code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import math
from collections.abc import Iterator
from itertools import takewhile
def _snake_case ( lowercase__ ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _snake_case ( ):
_lowerCamelCase : List[Any] = 2
while True:
if is_prime(lowercase__ ):
yield num
num += 1
def _snake_case ( lowercase__ = 2000000 ):
return sum(takewhile(lambda lowercase__ : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F"{solution() = }") | 12 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowercase__ = {
"""configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegaForCausalLM""",
"""MegaForMaskedLM""",
"""MegaForMultipleChoice""",
"""MegaForQuestionAnswering""",
"""MegaForSequenceClassification""",
"""MegaForTokenClassification""",
"""MegaModel""",
"""MegaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {"""vocab_file""": """sentencepiece.bpe.model"""}
lowercase__ = {
"""vocab_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"""
),
},
}
lowercase__ = {
"""moussaKam/mbarthez""": 1024,
"""moussaKam/barthez""": 1024,
"""moussaKam/barthez-orangesum-title""": 1024,
}
lowercase__ = """▁"""
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["""input_ids""", """attention_mask"""]
def __init__( self , lowercase , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase = None , **lowercase , ):
# Mask token behave like a normal word, i.e. include the space before it
_lowerCamelCase : List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token
_lowerCamelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , )
_lowerCamelCase : Dict = vocab_file
_lowerCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowercase ) )
_lowerCamelCase : str = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
_lowerCamelCase : Optional[int] = len(self.sp_model ) - 1
_lowerCamelCase : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def A_ ( self , lowercase , lowercase = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCamelCase : List[Any] = [self.cls_token_id]
_lowerCamelCase : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A_ ( self , lowercase , lowercase = None , lowercase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase )
if token_ids_a is None:
return [1] + ([0] * len(lowercase )) + [1]
return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1]
def A_ ( self , lowercase , lowercase = None ):
_lowerCamelCase : Dict = [self.sep_token_id]
_lowerCamelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def A_ ( self ):
return len(self.sp_model )
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def A_ ( self , lowercase ):
return self.sp_model.encode(lowercase , out_type=lowercase )
def A_ ( self , lowercase ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_lowerCamelCase : Dict = self.sp_model.PieceToId(lowercase )
return spm_id if spm_id else self.unk_token_id
def A_ ( self , lowercase ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(lowercase )
def A_ ( self , lowercase ):
_lowerCamelCase : List[Any] = []
_lowerCamelCase : Tuple = ''
_lowerCamelCase : Optional[Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase ) + token
_lowerCamelCase : Union[str, Any] = True
_lowerCamelCase : Tuple = []
else:
current_sub_tokens.append(lowercase )
_lowerCamelCase : str = False
out_string += self.sp_model.decode(lowercase )
return out_string.strip()
def __getstate__( self ):
_lowerCamelCase : Optional[Any] = self.__dict__.copy()
_lowerCamelCase : Union[str, Any] = None
return state
def __setstate__( self , lowercase ):
_lowerCamelCase : Dict = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
_lowerCamelCase : Any = {}
_lowerCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A_ ( self , lowercase , lowercase = None ):
if not os.path.isdir(lowercase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCamelCase : List[Any] = os.path.join(
lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase , 'wb' ) as fi:
_lowerCamelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(lowercase )
return (out_vocab_file,) | 12 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ):
if attention_mask is None:
_lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = OPTConfig
lowerCamelCase__ = {}
lowerCamelCase__ = """gelu"""
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ):
_lowerCamelCase : Tuple = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Tuple = seq_length
_lowerCamelCase : str = is_training
_lowerCamelCase : Optional[int] = use_labels
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Dict = hidden_size
_lowerCamelCase : str = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Dict = hidden_act
_lowerCamelCase : Any = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : List[Any] = eos_token_id
_lowerCamelCase : Tuple = pad_token_id
_lowerCamelCase : List[str] = bos_token_id
_lowerCamelCase : Optional[int] = embed_dim
_lowerCamelCase : List[str] = word_embed_proj_dim
_lowerCamelCase : Any = False
def A_ ( self ):
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 )
_lowerCamelCase : Tuple = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , )
_lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase )
return config, inputs_dict
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase )
_lowerCamelCase : Optional[Any] = inputs_dict['input_ids']
_lowerCamelCase : str = input_ids[:1, :]
_lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :]
_lowerCamelCase : Optional[Any] = 1
# first forward pass
_lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase )
_lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
_lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0]
_lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx]
_lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
@require_tf
class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else ()
lowerCamelCase__ = (
{"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = 10
def A_ ( self ):
_lowerCamelCase : int = TFOPTModelTester(self )
_lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase )
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase , lowercase ):
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
_lowerCamelCase : Optional[int] = model_class(config=lowercase )
_lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase )
_lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
_lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase )
# check that weights remain the same after resizing
_lowerCamelCase : int = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Optional[Any] = False
self.assertTrue(lowercase )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase )
_lowerCamelCase : Dict = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Union[str, Any] = False
self.assertTrue(lowercase )
def _snake_case ( lowercase__ ):
return tf.constant(lowercase__ , dtype=tf.intaa )
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = 99
def A_ ( self ):
_lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2
_lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
_lowerCamelCase : int = input_ids.shape[0]
_lowerCamelCase : List[Any] = OPTConfig(
vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def A_ ( self ):
_lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' )
_lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
_lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id )
with tf.GradientTape():
_lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state
_lowerCamelCase : Optional[Any] = (1, 11, 512)
self.assertEqual(output.shape , lowercase )
_lowerCamelCase : List[str] = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) )
_lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
super().setUp()
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
def A_ ( self ):
_lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model )
_lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model )
_lowerCamelCase : List[str] = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase )
_lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
_lowerCamelCase : Any = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
_lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def A_ ( self ):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def A_ ( self ):
_lowerCamelCase : str = 'facebook/opt-125m'
_lowerCamelCase : Dict = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : int = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase )
def A_ ( self ):
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
_lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase )
_lowerCamelCase : Any = 'left'
# use different length sentences to test batching
_lowerCamelCase : Optional[int] = [
'Hello, my dog is a little',
'Today, I',
]
_lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase )
_lowerCamelCase : int = inputs['input_ids']
_lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] )
_lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase )
_lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
_lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings )
_lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
_lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase , lowercase )
self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] )
def A_ ( self ):
_lowerCamelCase : Tuple = 'facebook/opt-350m'
_lowerCamelCase : List[Any] = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase ) | 12 | 1 |
"""simple docstring"""
def _snake_case ( lowercase__ ):
return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') )
def _snake_case ( lowercase__ ):
_lowerCamelCase : Any = credit_card_number
_lowerCamelCase : str = 0
_lowerCamelCase : Tuple = len(lowercase__ ) - 2
for i in range(lowercase__ , -1 , -2 ):
# double the value of every second digit
_lowerCamelCase : List[Any] = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
_lowerCamelCase : Union[str, Any] = cc_number[:i] + str(lowercase__ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(lowercase__ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def _snake_case ( lowercase__ ):
_lowerCamelCase : Union[str, Any] = f'''{credit_card_number} is an invalid credit card number because'''
if not credit_card_number.isdigit():
print(f'''{error_message} it has nonnumerical characters.''' )
return False
if not 13 <= len(lowercase__ ) <= 16:
print(f'''{error_message} of its length.''' )
return False
if not validate_initial_digits(lowercase__ ):
print(f'''{error_message} of its first two digits.''' )
return False
if not luhn_validation(lowercase__ ):
print(f'''{error_message} it fails the Luhn check.''' )
return False
print(f'''{credit_card_number} is a valid credit card number.''' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""") | 12 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """philschmid/bart-large-cnn-samsum"""
lowerCamelCase__ = (
"""This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """
"""and returns a summary of the text."""
)
lowerCamelCase__ = """summarizer"""
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSeqaSeqLM
lowerCamelCase__ = ["""text"""]
lowerCamelCase__ = ["""text"""]
def A_ ( self , lowercase ):
return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase )
def A_ ( self , lowercase ):
return self.model.generate(**lowercase )[0]
def A_ ( self , lowercase ):
return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) | 12 | 1 |
"""simple docstring"""
def _snake_case ( lowercase__ ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
_lowerCamelCase : List[str] = len(lowercase__ )
_lowerCamelCase : List[str] = max(lowercase__ )
_lowerCamelCase : List[str] = min(lowercase__ )
# create the counting array
_lowerCamelCase : List[Any] = coll_max + 1 - coll_min
_lowerCamelCase : List[Any] = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , lowercase__ ):
_lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1]
# create the output collection
_lowerCamelCase : Dict = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , lowercase__ ) ):
_lowerCamelCase : Any = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def _snake_case ( lowercase__ ):
return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt"
lowercase__ = input("""Enter numbers separated by a comma:\n""").strip()
lowercase__ = [int(item) for item in user_input.split(""",""")]
print(counting_sort(unsorted)) | 12 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) )
_lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )]
index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ )
_lowerCamelCase : float = 0
_lowerCamelCase : list[float] = [0] * len(lowercase__ )
for i in index:
if weight[i] <= capacity:
_lowerCamelCase : int = 1
max_value += value[i]
capacity -= weight[i]
else:
_lowerCamelCase : Any = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowercase__ = {
"""configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = ["""VisionEncoderDecoderModel"""]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = ["""TFVisionEncoderDecoderModel"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = ["""FlaxVisionEncoderDecoderModel"""]
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
lowercase__ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("""""", """|""", """|"""),
datarow=DataRow("""""", """|""", """|"""),
padding=1,
with_header_hide=None,
)
lowercase__ = []
lowercase__ = []
lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}}
lowercase__ = [
{
"""type""": """header""",
"""text""": {
"""type""": """plain_text""",
"""text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results",
"""emoji""": True,
},
}
]
lowercase__ = 0
for log in Path().glob("""*.log"""):
lowercase__ = 0
with open(log, """r""") as f:
for line in f:
lowercase__ = json.loads(line)
if line.get("""nodeid""", """""") != "":
lowercase__ = line["""nodeid"""]
if line.get("""duration""", None) is not None:
lowercase__ = F"{line['duration']:.4f}"
if line.get("""outcome""", """""") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("""_""")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
lowercase__ = []
log.unlink()
lowercase__ = """"""
lowercase__ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
lowercase__ = []
lowercase__ = {}
for test in failed_tests:
lowercase__ = test[0].split("""::""")
lowercase__ = data[0].split("""/""")[-1]
if data[0] not in filesafailed:
lowercase__ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
lowercase__ = [test[0] for test in failed_table]
lowercase__ = list(set(files))
# Count number of instances in failed_tests
lowercase__ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
lowercase__ = tabulate(
table,
headers=["""Test Location""", """Num Failed"""],
tablefmt=hf_table_format,
stralign="""right""",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
lowercase__ = """Too many failed tests, please see the full report in the Action results."""
lowercase__ = len(err) + 10
lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}"
print(F"### {message}")
else:
lowercase__ = """No failed tests! 🤗"""
print(F"## {message}")
payload.append(no_error_payload)
if os.environ.get("""TEST_TYPE""", """""") != "":
from slack_sdk import WebClient
lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""])
if message != "No failed tests! 🤗":
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": message,
},
}
payload.append(md_report)
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": """*For more details:*""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {
"""type""": """plain_text""",
"""text""": """Check Action results""",
"""emoji""": True,
},
"""url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
payload.append(action_button)
lowercase__ = {
"""type""": """context""",
"""elements""": [
{
"""type""": """plain_text""",
"""text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}",
}
],
}
payload.append(date_report)
lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload)
lowercase__ = response.data["""ts"""]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
lowercase__ = """"""
for i, row in enumerate(test_failures):
if row[0] != test_class:
lowercase__ = row[0]
else:
lowercase__ = """"""
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```",
},
}
client.chat_postMessage(
channel="""#accelerate-ci-daily""",
thread_ts=ts,
blocks=[payload],
) | 12 | 1 |
"""simple docstring"""
import logging
from transformers.configuration_utils import PretrainedConfig
lowercase__ = logging.getLogger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """masked_bert"""
def __init__( self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase="topK" , lowercase="constant" , lowercase=0.0 , **lowercase , ):
super().__init__(pad_token_id=lowercase , **lowercase )
_lowerCamelCase : int = vocab_size
_lowerCamelCase : str = hidden_size
_lowerCamelCase : int = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Union[str, Any] = hidden_act
_lowerCamelCase : Optional[int] = intermediate_size
_lowerCamelCase : List[Any] = hidden_dropout_prob
_lowerCamelCase : int = attention_probs_dropout_prob
_lowerCamelCase : Tuple = max_position_embeddings
_lowerCamelCase : Dict = type_vocab_size
_lowerCamelCase : Union[str, Any] = initializer_range
_lowerCamelCase : int = layer_norm_eps
_lowerCamelCase : List[Any] = pruning_method
_lowerCamelCase : int = mask_init
_lowerCamelCase : str = mask_scale | 12 |
"""simple docstring"""
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """AutoTokenizer"""
lowerCamelCase__ = ["""tokenizer"""]
lowerCamelCase__ = {
"""semantic_prompt""": 1,
"""coarse_prompt""": 2,
"""fine_prompt""": 2,
}
def __init__( self , lowercase , lowercase=None ):
super().__init__(lowercase )
_lowerCamelCase : Optional[int] = speaker_embeddings
@classmethod
def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ):
if speaker_embeddings_dict_path is not None:
_lowerCamelCase : Optional[Any] = get_file_from_repo(
lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if speaker_embeddings_path is None:
logger.warning(
F'''`{os.path.join(lowercase , lowercase )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
_lowerCamelCase : List[Any] = None
else:
with open(lowercase ) as speaker_embeddings_json:
_lowerCamelCase : Union[str, Any] = json.load(lowercase )
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase )
return cls(tokenizer=lowercase , speaker_embeddings=lowercase )
def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ):
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase )
_lowerCamelCase : int = {}
_lowerCamelCase : List[Any] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
_lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase )
_lowerCamelCase : Any = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , )
_lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' )
_lowerCamelCase : Optional[Any] = tmp_dict
with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp:
json.dump(lowercase , lowercase )
super().save_pretrained(lowercase , lowercase , **lowercase )
def A_ ( self , lowercase = None , **lowercase ):
_lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset]
_lowerCamelCase : Any = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
_lowerCamelCase : Union[str, Any] = get_file_from_repo(
self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if path is None:
raise ValueError(
F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
_lowerCamelCase : List[str] = np.load(lowercase )
return voice_preset_dict
def A_ ( self , lowercase = None ):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ):
if voice_preset is not None and not isinstance(lowercase , lowercase ):
if (
isinstance(lowercase , lowercase )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
_lowerCamelCase : Any = self._load_voice_preset(lowercase )
else:
if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ):
_lowerCamelCase : Optional[Any] = voice_preset + '.npz'
_lowerCamelCase : Union[str, Any] = np.load(lowercase )
if voice_preset is not None:
self._validate_voice_preset_dict(lowercase , **lowercase )
_lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase )
_lowerCamelCase : Any = self.tokenizer(
lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , )
if voice_preset is not None:
_lowerCamelCase : Optional[int] = voice_preset
return encoded_text | 12 | 1 |
"""simple docstring"""
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def __init__( self , *lowercase , lowercase=None , lowercase=None , **lowercase ):
super().__init__(*lowercase , **lowercase )
_lowerCamelCase : Tuple = eval_examples
_lowerCamelCase : List[Any] = post_process_function
def A_ ( self , lowercase = None , lowercase=None , lowercase = None , lowercase = "eval" , **lowercase , ):
_lowerCamelCase : str = gen_kwargs.copy()
_lowerCamelCase : Any = (
gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length
)
_lowerCamelCase : Optional[Any] = (
gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams
)
_lowerCamelCase : List[Any] = gen_kwargs
_lowerCamelCase : Dict = self.eval_dataset if eval_dataset is None else eval_dataset
_lowerCamelCase : Optional[int] = self.get_eval_dataloader(lowercase )
_lowerCamelCase : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_lowerCamelCase : int = self.compute_metrics
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Optional[int] = time.time()
_lowerCamelCase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_lowerCamelCase : List[Any] = eval_loop(
lowercase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , )
finally:
_lowerCamelCase : Optional[int] = compute_metrics
_lowerCamelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_lowerCamelCase : int = self.post_process_function(lowercase , lowercase , lowercase )
_lowerCamelCase : int = self.compute_metrics(lowercase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_lowerCamelCase : Optional[int] = metrics.pop(lowercase )
metrics.update(output.metrics )
else:
_lowerCamelCase : Optional[Any] = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowercase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_lowerCamelCase : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase )
return metrics
def A_ ( self , lowercase , lowercase , lowercase=None , lowercase = "test" , **lowercase ):
_lowerCamelCase : str = gen_kwargs.copy()
_lowerCamelCase : Any = self.get_test_dataloader(lowercase )
# Temporarily disable metric computation, we will do it in the loop here.
_lowerCamelCase : int = self.compute_metrics
_lowerCamelCase : Tuple = None
_lowerCamelCase : List[str] = time.time()
_lowerCamelCase : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_lowerCamelCase : Dict = eval_loop(
lowercase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , )
finally:
_lowerCamelCase : Tuple = compute_metrics
_lowerCamelCase : Optional[int] = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_lowerCamelCase : Optional[Any] = self.post_process_function(lowercase , lowercase , lowercase , 'predict' )
_lowerCamelCase : Optional[int] = self.compute_metrics(lowercase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_lowerCamelCase : int = metrics.pop(lowercase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase ) | 12 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
lowercase__ = False
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : Tuple = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
_lowerCamelCase : Dict = torch.manual_seed(0 )
_lowerCamelCase : Dict = pipe(
image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images
_lowerCamelCase : str = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
_lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 12 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase__ = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
lowercase__ = {
"""E""": 12.70,
"""T""": 9.06,
"""A""": 8.17,
"""O""": 7.51,
"""I""": 6.97,
"""N""": 6.75,
"""S""": 6.33,
"""H""": 6.09,
"""R""": 5.99,
"""D""": 4.25,
"""L""": 4.03,
"""C""": 2.78,
"""U""": 2.76,
"""M""": 2.41,
"""W""": 2.36,
"""F""": 2.23,
"""G""": 2.02,
"""Y""": 1.97,
"""P""": 1.93,
"""B""": 1.29,
"""V""": 0.98,
"""K""": 0.77,
"""J""": 0.15,
"""X""": 0.15,
"""Q""": 0.10,
"""Z""": 0.07,
}
lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ"""
lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def _snake_case ( lowercase__ ):
return x[0]
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = get_letter_count(lowercase__ )
_lowerCamelCase : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(lowercase__ )
_lowerCamelCase : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ )
_lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] )
_lowerCamelCase : Any = list(freq_to_letter_str.items() )
freq_pairs.sort(key=lowercase__ , reverse=lowercase__ )
_lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = get_frequency_order(lowercase__ )
_lowerCamelCase : Union[str, Any] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) )
_lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )]
index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ )
_lowerCamelCase : float = 0
_lowerCamelCase : list[float] = [0] * len(lowercase__ )
for i in index:
if weight[i] <= capacity:
_lowerCamelCase : int = 1
max_value += value[i]
capacity -= weight[i]
else:
_lowerCamelCase : Any = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase ):
_lowerCamelCase : Dict = question_encoder
_lowerCamelCase : List[Any] = generator
_lowerCamelCase : Optional[Any] = self.question_encoder
def A_ ( self , lowercase ):
if os.path.isfile(lowercase ):
raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(lowercase , exist_ok=lowercase )
_lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' )
_lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' )
self.question_encoder.save_pretrained(lowercase )
self.generator.save_pretrained(lowercase )
@classmethod
def A_ ( cls , lowercase , **lowercase ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
_lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase )
if config is None:
_lowerCamelCase : int = RagConfig.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(
lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' )
_lowerCamelCase : Dict = AutoTokenizer.from_pretrained(
lowercase , config=config.generator , subfolder='generator_tokenizer' )
return cls(question_encoder=lowercase , generator=lowercase )
def __call__( self , *lowercase , **lowercase ):
return self.current_tokenizer(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.batch_decode(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.decode(*lowercase , **lowercase )
def A_ ( self ):
_lowerCamelCase : Any = self.question_encoder
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.generator
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ):
warnings.warn(
'`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '
'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '
'context manager to prepare your targets. See the documentation of your specific tokenizer for more '
'details' , lowercase , )
if max_length is None:
_lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length
_lowerCamelCase : Optional[Any] = self(
lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
_lowerCamelCase : int = self.current_tokenizer.model_max_length
_lowerCamelCase : str = self(
text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , )
_lowerCamelCase : int = labels['input_ids']
return model_inputs | 12 | 1 |
"""simple docstring"""
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
lowercase__ = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""])
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[Any] = test_results.split(' ' )
_lowerCamelCase : Optional[Any] = 0
_lowerCamelCase : Tuple = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
_lowerCamelCase : Dict = expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase__ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = {}
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : Dict = False
for line in failures_short_lines.split('\n' ):
if re.search(r'_ \[doctest\]' , lowercase__ ):
_lowerCamelCase : List[Any] = True
_lowerCamelCase : Union[str, Any] = line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
_lowerCamelCase : Dict = line
_lowerCamelCase : Optional[Any] = False
return failures
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase ):
_lowerCamelCase : Tuple = title
_lowerCamelCase : Any = doc_test_results['time_spent'].split(',' )[0]
_lowerCamelCase : List[Any] = doc_test_results['success']
_lowerCamelCase : Any = doc_test_results['failures']
_lowerCamelCase : Any = self.n_success + self.n_failures
# Failures and success of the modeling tests
_lowerCamelCase : int = doc_test_results
@property
def A_ ( self ):
_lowerCamelCase : Tuple = [self._time_spent]
_lowerCamelCase : str = 0
for time in time_spent:
_lowerCamelCase : List[Any] = time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(lowercase ) == 1:
_lowerCamelCase : Union[str, Any] = [0, 0, time_parts[0]]
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3600 + minutes * 60 + seconds
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
return F'''{int(lowercase )}h{int(lowercase )}m{int(lowercase )}s'''
@property
def A_ ( self ):
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def A_ ( self ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''',
},
}
@property
def A_ ( self ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'''
F''' {self.time}.'''
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''',
},
}
@property
def A_ ( self ):
_lowerCamelCase : str = 40
_lowerCamelCase : List[str] = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(lowercase , lowercase )}
_lowerCamelCase : Union[str, Any] = ''
for category, failures in category_failures.items():
if len(lowercase ) == 0:
continue
if report != "":
report += "\n\n"
report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(lowercase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'''The following examples had failures:\n\n\n{report}\n''',
},
}
@property
def A_ ( self ):
_lowerCamelCase : List[Any] = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(lowercase )
@staticmethod
def A_ ( ):
_lowerCamelCase : List[Any] = [
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(lowercase )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=lowercase , )
def A_ ( self ):
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
_lowerCamelCase : List[Any] = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else 'All tests passed.'
_lowerCamelCase : Dict = client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=lowercase , )
def A_ ( self , lowercase , lowercase , lowercase , lowercase ):
_lowerCamelCase : Union[str, Any] = ''
for key, value in failures.items():
_lowerCamelCase : Tuple = value[:200] + ' [Truncated]' if len(lowercase ) > 250 else value
failures_text += F'''*{key}*\n_{value}_\n\n'''
_lowerCamelCase : Optional[Any] = job_name
_lowerCamelCase : str = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
_lowerCamelCase : Optional[int] = {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def A_ ( self ):
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
_lowerCamelCase : str = self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
_lowerCamelCase : int = sorted(self.doc_test_results.items() , key=lambda lowercase : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
_lowerCamelCase : List[str] = F'''*Num failures* :{len(job_result['failed'] )} \n'''
_lowerCamelCase : Any = job_result['failures']
_lowerCamelCase : Any = self.get_reply_blocks(lowercase , lowercase , lowercase , text=lowercase )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F'''Results for {job}''' , blocks=lowercase , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def _snake_case ( ):
_lowerCamelCase : Optional[Any] = os.environ['GITHUB_RUN_ID']
_lowerCamelCase : Tuple = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'''
_lowerCamelCase : Optional[Any] = requests.get(lowercase__ ).json()
_lowerCamelCase : Union[str, Any] = {}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
_lowerCamelCase : List[Any] = math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowercase__ ):
_lowerCamelCase : Tuple = requests.get(url + f'''&page={i + 2}''' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.' , lowercase__ )
return {}
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = {}
if os.path.exists(lowercase__ ):
_lowerCamelCase : List[Any] = os.listdir(lowercase__ )
for file in files:
try:
with open(os.path.join(lowercase__ , lowercase__ ) , encoding='utf-8' ) as f:
_lowerCamelCase : Optional[int] = f.read()
except UnicodeDecodeError as e:
raise ValueError(f'''Could not open {os.path.join(lowercase__ , lowercase__ )}.''' ) from e
return _artifact
def _snake_case ( ):
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase ):
_lowerCamelCase : Optional[Any] = name
_lowerCamelCase : Dict = []
def __str__( self ):
return self.name
def A_ ( self , lowercase ):
self.paths.append({'name': self.name, 'path': path} )
_lowerCamelCase : Dict[str, Artifact] = {}
_lowerCamelCase : Optional[Any] = filter(os.path.isdir , os.listdir() )
for directory in directories:
_lowerCamelCase : Dict = directory
if artifact_name not in _available_artifacts:
_lowerCamelCase : List[str] = Artifact(lowercase__ )
_available_artifacts[artifact_name].add_path(lowercase__ )
return _available_artifacts
if __name__ == "__main__":
lowercase__ = get_job_links()
lowercase__ = retrieve_available_artifacts()
lowercase__ = collections.OrderedDict(
[
("""*.py""", """API Examples"""),
("""*.md""", """MD Examples"""),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
lowercase__ = {
v: {
"""failed""": [],
"""failures""": {},
}
for v in docs.values()
}
# Link to the GitHub Action job
lowercase__ = github_actions_job_links.get("""run_doctests""")
lowercase__ = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0]
lowercase__ = retrieve_artifact(artifact_path["""name"""])
if "stats" in artifact:
lowercase__ , lowercase__ , lowercase__ = handle_test_results(artifact["""stats"""])
lowercase__ = failed
lowercase__ = success
lowercase__ = time_spent[1:-1] + """, """
lowercase__ = extract_first_line_failure(artifact["""failures_short"""])
for line in artifact["summary_short"].split("""\n"""):
if re.search("""FAILED""", line):
lowercase__ = line.replace("""FAILED """, """""")
lowercase__ = line.split()[0].replace("""\n""", """""")
if "::" in line:
lowercase__ , lowercase__ = line.split("""::""")
else:
lowercase__ , lowercase__ = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
lowercase__ = docs[file_regex]
doc_test_results[category]["failed"].append(test)
lowercase__ = all_failures[test] if test in all_failures else """N/A"""
lowercase__ = failure
break
lowercase__ = Message("""🤗 Results of the doc tests.""", doc_test_results)
message.post()
message.post_reply() | 12 |
"""simple docstring"""
def _snake_case ( lowercase__ = 10 ):
if not isinstance(lowercase__ , lowercase__ ) or n < 0:
raise ValueError('Invalid input' )
_lowerCamelCase : str = 10**n
_lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F"{solution(10) = }") | 12 | 1 |
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=False , lowercase=True , lowercase=False , lowercase=True , lowercase=33 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ):
_lowerCamelCase : List[str] = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Dict = seq_length
_lowerCamelCase : Optional[int] = is_training
_lowerCamelCase : int = use_input_mask
_lowerCamelCase : int = use_token_type_ids
_lowerCamelCase : List[Any] = use_labels
_lowerCamelCase : Union[str, Any] = vocab_size
_lowerCamelCase : Tuple = hidden_size
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Dict = num_attention_heads
_lowerCamelCase : Dict = intermediate_size
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : List[Any] = hidden_dropout_prob
_lowerCamelCase : List[Any] = attention_probs_dropout_prob
_lowerCamelCase : Dict = max_position_embeddings
_lowerCamelCase : List[Any] = type_vocab_size
_lowerCamelCase : List[str] = type_sequence_label_size
_lowerCamelCase : Tuple = initializer_range
_lowerCamelCase : Optional[int] = num_labels
_lowerCamelCase : Dict = num_choices
_lowerCamelCase : Union[str, Any] = scope
def A_ ( self ):
_lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCamelCase : List[Any] = None
if self.use_input_mask:
_lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCamelCase : List[str] = None
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : List[str] = None
if self.use_labels:
_lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
_lowerCamelCase : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A_ ( self ):
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
_lowerCamelCase : str = EsmModel(config=lowercase )
model.to(lowercase )
model.eval()
_lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase )
_lowerCamelCase : Optional[Any] = model(lowercase )
_lowerCamelCase : List[Any] = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
_lowerCamelCase : int = EsmForMaskedLM(config=lowercase )
model.to(lowercase )
model.eval()
_lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
_lowerCamelCase : int = self.num_labels
_lowerCamelCase : Dict = EsmForTokenClassification(config=lowercase )
model.to(lowercase )
model.eval()
_lowerCamelCase : Dict = model(lowercase , attention_mask=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A_ ( self ):
_lowerCamelCase : int = self.prepare_config_and_inputs()
(
(
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
),
) : Union[str, Any] = config_and_inputs
_lowerCamelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = False
lowerCamelCase__ = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase__ = ()
lowerCamelCase__ = (
{
"""feature-extraction""": EsmModel,
"""fill-mask""": EsmForMaskedLM,
"""text-classification""": EsmForSequenceClassification,
"""token-classification""": EsmForTokenClassification,
"""zero-shot""": EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ = True
def A_ ( self ):
_lowerCamelCase : Dict = EsmModelTester(self )
_lowerCamelCase : List[str] = ConfigTester(self , config_class=lowercase , hidden_size=37 )
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase )
def A_ ( self ):
_lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCamelCase : Any = type
self.model_tester.create_and_check_model(*lowercase )
def A_ ( self ):
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase )
def A_ ( self ):
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase )
@slow
def A_ ( self ):
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : List[Any] = EsmModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()[0]
_lowerCamelCase : Dict = EsmEmbeddings(config=lowercase )
_lowerCamelCase : Optional[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
_lowerCamelCase : Union[str, Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
_lowerCamelCase : Any = create_position_ids_from_input_ids(lowercase , model.padding_idx )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(lowercase , lowercase ) ) )
def A_ ( self ):
_lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()[0]
_lowerCamelCase : Any = EsmEmbeddings(config=lowercase )
_lowerCamelCase : int = torch.empty(2 , 4 , 30 )
_lowerCamelCase : Tuple = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
_lowerCamelCase : Optional[int] = torch.as_tensor([expected_single_positions, expected_single_positions] )
_lowerCamelCase : Union[str, Any] = embeddings.create_position_ids_from_inputs_embeds(lowercase )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(lowercase , lowercase ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def A_ ( self ):
pass
@unittest.skip('Esm does not support embedding resizing' )
def A_ ( self ):
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def A_ ( self ):
pass
@require_torch
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
@slow
def A_ ( self ):
with torch.no_grad():
_lowerCamelCase : List[Any] = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
_lowerCamelCase : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
_lowerCamelCase : int = model(lowercase )[0]
_lowerCamelCase : Optional[Any] = 33
_lowerCamelCase : List[str] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape , lowercase )
_lowerCamelCase : List[Any] = torch.tensor(
[[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
@slow
def A_ ( self ):
with torch.no_grad():
_lowerCamelCase : Any = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
_lowerCamelCase : Dict = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
_lowerCamelCase : Union[str, Any] = model(lowercase )[0]
# compare the actual values for a slice.
_lowerCamelCase : str = torch.tensor(
[[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) | 12 |
"""simple docstring"""
import argparse
import datetime
def _snake_case ( lowercase__ ):
_lowerCamelCase : Dict = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
_lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase__ ) < 11:
raise ValueError('Must be 10 characters long' )
# Get month
_lowerCamelCase : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12' )
_lowerCamelCase : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get day
_lowerCamelCase : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31' )
# Get second separator
_lowerCamelCase : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get year
_lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?' )
# Get datetime obj for validation
_lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) )
# Start math
if m <= 2:
_lowerCamelCase : str = y - 1
_lowerCamelCase : Tuple = m + 12
# maths var
_lowerCamelCase : int = int(str(lowercase__ )[:2] )
_lowerCamelCase : int = int(str(lowercase__ )[2:] )
_lowerCamelCase : int = int(2.6 * m - 5.3_9 )
_lowerCamelCase : int = int(c / 4 )
_lowerCamelCase : int = int(k / 4 )
_lowerCamelCase : int = int(d + k )
_lowerCamelCase : int = int(t + u + v + x )
_lowerCamelCase : int = int(z - (2 * c) )
_lowerCamelCase : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.' )
# Response
_lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
lowercase__ = parser.parse_args()
zeller(args.date_input) | 12 | 1 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """char"""
lowerCamelCase__ = """bpe"""
lowerCamelCase__ = """wp"""
lowercase__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""image_processor""", """char_tokenizer"""]
lowerCamelCase__ = """ViTImageProcessor"""
lowerCamelCase__ = """MgpstrTokenizer"""
def __init__( self , lowercase=None , lowercase=None , **lowercase ):
_lowerCamelCase : int = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , lowercase , )
_lowerCamelCase : List[Any] = kwargs.pop('feature_extractor' )
_lowerCamelCase : List[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
_lowerCamelCase : Optional[int] = tokenizer
_lowerCamelCase : Any = AutoTokenizer.from_pretrained('gpt2' )
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(lowercase , lowercase )
def __call__( self , lowercase=None , lowercase=None , lowercase=None , **lowercase ):
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
_lowerCamelCase : Dict = self.image_processor(lowercase , return_tensors=lowercase , **lowercase )
if text is not None:
_lowerCamelCase : Tuple = self.char_tokenizer(lowercase , return_tensors=lowercase , **lowercase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_lowerCamelCase : Optional[int] = encodings['input_ids']
return inputs
def A_ ( self , lowercase ):
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = sequences
_lowerCamelCase : Dict = char_preds.size(0 )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(lowercase , 'char' )
_lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(lowercase , 'bpe' )
_lowerCamelCase, _lowerCamelCase : int = self._decode_helper(lowercase , 'wp' )
_lowerCamelCase : Tuple = []
_lowerCamelCase : int = []
for i in range(lowercase ):
_lowerCamelCase : List[str] = [char_scores[i], bpe_scores[i], wp_scores[i]]
_lowerCamelCase : Tuple = [char_strs[i], bpe_strs[i], wp_strs[i]]
_lowerCamelCase : List[Any] = scores.index(max(lowercase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_lowerCamelCase : str = {}
_lowerCamelCase : Dict = final_strs
_lowerCamelCase : Optional[Any] = final_scores
_lowerCamelCase : int = char_strs
_lowerCamelCase : List[Any] = bpe_strs
_lowerCamelCase : Any = wp_strs
return out
def A_ ( self , lowercase , lowercase ):
if format == DecodeType.CHARACTER:
_lowerCamelCase : Any = self.char_decode
_lowerCamelCase : List[str] = 1
_lowerCamelCase : Optional[Any] = '[s]'
elif format == DecodeType.BPE:
_lowerCamelCase : Union[str, Any] = self.bpe_decode
_lowerCamelCase : int = 2
_lowerCamelCase : Dict = '#'
elif format == DecodeType.WORDPIECE:
_lowerCamelCase : List[Any] = self.wp_decode
_lowerCamelCase : Optional[int] = 102
_lowerCamelCase : Tuple = '[SEP]'
else:
raise ValueError(F'''Format {format} is not supported.''' )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], []
_lowerCamelCase : Optional[int] = pred_logits.size(0 )
_lowerCamelCase : Optional[int] = pred_logits.size(1 )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = pred_logits.topk(1 , dim=-1 , largest=lowercase , sorted=lowercase )
_lowerCamelCase : Dict = preds_index.view(-1 , lowercase )[:, 1:]
_lowerCamelCase : Union[str, Any] = decoder(lowercase )
_lowerCamelCase, _lowerCamelCase : Dict = torch.nn.functional.softmax(lowercase , dim=2 ).max(dim=2 )
_lowerCamelCase : int = preds_max_prob[:, 1:]
for index in range(lowercase ):
_lowerCamelCase : int = preds_str[index].find(lowercase )
_lowerCamelCase : int = preds_str[index][:pred_eos]
_lowerCamelCase : Tuple = preds_index[index].cpu().tolist()
_lowerCamelCase : str = pred_index.index(lowercase ) if eos_token in pred_index else -1
_lowerCamelCase : List[str] = preds_max_prob[index][: pred_eos_index + 1]
_lowerCamelCase : Tuple = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(lowercase )
conf_scores.append(lowercase )
return dec_strs, conf_scores
def A_ ( self , lowercase ):
_lowerCamelCase : Dict = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(lowercase )]
return decode_strs
def A_ ( self , lowercase ):
return self.bpe_tokenizer.batch_decode(lowercase )
def A_ ( self , lowercase ):
_lowerCamelCase : str = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(lowercase )]
return decode_strs | 12 |
"""simple docstring"""
import re
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' )
if match := re.search(lowercase__ , lowercase__ ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("""+918827897895""")) | 12 | 1 |
"""simple docstring"""
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
lowercase__ = """\
@inproceedings{wang2019glue,
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
note={In the Proceedings of ICLR.},
year={2019}
}
"""
lowercase__ = """\
GLUE, the General Language Understanding Evaluation benchmark
(https://gluebenchmark.com/) is a collection of resources for training,
evaluating, and analyzing natural language understanding systems.
