a=True , _a=True , _a=768 , _a=910 , _a=512 , _a=24_858 , _a=True , **_a , ): __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = type_vocab_size __a = layer_norm_eps __a = use_cache __a = enable_pronunciation __a = enable_shape __a = pronunciation_embed_dim __a = pronunciation_vocab_size __a = shape_embed_dim __a = shape_vocab_size __a = concat_input __a = position_embedding_type __a = classifier_dropout super().__init__(pad_token_id=_a , **_a )
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'rwkv' __UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ): __a = vocab_size __a = context_length __a = hidden_size __a = num_hidden_layers __a = attention_hidden_size if attention_hidden_size is not None else hidden_size __a = intermediate_size if intermediate_size is not None else 4 * hidden_size __a = layer_norm_epsilon __a = rescale_every __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
11
0
"""simple docstring""" import math import unittest def lowercase ( lowerCAmelCase__ : int ) -> bool: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __UpperCAmelCase ( self ): with self.assertRaises(_a ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
367
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = (UnCLIPScheduler,) def __UpperCAmelCase ( self , **_a ): __a = { '''num_train_timesteps''': 1_000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_a ) return config def __UpperCAmelCase ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __UpperCAmelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a ) def __UpperCAmelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __UpperCAmelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_a ) def __UpperCAmelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a ) def __UpperCAmelCase ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a , prev_timestep=_a ) def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''fixed_small_log''' ) __a = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''learned_range''' ) __a = scheduler_class(**_a ) __a = 0.5 assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_a ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_a ) - -0.001_0011 < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) # 2. predict previous mean of sample x_t-1 __a = scheduler.step(_a , _a , _a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) scheduler.set_timesteps(25 ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) if i + 1 == timesteps.shape[0]: __a = None else: __a = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __a = scheduler.step( _a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): pass
11
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 'trocr' __UpperCAmelCase : Union[str, Any] = ['past_key_values'] __UpperCAmelCase : int = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , _a=50_265 , _a=1_024 , _a=12 , _a=16 , _a=4_096 , _a="gelu" , _a=512 , _a=0.1 , _a=0.0 , _a=0.0 , _a=2 , _a=0.02 , _a=0.0 , _a=True , _a=False , _a=True , _a=True , _a=1 , _a=0 , _a=2 , **_a , ): __a = vocab_size __a = d_model __a = decoder_layers __a = decoder_attention_heads __a = decoder_ffn_dim __a = activation_function __a = max_position_embeddings __a = dropout __a = attention_dropout __a = activation_dropout __a = init_std __a = decoder_layerdrop __a = use_cache __a = scale_embedding __a = use_learned_position_embeddings __a = layernorm_embedding super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , **_a , )
368
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0 __a = image[None].transpose(0 , 3 , 1 , 2 ) __a = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , ): super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , PIL.Image.Image ): __a = 1 elif isinstance(_a , torch.Tensor ): __a = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' ) if isinstance(_a , PIL.Image.Image ): __a = preprocess(_a ) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters() ).dtype __a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __a = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1 ) __a = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __a = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(_a ).sample __a = torch.clamp(_a , -1.0 , 1.0 ) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
11
0
"""simple docstring""" import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowercase_ = re.compile(r"^(?P<major>\d+)" r"\.(?P<minor>\d+)" r"\.(?P<patch>\d+)$") @total_ordering @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[str, int]] = None __UpperCAmelCase : Optional[Union[str, int]] = None __UpperCAmelCase : Optional[Union[str, int]] = None def __UpperCAmelCase ( self ): __a , __a , __a = _str_to_version_tuple(self.version_str ) def __repr__( self ): return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def __UpperCAmelCase ( self ): return self.major, self.minor, self.patch def __UpperCAmelCase ( self , _a ): if isinstance(_a , _a ): return Version(_a ) elif isinstance(_a , _a ): return other raise TypeError(f'''{other} (type {type(_a )}) cannot be compared to version.''' ) def __eq__( self , _a ): try: __a = self._validate_operand(_a ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , _a ): __a = self._validate_operand(_a ) return self.tuple < other.tuple def __hash__( self ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __UpperCAmelCase ( cls , _a ): __a = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __UpperCAmelCase ( self ): return self.version_str def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> Tuple: __a = _VERSION_REG.match(lowerCAmelCase__ ) if not res: raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(lowerCAmelCase__ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def lowercase ( lowerCAmelCase__ : str ) -> Optional[Any]: return ".".join(str(lowerCAmelCase__ ) for v in version_tuple )
369
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = DistilBertTokenizer __UpperCAmelCase : Any = DistilBertTokenizerFast __UpperCAmelCase : int = True @slow def __UpperCAmelCase ( self ): __a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
11
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'time_series_transformer' __UpperCAmelCase : Tuple = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , _a = None , _a = None , _a = "student_t" , _a = "nll" , _a = 1 , _a = [1, 2, 3, 4, 5, 6, 7] , _a = "mean" , _a = 0 , _a = 0 , _a = 0 , _a = 0 , _a = None , _a = None , _a = 32 , _a = 32 , _a = 2 , _a = 2 , _a = 2 , _a = 2 , _a = True , _a = "gelu" , _a = 64 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 100 , _a = 0.02 , _a=True , **_a , ): # time series specific configuration __a = prediction_length __a = context_length or prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __a = cardinality else: __a = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(_a ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache super().__init__(is_encoder_decoder=_a , **_a ) @property def __UpperCAmelCase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
370
"""simple docstring""" from math import factorial, radians def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float: __a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians __a = radians(lowerCAmelCase__ ) __a = angle_in_radians __a = 3 __a = -1 for _ in range(lowerCAmelCase__ ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ ) __a = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __import__("doctest").testmod()
11
0
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : tuple[int, int] , lowerCAmelCase__ : int ) -> list[tuple[int, int]]: __a , __a = position __a = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __a = [] for position in positions: __a , __a = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowerCAmelCase__ ) return permissible_positions def lowercase ( lowerCAmelCase__ : list[list[int]] ) -> bool: return not any(elem == 0 for row in board for elem in row ) def lowercase ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : tuple[int, int] , lowerCAmelCase__ : int ) -> bool: if is_complete(lowerCAmelCase__ ): return True for position in get_valid_pos(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): __a , __a = position if board[y][x] == 0: __a = curr + 1 if open_knight_tour_helper(lowerCAmelCase__ , lowerCAmelCase__ , curr + 1 ): return True __a = 0 return False def lowercase ( lowerCAmelCase__ : int ) -> list[list[int]]: __a = [[0 for i in range(lowerCAmelCase__ )] for j in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): __a = 1 if open_knight_tour_helper(lowerCAmelCase__ , (i, j) , 1 ): return board __a = 0 __a = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase ( lowerCAmelCase__ : dict ) -> tuple: return (data["data"], data["target"]) def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray: __a = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ ) # Predict target for test data __a = xgb.predict(lowerCAmelCase__ ) __a = predictions.reshape(len(lowerCAmelCase__ ) , 1 ) return predictions def lowercase ( ) -> None: __a = fetch_california_housing() __a , __a = data_handling(lowerCAmelCase__ ) __a , __a , __a , __a = train_test_split( lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 ) __a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
11
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowercase ( lowerCAmelCase__ : int ) -> int: __a = prime_factors(lowerCAmelCase__ ) if is_square_free(lowerCAmelCase__ ): return -1 if len(lowerCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __lowerCAmelCase = 5_0_0_0_0 __lowerCAmelCase = 5_0_0_0 __lowerCAmelCase , __lowerCAmelCase = os.path.split(__file__) __lowerCAmelCase = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowercase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : Any ) -> int: for i in range(lowerCAmelCase__ ): __a = dataset[i] @get_duration def lowercase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): __a = dataset[i : i + batch_size] @get_duration def lowercase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] ) -> Any: with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): __a = dataset[i] @get_duration def lowercase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple ) -> List[Any]: with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): __a = dataset[i : i + batch_size] def lowercase ( ) -> Dict: __a = {'''num examples''': SPEED_TEST_N_EXAMPLES} __a = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1000}), ] __a = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) __a = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) __a = generate_example_dataset( os.path.join(lowerCAmelCase__ , '''dataset.arrow''' ) , lowerCAmelCase__ , num_examples=lowerCAmelCase__ , seq_shapes={'''list''': (100,)} , ) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__ , str(lowerCAmelCase__ ) ) __a = func(lowerCAmelCase__ , **lowerCAmelCase__ ) print('''shuffling dataset''' ) __a = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''' , func.__name__ , str(lowerCAmelCase__ ) ) __a = func( lowerCAmelCase__ , **lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''wb''' ) as f: f.write(json.dumps(lowerCAmelCase__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
351
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'funnel' __UpperCAmelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = block_sizes __a = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __a = num_decoder_layers __a = d_model __a = n_head __a = d_head __a = d_inner __a = hidden_act __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = initializer_range __a = initializer_std __a = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __a = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __a = attention_type __a = separate_cls __a = truncate_seq __a = pool_q_only super().__init__(**_a ) @property def __UpperCAmelCase ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __UpperCAmelCase ( self ): return len(self.block_sizes ) @num_blocks.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
11
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_a ) __a = -1 __a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) __a = model.generate(_a , max_new_tokens=10 , do_sample=_a ) __a = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __a = TextStreamer(_a ) model.generate(_a , max_new_tokens=10 , do_sample=_a , streamer=_a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __a = cs.out[:-1] self.assertEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_a ) __a = -1 __a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) __a = model.generate(_a , max_new_tokens=10 , do_sample=_a ) __a = tokenizer.decode(greedy_ids[0] ) __a = TextIteratorStreamer(_a ) __a = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __a = Thread(target=model.generate , kwargs=_a ) thread.start() __a = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_a ) __a = -1 __a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) __a = model.generate(_a , max_new_tokens=10 , do_sample=_a ) __a = greedy_ids[:, input_ids.shape[1] :] __a = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __a = TextStreamer(_a , skip_prompt=_a ) model.generate(_a , max_new_tokens=10 , do_sample=_a , streamer=_a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __a = cs.out[:-1] self.assertEqual(_a , _a ) def __UpperCAmelCase ( self ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __a = AutoTokenizer.from_pretrained('''distilgpt2''' ) __a = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_a ) __a = -1 __a = torch.ones((1, 5) , device=_a ).long() * model.config.bos_token_id with CaptureStdout() as cs: __a = TextStreamer(_a , skip_special_tokens=_a ) model.generate(_a , max_new_tokens=1 , do_sample=_a , streamer=_a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __a = cs.out[:-1] # Remove the final "\n" __a = tokenizer(_a , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __UpperCAmelCase ( self ): __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_a ) __a = -1 __a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) __a = TextIteratorStreamer(_a , timeout=0.001 ) __a = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __a = Thread(target=model.generate , kwargs=_a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_a ): __a = '''''' for new_text in streamer: streamer_text += new_text