"""
lowercase__ = """
Compute GLUE evaluation metric associated to each GLUE dataset.
Args:
predictions: list of predictions to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
Returns: depending on the GLUE subset, one or several of:
\"accuracy\": Accuracy
\"f1\": F1 score
\"pearson\": Pearson Correlation
\"spearmanr\": Spearman Correlation
\"matthews_correlation\": Matthew Correlation
Examples:
>>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> glue_metric = datasets.load_metric('glue', 'stsb')
>>> references = [0., 1., 2., 3., 4., 5.]
>>> predictions = [0., 1., 2., 3., 4., 5.]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})
{'pearson': 1.0, 'spearmanr': 1.0}
>>> glue_metric = datasets.load_metric('glue', 'cola')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'matthews_correlation': 1.0}
"""
def _snake_case ( lowercase__ , lowercase__ ):
return float((preds == labels).mean() )
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : Optional[int] = simple_accuracy(lowercase__ , lowercase__ )
_lowerCamelCase : Dict = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) )
return {
"accuracy": acc,
"f1": fa,
}
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : Optional[int] = float(pearsonr(lowercase__ , lowercase__ )[0] )
_lowerCamelCase : int = float(spearmanr(lowercase__ , lowercase__ )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
'''simple docstring'''
def A_ ( self ):
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
} ) , codebase_urls=[] , reference_urls=[] , format='numpy' , )
def A_ ( self , lowercase , lowercase ):
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )}
elif self.config_name == "stsb":
return pearson_and_spearman(lowercase , lowercase )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(lowercase , lowercase )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(lowercase , lowercase )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) | 12 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
lowercase__ = Path(__file__).resolve().parents[3] / """src"""
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""}
lowercase__ = """zero2"""
lowercase__ = """zero3"""
lowercase__ = [ZEROa, ZEROa]
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
_lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) )
return f'''{func.__name__}_{param_based_name}'''
# Cartesian-product of zero stages with models to test
lowercase__ = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@require_torch_multi_gpu
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@require_torch_multi_gpu
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
def A_ ( self , lowercase ):
# XXX: run_asr is premature and doesn't save any results
# so all we check for now is that the process didn't fail
pass
def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ):
_lowerCamelCase : List[str] = models[model]
_lowerCamelCase : Optional[int] = self.run_trainer(
stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , )
self.do_checks(lowercase )
return output_dir
def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ):
_lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase )
_lowerCamelCase : Any = F'''
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(lowercase )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
'''.split()
if fpaa:
args.extend(['--fp16'] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
_lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split()
_lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py''']
_lowerCamelCase : Dict = self.get_launcher(lowercase )
_lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(lowercase , env=self.get_env() )
return output_dir
def A_ ( self , lowercase=False ):
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
_lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1
return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split() | 12 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def A_ ( self ):
torch.manual_seed(0 )
_lowerCamelCase : Tuple = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
return model
def A_ ( self ):
_lowerCamelCase : Optional[int] = self.dummy_uncond_unet
_lowerCamelCase : Union[str, Any] = KarrasVeScheduler()
_lowerCamelCase : Any = KarrasVePipeline(unet=lowercase , scheduler=lowercase )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : str = torch.manual_seed(0 )
_lowerCamelCase : int = pipe(num_inference_steps=2 , generator=lowercase , output_type='numpy' ).images
_lowerCamelCase : int = torch.manual_seed(0 )
_lowerCamelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase , output_type='numpy' , return_dict=lowercase )[0]
_lowerCamelCase : List[str] = image[0, -3:, -3:, -1]
_lowerCamelCase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_lowerCamelCase : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Tuple = 'google/ncsnpp-celebahq-256'
_lowerCamelCase : List[Any] = UNetaDModel.from_pretrained(lowercase )
_lowerCamelCase : List[Any] = KarrasVeScheduler()
_lowerCamelCase : Tuple = KarrasVePipeline(unet=lowercase , scheduler=lowercase )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : Any = torch.manual_seed(0 )
_lowerCamelCase : int = pipe(num_inference_steps=20 , generator=lowercase , output_type='numpy' ).images
_lowerCamelCase : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
_lowerCamelCase : Any = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 12 |
"""simple docstring"""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""pixel_values"""]
def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ):
super().__init__(**lowercase )
_lowerCamelCase : Optional[Any] = do_rescale
_lowerCamelCase : Union[str, Any] = rescale_factor
_lowerCamelCase : Any = do_pad
_lowerCamelCase : Optional[int] = pad_size
def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ):
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A_ ( self , lowercase , lowercase , lowercase = None ):
_lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase )
_lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height
_lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width
return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase )
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ):
_lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale
_lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad
_lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size
_lowerCamelCase : Dict = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
_lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images]
if do_rescale:
_lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_pad:
_lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images]
_lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
_lowerCamelCase : Union[str, Any] = {'pixel_values': images}
return BatchFeature(data=lowercase , tensor_type=lowercase ) | 12 | 1 |
"""simple docstring"""
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase ):
_lowerCamelCase : Optional[int] = len(lowercase )
_lowerCamelCase : Optional[int] = [0] * len_array
if len_array > 0:
_lowerCamelCase : List[Any] = array[0]
for i in range(1 , lowercase ):
_lowerCamelCase : List[str] = self.prefix_sum[i - 1] + array[i]
def A_ ( self , lowercase , lowercase ):
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def A_ ( self , lowercase ):
_lowerCamelCase : int = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(lowercase )
return False
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
import os
import string
import sys
lowercase__ = 1 << 8
lowercase__ = {
"""tab""": ord("""\t"""),
"""newline""": ord("""\r"""),
"""esc""": 27,
"""up""": 65 + ARROW_KEY_FLAG,
"""down""": 66 + ARROW_KEY_FLAG,
"""right""": 67 + ARROW_KEY_FLAG,
"""left""": 68 + ARROW_KEY_FLAG,
"""mod_int""": 91,
"""undefined""": sys.maxsize,
"""interrupt""": 3,
"""insert""": 50,
"""delete""": 51,
"""pg_up""": 53,
"""pg_down""": 54,
}
lowercase__ = KEYMAP["""up"""]
lowercase__ = KEYMAP["""left"""]
if sys.platform == "win32":
lowercase__ = []
lowercase__ = {
B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
}
for i in range(10):
lowercase__ = ord(str(i))
def _snake_case ( ):
if os.name == "nt":
import msvcrt
_lowerCamelCase : Any = 'mbcs'
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(lowercase__ ) == 0:
# Read the keystroke
_lowerCamelCase : str = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
_lowerCamelCase : List[Any] = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
_lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) )
WIN_CH_BUFFER.append(lowercase__ )
if ord(lowercase__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
_lowerCamelCase : List[Any] = chr(KEYMAP['esc'] )
except KeyError:
_lowerCamelCase : int = cha[1]
else:
_lowerCamelCase : Optional[int] = ch.decode(lowercase__ )
else:
_lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
_lowerCamelCase : List[str] = sys.stdin.fileno()
_lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ )
try:
tty.setraw(lowercase__ )
_lowerCamelCase : Optional[Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ )
return ch
def _snake_case ( ):
_lowerCamelCase : int = get_raw_chars()
if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(lowercase__ ) == KEYMAP["esc"]:
_lowerCamelCase : Union[str, Any] = get_raw_chars()
if ord(lowercase__ ) == KEYMAP["mod_int"]:
_lowerCamelCase : List[Any] = get_raw_chars()
if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(lowercase__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"] | 12 | 1 |
"""simple docstring"""
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch)
# also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml
# same for Vicuna-13b
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipImageProcessor,
InstructBlipConfig,
InstructBlipForConditionalGeneration,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
LlamaConfig,
LlamaTokenizerFast,
TaConfig,
TaTokenizerFast,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _snake_case ( ):
_lowerCamelCase : Optional[int] = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg'
_lowerCamelCase : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' )
return image
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') )
# fmt: on
return rename_keys
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : int = dct.pop(lowercase__ )
_lowerCamelCase : Optional[int] = val
def _snake_case ( lowercase__ , lowercase__ ):
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
_lowerCamelCase : Optional[int] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' )
_lowerCamelCase : int = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
_lowerCamelCase : Tuple = torch.cat((q_bias, torch.zeros_like(lowercase__ , requires_grad=lowercase__ ), v_bias) )
_lowerCamelCase : List[Any] = qkv_bias
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[str] = 364 if 'coco' in model_name else 224
_lowerCamelCase : int = InstructBlipVisionConfig(image_size=lowercase__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "t5-xl" in model_name:
_lowerCamelCase : Union[str, Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
_lowerCamelCase : Dict = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "vicuna-7b" in model_name:
_lowerCamelCase : str = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=32001 ).to_dict()
elif "vicuna-13b" in model_name:
_lowerCamelCase : str = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=32001 ).to_dict()
else:
raise ValueError('Model name not supported' )
# the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1
_lowerCamelCase : Optional[int] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict()
_lowerCamelCase : Optional[int] = InstructBlipConfig(vision_config=lowercase__ , text_config=lowercase__ , qformer_config=lowercase__ )
return config, image_size
@torch.no_grad()
def _snake_case ( lowercase__ , lowercase__=None , lowercase__=False ):
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' )
qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} )
if "t5" in model_name:
_lowerCamelCase : List[Any] = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' )
elif "vicuna" in model_name:
# the following was used in the original implementation:
# tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left")
# tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# tokenizer.add_special_tokens({"bos_token": "</s>"})
# tokenizer.add_special_tokens({"eos_token": "</s>"})
# tokenizer.add_special_tokens({"unk_token": "</s>"})
_lowerCamelCase : int = LlamaTokenizerFast.from_pretrained(
'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' )
tokenizer.add_special_tokens({'pad_token': '[PAD]'} )
_lowerCamelCase, _lowerCamelCase : Any = get_blipa_config(lowercase__ )
_lowerCamelCase : Dict = InstructBlipForConditionalGeneration(lowercase__ ).eval()
_lowerCamelCase : Optional[Any] = {
'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'),
'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'),
'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'),
'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'),
}
_lowerCamelCase, _lowerCamelCase : int = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
_lowerCamelCase : Dict = 'cuda:1' if torch.cuda.is_available() else 'cpu'
_lowerCamelCase : int = 'cuda:2' if torch.cuda.is_available() else 'cpu'
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = load_model_and_preprocess(
name=lowercase__ , model_type=lowercase__ , is_eval=lowercase__ , device=lowercase__ )
original_model.eval()
print('Done!' )
# update state dict keys
_lowerCamelCase : List[Any] = original_model.state_dict()
_lowerCamelCase : str = create_rename_keys(lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
_lowerCamelCase : List[str] = state_dict.pop(lowercase__ )
if key.startswith('Qformer.bert' ):
_lowerCamelCase : Optional[Any] = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
_lowerCamelCase : Optional[int] = key.replace('self' , 'attention' )
if "llm_proj" in key:
_lowerCamelCase : Dict = key.replace('llm_proj' , 'language_projection' )
if "t5_proj" in key:
_lowerCamelCase : List[Any] = key.replace('t5_proj' , 'language_projection' )
if key.startswith('llm_model' ):
_lowerCamelCase : int = key.replace('llm_model' , 'language_model' )
if key.startswith('t5' ):
_lowerCamelCase : Optional[Any] = key.replace('t5' , 'language' )
_lowerCamelCase : Optional[int] = val
# read in qv biases
read_in_q_v_bias(lowercase__ , lowercase__ )
# note: weights get loaded in torch.float32 by default
hf_model.load_state_dict(lowercase__ , strict=lowercase__ )
_lowerCamelCase : Any = load_demo_image()
_lowerCamelCase : str = 'What is unusual about this image?'
# create processor
_lowerCamelCase : List[str] = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=lowercase__ , image_std=lowercase__ )
_lowerCamelCase : List[Any] = InstructBlipProcessor(
image_processor=lowercase__ , tokenizer=lowercase__ , qformer_tokenizer=lowercase__ , )
_lowerCamelCase : List[str] = processor(images=lowercase__ , text=lowercase__ , return_tensors='pt' ).to(lowercase__ )
# make sure processor creates exact same pixel values
_lowerCamelCase : List[Any] = vis_processors['eval'](lowercase__ ).unsqueeze(0 ).to(lowercase__ )
_lowerCamelCase : Any = inputs.pixel_values
assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowercase__ )
original_model.to(lowercase__ )
hf_model.to(lowercase__ )
with torch.no_grad():
if "vicuna" in model_name:
_lowerCamelCase : List[Any] = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits
_lowerCamelCase : List[str] = hf_model(**lowercase__ ).logits
else:
_lowerCamelCase : Dict = original_model(
{'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits
_lowerCamelCase : Tuple = tokenizer('\n' , return_tensors='pt' ).input_ids.to(lowercase__ )
_lowerCamelCase : List[str] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 )
_lowerCamelCase : Dict = hf_model(**lowercase__ , labels=lowercase__ ).logits
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
assert original_logits.shape == logits.shape
_lowerCamelCase : str = 1E-4 if 'vicuna' in model_name else 1E-5
assert torch.allclose(original_logits.to(logits.device ) , lowercase__ , atol=lowercase__ )
print('Looks ok!' )
print('Generating with original model...' )
_lowerCamelCase : str = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 )
# important: we need to cast the weights of the HF model to the appropriate type
print('Generating with HF model...' )
_lowerCamelCase : Optional[int] = hf_model.generate(
**lowercase__ , do_sample=lowercase__ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , )
if "vicuna" in model_name:
# convert output id 0 to 2 (eos_token_id)
# TODO add this in the generate method?
_lowerCamelCase : Tuple = 2
print('Original generation:' , lowercase__ )
_lowerCamelCase : Tuple = processor.batch_decode(lowercase__ , skip_special_tokens=lowercase__ )
_lowerCamelCase : List[Any] = [text.strip() for text in output_text]
print('HF generation:' , lowercase__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(lowercase__ )
hf_model.save_pretrained(lowercase__ )
if push_to_hub:
processor.push_to_hub(f'''Salesforce/{model_name}''' )
hf_model.push_to_hub(f'''Salesforce/{model_name}''' )
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
lowercase__ = [
"""instructblip-vicuna-7b""",
"""instructblip-vicuna-13b""",
"""instructblip-flan-t5-xl""",
"""instructblip-flan-t5-xxl""",
]
parser.add_argument(
"""--model_name""",
default="""instructblip-flan-t5-xl""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
lowercase__ = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 12 |
"""simple docstring"""
from typing import Any
def _snake_case ( lowercase__ ):
if not input_list:
return []
_lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list]
_lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase__ = {
"""configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""],
"""tokenization_roformer""": ["""RoFormerTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = ["""RoFormerTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RoFormerForCausalLM""",
"""RoFormerForMaskedLM""",
"""RoFormerForMultipleChoice""",
"""RoFormerForQuestionAnswering""",
"""RoFormerForSequenceClassification""",
"""RoFormerForTokenClassification""",
"""RoFormerLayer""",
"""RoFormerModel""",
"""RoFormerPreTrainedModel""",
"""load_tf_weights_in_roformer""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRoFormerForCausalLM""",
"""TFRoFormerForMaskedLM""",
"""TFRoFormerForMultipleChoice""",
"""TFRoFormerForQuestionAnswering""",
"""TFRoFormerForSequenceClassification""",
"""TFRoFormerForTokenClassification""",
"""TFRoFormerLayer""",
"""TFRoFormerModel""",
"""TFRoFormerPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FlaxRoFormerForMaskedLM""",
"""FlaxRoFormerForMultipleChoice""",
"""FlaxRoFormerForQuestionAnswering""",
"""FlaxRoFormerForSequenceClassification""",
"""FlaxRoFormerForTokenClassification""",
"""FlaxRoFormerModel""",
"""FlaxRoFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 |
"""simple docstring"""
def _snake_case ( lowercase__ ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
_lowerCamelCase : List[str] = len(lowercase__ )
_lowerCamelCase : List[str] = max(lowercase__ )
_lowerCamelCase : List[str] = min(lowercase__ )
# create the counting array
_lowerCamelCase : List[Any] = coll_max + 1 - coll_min
_lowerCamelCase : List[Any] = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , lowercase__ ):
_lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1]
# create the output collection
_lowerCamelCase : Dict = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , lowercase__ ) ):
_lowerCamelCase : Any = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def _snake_case ( lowercase__ ):
return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt"
lowercase__ = input("""Enter numbers separated by a comma:\n""").strip()
lowercase__ = [int(item) for item in user_input.split(""",""")]
print(counting_sort(unsorted)) | 12 | 1 |
"""simple docstring"""
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ):
_lowerCamelCase, _lowerCamelCase : Tuple = coefficient_matrix.shape
_lowerCamelCase, _lowerCamelCase : Dict = constant_matrix.shape
if rowsa != colsa:
_lowerCamelCase : Dict = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'''
raise ValueError(lowercase__ )
if colsa != 1:
_lowerCamelCase : Any = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}'''
raise ValueError(lowercase__ )
if rowsa != rowsa:
_lowerCamelCase : Any = (
'Coefficient and constant matrices dimensions must be nxn and nx1 but '
f'''received {rowsa}x{colsa} and {rowsa}x{colsa}'''
)
raise ValueError(lowercase__ )
if len(lowercase__ ) != rowsa:
_lowerCamelCase : List[str] = (
'Number of initial values must be equal to number of rows in coefficient '
f'''matrix but received {len(lowercase__ )} and {rowsa}'''
)
raise ValueError(lowercase__ )
if iterations <= 0:
raise ValueError('Iterations must be at least 1' )
_lowerCamelCase : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
_lowerCamelCase, _lowerCamelCase : Any = table.shape
strictly_diagonally_dominant(lowercase__ )
# Iterates the whole matrix for given number of times
for _ in range(lowercase__ ):
_lowerCamelCase : List[str] = []
for row in range(lowercase__ ):
_lowerCamelCase : Optional[int] = 0
for col in range(lowercase__ ):
if col == row:
_lowerCamelCase : Any = table[row][col]
elif col == cols - 1:
_lowerCamelCase : Optional[int] = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
_lowerCamelCase : List[str] = (temp + val) / denom
new_val.append(lowercase__ )
_lowerCamelCase : List[Any] = new_val
return [float(lowercase__ ) for i in new_val]
def _snake_case ( lowercase__ ):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = table.shape
_lowerCamelCase : List[str] = True
for i in range(0 , lowercase__ ):
_lowerCamelCase : str = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError('Coefficient matrix is not strictly diagonally dominant' )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"""--original_config_file""",
default=None,
type=str,
help="""The YAML config file corresponding to the original architecture.""",
)
parser.add_argument(
"""--num_in_channels""",
default=None,
type=int,
help="""The number of input channels. If `None` number of input channels will be automatically inferred.""",
)
parser.add_argument(
"""--scheduler_type""",
default="""pndm""",
type=str,
help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""",
)
parser.add_argument(
"""--pipeline_type""",
default=None,
type=str,
help=(
"""The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"""
""". If `None` pipeline will be automatically inferred."""
),
)
parser.add_argument(
"""--image_size""",
default=None,
type=int,
help=(
"""The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"""
""" Base. Use 768 for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--prediction_type""",
default=None,
type=str,
help=(
"""The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"""
""" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--extract_ema""",
action="""store_true""",
help=(
"""Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"""
""" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"""
""" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."""
),
)
parser.add_argument(
"""--upcast_attention""",
action="""store_true""",
help=(
"""Whether the attention computation should always be upcasted. This is necessary when running stable"""
""" diffusion 2.1."""
),
)
parser.add_argument(
"""--from_safetensors""",
action="""store_true""",
help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""",
)
parser.add_argument(
"""--to_safetensors""",
action="""store_true""",
help="""Whether to store pipeline in safetensors format or not.""",
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
parser.add_argument(
"""--stable_unclip""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""",
)
parser.add_argument(
"""--stable_unclip_prior""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""",
)
parser.add_argument(
"""--clip_stats_path""",
type=str,
help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""",
required=False,
)
parser.add_argument(
"""--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint."""
)
parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""")
parser.add_argument(
"""--vae_path""",
type=str,
default=None,
required=False,
help="""Set to a path, hub id to an already converted vae to not convert it again.""",
)
lowercase__ = parser.parse_args()
lowercase__ = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | 12 | 1 |
"""simple docstring"""
from typing import Any
def _snake_case ( lowercase__ ):
if not input_list:
return []
_lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list]
_lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = (UnCLIPScheduler,)
def A_ ( self , **lowercase ):
_lowerCamelCase : Any = {
'num_train_timesteps': 1000,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**lowercase )
return config
def A_ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase )
def A_ ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=lowercase )
def A_ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase )
def A_ ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=lowercase )
def A_ ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=lowercase )
def A_ ( self ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=lowercase , prev_timestep=lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' )
_lowerCamelCase : str = scheduler_class(**lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5
def A_ ( self ):
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' )
_lowerCamelCase : int = scheduler_class(**lowercase )
_lowerCamelCase : List[str] = 0.5
assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5
def A_ ( self ):
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config()
_lowerCamelCase : Tuple = scheduler_class(**lowercase )
_lowerCamelCase : Union[str, Any] = scheduler.timesteps
_lowerCamelCase : Any = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter
_lowerCamelCase : Optional[int] = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : Tuple = model(lowercase , lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : Optional[int] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2
assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3
def A_ ( self ):
_lowerCamelCase : Tuple = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Optional[Any] = scheduler_class(**lowercase )
scheduler.set_timesteps(25 )
_lowerCamelCase : Optional[Any] = scheduler.timesteps
_lowerCamelCase : Optional[int] = self.dummy_model()
_lowerCamelCase : Any = self.dummy_sample_deter
_lowerCamelCase : str = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : List[Any] = model(lowercase , lowercase )
if i + 1 == timesteps.shape[0]:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : List[str] = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : Union[str, Any] = scheduler.step(
lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : List[Any] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2
assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3
def A_ ( self ):
pass
def A_ ( self ):
pass | 12 | 1 |
"""simple docstring"""
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline | 12 |
"""simple docstring"""
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """data2vec-audio"""
def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ):
super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase )
_lowerCamelCase : str = hidden_size
_lowerCamelCase : str = feat_extract_activation
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Optional[Any] = conv_bias
_lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings
_lowerCamelCase : List[Any] = num_conv_pos_embedding_groups
_lowerCamelCase : List[Any] = conv_pos_kernel_size
_lowerCamelCase : Optional[int] = len(self.conv_dim )
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : Any = hidden_dropout
_lowerCamelCase : Union[str, Any] = attention_dropout
_lowerCamelCase : str = activation_dropout
_lowerCamelCase : Any = feat_proj_dropout
_lowerCamelCase : Tuple = final_dropout
_lowerCamelCase : Union[str, Any] = layerdrop
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : Optional[Any] = initializer_range
_lowerCamelCase : Optional[int] = vocab_size
_lowerCamelCase : Tuple = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCamelCase : Optional[Any] = mask_time_prob
_lowerCamelCase : List[Any] = mask_time_length
_lowerCamelCase : List[Any] = mask_time_min_masks
_lowerCamelCase : Tuple = mask_feature_prob
_lowerCamelCase : Optional[Any] = mask_feature_length
_lowerCamelCase : Dict = mask_feature_min_masks
# ctc loss
_lowerCamelCase : Tuple = ctc_loss_reduction
_lowerCamelCase : str = ctc_zero_infinity
# adapter
_lowerCamelCase : Union[str, Any] = add_adapter
_lowerCamelCase : List[Any] = adapter_kernel_size
_lowerCamelCase : Optional[Any] = adapter_stride
_lowerCamelCase : List[Any] = num_adapter_layers
_lowerCamelCase : int = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCamelCase : Optional[int] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCamelCase : List[str] = list(lowercase )
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Any = list(lowercase )
_lowerCamelCase : Optional[Any] = xvector_output_dim
@property
def A_ ( self ):
return math.prod(self.conv_stride ) | 12 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase__ ( lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = ShapEImgaImgPipeline
lowerCamelCase__ = ["""image"""]
lowerCamelCase__ = ["""image"""]
lowerCamelCase__ = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
lowerCamelCase__ = False
@property
def A_ ( self ):
return 32
@property
def A_ ( self ):
return 32
@property
def A_ ( self ):
return self.time_input_dim * 4
@property
def A_ ( self ):
return 8
@property
def A_ ( self ):
torch.manual_seed(0 )
_lowerCamelCase : Any = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
_lowerCamelCase : Optional[int] = CLIPVisionModel(lowercase )
return model
@property
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = CLIPImageProcessor(
crop_size=224 , do_center_crop=lowercase , do_normalize=lowercase , do_resize=lowercase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , )
return image_processor
@property
def A_ ( self ):
torch.manual_seed(0 )
_lowerCamelCase : List[str] = {
'num_attention_heads': 2,
'attention_head_dim': 16,
'embedding_dim': self.time_input_dim,
'num_embeddings': 32,
'embedding_proj_dim': self.text_embedder_hidden_size,
'time_embed_dim': self.time_embed_dim,
'num_layers': 1,
'clip_embed_dim': self.time_input_dim * 2,
'additional_embeddings': 0,
'time_embed_act_fn': 'gelu',
'norm_in_type': 'layer',
'embedding_proj_norm_type': 'layer',
'encoder_hid_proj_type': None,
'added_emb_type': None,
}
_lowerCamelCase : Optional[Any] = PriorTransformer(**lowercase )
return model
@property
def A_ ( self ):
torch.manual_seed(0 )
_lowerCamelCase : int = {
'param_shapes': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'd_latent': self.time_input_dim,
'd_hidden': self.renderer_dim,
'n_output': 12,
'background': (
0.1,
0.1,
0.1,
),
}
_lowerCamelCase : Dict = ShapERenderer(**lowercase )
return model
def A_ ( self ):
_lowerCamelCase : List[str] = self.dummy_prior
_lowerCamelCase : List[Any] = self.dummy_image_encoder
_lowerCamelCase : Optional[Any] = self.dummy_image_processor
_lowerCamelCase : Optional[Any] = self.dummy_renderer
_lowerCamelCase : Union[str, Any] = HeunDiscreteScheduler(
beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , )
_lowerCamelCase : Union[str, Any] = {
'prior': prior,
'image_encoder': image_encoder,
'image_processor': image_processor,
'renderer': renderer,
'scheduler': scheduler,
}
return components
def A_ ( self , lowercase , lowercase=0 ):
_lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase ) ).to(lowercase )
if str(lowercase ).startswith('mps' ):
_lowerCamelCase : Any = torch.manual_seed(lowercase )
else:
_lowerCamelCase : Tuple = torch.Generator(device=lowercase ).manual_seed(lowercase )
_lowerCamelCase : Tuple = {
'image': input_image,
'generator': generator,
'num_inference_steps': 1,
'frame_size': 32,
'output_type': 'np',
}
return inputs
def A_ ( self ):
_lowerCamelCase : Any = 'cpu'
_lowerCamelCase : Optional[Any] = self.get_dummy_components()
_lowerCamelCase : int = self.pipeline_class(**lowercase )
_lowerCamelCase : Any = pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(lowercase ) )
_lowerCamelCase : List[str] = output.images[0]
_lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
_lowerCamelCase : int = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A_ ( self ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def A_ ( self ):
_lowerCamelCase : str = torch_device == 'cpu'
_lowerCamelCase : Tuple = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , )
def A_ ( self ):
_lowerCamelCase : Any = self.get_dummy_components()
_lowerCamelCase : int = self.pipeline_class(**lowercase )
_lowerCamelCase : Optional[Any] = pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : Dict = 1
_lowerCamelCase : Union[str, Any] = 2
_lowerCamelCase : List[Any] = self.get_dummy_inputs(lowercase )
for key in inputs.keys():
if key in self.batch_params:
_lowerCamelCase : Optional[Any] = batch_size * [inputs[key]]
_lowerCamelCase : Optional[int] = pipe(**lowercase , num_images_per_prompt=lowercase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A_ ( self ):
_lowerCamelCase : Optional[Any] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' )
_lowerCamelCase : Dict = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/shap_e/test_shap_e_img2img_out.npy' )
_lowerCamelCase : Tuple = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' )
_lowerCamelCase : List[str] = pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : int = torch.Generator(device=lowercase ).manual_seed(0 )
_lowerCamelCase : Union[str, Any] = pipe(
lowercase , generator=lowercase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(lowercase , lowercase ) | 12 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
lowercase__ = {
"""Acehnese Arabic""": """ace_Arab""",
"""Acehnese Latin""": """ace_Latn""",
"""Mesopotamian Arabic""": """acm_Arab""",
"""Ta'izzi-Adeni Arabic""": """acq_Arab""",
"""Tunisian Arabic""": """aeb_Arab""",
"""Afrikaans""": """afr_Latn""",
"""South Levantine Arabic""": """ajp_Arab""",
"""Akan""": """aka_Latn""",
"""Amharic""": """amh_Ethi""",
"""North Levantine Arabic""": """apc_Arab""",
"""Modern Standard Arabic""": """arb_Arab""",
"""Modern Standard Arabic Romanized""": """arb_Latn""",
"""Najdi Arabic""": """ars_Arab""",
"""Moroccan Arabic""": """ary_Arab""",
"""Egyptian Arabic""": """arz_Arab""",
"""Assamese""": """asm_Beng""",
"""Asturian""": """ast_Latn""",
"""Awadhi""": """awa_Deva""",
"""Central Aymara""": """ayr_Latn""",
"""South Azerbaijani""": """azb_Arab""",
"""North Azerbaijani""": """azj_Latn""",
"""Bashkir""": """bak_Cyrl""",
"""Bambara""": """bam_Latn""",
"""Balinese""": """ban_Latn""",
"""Belarusian""": """bel_Cyrl""",
"""Bemba""": """bem_Latn""",
"""Bengali""": """ben_Beng""",
"""Bhojpuri""": """bho_Deva""",
"""Banjar Arabic""": """bjn_Arab""",
"""Banjar Latin""": """bjn_Latn""",
"""Standard Tibetan""": """bod_Tibt""",
"""Bosnian""": """bos_Latn""",
"""Buginese""": """bug_Latn""",
"""Bulgarian""": """bul_Cyrl""",
"""Catalan""": """cat_Latn""",
"""Cebuano""": """ceb_Latn""",
"""Czech""": """ces_Latn""",
"""Chokwe""": """cjk_Latn""",
"""Central Kurdish""": """ckb_Arab""",
"""Crimean Tatar""": """crh_Latn""",
"""Welsh""": """cym_Latn""",
"""Danish""": """dan_Latn""",
"""German""": """deu_Latn""",
"""Southwestern Dinka""": """dik_Latn""",
"""Dyula""": """dyu_Latn""",
"""Dzongkha""": """dzo_Tibt""",
"""Greek""": """ell_Grek""",
"""English""": """eng_Latn""",
"""Esperanto""": """epo_Latn""",
"""Estonian""": """est_Latn""",
"""Basque""": """eus_Latn""",
"""Ewe""": """ewe_Latn""",
"""Faroese""": """fao_Latn""",
"""Fijian""": """fij_Latn""",
"""Finnish""": """fin_Latn""",
"""Fon""": """fon_Latn""",
"""French""": """fra_Latn""",
"""Friulian""": """fur_Latn""",
"""Nigerian Fulfulde""": """fuv_Latn""",
"""Scottish Gaelic""": """gla_Latn""",
"""Irish""": """gle_Latn""",
"""Galician""": """glg_Latn""",
"""Guarani""": """grn_Latn""",
"""Gujarati""": """guj_Gujr""",
"""Haitian Creole""": """hat_Latn""",
"""Hausa""": """hau_Latn""",
"""Hebrew""": """heb_Hebr""",
"""Hindi""": """hin_Deva""",
"""Chhattisgarhi""": """hne_Deva""",
"""Croatian""": """hrv_Latn""",
"""Hungarian""": """hun_Latn""",
"""Armenian""": """hye_Armn""",
"""Igbo""": """ibo_Latn""",
"""Ilocano""": """ilo_Latn""",
"""Indonesian""": """ind_Latn""",
"""Icelandic""": """isl_Latn""",
"""Italian""": """ita_Latn""",
"""Javanese""": """jav_Latn""",
"""Japanese""": """jpn_Jpan""",
"""Kabyle""": """kab_Latn""",
"""Jingpho""": """kac_Latn""",
"""Kamba""": """kam_Latn""",
"""Kannada""": """kan_Knda""",
"""Kashmiri Arabic""": """kas_Arab""",
"""Kashmiri Devanagari""": """kas_Deva""",
"""Georgian""": """kat_Geor""",
"""Central Kanuri Arabic""": """knc_Arab""",
"""Central Kanuri Latin""": """knc_Latn""",
"""Kazakh""": """kaz_Cyrl""",
"""Kabiyè""": """kbp_Latn""",
"""Kabuverdianu""": """kea_Latn""",
"""Khmer""": """khm_Khmr""",
"""Kikuyu""": """kik_Latn""",
"""Kinyarwanda""": """kin_Latn""",
"""Kyrgyz""": """kir_Cyrl""",
"""Kimbundu""": """kmb_Latn""",
"""Northern Kurdish""": """kmr_Latn""",
"""Kikongo""": """kon_Latn""",
"""Korean""": """kor_Hang""",
"""Lao""": """lao_Laoo""",
"""Ligurian""": """lij_Latn""",
"""Limburgish""": """lim_Latn""",
"""Lingala""": """lin_Latn""",
"""Lithuanian""": """lit_Latn""",
"""Lombard""": """lmo_Latn""",
"""Latgalian""": """ltg_Latn""",
"""Luxembourgish""": """ltz_Latn""",
"""Luba-Kasai""": """lua_Latn""",
"""Ganda""": """lug_Latn""",
"""Luo""": """luo_Latn""",
"""Mizo""": """lus_Latn""",
"""Standard Latvian""": """lvs_Latn""",
"""Magahi""": """mag_Deva""",
"""Maithili""": """mai_Deva""",
"""Malayalam""": """mal_Mlym""",
"""Marathi""": """mar_Deva""",
"""Minangkabau Arabic """: """min_Arab""",
"""Minangkabau Latin""": """min_Latn""",
"""Macedonian""": """mkd_Cyrl""",
"""Plateau Malagasy""": """plt_Latn""",
"""Maltese""": """mlt_Latn""",
"""Meitei Bengali""": """mni_Beng""",
"""Halh Mongolian""": """khk_Cyrl""",
"""Mossi""": """mos_Latn""",
"""Maori""": """mri_Latn""",
"""Burmese""": """mya_Mymr""",
"""Dutch""": """nld_Latn""",
"""Norwegian Nynorsk""": """nno_Latn""",
"""Norwegian Bokmål""": """nob_Latn""",
"""Nepali""": """npi_Deva""",
"""Northern Sotho""": """nso_Latn""",
"""Nuer""": """nus_Latn""",
"""Nyanja""": """nya_Latn""",
"""Occitan""": """oci_Latn""",
"""West Central Oromo""": """gaz_Latn""",
"""Odia""": """ory_Orya""",
"""Pangasinan""": """pag_Latn""",
"""Eastern Panjabi""": """pan_Guru""",
"""Papiamento""": """pap_Latn""",
"""Western Persian""": """pes_Arab""",
"""Polish""": """pol_Latn""",
"""Portuguese""": """por_Latn""",
"""Dari""": """prs_Arab""",
"""Southern Pashto""": """pbt_Arab""",
"""Ayacucho Quechua""": """quy_Latn""",
"""Romanian""": """ron_Latn""",
"""Rundi""": """run_Latn""",
"""Russian""": """rus_Cyrl""",
"""Sango""": """sag_Latn""",
"""Sanskrit""": """san_Deva""",
"""Santali""": """sat_Olck""",
"""Sicilian""": """scn_Latn""",
"""Shan""": """shn_Mymr""",
"""Sinhala""": """sin_Sinh""",
"""Slovak""": """slk_Latn""",
"""Slovenian""": """slv_Latn""",
"""Samoan""": """smo_Latn""",
"""Shona""": """sna_Latn""",
"""Sindhi""": """snd_Arab""",
"""Somali""": """som_Latn""",
"""Southern Sotho""": """sot_Latn""",
"""Spanish""": """spa_Latn""",
"""Tosk Albanian""": """als_Latn""",
"""Sardinian""": """srd_Latn""",
"""Serbian""": """srp_Cyrl""",
"""Swati""": """ssw_Latn""",
"""Sundanese""": """sun_Latn""",
"""Swedish""": """swe_Latn""",
"""Swahili""": """swh_Latn""",
"""Silesian""": """szl_Latn""",
"""Tamil""": """tam_Taml""",
"""Tatar""": """tat_Cyrl""",
"""Telugu""": """tel_Telu""",
"""Tajik""": """tgk_Cyrl""",
"""Tagalog""": """tgl_Latn""",
"""Thai""": """tha_Thai""",
"""Tigrinya""": """tir_Ethi""",
"""Tamasheq Latin""": """taq_Latn""",
"""Tamasheq Tifinagh""": """taq_Tfng""",
"""Tok Pisin""": """tpi_Latn""",
"""Tswana""": """tsn_Latn""",
"""Tsonga""": """tso_Latn""",
"""Turkmen""": """tuk_Latn""",
"""Tumbuka""": """tum_Latn""",
"""Turkish""": """tur_Latn""",
"""Twi""": """twi_Latn""",
"""Central Atlas Tamazight""": """tzm_Tfng""",
"""Uyghur""": """uig_Arab""",
"""Ukrainian""": """ukr_Cyrl""",
"""Umbundu""": """umb_Latn""",
"""Urdu""": """urd_Arab""",
"""Northern Uzbek""": """uzn_Latn""",
"""Venetian""": """vec_Latn""",
"""Vietnamese""": """vie_Latn""",
"""Waray""": """war_Latn""",
"""Wolof""": """wol_Latn""",
"""Xhosa""": """xho_Latn""",
"""Eastern Yiddish""": """ydd_Hebr""",
"""Yoruba""": """yor_Latn""",
"""Yue Chinese""": """yue_Hant""",
"""Chinese Simplified""": """zho_Hans""",
"""Chinese Traditional""": """zho_Hant""",
"""Standard Malay""": """zsm_Latn""",
"""Zulu""": """zul_Latn""",
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """facebook/nllb-200-distilled-600M"""
lowerCamelCase__ = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
lowerCamelCase__ = """translator"""
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSeqaSeqLM
lowerCamelCase__ = LANGUAGE_CODES
lowerCamelCase__ = ["""text""", """text""", """text"""]
lowerCamelCase__ = ["""text"""]
def A_ ( self , lowercase , lowercase , lowercase ):
if src_lang not in self.lang_to_code:
raise ValueError(F'''{src_lang} is not a supported language.''' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'''{tgt_lang} is not a supported language.''' )
_lowerCamelCase : str = self.lang_to_code[src_lang]
_lowerCamelCase : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase )
def A_ ( self , lowercase ):
return self.model.generate(**lowercase )
def A_ ( self , lowercase ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase ) | 12 | 1 |
"""simple docstring"""
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ):
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count('<mask>' ) == 1
_lowerCamelCase : Any = torch.tensor(tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) ).unsqueeze(0 ) # Batch size 1
_lowerCamelCase : List[str] = model(lowercase__ )[0] # The last hidden-state is the first element of the output tuple
_lowerCamelCase : List[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
_lowerCamelCase : List[Any] = logits[0, masked_index, :]
_lowerCamelCase : Optional[int] = logits.softmax(dim=0 )
_lowerCamelCase, _lowerCamelCase : Tuple = prob.topk(k=lowercase__ , dim=0 )
_lowerCamelCase : Union[str, Any] = ' '.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase__ ) )] )
_lowerCamelCase : Any = tokenizer.mask_token
_lowerCamelCase : List[str] = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ):
_lowerCamelCase : str = predicted_token_bpe.replace('\u2581' , ' ' )
if " {0}".format(lowercase__ ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(' {0}'.format(lowercase__ ) , lowercase__ ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(lowercase__ , lowercase__ ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
lowercase__ = CamembertTokenizer.from_pretrained("""camembert-base""")
lowercase__ = CamembertForMaskedLM.from_pretrained("""camembert-base""")
model.eval()
lowercase__ = """Le camembert est <mask> :)"""
print(fill_mask(masked_input, model, tokenizer, topk=3)) | 12 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def A_ ( self , lowercase , lowercase , lowercase ):
_lowerCamelCase : Optional[int] = hf_hub_download(
repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 )
_lowerCamelCase : List[str] = [
example_video_filepath,
'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4',
]
return video_classifier, examples
def A_ ( self , lowercase , lowercase ):
for example in examples:
_lowerCamelCase : Tuple = video_classifier(lowercase )
self.assertEqual(
lowercase , [
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
] , )
@require_torch
def A_ ( self ):
_lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification'
_lowerCamelCase : Tuple = VideoMAEFeatureExtractor(
size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} )
_lowerCamelCase : Dict = pipeline(
'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 )
_lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , )
_lowerCamelCase : str = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
] , )
@require_tf
def A_ ( self ):
pass | 12 | 1 |
"""simple docstring"""
import operator
def _snake_case ( lowercase__ , lowercase__ = False , lowercase__ = None ):
_lowerCamelCase : Dict = operator.lt if reverse else operator.gt
_lowerCamelCase : Optional[int] = solution or []
if not arr:
return solution
_lowerCamelCase : Optional[int] = [arr.pop(0 )]
for i, item in enumerate(lowercase__ ):
if _operator(lowercase__ , sublist[-1] ):
sublist.append(lowercase__ )
arr.pop(lowercase__ )
# merging sublist into solution list
if not solution:
solution.extend(lowercase__ )
else:
while sublist:
_lowerCamelCase : Tuple = sublist.pop(0 )
for i, xx in enumerate(lowercase__ ):
if not _operator(lowercase__ , lowercase__ ):
solution.insert(lowercase__ , lowercase__ )
break
else:
solution.append(lowercase__ )
strand_sort(lowercase__ , lowercase__ , lowercase__ )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1] | 12 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowercase__ = {
"""configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegaForCausalLM""",
"""MegaForMaskedLM""",
"""MegaForMultipleChoice""",
"""MegaForQuestionAnswering""",
"""MegaForSequenceClassification""",
"""MegaForTokenClassification""",
"""MegaModel""",
"""MegaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
lowercase__ = False
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : Tuple = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
_lowerCamelCase : Dict = torch.manual_seed(0 )
_lowerCamelCase : Dict = pipe(
image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images
_lowerCamelCase : str = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
_lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 12 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ):
if attention_mask is None:
_lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = OPTConfig
lowerCamelCase__ = {}
lowerCamelCase__ = """gelu"""
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ):
_lowerCamelCase : Tuple = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Tuple = seq_length
_lowerCamelCase : str = is_training
_lowerCamelCase : Optional[int] = use_labels
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Dict = hidden_size
_lowerCamelCase : str = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Dict = hidden_act
_lowerCamelCase : Any = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : List[Any] = eos_token_id
_lowerCamelCase : Tuple = pad_token_id
_lowerCamelCase : List[str] = bos_token_id
_lowerCamelCase : Optional[int] = embed_dim
_lowerCamelCase : List[str] = word_embed_proj_dim
_lowerCamelCase : Any = False
def A_ ( self ):
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 )
_lowerCamelCase : Tuple = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , )
_lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase )
return config, inputs_dict
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase )
_lowerCamelCase : Optional[Any] = inputs_dict['input_ids']
_lowerCamelCase : str = input_ids[:1, :]
_lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :]
_lowerCamelCase : Optional[Any] = 1
# first forward pass
_lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase )
_lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
_lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0]
_lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx]
_lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
@require_tf
class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else ()
lowerCamelCase__ = (
{"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = 10
def A_ ( self ):
_lowerCamelCase : int = TFOPTModelTester(self )
_lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase )
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase , lowercase ):
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
_lowerCamelCase : Optional[int] = model_class(config=lowercase )
_lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase )
_lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
_lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase )
# check that weights remain the same after resizing
_lowerCamelCase : int = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Optional[Any] = False
self.assertTrue(lowercase )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase )
_lowerCamelCase : Dict = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Union[str, Any] = False
self.assertTrue(lowercase )
def _snake_case ( lowercase__ ):
return tf.constant(lowercase__ , dtype=tf.intaa )
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = 99
def A_ ( self ):
_lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2
_lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
_lowerCamelCase : int = input_ids.shape[0]
_lowerCamelCase : List[Any] = OPTConfig(
vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def A_ ( self ):
_lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' )
_lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
_lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id )
with tf.GradientTape():
_lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state
_lowerCamelCase : Optional[Any] = (1, 11, 512)
self.assertEqual(output.shape , lowercase )
_lowerCamelCase : List[str] = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) )
_lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
super().setUp()
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
def A_ ( self ):
_lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model )
_lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model )
_lowerCamelCase : List[str] = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase )
_lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
_lowerCamelCase : Any = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
_lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def A_ ( self ):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def A_ ( self ):
_lowerCamelCase : str = 'facebook/opt-125m'
_lowerCamelCase : Dict = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : int = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase )
def A_ ( self ):
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
_lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase )
_lowerCamelCase : Any = 'left'
# use different length sentences to test batching
_lowerCamelCase : Optional[int] = [
'Hello, my dog is a little',
'Today, I',
]
_lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase )
_lowerCamelCase : int = inputs['input_ids']
_lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] )
_lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase )
_lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
_lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings )
_lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
_lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase , lowercase )
self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] )
def A_ ( self ):
_lowerCamelCase : Tuple = 'facebook/opt-350m'
_lowerCamelCase : List[Any] = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase ) | 12 | 1 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
lowercase__ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""")
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = field(
default="""cifar10""", metadata={"""help""": """Name of a dataset from the datasets package"""} )
lowerCamelCase__ = field(
default=lowercase, metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
lowerCamelCase__ = field(
default=lowercase, metadata={"""help""": """The column name of the images in the files."""} )
lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """A folder containing the training data."""} )
lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """A folder containing the validation data."""} )
lowerCamelCase__ = field(
default=0.15, metadata={"""help""": """Percent to split off of train for validation."""} )
lowerCamelCase__ = field(
default=lowercase, metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
}, )
lowerCamelCase__ = field(
default=lowercase, metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
}, )
def A_ ( self ):
_lowerCamelCase : List[str] = {}
if self.train_dir is not None:
_lowerCamelCase : Optional[Any] = self.train_dir
if self.validation_dir is not None:
_lowerCamelCase : Any = self.validation_dir
_lowerCamelCase : Optional[int] = data_files if data_files else None
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = field(
default=lowercase, metadata={
"""help""": (
"""The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."""
)
}, )
lowerCamelCase__ = field(
default=lowercase, metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} )
lowerCamelCase__ = field(
default=lowercase, metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
}, )
lowerCamelCase__ = field(
default=lowercase, metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} )
lowerCamelCase__ = field(
default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, )
lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Name or path of preprocessor config."""} )
lowerCamelCase__ = field(
default=lowercase, metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
}, )
lowerCamelCase__ = field(
default=0.75, metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} )
lowerCamelCase__ = field(
default=lowercase, metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} )
@dataclass
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = field(
default=1e-3, metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} )
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = torch.stack([example['pixel_values'] for example in examples] )
return {"pixel_values": pixel_values}
def _snake_case ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_lowerCamelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_mae' , lowercase__ , lowercase__ )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_lowerCamelCase : Tuple = training_args.get_process_log_level()
logger.setLevel(lowercase__ )
transformers.utils.logging.set_verbosity(lowercase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_lowerCamelCase : str = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_lowerCamelCase : List[str] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Initialize our dataset.
_lowerCamelCase : Tuple = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
_lowerCamelCase : List[Any] = None if 'validation' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0:
_lowerCamelCase : Optional[int] = ds['train'].train_test_split(data_args.train_val_split )
_lowerCamelCase : Any = split['train']
_lowerCamelCase : List[str] = split['test']
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_lowerCamelCase : int = {
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name:
_lowerCamelCase : Optional[int] = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ )
elif model_args.model_name_or_path:
_lowerCamelCase : Optional[int] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ )
else:
_lowerCamelCase : Any = ViTMAEConfig()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.config_overrides is not None:
logger.info(f'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(f'''New config: {config}''' )
# adapt config
config.update(
{
'mask_ratio': model_args.mask_ratio,
'norm_pix_loss': model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
_lowerCamelCase : Tuple = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ )
elif model_args.model_name_or_path:
_lowerCamelCase : Any = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ )
else:
_lowerCamelCase : List[Any] = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
_lowerCamelCase : Optional[Any] = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('Training new model from scratch' )
_lowerCamelCase : List[Any] = ViTMAEForPreTraining(lowercase__ )
if training_args.do_train:
_lowerCamelCase : Any = ds['train'].column_names
else:
_lowerCamelCase : Union[str, Any] = ds['validation'].column_names
if data_args.image_column_name is not None:
_lowerCamelCase : int = data_args.image_column_name
elif "image" in column_names:
_lowerCamelCase : int = 'image'
elif "img" in column_names:
_lowerCamelCase : int = 'img'
else:
_lowerCamelCase : List[Any] = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
_lowerCamelCase : Optional[int] = image_processor.size['shortest_edge']
else:
_lowerCamelCase : Any = (image_processor.size['height'], image_processor.size['width'])
_lowerCamelCase : Union[str, Any] = Compose(
[
Lambda(lambda lowercase__ : img.convert('RGB' ) if img.mode != "RGB" else img ),
RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(lowercase__ ):
_lowerCamelCase : Any = [transforms(lowercase__ ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('--do_train requires a train dataset' )
if data_args.max_train_samples is not None:
_lowerCamelCase : Optional[Any] = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(lowercase__ )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('--do_eval requires a validation dataset' )
if data_args.max_eval_samples is not None:
_lowerCamelCase : List[str] = (
ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(lowercase__ )
# Compute absolute learning rate
_lowerCamelCase : Any = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
_lowerCamelCase : Tuple = training_args.base_learning_rate * total_train_batch_size / 256
# Initialize our trainer
_lowerCamelCase : Dict = Trainer(
model=lowercase__ , args=lowercase__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , )
# Training
if training_args.do_train:
_lowerCamelCase : Dict = None
if training_args.resume_from_checkpoint is not None:
_lowerCamelCase : Union[str, Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_lowerCamelCase : Any = last_checkpoint
_lowerCamelCase : Optional[Any] = trainer.train(resume_from_checkpoint=lowercase__ )
trainer.save_model()
trainer.log_metrics('train' , train_result.metrics )
trainer.save_metrics('train' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_lowerCamelCase : Union[str, Any] = trainer.evaluate()
trainer.log_metrics('eval' , lowercase__ )
trainer.save_metrics('eval' , lowercase__ )
# Write model card and (optionally) push to hub
_lowerCamelCase : List[str] = {
'tasks': 'masked-auto-encoding',
'dataset': data_args.dataset_name,
'tags': ['masked-auto-encoding'],
}
if training_args.push_to_hub:
trainer.push_to_hub(**lowercase__ )
else:
trainer.create_model_card(**lowercase__ )
def _snake_case ( lowercase__ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 12 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """philschmid/bart-large-cnn-samsum"""
lowerCamelCase__ = (
"""This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """
"""and returns a summary of the text."""
)
lowerCamelCase__ = """summarizer"""
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSeqaSeqLM
lowerCamelCase__ = ["""text"""]
lowerCamelCase__ = ["""text"""]
def A_ ( self , lowercase ):
return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase )
def A_ ( self , lowercase ):
return self.model.generate(**lowercase )[0]
def A_ ( self , lowercase ):
return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) | 12 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowercase__ = {
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) )
_lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )]
index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ )
_lowerCamelCase : float = 0
_lowerCamelCase : list[float] = [0] * len(lowercase__ )
for i in index:
if weight[i] <= capacity:
_lowerCamelCase : int = 1
max_value += value[i]
capacity -= weight[i]
else:
_lowerCamelCase : Any = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = """▁"""
lowercase__ = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""}
lowercase__ = {
"""sentencepiece_model_file""": """sentencepiece.bpe.model""",
"""vocab_file""": """vocab.txt""",
}
lowercase__ = {
"""vocab_file""": {
"""ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""",
"""ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""",
},
"""sentencepiece_model_file""": {
"""ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""",
"""ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""",
},
}
lowercase__ = {
"""ernie-m-base""": 514,
"""ernie-m-large""": 514,
}
lowercase__ = {
"""ernie-m-base""": {"""do_lower_case""": False},
"""ernie-m-large""": {"""do_lower_case""": False},
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["input_ids"]
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = RESOURCE_FILES_NAMES
def __init__( self , lowercase , lowercase=None , lowercase=False , lowercase="utf8" , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase = None , **lowercase , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
_lowerCamelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , vocab_file=lowercase , encoding=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , )
_lowerCamelCase : int = do_lower_case
_lowerCamelCase : Optional[Any] = sentencepiece_model_ckpt
_lowerCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
_lowerCamelCase : List[str] = self.load_vocab(filepath=lowercase )
else:
_lowerCamelCase : str = {self.sp_model.id_to_piece(lowercase ): id for id in range(self.sp_model.get_piece_size() )}
_lowerCamelCase : Optional[int] = {v: k for k, v in self.vocab.items()}
def A_ ( self , lowercase ):
if text is None:
return None
_lowerCamelCase : int = self.tokenize(lowercase )
_lowerCamelCase, _lowerCamelCase : int = '', []
for i, ch in enumerate(lowercase ):
if ch in self.SP_CHAR_MAPPING:
_lowerCamelCase : Dict = self.SP_CHAR_MAPPING.get(lowercase )
else:
_lowerCamelCase : Tuple = unicodedata.normalize('NFKC' , lowercase )
if self.is_whitespace(lowercase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(lowercase ) )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = normalized_text, [], 0
if self.do_lower_case:
_lowerCamelCase : int = text.lower()
for token in split_tokens:
if token[:1] == "▁":
_lowerCamelCase : Any = token[1:]
_lowerCamelCase : Optional[int] = text[offset:].index(lowercase ) + offset
_lowerCamelCase : Optional[int] = start + len(lowercase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
_lowerCamelCase : str = end
return token_mapping
@property
def A_ ( self ):
return len(self.vocab )
def A_ ( self ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ):
_lowerCamelCase : str = self.__dict__.copy()
_lowerCamelCase : List[str] = None
return state
def __setstate__( self , lowercase ):
_lowerCamelCase : Optional[Any] = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
_lowerCamelCase : Optional[int] = {}
_lowerCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def A_ ( self , lowercase ):
return "".join((self.SP_CHAR_MAPPING.get(lowercase , lowercase ) for c in text) )
def A_ ( self , lowercase , lowercase=False , lowercase=64 , lowercase=0.1 ):
if self.sp_model_kwargs.get('enable_sampling' ) is True:
_lowerCamelCase : Optional[int] = True
if self.sp_model_kwargs.get('alpha' ) is not None:
_lowerCamelCase : List[str] = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
_lowerCamelCase : Union[str, Any] = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
_lowerCamelCase : Any = self.sp_model.EncodeAsPieces(lowercase )
else:
_lowerCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(lowercase , lowercase , lowercase )
_lowerCamelCase : Union[str, Any] = []
for pi, piece in enumerate(lowercase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(lowercase ) and pi != 0:
new_pieces.append(lowercase )
continue
else:
continue
_lowerCamelCase : List[str] = 0
for i, chunk in enumerate(lowercase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(lowercase ) or self.is_punct(lowercase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(lowercase )
_lowerCamelCase : Optional[int] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
_lowerCamelCase : Optional[int] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
_lowerCamelCase : Any = i
if len(lowercase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def A_ ( self , lowercase ):
_lowerCamelCase : Optional[int] = ''.join(lowercase ).replace(lowercase , ' ' ).strip()
return out_string
def A_ ( self , lowercase ):
_lowerCamelCase : Dict = self.convert_ids_to_tokens(lowercase )
_lowerCamelCase : Union[str, Any] = ''.join(lowercase ).replace(lowercase , ' ' ).strip()
return out_string
def A_ ( self , lowercase ):
return self.vocab.get(lowercase , self.vocab.get(self.unk_token ) )
def A_ ( self , lowercase ):
return self.reverse_vocab.get(lowercase , self.unk_token )
def A_ ( self , lowercase , lowercase=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCamelCase : Dict = [self.cls_token_id]
_lowerCamelCase : str = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def A_ ( self , lowercase , lowercase=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def A_ ( self , lowercase , lowercase=None , lowercase=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1]
return [1] + ([0] * len(lowercase )) + [1]
def A_ ( self , lowercase , lowercase = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(lowercase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(lowercase ) + 1) + [1] * (len(lowercase ) + 3)
def A_ ( self , lowercase ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def A_ ( self , lowercase ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def A_ ( self , lowercase ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def A_ ( self , lowercase ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(lowercase ) == 1:
_lowerCamelCase : str = unicodedata.category(lowercase )
if cat == "Zs":
return True
return False
def A_ ( self , lowercase ):
_lowerCamelCase : Tuple = {}
with io.open(lowercase , 'r' , encoding='utf-8' ) as f:
for index, line in enumerate(lowercase ):
_lowerCamelCase : Dict = line.rstrip('\n' )
_lowerCamelCase : Tuple = int(lowercase )
return token_to_idx
def A_ ( self , lowercase , lowercase = None ):
_lowerCamelCase : Tuple = 0
if os.path.isdir(lowercase ):
_lowerCamelCase : Optional[Any] = os.path.join(
lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
_lowerCamelCase : Dict = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(lowercase , 'w' , encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda lowercase : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
' Please check that the vocabulary is not corrupted!' )
_lowerCamelCase : List[str] = token_index
writer.write(token + '\n' )
index += 1
_lowerCamelCase : str = os.path.join(lowercase , 'sentencepiece.bpe.model' )
with open(lowercase , 'wb' ) as fi:
_lowerCamelCase : List[Any] = self.sp_model.serialized_model_proto()
fi.write(lowercase )
return (vocab_file,) | 12 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
lowercase__ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("""""", """|""", """|"""),
datarow=DataRow("""""", """|""", """|"""),
padding=1,
with_header_hide=None,
)
lowercase__ = []
lowercase__ = []
lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}}
lowercase__ = [
{
"""type""": """header""",
"""text""": {
"""type""": """plain_text""",
"""text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results",
"""emoji""": True,
},
}
]
lowercase__ = 0
for log in Path().glob("""*.log"""):
lowercase__ = 0
with open(log, """r""") as f:
for line in f:
lowercase__ = json.loads(line)
if line.get("""nodeid""", """""") != "":
lowercase__ = line["""nodeid"""]
if line.get("""duration""", None) is not None:
lowercase__ = F"{line['duration']:.4f}"
if line.get("""outcome""", """""") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("""_""")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
lowercase__ = []
log.unlink()
lowercase__ = """"""
lowercase__ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
lowercase__ = []
lowercase__ = {}
for test in failed_tests:
lowercase__ = test[0].split("""::""")
lowercase__ = data[0].split("""/""")[-1]
if data[0] not in filesafailed:
lowercase__ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
lowercase__ = [test[0] for test in failed_table]
lowercase__ = list(set(files))
# Count number of instances in failed_tests
lowercase__ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
lowercase__ = tabulate(
table,
headers=["""Test Location""", """Num Failed"""],
tablefmt=hf_table_format,
stralign="""right""",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
lowercase__ = """Too many failed tests, please see the full report in the Action results."""