352
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) __a = image_processor.post_process_semantic_segmentation(outputs=_a ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
11
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "nielsr/canine-s": 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” lowercase_ = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowercase_ = 0 lowercase_ = 0xe_000 lowercase_ = 0xe_001 lowercase_ = 0xe_002 lowercase_ = 0xe_003 lowercase_ = 0xe_004 # Maps special codepoints to human-readable names. lowercase_ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowercase_ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a=chr(_a ) , _a=chr(_a ) , _a=chr(_a ) , _a=chr(_a ) , _a=chr(_a ) , _a=chr(_a ) , _a=False , _a=2_048 , **_a , ): __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else bos_token __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else sep_token __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else cls_token __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , model_max_length=_a , **_a , ) # Creates a mapping for looking up the IDs of special symbols. __a = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __a = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __a = { codepoint: name for name, codepoint in self._special_codepoints.items() } __a = UNICODE_VOCAB_SIZE __a = len(self._special_codepoints ) @property def __UpperCAmelCase ( self ): return self._unicode_vocab_size def __UpperCAmelCase ( self , _a ): return list(_a ) def __UpperCAmelCase ( self , _a ): try: return ord(_a ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def __UpperCAmelCase ( self , _a ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_a ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def __UpperCAmelCase ( self , _a ): return "".join(_a ) def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] __a = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __UpperCAmelCase ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) __a = [1] + ([0] * len(_a )) + [1] if token_ids_a is not None: result += ([0] * len(_a )) + [1] return result def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] __a = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __UpperCAmelCase ( self , _a , _a = None ): return ()
353
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def __UpperCAmelCase ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __UpperCAmelCase ( self ): self.enable_attention_slicing(_a ) def __UpperCAmelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): __a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __a = self.segmentation_model(**_a ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
11
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = 'gptj' __UpperCAmelCase : Dict = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_400 , _a=2_048 , _a=4_096 , _a=28 , _a=16 , _a=64 , _a=None , _a="gelu_new" , _a=0.0 , _a=0.0 , _a=0.0 , _a=1E-5 , _a=0.02 , _a=True , _a=50_256 , _a=50_256 , _a=False , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = rotary_dim __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( bos_token_id=_a , eos_token_id=_a , tie_word_embeddings=_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a = "default" , _a = None , _a = False , ): super().__init__(_a , task=_a , patching_specs=_a , use_past=_a ) if not getattr(self._config , '''pad_token_id''' , _a ): # TODO: how to do that better? __a = 0 @property def __UpperCAmelCase ( self ): __a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_a , direction='''inputs''' ) __a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __UpperCAmelCase ( self ): return self._config.n_layer @property def __UpperCAmelCase ( self ): return self._config.n_head def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , ): __a = super(_a , self ).generate_dummy_inputs( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) # We need to order the input in the way they appears in the forward() __a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __a , __a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __a = seqlen + 2 __a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __a = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(self.num_layers ) ] __a = common_inputs['''attention_mask'''] if self.use_past: __a = ordered_inputs['''attention_mask'''].dtype __a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_a , _a , dtype=_a )] , dim=1 ) return ordered_inputs @property def __UpperCAmelCase ( self ): return 13
354
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , **_a ): __a = {} if "candidate_labels" in kwargs: __a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ): if isinstance(_a , _a ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(_a ).content else: with open(_a , '''rb''' ) as f: __a = f.read() if isinstance(_a , _a ): __a = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a = candidate_labels __a = [hypothesis_template.format(_a ) for x in candidate_labels] __a = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) __a = [text_inputs] return inputs def __UpperCAmelCase ( self , _a ): __a = model_inputs.pop('''candidate_labels''' ) __a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _a ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**_a , **_a ) __a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , _a ): __a = model_outputs.pop('''candidate_labels''' ) __a = model_outputs['''logits'''][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
11
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'git_vision_model' def __init__( self , _a=768 , _a=3_072 , _a=12 , _a=12 , _a=3 , _a=224 , _a=16 , _a="quick_gelu" , _a=1E-5 , _a=0.0 , _a=0.02 , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = num_channels __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'git' def __init__( self , _a=None , _a=30_522 , _a=768 , _a=6 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1_024 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=True , _a=False , _a=101 , _a=102 , _a=None , **_a , ): super().__init__(bos_token_id=_a , eos_token_id=_a , pad_token_id=_a , **_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) __a = GitVisionConfig(**_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = tie_word_embeddings __a = num_image_with_embedding __a = bos_token_id __a = eos_token_id def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.__class__.model_type return output
355
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __a = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sgugger/tiny-distilbert-classification''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` __a = None __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , ) __a = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , '''sequential''' ) ) self.assertTrue(hasattr(_a , '''cumulative''' ) ) self.assertTrue(hasattr(_a , '''current''' ) ) self.assertTrue(hasattr(_a , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
11
0
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowercase_ = 5_0_0_0_3 lowercase_ = 5_0_0_0_2 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = PLBartTokenizer __UpperCAmelCase : Tuple = None __UpperCAmelCase : str = False def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = PLBartTokenizer(_a , language_codes='''base''' , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self ): __a = PLBartTokenizer(_a , language_codes='''base''' , keep_accents=_a ) __a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) __a = tokenizer.vocab_size __a = [tokenizer.convert_ids_to_tokens(_a ) for x in range(end - 4 , _a )] self.assertListEqual(_a , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) __a = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' __a = tokenizer(_a ).input_ids self.assertEqual( tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) , _a , ) def __UpperCAmelCase ( self ): __a = PLBartTokenizer(_a , language_codes='''multi''' , keep_accents=_a ) __a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) __a = tokenizer.vocab_size __a = [tokenizer.convert_ids_to_tokens(_a ) for x in range(end - 7 , _a )] self.assertListEqual( _a , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) __a = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' __a = tokenizer(_a ).input_ids self.assertEqual( tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) , _a , ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'uclanlp/plbart-python-en_XX' __UpperCAmelCase : str = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __UpperCAmelCase : str = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __UpperCAmelCase : Optional[int] = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def __UpperCAmelCase ( cls ): __a = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) __a = 1 return cls def __UpperCAmelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 50_003 ) def __UpperCAmelCase ( self ): __a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _a ) def __UpperCAmelCase ( self ): self.assertIn(_a , self.tokenizer.all_special_ids ) __a = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] __a = self.tokenizer.decode(_a , skip_special_tokens=_a ) __a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def __UpperCAmelCase ( self ): __a = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , _a ) __a = 10 __a = self.tokenizer(_a , max_length=_a , truncation=_a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _a ) self.assertEqual(len(_a ) , _a ) def __UpperCAmelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [50_004, 50_001] ) def __UpperCAmelCase ( self ): __a = tempfile.mkdtemp() __a = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_a ) __a = PLBartTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _a ) @require_torch def __UpperCAmelCase ( self ): __a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_a , return_tensors='''pt''' ) __a = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def __UpperCAmelCase ( self ): __a = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_a , truncation=_a , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __a = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) __a = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def __UpperCAmelCase ( self ): __a = self.tokenizer(self.src_text , padding=_a , truncation=_a , max_length=3 , return_tensors='''pt''' ) __a = self.tokenizer( text_target=self.tgt_text , padding=_a , truncation=_a , max_length=10 , return_tensors='''pt''' ) __a = targets['''input_ids'''] __a = shift_tokens_right(_a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __UpperCAmelCase ( self ): __a = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(_a ) , { # A, test, EOS, en_XX '''input_ids''': [[150, 242, 2, 50_003]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 50_001, } , )
356
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
"""simple docstring""" import argparse import os import re lowercase_ = "src/transformers" # Pattern that looks at the indentation in a line. lowercase_ = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. lowercase_ = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase_ = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. lowercase_ = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase_ = re.compile(r"\[([^\]]+)\]") def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: __a = _re_indent.search(lowerCAmelCase__ ) return "" if search is None else search.groups()[0] def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any="" , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Union[str, Any]=None ) -> Optional[Any]: __a = 0 __a = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase__ ): index += 1 __a = ['''\n'''.join(lines[:index] )] else: __a = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __a = [lines[index]] index += 1 while index < len(lowerCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCAmelCase__ ) ) if index < len(lowerCAmelCase__ ) - 1: __a = [lines[index + 1]] index += 1 else: __a = [] else: blocks.append('''\n'''.join(lowerCAmelCase__ ) ) __a = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase__ ) > 0: blocks.append('''\n'''.join(lowerCAmelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def lowercase ( lowerCAmelCase__ : str ) -> Dict: def _inner(lowerCAmelCase__ : List[str] ): return key(lowerCAmelCase__ ).lower().replace('''_''' , '''''' ) return _inner def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str=None ) -> int: # If no key is provided, we use a noop. def noop(lowerCAmelCase__ : int ): return x if key is None: __a = noop # Constants are all uppercase, they go first. __a = [obj for obj in objects if key(lowerCAmelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __a = [obj for obj in objects if key(lowerCAmelCase__ )[0].isupper() and not key(lowerCAmelCase__ ).isupper()] # Functions begin with a lowercase, they go last. __a = [obj for obj in objects if not key(lowerCAmelCase__ )[0].isupper()] __a = ignore_underscore(lowerCAmelCase__ ) return sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : List[str] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(lowerCAmelCase__ : Union[str, Any] ): __a = match.groups()[0] if "," not in imports: return f'''[{imports}]''' __a = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __a = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) + "]" __a = import_statement.split('''\n''' ) if len(lowerCAmelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __a = 2 if lines[1].strip() == '''[''' else 1 __a = [(i, _re_strip_line.search(lowerCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __a = sort_objects(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] ) __a = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __a = _re_bracket_content.sub(_replace , lines[1] ) else: __a = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __a = keys[:-1] __a = get_indent(lines[1] ) + ''', '''.join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) return "\n".join(lowerCAmelCase__ ) else: # Finally we have to deal with imports fitting on one line __a = _re_bracket_content.sub(_replace , lowerCAmelCase__ ) return import_statement def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=True ) -> str: with open(lowerCAmelCase__ , encoding='''utf-8''' ) as f: __a = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __a = split_code_in_indented_blocks( lowerCAmelCase__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCAmelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __a = main_blocks[block_idx] __a = block.split('''\n''' ) # Get to the start of the imports. __a = 0 while line_idx < len(lowerCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __a = len(lowerCAmelCase__ ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase__ ): continue # Ignore beginning and last line: they don't contain anything. __a = '''\n'''.join(block_lines[line_idx:-1] ) __a = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __a = split_code_in_indented_blocks(lowerCAmelCase__ , indent_level=lowerCAmelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend __a = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __a = [(pattern.search(lowerCAmelCase__ ).groups()[0] if pattern.search(lowerCAmelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __a = [(i, key) for i, key in enumerate(lowerCAmelCase__ ) if key is not None] __a = [x[0] for x in sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __a = 0 __a = [] for i in range(len(lowerCAmelCase__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __a = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCAmelCase__ ) count += 1 # And we put our main block back together with its first and last line. __a = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase__ ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCAmelCase__ ) ) def lowercase ( lowerCAmelCase__ : Optional[int]=True ) -> Optional[int]: __a = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: __a = sort_imports(os.path.join(lowerCAmelCase__ , '''__init__.py''' ) , check_only=lowerCAmelCase__ ) if result: __a = [os.path.join(lowerCAmelCase__ , '''__init__.py''' )] if len(lowerCAmelCase__ ) > 0: raise ValueError(f'''Would overwrite {len(lowerCAmelCase__ )} files, run `make style`.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowercase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
357
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a , _a ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def __UpperCAmelCase ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __UpperCAmelCase ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a , _a ): with strategy.scope(): __a = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a , _a ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
11
0
"""simple docstring""" from collections.abc import Callable def lowercase ( lowerCAmelCase__ : Callable[[float], float] , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: __a = a __a = b if function(lowerCAmelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowerCAmelCase__ ) == 0: return b elif ( function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __a = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowerCAmelCase__ ) == 0: return mid elif function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) < 0: __a = mid else: __a = mid __a = start + (end - start) / 2.0 return mid def lowercase ( lowerCAmelCase__ : float ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
358
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __a = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_a ) , torch_builtin(_a ) ) ) self.assertFalse(torch.allclose(gelu_python(_a ) , gelu_new(_a ) ) ) def __UpperCAmelCase ( self ): __a = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __a = get_activation('''gelu''' ) __a = get_activation('''gelu_10''' ) __a = torch_builtin(_a ) __a = geluaa(_a ) __a = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __UpperCAmelCase ( self ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_a ): get_activation('''bogus''' ) with self.assertRaises(_a ): get_activation(_a ) def __UpperCAmelCase ( self ): __a = get_activation('''gelu''' ) __a = 1 __a = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_a ): __a = acta.a
359
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = load_tool('''text-question-answering''' ) self.tool.setup() __a = load_tool('''text-question-answering''' , remote=_a ) def __UpperCAmelCase ( self ): __a = self.tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
11
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets lowercase_ = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" lowercase_ = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" lowercase_ = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : bool , lowerCAmelCase__ : Optional[Dict[int, int]] = None , lowerCAmelCase__ : bool = False , ) -> Union[str, Any]: if label_map is not None: for old_id, new_id in label_map.items(): __a = new_id # turn into Numpy arrays __a = np.array(lowerCAmelCase__ ) __a = np.array(lowerCAmelCase__ ) if reduce_labels: __a = 255 __a = label - 1 __a = 255 __a = label != ignore_index __a = np.not_equal(lowerCAmelCase__ , lowerCAmelCase__ ) __a = pred_label[mask] __a = np.array(lowerCAmelCase__ )[mask] __a = pred_label[pred_label == label] __a = np.histogram(lowerCAmelCase__ , bins=lowerCAmelCase__ , range=(0, num_labels - 1) )[0] __a = np.histogram(lowerCAmelCase__ , bins=lowerCAmelCase__ , range=(0, num_labels - 1) )[0] __a = np.histogram(lowerCAmelCase__ , bins=lowerCAmelCase__ , range=(0, num_labels - 1) )[0] __a = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : bool , lowerCAmelCase__ : Optional[Dict[int, int]] = None , lowerCAmelCase__ : bool = False , ) -> Dict: __a = np.zeros((num_labels,) , dtype=np.floataa ) __a = np.zeros((num_labels,) , dtype=np.floataa ) __a = np.zeros((num_labels,) , dtype=np.floataa ) __a = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __a , __a , __a , __a = intersect_and_union( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : bool , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Dict[int, int]] = None , lowerCAmelCase__ : bool = False , ) -> List[str]: __a , __a , __a , __a = total_intersect_and_union( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # compute metrics __a = {} __a = total_area_intersect.sum() / total_area_label.sum() __a = total_area_intersect / total_area_union __a = total_area_intersect / total_area_label __a = np.nanmean(lowerCAmelCase__ ) __a = np.nanmean(lowerCAmelCase__ ) __a = all_acc __a = iou __a = acc if nan_to_num is not None: __a = {metric: np.nan_to_num(lowerCAmelCase__ , nan=lowerCAmelCase__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a = None , _a = None , _a = False , ): __a = mean_iou( results=_a , gt_seg_maps=_a , num_labels=_a , ignore_index=_a , nan_to_num=_a , label_map=_a , reduce_labels=_a , ) return iou_result
361
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: __a = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase ( lowerCAmelCase__ : int ) -> None: __a = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('''''' ) print(len(lowerCAmelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
11
0
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = DistilBertTokenizer __UpperCAmelCase : Any = DistilBertTokenizerFast __UpperCAmelCase : int = True @slow def __UpperCAmelCase ( self ): __a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
11
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowercase_ = get_logger(__name__) lowercase_ = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class __lowerCAmelCase : '''simple docstring''' @add_start_docstrings(_a ) def __call__( self , _a , _a ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __lowerCAmelCase : '''simple docstring''' @add_start_docstrings(_a ) def __call__( self , _a , _a ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(_a ) def __call__( self , _a , _a , _a , **_a ): for processor in self: __a = inspect.signature(processor.__call__ ).parameters if len(_a ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) __a = processor(_a , _a , _a , **_a ) else: __a = processor(_a , _a , _a ) return scores class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a ): if not isinstance(_a , _a ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) __a = temperature def __call__( self , _a , _a , _a ): __a = scores / self.temperature return scores class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a = -float('''Inf''' ) , _a = 1 ): if not isinstance(_a , _a ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_a , _a ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) __a = top_p __a = filter_value __a = min_tokens_to_keep def __call__( self , _a , _a , _a ): __a , __a = lax.top_k(_a , scores.shape[-1] ) __a = jnp.full_like(_a , self.filter_value ) __a = jax.nn.softmax(_a , axis=-1 ).cumsum(axis=-1 ) __a = cumulative_probs < self.top_p # include the token that is higher than top_p as well __a = jnp.roll(_a , 1 ) score_mask |= score_mask.at[:, 0].set(_a ) # min tokens to keep __a = score_mask.at[:, : self.min_tokens_to_keep].set(_a ) __a = jnp.where(_a , _a , _a ) __a = jax.lax.sort_key_val(_a , _a )[-1] return next_scores class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a = -float('''Inf''' ) , _a = 1 ): if not isinstance(_a , _a ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) __a = max(_a , _a ) __a = filter_value def __call__( self , _a , _a , _a ): __a , __a = scores.shape __a = jnp.full(batch_size * vocab_size , self.filter_value ) __a = min(self.top_k , scores.shape[-1] ) # Safety check __a , __a = lax.top_k(_a , _a ) __a = jnp.broadcast_to((jnp.arange(_a ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __a = topk_scores.flatten() __a = topk_indices.flatten() + shift __a = next_scores_flat.at[topk_indices_flat].set(_a ) __a = next_scores_flat.reshape(_a , _a ) return next_scores class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a ): __a = bos_token_id def __call__( self , _a , _a , _a ): __a = jnp.full(scores.shape , -float('''inf''' ) ) __a = 1 - jnp.bool_(cur_len - 1 ) __a = jnp.where(_a , new_scores.at[:, self.bos_token_id].set(0 ) , _a ) return scores class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a ): __a = max_length __a = eos_token_id def __call__( self , _a , _a , _a ): __a = jnp.full(scores.shape , -float('''inf''' ) ) __a = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __a = jnp.where(_a , new_scores.at[:, self.eos_token_id].set(0 ) , _a ) return scores class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a ): if not isinstance(_a , _a ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_a , _a ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) __a = min_length __a = eos_token_id def __call__( self , _a , _a , _a ): # create boolean flag to decide if min length penalty should be applied __a = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __a = jnp.where(_a , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , _a ) return scores class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a ): __a = list(_a ) __a = begin_index def __call__( self , _a , _a , _a ): __a = 1 - jnp.bool_(cur_len - self.begin_index ) __a = jnp.where(_a , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , _a ) return scores class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a ): __a = list(_a ) def __call__( self , _a , _a , _a ): __a = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a ): __a = dict(_a ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __a = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __a = force_token_array.at[index].set(_a ) __a = jnp.intaa(_a ) def __call__( self , _a , _a , _a ): def _force_token(_a ): __a = scores.shape[0] __a = self.force_token_array[generation_idx] __a = jnp.ones_like(_a , dtype=scores.dtype ) * -float('''inf''' ) __a = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __a = lax.dynamic_update_slice(_a , _a , (0, current_token) ) return new_scores __a = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_a ) , lambda: scores , ) , ) return scores class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a ): __a = generate_config.eos_token_id __a = generate_config.no_timestamps_token_id __a = generate_config.no_timestamps_token_id + 1 __a = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_a , '''max_initial_timestamp_index''' ): __a = generate_config.max_initial_timestamp_index else: __a = model_config.vocab_size if self.max_initial_timestamp_index is None: __a = model_config.vocab_size def __call__( self , _a , _a , _a ): # suppress <|notimestamps|> which is handled by without_timestamps __a = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(_a , _a ): __a = jnp.where((cur_len - self.begin_index) >= 1 , _a , _a ) __a = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _a , ) __a = jnp.where((cur_len - self.begin_index) < 2 , _a , _a ) __a = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _a , _a , ) return jnp.where( _a , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , _a , ) __a = jax.vmap(_a )(_a , _a ) __a = jnp.where(cur_len == self.begin_index , _a , _a ) __a = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _a , ) __a = self.timestamp_begin + self.max_initial_timestamp_index __a = jnp.where( _a , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , _a , ) # if sum of probability over timestamps is above any other token, sample timestamp __a = jax.nn.log_softmax(_a , axis=-1 ) def handle_cumulative_probs(_a , _a ): __a = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __a = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , _a , ) __a = jax.vmap(_a )(_a , _a ) return scores