lowercase__ = len(err) + 10
lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}"
print(F"### {message}")
else:
lowercase__ = """No failed tests! 🤗"""
print(F"## {message}")
payload.append(no_error_payload)
if os.environ.get("""TEST_TYPE""", """""") != "":
from slack_sdk import WebClient
lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""])
if message != "No failed tests! 🤗":
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": message,
},
}
payload.append(md_report)
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": """*For more details:*""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {
"""type""": """plain_text""",
"""text""": """Check Action results""",
"""emoji""": True,
},
"""url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
payload.append(action_button)
lowercase__ = {
"""type""": """context""",
"""elements""": [
{
"""type""": """plain_text""",
"""text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}",
}
],
}
payload.append(date_report)
lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload)
lowercase__ = response.data["""ts"""]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
lowercase__ = """"""
for i, row in enumerate(test_failures):
if row[0] != test_class:
lowercase__ = row[0]
else:
lowercase__ = """"""
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```",
},
}
client.chat_postMessage(
channel="""#accelerate-ci-daily""",
thread_ts=ts,
blocks=[payload],
) | 12 | 1 |
"""simple docstring"""
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def _snake_case ( lowercase__ ): # picklable for multiprocessing
return x.sum()
def _snake_case ( lowercase__ ): # picklable for multiprocessing
return i + 1
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = 42
lowerCamelCase__ = 42
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = {}
_lowerCamelCase : str = []
_lowerCamelCase : List[Any] = 1
_lowerCamelCase : List[str] = [1, 2]
_lowerCamelCase : List[str] = {'a': 1, 'b': 2}
_lowerCamelCase : int = {'a': [1, 2], 'b': [3, 4]}
_lowerCamelCase : Dict = {'a': {'1': 1}, 'b': 2}
_lowerCamelCase : Union[str, Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
_lowerCamelCase : List[str] = {}
_lowerCamelCase : Dict = []
_lowerCamelCase : List[Any] = 2
_lowerCamelCase : Tuple = [2, 3]
_lowerCamelCase : List[str] = {'a': 2, 'b': 3}
_lowerCamelCase : Optional[int] = {'a': [2, 3], 'b': [4, 5]}
_lowerCamelCase : Optional[Any] = {'a': {'1': 2}, 'b': 3}
_lowerCamelCase : List[Any] = {'a': 2, 'b': 3, 'c': 4, 'd': 5}
self.assertEqual(map_nested(lowercase , lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase ) , lowercase )
_lowerCamelCase : Union[str, Any] = 2
self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase )
self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase )
_lowerCamelCase : Tuple = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )}
_lowerCamelCase : Any = {'a': 2, 'b': 0, 'c': 2}
_lowerCamelCase : List[Any] = {
'a': np.eye(2 ).astype(lowercase ),
'b': np.zeros(3 ).astype(lowercase ),
'c': np.ones(2 ).astype(lowercase ),
}
self.assertEqual(map_nested(lowercase , lowercase , map_numpy=lowercase ) , lowercase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(lowercase , lowercase , map_numpy=lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(lowercase , lowercase , map_numpy=lowercase , num_proc=lowercase ) , lowercase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(lowercase , lowercase , map_numpy=lowercase , num_proc=lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(lowercase ): # can't pickle a local lambda
map_nested(lambda lowercase : x + 1 , lowercase , num_proc=lowercase )
def A_ ( self ):
_lowerCamelCase : Tuple = {'a': 1, 'b': 2}
_lowerCamelCase : Tuple = {'a': 3, 'b': 4}
_lowerCamelCase : Union[str, Any] = {'a': 5, 'b': 6}
_lowerCamelCase : Optional[Any] = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(lowercase , lowercase , lowercase ) ) , lowercase )
def A_ ( self ):
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = """bar"""
_lowerCamelCase : Any = Foo()
self.assertEqual(foo.my_attr , 'bar' )
with temporary_assignment(lowercase , 'my_attr' , 'BAR' ):
self.assertEqual(foo.my_attr , 'BAR' )
self.assertEqual(foo.my_attr , 'bar' )
@pytest.mark.parametrize(
'iterable_length, num_proc, expected_num_proc' , [
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] , )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch(
'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool:
_lowerCamelCase : Tuple = {f'''{i}''': i for i in range(lowercase__ )}
_lowerCamelCase : Dict = map_nested(lambda lowercase__ : x + 10 , lowercase__ , num_proc=lowercase__ , parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
@require_tf
def A_ ( self ):
import tensorflow as tf
from tensorflow.keras import layers
_lowerCamelCase : List[Any] = layers.Dense(2 )
def gen_random_output():
_lowerCamelCase : List[Any] = tf.random.uniform((1, 3) )
return model(lowercase ).numpy()
with temp_seed(42 , set_tensorflow=lowercase ):
_lowerCamelCase : Union[str, Any] = gen_random_output()
with temp_seed(42 , set_tensorflow=lowercase ):
_lowerCamelCase : Optional[Any] = gen_random_output()
_lowerCamelCase : Union[str, Any] = gen_random_output()
np.testing.assert_equal(lowercase , lowercase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def A_ ( self ):
import torch
def gen_random_output():
_lowerCamelCase : Any = torch.nn.Linear(3 , 2 )
_lowerCamelCase : str = torch.rand(1 , 3 )
return model(lowercase ).detach().numpy()
with temp_seed(42 , set_pytorch=lowercase ):
_lowerCamelCase : Any = gen_random_output()
with temp_seed(42 , set_pytorch=lowercase ):
_lowerCamelCase : List[str] = gen_random_output()
_lowerCamelCase : Union[str, Any] = gen_random_output()
np.testing.assert_equal(lowercase , lowercase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def A_ ( self ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
_lowerCamelCase : List[str] = gen_random_output()
with temp_seed(42 ):
_lowerCamelCase : List[Any] = gen_random_output()
_lowerCamelCase : Dict = gen_random_output()
np.testing.assert_equal(lowercase , lowercase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize('input_data' , [{}] )
def _snake_case ( lowercase__ ):
_lowerCamelCase : Dict = NestedDataStructure(lowercase__ ).data
assert output_data == input_data
@pytest.mark.parametrize(
'data, expected_output' , [
({}, []),
([], []),
('foo', ['foo']),
(['foo', 'bar'], ['foo', 'bar']),
([['foo', 'bar']], ['foo', 'bar']),
([[['foo'], ['bar']]], ['foo', 'bar']),
([[['foo'], 'bar']], ['foo', 'bar']),
({'a': 1, 'b': 2}, [1, 2]),
({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]),
({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]),
({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]),
({'a': {'1': 1}, 'b': 2}, [1, 2]),
({'a': {'1': [1]}, 'b': 2}, [1, 2]),
({'a': {'1': [1]}, 'b': [2]}, [1, 2]),
] , )
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : str = NestedDataStructure(lowercase__ ).flatten()
assert output == expected_output
def _snake_case ( ):
_lowerCamelCase : Tuple = A(x=1 , y='foobar' )
_lowerCamelCase : List[str] = {'x': 1, 'y': 'foobar'}
assert asdict(lowercase__ ) == expected_output
_lowerCamelCase : Dict = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]}
_lowerCamelCase : int = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]}
assert asdict(lowercase__ ) == expected_output
with pytest.raises(lowercase__ ):
asdict([1, A(x=10 , y='foo' )] )
def _snake_case ( lowercase__ ):
return text.split()
def _snake_case ( lowercase__ ):
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def _snake_case ( ):
with Pool(2 ) as pool:
_lowerCamelCase : List[str] = list(iflatmap_unordered(lowercase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) )
assert out.count('hello' ) == 10
assert out.count('there' ) == 10
assert len(lowercase__ ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
_lowerCamelCase : List[str] = list(iflatmap_unordered(lowercase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) )
assert out.count('hello' ) == 10
assert out.count('there' ) == 10
assert len(lowercase__ ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
_lowerCamelCase : int = []
for yield_time, content in iflatmap_unordered(
lowercase__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(lowercase__ )
assert out.count('a' ) == 2
assert out.count('b' ) == 2
assert len(lowercase__ ) == 4 | 12 |
"""simple docstring"""
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """AutoTokenizer"""
lowerCamelCase__ = ["""tokenizer"""]
lowerCamelCase__ = {
"""semantic_prompt""": 1,
"""coarse_prompt""": 2,
"""fine_prompt""": 2,
}
def __init__( self , lowercase , lowercase=None ):
super().__init__(lowercase )
_lowerCamelCase : Optional[int] = speaker_embeddings
@classmethod
def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ):
if speaker_embeddings_dict_path is not None:
_lowerCamelCase : Optional[Any] = get_file_from_repo(
lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if speaker_embeddings_path is None:
logger.warning(
F'''`{os.path.join(lowercase , lowercase )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
_lowerCamelCase : List[Any] = None
else:
with open(lowercase ) as speaker_embeddings_json:
_lowerCamelCase : Union[str, Any] = json.load(lowercase )
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase )
return cls(tokenizer=lowercase , speaker_embeddings=lowercase )
def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ):
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase )
_lowerCamelCase : int = {}
_lowerCamelCase : List[Any] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
_lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase )
_lowerCamelCase : Any = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , )
_lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' )
_lowerCamelCase : Optional[Any] = tmp_dict
with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp:
json.dump(lowercase , lowercase )
super().save_pretrained(lowercase , lowercase , **lowercase )
def A_ ( self , lowercase = None , **lowercase ):
_lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset]
_lowerCamelCase : Any = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
_lowerCamelCase : Union[str, Any] = get_file_from_repo(
self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if path is None:
raise ValueError(
F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
_lowerCamelCase : List[str] = np.load(lowercase )
return voice_preset_dict
def A_ ( self , lowercase = None ):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ):
if voice_preset is not None and not isinstance(lowercase , lowercase ):
if (
isinstance(lowercase , lowercase )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
_lowerCamelCase : Any = self._load_voice_preset(lowercase )
else:
if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ):
_lowerCamelCase : Optional[Any] = voice_preset + '.npz'
_lowerCamelCase : Union[str, Any] = np.load(lowercase )
if voice_preset is not None:
self._validate_voice_preset_dict(lowercase , **lowercase )
_lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase )
_lowerCamelCase : Any = self.tokenizer(
lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , )
if voice_preset is not None:
_lowerCamelCase : Optional[int] = voice_preset
return encoded_text | 12 | 1 |
"""simple docstring"""
def _snake_case ( lowercase__ , lowercase__ ):
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F"{price_plus_tax(100, 0.25) = }")
print(F"{price_plus_tax(125.50, 0.05) = }") | 12 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
lowercase__ = False
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : Tuple = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
_lowerCamelCase : Dict = torch.manual_seed(0 )
_lowerCamelCase : Dict = pipe(
image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images
_lowerCamelCase : str = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
_lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 12 | 1 |
"""simple docstring"""
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """data2vec-audio"""
def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ):
super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase )
_lowerCamelCase : str = hidden_size
_lowerCamelCase : str = feat_extract_activation
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Optional[Any] = conv_bias
_lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings
_lowerCamelCase : List[Any] = num_conv_pos_embedding_groups
_lowerCamelCase : List[Any] = conv_pos_kernel_size
_lowerCamelCase : Optional[int] = len(self.conv_dim )
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : Any = hidden_dropout
_lowerCamelCase : Union[str, Any] = attention_dropout
_lowerCamelCase : str = activation_dropout
_lowerCamelCase : Any = feat_proj_dropout
_lowerCamelCase : Tuple = final_dropout
_lowerCamelCase : Union[str, Any] = layerdrop
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : Optional[Any] = initializer_range
_lowerCamelCase : Optional[int] = vocab_size
_lowerCamelCase : Tuple = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCamelCase : Optional[Any] = mask_time_prob
_lowerCamelCase : List[Any] = mask_time_length
_lowerCamelCase : List[Any] = mask_time_min_masks
_lowerCamelCase : Tuple = mask_feature_prob
_lowerCamelCase : Optional[Any] = mask_feature_length
_lowerCamelCase : Dict = mask_feature_min_masks
# ctc loss
_lowerCamelCase : Tuple = ctc_loss_reduction
_lowerCamelCase : str = ctc_zero_infinity
# adapter
_lowerCamelCase : Union[str, Any] = add_adapter
_lowerCamelCase : List[Any] = adapter_kernel_size
_lowerCamelCase : Optional[Any] = adapter_stride
_lowerCamelCase : List[Any] = num_adapter_layers
_lowerCamelCase : int = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCamelCase : Optional[int] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCamelCase : List[str] = list(lowercase )
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Any = list(lowercase )
_lowerCamelCase : Optional[Any] = xvector_output_dim
@property
def A_ ( self ):
return math.prod(self.conv_stride ) | 12 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
lowercase__ = {
"""E""": 12.70,
"""T""": 9.06,
"""A""": 8.17,
"""O""": 7.51,
"""I""": 6.97,
"""N""": 6.75,
"""S""": 6.33,
"""H""": 6.09,
"""R""": 5.99,
"""D""": 4.25,
"""L""": 4.03,
"""C""": 2.78,
"""U""": 2.76,
"""M""": 2.41,
"""W""": 2.36,
"""F""": 2.23,
"""G""": 2.02,
"""Y""": 1.97,
"""P""": 1.93,
"""B""": 1.29,
"""V""": 0.98,
"""K""": 0.77,
"""J""": 0.15,
"""X""": 0.15,
"""Q""": 0.10,
"""Z""": 0.07,
}
lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ"""
lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def _snake_case ( lowercase__ ):
return x[0]
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = get_letter_count(lowercase__ )
_lowerCamelCase : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(lowercase__ )
_lowerCamelCase : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ )
_lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] )
_lowerCamelCase : Any = list(freq_to_letter_str.items() )
freq_pairs.sort(key=lowercase__ , reverse=lowercase__ )
_lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = get_frequency_order(lowercase__ )
_lowerCamelCase : Union[str, Any] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
lowercase__ = """examples/"""
lowercase__ = {
"""examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""),
"""init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""),
"""setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""),
"""doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""),
}
lowercase__ = {
"""init""": """src/transformers/__init__.py""",
"""setup""": """setup.py""",
}
lowercase__ = """README.md"""
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
with open(lowercase__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
_lowerCamelCase : Optional[Any] = f.read()
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = REPLACE_PATTERNS[pattern]
_lowerCamelCase : Dict = replace.replace('VERSION' , lowercase__ )
_lowerCamelCase : int = re_pattern.sub(lowercase__ , lowercase__ )
with open(lowercase__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(lowercase__ )
def _snake_case ( lowercase__ ):
for folder, directories, fnames in os.walk(lowercase__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(lowercase__ , lowercase__ ) , lowercase__ , pattern='examples' )
def _snake_case ( lowercase__ , lowercase__=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(lowercase__ , lowercase__ , lowercase__ )
if not patch:
update_version_in_examples(lowercase__ )
def _snake_case ( ):
_lowerCamelCase : Union[str, Any] = '🤗 Transformers currently provides the following architectures'
_lowerCamelCase : Tuple = '1. Want to contribute a new model?'
with open(lowercase__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
_lowerCamelCase : Union[str, Any] = f.readlines()
# Find the start of the list.
_lowerCamelCase : List[str] = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_lowerCamelCase : List[Any] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
_lowerCamelCase : List[Any] = lines[index].replace(
'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , )
index += 1
with open(lowercase__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(lowercase__ )
def _snake_case ( ):
with open(REPLACE_FILES['init'] , 'r' ) as f:
_lowerCamelCase : int = f.read()
_lowerCamelCase : int = REPLACE_PATTERNS['init'][0].search(lowercase__ ).groups()[0]
return packaging.version.parse(lowercase__ )
def _snake_case ( lowercase__=False ):
_lowerCamelCase : Optional[Any] = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
_lowerCamelCase : Any = default_version.base_version
elif patch:
_lowerCamelCase : List[Any] = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
_lowerCamelCase : Optional[Any] = f'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
_lowerCamelCase : List[str] = input(f'''Which version are you releasing? [{default_version}]''' )
if len(lowercase__ ) == 0:
_lowerCamelCase : Any = default_version
print(f'''Updating version to {version}.''' )
global_version_update(lowercase__ , patch=lowercase__ )
if not patch:
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
def _snake_case ( ):
_lowerCamelCase : Tuple = get_version()
_lowerCamelCase : List[Any] = f'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
_lowerCamelCase : List[str] = current_version.base_version
# Check with the user we got that right.
_lowerCamelCase : str = input(f'''Which version are we developing now? [{dev_version}]''' )
if len(lowercase__ ) == 0:
_lowerCamelCase : str = dev_version
print(f'''Updating version to {version}.''' )
global_version_update(lowercase__ )
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""")
parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""")
lowercase__ = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("""Nothing to do after a patch :-)""")
else:
post_release_work() | 12 |
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase ):
_lowerCamelCase : Dict = question_encoder
_lowerCamelCase : List[Any] = generator
_lowerCamelCase : Optional[Any] = self.question_encoder
def A_ ( self , lowercase ):
if os.path.isfile(lowercase ):
raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(lowercase , exist_ok=lowercase )
_lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' )
_lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' )
self.question_encoder.save_pretrained(lowercase )
self.generator.save_pretrained(lowercase )
@classmethod
def A_ ( cls , lowercase , **lowercase ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
_lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase )
if config is None:
_lowerCamelCase : int = RagConfig.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(
lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' )
_lowerCamelCase : Dict = AutoTokenizer.from_pretrained(
lowercase , config=config.generator , subfolder='generator_tokenizer' )
return cls(question_encoder=lowercase , generator=lowercase )
def __call__( self , *lowercase , **lowercase ):
return self.current_tokenizer(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.batch_decode(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.decode(*lowercase , **lowercase )
def A_ ( self ):
_lowerCamelCase : Any = self.question_encoder
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.generator
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ):
warnings.warn(
'`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '
'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '
'context manager to prepare your targets. See the documentation of your specific tokenizer for more '
'details' , lowercase , )
if max_length is None:
_lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length
_lowerCamelCase : Optional[Any] = self(
lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
_lowerCamelCase : int = self.current_tokenizer.model_max_length
_lowerCamelCase : str = self(
text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , )
_lowerCamelCase : int = labels['input_ids']
return model_inputs | 12 | 1 |
"""simple docstring"""
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , lowercase , lowercase=2 , lowercase=56 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=2 , lowercase=7 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , lowercase="block_sparse" , lowercase=True , lowercase=False , lowercase=2 , lowercase=3 , ):
_lowerCamelCase : Any = parent
_lowerCamelCase : int = batch_size
_lowerCamelCase : int = seq_length
_lowerCamelCase : List[Any] = is_training
_lowerCamelCase : Any = use_attention_mask
_lowerCamelCase : Dict = use_token_type_ids
_lowerCamelCase : str = use_labels
_lowerCamelCase : Dict = vocab_size
_lowerCamelCase : Tuple = hidden_size
_lowerCamelCase : Dict = num_hidden_layers
_lowerCamelCase : Optional[Any] = num_attention_heads
_lowerCamelCase : List[str] = intermediate_size
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : Dict = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[int] = max_position_embeddings
_lowerCamelCase : int = type_vocab_size
_lowerCamelCase : int = type_sequence_label_size
_lowerCamelCase : Optional[int] = initializer_range
_lowerCamelCase : int = num_choices
_lowerCamelCase : Optional[Any] = rescale_embeddings
_lowerCamelCase : str = attention_type
_lowerCamelCase : Optional[Any] = use_bias
_lowerCamelCase : Optional[Any] = block_size
_lowerCamelCase : List[str] = num_random_blocks
def A_ ( self ):
_lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCamelCase : int = None
if self.use_attention_mask:
_lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCamelCase : Optional[Any] = None
if self.use_token_type_ids:
_lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowerCamelCase : Union[str, Any] = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def A_ ( self ):
_lowerCamelCase : Dict = self.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = config_and_inputs
_lowerCamelCase : Optional[Any] = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'attention_mask': attention_mask,
}
return config, inputs_dict
@require_flax
class lowerCAmelCase__ ( lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
lowerCamelCase__ = False
lowerCamelCase__ = False
def A_ ( self ):
_lowerCamelCase : Tuple = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def A_ ( self ):
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def A_ ( self ):
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def A_ ( self ):
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def A_ ( self ):
super().test_hidden_states_output()
@slow
def A_ ( self ):
for model_class_name in self.all_model_classes:
_lowerCamelCase : Optional[Any] = model_class_name.from_pretrained('google/bigbird-roberta-base' )
self.assertIsNotNone(lowercase )
def A_ ( self ):
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowerCamelCase : int = self._prepare_for_class(lowercase , lowercase )
_lowerCamelCase : Optional[Any] = model_class(lowercase )
@jax.jit
def model_jitted(lowercase , lowercase=None , **lowercase ):
return model(input_ids=lowercase , attention_mask=lowercase , **lowercase )
with self.subTest('JIT Enabled' ):
_lowerCamelCase : Tuple = model_jitted(**lowercase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowerCamelCase : List[Any] = model_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
def A_ ( self , lowercase , lowercase , lowercase , lowercase=1E-5 , lowercase="outputs" , lowercase=None ):
# `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version,
# an effort was done to return `attention_probs` (yet to be verified).
if name.startswith('outputs.attentions' ):
return
else:
super().check_pt_flax_outputs(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) | 12 |
"""simple docstring"""
def _snake_case ( lowercase__ = 10 ):
if not isinstance(lowercase__ , lowercase__ ) or n < 0:
raise ValueError('Invalid input' )
_lowerCamelCase : str = 10**n
_lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F"{solution(10) = }") | 12 | 1 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
lowercase__ = logging.get_logger(__name__)
lowercase__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
lowercase__ = {
"""vocab_file""": {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""",
},
"""tokenizer_file""": {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json"""
),
"""google/realm-orqa-nq-openqa""": (
"""https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json"""
),
"""google/realm-orqa-nq-reader""": (
"""https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json"""
),
"""google/realm-orqa-wq-openqa""": (
"""https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json"""
),
"""google/realm-orqa-wq-reader""": (
"""https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json"""
),
},
}
lowercase__ = {
"""google/realm-cc-news-pretrained-embedder""": 512,
"""google/realm-cc-news-pretrained-encoder""": 512,
"""google/realm-cc-news-pretrained-scorer""": 512,
"""google/realm-cc-news-pretrained-openqa""": 512,
"""google/realm-orqa-nq-openqa""": 512,
"""google/realm-orqa-nq-reader""": 512,
"""google/realm-orqa-wq-openqa""": 512,
"""google/realm-orqa-wq-reader""": 512,
}
lowercase__ = {
"""google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True},
"""google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True},
"""google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True},
"""google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True},
"""google/realm-orqa-nq-openqa""": {"""do_lower_case""": True},
"""google/realm-orqa-nq-reader""": {"""do_lower_case""": True},
"""google/realm-orqa-wq-openqa""": {"""do_lower_case""": True},
"""google/realm-orqa-wq-reader""": {"""do_lower_case""": True},
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = RealmTokenizer
def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ):
super().__init__(
lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , )
_lowerCamelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , lowercase ) != do_lower_case
or normalizer_state.get('strip_accents' , lowercase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , lowercase ) != tokenize_chinese_chars
):
_lowerCamelCase : List[str] = getattr(lowercase , normalizer_state.pop('type' ) )
_lowerCamelCase : str = do_lower_case
_lowerCamelCase : Tuple = strip_accents
_lowerCamelCase : Union[str, Any] = tokenize_chinese_chars
_lowerCamelCase : int = normalizer_class(**lowercase )
_lowerCamelCase : str = do_lower_case
def A_ ( self , lowercase , **lowercase ):
_lowerCamelCase : Tuple = PaddingStrategy.MAX_LENGTH
_lowerCamelCase : List[str] = text
_lowerCamelCase : int = kwargs.pop('text_pair' , lowercase )
_lowerCamelCase : Tuple = kwargs.pop('return_tensors' , lowercase )
_lowerCamelCase : Union[str, Any] = {
'input_ids': [],
'attention_mask': [],
'token_type_ids': [],
}
for idx, candidate_text in enumerate(lowercase ):
if batch_text_pair is not None:
_lowerCamelCase : List[Any] = batch_text_pair[idx]
else:
_lowerCamelCase : Dict = None
_lowerCamelCase : List[str] = super().__call__(lowercase , lowercase , return_tensors=lowercase , **lowercase )
_lowerCamelCase : int = encoded_candidates.get('input_ids' )
_lowerCamelCase : Any = encoded_candidates.get('attention_mask' )
_lowerCamelCase : Optional[int] = encoded_candidates.get('token_type_ids' )
if encoded_input_ids is not None:
output_data["input_ids"].append(lowercase )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(lowercase )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(lowercase )
_lowerCamelCase : str = {key: item for key, item in output_data.items() if len(lowercase ) != 0}
return BatchEncoding(lowercase , tensor_type=lowercase )
def A_ ( self , lowercase , lowercase=None ):
_lowerCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A_ ( self , lowercase , lowercase = None ):
_lowerCamelCase : str = [self.sep_token_id]
_lowerCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A_ ( self , lowercase , lowercase = None ):
_lowerCamelCase : Any = self._tokenizer.model.save(lowercase , name=lowercase )
return tuple(lowercase ) | 12 |
"""simple docstring"""
import argparse
import datetime
def _snake_case ( lowercase__ ):
_lowerCamelCase : Dict = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
_lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase__ ) < 11:
raise ValueError('Must be 10 characters long' )
# Get month
_lowerCamelCase : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12' )
_lowerCamelCase : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get day
_lowerCamelCase : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31' )
# Get second separator
_lowerCamelCase : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get year
_lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?' )
# Get datetime obj for validation
_lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) )
# Start math
if m <= 2:
_lowerCamelCase : str = y - 1
_lowerCamelCase : Tuple = m + 12
# maths var
_lowerCamelCase : int = int(str(lowercase__ )[:2] )
_lowerCamelCase : int = int(str(lowercase__ )[2:] )
_lowerCamelCase : int = int(2.6 * m - 5.3_9 )
_lowerCamelCase : int = int(c / 4 )
_lowerCamelCase : int = int(k / 4 )
_lowerCamelCase : int = int(d + k )
_lowerCamelCase : int = int(t + u + v + x )
_lowerCamelCase : int = int(z - (2 * c) )
_lowerCamelCase : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.' )
# Response
_lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
lowercase__ = parser.parse_args()
zeller(args.date_input) | 12 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
lowercase__ = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=None , lowercase=True , lowercase=True , lowercase=None , ):
_lowerCamelCase : List[str] = size if size is not None else {'height': 20, 'width': 20}
_lowerCamelCase : Dict = parent
_lowerCamelCase : Union[str, Any] = batch_size
_lowerCamelCase : Optional[Any] = num_channels
_lowerCamelCase : Union[str, Any] = image_size
_lowerCamelCase : Tuple = min_resolution
_lowerCamelCase : Optional[Any] = max_resolution
_lowerCamelCase : Union[str, Any] = size
_lowerCamelCase : Dict = do_normalize
_lowerCamelCase : Dict = do_convert_rgb
_lowerCamelCase : Union[str, Any] = [512, 1024, 2048, 4096]
_lowerCamelCase : Optional[int] = patch_size if patch_size is not None else {'height': 16, 'width': 16}
def A_ ( self ):
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def A_ ( self ):
_lowerCamelCase : str = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'
_lowerCamelCase : Optional[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('RGB' )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11, reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""", )
@require_torch
@require_vision
class lowerCAmelCase__ ( lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = PixaStructImageProcessor if is_vision_available() else None
def A_ ( self ):
_lowerCamelCase : Optional[Any] = PixaStructImageProcessingTester(self )
@property
def A_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def A_ ( self ):
_lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase , 'do_normalize' ) )
self.assertTrue(hasattr(lowercase , 'do_convert_rgb' ) )
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = self.image_processor_tester.prepare_dummy_image()
_lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict )
_lowerCamelCase : List[Any] = 2048
_lowerCamelCase : str = image_processor(lowercase , return_tensors='pt' , max_patches=lowercase )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1E-3 , rtol=1E-3 ) )
def A_ ( self ):
# Initialize image_processor
_lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , Image.Image )
# Test not batched input
_lowerCamelCase : int = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_lowerCamelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_lowerCamelCase : Union[str, Any] = image_processor(
lowercase , return_tensors='pt' , max_patches=lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def A_ ( self ):
# Initialize image_processor
_lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , Image.Image )
# Test not batched input
_lowerCamelCase : Optional[int] = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
_lowerCamelCase : List[Any] = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowercase ):
_lowerCamelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=lowercase ).flattened_patches
_lowerCamelCase : Optional[int] = 'Hello'
_lowerCamelCase : int = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=lowercase , header_text=lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_lowerCamelCase : List[Any] = image_processor(
lowercase , return_tensors='pt' , max_patches=lowercase , header_text=lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def A_ ( self ):
# Initialize image_processor
_lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , np.ndarray )
_lowerCamelCase : Tuple = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_lowerCamelCase : Dict = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_lowerCamelCase : Dict = image_processor(
lowercase , return_tensors='pt' , max_patches=lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def A_ ( self ):
# Initialize image_processor
_lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , torch.Tensor )
# Test not batched input
_lowerCamelCase : Tuple = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_lowerCamelCase : Optional[Any] = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_lowerCamelCase : Dict = image_processor(
lowercase , return_tensors='pt' , max_patches=lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11, reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""", )
@require_torch
@require_vision
class lowerCAmelCase__ ( lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = PixaStructImageProcessor if is_vision_available() else None
def A_ ( self ):
_lowerCamelCase : str = PixaStructImageProcessingTester(self , num_channels=4 )
_lowerCamelCase : Union[str, Any] = 3
@property
def A_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def A_ ( self ):
_lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase , 'do_normalize' ) )
self.assertTrue(hasattr(lowercase , 'do_convert_rgb' ) )
def A_ ( self ):
# Initialize image_processor
_lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , Image.Image )
# Test not batched input
_lowerCamelCase : Dict = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_lowerCamelCase : int = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_lowerCamelCase : int = image_processor(
lowercase , return_tensors='pt' , max_patches=lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 12 |
"""simple docstring"""
import re
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' )
if match := re.search(lowercase__ , lowercase__ ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("""+918827897895""")) | 12 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase__ = {
"""configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""],
"""configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = ["""MaskFormerFeatureExtractor"""]
lowercase__ = ["""MaskFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MaskFormerForInstanceSegmentation""",
"""MaskFormerModel""",
"""MaskFormerPreTrainedModel""",
]
lowercase__ = [
"""MaskFormerSwinBackbone""",
"""MaskFormerSwinModel""",
"""MaskFormerSwinPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure) | 12 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
lowercase__ = Path(__file__).resolve().parents[3] / """src"""
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""}
lowercase__ = """zero2"""
lowercase__ = """zero3"""
lowercase__ = [ZEROa, ZEROa]
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
_lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) )
return f'''{func.__name__}_{param_based_name}'''
# Cartesian-product of zero stages with models to test
lowercase__ = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@require_torch_multi_gpu
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@require_torch_multi_gpu
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
def A_ ( self , lowercase ):
# XXX: run_asr is premature and doesn't save any results
# so all we check for now is that the process didn't fail
pass
def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ):
_lowerCamelCase : List[str] = models[model]
_lowerCamelCase : Optional[int] = self.run_trainer(
stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , )
self.do_checks(lowercase )
return output_dir
def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ):
_lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase )
_lowerCamelCase : Any = F'''
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(lowercase )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
'''.split()
if fpaa:
args.extend(['--fp16'] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
_lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split()
_lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py''']
_lowerCamelCase : Dict = self.get_launcher(lowercase )
_lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(lowercase , env=self.get_env() )
return output_dir
def A_ ( self , lowercase=False ):
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
_lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1
return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split() | 12 | 1 |
"""simple docstring"""
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ):
_lowerCamelCase : Union[str, Any] = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError('All input parameters must be positive' )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError('Relative densities cannot be greater than one' )
else:
_lowerCamelCase : Any = 1 - (matter_density + radiation_density + dark_energy)
_lowerCamelCase : str = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
_lowerCamelCase : Any = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
lowercase__ = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1E-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
) | 12 |
"""simple docstring"""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""pixel_values"""]
def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ):
super().__init__(**lowercase )
_lowerCamelCase : Optional[Any] = do_rescale
_lowerCamelCase : Union[str, Any] = rescale_factor
_lowerCamelCase : Any = do_pad
_lowerCamelCase : Optional[int] = pad_size
def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ):
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A_ ( self , lowercase , lowercase , lowercase = None ):
_lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase )
_lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height
_lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width
return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase )
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ):
_lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale
_lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad
_lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size
_lowerCamelCase : Dict = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
_lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images]
if do_rescale:
_lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_pad:
_lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images]
_lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
_lowerCamelCase : Union[str, Any] = {'pixel_values': images}
return BatchFeature(data=lowercase , tensor_type=lowercase ) | 12 | 1 |
"""simple docstring"""
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
lowercase__ = get_logger(__name__)
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = """dummy_data"""
lowerCamelCase__ = """datasets"""
lowerCamelCase__ = False
def __init__( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = False , lowercase = True , lowercase = None , ):
_lowerCamelCase : str = 0
_lowerCamelCase : Union[str, Any] = dataset_name
_lowerCamelCase : List[Any] = cache_dir
_lowerCamelCase : str = use_local_dummy_data
_lowerCamelCase : List[Any] = config
# download_callbacks take a single url as input
_lowerCamelCase : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
_lowerCamelCase : List[Any] = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
_lowerCamelCase : Optional[Any] = str(lowercase )
# to be downloaded
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : Any = None
@property
def A_ ( self ):
if self._dummy_file is None:
_lowerCamelCase : List[str] = self.download_dummy_data()
return self._dummy_file
@property
def A_ ( self ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def A_ ( self ):
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def A_ ( self ):
_lowerCamelCase : Optional[Any] = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
_lowerCamelCase : int = cached_path(
lowercase , cache_dir=self.cache_dir , extract_compressed_file=lowercase , force_extract=lowercase )
return os.path.join(lowercase , self.dummy_file_name )
@property
def A_ ( self ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def A_ ( self ):
if self._bucket_url is None:
_lowerCamelCase : Tuple = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def A_ ( self ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def A_ ( self , lowercase , *lowercase ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
_lowerCamelCase : int = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
_lowerCamelCase : List[str] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(lowercase , lowercase ):
return self.create_dummy_data_dict(lowercase , lowercase )
elif isinstance(lowercase , (list, tuple) ):
return self.create_dummy_data_list(lowercase , lowercase )
else:
return self.create_dummy_data_single(lowercase , lowercase )
def A_ ( self , lowercase , *lowercase ):
return self.download_and_extract(lowercase )
def A_ ( self , lowercase , lowercase ):
return self.download_and_extract(lowercase )
def A_ ( self , lowercase , *lowercase , **lowercase ):
return path
def A_ ( self ):
return {}
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : List[str] = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(lowercase , lowercase ):
for single_url in single_urls:
download_callback(lowercase )
else:
_lowerCamelCase : Dict = single_urls
download_callback(lowercase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(lowercase , lowercase ):
_lowerCamelCase : Optional[Any] = [os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) for x in single_urls]
else:
_lowerCamelCase : Tuple = single_urls
_lowerCamelCase : Dict = os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) )
_lowerCamelCase : List[Any] = value
# make sure that values are unique
if all(isinstance(lowercase , lowercase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
_lowerCamelCase : Dict = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : int = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
_lowerCamelCase : str = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , lowercase ) ) for url in data_url )
_lowerCamelCase : str = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
_lowerCamelCase : Optional[Any] = [data_url[0]] * len(lowercase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(lowercase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : Dict = os.path.join(lowercase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(lowercase )
return dummy_data_list
def A_ ( self , lowercase , lowercase ):
for download_callback in self.download_callbacks:
download_callback(lowercase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : Dict = os.path.join(lowercase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(lowercase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def A_ ( self ):
pass
def A_ ( self ):
pass
def A_ ( self , lowercase ):
def _iter_archive_members(lowercase ):
# this preserves the order of the members inside the ZIP archive
_lowerCamelCase : List[Any] = Path(self.dummy_file ).parent
_lowerCamelCase : Tuple = path.relative_to(lowercase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
_lowerCamelCase : Union[str, Any] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(lowercase )
_lowerCamelCase : Any = Path(lowercase )
_lowerCamelCase : Optional[int] = _iter_archive_members(lowercase ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(lowercase ).as_posix(), file_path.open('rb' )
def A_ ( self , lowercase ):
if not isinstance(lowercase , lowercase ):
_lowerCamelCase : List[Any] = [paths]
for path in paths:
if os.path.isfile(lowercase ):
if os.path.basename(lowercase ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(lowercase ):
if os.path.basename(lowercase ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(lowercase ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(lowercase , lowercase ) | 12 |
"""simple docstring"""
import os
import string
import sys
lowercase__ = 1 << 8
lowercase__ = {
"""tab""": ord("""\t"""),
"""newline""": ord("""\r"""),
"""esc""": 27,
"""up""": 65 + ARROW_KEY_FLAG,
"""down""": 66 + ARROW_KEY_FLAG,
"""right""": 67 + ARROW_KEY_FLAG,
"""left""": 68 + ARROW_KEY_FLAG,
"""mod_int""": 91,
"""undefined""": sys.maxsize,
"""interrupt""": 3,
"""insert""": 50,
"""delete""": 51,
"""pg_up""": 53,
"""pg_down""": 54,
}
lowercase__ = KEYMAP["""up"""]
lowercase__ = KEYMAP["""left"""]
if sys.platform == "win32":
lowercase__ = []
lowercase__ = {
B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
}
for i in range(10):
lowercase__ = ord(str(i))
def _snake_case ( ):
if os.name == "nt":
import msvcrt
_lowerCamelCase : Any = 'mbcs'
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(lowercase__ ) == 0:
# Read the keystroke
_lowerCamelCase : str = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
_lowerCamelCase : List[Any] = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
_lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) )
WIN_CH_BUFFER.append(lowercase__ )
if ord(lowercase__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
_lowerCamelCase : List[Any] = chr(KEYMAP['esc'] )
except KeyError:
_lowerCamelCase : int = cha[1]
else:
_lowerCamelCase : Optional[int] = ch.decode(lowercase__ )
else:
_lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
_lowerCamelCase : List[str] = sys.stdin.fileno()
_lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ )
try:
tty.setraw(lowercase__ )
_lowerCamelCase : Optional[Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ )
return ch
def _snake_case ( ):
_lowerCamelCase : int = get_raw_chars()
if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(lowercase__ ) == KEYMAP["esc"]:
_lowerCamelCase : Union[str, Any] = get_raw_chars()
if ord(lowercase__ ) == KEYMAP["mod_int"]:
_lowerCamelCase : List[Any] = get_raw_chars()
if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(lowercase__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"] | 12 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase__ = {
"""configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""],
"""feature_extraction_whisper""": ["""WhisperFeatureExtractor"""],
"""processing_whisper""": ["""WhisperProcessor"""],
"""tokenization_whisper""": ["""WhisperTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = ["""WhisperTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""WhisperForConditionalGeneration""",
"""WhisperModel""",
"""WhisperPreTrainedModel""",
"""WhisperForAudioClassification""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWhisperForConditionalGeneration""",
"""TFWhisperModel""",
"""TFWhisperPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""FlaxWhisperForConditionalGeneration""",
"""FlaxWhisperModel""",
"""FlaxWhisperPreTrainedModel""",
"""FlaxWhisperForAudioClassification""",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 |
"""simple docstring"""
from typing import Any
def _snake_case ( lowercase__ ):
if not input_list:
return []
_lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list]
_lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import pi, sqrt
def _snake_case ( lowercase__ , lowercase__ ):
if inductance <= 0:
raise ValueError('Inductance cannot be 0 or negative' )
elif capacitance <= 0:
raise ValueError('Capacitance cannot be 0 or negative' )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
def _snake_case ( lowercase__ ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
_lowerCamelCase : List[str] = len(lowercase__ )
_lowerCamelCase : List[str] = max(lowercase__ )
_lowerCamelCase : List[str] = min(lowercase__ )
# create the counting array
_lowerCamelCase : List[Any] = coll_max + 1 - coll_min
_lowerCamelCase : List[Any] = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , lowercase__ ):
_lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1]
# create the output collection
_lowerCamelCase : Dict = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , lowercase__ ) ):
_lowerCamelCase : Any = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def _snake_case ( lowercase__ ):
return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt"
lowercase__ = input("""Enter numbers separated by a comma:\n""").strip()
lowercase__ = [int(item) for item in user_input.split(""",""")]
print(counting_sort(unsorted)) | 12 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """bert-generation"""
def __init__( self , lowercase=50358 , lowercase=1024 , lowercase=24 , lowercase=16 , lowercase=4096 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase=2 , lowercase=1 , lowercase="absolute" , lowercase=True , **lowercase , ):
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
_lowerCamelCase : int = vocab_size
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : Tuple = num_hidden_layers
_lowerCamelCase : List[str] = num_attention_heads
_lowerCamelCase : str = hidden_act
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : List[Any] = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : int = max_position_embeddings
_lowerCamelCase : Union[str, Any] = initializer_range
_lowerCamelCase : Optional[Any] = layer_norm_eps
_lowerCamelCase : Union[str, Any] = position_embedding_type
_lowerCamelCase : Optional[Any] = use_cache | 12 |
"""simple docstring"""
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"""--original_config_file""",
default=None,
type=str,
help="""The YAML config file corresponding to the original architecture.""",
)
parser.add_argument(
"""--num_in_channels""",
default=None,
type=int,
help="""The number of input channels. If `None` number of input channels will be automatically inferred.""",
)
parser.add_argument(
"""--scheduler_type""",
default="""pndm""",
type=str,
help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""",
)
parser.add_argument(
"""--pipeline_type""",
default=None,
type=str,
help=(
"""The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"""
""". If `None` pipeline will be automatically inferred."""