363
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'vit_mae' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = decoder_num_attention_heads __a = decoder_hidden_size __a = decoder_num_hidden_layers __a = decoder_intermediate_size __a = mask_ratio __a = norm_pix_loss
11
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a = None , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , **_a , ): super().__init__( _a , split=_a , features=_a , cache_dir=_a , keep_in_memory=_a , streaming=_a , num_proc=_a , **_a , ) __a = field __a = path_or_paths if isinstance(_a , _a ) else {self.split: path_or_paths} __a = Json( cache_dir=_a , data_files=_a , features=_a , field=_a , **_a , ) def __UpperCAmelCase ( self ): # Build iterable dataset if self.streaming: __a = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __a = None __a = None __a = None __a = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , num_proc=self.num_proc , ) __a = self.builder.as_dataset( split=self.split , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a = None , _a = None , **_a , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) __a = dataset __a = path_or_buf __a = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __a = num_proc __a = '''utf-8''' __a = to_json_kwargs def __UpperCAmelCase ( self ): __a = self.to_json_kwargs.pop('''path_or_buf''' , _a ) __a = self.to_json_kwargs.pop('''orient''' , '''records''' ) __a = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) __a = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) __a = self.to_json_kwargs.pop('''compression''' , _a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=_a ) as buffer: __a = self._write(file_obj=_a , orient=_a , lines=_a , index=_a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ''' was passed. Please provide a local path instead.''' ) __a = self._write( file_obj=self.path_or_buf , orient=_a , lines=_a , index=_a , **self.to_json_kwargs ) return written def __UpperCAmelCase ( self , _a ): __a , __a , __a , __a , __a = args __a = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) __a = batch.to_pandas().to_json( path_or_buf=_a , orient=_a , lines=_a , index=_a , **_a ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a , ): __a = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): __a = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_a ) else: __a , __a = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(_a ) return written
364
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
0
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> int: if len(lowerCAmelCase__ ) < k or k < 0: raise ValueError('''Invalid Input''' ) __a = __a = sum(array[:k] ) for i in range(len(lowerCAmelCase__ ) - k ): __a = current_sum - array[i] + array[i + k] __a = max(lowerCAmelCase__ , lowerCAmelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowercase_ = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)] lowercase_ = randint(0, 1_1_0) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
365
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : str = 2 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ): if trained_betas is not None: __a = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCAmelCase ( self , _a , _a=None ): if schedule_timesteps is None: __a = self.timesteps __a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a = 1 if len(_a ) > 1 else 0 else: __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __a = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _a , _a , ): __a = self.index_for_timestep(_a ) if self.state_in_first_order: __a = self.sigmas[step_index] else: __a = self.sigmas_interpol[step_index] __a = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _a , _a = None , _a = None , ): __a = num_inference_steps __a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a = torch.from_numpy(np.log(_a ) ).to(_a ) __a = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __a = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a = torch.cat([timesteps[:1], interleaved_timesteps] ) __a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a ): # get log sigma __a = sigma.log() # get distribution __a = log_sigma - self.log_sigmas[:, None] # get sigmas range __a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a = low_idx + 1 __a = self.log_sigmas[low_idx] __a = self.log_sigmas[high_idx] # interpolate sigmas __a = (low - log_sigma) / (low - high) __a = w.clamp(0 , 1 ) # transform interpolation to time range __a = (1 - w) * low_idx + w * high_idx __a = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ): return self.sample is None def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ): __a = self.index_for_timestep(_a ) # advance index counter by 1 __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a = self.sigmas[step_index] __a = self.sigmas_interpol[step_index + 1] __a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a = self.sigmas[step_index - 1] __a = self.sigmas_interpol[step_index] __a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a = 0 __a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a = sigma_interpol - sigma_hat # store for 2nd order step __a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a = sigma_next - sigma_hat __a = self.sample __a = None __a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a = self.timesteps.to(original_samples.device ) __a = timesteps.to(original_samples.device ) __a = [self.index_for_timestep(_a , _a ) for t in timesteps] __a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a = sigma.unsqueeze(-1 ) __a = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
11
0
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowercase_ = TypeVar("T") def lowercase ( lowerCAmelCase__ : int ) -> int: return (position - 1) // 2 def lowercase ( lowerCAmelCase__ : int ) -> int: return (2 * position) + 1 def lowercase ( lowerCAmelCase__ : int ) -> int: return (2 * position) + 2 class __lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): __a = [] __a = {} __a = 0 def __len__( self ): return self.elements def __repr__( self ): return str(self.heap ) def __UpperCAmelCase ( self ): # Check if the priority queue is empty return self.elements == 0 def __UpperCAmelCase ( self , _a , _a ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) __a = self.elements self.elements += 1 self._bubble_up(_a ) def __UpperCAmelCase ( self ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __a , __a = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __a , __a = self.heap[0] self._bubble_down(_a ) return elem def __UpperCAmelCase ( self , _a , _a ): # Update the weight of the given key __a = self.position_map[elem] __a = (elem, weight) if position > 0: __a = get_parent_position(_a ) __a , __a = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_a ) else: self._bubble_down(_a ) else: self._bubble_down(_a ) def __UpperCAmelCase ( self , _a ): # Place a node at the proper position (upward movement) [to be used internally # only] __a = self.position_map[elem] if curr_pos == 0: return None __a = get_parent_position(_a ) __a , __a = self.heap[curr_pos] __a , __a = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_a , _a ) return self._bubble_up(_a ) return None def __UpperCAmelCase ( self , _a ): # Place a node at the proper position (downward movement) [to be used # internally only] __a = self.position_map[elem] __a , __a = self.heap[curr_pos] __a = get_child_left_position(_a ) __a = get_child_right_position(_a ) if child_left_position < self.elements and child_right_position < self.elements: __a , __a = self.heap[child_left_position] __a , __a = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) if child_left_position < self.elements: __a , __a = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) else: return None if child_right_position < self.elements: __a , __a = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) return None def __UpperCAmelCase ( self , _a , _a ): # Swap the nodes at the given positions __a = self.heap[nodea_pos][0] __a = self.heap[nodea_pos][0] __a , __a = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __a = nodea_pos __a = nodea_pos class __lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): __a = {} __a = 0 def __repr__( self ): return str(self.connections ) def __len__( self ): return self.nodes def __UpperCAmelCase ( self , _a ): # Add a node in the graph if it is not in the graph if node not in self.connections: __a = {} self.nodes += 1 def __UpperCAmelCase ( self , _a , _a , _a ): # Add an edge between 2 nodes in the graph self.add_node(_a ) self.add_node(_a ) __a = weight __a = weight def lowercase ( lowerCAmelCase__ : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: __a = {node: maxsize for node in graph.connections} __a = {node: None for node in graph.connections} __a = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase__ , lowerCAmelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization __a = priority_queue.extract_min() __a = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __a = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) __a = node # running prim's algorithm while not priority_queue.is_empty(): __a = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __a = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) __a = node return dist, parent
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'rwkv' __UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ): __a = vocab_size __a = context_length __a = hidden_size __a = num_hidden_layers __a = attention_hidden_size if attention_hidden_size is not None else hidden_size __a = intermediate_size if intermediate_size is not None else 4 * hidden_size __a = layer_norm_epsilon __a = rescale_every __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
11
0
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 'sequence-classification' def __init__( self , _a ): if type(_a ) == dict: __a = Namespace(**_a ) __a = glue_output_modes[hparams.task] __a = glue_tasks_num_labels[hparams.task] super().__init__(_a , _a , self.mode ) def __UpperCAmelCase ( self , **_a ): return self.model(**_a ) def __UpperCAmelCase ( self , _a , _a ): __a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __a = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None __a = self(**_a ) __a = outputs[0] __a = self.trainer.lr_schedulers[0]['''scheduler'''] __a = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __UpperCAmelCase ( self ): __a = self.hparams __a = processors[args.task]() __a = processor.get_labels() for mode in ["train", "dev"]: __a = self._feature_file(_a ) if os.path.exists(_a ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , _a ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) __a = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) __a = convert_examples_to_features( _a , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , _a ) torch.save(_a , _a ) def __UpperCAmelCase ( self , _a , _a , _a = False ): __a = '''dev''' if mode == '''test''' else mode __a = self._feature_file(_a ) logger.info('''Loading features from cached file %s''' , _a ) __a = torch.load(_a ) __a = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __a = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __a = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __a = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __a = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(_a , _a , _a , _a ) , batch_size=_a , shuffle=_a , ) def __UpperCAmelCase ( self , _a , _a ): __a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __a = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None __a = self(**_a ) __a , __a = outputs[:2] __a = logits.detach().cpu().numpy() __a = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCAmelCase ( self , _a ): __a = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() __a = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __a = np.argmax(_a , axis=1 ) elif self.hparams.glue_output_mode == "regression": __a = np.squeeze(_a ) __a = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) __a = [[] for _ in range(out_label_ids.shape[0] )] __a = [[] for _ in range(out_label_ids.shape[0] )] __a = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , _a , _a )} __a = dict(results.items() ) __a = results return ret, preds_list, out_label_list def __UpperCAmelCase ( self , _a ): __a , __a , __a = self._eval_end(_a ) __a = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCAmelCase ( self , _a ): __a , __a , __a = self._eval_end(_a ) __a = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCAmelCase ( _a , _a ): BaseTransformer.add_model_specific_args(_a , _a ) parser.add_argument( '''--max_seq_length''' , default=128 , type=_a , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=_a , required=_a , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=_a , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser() add_generic_args(lowerCAmelCase__ , os.getcwd() ) __a = GLUETransformer.add_model_specific_args(lowerCAmelCase__ , os.getcwd() ) __a = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __a = os.path.join( '''./results''' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) __a = GLUETransformer(lowerCAmelCase__ ) __a = generic_train(lowerCAmelCase__ , lowerCAmelCase__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __a = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=lowerCAmelCase__ ) ) __a = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase__ ) if __name__ == "__main__": main()