),
)
parser.add_argument(
"""--image_size""",
default=None,
type=int,
help=(
"""The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"""
""" Base. Use 768 for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--prediction_type""",
default=None,
type=str,
help=(
"""The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"""
""" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--extract_ema""",
action="""store_true""",
help=(
"""Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"""
""" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"""
""" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."""
),
)
parser.add_argument(
"""--upcast_attention""",
action="""store_true""",
help=(
"""Whether the attention computation should always be upcasted. This is necessary when running stable"""
""" diffusion 2.1."""
),
)
parser.add_argument(
"""--from_safetensors""",
action="""store_true""",
help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""",
)
parser.add_argument(
"""--to_safetensors""",
action="""store_true""",
help="""Whether to store pipeline in safetensors format or not.""",
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
parser.add_argument(
"""--stable_unclip""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""",
)
parser.add_argument(
"""--stable_unclip_prior""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""",
)
parser.add_argument(
"""--clip_stats_path""",
type=str,
help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""",
required=False,
)
parser.add_argument(
"""--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint."""
)
parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""")
parser.add_argument(
"""--vae_path""",
type=str,
default=None,
required=False,
help="""Set to a path, hub id to an already converted vae to not convert it again.""",
)
lowercase__ = parser.parse_args()
lowercase__ = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | 12 | 1 |
"""simple docstring"""
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
lowercase__ = pytest.mark.integration
lowercase__ = {"""comet"""}
lowercase__ = importlib.util.find_spec("""fairseq""") is not None
lowercase__ = {"""code_eval"""}
lowercase__ = os.name == """nt"""
lowercase__ = {"""bertscore""", """frugalscore""", """perplexity"""}
lowercase__ = importlib.util.find_spec("""transformers""") is not None
def _snake_case ( lowercase__ ):
@wraps(lowercase__ )
def wrapper(self , lowercase__ ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('"test requires Fairseq"' )
else:
test_case(self , lowercase__ )
return wrapper
def _snake_case ( lowercase__ ):
@wraps(lowercase__ )
def wrapper(self , lowercase__ ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('"test requires transformers"' )
else:
test_case(self , lowercase__ )
return wrapper
def _snake_case ( lowercase__ ):
@wraps(lowercase__ )
def wrapper(self , lowercase__ ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('"test not supported on Windows"' )
else:
test_case(self , lowercase__ )
return wrapper
def _snake_case ( ):
_lowerCamelCase : Optional[int] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
lowercase, lowercase, lowercase )
@local
class lowerCAmelCase__ ( parameterized.TestCase ):
'''simple docstring'''
lowerCamelCase__ = {}
lowerCamelCase__ = None
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' )
def A_ ( self , lowercase ):
_lowerCamelCase : Tuple = '[...]'
_lowerCamelCase : int = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' , lowercase ) ).module_path )
_lowerCamelCase : Union[str, Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=lowercase )
# check parameters
_lowerCamelCase : Dict = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(lowercase , metric_module.__name__ ):
with self.use_local_metrics():
try:
_lowerCamelCase : str = doctest.testmod(lowercase , verbose=lowercase , raise_on_error=lowercase )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def A_ ( self , lowercase ):
_lowerCamelCase : Union[str, Any] = '[...]'
_lowerCamelCase : List[Any] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' , lowercase ) ).module_path )
# run doctest
with self.use_local_metrics():
_lowerCamelCase : int = doctest.testmod(lowercase , verbose=lowercase , raise_on_error=lowercase )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def A_ ( self , lowercase , lowercase ):
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](lowercase ):
yield
else:
yield
@contextmanager
def A_ ( self ):
def load_local_metric(lowercase , *lowercase , **lowercase ):
return load_metric(os.path.join('metrics' , lowercase ) , *lowercase , **lowercase )
with patch('datasets.load_metric' ) as mock_load_metric:
_lowerCamelCase : List[str] = load_local_metric
yield
@classmethod
def A_ ( cls , lowercase ):
def wrapper(lowercase ):
_lowerCamelCase : Optional[int] = contextmanager(lowercase )
_lowerCamelCase : int = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('bleurt' )
def _snake_case ( lowercase__ ):
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def A_ ( self , lowercase ):
assert len(input_dict['input_ids'] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('bleurt.score._create_predictor' ) as mock_create_predictor:
_lowerCamelCase : Optional[int] = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('bertscore' )
def _snake_case ( lowercase__ ):
import torch
def bert_cos_score_idf(lowercase__ , lowercase__ , *lowercase__ , **lowercase__ ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(lowercase__ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('bert_score.scorer.get_model' ), patch(
'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf:
_lowerCamelCase : Dict = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('comet' )
def _snake_case ( lowercase__ ):
def load_from_checkpoint(lowercase__ ):
class lowerCAmelCase__ :
'''simple docstring'''
def A_ ( self , lowercase , *lowercase , **lowercase ):
assert len(lowercase ) == 2
_lowerCamelCase : Dict = [0.19, 0.92]
return scores, sum(lowercase ) / len(lowercase )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('comet.download_model' ) as mock_download_model:
_lowerCamelCase : int = None
with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint:
_lowerCamelCase : List[Any] = load_from_checkpoint
yield
def _snake_case ( ):
_lowerCamelCase : int = load_metric(os.path.join('metrics' , 'seqeval' ) )
_lowerCamelCase : List[Any] = 'ERROR'
_lowerCamelCase : Optional[int] = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(lowercase__ , match=re.escape(lowercase__ ) ):
metric.compute(predictions=[] , references=[] , scheme=lowercase__ ) | 12 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = (UnCLIPScheduler,)
def A_ ( self , **lowercase ):
_lowerCamelCase : Any = {
'num_train_timesteps': 1000,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**lowercase )
return config
def A_ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase )
def A_ ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=lowercase )
def A_ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase )
def A_ ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=lowercase )
def A_ ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=lowercase )
def A_ ( self ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=lowercase , prev_timestep=lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' )
_lowerCamelCase : str = scheduler_class(**lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5
def A_ ( self ):
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' )
_lowerCamelCase : int = scheduler_class(**lowercase )
_lowerCamelCase : List[str] = 0.5
assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5
def A_ ( self ):
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config()
_lowerCamelCase : Tuple = scheduler_class(**lowercase )
_lowerCamelCase : Union[str, Any] = scheduler.timesteps
_lowerCamelCase : Any = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter
_lowerCamelCase : Optional[int] = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : Tuple = model(lowercase , lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : Optional[int] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2
assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3
def A_ ( self ):
_lowerCamelCase : Tuple = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Optional[Any] = scheduler_class(**lowercase )
scheduler.set_timesteps(25 )
_lowerCamelCase : Optional[Any] = scheduler.timesteps
_lowerCamelCase : Optional[int] = self.dummy_model()
_lowerCamelCase : Any = self.dummy_sample_deter
_lowerCamelCase : str = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : List[Any] = model(lowercase , lowercase )
if i + 1 == timesteps.shape[0]:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : List[str] = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : Union[str, Any] = scheduler.step(
lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : List[Any] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2
assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3
def A_ ( self ):
pass
def A_ ( self ):
pass | 12 | 1 |
"""simple docstring"""
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase__ ( lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = LxmertTokenizer
lowerCamelCase__ = LxmertTokenizerFast
lowerCamelCase__ = True
lowerCamelCase__ = True
def A_ ( self ):
super().setUp()
_lowerCamelCase : List[Any] = [
'[UNK]',
'[CLS]',
'[SEP]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
_lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def A_ ( self , lowercase ):
_lowerCamelCase : str = 'UNwant\u00E9d,running'
_lowerCamelCase : List[str] = 'unwanted, running'
return input_text, output_text
def A_ ( self ):
_lowerCamelCase : Tuple = self.tokenizer_class(self.vocab_file )
_lowerCamelCase : Union[str, Any] = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(lowercase , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [7, 4, 5, 10, 8, 9] )
def A_ ( self ):
if not self.test_rust_tokenizer:
return
_lowerCamelCase : Optional[int] = self.get_tokenizer()
_lowerCamelCase : Optional[int] = self.get_rust_tokenizer()
_lowerCamelCase : int = 'I was born in 92000, and this is falsé.'
_lowerCamelCase : int = tokenizer.tokenize(lowercase )
_lowerCamelCase : List[str] = rust_tokenizer.tokenize(lowercase )
self.assertListEqual(lowercase , lowercase )
_lowerCamelCase : List[Any] = tokenizer.encode(lowercase , add_special_tokens=lowercase )
_lowerCamelCase : int = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
_lowerCamelCase : Any = self.get_rust_tokenizer()
_lowerCamelCase : str = tokenizer.encode(lowercase )
_lowerCamelCase : Optional[Any] = rust_tokenizer.encode(lowercase )
self.assertListEqual(lowercase , lowercase ) | 12 |
"""simple docstring"""
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """data2vec-audio"""
def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ):
super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase )
_lowerCamelCase : str = hidden_size
_lowerCamelCase : str = feat_extract_activation
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Optional[Any] = conv_bias
_lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings
_lowerCamelCase : List[Any] = num_conv_pos_embedding_groups
_lowerCamelCase : List[Any] = conv_pos_kernel_size
_lowerCamelCase : Optional[int] = len(self.conv_dim )
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : Any = hidden_dropout
_lowerCamelCase : Union[str, Any] = attention_dropout
_lowerCamelCase : str = activation_dropout
_lowerCamelCase : Any = feat_proj_dropout
_lowerCamelCase : Tuple = final_dropout
_lowerCamelCase : Union[str, Any] = layerdrop
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : Optional[Any] = initializer_range
_lowerCamelCase : Optional[int] = vocab_size
_lowerCamelCase : Tuple = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCamelCase : Optional[Any] = mask_time_prob
_lowerCamelCase : List[Any] = mask_time_length
_lowerCamelCase : List[Any] = mask_time_min_masks
_lowerCamelCase : Tuple = mask_feature_prob
_lowerCamelCase : Optional[Any] = mask_feature_length
_lowerCamelCase : Dict = mask_feature_min_masks
# ctc loss
_lowerCamelCase : Tuple = ctc_loss_reduction
_lowerCamelCase : str = ctc_zero_infinity
# adapter
_lowerCamelCase : Union[str, Any] = add_adapter
_lowerCamelCase : List[Any] = adapter_kernel_size
_lowerCamelCase : Optional[Any] = adapter_stride
_lowerCamelCase : List[Any] = num_adapter_layers
_lowerCamelCase : int = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCamelCase : Optional[int] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCamelCase : List[str] = list(lowercase )
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Any = list(lowercase )
_lowerCamelCase : Optional[Any] = xvector_output_dim
@property
def A_ ( self ):
return math.prod(self.conv_stride ) | 12 | 1 |
"""simple docstring"""
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def _snake_case ( lowercase__ ):
return 1 / (1 + np.exp(-z ))
def _snake_case ( lowercase__ , lowercase__ ):
return (-y * np.log(lowercase__ ) - (1 - y) * np.log(1 - h )).mean()
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : int = np.dot(lowercase__ , lowercase__ )
return np.sum(y * scores - np.log(1 + np.exp(lowercase__ ) ) )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=70000 ):
_lowerCamelCase : int = np.zeros(x.shape[1] )
for iterations in range(lowercase__ ):
_lowerCamelCase : Dict = np.dot(lowercase__ , lowercase__ )
_lowerCamelCase : List[Any] = sigmoid_function(lowercase__ )
_lowerCamelCase : Optional[int] = np.dot(x.T , h - y ) / y.size
_lowerCamelCase : Any = theta - alpha * gradient # updating the weights
_lowerCamelCase : int = np.dot(lowercase__ , lowercase__ )
_lowerCamelCase : Any = sigmoid_function(lowercase__ )
_lowerCamelCase : str = cost_function(lowercase__ , lowercase__ )
if iterations % 100 == 0:
print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
lowercase__ = datasets.load_iris()
lowercase__ = iris.data[:, :2]
lowercase__ = (iris.target != 0) * 1
lowercase__ = 0.1
lowercase__ = logistic_reg(alpha, x, y, max_iterations=7_0000)
print("""theta: """, theta) # printing the theta i.e our weights vector
def _snake_case ( lowercase__ ):
return sigmoid_function(
np.dot(lowercase__ , lowercase__ ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""")
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""")
((lowercase__) , (lowercase__)) = (x[:, 0].min(), x[:, 0].max())
((lowercase__) , (lowercase__)) = (x[:, 1].min(), x[:, 1].max())
((lowercase__) , (lowercase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
lowercase__ = np.c_[xxa.ravel(), xxa.ravel()]
lowercase__ = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""")
plt.legend()
plt.show() | 12 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
lowercase__ = {
"""Acehnese Arabic""": """ace_Arab""",
"""Acehnese Latin""": """ace_Latn""",
"""Mesopotamian Arabic""": """acm_Arab""",
"""Ta'izzi-Adeni Arabic""": """acq_Arab""",
"""Tunisian Arabic""": """aeb_Arab""",
"""Afrikaans""": """afr_Latn""",
"""South Levantine Arabic""": """ajp_Arab""",
"""Akan""": """aka_Latn""",
"""Amharic""": """amh_Ethi""",
"""North Levantine Arabic""": """apc_Arab""",
"""Modern Standard Arabic""": """arb_Arab""",
"""Modern Standard Arabic Romanized""": """arb_Latn""",
"""Najdi Arabic""": """ars_Arab""",
"""Moroccan Arabic""": """ary_Arab""",
"""Egyptian Arabic""": """arz_Arab""",
"""Assamese""": """asm_Beng""",
"""Asturian""": """ast_Latn""",
"""Awadhi""": """awa_Deva""",
"""Central Aymara""": """ayr_Latn""",
"""South Azerbaijani""": """azb_Arab""",
"""North Azerbaijani""": """azj_Latn""",
"""Bashkir""": """bak_Cyrl""",
"""Bambara""": """bam_Latn""",
"""Balinese""": """ban_Latn""",
"""Belarusian""": """bel_Cyrl""",
"""Bemba""": """bem_Latn""",
"""Bengali""": """ben_Beng""",
"""Bhojpuri""": """bho_Deva""",
"""Banjar Arabic""": """bjn_Arab""",
"""Banjar Latin""": """bjn_Latn""",
"""Standard Tibetan""": """bod_Tibt""",
"""Bosnian""": """bos_Latn""",
"""Buginese""": """bug_Latn""",
"""Bulgarian""": """bul_Cyrl""",
"""Catalan""": """cat_Latn""",
"""Cebuano""": """ceb_Latn""",
"""Czech""": """ces_Latn""",
"""Chokwe""": """cjk_Latn""",
"""Central Kurdish""": """ckb_Arab""",
"""Crimean Tatar""": """crh_Latn""",
"""Welsh""": """cym_Latn""",
"""Danish""": """dan_Latn""",
"""German""": """deu_Latn""",
"""Southwestern Dinka""": """dik_Latn""",
"""Dyula""": """dyu_Latn""",
"""Dzongkha""": """dzo_Tibt""",
"""Greek""": """ell_Grek""",
"""English""": """eng_Latn""",
"""Esperanto""": """epo_Latn""",
"""Estonian""": """est_Latn""",
"""Basque""": """eus_Latn""",
"""Ewe""": """ewe_Latn""",
"""Faroese""": """fao_Latn""",
"""Fijian""": """fij_Latn""",
"""Finnish""": """fin_Latn""",
"""Fon""": """fon_Latn""",
"""French""": """fra_Latn""",
"""Friulian""": """fur_Latn""",
"""Nigerian Fulfulde""": """fuv_Latn""",
"""Scottish Gaelic""": """gla_Latn""",
"""Irish""": """gle_Latn""",
"""Galician""": """glg_Latn""",
"""Guarani""": """grn_Latn""",
"""Gujarati""": """guj_Gujr""",
"""Haitian Creole""": """hat_Latn""",
"""Hausa""": """hau_Latn""",
"""Hebrew""": """heb_Hebr""",
"""Hindi""": """hin_Deva""",
"""Chhattisgarhi""": """hne_Deva""",
"""Croatian""": """hrv_Latn""",
"""Hungarian""": """hun_Latn""",
"""Armenian""": """hye_Armn""",
"""Igbo""": """ibo_Latn""",
"""Ilocano""": """ilo_Latn""",
"""Indonesian""": """ind_Latn""",
"""Icelandic""": """isl_Latn""",
"""Italian""": """ita_Latn""",
"""Javanese""": """jav_Latn""",
"""Japanese""": """jpn_Jpan""",
"""Kabyle""": """kab_Latn""",
"""Jingpho""": """kac_Latn""",
"""Kamba""": """kam_Latn""",
"""Kannada""": """kan_Knda""",
"""Kashmiri Arabic""": """kas_Arab""",
"""Kashmiri Devanagari""": """kas_Deva""",
"""Georgian""": """kat_Geor""",
"""Central Kanuri Arabic""": """knc_Arab""",
"""Central Kanuri Latin""": """knc_Latn""",
"""Kazakh""": """kaz_Cyrl""",
"""Kabiyè""": """kbp_Latn""",
"""Kabuverdianu""": """kea_Latn""",
"""Khmer""": """khm_Khmr""",
"""Kikuyu""": """kik_Latn""",
"""Kinyarwanda""": """kin_Latn""",
"""Kyrgyz""": """kir_Cyrl""",
"""Kimbundu""": """kmb_Latn""",
"""Northern Kurdish""": """kmr_Latn""",
"""Kikongo""": """kon_Latn""",
"""Korean""": """kor_Hang""",
"""Lao""": """lao_Laoo""",
"""Ligurian""": """lij_Latn""",
"""Limburgish""": """lim_Latn""",
"""Lingala""": """lin_Latn""",
"""Lithuanian""": """lit_Latn""",
"""Lombard""": """lmo_Latn""",
"""Latgalian""": """ltg_Latn""",
"""Luxembourgish""": """ltz_Latn""",
"""Luba-Kasai""": """lua_Latn""",
"""Ganda""": """lug_Latn""",
"""Luo""": """luo_Latn""",
"""Mizo""": """lus_Latn""",
"""Standard Latvian""": """lvs_Latn""",
"""Magahi""": """mag_Deva""",
"""Maithili""": """mai_Deva""",
"""Malayalam""": """mal_Mlym""",
"""Marathi""": """mar_Deva""",
"""Minangkabau Arabic """: """min_Arab""",
"""Minangkabau Latin""": """min_Latn""",
"""Macedonian""": """mkd_Cyrl""",
"""Plateau Malagasy""": """plt_Latn""",
"""Maltese""": """mlt_Latn""",
"""Meitei Bengali""": """mni_Beng""",
"""Halh Mongolian""": """khk_Cyrl""",
"""Mossi""": """mos_Latn""",
"""Maori""": """mri_Latn""",
"""Burmese""": """mya_Mymr""",
"""Dutch""": """nld_Latn""",
"""Norwegian Nynorsk""": """nno_Latn""",
"""Norwegian Bokmål""": """nob_Latn""",
"""Nepali""": """npi_Deva""",
"""Northern Sotho""": """nso_Latn""",
"""Nuer""": """nus_Latn""",
"""Nyanja""": """nya_Latn""",
"""Occitan""": """oci_Latn""",
"""West Central Oromo""": """gaz_Latn""",
"""Odia""": """ory_Orya""",
"""Pangasinan""": """pag_Latn""",
"""Eastern Panjabi""": """pan_Guru""",
"""Papiamento""": """pap_Latn""",
"""Western Persian""": """pes_Arab""",
"""Polish""": """pol_Latn""",
"""Portuguese""": """por_Latn""",
"""Dari""": """prs_Arab""",
"""Southern Pashto""": """pbt_Arab""",
"""Ayacucho Quechua""": """quy_Latn""",
"""Romanian""": """ron_Latn""",
"""Rundi""": """run_Latn""",
"""Russian""": """rus_Cyrl""",
"""Sango""": """sag_Latn""",
"""Sanskrit""": """san_Deva""",
"""Santali""": """sat_Olck""",
"""Sicilian""": """scn_Latn""",
"""Shan""": """shn_Mymr""",
"""Sinhala""": """sin_Sinh""",
"""Slovak""": """slk_Latn""",
"""Slovenian""": """slv_Latn""",
"""Samoan""": """smo_Latn""",
"""Shona""": """sna_Latn""",
"""Sindhi""": """snd_Arab""",
"""Somali""": """som_Latn""",
"""Southern Sotho""": """sot_Latn""",
"""Spanish""": """spa_Latn""",
"""Tosk Albanian""": """als_Latn""",
"""Sardinian""": """srd_Latn""",
"""Serbian""": """srp_Cyrl""",
"""Swati""": """ssw_Latn""",
"""Sundanese""": """sun_Latn""",
"""Swedish""": """swe_Latn""",
"""Swahili""": """swh_Latn""",
"""Silesian""": """szl_Latn""",
"""Tamil""": """tam_Taml""",
"""Tatar""": """tat_Cyrl""",
"""Telugu""": """tel_Telu""",
"""Tajik""": """tgk_Cyrl""",
"""Tagalog""": """tgl_Latn""",
"""Thai""": """tha_Thai""",
"""Tigrinya""": """tir_Ethi""",
"""Tamasheq Latin""": """taq_Latn""",
"""Tamasheq Tifinagh""": """taq_Tfng""",
"""Tok Pisin""": """tpi_Latn""",
"""Tswana""": """tsn_Latn""",
"""Tsonga""": """tso_Latn""",
"""Turkmen""": """tuk_Latn""",
"""Tumbuka""": """tum_Latn""",
"""Turkish""": """tur_Latn""",
"""Twi""": """twi_Latn""",
"""Central Atlas Tamazight""": """tzm_Tfng""",
"""Uyghur""": """uig_Arab""",
"""Ukrainian""": """ukr_Cyrl""",
"""Umbundu""": """umb_Latn""",
"""Urdu""": """urd_Arab""",
"""Northern Uzbek""": """uzn_Latn""",
"""Venetian""": """vec_Latn""",
"""Vietnamese""": """vie_Latn""",
"""Waray""": """war_Latn""",
"""Wolof""": """wol_Latn""",
"""Xhosa""": """xho_Latn""",
"""Eastern Yiddish""": """ydd_Hebr""",
"""Yoruba""": """yor_Latn""",
"""Yue Chinese""": """yue_Hant""",
"""Chinese Simplified""": """zho_Hans""",
"""Chinese Traditional""": """zho_Hant""",
"""Standard Malay""": """zsm_Latn""",
"""Zulu""": """zul_Latn""",
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """facebook/nllb-200-distilled-600M"""
lowerCamelCase__ = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
lowerCamelCase__ = """translator"""
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSeqaSeqLM
lowerCamelCase__ = LANGUAGE_CODES
lowerCamelCase__ = ["""text""", """text""", """text"""]
lowerCamelCase__ = ["""text"""]
def A_ ( self , lowercase , lowercase , lowercase ):
if src_lang not in self.lang_to_code:
raise ValueError(F'''{src_lang} is not a supported language.''' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'''{tgt_lang} is not a supported language.''' )
_lowerCamelCase : str = self.lang_to_code[src_lang]
_lowerCamelCase : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase )
def A_ ( self , lowercase ):
return self.model.generate(**lowercase )
def A_ ( self , lowercase ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase ) | 12 | 1 |
"""simple docstring"""
lowercase__ = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.609344,
"knot": 1.852,
}
lowercase__ = {
"km/h": 1.0,
"m/s": 0.277777778,
"mph": 0.621371192,
"knot": 0.539956803,
}
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
_lowerCamelCase : Optional[Any] = (
f'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n'''
f'''Valid values are: {', '.join(lowercase__ )}'''
)
raise ValueError(lowercase__ )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def A_ ( self , lowercase , lowercase , lowercase ):
_lowerCamelCase : Optional[int] = hf_hub_download(
repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 )
_lowerCamelCase : List[str] = [
example_video_filepath,
'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4',
]
return video_classifier, examples
def A_ ( self , lowercase , lowercase ):
for example in examples:
_lowerCamelCase : Tuple = video_classifier(lowercase )
self.assertEqual(
lowercase , [
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
] , )
@require_torch
def A_ ( self ):
_lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification'
_lowerCamelCase : Tuple = VideoMAEFeatureExtractor(
size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} )
_lowerCamelCase : Dict = pipeline(
'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 )
_lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , )
_lowerCamelCase : str = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
] , )
@require_tf
def A_ ( self ):
pass | 12 | 1 |
"""simple docstring"""
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"""--original_config_file""",
default=None,
type=str,
help="""The YAML config file corresponding to the original architecture.""",
)
parser.add_argument(
"""--num_in_channels""",
default=None,
type=int,
help="""The number of input channels. If `None` number of input channels will be automatically inferred.""",
)
parser.add_argument(
"""--scheduler_type""",
default="""pndm""",
type=str,
help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""",
)
parser.add_argument(
"""--pipeline_type""",
default=None,
type=str,
help=(
"""The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"""
""". If `None` pipeline will be automatically inferred."""
),
)
parser.add_argument(
"""--image_size""",
default=None,
type=int,
help=(
"""The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"""
""" Base. Use 768 for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--prediction_type""",
default=None,
type=str,
help=(
"""The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"""
""" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--extract_ema""",
action="""store_true""",
help=(
"""Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"""
""" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"""
""" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."""
),
)
parser.add_argument(
"""--upcast_attention""",
action="""store_true""",
help=(
"""Whether the attention computation should always be upcasted. This is necessary when running stable"""
""" diffusion 2.1."""
),
)
parser.add_argument(
"""--from_safetensors""",
action="""store_true""",
help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""",
)
parser.add_argument(
"""--to_safetensors""",
action="""store_true""",
help="""Whether to store pipeline in safetensors format or not.""",
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
parser.add_argument(
"""--stable_unclip""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""",
)
parser.add_argument(
"""--stable_unclip_prior""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""",
)
parser.add_argument(
"""--clip_stats_path""",
type=str,
help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""",
required=False,
)
parser.add_argument(
"""--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint."""
)
parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""")
parser.add_argument(
"""--vae_path""",
type=str,
default=None,
required=False,
help="""Set to a path, hub id to an already converted vae to not convert it again.""",
)
lowercase__ = parser.parse_args()
lowercase__ = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | 12 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowercase__ = {
"""configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegaForCausalLM""",
"""MegaForMaskedLM""",
"""MegaForMultipleChoice""",
"""MegaForQuestionAnswering""",
"""MegaForSequenceClassification""",
"""MegaForTokenClassification""",
"""MegaModel""",
"""MegaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 | 1 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def A_ ( self , lowercase , lowercase , lowercase ):
_lowerCamelCase : Optional[int] = hf_hub_download(
repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 )
_lowerCamelCase : List[str] = [
example_video_filepath,
'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4',
]
return video_classifier, examples
def A_ ( self , lowercase , lowercase ):
for example in examples:
_lowerCamelCase : Tuple = video_classifier(lowercase )
self.assertEqual(
lowercase , [
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
] , )
@require_torch
def A_ ( self ):
_lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification'
_lowerCamelCase : Tuple = VideoMAEFeatureExtractor(
size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} )
_lowerCamelCase : Dict = pipeline(
'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 )
_lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , )
_lowerCamelCase : str = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
] , )
@require_tf
def A_ ( self ):
pass | 12 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ):
if attention_mask is None:
_lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = OPTConfig
lowerCamelCase__ = {}
lowerCamelCase__ = """gelu"""
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ):
_lowerCamelCase : Tuple = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Tuple = seq_length
_lowerCamelCase : str = is_training
_lowerCamelCase : Optional[int] = use_labels
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Dict = hidden_size
_lowerCamelCase : str = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Dict = hidden_act
_lowerCamelCase : Any = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : List[Any] = eos_token_id
_lowerCamelCase : Tuple = pad_token_id
_lowerCamelCase : List[str] = bos_token_id
_lowerCamelCase : Optional[int] = embed_dim
_lowerCamelCase : List[str] = word_embed_proj_dim
_lowerCamelCase : Any = False
def A_ ( self ):
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 )
_lowerCamelCase : Tuple = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , )
_lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase )
return config, inputs_dict
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase )
_lowerCamelCase : Optional[Any] = inputs_dict['input_ids']
_lowerCamelCase : str = input_ids[:1, :]
_lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :]
_lowerCamelCase : Optional[Any] = 1
# first forward pass
_lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase )
_lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
_lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0]
_lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx]
_lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
@require_tf
class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else ()
lowerCamelCase__ = (
{"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = 10
def A_ ( self ):
_lowerCamelCase : int = TFOPTModelTester(self )
_lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase )
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase , lowercase ):
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
_lowerCamelCase : Optional[int] = model_class(config=lowercase )
_lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase )
_lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
_lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase )
# check that weights remain the same after resizing
_lowerCamelCase : int = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Optional[Any] = False
self.assertTrue(lowercase )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase )
_lowerCamelCase : Dict = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Union[str, Any] = False
self.assertTrue(lowercase )
def _snake_case ( lowercase__ ):
return tf.constant(lowercase__ , dtype=tf.intaa )
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = 99
def A_ ( self ):
_lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2
_lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
_lowerCamelCase : int = input_ids.shape[0]
_lowerCamelCase : List[Any] = OPTConfig(
vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def A_ ( self ):
_lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' )
_lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
_lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id )
with tf.GradientTape():
_lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state
_lowerCamelCase : Optional[Any] = (1, 11, 512)
self.assertEqual(output.shape , lowercase )
_lowerCamelCase : List[str] = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) )
_lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
super().setUp()
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
def A_ ( self ):
_lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model )
_lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model )
_lowerCamelCase : List[str] = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase )
_lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
_lowerCamelCase : Any = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
_lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def A_ ( self ):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def A_ ( self ):
_lowerCamelCase : str = 'facebook/opt-125m'
_lowerCamelCase : Dict = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : int = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase )
def A_ ( self ):
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
_lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase )
_lowerCamelCase : Any = 'left'
# use different length sentences to test batching
_lowerCamelCase : Optional[int] = [
'Hello, my dog is a little',
'Today, I',
]
_lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase )
_lowerCamelCase : int = inputs['input_ids']
_lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] )
_lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase )
_lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
_lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings )
_lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
_lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase , lowercase )
self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] )
def A_ ( self ):
_lowerCamelCase : Tuple = 'facebook/opt-350m'
_lowerCamelCase : List[Any] = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase ) | 12 | 1 |
"""simple docstring"""
import numpy as np
def _snake_case ( lowercase__ , lowercase__ ):
return np.where(vector > 0 , lowercase__ , (alpha * (np.exp(lowercase__ ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """philschmid/bart-large-cnn-samsum"""
lowerCamelCase__ = (
"""This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """
"""and returns a summary of the text."""
)
lowerCamelCase__ = """summarizer"""
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSeqaSeqLM
lowerCamelCase__ = ["""text"""]
lowerCamelCase__ = ["""text"""]
def A_ ( self , lowercase ):
return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase )
def A_ ( self , lowercase ):
return self.model.generate(**lowercase )[0]
def A_ ( self , lowercase ):
return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) | 12 | 1 |
"""simple docstring"""
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
) | 12 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) )
_lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )]
index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ )
_lowerCamelCase : float = 0
_lowerCamelCase : list[float] = [0] * len(lowercase__ )
for i in index:
if weight[i] <= capacity:
_lowerCamelCase : int = 1
max_value += value[i]
capacity -= weight[i]
else:
_lowerCamelCase : Any = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowercase__ = """platform"""
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = PegasusConfig
lowerCamelCase__ = {}
lowerCamelCase__ = """gelu"""
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ):
_lowerCamelCase : Dict = parent
_lowerCamelCase : List[str] = batch_size
_lowerCamelCase : Dict = seq_length
_lowerCamelCase : List[str] = is_training
_lowerCamelCase : Optional[int] = use_labels
_lowerCamelCase : List[str] = vocab_size
_lowerCamelCase : int = hidden_size
_lowerCamelCase : Dict = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Dict = intermediate_size
_lowerCamelCase : Optional[Any] = hidden_dropout_prob
_lowerCamelCase : Optional[int] = attention_probs_dropout_prob
_lowerCamelCase : str = max_position_embeddings
_lowerCamelCase : Optional[Any] = eos_token_id
_lowerCamelCase : List[Any] = pad_token_id
_lowerCamelCase : List[str] = bos_token_id
def A_ ( self ):
_lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
_lowerCamelCase : Union[str, Any] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
_lowerCamelCase : List[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 )
_lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCamelCase : Union[str, Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_lowerCamelCase : Optional[int] = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase )
return config, inputs_dict
def A_ ( self , lowercase , lowercase , lowercase ):
_lowerCamelCase : List[str] = 20
_lowerCamelCase : Any = model_class_name(lowercase )
_lowerCamelCase : Tuple = model.encode(inputs_dict['input_ids'] )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
_lowerCamelCase : List[Any] = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
_lowerCamelCase : Dict = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
_lowerCamelCase : Dict = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowerCamelCase : List[Any] = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
_lowerCamelCase : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
_lowerCamelCase : Union[str, Any] = model.decode(
decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , )
_lowerCamelCase : Tuple = model.decode(lowercase , lowercase )
_lowerCamelCase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
def A_ ( self , lowercase , lowercase , lowercase ):
_lowerCamelCase : Dict = 20
_lowerCamelCase : Optional[Any] = model_class_name(lowercase )
_lowerCamelCase : Any = model.encode(inputs_dict['input_ids'] )
_lowerCamelCase, _lowerCamelCase : int = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
_lowerCamelCase : List[Any] = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_lowerCamelCase : List[str] = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
_lowerCamelCase : str = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowerCamelCase : str = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
_lowerCamelCase : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
_lowerCamelCase : int = model.decode(
decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , )
_lowerCamelCase : Optional[Any] = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase )
_lowerCamelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , ):
if attention_mask is None:
_lowerCamelCase : Any = np.not_equal(lowercase__ , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
_lowerCamelCase : Tuple = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class lowerCAmelCase__ ( lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
lowerCamelCase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
lowerCamelCase__ = True
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def A_ ( self ):
_lowerCamelCase : str = FlaxPegasusModelTester(self )
_lowerCamelCase : str = ConfigTester(self , config_class=lowercase )
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase )
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase )
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowerCamelCase : Tuple = self._prepare_for_class(lowercase , lowercase )
_lowerCamelCase : List[Any] = model_class(lowercase )
@jax.jit
def encode_jitted(lowercase , lowercase=None , **lowercase ):
return model.encode(input_ids=lowercase , attention_mask=lowercase )
with self.subTest('JIT Enabled' ):
_lowerCamelCase : Any = encode_jitted(**lowercase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowerCamelCase : Tuple = encode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowerCamelCase : Any = model_class(lowercase )
_lowerCamelCase : Optional[Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
_lowerCamelCase : int = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(lowercase , lowercase , lowercase ):
return model.decode(
decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , )
with self.subTest('JIT Enabled' ):
_lowerCamelCase : Any = decode_jitted(**lowercase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowerCamelCase : Tuple = decode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def A_ ( self ):
for model_class_name in self.all_model_classes:
_lowerCamelCase : Optional[int] = model_class_name.from_pretrained('google/pegasus-large' , from_pt=lowercase )
_lowerCamelCase : Optional[Any] = np.ones((1, 1) )
_lowerCamelCase : Optional[int] = model(lowercase )
self.assertIsNotNone(lowercase )
@slow
def A_ ( self ):
_lowerCamelCase : int = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' )
_lowerCamelCase : Optional[Any] = PegasusTokenizer.from_pretrained('google/pegasus-xsum' )
_lowerCamelCase : Optional[int] = [
' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.',
' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ',
]
_lowerCamelCase : Dict = [
'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.',
'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.',
]
_lowerCamelCase : int = tokenizer(lowercase , return_tensors='np' , truncation=lowercase , max_length=512 , padding=lowercase )
_lowerCamelCase : Tuple = model.generate(**lowercase , num_beams=2 ).sequences
_lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
assert tgt_text == decoded | 12 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
lowercase__ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("""""", """|""", """|"""),
datarow=DataRow("""""", """|""", """|"""),
padding=1,
with_header_hide=None,
)
lowercase__ = []
lowercase__ = []
lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}}
lowercase__ = [
{
"""type""": """header""",
"""text""": {
"""type""": """plain_text""",
"""text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results",
"""emoji""": True,
},
}
]
lowercase__ = 0
for log in Path().glob("""*.log"""):
lowercase__ = 0
with open(log, """r""") as f:
for line in f:
lowercase__ = json.loads(line)
if line.get("""nodeid""", """""") != "":
lowercase__ = line["""nodeid"""]
if line.get("""duration""", None) is not None:
lowercase__ = F"{line['duration']:.4f}"
if line.get("""outcome""", """""") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("""_""")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
lowercase__ = []
log.unlink()
lowercase__ = """"""
lowercase__ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
lowercase__ = []
lowercase__ = {}
for test in failed_tests:
lowercase__ = test[0].split("""::""")
lowercase__ = data[0].split("""/""")[-1]
if data[0] not in filesafailed:
lowercase__ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
lowercase__ = [test[0] for test in failed_table]
lowercase__ = list(set(files))
# Count number of instances in failed_tests
lowercase__ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
lowercase__ = tabulate(
table,
headers=["""Test Location""", """Num Failed"""],
tablefmt=hf_table_format,
stralign="""right""",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
lowercase__ = """Too many failed tests, please see the full report in the Action results."""
lowercase__ = len(err) + 10
lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}"
print(F"### {message}")
else:
lowercase__ = """No failed tests! 🤗"""
print(F"## {message}")
payload.append(no_error_payload)
if os.environ.get("""TEST_TYPE""", """""") != "":
from slack_sdk import WebClient
lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""])
if message != "No failed tests! 🤗":
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": message,
},
}
payload.append(md_report)
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": """*For more details:*""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {
"""type""": """plain_text""",
"""text""": """Check Action results""",
"""emoji""": True,
},
"""url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
payload.append(action_button)
lowercase__ = {
"""type""": """context""",
"""elements""": [
{
"""type""": """plain_text""",
"""text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}",
}
],
}
payload.append(date_report)
lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload)
lowercase__ = response.data["""ts"""]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
lowercase__ = """"""
for i, row in enumerate(test_failures):
if row[0] != test_class:
lowercase__ = row[0]
else:
lowercase__ = """"""
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```",
},
}
client.chat_postMessage(
channel="""#accelerate-ci-daily""",
thread_ts=ts,
blocks=[payload],
) | 12 | 1 |
"""simple docstring"""
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def _snake_case ( lowercase__ ):
if is_torch_version('<' , '2.0.0' ) or not hasattr(lowercase__ , '_dynamo' ):
return False
return isinstance(lowercase__ , torch._dynamo.eval_frame.OptimizedModule )
def _snake_case ( lowercase__ , lowercase__ = True ):
_lowerCamelCase : Optional[int] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
_lowerCamelCase : Optional[int] = is_compiled_module(lowercase__ )
if is_compiled:
_lowerCamelCase : Optional[int] = model
_lowerCamelCase : int = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(lowercase__ , lowercase__ ):
_lowerCamelCase : Union[str, Any] = model.module
if not keep_fpaa_wrapper:
_lowerCamelCase : Any = getattr(lowercase__ , 'forward' )
_lowerCamelCase : Tuple = model.__dict__.pop('_original_forward' , lowercase__ )
if original_forward is not None:
while hasattr(lowercase__ , '__wrapped__' ):
_lowerCamelCase : List[Any] = forward.__wrapped__
if forward == original_forward:
break
_lowerCamelCase : Optional[Any] = forward
if getattr(lowercase__ , '_converted_to_transformer_engine' , lowercase__ ):
convert_model(lowercase__ , to_transformer_engine=lowercase__ )
if is_compiled:
_lowerCamelCase : List[Any] = model
_lowerCamelCase : str = compiled_model
return model
def _snake_case ( ):
PartialState().wait_for_everyone()
def _snake_case ( lowercase__ , lowercase__ ):
if PartialState().distributed_type == DistributedType.TPU:
xm.save(lowercase__ , lowercase__ )
elif PartialState().local_process_index == 0:
torch.save(lowercase__ , lowercase__ )
@contextmanager
def _snake_case ( **lowercase__ ):
for key, value in kwargs.items():
_lowerCamelCase : List[str] = str(lowercase__ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def _snake_case ( lowercase__ ):
if not hasattr(lowercase__ , '__qualname__' ) and not hasattr(lowercase__ , '__name__' ):
_lowerCamelCase : List[Any] = getattr(lowercase__ , '__class__' , lowercase__ )
if hasattr(lowercase__ , '__qualname__' ):
return obj.__qualname__
if hasattr(lowercase__ , '__name__' ):
return obj.__name__
return str(lowercase__ )
def _snake_case ( lowercase__ , lowercase__ ):
for key, value in source.items():
if isinstance(lowercase__ , lowercase__ ):
_lowerCamelCase : List[Any] = destination.setdefault(lowercase__ , {} )
merge_dicts(lowercase__ , lowercase__ )
else:
_lowerCamelCase : Union[str, Any] = value
return destination
def _snake_case ( lowercase__ = None ):
if port is None:
_lowerCamelCase : List[str] = 29500
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0 | 12 |
"""simple docstring"""
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """AutoTokenizer"""
lowerCamelCase__ = ["""tokenizer"""]
lowerCamelCase__ = {
"""semantic_prompt""": 1,
"""coarse_prompt""": 2,
"""fine_prompt""": 2,
}
def __init__( self , lowercase , lowercase=None ):
super().__init__(lowercase )
_lowerCamelCase : Optional[int] = speaker_embeddings
@classmethod
def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ):
if speaker_embeddings_dict_path is not None:
_lowerCamelCase : Optional[Any] = get_file_from_repo(
lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if speaker_embeddings_path is None:
logger.warning(
F'''`{os.path.join(lowercase , lowercase )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
_lowerCamelCase : List[Any] = None
else:
with open(lowercase ) as speaker_embeddings_json:
_lowerCamelCase : Union[str, Any] = json.load(lowercase )
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase )
return cls(tokenizer=lowercase , speaker_embeddings=lowercase )
def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ):
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase )
_lowerCamelCase : int = {}
_lowerCamelCase : List[Any] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
_lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase )
_lowerCamelCase : Any = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , )
_lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' )
_lowerCamelCase : Optional[Any] = tmp_dict
with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp:
json.dump(lowercase , lowercase )
super().save_pretrained(lowercase , lowercase , **lowercase )
def A_ ( self , lowercase = None , **lowercase ):
_lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset]
_lowerCamelCase : Any = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
_lowerCamelCase : Union[str, Any] = get_file_from_repo(
self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if path is None:
raise ValueError(
F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
_lowerCamelCase : List[str] = np.load(lowercase )
return voice_preset_dict
def A_ ( self , lowercase = None ):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ):
if voice_preset is not None and not isinstance(lowercase , lowercase ):
if (
isinstance(lowercase , lowercase )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
_lowerCamelCase : Any = self._load_voice_preset(lowercase )
else:
if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ):
_lowerCamelCase : Optional[Any] = voice_preset + '.npz'
_lowerCamelCase : Union[str, Any] = np.load(lowercase )
if voice_preset is not None:
self._validate_voice_preset_dict(lowercase , **lowercase )
_lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase )
_lowerCamelCase : Any = self.tokenizer(
lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , )
if voice_preset is not None:
_lowerCamelCase : Optional[int] = voice_preset
return encoded_text | 12 | 1 |
"""simple docstring"""
def _snake_case ( lowercase__ , lowercase__ ):
assert x is not None
assert y is not None
_lowerCamelCase : Union[str, Any] = len(lowercase__ )
_lowerCamelCase : Dict = len(lowercase__ )
# declaring the array for storing the dp values
_lowerCamelCase : List[Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 , m + 1 ):
for j in range(1 , n + 1 ):
_lowerCamelCase : Any = 1 if x[i - 1] == y[j - 1] else 0
_lowerCamelCase : Any = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match )
_lowerCamelCase : List[str] = ''
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = m, n
while i > 0 and j > 0:
_lowerCamelCase : Tuple = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
_lowerCamelCase : List[str] = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
lowercase__ = """AGGTAB"""
lowercase__ = """GXTXAYB"""
lowercase__ = 4
lowercase__ = """GTAB"""
lowercase__ , lowercase__ = longest_common_subsequence(a, b)
print("""len =""", ln, """, sub-sequence =""", subseq)
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
lowercase__ = False
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : Tuple = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
_lowerCamelCase : Dict = torch.manual_seed(0 )
_lowerCamelCase : Dict = pipe(
image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images
_lowerCamelCase : str = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
_lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 12 | 1 |
"""simple docstring"""
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowercase__ )
_lowerCamelCase : Tuple = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
_lowerCamelCase : Optional[int] = dataset_size < in_memory_max_size
else:
_lowerCamelCase : Tuple = False
_lowerCamelCase : int = is_small_dataset(lowercase__ )
assert result == expected | 12 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
lowercase__ = {
"""E""": 12.70,
"""T""": 9.06,
"""A""": 8.17,
"""O""": 7.51,
"""I""": 6.97,
"""N""": 6.75,
"""S""": 6.33,
"""H""": 6.09,
"""R""": 5.99,
"""D""": 4.25,
"""L""": 4.03,
"""C""": 2.78,
"""U""": 2.76,
"""M""": 2.41,
"""W""": 2.36,
"""F""": 2.23,
"""G""": 2.02,
"""Y""": 1.97,
"""P""": 1.93,
"""B""": 1.29,
"""V""": 0.98,
"""K""": 0.77,
"""J""": 0.15,
"""X""": 0.15,
"""Q""": 0.10,
"""Z""": 0.07,
}
lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ"""
lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def _snake_case ( lowercase__ ):
return x[0]
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = get_letter_count(lowercase__ )
_lowerCamelCase : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(lowercase__ )
_lowerCamelCase : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ )
_lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] )
_lowerCamelCase : Any = list(freq_to_letter_str.items() )
freq_pairs.sort(key=lowercase__ , reverse=lowercase__ )
_lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = get_frequency_order(lowercase__ )
_lowerCamelCase : Union[str, Any] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
def _snake_case ( lowercase__=28123 ):
_lowerCamelCase : List[Any] = [1] * (limit + 1)
for i in range(2 , int(limit**0.5 ) + 1 ):
sum_divs[i * i] += i
for k in range(i + 1 , limit // i + 1 ):
sum_divs[k * i] += k + i
_lowerCamelCase : Tuple = set()
_lowerCamelCase : Any = 0
for n in range(1 , limit + 1 ):
if sum_divs[n] > n:
abundants.add(lowercase__ )
if not any((n - a in abundants) for a in abundants ):
res += n
return res
if __name__ == "__main__":
print(solution()) | 12 |
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase ):
_lowerCamelCase : Dict = question_encoder
_lowerCamelCase : List[Any] = generator
_lowerCamelCase : Optional[Any] = self.question_encoder
def A_ ( self , lowercase ):
if os.path.isfile(lowercase ):
raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(lowercase , exist_ok=lowercase )
_lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' )
_lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' )
self.question_encoder.save_pretrained(lowercase )
self.generator.save_pretrained(lowercase )
@classmethod
def A_ ( cls , lowercase , **lowercase ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
_lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase )
if config is None:
_lowerCamelCase : int = RagConfig.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(
lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' )
_lowerCamelCase : Dict = AutoTokenizer.from_pretrained(
lowercase , config=config.generator , subfolder='generator_tokenizer' )
return cls(question_encoder=lowercase , generator=lowercase )
def __call__( self , *lowercase , **lowercase ):
return self.current_tokenizer(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.batch_decode(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.decode(*lowercase , **lowercase )
def A_ ( self ):
_lowerCamelCase : Any = self.question_encoder
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.generator
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ):
warnings.warn(
'`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '
'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '
'context manager to prepare your targets. See the documentation of your specific tokenizer for more '
'details' , lowercase , )
if max_length is None:
_lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length
_lowerCamelCase : Optional[Any] = self(
lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
_lowerCamelCase : int = self.current_tokenizer.model_max_length
_lowerCamelCase : str = self(
text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , )
_lowerCamelCase : int = labels['input_ids']
return model_inputs | 12 | 1 |
"""simple docstring"""
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def __init__( self , lowercase , lowercase , lowercase , lowercase , ):
super().__init__()
_lowerCamelCase : Optional[int] = value_function
_lowerCamelCase : Optional[int] = unet
_lowerCamelCase : Any = scheduler
_lowerCamelCase : Dict = env
_lowerCamelCase : Any = env.get_dataset()
_lowerCamelCase : Any = {}
for key in self.data.keys():
try:
_lowerCamelCase : Union[str, Any] = self.data[key].mean()
except: # noqa: E722
pass
_lowerCamelCase : Optional[int] = {}
for key in self.data.keys():
try:
_lowerCamelCase : Optional[Any] = self.data[key].std()
except: # noqa: E722
pass
_lowerCamelCase : int = env.observation_space.shape[0]
_lowerCamelCase : Union[str, Any] = env.action_space.shape[0]
def A_ ( self , lowercase , lowercase ):
return (x_in - self.means[key]) / self.stds[key]
def A_ ( self , lowercase , lowercase ):
return x_in * self.stds[key] + self.means[key]
def A_ ( self , lowercase ):
if type(lowercase ) is dict:
return {k: self.to_torch(lowercase ) for k, v in x_in.items()}
elif torch.is_tensor(lowercase ):
return x_in.to(self.unet.device )
return torch.tensor(lowercase , device=self.unet.device )
def A_ ( self , lowercase , lowercase , lowercase ):
for key, val in cond.items():
_lowerCamelCase : Union[str, Any] = val.clone()
return x_in
def A_ ( self , lowercase , lowercase , lowercase , lowercase ):
_lowerCamelCase : Union[str, Any] = x.shape[0]
_lowerCamelCase : Union[str, Any] = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
_lowerCamelCase : Optional[int] = torch.full((batch_size,) , lowercase , device=self.unet.device , dtype=torch.long )
for _ in range(lowercase ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
_lowerCamelCase : Optional[Any] = self.value_function(x.permute(0 , 2 , 1 ) , lowercase ).sample
_lowerCamelCase : int = torch.autograd.grad([y.sum()] , [x] )[0]
_lowerCamelCase : List[Any] = self.scheduler._get_variance(lowercase )
_lowerCamelCase : Union[str, Any] = torch.exp(0.5 * posterior_variance )
_lowerCamelCase : Optional[int] = model_std * grad
_lowerCamelCase : List[Any] = 0
_lowerCamelCase : int = x.detach()
_lowerCamelCase : Union[str, Any] = x + scale * grad
_lowerCamelCase : Union[str, Any] = self.reset_xa(lowercase , lowercase , self.action_dim )
_lowerCamelCase : Union[str, Any] = self.unet(x.permute(0 , 2 , 1 ) , lowercase ).sample.permute(0 , 2 , 1 )
# TODO: verify deprecation of this kwarg
_lowerCamelCase : Dict = self.scheduler.step(lowercase , lowercase , lowercase , predict_epsilon=lowercase )['prev_sample']
# apply conditions to the trajectory (set the initial state)
_lowerCamelCase : List[str] = self.reset_xa(lowercase , lowercase , self.action_dim )
_lowerCamelCase : int = self.to_torch(lowercase )
return x, y
def __call__( self , lowercase , lowercase=64 , lowercase=32 , lowercase=2 , lowercase=0.1 ):
# normalize the observations and create batch dimension
_lowerCamelCase : Optional[int] = self.normalize(lowercase , 'observations' )
_lowerCamelCase : int = obs[None].repeat(lowercase , axis=0 )
_lowerCamelCase : Any = {0: self.to_torch(lowercase )}
_lowerCamelCase : str = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
_lowerCamelCase : Tuple = randn_tensor(lowercase , device=self.unet.device )
_lowerCamelCase : Optional[Any] = self.reset_xa(lowercase , lowercase , self.action_dim )
_lowerCamelCase : int = self.to_torch(lowercase )
# run the diffusion process
_lowerCamelCase, _lowerCamelCase : List[Any] = self.run_diffusion(lowercase , lowercase , lowercase , lowercase )
# sort output trajectories by value
_lowerCamelCase : List[Any] = y.argsort(0 , descending=lowercase ).squeeze()
_lowerCamelCase : List[str] = x[sorted_idx]
_lowerCamelCase : Any = sorted_values[:, :, : self.action_dim]
_lowerCamelCase : Union[str, Any] = actions.detach().cpu().numpy()
_lowerCamelCase : Dict = self.de_normalize(lowercase , key='actions' )
# select the action with the highest value
if y is not None:
_lowerCamelCase : List[Any] = 0
else:
# if we didn't run value guiding, select a random action
_lowerCamelCase : Union[str, Any] = np.random.randint(0 , lowercase )
_lowerCamelCase : Union[str, Any] = denorm_actions[selected_index, 0]
return denorm_actions | 12 |
"""simple docstring"""
def _snake_case ( lowercase__ = 10 ):
if not isinstance(lowercase__ , lowercase__ ) or n < 0:
raise ValueError('Invalid input' )
_lowerCamelCase : str = 10**n
_lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F"{solution(10) = }") | 12 | 1 |
"""simple docstring"""
def _snake_case ( lowercase__ = 10 ):
if not isinstance(lowercase__ , lowercase__ ) or n < 0:
raise ValueError('Invalid input' )
_lowerCamelCase : str = 10**n
_lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F"{solution(10) = }") | 12 |
"""simple docstring"""
import argparse
import datetime
def _snake_case ( lowercase__ ):
_lowerCamelCase : Dict = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
_lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase__ ) < 11:
raise ValueError('Must be 10 characters long' )
# Get month
_lowerCamelCase : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12' )
_lowerCamelCase : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get day
_lowerCamelCase : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31' )
# Get second separator
_lowerCamelCase : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get year
_lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?' )
# Get datetime obj for validation
_lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) )
# Start math
if m <= 2:
_lowerCamelCase : str = y - 1
_lowerCamelCase : Tuple = m + 12
# maths var
_lowerCamelCase : int = int(str(lowercase__ )[:2] )
_lowerCamelCase : int = int(str(lowercase__ )[2:] )
_lowerCamelCase : int = int(2.6 * m - 5.3_9 )
_lowerCamelCase : int = int(c / 4 )
_lowerCamelCase : int = int(k / 4 )
_lowerCamelCase : int = int(d + k )
_lowerCamelCase : int = int(t + u + v + x )
_lowerCamelCase : int = int(z - (2 * c) )
_lowerCamelCase : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.' )
# Response
_lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
lowercase__ = parser.parse_args()
zeller(args.date_input) | 12 | 1 |
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase ):
_lowerCamelCase : Dict = question_encoder
_lowerCamelCase : List[Any] = generator
_lowerCamelCase : Optional[Any] = self.question_encoder
def A_ ( self , lowercase ):
if os.path.isfile(lowercase ):
raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(lowercase , exist_ok=lowercase )
_lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' )
_lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' )
self.question_encoder.save_pretrained(lowercase )
self.generator.save_pretrained(lowercase )
@classmethod
def A_ ( cls , lowercase , **lowercase ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
_lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase )
if config is None:
_lowerCamelCase : int = RagConfig.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(
lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' )
_lowerCamelCase : Dict = AutoTokenizer.from_pretrained(
lowercase , config=config.generator , subfolder='generator_tokenizer' )
return cls(question_encoder=lowercase , generator=lowercase )
def __call__( self , *lowercase , **lowercase ):
return self.current_tokenizer(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.batch_decode(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.decode(*lowercase , **lowercase )
def A_ ( self ):
_lowerCamelCase : Any = self.question_encoder
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.generator
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ):
warnings.warn(
'`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '
'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '
'context manager to prepare your targets. See the documentation of your specific tokenizer for more '
'details' , lowercase , )
if max_length is None:
_lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length
_lowerCamelCase : Optional[Any] = self(
lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
_lowerCamelCase : int = self.current_tokenizer.model_max_length
_lowerCamelCase : str = self(
text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , )
_lowerCamelCase : int = labels['input_ids']
return model_inputs | 12 |
"""simple docstring"""
import re
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' )
if match := re.search(lowercase__ , lowercase__ ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("""+918827897895""")) | 12 | 1 |
"""simple docstring"""
def _snake_case ( lowercase__ , lowercase__ ):
if density <= 0:
raise ValueError('Impossible fluid density' )
if bulk_modulus <= 0:
raise ValueError('Impossible bulk modulus' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
lowercase__ = Path(__file__).resolve().parents[3] / """src"""
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""}
lowercase__ = """zero2"""
lowercase__ = """zero3"""
lowercase__ = [ZEROa, ZEROa]
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
_lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) )
return f'''{func.__name__}_{param_based_name}'''
# Cartesian-product of zero stages with models to test
lowercase__ = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@require_torch_multi_gpu
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@require_torch_multi_gpu
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
def A_ ( self , lowercase ):
# XXX: run_asr is premature and doesn't save any results
# so all we check for now is that the process didn't fail
pass
def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ):
_lowerCamelCase : List[str] = models[model]
_lowerCamelCase : Optional[int] = self.run_trainer(
stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , )
self.do_checks(lowercase )
return output_dir
def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ):
_lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase )
_lowerCamelCase : Any = F'''
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(lowercase )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
'''.split()
if fpaa:
args.extend(['--fp16'] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
_lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split()
_lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py''']
_lowerCamelCase : Dict = self.get_launcher(lowercase )
_lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(lowercase , env=self.get_env() )
return output_dir
def A_ ( self , lowercase=False ):
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
_lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1
return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split() | 12 | 1 |
"""simple docstring"""
import string
from math import logaa
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : List[Any] = document.translate(
str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' )
_lowerCamelCase : Union[str, Any] = document_without_punctuation.split(' ' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : int = corpus.lower().translate(
str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with ''
_lowerCamelCase : List[str] = corpus_without_punctuation.split('\n' )
_lowerCamelCase : Union[str, Any] = term.lower()
return (len([doc for doc in docs if term in doc] ), len(lowercase__ ))
def _snake_case ( lowercase__ , lowercase__ , lowercase__=False ):
if smoothing:
if n == 0:
raise ValueError('log10(0) is undefined.' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('df must be > 0' )
elif n == 0:
raise ValueError('log10(0) is undefined.' )
return round(logaa(n / df ) , 3 )
def _snake_case ( lowercase__ , lowercase__ ):
return round(tf * idf , 3 ) | 12 |
"""simple docstring"""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""pixel_values"""]
def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ):
super().__init__(**lowercase )
_lowerCamelCase : Optional[Any] = do_rescale
_lowerCamelCase : Union[str, Any] = rescale_factor
_lowerCamelCase : Any = do_pad
_lowerCamelCase : Optional[int] = pad_size
def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ):
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A_ ( self , lowercase , lowercase , lowercase = None ):
_lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase )
_lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height
_lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width
return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase )
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ):
_lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale
_lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad
_lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size
_lowerCamelCase : Dict = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
_lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images]
if do_rescale:
_lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_pad:
_lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images]
_lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
_lowerCamelCase : Union[str, Any] = {'pixel_values': images}
return BatchFeature(data=lowercase , tensor_type=lowercase ) | 12 | 1 |
"""simple docstring"""
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowercase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
lowercase__ = """ def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
"""
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : str = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) )
_lowerCamelCase : Dict = self.transformer_dir
shutil.copy(
os.path.join(lowercase , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , )
def A_ ( self ):
_lowerCamelCase : int = 'src/transformers'
shutil.rmtree(self.transformer_dir )
def A_ ( self , lowercase , lowercase , lowercase , lowercase=None ):
_lowerCamelCase : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
_lowerCamelCase : Union[str, Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
_lowerCamelCase : Tuple = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
_lowerCamelCase : Tuple = black.format_str(lowercase , mode=lowercase )
_lowerCamelCase : Any = os.path.join(self.transformer_dir , 'new_code.py' )
with open(lowercase , 'w' , newline='\n' ) as f:
f.write(lowercase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowercase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowercase )
with open(lowercase , 'r' ) as f:
self.assertTrue(f.read() , lowercase )
def A_ ( self ):
_lowerCamelCase : Tuple = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' )
self.assertEqual(lowercase , lowercase )
def A_ ( self ):
# Base copy consistency
self.check_copy_consistency(
'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , )
# With no empty line at the end
self.check_copy_consistency(
'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowercase , )
# Copy consistency with rename
self.check_copy_consistency(
'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowercase ) , )
# Copy consistency with a really long name
_lowerCamelCase : int = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'
self.check_copy_consistency(
F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub('Bert' , lowercase , lowercase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowercase , overwrite_result=re.sub('Bert' , 'TestModel' , lowercase ) , )
def A_ ( self ):
_lowerCamelCase : List[Any] = check_copies.LOCALIZED_READMES['README_zh-hans.md']
_lowerCamelCase : List[str] = (
'1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'
' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'
' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'
' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.'
' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),'
' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'
' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same'
' method has been applied to compress GPT2 into'
' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'
' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'
' Multilingual BERT into'
' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'
' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**'
' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders'
' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang'
' Luong, Quoc V. Le, Christopher D. Manning.'
)
_lowerCamelCase : Optional[int] = (
'1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'
' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'
' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'
' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'
)
_lowerCamelCase : Any = (
'1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'
' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'
' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'
' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.'
' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文'
' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'
' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same'
' method has been applied to compress GPT2 into'
' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'
' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'
' Multilingual BERT into'
' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'
' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自'
' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather'
' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,'
' Christopher D. Manning 发布。\n'
)
_lowerCamelCase, _lowerCamelCase : Any = check_copies.convert_to_localized_md(
lowercase , lowercase , localized_readme['format_model_list'] )
self.assertFalse(lowercase )
self.assertEqual(lowercase , lowercase )
_lowerCamelCase, _lowerCamelCase : List[Any] = check_copies.convert_to_localized_md(
lowercase , lowercase , localized_readme['format_model_list'] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(lowercase )
_lowerCamelCase : List[Any] = (
'1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'
' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'
' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'
' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.'
)
_lowerCamelCase : Dict = (
'1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and'
' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'
' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'
' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'
)
_lowerCamelCase : Optional[int] = (
'1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'
' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'
' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'
' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'
)
_lowerCamelCase, _lowerCamelCase : Tuple = check_copies.convert_to_localized_md(
lowercase , lowercase , localized_readme['format_model_list'] )