367
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = (UnCLIPScheduler,) def __UpperCAmelCase ( self , **_a ): __a = { '''num_train_timesteps''': 1_000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_a ) return config def __UpperCAmelCase ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __UpperCAmelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a ) def __UpperCAmelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __UpperCAmelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_a ) def __UpperCAmelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a ) def __UpperCAmelCase ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a , prev_timestep=_a ) def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''fixed_small_log''' ) __a = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''learned_range''' ) __a = scheduler_class(**_a ) __a = 0.5 assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_a ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_a ) - -0.001_0011 < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) # 2. predict previous mean of sample x_t-1 __a = scheduler.step(_a , _a , _a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) scheduler.set_timesteps(25 ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) if i + 1 == timesteps.shape[0]: __a = None else: __a = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __a = scheduler.step( _a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): pass
11
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowercase_ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase_ = get_tests_dir("fixtures/vocab.json") lowercase_ = get_tests_dir("fixtures") class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def __UpperCAmelCase ( self ): __a = 0 def __UpperCAmelCase ( self ): __a = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __a = WavaVecaConfig() __a = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(_a ) processor.save_pretrained(_a ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_a , os.path.join(_a , _a ) ) copyfile(_a , os.path.join(_a , '''vocab.json''' ) ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __a = WavaVecaFeatureExtractor() __a = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) __a = WavaVecaProcessor(_a , _a ) # save in new folder processor.save_pretrained(_a ) # drop `processor_class` in tokenizer with open(os.path.join(_a , _a ) , '''r''' ) as f: __a = json.load(_a ) config_dict.pop('''processor_class''' ) with open(os.path.join(_a , _a ) , '''w''' ) as f: f.write(json.dumps(_a ) ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __a = WavaVecaFeatureExtractor() __a = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) __a = WavaVecaProcessor(_a , _a ) # save in new folder processor.save_pretrained(_a ) # drop `processor_class` in feature extractor with open(os.path.join(_a , _a ) , '''r''' ) as f: __a = json.load(_a ) config_dict.pop('''processor_class''' ) with open(os.path.join(_a , _a ) , '''w''' ) as f: f.write(json.dumps(_a ) ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __a = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(_a ) # copy relevant files copyfile(_a , os.path.join(_a , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(_a , _a ) , '''w''' ) as f: f.write('''{}''' ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): __a = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): __a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) __a = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) __a = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) __a = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version __a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a , use_fast=_a ) __a = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __UpperCAmelCase ( self ): try: AutoConfig.register('''custom''' , _a ) AutoFeatureExtractor.register(_a , _a ) AutoTokenizer.register(_a , slow_tokenizer_class=_a ) AutoProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoProcessor.register(_a , _a ) # Now that the config is registered, it can be used as any other config with the auto-API __a = CustomFeatureExtractor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: __a = os.path.join(_a , '''vocab.txt''' ) with open(_a , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __a = CustomTokenizer(_a ) __a = CustomProcessor(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_a ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __UpperCAmelCase ( self ): class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = False class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = False class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 'AutoFeatureExtractor' __UpperCAmelCase : Any = 'AutoTokenizer' __UpperCAmelCase : List[Any] = False try: AutoConfig.register('''custom''' , _a ) AutoFeatureExtractor.register(_a , _a ) AutoTokenizer.register(_a , slow_tokenizer_class=_a ) AutoProcessor.register(_a , _a ) # If remote code is not set, the default is to use local classes. __a = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __UpperCAmelCase ( self ): __a = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __UpperCAmelCase ( self ): __a = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = WavaVecaProcessor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_a , '''test-processor''' ) , push_to_hub=_a , use_auth_token=self._token ) __a = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(new_processor.feature_extractor , _a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __UpperCAmelCase ( self ): __a = WavaVecaProcessor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_a , '''test-processor-org''' ) , push_to_hub=_a , use_auth_token=self._token , organization='''valid_org''' , ) __a = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(new_processor.feature_extractor , _a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __UpperCAmelCase ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __a = CustomFeatureExtractor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: __a = os.path.join(_a , '''vocab.txt''' ) with open(_a , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __a = CustomTokenizer(_a ) __a = CustomProcessor(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) __a = Repository(_a , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(_a ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_a , '''tokenizer_config.json''' ) ) as f: __a = json.load(_a ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_a , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_a , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_a , '''custom_processing.py''' ) ) ) repo.push_to_hub() __a = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=_a ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
368
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0 __a = image[None].transpose(0 , 3 , 1 , 2 ) __a = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , ): super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , PIL.Image.Image ): __a = 1 elif isinstance(_a , torch.Tensor ): __a = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' ) if isinstance(_a , PIL.Image.Image ): __a = preprocess(_a ) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters() ).dtype __a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __a = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1 ) __a = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __a = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(_a ).sample __a = torch.clamp(_a , -1.0 , 1.0 ) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
11
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowercase_ = logging.get_logger("transformers.models.speecht5") lowercase_ = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } lowercase_ = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } lowercase_ = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } lowercase_ = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } lowercase_ = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } lowercase_ = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } lowercase_ = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } lowercase_ = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } lowercase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowercase_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowercase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowercase_ = [] lowercase_ = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict ) -> Union[str, Any]: for attribute in key.split('''.''' ): __a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: __a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value elif weight_type == "running_mean": __a = value elif weight_type == "running_var": __a = value elif weight_type == "num_batches_tracked": __a = value else: __a = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __a , __a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: __a = [] if task == "s2t": __a = hf_model.speechta.encoder.prenet.feature_encoder __a = MAPPING_S2T __a = IGNORE_KEYS_S2T elif task == "t2s": __a = None __a = MAPPING_T2S __a = IGNORE_KEYS_T2S elif task == "s2s": __a = hf_model.speechta.encoder.prenet.feature_encoder __a = MAPPING_S2S __a = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(f'''{name} was ignored''' ) continue __a = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) __a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __a , __a = key.split('''.*.''' ) if prefix in name and suffix in name: __a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __a = True if "*" in mapped_key: __a = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "bias" in name: __a = '''bias''' elif "weight" in name: __a = '''weight''' elif "running_mean" in name: __a = '''running_mean''' elif "running_var" in name: __a = '''running_var''' elif "num_batches_tracked" in name: __a = '''num_batches_tracked''' else: __a = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> List[Any]: __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Dict=None , ) -> Any: if config_path is not None: __a = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: __a = SpeechTaConfig() if task == "s2t": __a = config.max_text_positions __a = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": __a = 1876 __a = 600 __a = config.max_speech_positions __a = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": __a = 1876 __a = config.max_speech_positions __a = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: __a = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __a = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) __a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) __a = SpeechTaFeatureExtractor() __a = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) __a = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
369
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = DistilBertTokenizer __UpperCAmelCase : Any = DistilBertTokenizerFast __UpperCAmelCase : int = True @slow def __UpperCAmelCase ( self ): __a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
11
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'yolos' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=[512, 864] , _a=16 , _a=3 , _a=True , _a=100 , _a=True , _a=False , _a=1 , _a=5 , _a=2 , _a=5 , _a=2 , _a=0.1 , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = num_detection_tokens __a = use_mid_position_embeddings __a = auxiliary_loss # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = version.parse('1.11' ) @property def __UpperCAmelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __UpperCAmelCase ( self ): return 1E-4 @property def __UpperCAmelCase ( self ): return 12
370
"""simple docstring""" from math import factorial, radians def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float: __a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians __a = radians(lowerCAmelCase__ ) __a = angle_in_radians __a = 3 __a = -1 for _ in range(lowerCAmelCase__ ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ ) __a = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __import__("doctest").testmod()
11
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase ( lowerCAmelCase__ : dict ) -> tuple: return (data["data"], data["target"]) def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray: __a = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ ) # Predict target for test data __a = xgb.predict(lowerCAmelCase__ ) __a = predictions.reshape(len(lowerCAmelCase__ ) , 1 ) return predictions def lowercase ( ) -> None: __a = fetch_california_housing() __a , __a = data_handling(lowerCAmelCase__ ) __a , __a , __a , __a = train_test_split( lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 ) __a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
11
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowercase ) def A_ ( self ): _lowerCamelCase : str = self.dummy_uncond_unet _lowerCamelCase : Tuple = DDIMScheduler() _lowerCamelCase : Union[str, Any] = self.dummy_vq_model _lowerCamelCase : Optional[int] = LDMPipeline(unet=lowercase , vqvae=lowercase , scheduler=lowercase ) ldm.to(lowercase ) ldm.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : Any = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' ).images _lowerCamelCase : str = torch.manual_seed(0 ) _lowerCamelCase : int = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase )[0] _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] _lowerCamelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : List[Any] = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) _lowerCamelCase : Dict = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase ) ldm.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : Any = ldm(generator=lowercase , num_inference_steps=5 , output_type='numpy' ).images _lowerCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCamelCase : Optional[Any] = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) _lowerCamelCase : Union[str, Any] = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ = logging.getLogger(__name__) def _snake_case ( lowercase__=2 , lowercase__=3 , lowercase__=16 , lowercase__ = 10 , lowercase__ = 2 ): def get_dataset(lowercase__ ): _lowerCamelCase : List[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(lowercase__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _lowerCamelCase : Optional[int] = get_dataset(lowercase__ ) _lowerCamelCase : int = get_dataset(lowercase__ ) _lowerCamelCase : Optional[int] = DataLoader(lowercase__ , shuffle=lowercase__ , batch_size=lowercase__ , num_workers=4 ) _lowerCamelCase : List[str] = DataLoader(lowercase__ , shuffle=lowercase__ , batch_size=lowercase__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): _lowerCamelCase : List[str] = [] for epoch in range(lowercase__ ): # Train quickly model.train() for batch in dataloader: _lowerCamelCase, _lowerCamelCase : Dict = batch _lowerCamelCase : Optional[Any] = model(lowercase__ ) _lowerCamelCase : List[Any] = torch.nn.functional.mse_loss(lowercase__ , lowercase__ ) accelerator.backward(lowercase__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() _lowerCamelCase : Union[str, Any] = nn.Parameter(torch.randn(1 ) ) _lowerCamelCase : str = nn.Parameter(torch.randn(1 ) ) def A_ ( self , lowercase ): return x * self.a + self.b class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCamelCase : Dict = DummyModel() _lowerCamelCase : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCamelCase, _lowerCamelCase : int = dummy_dataloaders() _lowerCamelCase : Union[str, Any] = ProjectConfiguration(total_limit=1 , project_dir=lowercase , automatic_checkpoint_naming=lowercase ) # Train baseline _lowerCamelCase : int = Accelerator(project_config=lowercase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = accelerator.prepare( lowercase , lowercase , lowercase , lowercase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A_ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCamelCase : Union[str, Any] = DummyModel() _lowerCamelCase : Dict = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCamelCase, _lowerCamelCase : Dict = dummy_dataloaders() # Train baseline _lowerCamelCase : List[str] = Accelerator() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = accelerator.prepare( lowercase , lowercase , lowercase , lowercase ) # Save initial _lowerCamelCase : str = os.path.join(lowercase , 'initial' ) accelerator.save_state(lowercase ) ((_lowerCamelCase), (_lowerCamelCase)) : Union[str, Any] = model.a.item(), model.b.item() _lowerCamelCase : Optional[int] = optimizer.state_dict() _lowerCamelCase : Optional[int] = train(3 , lowercase , lowercase , lowercase , lowercase ) ((_lowerCamelCase), (_lowerCamelCase)) : str = model.a.item(), model.b.item() _lowerCamelCase : Tuple = optimizer.state_dict() # Train partially set_seed(42 ) _lowerCamelCase : int = DummyModel() _lowerCamelCase : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCamelCase, _lowerCamelCase : Any = dummy_dataloaders() _lowerCamelCase : Dict = Accelerator() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = accelerator.prepare( lowercase , lowercase , lowercase , lowercase ) accelerator.load_state(lowercase ) ((_lowerCamelCase), (_lowerCamelCase)) : Optional[Any] = model.a.item(), model.b.item() _lowerCamelCase : List[str] = optimizer.state_dict() self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) _lowerCamelCase : str = train(2 , lowercase , lowercase , lowercase , lowercase ) # Save everything _lowerCamelCase : int = os.path.join(lowercase , 'checkpoint' ) accelerator.save_state(lowercase ) # Load everything back in and make sure all states work accelerator.load_state(lowercase ) test_rands += train(1 , lowercase , lowercase , lowercase , lowercase ) ((_lowerCamelCase), (_lowerCamelCase)) : str = model.a.item(), model.b.item() _lowerCamelCase : List[Any] = optimizer.state_dict() self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) def A_ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCamelCase : Optional[int] = DummyModel() _lowerCamelCase : Tuple = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCamelCase, _lowerCamelCase : List[str] = dummy_dataloaders() _lowerCamelCase : Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=lowercase ) # Train baseline _lowerCamelCase : str = Accelerator(project_dir=lowercase , project_config=lowercase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = accelerator.prepare( lowercase , lowercase , lowercase , lowercase ) # Save initial accelerator.save_state() ((_lowerCamelCase), (_lowerCamelCase)) : str = model.a.item(), model.b.item() _lowerCamelCase : Tuple = optimizer.state_dict() _lowerCamelCase : Optional[Any] = train(3 , lowercase , lowercase , lowercase , lowercase ) ((_lowerCamelCase), (_lowerCamelCase)) : Optional[Any] = model.a.item(), model.b.item() _lowerCamelCase : List[str] = optimizer.state_dict() # Train partially set_seed(42 ) _lowerCamelCase : str = DummyModel() _lowerCamelCase : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCamelCase, _lowerCamelCase : List[Any] = dummy_dataloaders() _lowerCamelCase : Any = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowercase ) _lowerCamelCase : Tuple = Accelerator(project_dir=lowercase , project_config=lowercase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = accelerator.prepare( lowercase , lowercase , lowercase , lowercase ) accelerator.load_state(os.path.join(lowercase , 'checkpoints' , 'checkpoint_0' ) ) ((_lowerCamelCase), (_lowerCamelCase)) : Tuple = model.a.item(), model.b.item() _lowerCamelCase : int = optimizer.state_dict() self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) _lowerCamelCase : List[str] = train(2 , lowercase , lowercase , lowercase , lowercase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowercase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , lowercase , lowercase , lowercase , lowercase ) ((_lowerCamelCase), (_lowerCamelCase)) : str = model.a.item(), model.b.item() _lowerCamelCase : Optional[Any] = optimizer.state_dict() self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = torch.tensor([1, 2, 3] ) _lowerCamelCase : Tuple = torch.tensor([2, 3, 4] ) _lowerCamelCase : Optional[Any] = DummyModel() _lowerCamelCase : Optional[int] = torch.optim.Adam(net.parameters() ) _lowerCamelCase : Optional[int] = Accelerator() with self.assertRaises(lowercase ) as ve: accelerator.register_for_checkpointing(lowercase , lowercase , lowercase , lowercase ) _lowerCamelCase : Optional[int] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def A_ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCamelCase : Tuple = DummyModel() _lowerCamelCase : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCamelCase : str = torch.optim.lr_scheduler.StepLR(lowercase , step_size=1 , gamma=0.99 ) _lowerCamelCase, _lowerCamelCase : int = dummy_dataloaders() _lowerCamelCase : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=lowercase ) # Train baseline _lowerCamelCase : Dict = Accelerator(project_dir=lowercase , project_config=lowercase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Save initial accelerator.save_state() _lowerCamelCase : Optional[Any] = scheduler.state_dict() train(3 , lowercase , lowercase , lowercase , lowercase , lowercase ) self.assertNotEqual(lowercase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowercase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(lowercase , scheduler.state_dict() ) def A_ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCamelCase : str = DummyModel() _lowerCamelCase : Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=lowercase , total_limit=2 ) # Train baseline _lowerCamelCase : Optional[int] = Accelerator(project_dir=lowercase , project_config=lowercase ) _lowerCamelCase : int = accelerator.prepare(lowercase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowercase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def A_ ( self ): _lowerCamelCase : Dict = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(lowercase , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ = """/tmp/accelerate/state_checkpointing""" lowercase__ = DummyModel() lowercase__ = torch.optim.Adam(params=model.parameters(), lr=1E-3) lowercase__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ = dummy_dataloaders() lowercase__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ = group["""params"""][0].device break assert param_device.type == accelerator.device.type lowercase__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: lowercase__ = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: lowercase__ = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase__ = logging.get_logger(__name__) @add_end_docstrings(lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): super().__init__(*lowercase , **lowercase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A_ ( self , lowercase=None ): _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : Union[str, Any] = top_k return {}, {}, postprocess_params def __call__( self , lowercase , **lowercase ): return super().__call__(lowercase , **lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : Optional[int] = load_image(lowercase ) _lowerCamelCase : int = self.image_processor(images=lowercase , return_tensors=self.framework ) return model_inputs def A_ ( self , lowercase ): _lowerCamelCase : str = self.model(**lowercase ) return model_outputs def A_ ( self , lowercase , lowercase=5 ): if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Any = model_outputs.logits.softmax(-1 )[0] _lowerCamelCase, _lowerCamelCase : int = probs.topk(lowercase ) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1 )[0] _lowerCamelCase : int = tf.math.top_k(lowercase , k=lowercase ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowerCamelCase : Any = scores.tolist() _lowerCamelCase : Optional[int] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase , lowercase )]
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = True , lowercase = 1 / 255 , lowercase = None , lowercase = True , lowercase = None , lowercase = None , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Any = size if size is not None else {'height': 224, 'width': 224} _lowerCamelCase : List[str] = get_size_dict(lowercase ) _lowerCamelCase : int = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCamelCase : List[Any] = get_size_dict(lowercase , default_to_square=lowercase , param_name='crop_size' ) _lowerCamelCase : List[Any] = do_resize _lowerCamelCase : str = do_rescale _lowerCamelCase : Optional[Any] = do_normalize _lowerCamelCase : Optional[int] = do_center_crop _lowerCamelCase : Union[str, Any] = crop_size _lowerCamelCase : Any = size _lowerCamelCase : Union[str, Any] = resample _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCamelCase : Tuple = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A_ ( self , lowercase , lowercase , lowercase = PILImageResampling.BILINEAR , lowercase = None , **lowercase , ): _lowerCamelCase : Optional[Any] = get_size_dict(lowercase ) if "shortest_edge" in size: _lowerCamelCase : List[str] = get_resize_output_image_size(lowercase , size=size['shortest_edge'] , default_to_square=lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _lowerCamelCase : Optional[Any] = (size['height'], size['width']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ): _lowerCamelCase : int = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowercase , size=(size['height'], size['width']) , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ): return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[Any] = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Tuple = get_size_dict(lowercase , param_name='crop_size' , default_to_square=lowercase ) _lowerCamelCase : Any = resample if resample is not None else self.resample _lowerCamelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Dict = size if size is not None else self.size _lowerCamelCase : List[str] = get_size_dict(lowercase ) if not is_batched(lowercase ): _lowerCamelCase : List[Any] = [images] if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(lowercase ) for image in images] if do_resize: _lowerCamelCase : int = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: _lowerCamelCase : Any = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: _lowerCamelCase : List[Any] = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : List[Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase__ = 50_0000 lowercase__ , lowercase__ = os.path.split(__file__) lowercase__ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _snake_case ( lowercase__ , **lowercase__ ): _lowerCamelCase : Union[str, Any] = dataset.map(**lowercase__ ) @get_duration def _snake_case ( lowercase__ , **lowercase__ ): _lowerCamelCase : int = dataset.filter(**lowercase__ ) def _snake_case ( ): _lowerCamelCase : int = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Tuple = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) _lowerCamelCase : Tuple = generate_example_dataset( os.path.join(lowercase__ , 'dataset.arrow' ) , lowercase__ , num_examples=lowercase__ ) _lowerCamelCase : Optional[int] = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=lowercase__ ) def tokenize(lowercase__ ): return tokenizer(examples['text'] ) _lowerCamelCase : Dict = map(lowercase__ ) _lowerCamelCase : Union[str, Any] = map(lowercase__ , batched=lowercase__ ) _lowerCamelCase : Dict = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ ) with dataset.formatted_as(type='numpy' ): _lowerCamelCase : Optional[Any] = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ ) with dataset.formatted_as(type='pandas' ): _lowerCamelCase : str = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ ) with dataset.formatted_as(type='torch' , columns='numbers' ): _lowerCamelCase : Tuple = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): _lowerCamelCase : Optional[int] = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ ) _lowerCamelCase : Tuple = map(lowercase__ , function=lowercase__ , batched=lowercase__ ) _lowerCamelCase : Optional[Any] = filter(lowercase__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase__ , 'wb' ) as f: f.write(json.dumps(lowercase__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") lowercase__ = cvtColor(img, COLOR_BGR2GRAY) def _snake_case ( ): _lowerCamelCase : List[str] = cn.convert_to_negative(lowercase__ ) # assert negative_img array for at least one True assert negative_img.any() def _snake_case ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase__ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _snake_case ( ): _lowerCamelCase : int = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _snake_case ( ): _lowerCamelCase : int = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCamelCase : List[Any] = canny.canny(lowercase__ ) # assert canny array for at least one True assert canny_array.any() def _snake_case ( ): assert gg.gaussian_filter(lowercase__ , 5 , sigma=0.9 ).all() def _snake_case ( ): # laplace diagonals _lowerCamelCase : Any = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) _lowerCamelCase : int = conv.img_convolve(lowercase__ , lowercase__ ).astype(lowercase__ ) assert res.any() def _snake_case ( ): assert med.median_filter(lowercase__ , 3 ).any() def _snake_case ( ): _lowerCamelCase, _lowerCamelCase : List[Any] = sob.sobel_filter(lowercase__ ) assert grad.any() and theta.any() def _snake_case ( ): _lowerCamelCase : Dict = sp.make_sepia(lowercase__ , 20 ) assert sepia.all() def _snake_case ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" ): _lowerCamelCase : Any = bs.Burkes(imread(lowercase__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _snake_case ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" , ): _lowerCamelCase : Optional[Any] = rs.NearestNeighbour(imread(lowercase__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _snake_case ( ): _lowerCamelCase : str = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. _lowerCamelCase : List[str] = imread(lowercase__ , 0 ) # Test for get_neighbors_pixel function() return not None _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : Union[str, Any] = image[x_coordinate][y_coordinate] _lowerCamelCase : Optional[int] = lbp.get_neighbors_pixel( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCamelCase : Dict = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _lowerCamelCase : Optional[Any] = lbp.local_binary_value(lowercase__ , lowercase__ , lowercase__ ) assert lbp_image.any()
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase__ = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } lowercase__ = { """Salesforce/codegen-350M-mono""": 2048, } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = CodeGenTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="<|endoftext|>" , lowercase="<|endoftext|>" , lowercase="<|endoftext|>" , lowercase=False , **lowercase , ): super().__init__( lowercase , lowercase , tokenizer_file=lowercase , unk_token=lowercase , bos_token=lowercase , eos_token=lowercase , add_prefix_space=lowercase , **lowercase , ) if kwargs.pop('add_bos_token' , lowercase ): _lowerCamelCase : str = kwargs.pop('name_or_path' , '' ) raise ValueError( 'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.' 'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n' F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' 'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.' ' so that the fast tokenizer works correctly.' ) _lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase ) != add_prefix_space: _lowerCamelCase : Dict = getattr(lowercase , pre_tok_state.pop('type' ) ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : List[Any] = pre_tok_class(**lowercase ) _lowerCamelCase : str = add_prefix_space def A_ ( self , *lowercase , **lowercase ): _lowerCamelCase : Any = kwargs.get('is_split_into_words' , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): _lowerCamelCase : List[str] = kwargs.get('is_split_into_words' , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Optional[Any] = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def A_ ( self , lowercase , lowercase = False , lowercase = None , lowercase = None , **lowercase , ): _lowerCamelCase : List[Any] = super().decode( token_ids=lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase , **lowercase , ) if truncate_before_pattern is not None and len(lowercase ) > 0: _lowerCamelCase : Dict = self.truncate(lowercase , lowercase ) return decoded_text def A_ ( self , lowercase , lowercase ): def find_re(lowercase , lowercase , lowercase ): _lowerCamelCase : List[str] = pattern.search(lowercase , lowercase ) return m.start() if m else -1 _lowerCamelCase : Dict = [re.compile(lowercase , re.MULTILINE ) for pattern in truncate_before_pattern] _lowerCamelCase : Tuple = list(re.finditer('^print' , lowercase , re.MULTILINE ) ) if len(lowercase ) > 1: _lowerCamelCase : Dict = completion[: prints[1].start()] _lowerCamelCase : Dict = list(re.finditer('^def' , lowercase , re.MULTILINE ) ) if len(lowercase ) > 1: _lowerCamelCase : Tuple = completion[: defs[1].start()] _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = [ pos for pos in [find_re(lowercase , lowercase , lowercase ) for terminal in terminals] if pos != -1 ] if len(lowercase ) > 0: return completion[: min(lowercase )] else: return completion
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" from math import factorial def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(lowercase__ , lowercase__ ) or not isinstance(lowercase__ , lowercase__ ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _lowerCamelCase : List[str] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _lowerCamelCase : str = float(factorial(lowercase__ ) ) coefficient /= factorial(lowercase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
12
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
1
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase=1024 , lowercase=1024 , lowercase=3.6 ): _lowerCamelCase : str = tokenizer _lowerCamelCase : Optional[int] = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): _lowerCamelCase : Optional[Any] = iter(self.dataset ) _lowerCamelCase : Optional[int] = True while more_examples: _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowercase )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Optional[Any] = False break _lowerCamelCase : List[str] = tokenizer(lowercase , truncation=lowercase )['input_ids'] _lowerCamelCase : Optional[Any] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(lowercase ) , self.seq_length ): _lowerCamelCase : Dict = all_token_ids[i : i + self.seq_length] if len(lowercase ) == self.seq_length: yield torch.tensor(lowercase ) def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = {'streaming': True} _lowerCamelCase : List[Any] = load_dataset(args.dataset_name , split='train' , **lowercase__ ) _lowerCamelCase : List[str] = ConstantLengthDataset(lowercase__ , lowercase__ , seq_length=args.seq_length ) _lowerCamelCase : List[str] = DataLoader(lowercase__ , batch_size=args.batch_size ) return eval_dataloader def _snake_case ( lowercase__ ): model.eval() _lowerCamelCase : List[str] = [] for step, batch in enumerate(lowercase__ ): with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(lowercase__ , labels=lowercase__ ) _lowerCamelCase : Optional[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(lowercase__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Optional[int] = torch.mean(torch.cat(lowercase__ ) ) try: _lowerCamelCase : str = torch.exp(lowercase__ ) except OverflowError: _lowerCamelCase : Dict = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator lowercase__ = Accelerator() # Parse configuration lowercase__ = HfArgumentParser(EvaluationArguments) lowercase__ = parser.parse_args() set_seed(args.seed) # Logging lowercase__ = logging.getLogger(__name__) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) # Load model and tokenizer lowercase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowercase__ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowercase__ = create_dataloader(args) # Prepare everything with our `accelerator`. lowercase__ , lowercase__ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("""Evaluating and saving model after training""") lowercase__ , lowercase__ = evaluate(args) logger.info(F"loss/eval: {eval_loss}, perplexity: {perplexity}")
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
1
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # Initialise PyTorch model _lowerCamelCase : Optional[Any] = RemBertConfig.from_json_file(lowercase__ ) print('Building PyTorch model from configuration: {}'.format(str(lowercase__ ) ) ) _lowerCamelCase : List[str] = RemBertModel(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowercase__ ) ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
12
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
1
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( lowercase, lowercase ): '''simple docstring''' @register_to_config def __init__( self , lowercase , lowercase = None , lowercase = None ): super().__init__() _lowerCamelCase : Dict = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowerCamelCase : int = torch.zeros(lowercase , lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : List[str] = torch.nn.Parameter(lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): super().__init__() self.register_modules( vqvae=lowercase , transformer=lowercase , text_encoder=lowercase , tokenizer=lowercase , scheduler=lowercase , learned_classifier_free_sampling_embeddings=lowercase , ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Tuple = len(lowercase ) if isinstance(lowercase , lowercase ) else 1 # get prompt text embeddings _lowerCamelCase : Tuple = self.tokenizer( lowercase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _lowerCamelCase : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCamelCase : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _lowerCamelCase : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] _lowerCamelCase : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowerCamelCase : Optional[int] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=lowercase ) # duplicate text embeddings for each generation per prompt _lowerCamelCase : Optional[int] = prompt_embeds.repeat_interleave(lowercase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowerCamelCase : Optional[Any] = self.learned_classifier_free_sampling_embeddings.embeddings _lowerCamelCase : Optional[int] = negative_prompt_embeds.unsqueeze(0 ).repeat(lowercase , 1 , 1 ) else: _lowerCamelCase : Optional[int] = [''] * batch_size _lowerCamelCase : Optional[int] = text_input_ids.shape[-1] _lowerCamelCase : List[Any] = self.tokenizer( lowercase , padding='max_length' , max_length=lowercase , truncation=lowercase , return_tensors='pt' , ) _lowerCamelCase : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowerCamelCase : Optional[int] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=lowercase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCamelCase : List[str] = negative_prompt_embeds.shape[1] _lowerCamelCase : int = negative_prompt_embeds.repeat(1 , lowercase , 1 ) _lowerCamelCase : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , lowercase , lowercase = 100 , lowercase = 5.0 , lowercase = 1.0 , lowercase = 1 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , lowercase = None , lowercase = 1 , ): if isinstance(lowercase , lowercase ): _lowerCamelCase : str = 1 elif isinstance(lowercase , lowercase ): _lowerCamelCase : List[Any] = len(lowercase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(lowercase )}''' ) _lowerCamelCase : str = batch_size * num_images_per_prompt _lowerCamelCase : List[Any] = guidance_scale > 1.0 _lowerCamelCase : List[str] = self._encode_prompt(lowercase , lowercase , lowercase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase , lowercase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(lowercase )}.''' ) # get the initial completely masked latents unless the user supplied it _lowerCamelCase : Tuple = (batch_size, self.transformer.num_latent_pixels) if latents is None: _lowerCamelCase : Tuple = self.transformer.num_vector_embeds - 