# Check if the model link is synchronized.
self.assertEqual(lowercase , lowercase ) | 12 |
"""simple docstring"""
import os
import string
import sys
lowercase__ = 1 << 8
lowercase__ = {
"""tab""": ord("""\t"""),
"""newline""": ord("""\r"""),
"""esc""": 27,
"""up""": 65 + ARROW_KEY_FLAG,
"""down""": 66 + ARROW_KEY_FLAG,
"""right""": 67 + ARROW_KEY_FLAG,
"""left""": 68 + ARROW_KEY_FLAG,
"""mod_int""": 91,
"""undefined""": sys.maxsize,
"""interrupt""": 3,
"""insert""": 50,
"""delete""": 51,
"""pg_up""": 53,
"""pg_down""": 54,
}
lowercase__ = KEYMAP["""up"""]
lowercase__ = KEYMAP["""left"""]
if sys.platform == "win32":
lowercase__ = []
lowercase__ = {
B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
}
for i in range(10):
lowercase__ = ord(str(i))
def _snake_case ( ):
if os.name == "nt":
import msvcrt
_lowerCamelCase : Any = 'mbcs'
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(lowercase__ ) == 0:
# Read the keystroke
_lowerCamelCase : str = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
_lowerCamelCase : List[Any] = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
_lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) )
WIN_CH_BUFFER.append(lowercase__ )
if ord(lowercase__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
_lowerCamelCase : List[Any] = chr(KEYMAP['esc'] )
except KeyError:
_lowerCamelCase : int = cha[1]
else:
_lowerCamelCase : Optional[int] = ch.decode(lowercase__ )
else:
_lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
_lowerCamelCase : List[str] = sys.stdin.fileno()
_lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ )
try:
tty.setraw(lowercase__ )
_lowerCamelCase : Optional[Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ )
return ch
def _snake_case ( ):
_lowerCamelCase : int = get_raw_chars()
if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(lowercase__ ) == KEYMAP["esc"]:
_lowerCamelCase : Union[str, Any] = get_raw_chars()
if ord(lowercase__ ) == KEYMAP["mod_int"]:
_lowerCamelCase : List[Any] = get_raw_chars()
if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(lowercase__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"] | 12 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ = logging.get_logger(__name__)
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = DPTConfig(embedding_type='hybrid' )
if "large" in checkpoint_url:
_lowerCamelCase : Tuple = 1024
_lowerCamelCase : int = 4096
_lowerCamelCase : List[str] = 24
_lowerCamelCase : Tuple = 16
_lowerCamelCase : Union[str, Any] = [5, 11, 17, 23]
_lowerCamelCase : str = [256, 512, 1024, 1024]
_lowerCamelCase : str = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
_lowerCamelCase : Tuple = 768
_lowerCamelCase : Optional[int] = [1, 1, 1, 0.5]
_lowerCamelCase : List[Any] = [256, 512, 768, 768]
_lowerCamelCase : Union[str, Any] = 150
_lowerCamelCase : int = 16
_lowerCamelCase : Optional[Any] = (1, 384, 384)
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Optional[int] = 'project'
if "ade" in checkpoint_url:
_lowerCamelCase : List[str] = True
_lowerCamelCase : Dict = 768
_lowerCamelCase : Optional[int] = [1, 1, 1, 0.5]
_lowerCamelCase : Tuple = 150
_lowerCamelCase : str = 16
_lowerCamelCase : Dict = 'huggingface/label-files'
_lowerCamelCase : int = 'ade20k-id2label.json'
_lowerCamelCase : Dict = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' ) ) , 'r' ) )
_lowerCamelCase : Dict = {int(lowercase__ ): v for k, v in idalabel.items()}
_lowerCamelCase : Tuple = idalabel
_lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()}
_lowerCamelCase : Any = [1, 150, 480, 480]
return config, expected_shape
def _snake_case ( lowercase__ ):
_lowerCamelCase : int = ['pretrained.model.head.weight', 'pretrained.model.head.bias']
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def _snake_case ( lowercase__ ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
_lowerCamelCase : str = name.replace('pretrained.model' , 'dpt.encoder' )
if "pretrained.model" in name:
_lowerCamelCase : Optional[int] = name.replace('pretrained.model' , 'dpt.embeddings' )
if "patch_embed" in name:
_lowerCamelCase : str = name.replace('patch_embed' , '' )
if "pos_embed" in name:
_lowerCamelCase : Any = name.replace('pos_embed' , 'position_embeddings' )
if "attn.proj" in name:
_lowerCamelCase : List[Any] = name.replace('attn.proj' , 'attention.output.dense' )
if "proj" in name and "project" not in name:
_lowerCamelCase : Union[str, Any] = name.replace('proj' , 'projection' )
if "blocks" in name:
_lowerCamelCase : Any = name.replace('blocks' , 'layer' )
if "mlp.fc1" in name:
_lowerCamelCase : Tuple = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
_lowerCamelCase : Optional[Any] = name.replace('mlp.fc2' , 'output.dense' )
if "norm1" in name and "backbone" not in name:
_lowerCamelCase : List[Any] = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name and "backbone" not in name:
_lowerCamelCase : int = name.replace('norm2' , 'layernorm_after' )
if "scratch.output_conv" in name:
_lowerCamelCase : Dict = name.replace('scratch.output_conv' , 'head' )
if "scratch" in name:
_lowerCamelCase : Union[str, Any] = name.replace('scratch' , 'neck' )
if "layer1_rn" in name:
_lowerCamelCase : Dict = name.replace('layer1_rn' , 'convs.0' )
if "layer2_rn" in name:
_lowerCamelCase : Any = name.replace('layer2_rn' , 'convs.1' )
if "layer3_rn" in name:
_lowerCamelCase : Union[str, Any] = name.replace('layer3_rn' , 'convs.2' )
if "layer4_rn" in name:
_lowerCamelCase : Dict = name.replace('layer4_rn' , 'convs.3' )
if "refinenet" in name:
_lowerCamelCase : Union[str, Any] = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
_lowerCamelCase : List[Any] = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
_lowerCamelCase : int = name.replace('out_conv' , 'projection' )
if "resConfUnit1" in name:
_lowerCamelCase : str = name.replace('resConfUnit1' , 'residual_layer1' )
if "resConfUnit2" in name:
_lowerCamelCase : Optional[int] = name.replace('resConfUnit2' , 'residual_layer2' )
if "conv1" in name:
_lowerCamelCase : List[str] = name.replace('conv1' , 'convolution1' )
if "conv2" in name:
_lowerCamelCase : List[Any] = name.replace('conv2' , 'convolution2' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
_lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' )
if "pretrained.act_postprocess2.0.project.0" in name:
_lowerCamelCase : Dict = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' )
if "pretrained.act_postprocess3.0.project.0" in name:
_lowerCamelCase : str = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' )
if "pretrained.act_postprocess4.0.project.0" in name:
_lowerCamelCase : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
_lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' )
if "pretrained.act_postprocess1.4" in name:
_lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' )
if "pretrained.act_postprocess2.3" in name:
_lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' )
if "pretrained.act_postprocess2.4" in name:
_lowerCamelCase : Any = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' )
if "pretrained.act_postprocess3.3" in name:
_lowerCamelCase : Optional[Any] = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' )
if "pretrained.act_postprocess4.3" in name:
_lowerCamelCase : List[str] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' )
if "pretrained.act_postprocess4.4" in name:
_lowerCamelCase : Any = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' )
if "pretrained" in name:
_lowerCamelCase : List[Any] = name.replace('pretrained' , 'dpt' )
if "bn" in name:
_lowerCamelCase : Dict = name.replace('bn' , 'batch_norm' )
if "head" in name:
_lowerCamelCase : Any = name.replace('head' , 'head.head' )
if "encoder.norm" in name:
_lowerCamelCase : List[Any] = name.replace('encoder.norm' , 'layernorm' )
if "auxlayer" in name:
_lowerCamelCase : int = name.replace('auxlayer' , 'auxiliary_head.head' )
if "backbone" in name:
_lowerCamelCase : str = name.replace('backbone' , 'backbone.bit.encoder' )
if ".." in name:
_lowerCamelCase : Dict = name.replace('..' , '.' )
if "stem.conv" in name:
_lowerCamelCase : Union[str, Any] = name.replace('stem.conv' , 'bit.embedder.convolution' )
if "blocks" in name:
_lowerCamelCase : Union[str, Any] = name.replace('blocks' , 'layers' )
if "convolution" in name and "backbone" in name:
_lowerCamelCase : Tuple = name.replace('convolution' , 'conv' )
if "layer" in name and "backbone" in name:
_lowerCamelCase : List[Any] = name.replace('layer' , 'layers' )
if "backbone.bit.encoder.bit" in name:
_lowerCamelCase : List[Any] = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' )
if "embedder.conv" in name:
_lowerCamelCase : Optional[Any] = name.replace('embedder.conv' , 'embedder.convolution' )
if "backbone.bit.encoder.stem.norm" in name:
_lowerCamelCase : Any = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' )
return name
def _snake_case ( lowercase__ , lowercase__ ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : Dict = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
_lowerCamelCase : Optional[Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : List[Any] = in_proj_weight[: config.hidden_size, :]
_lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size]
_lowerCamelCase : Dict = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : Optional[int] = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Any = in_proj_bias[-config.hidden_size :]
def _snake_case ( ):
_lowerCamelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_lowerCamelCase : str = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase, _lowerCamelCase : Any = get_dpt_config(lowercase__ )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
_lowerCamelCase : str = torch.load(lowercase__ , map_location='cpu' )
# remove certain keys
remove_ignore_keys_(lowercase__ )
# rename keys
for key in state_dict.copy().keys():
_lowerCamelCase : Any = state_dict.pop(lowercase__ )
_lowerCamelCase : str = val
# read in qkv matrices
read_in_q_k_v(lowercase__ , lowercase__ )
# load HuggingFace model
_lowerCamelCase : List[Any] = DPTForSemanticSegmentation(lowercase__ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowercase__ )
model.load_state_dict(lowercase__ )
model.eval()
# Check outputs on an image
_lowerCamelCase : Optional[int] = 480 if 'ade' in checkpoint_url else 384
_lowerCamelCase : Union[str, Any] = DPTImageProcessor(size=lowercase__ )
_lowerCamelCase : Optional[int] = prepare_img()
_lowerCamelCase : str = image_processor(lowercase__ , return_tensors='pt' )
# forward pass
_lowerCamelCase : Tuple = model(**lowercase__ ).logits if 'ade' in checkpoint_url else model(**lowercase__ ).predicted_depth
if show_prediction:
_lowerCamelCase : Optional[int] = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=lowercase__ , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowercase__ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowercase__ )
if push_to_hub:
model.push_to_hub('ybelkada/dpt-hybrid-midas' )
image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' )
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""",
type=str,
help="""URL of the original DPT checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
required=False,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
)
parser.add_argument(
"""--model_name""",
default="""dpt-large""",
type=str,
help="""Name of the model, in case you're pushing to the hub.""",
)
parser.add_argument(
"""--show_prediction""",
action="""store_true""",
)
lowercase__ = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
) | 12 |
"""simple docstring"""
from typing import Any
def _snake_case ( lowercase__ ):
if not input_list:
return []
_lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list]
_lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = (UnCLIPScheduler,)
def A_ ( self , **lowercase ):
_lowerCamelCase : Any = {
'num_train_timesteps': 1000,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**lowercase )
return config
def A_ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase )
def A_ ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=lowercase )
def A_ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase )
def A_ ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=lowercase )
def A_ ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=lowercase )
def A_ ( self ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=lowercase , prev_timestep=lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' )
_lowerCamelCase : str = scheduler_class(**lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5
def A_ ( self ):
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' )
_lowerCamelCase : int = scheduler_class(**lowercase )
_lowerCamelCase : List[str] = 0.5
assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5
def A_ ( self ):
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config()
_lowerCamelCase : Tuple = scheduler_class(**lowercase )
_lowerCamelCase : Union[str, Any] = scheduler.timesteps
_lowerCamelCase : Any = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter
_lowerCamelCase : Optional[int] = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : Tuple = model(lowercase , lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : Optional[int] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2
assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3
def A_ ( self ):
_lowerCamelCase : Tuple = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Optional[Any] = scheduler_class(**lowercase )
scheduler.set_timesteps(25 )
_lowerCamelCase : Optional[Any] = scheduler.timesteps
_lowerCamelCase : Optional[int] = self.dummy_model()
_lowerCamelCase : Any = self.dummy_sample_deter
_lowerCamelCase : str = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : List[Any] = model(lowercase , lowercase )
if i + 1 == timesteps.shape[0]:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : List[str] = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : Union[str, Any] = scheduler.step(
lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : List[Any] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2
assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3
def A_ ( self ):
pass
def A_ ( self ):
pass | 12 |
"""simple docstring"""
def _snake_case ( lowercase__ ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
_lowerCamelCase : List[str] = len(lowercase__ )
_lowerCamelCase : List[str] = max(lowercase__ )
_lowerCamelCase : List[str] = min(lowercase__ )
# create the counting array
_lowerCamelCase : List[Any] = coll_max + 1 - coll_min
_lowerCamelCase : List[Any] = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , lowercase__ ):
_lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1]
# create the output collection
_lowerCamelCase : Dict = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , lowercase__ ) ):
_lowerCamelCase : Any = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def _snake_case ( lowercase__ ):
return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt"
lowercase__ = input("""Enter numbers separated by a comma:\n""").strip()
lowercase__ = [int(item) for item in user_input.split(""",""")]
print(counting_sort(unsorted)) | 12 | 1 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase=99 , lowercase=13 , lowercase=16 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=2 , lowercase=32 , lowercase=4 , lowercase=4 , lowercase=30 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=None , ):
_lowerCamelCase : int = parent
_lowerCamelCase : Optional[Any] = batch_size
_lowerCamelCase : Optional[Any] = decoder_seq_length
# For common tests
_lowerCamelCase : List[Any] = self.decoder_seq_length
_lowerCamelCase : List[str] = is_training
_lowerCamelCase : Optional[Any] = use_attention_mask
_lowerCamelCase : List[Any] = use_labels
_lowerCamelCase : Union[str, Any] = vocab_size
_lowerCamelCase : str = d_model
_lowerCamelCase : List[str] = d_model
_lowerCamelCase : Union[str, Any] = decoder_layers
_lowerCamelCase : Dict = decoder_layers
_lowerCamelCase : Optional[Any] = decoder_ffn_dim
_lowerCamelCase : List[str] = decoder_attention_heads
_lowerCamelCase : Any = decoder_attention_heads
_lowerCamelCase : List[str] = eos_token_id
_lowerCamelCase : Any = bos_token_id
_lowerCamelCase : int = pad_token_id
_lowerCamelCase : Any = decoder_start_token_id
_lowerCamelCase : Optional[Any] = use_cache
_lowerCamelCase : Any = max_position_embeddings
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : Dict = decoder_seq_length
_lowerCamelCase : Optional[int] = 2
_lowerCamelCase : Optional[Any] = 1
def A_ ( self ):
_lowerCamelCase : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCamelCase : str = None
if self.use_attention_mask:
_lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCamelCase : Union[str, Any] = None
if self.use_labels:
_lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCamelCase : List[Any] = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def A_ ( self , lowercase , lowercase , lowercase , lowercase , ):
_lowerCamelCase : Dict = True
_lowerCamelCase : List[Any] = TrOCRDecoder(config=lowercase ).to(lowercase ).eval()
_lowerCamelCase : Union[str, Any] = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCamelCase : Union[str, Any] = model(lowercase , use_cache=lowercase )
_lowerCamelCase : Optional[Any] = model(lowercase )
_lowerCamelCase : Dict = model(lowercase , use_cache=lowercase )
self.parent.assertTrue(len(lowercase ) == len(lowercase ) )
self.parent.assertTrue(len(lowercase ) == len(lowercase ) + 1 )
_lowerCamelCase : str = outputs['past_key_values']
# create hypothetical next token and extent to next_input_ids
_lowerCamelCase : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCamelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCamelCase : List[str] = model(lowercase )['last_hidden_state']
_lowerCamelCase : Union[str, Any] = model(lowercase , past_key_values=lowercase )['last_hidden_state']
# select random slice
_lowerCamelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCamelCase : List[str] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCamelCase : Tuple = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(lowercase , lowercase , atol=1E-3 )
def A_ ( self ):
_lowerCamelCase : int = self.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = config_and_inputs
_lowerCamelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( lowercase, lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase__ = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase__ = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase__ = True
lowerCamelCase__ = False
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=lowercase )
_lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase )
def A_ ( self ):
pass
def A_ ( self ):
pass
def A_ ( self ):
pass
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*lowercase )
def A_ ( self ):
return
@unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :)
def A_ ( self ):
pass | 12 |
"""simple docstring"""
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"""--original_config_file""",
default=None,
type=str,
help="""The YAML config file corresponding to the original architecture.""",
)
parser.add_argument(
"""--num_in_channels""",
default=None,
type=int,
help="""The number of input channels. If `None` number of input channels will be automatically inferred.""",
)
parser.add_argument(
"""--scheduler_type""",
default="""pndm""",
type=str,
help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""",
)
parser.add_argument(
"""--pipeline_type""",
default=None,
type=str,
help=(
"""The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"""
""". If `None` pipeline will be automatically inferred."""
),
)
parser.add_argument(
"""--image_size""",
default=None,
type=int,
help=(
"""The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"""
""" Base. Use 768 for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--prediction_type""",
default=None,
type=str,
help=(
"""The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"""
""" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--extract_ema""",
action="""store_true""",
help=(
"""Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"""
""" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"""
""" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."""
),
)
parser.add_argument(
"""--upcast_attention""",
action="""store_true""",
help=(
"""Whether the attention computation should always be upcasted. This is necessary when running stable"""
""" diffusion 2.1."""
),
)
parser.add_argument(
"""--from_safetensors""",
action="""store_true""",
help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""",
)
parser.add_argument(
"""--to_safetensors""",
action="""store_true""",
help="""Whether to store pipeline in safetensors format or not.""",
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
parser.add_argument(
"""--stable_unclip""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""",
)
parser.add_argument(
"""--stable_unclip_prior""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""",
)
parser.add_argument(
"""--clip_stats_path""",
type=str,
help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""",
required=False,
)
parser.add_argument(
"""--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint."""
)
parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""")
parser.add_argument(
"""--vae_path""",
type=str,
default=None,
required=False,
help="""Set to a path, hub id to an already converted vae to not convert it again.""",
)
lowercase__ = parser.parse_args()
lowercase__ = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | 12 | 1 |
"""simple docstring"""
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def _snake_case ( lowercase__ ):
def wrapper(*lowercase__ , **lowercase__ ):
_lowerCamelCase : Tuple = timeit.default_timer()
_lowerCamelCase : Tuple = func(*lowercase__ , **lowercase__ )
_lowerCamelCase : str = timeit.default_timer() - starttime
return delta
_lowerCamelCase : List[Any] = func.__name__
return wrapper
def _snake_case ( lowercase__ , lowercase__=100 , lowercase__=None ):
_lowerCamelCase : Dict = []
_lowerCamelCase : List[str] = seq_shapes or {}
for i in range(lowercase__ ):
_lowerCamelCase : Optional[int] = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(lowercase__ , _ArrayXD ):
_lowerCamelCase : List[str] = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(lowercase__ , datasets.Value ):
if v.dtype == "string":
_lowerCamelCase : Any = 'The small grey turtle was surprisingly fast when challenged.'
else:
_lowerCamelCase : List[str] = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(lowercase__ , datasets.Sequence ):
while isinstance(lowercase__ , datasets.Sequence ):
_lowerCamelCase : Tuple = v.feature
_lowerCamelCase : List[Any] = seq_shapes[k]
_lowerCamelCase : int = np.random.rand(*lowercase__ ).astype(v.dtype )
_lowerCamelCase : List[str] = data
dummy_data.append((i, example) )
return dummy_data
def _snake_case ( lowercase__ , lowercase__ , lowercase__=100 , lowercase__=None ):
_lowerCamelCase : List[str] = generate_examples(lowercase__ , num_examples=lowercase__ , seq_shapes=lowercase__ )
with ArrowWriter(features=lowercase__ , path=lowercase__ ) as writer:
for key, record in dummy_data:
_lowerCamelCase : str = features.encode_example(lowercase__ )
writer.write(lowercase__ )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' )
_lowerCamelCase : Optional[int] = datasets.Dataset.from_file(filename=lowercase__ , info=datasets.DatasetInfo(features=lowercase__ ) )
return dataset | 12 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = (UnCLIPScheduler,)
def A_ ( self , **lowercase ):
_lowerCamelCase : Any = {
'num_train_timesteps': 1000,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**lowercase )
return config
def A_ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase )
def A_ ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=lowercase )
def A_ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase )
def A_ ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=lowercase )
def A_ ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=lowercase )
def A_ ( self ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=lowercase , prev_timestep=lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' )
_lowerCamelCase : str = scheduler_class(**lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5
def A_ ( self ):
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' )
_lowerCamelCase : int = scheduler_class(**lowercase )
_lowerCamelCase : List[str] = 0.5
assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5
def A_ ( self ):
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config()
_lowerCamelCase : Tuple = scheduler_class(**lowercase )
_lowerCamelCase : Union[str, Any] = scheduler.timesteps
_lowerCamelCase : Any = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter
_lowerCamelCase : Optional[int] = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : Tuple = model(lowercase , lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : Optional[int] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2
assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3
def A_ ( self ):
_lowerCamelCase : Tuple = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Optional[Any] = scheduler_class(**lowercase )
scheduler.set_timesteps(25 )
_lowerCamelCase : Optional[Any] = scheduler.timesteps
_lowerCamelCase : Optional[int] = self.dummy_model()
_lowerCamelCase : Any = self.dummy_sample_deter
_lowerCamelCase : str = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : List[Any] = model(lowercase , lowercase )
if i + 1 == timesteps.shape[0]:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : List[str] = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : Union[str, Any] = scheduler.step(
lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : List[Any] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2
assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3
def A_ ( self ):
pass
def A_ ( self ):
pass | 12 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
# Initialise PyTorch model
_lowerCamelCase : Any = FunnelConfig.from_json_file(lowercase__ )
print(f'''Building PyTorch model from configuration: {config}''' )
_lowerCamelCase : Optional[int] = FunnelBaseModel(lowercase__ ) if base_model else FunnelModel(lowercase__ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , lowercase__ )
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not."""
)
lowercase__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
) | 12 |
"""simple docstring"""
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """data2vec-audio"""
def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ):
super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase )
_lowerCamelCase : str = hidden_size
_lowerCamelCase : str = feat_extract_activation
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Optional[Any] = conv_bias
_lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings
_lowerCamelCase : List[Any] = num_conv_pos_embedding_groups
_lowerCamelCase : List[Any] = conv_pos_kernel_size
_lowerCamelCase : Optional[int] = len(self.conv_dim )
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : Any = hidden_dropout
_lowerCamelCase : Union[str, Any] = attention_dropout
_lowerCamelCase : str = activation_dropout
_lowerCamelCase : Any = feat_proj_dropout
_lowerCamelCase : Tuple = final_dropout
_lowerCamelCase : Union[str, Any] = layerdrop
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : Optional[Any] = initializer_range
_lowerCamelCase : Optional[int] = vocab_size
_lowerCamelCase : Tuple = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCamelCase : Optional[Any] = mask_time_prob
_lowerCamelCase : List[Any] = mask_time_length
_lowerCamelCase : List[Any] = mask_time_min_masks
_lowerCamelCase : Tuple = mask_feature_prob
_lowerCamelCase : Optional[Any] = mask_feature_length
_lowerCamelCase : Dict = mask_feature_min_masks
# ctc loss
_lowerCamelCase : Tuple = ctc_loss_reduction
_lowerCamelCase : str = ctc_zero_infinity
# adapter
_lowerCamelCase : Union[str, Any] = add_adapter
_lowerCamelCase : List[Any] = adapter_kernel_size
_lowerCamelCase : Optional[Any] = adapter_stride
_lowerCamelCase : List[Any] = num_adapter_layers
_lowerCamelCase : int = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCamelCase : Optional[int] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCamelCase : List[str] = list(lowercase )
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Any = list(lowercase )
_lowerCamelCase : Optional[Any] = xvector_output_dim
@property
def A_ ( self ):
return math.prod(self.conv_stride ) | 12 | 1 |
"""simple docstring"""
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def _snake_case ( lowercase__ , lowercase__=False ):
_lowerCamelCase : List[Any] = OmegaConf.load(lowercase__ )
if display:
print(yaml.dump(OmegaConf.to_container(lowercase__ ) ) )
return config
def _snake_case ( lowercase__ , lowercase__=None , lowercase__=None ):
if conf_path is None:
_lowerCamelCase : List[Any] = './model_checkpoints/vqgan_only.yaml'
_lowerCamelCase : int = load_config(lowercase__ , display=lowercase__ )
_lowerCamelCase : List[Any] = VQModel(**config.model.params )
if ckpt_path is None:
_lowerCamelCase : List[str] = './model_checkpoints/vqgan_only.pt'
_lowerCamelCase : str = torch.load(lowercase__ , map_location=lowercase__ )
if ".ckpt" in ckpt_path:
_lowerCamelCase : Optional[Any] = sd['state_dict']
model.load_state_dict(lowercase__ , strict=lowercase__ )
model.to(lowercase__ )
del sd
return model
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = model.encode(lowercase__ )
print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' )
_lowerCamelCase : int = model.decode(lowercase__ )
return xrec
def _snake_case ( lowercase__ , lowercase__=False ):
_lowerCamelCase, _lowerCamelCase : Optional[int] = string.rsplit('.' , 1 )
if reload:
_lowerCamelCase : str = importlib.import_module(lowercase__ )
importlib.reload(lowercase__ )
return getattr(importlib.import_module(lowercase__ , package=lowercase__ ) , cls )
def _snake_case ( lowercase__ ):
if "target" not in config:
raise KeyError('Expected key `target` to instantiate.' )
return get_obj_from_str(config['target'] )(**config.get('params' , {} ) )
def _snake_case ( lowercase__ , lowercase__ , lowercase__=True , lowercase__=True ):
_lowerCamelCase : Optional[int] = instantiate_from_config(lowercase__ )
if sd is not None:
model.load_state_dict(lowercase__ )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
# load the specified checkpoint
if ckpt:
_lowerCamelCase : str = torch.load(lowercase__ , map_location='cpu' )
_lowerCamelCase : int = pl_sd['global_step']
print(f'''loaded model from global step {global_step}.''' )
else:
_lowerCamelCase : Any = {'state_dict': None}
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : Union[str, Any] = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=lowercase__ , eval_mode=lowercase__ )['model']
return model, global_step | 12 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
lowercase__ = {
"""Acehnese Arabic""": """ace_Arab""",
"""Acehnese Latin""": """ace_Latn""",
"""Mesopotamian Arabic""": """acm_Arab""",
"""Ta'izzi-Adeni Arabic""": """acq_Arab""",
"""Tunisian Arabic""": """aeb_Arab""",
"""Afrikaans""": """afr_Latn""",
"""South Levantine Arabic""": """ajp_Arab""",
"""Akan""": """aka_Latn""",
"""Amharic""": """amh_Ethi""",
"""North Levantine Arabic""": """apc_Arab""",
"""Modern Standard Arabic""": """arb_Arab""",
"""Modern Standard Arabic Romanized""": """arb_Latn""",
"""Najdi Arabic""": """ars_Arab""",
"""Moroccan Arabic""": """ary_Arab""",
"""Egyptian Arabic""": """arz_Arab""",
"""Assamese""": """asm_Beng""",
"""Asturian""": """ast_Latn""",
"""Awadhi""": """awa_Deva""",
"""Central Aymara""": """ayr_Latn""",
"""South Azerbaijani""": """azb_Arab""",
"""North Azerbaijani""": """azj_Latn""",
"""Bashkir""": """bak_Cyrl""",
"""Bambara""": """bam_Latn""",
"""Balinese""": """ban_Latn""",
"""Belarusian""": """bel_Cyrl""",
"""Bemba""": """bem_Latn""",
"""Bengali""": """ben_Beng""",
"""Bhojpuri""": """bho_Deva""",
"""Banjar Arabic""": """bjn_Arab""",
"""Banjar Latin""": """bjn_Latn""",
"""Standard Tibetan""": """bod_Tibt""",
"""Bosnian""": """bos_Latn""",
"""Buginese""": """bug_Latn""",
"""Bulgarian""": """bul_Cyrl""",
"""Catalan""": """cat_Latn""",
"""Cebuano""": """ceb_Latn""",
"""Czech""": """ces_Latn""",
"""Chokwe""": """cjk_Latn""",
"""Central Kurdish""": """ckb_Arab""",
"""Crimean Tatar""": """crh_Latn""",
"""Welsh""": """cym_Latn""",
"""Danish""": """dan_Latn""",
"""German""": """deu_Latn""",
"""Southwestern Dinka""": """dik_Latn""",
"""Dyula""": """dyu_Latn""",
"""Dzongkha""": """dzo_Tibt""",
"""Greek""": """ell_Grek""",
"""English""": """eng_Latn""",
"""Esperanto""": """epo_Latn""",
"""Estonian""": """est_Latn""",
"""Basque""": """eus_Latn""",
"""Ewe""": """ewe_Latn""",
"""Faroese""": """fao_Latn""",
"""Fijian""": """fij_Latn""",
"""Finnish""": """fin_Latn""",
"""Fon""": """fon_Latn""",
"""French""": """fra_Latn""",
"""Friulian""": """fur_Latn""",
"""Nigerian Fulfulde""": """fuv_Latn""",
"""Scottish Gaelic""": """gla_Latn""",
"""Irish""": """gle_Latn""",
"""Galician""": """glg_Latn""",
"""Guarani""": """grn_Latn""",
"""Gujarati""": """guj_Gujr""",
"""Haitian Creole""": """hat_Latn""",
"""Hausa""": """hau_Latn""",
"""Hebrew""": """heb_Hebr""",
"""Hindi""": """hin_Deva""",
"""Chhattisgarhi""": """hne_Deva""",
"""Croatian""": """hrv_Latn""",
"""Hungarian""": """hun_Latn""",
"""Armenian""": """hye_Armn""",
"""Igbo""": """ibo_Latn""",
"""Ilocano""": """ilo_Latn""",
"""Indonesian""": """ind_Latn""",
"""Icelandic""": """isl_Latn""",
"""Italian""": """ita_Latn""",
"""Javanese""": """jav_Latn""",
"""Japanese""": """jpn_Jpan""",
"""Kabyle""": """kab_Latn""",
"""Jingpho""": """kac_Latn""",
"""Kamba""": """kam_Latn""",
"""Kannada""": """kan_Knda""",
"""Kashmiri Arabic""": """kas_Arab""",
"""Kashmiri Devanagari""": """kas_Deva""",
"""Georgian""": """kat_Geor""",
"""Central Kanuri Arabic""": """knc_Arab""",
"""Central Kanuri Latin""": """knc_Latn""",
"""Kazakh""": """kaz_Cyrl""",
"""Kabiyè""": """kbp_Latn""",
"""Kabuverdianu""": """kea_Latn""",
"""Khmer""": """khm_Khmr""",
"""Kikuyu""": """kik_Latn""",
"""Kinyarwanda""": """kin_Latn""",
"""Kyrgyz""": """kir_Cyrl""",
"""Kimbundu""": """kmb_Latn""",
"""Northern Kurdish""": """kmr_Latn""",
"""Kikongo""": """kon_Latn""",
"""Korean""": """kor_Hang""",
"""Lao""": """lao_Laoo""",
"""Ligurian""": """lij_Latn""",
"""Limburgish""": """lim_Latn""",
"""Lingala""": """lin_Latn""",
"""Lithuanian""": """lit_Latn""",
"""Lombard""": """lmo_Latn""",
"""Latgalian""": """ltg_Latn""",
"""Luxembourgish""": """ltz_Latn""",
"""Luba-Kasai""": """lua_Latn""",
"""Ganda""": """lug_Latn""",
"""Luo""": """luo_Latn""",
"""Mizo""": """lus_Latn""",
"""Standard Latvian""": """lvs_Latn""",
"""Magahi""": """mag_Deva""",
"""Maithili""": """mai_Deva""",
"""Malayalam""": """mal_Mlym""",
"""Marathi""": """mar_Deva""",
"""Minangkabau Arabic """: """min_Arab""",
"""Minangkabau Latin""": """min_Latn""",
"""Macedonian""": """mkd_Cyrl""",
"""Plateau Malagasy""": """plt_Latn""",
"""Maltese""": """mlt_Latn""",
"""Meitei Bengali""": """mni_Beng""",
"""Halh Mongolian""": """khk_Cyrl""",
"""Mossi""": """mos_Latn""",
"""Maori""": """mri_Latn""",
"""Burmese""": """mya_Mymr""",
"""Dutch""": """nld_Latn""",
"""Norwegian Nynorsk""": """nno_Latn""",
"""Norwegian Bokmål""": """nob_Latn""",
"""Nepali""": """npi_Deva""",
"""Northern Sotho""": """nso_Latn""",
"""Nuer""": """nus_Latn""",
"""Nyanja""": """nya_Latn""",
"""Occitan""": """oci_Latn""",
"""West Central Oromo""": """gaz_Latn""",
"""Odia""": """ory_Orya""",
"""Pangasinan""": """pag_Latn""",
"""Eastern Panjabi""": """pan_Guru""",
"""Papiamento""": """pap_Latn""",
"""Western Persian""": """pes_Arab""",
"""Polish""": """pol_Latn""",
"""Portuguese""": """por_Latn""",
"""Dari""": """prs_Arab""",
"""Southern Pashto""": """pbt_Arab""",
"""Ayacucho Quechua""": """quy_Latn""",
"""Romanian""": """ron_Latn""",
"""Rundi""": """run_Latn""",
"""Russian""": """rus_Cyrl""",
"""Sango""": """sag_Latn""",
"""Sanskrit""": """san_Deva""",
"""Santali""": """sat_Olck""",
"""Sicilian""": """scn_Latn""",
"""Shan""": """shn_Mymr""",
"""Sinhala""": """sin_Sinh""",
"""Slovak""": """slk_Latn""",
"""Slovenian""": """slv_Latn""",
"""Samoan""": """smo_Latn""",
"""Shona""": """sna_Latn""",
"""Sindhi""": """snd_Arab""",
"""Somali""": """som_Latn""",
"""Southern Sotho""": """sot_Latn""",
"""Spanish""": """spa_Latn""",
"""Tosk Albanian""": """als_Latn""",
"""Sardinian""": """srd_Latn""",
"""Serbian""": """srp_Cyrl""",
"""Swati""": """ssw_Latn""",
"""Sundanese""": """sun_Latn""",
"""Swedish""": """swe_Latn""",
"""Swahili""": """swh_Latn""",
"""Silesian""": """szl_Latn""",
"""Tamil""": """tam_Taml""",
"""Tatar""": """tat_Cyrl""",
"""Telugu""": """tel_Telu""",
"""Tajik""": """tgk_Cyrl""",
"""Tagalog""": """tgl_Latn""",
"""Thai""": """tha_Thai""",
"""Tigrinya""": """tir_Ethi""",
"""Tamasheq Latin""": """taq_Latn""",
"""Tamasheq Tifinagh""": """taq_Tfng""",
"""Tok Pisin""": """tpi_Latn""",
"""Tswana""": """tsn_Latn""",
"""Tsonga""": """tso_Latn""",
"""Turkmen""": """tuk_Latn""",
"""Tumbuka""": """tum_Latn""",
"""Turkish""": """tur_Latn""",
"""Twi""": """twi_Latn""",
"""Central Atlas Tamazight""": """tzm_Tfng""",
"""Uyghur""": """uig_Arab""",
"""Ukrainian""": """ukr_Cyrl""",
"""Umbundu""": """umb_Latn""",
"""Urdu""": """urd_Arab""",
"""Northern Uzbek""": """uzn_Latn""",
"""Venetian""": """vec_Latn""",
"""Vietnamese""": """vie_Latn""",
"""Waray""": """war_Latn""",
"""Wolof""": """wol_Latn""",
"""Xhosa""": """xho_Latn""",
"""Eastern Yiddish""": """ydd_Hebr""",
"""Yoruba""": """yor_Latn""",
"""Yue Chinese""": """yue_Hant""",
"""Chinese Simplified""": """zho_Hans""",
"""Chinese Traditional""": """zho_Hant""",
"""Standard Malay""": """zsm_Latn""",
"""Zulu""": """zul_Latn""",
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """facebook/nllb-200-distilled-600M"""
lowerCamelCase__ = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
lowerCamelCase__ = """translator"""
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSeqaSeqLM
lowerCamelCase__ = LANGUAGE_CODES
lowerCamelCase__ = ["""text""", """text""", """text"""]
lowerCamelCase__ = ["""text"""]
def A_ ( self , lowercase , lowercase , lowercase ):
if src_lang not in self.lang_to_code:
raise ValueError(F'''{src_lang} is not a supported language.''' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'''{tgt_lang} is not a supported language.''' )
_lowerCamelCase : str = self.lang_to_code[src_lang]
_lowerCamelCase : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase )
def A_ ( self , lowercase ):
return self.model.generate(**lowercase )
def A_ ( self , lowercase ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase ) | 12 | 1 |
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
lowercase__ = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
lowercase__ = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
lowercase__ = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : str = len([g for position, g in enumerate(lowercase__ ) if g == main_target[position]] )
return (item, float(lowercase__ ))
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : Any = random.randint(0 , len(lowercase__ ) - 1 )
_lowerCamelCase : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:]
_lowerCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : List[str] = list(lowercase__ )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
_lowerCamelCase : Tuple = random.choice(lowercase__ )
return "".join(lowercase__ )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , ):
_lowerCamelCase : Tuple = []
# Generate more children proportionally to the fitness score.
_lowerCamelCase : str = int(parent_a[1] * 100 ) + 1
_lowerCamelCase : Dict = 10 if child_n >= 10 else child_n
for _ in range(lowercase__ ):
_lowerCamelCase : str = population_score[random.randint(0 , lowercase__ )][0]
_lowerCamelCase, _lowerCamelCase : Dict = crossover(parent_a[0] , lowercase__ )
# Append new string to the population list.
pop.append(mutate(lowercase__ , lowercase__ ) )
pop.append(mutate(lowercase__ , lowercase__ ) )
return pop
def _snake_case ( lowercase__ , lowercase__ , lowercase__ = True ):
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
_lowerCamelCase : str = f'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(lowercase__ )
# Verify that the target contains no genes besides the ones inside genes variable.
_lowerCamelCase : Tuple = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_lowerCamelCase : Tuple = f'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(lowercase__ )
# Generate random starting population.
_lowerCamelCase : Tuple = []
for _ in range(lowercase__ ):
population.append(''.join([random.choice(lowercase__ ) for i in range(len(lowercase__ ) )] ) )
# Just some logs to know what the algorithms is doing.
_lowerCamelCase, _lowerCamelCase : Optional[Any] = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowercase__ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_lowerCamelCase : Union[str, Any] = [evaluate(lowercase__ , lowercase__ ) for item in population]
# Check if there is a matching evolution.
_lowerCamelCase : List[str] = sorted(lowercase__ , key=lambda lowercase__ : x[1] , reverse=lowercase__ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
f'''\nGeneration: {generation}'''
f'''\nTotal Population:{total_population}'''
f'''\nBest score: {population_score[0][1]}'''
f'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_lowerCamelCase : Tuple = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowercase__ )