1 _lowerCamelCase : List[Any] = torch.full(lowercase , lowercase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _lowerCamelCase : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowercase , device=self.device ) _lowerCamelCase : int = self.scheduler.timesteps.to(self.device ) _lowerCamelCase : Tuple = latents for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the sample if we are doing classifier free guidance _lowerCamelCase : Optional[Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowerCamelCase : str = self.transformer(lowercase , encoder_hidden_states=lowercase , timestep=lowercase ).sample if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : str = model_output.chunk(2 ) _lowerCamelCase : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowercase , dim=1 , keepdim=lowercase ) _lowerCamelCase : Dict = self.truncate(lowercase , lowercase ) # remove `log(0)`'s (`-inf`s) _lowerCamelCase : Optional[int] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Any = self.scheduler.step(lowercase , timestep=lowercase , sample=lowercase , generator=lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase , lowercase , lowercase ) _lowerCamelCase : Optional[int] = self.vqvae.config.vq_embed_dim _lowerCamelCase : Dict = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowerCamelCase : Optional[int] = self.vqvae.quantize.get_codebook_entry(lowercase , shape=lowercase ) _lowerCamelCase : int = self.vqvae.decode(lowercase , force_not_quantize=lowercase ).sample _lowerCamelCase : Any = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCamelCase : Union[str, Any] = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase ) def A_ ( self , lowercase , lowercase ): _lowerCamelCase, _lowerCamelCase : int = torch.sort(lowercase , 1 , descending=lowercase ) _lowerCamelCase : int = torch.exp(lowercase ) _lowerCamelCase : int = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowerCamelCase : List[str] = torch.full_like(keep_mask[:, 0:1, :] , lowercase ) _lowerCamelCase : Dict = torch.cat((all_true, keep_mask) , dim=1 ) _lowerCamelCase : List[Any] = keep_mask[:, :-1, :] _lowerCamelCase : str = keep_mask.gather(1 , indices.argsort(1 ) ) _lowerCamelCase : List[str] = log_p_x_0.clone() _lowerCamelCase : List[str] = -torch.inf # -inf = log(0) return rv
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""image_processor""", """tokenizer"""] lowerCamelCase__ = """BlipImageProcessor""" lowerCamelCase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowercase , lowercase ): _lowerCamelCase : Tuple = False super().__init__(lowercase , lowercase ) _lowerCamelCase : Tuple = self.image_processor def __call__( self , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: _lowerCamelCase : List[Any] = self.tokenizer _lowerCamelCase : List[str] = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) return text_encoding # add pixel_values _lowerCamelCase : Optional[int] = self.image_processor(lowercase , return_tensors=lowercase ) if text is not None: _lowerCamelCase : Optional[int] = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) else: _lowerCamelCase : str = None if text_encoding is not None: encoding_image_processor.update(lowercase ) return encoding_image_processor def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.tokenizer.model_input_names _lowerCamelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , ): _lowerCamelCase : Optional[int] = size if size is not None else {'height': 18, 'width': 18} _lowerCamelCase : str = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = num_channels _lowerCamelCase : int = image_size _lowerCamelCase : int = min_resolution _lowerCamelCase : Optional[int] = max_resolution _lowerCamelCase : Union[str, Any] = do_resize _lowerCamelCase : Dict = size _lowerCamelCase : int = apply_ocr def A_ ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def A_ ( self ): _lowerCamelCase : List[Any] = LayoutLMvaImageProcessingTester(self ) @property def A_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self ): _lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'do_resize' ) ) self.assertTrue(hasattr(lowercase , 'size' ) ) self.assertTrue(hasattr(lowercase , 'apply_ocr' ) ) def A_ ( self ): _lowerCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) _lowerCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def A_ ( self ): pass def A_ ( self ): # Initialize image_processing _lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _lowerCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , lowercase ) self.assertIsInstance(encoding.boxes , lowercase ) # Test batched _lowerCamelCase : List[Any] = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def A_ ( self ): # Initialize image_processing _lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input _lowerCamelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _lowerCamelCase : List[Any] = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def A_ ( self ): # Initialize image_processing _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input _lowerCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _lowerCamelCase : Dict = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def A_ ( self ): # with apply_OCR = True _lowerCamelCase : Optional[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset _lowerCamelCase : Tuple = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) _lowerCamelCase : Tuple = Image.open(ds[0]['file'] ).convert('RGB' ) _lowerCamelCase : Dict = image_processing(lowercase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _lowerCamelCase : Tuple = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 _lowerCamelCase : List[str] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowercase ) self.assertListEqual(encoding.boxes , lowercase ) # with apply_OCR = False _lowerCamelCase : Tuple = LayoutLMvaImageProcessor(apply_ocr=lowercase ) _lowerCamelCase : Dict = image_processing(lowercase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
12
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def _snake_case ( lowercase__ , lowercase__ , lowercase__=8 ): _lowerCamelCase : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , ): super().__init__() self.register_modules( unet=lowercase , scheduler=lowercase , movq=lowercase , ) _lowerCamelCase : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): if latents is None: _lowerCamelCase : str = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _lowerCamelCase : Any = latents.to(lowercase ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def A_ ( self , lowercase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _lowerCamelCase : List[str] = torch.device(F'''cuda:{gpu_id}''' ) _lowerCamelCase : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) def A_ ( self , lowercase=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) _lowerCamelCase : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : List[str] = cpu_offload_with_hook(lowercase , lowercase , prev_module_hook=lowercase ) # We'll offload the last model manually. _lowerCamelCase : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A_ ( self ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 100 , lowercase = 4.0 , lowercase = 1 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , ): _lowerCamelCase : Union[str, Any] = self._execution_device _lowerCamelCase : Optional[int] = guidance_scale > 1.0 if isinstance(lowercase , lowercase ): _lowerCamelCase : int = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): _lowerCamelCase : Any = torch.cat(lowercase , dim=0 ) _lowerCamelCase : Optional[int] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _lowerCamelCase : Any = image_embeds.repeat_interleave(lowercase , dim=0 ) _lowerCamelCase : List[str] = negative_image_embeds.repeat_interleave(lowercase , dim=0 ) _lowerCamelCase : List[str] = hint.repeat_interleave(lowercase , dim=0 ) _lowerCamelCase : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) _lowerCamelCase : Union[str, Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) self.scheduler.set_timesteps(lowercase , device=lowercase ) _lowerCamelCase : int = self.scheduler.timesteps _lowerCamelCase : Optional[Any] = self.movq.config.latent_channels _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(lowercase , lowercase , self.movq_scale_factor ) # create initial latent _lowerCamelCase : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Union[str, Any] = {'image_embeds': image_embeds, 'hint': hint} _lowerCamelCase : Optional[Any] = self.unet( sample=lowercase , timestep=lowercase , encoder_hidden_states=lowercase , added_cond_kwargs=lowercase , return_dict=lowercase , )[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : int = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : Optional[int] = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Any = self.scheduler.step( lowercase , lowercase , lowercase , generator=lowercase , )[0] # post-processing _lowerCamelCase : int = self.movq.decode(lowercase , force_not_quantize=lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _lowerCamelCase : Dict = image * 0.5 + 0.5 _lowerCamelCase : Any = image.clamp(0 , 1 ) _lowerCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCamelCase : List[Any] = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
12
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if len(lowercase__ ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(lowercase__ ) or left < -len(lowercase__ ) or right >= len(lowercase__ ) or right < -len(lowercase__ ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] _lowerCamelCase : int = (left + right) >> 1 # the middle _lowerCamelCase : Tuple = find_max(lowercase__ , lowercase__ , lowercase__ ) # find max in range[left, mid] _lowerCamelCase : str = find_max(lowercase__ , mid + 1 , lowercase__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
12
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] lowercase__ = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] lowercase__ = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): lowercase__ = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : Any = BlipImageProcessor() _lowerCamelCase : Tuple = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) _lowerCamelCase : Optional[Any] = BlipaProcessor(lowercase , lowercase ) processor.save_pretrained(self.tmpdirname ) def A_ ( self , **lowercase ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).tokenizer def A_ ( self , **lowercase ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).image_processor def A_ ( self ): shutil.rmtree(self.tmpdirname ) def A_ ( self ): _lowerCamelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCamelCase : int = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self ): _lowerCamelCase : Any = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCamelCase : Optional[Any] = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) _lowerCamelCase : List[str] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.get_image_processor() _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : List[Any] = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : List[Any] = image_processor(lowercase , return_tensors='np' ) _lowerCamelCase : str = processor(images=lowercase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) _lowerCamelCase : List[str] = 'lower newer' _lowerCamelCase : Union[str, Any] = processor(text=lowercase ) _lowerCamelCase : Tuple = tokenizer(lowercase , return_token_type_ids=lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A_ ( self ): _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : List[Any] = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) _lowerCamelCase : List[str] = 'lower newer' _lowerCamelCase : Dict = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A_ ( self ): _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) _lowerCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.batch_decode(lowercase ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : List[Any] = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) _lowerCamelCase : Tuple = 'lower newer' _lowerCamelCase : Dict = self.prepare_image_inputs() _lowerCamelCase : Any = processor(text=lowercase , images=lowercase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
12
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
1
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example lowercase__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowercase__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _snake_case ( lowercase__ ): _lowerCamelCase : Any = [] for i in range(len(lowercase__ ) ): _lowerCamelCase : Dict = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _lowerCamelCase : str = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowercase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowercase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowercase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _lowerCamelCase : Dict = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowercase__ ) return next_generation def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Any = [] for _ in range(lowercase__ ): # Create output image _lowerCamelCase : Any = Image.new('RGB' , (len(cells[0] ), len(lowercase__ )) ) _lowerCamelCase : int = img.load() # Save cells to image for x in range(len(lowercase__ ) ): for y in range(len(cells[0] ) ): _lowerCamelCase : Any = 255 - cells[y][x] * 255 _lowerCamelCase : List[Any] = (colour, colour, colour) # Save image images.append(lowercase__ ) _lowerCamelCase : Tuple = new_generation(lowercase__ ) return images if __name__ == "__main__": lowercase__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
12
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
1