# Normalize population score to be between 0 and 1.
_lowerCamelCase : str = [
(item, score / len(lowercase__ )) for item, score in population_score
]
# This is selection
for i in range(lowercase__ ):
population.extend(select(population_score[int(lowercase__ )] , lowercase__ , lowercase__ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowercase__ ) > N_POPULATION:
break
if __name__ == "__main__":
lowercase__ = (
"""This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"""
)
lowercase__ = list(
""" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"""
"""nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"""
)
lowercase__ , lowercase__ , lowercase__ = basic(target_str, genes_list)
print(
F"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"
) | 12 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def A_ ( self , lowercase , lowercase , lowercase ):
_lowerCamelCase : Optional[int] = hf_hub_download(
repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 )
_lowerCamelCase : List[str] = [
example_video_filepath,
'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4',
]
return video_classifier, examples
def A_ ( self , lowercase , lowercase ):
for example in examples:
_lowerCamelCase : Tuple = video_classifier(lowercase )
self.assertEqual(
lowercase , [
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
] , )
@require_torch
def A_ ( self ):
_lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification'
_lowerCamelCase : Tuple = VideoMAEFeatureExtractor(
size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} )
_lowerCamelCase : Dict = pipeline(
'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 )
_lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , )
_lowerCamelCase : str = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
] , )
@require_tf
def A_ ( self ):
pass | 12 | 1 |
"""simple docstring"""
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowercase__ = logging.get_logger(__name__)
# General docstring
lowercase__ = """RegNetConfig"""
# Base docstring
lowercase__ = """facebook/regnet-y-040"""
lowercase__ = [1, 1088, 7, 7]
# Image classification docstring
lowercase__ = """facebook/regnet-y-040"""
lowercase__ = """tabby, tabby cat"""
lowercase__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase = 3 , lowercase = 1 , lowercase = 1 , lowercase = "relu" , **lowercase , ):
super().__init__(**lowercase )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
_lowerCamelCase : Optional[int] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
_lowerCamelCase : List[str] = tf.keras.layers.ConvaD(
filters=lowercase , kernel_size=lowercase , strides=lowercase , padding='VALID' , groups=lowercase , use_bias=lowercase , name='convolution' , )
_lowerCamelCase : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' )
_lowerCamelCase : Optional[Any] = ACTaFN[activation] if activation is not None else tf.identity
def A_ ( self , lowercase ):
_lowerCamelCase : Any = self.convolution(self.padding(lowercase ) )
_lowerCamelCase : List[str] = self.normalization(lowercase )
_lowerCamelCase : Tuple = self.activation(lowercase )
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , **lowercase ):
super().__init__(**lowercase )
_lowerCamelCase : int = config.num_channels
_lowerCamelCase : int = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , )
def A_ ( self , lowercase ):
_lowerCamelCase : Optional[Any] = shape_list(lowercase )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
_lowerCamelCase : Optional[int] = tf.transpose(lowercase , perm=(0, 2, 3, 1) )
_lowerCamelCase : Dict = self.embedder(lowercase )
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase = 2 , **lowercase ):
super().__init__(**lowercase )
_lowerCamelCase : List[str] = tf.keras.layers.ConvaD(
filters=lowercase , kernel_size=1 , strides=lowercase , use_bias=lowercase , name='convolution' )
_lowerCamelCase : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' )
def A_ ( self , lowercase , lowercase = False ):
return self.normalization(self.convolution(lowercase ) , training=lowercase )
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase , **lowercase ):
super().__init__(**lowercase )
_lowerCamelCase : str = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' )
_lowerCamelCase : Union[str, Any] = [
tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='relu' , name='attention.0' ),
tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='sigmoid' , name='attention.2' ),
]
def A_ ( self , lowercase ):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
_lowerCamelCase : Tuple = self.pooler(lowercase )
for layer_module in self.attention:
_lowerCamelCase : List[str] = layer_module(lowercase )
_lowerCamelCase : Tuple = hidden_state * pooled
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ):
super().__init__(**lowercase )
_lowerCamelCase : Dict = in_channels != out_channels or stride != 1
_lowerCamelCase : Dict = max(1 , out_channels // config.groups_width )
_lowerCamelCase : Any = (
TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
_lowerCamelCase : str = [
TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ),
TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.2' ),
]
_lowerCamelCase : Union[str, Any] = ACTaFN[config.hidden_act]
def A_ ( self , lowercase ):
_lowerCamelCase : Optional[int] = hidden_state
for layer_module in self.layers:
_lowerCamelCase : Optional[int] = layer_module(lowercase )
_lowerCamelCase : str = self.shortcut(lowercase )
hidden_state += residual
_lowerCamelCase : Tuple = self.activation(lowercase )
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ):
super().__init__(**lowercase )
_lowerCamelCase : Tuple = in_channels != out_channels or stride != 1
_lowerCamelCase : List[Any] = max(1 , out_channels // config.groups_width )
_lowerCamelCase : List[Any] = (
TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
_lowerCamelCase : List[str] = [
TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ),
TFRegNetSELayer(lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ),
TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.3' ),
]
_lowerCamelCase : List[str] = ACTaFN[config.hidden_act]
def A_ ( self , lowercase ):
_lowerCamelCase : Optional[Any] = hidden_state
for layer_module in self.layers:
_lowerCamelCase : Optional[Any] = layer_module(lowercase )
_lowerCamelCase : Any = self.shortcut(lowercase )
hidden_state += residual
_lowerCamelCase : Tuple = self.activation(lowercase )
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , **lowercase ):
super().__init__(**lowercase )
_lowerCamelCase : Dict = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer
_lowerCamelCase : List[Any] = [
# downsampling is done in the first layer with stride of 2
layer(lowercase , lowercase , lowercase , stride=lowercase , name='layers.0' ),
*[layer(lowercase , lowercase , lowercase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def A_ ( self , lowercase ):
for layer_module in self.layers:
_lowerCamelCase : Dict = layer_module(lowercase )
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , **lowercase ):
super().__init__(**lowercase )
_lowerCamelCase : List[str] = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) )
_lowerCamelCase : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(lowercase , lowercase , lowercase , depth=lowercase , name=F'''stages.{i+1}''' ) )
def A_ ( self , lowercase , lowercase = False , lowercase = True ):
_lowerCamelCase : int = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_lowerCamelCase : List[Any] = hidden_states + (hidden_state,)
_lowerCamelCase : Any = stage_module(lowercase )
if output_hidden_states:
_lowerCamelCase : Dict = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase )
@keras_serializable
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
lowerCamelCase__ = RegNetConfig
def __init__( self , lowercase , **lowercase ):
super().__init__(**lowercase )
_lowerCamelCase : Dict = config
_lowerCamelCase : Optional[Any] = TFRegNetEmbeddings(lowercase , name='embedder' )
_lowerCamelCase : int = TFRegNetEncoder(lowercase , name='encoder' )
_lowerCamelCase : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' )
@unpack_inputs
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = False , ):
_lowerCamelCase : Union[str, Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict
_lowerCamelCase : Dict = self.embedder(lowercase , training=lowercase )
_lowerCamelCase : List[Any] = self.encoder(
lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase )
_lowerCamelCase : Optional[Any] = encoder_outputs[0]
_lowerCamelCase : str = self.pooler(lowercase )
# Change to NCHW output format have uniformity in the modules
_lowerCamelCase : Any = tf.transpose(lowercase , perm=(0, 3, 1, 2) )
_lowerCamelCase : List[str] = tf.transpose(lowercase , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
_lowerCamelCase : int = tuple([tf.transpose(lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = RegNetConfig
lowerCamelCase__ = """regnet"""
lowerCamelCase__ = """pixel_values"""
@property
def A_ ( self ):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
lowercase__ = R"""
Parameters:
This model is a Tensorflow
[tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
lowercase__ = R"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""", lowercase, )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def __init__( self , lowercase , *lowercase , **lowercase ):
super().__init__(lowercase , *lowercase , **lowercase )
_lowerCamelCase : Any = TFRegNetMainLayer(lowercase , name='regnet' )
@unpack_inputs
@add_start_docstrings_to_model_forward(lowercase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=False , ):
_lowerCamelCase : str = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict
_lowerCamelCase : List[Any] = self.regnet(
pixel_values=lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""", lowercase, )
class lowerCAmelCase__ ( lowercase, lowercase ):
'''simple docstring'''
def __init__( self , lowercase , *lowercase , **lowercase ):
super().__init__(lowercase , *lowercase , **lowercase )
_lowerCamelCase : List[Any] = config.num_labels
_lowerCamelCase : int = TFRegNetMainLayer(lowercase , name='regnet' )
# classification head
_lowerCamelCase : List[Any] = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(lowercase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def A_ ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase=False , ):
_lowerCamelCase : int = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict
_lowerCamelCase : Tuple = self.regnet(
lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase )
_lowerCamelCase : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1]
_lowerCamelCase : Any = self.classifier[0](lowercase )
_lowerCamelCase : Dict = self.classifier[1](lowercase )
_lowerCamelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowercase , logits=lowercase )
if not return_dict:
_lowerCamelCase : Optional[int] = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) | 12 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowercase__ = {
"""configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegaForCausalLM""",
"""MegaForMaskedLM""",
"""MegaForMultipleChoice""",
"""MegaForQuestionAnswering""",
"""MegaForSequenceClassification""",
"""MegaForTokenClassification""",
"""MegaModel""",
"""MegaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 | 1 |
"""simple docstring"""
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = DistilBertTokenizer
lowerCamelCase__ = DistilBertTokenizerFast
lowerCamelCase__ = True
@slow
def A_ ( self ):
_lowerCamelCase : Dict = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' )
_lowerCamelCase : str = tokenizer.encode('sequence builders' , add_special_tokens=lowercase )
_lowerCamelCase : str = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase )
_lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase )
_lowerCamelCase : int = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
] | 12 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ):
if attention_mask is None:
_lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = OPTConfig
lowerCamelCase__ = {}
lowerCamelCase__ = """gelu"""
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ):
_lowerCamelCase : Tuple = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Tuple = seq_length
_lowerCamelCase : str = is_training
_lowerCamelCase : Optional[int] = use_labels
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Dict = hidden_size
_lowerCamelCase : str = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Dict = hidden_act
_lowerCamelCase : Any = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : List[Any] = eos_token_id
_lowerCamelCase : Tuple = pad_token_id
_lowerCamelCase : List[str] = bos_token_id
_lowerCamelCase : Optional[int] = embed_dim
_lowerCamelCase : List[str] = word_embed_proj_dim
_lowerCamelCase : Any = False
def A_ ( self ):
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 )
_lowerCamelCase : Tuple = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , )
_lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase )
return config, inputs_dict
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase )
_lowerCamelCase : Optional[Any] = inputs_dict['input_ids']
_lowerCamelCase : str = input_ids[:1, :]
_lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :]
_lowerCamelCase : Optional[Any] = 1
# first forward pass
_lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase )
_lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
_lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0]
_lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx]
_lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
@require_tf
class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else ()
lowerCamelCase__ = (
{"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = 10
def A_ ( self ):
_lowerCamelCase : int = TFOPTModelTester(self )
_lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase )
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase , lowercase ):
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
_lowerCamelCase : Optional[int] = model_class(config=lowercase )
_lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase )
_lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
_lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase )
# check that weights remain the same after resizing
_lowerCamelCase : int = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Optional[Any] = False
self.assertTrue(lowercase )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase )
_lowerCamelCase : Dict = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Union[str, Any] = False
self.assertTrue(lowercase )
def _snake_case ( lowercase__ ):
return tf.constant(lowercase__ , dtype=tf.intaa )
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = 99
def A_ ( self ):
_lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2
_lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
_lowerCamelCase : int = input_ids.shape[0]
_lowerCamelCase : List[Any] = OPTConfig(
vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def A_ ( self ):
_lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' )
_lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
_lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id )
with tf.GradientTape():
_lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state
_lowerCamelCase : Optional[Any] = (1, 11, 512)
self.assertEqual(output.shape , lowercase )
_lowerCamelCase : List[str] = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) )
_lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
super().setUp()
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
def A_ ( self ):
_lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model )
_lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model )
_lowerCamelCase : List[str] = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase )
_lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
_lowerCamelCase : Any = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
_lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def A_ ( self ):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def A_ ( self ):
_lowerCamelCase : str = 'facebook/opt-125m'
_lowerCamelCase : Dict = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : int = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase )
def A_ ( self ):
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
_lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase )
_lowerCamelCase : Any = 'left'
# use different length sentences to test batching
_lowerCamelCase : Optional[int] = [
'Hello, my dog is a little',
'Today, I',
]
_lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase )
_lowerCamelCase : int = inputs['input_ids']
_lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] )
_lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase )
_lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
_lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings )
_lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
_lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase , lowercase )
self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] )
def A_ ( self ):
_lowerCamelCase : Tuple = 'facebook/opt-350m'
_lowerCamelCase : List[Any] = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase ) | 12 | 1 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = FlaxControlNetModel.from_pretrained(
'lllyasviel/sd-controlnet-canny' , from_pt=lowercase , dtype=jnp.bfloataa )
_lowerCamelCase, _lowerCamelCase : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , controlnet=lowercase , from_pt=lowercase , dtype=jnp.bfloataa )
_lowerCamelCase : Any = controlnet_params
_lowerCamelCase : List[Any] = 'bird'
_lowerCamelCase : Union[str, Any] = jax.device_count()
_lowerCamelCase : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples )
_lowerCamelCase : Any = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' )
_lowerCamelCase : Optional[Any] = pipe.prepare_image_inputs([canny_image] * num_samples )
_lowerCamelCase : Dict = jax.random.PRNGKey(0 )
_lowerCamelCase : str = jax.random.split(lowercase , jax.device_count() )
_lowerCamelCase : str = replicate(lowercase )
_lowerCamelCase : List[Any] = shard(lowercase )
_lowerCamelCase : str = shard(lowercase )
_lowerCamelCase : int = pipe(
prompt_ids=lowercase , image=lowercase , params=lowercase , prng_seed=lowercase , num_inference_steps=50 , jit=lowercase , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
_lowerCamelCase : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
_lowerCamelCase : Optional[int] = images[0, 253:256, 253:256, -1]
_lowerCamelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) )
_lowerCamelCase : Dict = jnp.array(
[0.16_79_69, 0.11_66_99, 0.08_15_43, 0.15_42_97, 0.13_28_12, 0.10_88_87, 0.16_99_22, 0.16_99_22, 0.20_50_78] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : int = FlaxControlNetModel.from_pretrained(
'lllyasviel/sd-controlnet-openpose' , from_pt=lowercase , dtype=jnp.bfloataa )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , controlnet=lowercase , from_pt=lowercase , dtype=jnp.bfloataa )
_lowerCamelCase : Optional[Any] = controlnet_params
_lowerCamelCase : List[str] = 'Chef in the kitchen'
_lowerCamelCase : List[Any] = jax.device_count()
_lowerCamelCase : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples )
_lowerCamelCase : Tuple = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' )
_lowerCamelCase : Any = pipe.prepare_image_inputs([pose_image] * num_samples )
_lowerCamelCase : Any = jax.random.PRNGKey(0 )
_lowerCamelCase : Any = jax.random.split(lowercase , jax.device_count() )
_lowerCamelCase : Optional[int] = replicate(lowercase )
_lowerCamelCase : str = shard(lowercase )
_lowerCamelCase : Tuple = shard(lowercase )
_lowerCamelCase : Any = pipe(
prompt_ids=lowercase , image=lowercase , params=lowercase , prng_seed=lowercase , num_inference_steps=50 , jit=lowercase , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
_lowerCamelCase : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
_lowerCamelCase : str = images[0, 253:256, 253:256, -1]
_lowerCamelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) )
_lowerCamelCase : Optional[Any] = jnp.array(
[[0.27_14_84, 0.26_17_19, 0.27_53_91, 0.27_73_44, 0.27_92_97, 0.29_10_16, 0.29_49_22, 0.30_27_34, 0.30_27_34]] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 | 12 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """philschmid/bart-large-cnn-samsum"""
lowerCamelCase__ = (
"""This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """
"""and returns a summary of the text."""
)
lowerCamelCase__ = """summarizer"""
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSeqaSeqLM
lowerCamelCase__ = ["""text"""]
lowerCamelCase__ = ["""text"""]
def A_ ( self , lowercase ):
return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase )
def A_ ( self , lowercase ):
return self.model.generate(**lowercase )[0]
def A_ ( self , lowercase ):
return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) | 12 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def __init__( self , *lowercase , **lowercase ):
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , lowercase , )
super().__init__(*lowercase , **lowercase ) | 12 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) )
_lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )]
index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ )
_lowerCamelCase : float = 0
_lowerCamelCase : list[float] = [0] * len(lowercase__ )
for i in index:
if weight[i] <= capacity:
_lowerCamelCase : int = 1
max_value += value[i]
capacity -= weight[i]
else:
_lowerCamelCase : Any = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
import os
import string
import sys
lowercase__ = 1 << 8
lowercase__ = {
"""tab""": ord("""\t"""),
"""newline""": ord("""\r"""),
"""esc""": 27,
"""up""": 65 + ARROW_KEY_FLAG,
"""down""": 66 + ARROW_KEY_FLAG,
"""right""": 67 + ARROW_KEY_FLAG,
"""left""": 68 + ARROW_KEY_FLAG,
"""mod_int""": 91,
"""undefined""": sys.maxsize,
"""interrupt""": 3,
"""insert""": 50,
"""delete""": 51,
"""pg_up""": 53,
"""pg_down""": 54,
}
lowercase__ = KEYMAP["""up"""]
lowercase__ = KEYMAP["""left"""]
if sys.platform == "win32":
lowercase__ = []
lowercase__ = {
B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
}
for i in range(10):
lowercase__ = ord(str(i))
def _snake_case ( ):
if os.name == "nt":
import msvcrt
_lowerCamelCase : Any = 'mbcs'
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(lowercase__ ) == 0:
# Read the keystroke
_lowerCamelCase : str = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
_lowerCamelCase : List[Any] = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
_lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) )
WIN_CH_BUFFER.append(lowercase__ )
if ord(lowercase__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
_lowerCamelCase : List[Any] = chr(KEYMAP['esc'] )
except KeyError:
_lowerCamelCase : int = cha[1]
else:
_lowerCamelCase : Optional[int] = ch.decode(lowercase__ )
else:
_lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
_lowerCamelCase : List[str] = sys.stdin.fileno()
_lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ )
try:
tty.setraw(lowercase__ )
_lowerCamelCase : Optional[Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ )
return ch
def _snake_case ( ):
_lowerCamelCase : int = get_raw_chars()
if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(lowercase__ ) == KEYMAP["esc"]:
_lowerCamelCase : Union[str, Any] = get_raw_chars()
if ord(lowercase__ ) == KEYMAP["mod_int"]:
_lowerCamelCase : List[Any] = get_raw_chars()
if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(lowercase__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"] | 12 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
lowercase__ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("""""", """|""", """|"""),
datarow=DataRow("""""", """|""", """|"""),
padding=1,
with_header_hide=None,
)
lowercase__ = []
lowercase__ = []
lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}}
lowercase__ = [
{
"""type""": """header""",
"""text""": {
"""type""": """plain_text""",
"""text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results",
"""emoji""": True,
},
}
]
lowercase__ = 0
for log in Path().glob("""*.log"""):
lowercase__ = 0
with open(log, """r""") as f:
for line in f:
lowercase__ = json.loads(line)
if line.get("""nodeid""", """""") != "":
lowercase__ = line["""nodeid"""]
if line.get("""duration""", None) is not None:
lowercase__ = F"{line['duration']:.4f}"
if line.get("""outcome""", """""") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("""_""")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
lowercase__ = []
log.unlink()
lowercase__ = """"""
lowercase__ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
lowercase__ = []
lowercase__ = {}
for test in failed_tests:
lowercase__ = test[0].split("""::""")
lowercase__ = data[0].split("""/""")[-1]
if data[0] not in filesafailed:
lowercase__ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
lowercase__ = [test[0] for test in failed_table]
lowercase__ = list(set(files))
# Count number of instances in failed_tests
lowercase__ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
lowercase__ = tabulate(
table,
headers=["""Test Location""", """Num Failed"""],
tablefmt=hf_table_format,
stralign="""right""",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
lowercase__ = """Too many failed tests, please see the full report in the Action results."""
lowercase__ = len(err) + 10
lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}"
print(F"### {message}")
else:
lowercase__ = """No failed tests! 🤗"""
print(F"## {message}")
payload.append(no_error_payload)
if os.environ.get("""TEST_TYPE""", """""") != "":
from slack_sdk import WebClient
lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""])
if message != "No failed tests! 🤗":
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": message,
},
}
payload.append(md_report)
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": """*For more details:*""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {
"""type""": """plain_text""",
"""text""": """Check Action results""",
"""emoji""": True,
},
"""url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
payload.append(action_button)
lowercase__ = {
"""type""": """context""",
"""elements""": [
{
"""type""": """plain_text""",
"""text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}",
}
],
}
payload.append(date_report)
lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload)
lowercase__ = response.data["""ts"""]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
lowercase__ = """"""
for i, row in enumerate(test_failures):
if row[0] != test_class:
lowercase__ = row[0]
else:
lowercase__ = """"""
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```",
},
}
client.chat_postMessage(
channel="""#accelerate-ci-daily""",
thread_ts=ts,
blocks=[payload],
) | 12 | 1 |
"""simple docstring"""
import argparse
import datetime
def _snake_case ( lowercase__ ):
_lowerCamelCase : Dict = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
_lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase__ ) < 11:
raise ValueError('Must be 10 characters long' )
# Get month
_lowerCamelCase : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12' )
_lowerCamelCase : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get day
_lowerCamelCase : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31' )
# Get second separator
_lowerCamelCase : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get year
_lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?' )
# Get datetime obj for validation
_lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) )
# Start math
if m <= 2:
_lowerCamelCase : str = y - 1
_lowerCamelCase : Tuple = m + 12
# maths var
_lowerCamelCase : int = int(str(lowercase__ )[:2] )
_lowerCamelCase : int = int(str(lowercase__ )[2:] )
_lowerCamelCase : int = int(2.6 * m - 5.3_9 )
_lowerCamelCase : int = int(c / 4 )
_lowerCamelCase : int = int(k / 4 )
_lowerCamelCase : int = int(d + k )
_lowerCamelCase : int = int(t + u + v + x )
_lowerCamelCase : int = int(z - (2 * c) )
_lowerCamelCase : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.' )
# Response
_lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
lowercase__ = parser.parse_args()
zeller(args.date_input) | 12 |
"""simple docstring"""
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """AutoTokenizer"""
lowerCamelCase__ = ["""tokenizer"""]
lowerCamelCase__ = {
"""semantic_prompt""": 1,
"""coarse_prompt""": 2,
"""fine_prompt""": 2,
}
def __init__( self , lowercase , lowercase=None ):
super().__init__(lowercase )
_lowerCamelCase : Optional[int] = speaker_embeddings
@classmethod
def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ):
if speaker_embeddings_dict_path is not None:
_lowerCamelCase : Optional[Any] = get_file_from_repo(
lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if speaker_embeddings_path is None:
logger.warning(
F'''`{os.path.join(lowercase , lowercase )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
_lowerCamelCase : List[Any] = None
else:
with open(lowercase ) as speaker_embeddings_json:
_lowerCamelCase : Union[str, Any] = json.load(lowercase )
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase )
return cls(tokenizer=lowercase , speaker_embeddings=lowercase )
def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ):
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase )
_lowerCamelCase : int = {}
_lowerCamelCase : List[Any] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
_lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase )
_lowerCamelCase : Any = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , )
_lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' )
_lowerCamelCase : Optional[Any] = tmp_dict
with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp:
json.dump(lowercase , lowercase )
super().save_pretrained(lowercase , lowercase , **lowercase )
def A_ ( self , lowercase = None , **lowercase ):
_lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset]
_lowerCamelCase : Any = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
_lowerCamelCase : Union[str, Any] = get_file_from_repo(
self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if path is None:
raise ValueError(
F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
_lowerCamelCase : List[str] = np.load(lowercase )
return voice_preset_dict
def A_ ( self , lowercase = None ):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ):
if voice_preset is not None and not isinstance(lowercase , lowercase ):
if (
isinstance(lowercase , lowercase )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
_lowerCamelCase : Any = self._load_voice_preset(lowercase )
else:
if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ):
_lowerCamelCase : Optional[Any] = voice_preset + '.npz'
_lowerCamelCase : Union[str, Any] = np.load(lowercase )
if voice_preset is not None:
self._validate_voice_preset_dict(lowercase , **lowercase )
_lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase )
_lowerCamelCase : Any = self.tokenizer(
lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , )
if voice_preset is not None:
_lowerCamelCase : Optional[int] = voice_preset
return encoded_text | 12 | 1 |
"""simple docstring"""
def _snake_case ( lowercase__ = 10 , lowercase__ = 22 ):
_lowerCamelCase : Dict = range(1 , lowercase__ )
_lowerCamelCase : List[str] = range(1 , lowercase__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(F"{solution(10, 22) = }") | 12 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
lowercase__ = False
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : Tuple = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
_lowerCamelCase : Dict = torch.manual_seed(0 )
_lowerCamelCase : Dict = pipe(
image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images
_lowerCamelCase : str = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
_lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 12 | 1 |
"""simple docstring"""
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def _snake_case ( ):
_lowerCamelCase : Optional[Any] = {
'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'],
'path': ['test_1.py', 'test_2.py', 'unit_test.py'],
'content': ['a ' * 20, 'a ' * 30, 'b ' * 7],
}
_lowerCamelCase : Tuple = Dataset.from_dict(lowercase__ )
return dataset
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : int = get_dataset()
_lowerCamelCase : List[Any] = make_duplicate_clusters(lowercase , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def A_ ( self ):
_lowerCamelCase : List[Any] = get_dataset()
_lowerCamelCase, _lowerCamelCase : str = deduplicate_dataset(lowercase )
self.assertEqual(len(lowercase ) , 2 )
print(lowercase )
self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 )
self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , lowercase ) | 12 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
lowercase__ = {
"""E""": 12.70,
"""T""": 9.06,
"""A""": 8.17,
"""O""": 7.51,
"""I""": 6.97,
"""N""": 6.75,
"""S""": 6.33,
"""H""": 6.09,
"""R""": 5.99,
"""D""": 4.25,
"""L""": 4.03,
"""C""": 2.78,
"""U""": 2.76,
"""M""": 2.41,
"""W""": 2.36,
"""F""": 2.23,
"""G""": 2.02,
"""Y""": 1.97,
"""P""": 1.93,
"""B""": 1.29,
"""V""": 0.98,
"""K""": 0.77,
"""J""": 0.15,
"""X""": 0.15,
"""Q""": 0.10,
"""Z""": 0.07,
}
lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ"""
lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def _snake_case ( lowercase__ ):
return x[0]
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = get_letter_count(lowercase__ )
_lowerCamelCase : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(lowercase__ )
_lowerCamelCase : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ )
_lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] )
_lowerCamelCase : Any = list(freq_to_letter_str.items() )
freq_pairs.sort(key=lowercase__ , reverse=lowercase__ )
_lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = get_frequency_order(lowercase__ )
_lowerCamelCase : Union[str, Any] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
lowercase__ = {
"""E""": 12.70,
"""T""": 9.06,
"""A""": 8.17,
"""O""": 7.51,
"""I""": 6.97,
"""N""": 6.75,
"""S""": 6.33,
"""H""": 6.09,
"""R""": 5.99,
"""D""": 4.25,
"""L""": 4.03,
"""C""": 2.78,
"""U""": 2.76,
"""M""": 2.41,
"""W""": 2.36,
"""F""": 2.23,
"""G""": 2.02,
"""Y""": 1.97,
"""P""": 1.93,
"""B""": 1.29,
"""V""": 0.98,
"""K""": 0.77,
"""J""": 0.15,
"""X""": 0.15,
"""Q""": 0.10,
"""Z""": 0.07,
}
lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ"""
lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def _snake_case ( lowercase__ ):
return x[0]
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = get_letter_count(lowercase__ )
_lowerCamelCase : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(lowercase__ )
_lowerCamelCase : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ )
_lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] )
_lowerCamelCase : Any = list(freq_to_letter_str.items() )
freq_pairs.sort(key=lowercase__ , reverse=lowercase__ )
_lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = get_frequency_order(lowercase__ )
_lowerCamelCase : Union[str, Any] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase ):
_lowerCamelCase : Dict = question_encoder
_lowerCamelCase : List[Any] = generator
_lowerCamelCase : Optional[Any] = self.question_encoder
def A_ ( self , lowercase ):
if os.path.isfile(lowercase ):
raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(lowercase , exist_ok=lowercase )
_lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' )
_lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' )
self.question_encoder.save_pretrained(lowercase )
self.generator.save_pretrained(lowercase )
@classmethod
def A_ ( cls , lowercase , **lowercase ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
_lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase )
if config is None:
_lowerCamelCase : int = RagConfig.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(
lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' )
_lowerCamelCase : Dict = AutoTokenizer.from_pretrained(
lowercase , config=config.generator , subfolder='generator_tokenizer' )
return cls(question_encoder=lowercase , generator=lowercase )
def __call__( self , *lowercase , **lowercase ):
return self.current_tokenizer(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.batch_decode(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.decode(*lowercase , **lowercase )
def A_ ( self ):
_lowerCamelCase : Any = self.question_encoder
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.generator
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ):
warnings.warn(
'`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '
'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '
'context manager to prepare your targets. See the documentation of your specific tokenizer for more '
'details' , lowercase , )
if max_length is None:
_lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length
_lowerCamelCase : Optional[Any] = self(
lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
_lowerCamelCase : int = self.current_tokenizer.model_max_length
_lowerCamelCase : str = self(
text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , )
_lowerCamelCase : int = labels['input_ids']
return model_inputs | 12 | 1 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""",
# See all BART models at https://huggingface.co/models?filter=bart
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """bart"""
lowerCamelCase__ = ["""past_key_values"""]
lowerCamelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self , lowercase=50265 , lowercase=1024 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=0.0 , lowercase=0.0 , lowercase="gelu" , lowercase=1024 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=0.0 , lowercase=False , lowercase=True , lowercase=3 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=True , lowercase=2 , lowercase=2 , **lowercase , ):
_lowerCamelCase : Dict = vocab_size
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : Dict = d_model
_lowerCamelCase : Optional[Any] = encoder_ffn_dim
_lowerCamelCase : str = encoder_layers
_lowerCamelCase : Any = encoder_attention_heads
_lowerCamelCase : str = decoder_ffn_dim
_lowerCamelCase : Optional[int] = decoder_layers
_lowerCamelCase : int = decoder_attention_heads
_lowerCamelCase : int = dropout
_lowerCamelCase : Optional[int] = attention_dropout
_lowerCamelCase : str = activation_dropout
_lowerCamelCase : int = activation_function
_lowerCamelCase : Tuple = init_std
_lowerCamelCase : Any = encoder_layerdrop
_lowerCamelCase : Union[str, Any] = decoder_layerdrop
_lowerCamelCase : List[Any] = classifier_dropout
_lowerCamelCase : Union[str, Any] = use_cache
_lowerCamelCase : int = encoder_layers
_lowerCamelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , lowercase ):
_lowerCamelCase : int = self.bos_token_id
warnings.warn(
F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
'The config can simply be saved and uploaded again to be fixed.' )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
@property
def A_ ( self ):
if self.task in ["default", "seq2seq-lm"]:
_lowerCamelCase : Union[str, Any] = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
_lowerCamelCase : str = {0: 'batch'}
_lowerCamelCase : List[str] = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
_lowerCamelCase : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'}
_lowerCamelCase : Any = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowercase , direction='inputs' )
elif self.task == "causal-lm":
# TODO: figure this case out.
_lowerCamelCase : List[Any] = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
_lowerCamelCase, _lowerCamelCase : Tuple = self.num_layers
for i in range(lowercase ):
_lowerCamelCase : Optional[Any] = {0: 'batch', 2: 'past_sequence + sequence'}
_lowerCamelCase : int = {0: 'batch', 2: 'past_sequence + sequence'}
else:
_lowerCamelCase : Tuple = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}),
('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}),
] )
return common_inputs
@property
def A_ ( self ):
if self.task in ["default", "seq2seq-lm"]:
_lowerCamelCase : Any = super().outputs
else:
_lowerCamelCase : Tuple = super(lowercase , self ).outputs
if self.use_past:
_lowerCamelCase, _lowerCamelCase : Tuple = self.num_layers
for i in range(lowercase ):
_lowerCamelCase : Tuple = {0: 'batch', 2: 'past_sequence + sequence'}
_lowerCamelCase : Union[str, Any] = {0: 'batch', 2: 'past_sequence + sequence'}
return common_outputs
def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ):
_lowerCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase , lowercase , lowercase , lowercase , lowercase )
# Generate decoder inputs
_lowerCamelCase : Dict = seq_length if not self.use_past else 1
_lowerCamelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase , lowercase , lowercase , lowercase , lowercase )
_lowerCamelCase : Optional[int] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
_lowerCamelCase : List[str] = dict(**lowercase , **lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
_lowerCamelCase, _lowerCamelCase : Optional[int] = common_inputs['input_ids'].shape
_lowerCamelCase : Dict = common_inputs['decoder_input_ids'].shape[1]
_lowerCamelCase, _lowerCamelCase : List[str] = self.num_attention_heads
_lowerCamelCase : Optional[Any] = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCamelCase : Union[str, Any] = decoder_seq_length + 3
_lowerCamelCase : Optional[Any] = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_lowerCamelCase : Dict = torch.cat(
[common_inputs['decoder_attention_mask'], torch.ones(lowercase , lowercase )] , dim=1 )
_lowerCamelCase : Union[str, Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_lowerCamelCase, _lowerCamelCase : str = self.num_layers
_lowerCamelCase : Tuple = min(lowercase , lowercase )
_lowerCamelCase : int = max(lowercase , lowercase ) - min_num_layers
_lowerCamelCase : Any = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder'
for _ in range(lowercase ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
) )
# TODO: test this.
_lowerCamelCase : Optional[Any] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape
for _ in range(lowercase , lowercase ):
common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) )
return common_inputs
def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ):
_lowerCamelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase , lowercase , lowercase , lowercase , lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
_lowerCamelCase, _lowerCamelCase : Any = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
_lowerCamelCase : List[str] = seqlen + 2
_lowerCamelCase, _lowerCamelCase : List[Any] = self.num_layers
_lowerCamelCase, _lowerCamelCase : List[str] = self.num_attention_heads
_lowerCamelCase : str = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCamelCase : str = common_inputs['attention_mask'].dtype
_lowerCamelCase : List[str] = torch.cat(
[common_inputs['attention_mask'], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 )
_lowerCamelCase : Union[str, Any] = [
(torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase )
]
return common_inputs
def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_lowerCamelCase : List[Any] = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_lowerCamelCase : List[str] = tokenizer.num_special_tokens_to_add(lowercase )
_lowerCamelCase : int = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase )
# Generate dummy inputs according to compute batch and sequence
_lowerCamelCase : str = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size
_lowerCamelCase : List[str] = dict(tokenizer(lowercase , return_tensors=lowercase ) )
return common_inputs
def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ):
if self.task in ["default", "seq2seq-lm"]:
_lowerCamelCase : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
elif self.task == "causal-lm":
_lowerCamelCase : Tuple = self._generate_dummy_inputs_for_causal_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
else:
_lowerCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
return common_inputs
def A_ ( self , lowercase , lowercase , lowercase , lowercase ):
if self.task in ["default", "seq2seq-lm"]:
_lowerCamelCase : int = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase )
else:
_lowerCamelCase : List[Any] = super(lowercase , self )._flatten_past_key_values_(
lowercase , lowercase , lowercase , lowercase ) | 12 |
"""simple docstring"""
def _snake_case ( lowercase__ = 10 ):
if not isinstance(lowercase__ , lowercase__ ) or n < 0:
raise ValueError('Invalid input' )
_lowerCamelCase : str = 10**n
_lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F"{solution(10) = }") | 12 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
lowercase__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = ["""MLukeTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 |
"""simple docstring"""
import argparse
import datetime
def _snake_case ( lowercase__ ):
_lowerCamelCase : Dict = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
_lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase__ ) < 11:
raise ValueError('Must be 10 characters long' )
# Get month
_lowerCamelCase : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12' )
_lowerCamelCase : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get day
_lowerCamelCase : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31' )
# Get second separator
_lowerCamelCase : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get year
_lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?' )
# Get datetime obj for validation
_lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) )
# Start math
if m <= 2:
_lowerCamelCase : str = y - 1
_lowerCamelCase : Tuple = m + 12
# maths var
_lowerCamelCase : int = int(str(lowercase__ )[:2] )
_lowerCamelCase : int = int(str(lowercase__ )[2:] )
_lowerCamelCase : int = int(2.6 * m - 5.3_9 )
_lowerCamelCase : int = int(c / 4 )
_lowerCamelCase : int = int(k / 4 )
_lowerCamelCase : int = int(d + k )
_lowerCamelCase : int = int(t + u + v + x )
_lowerCamelCase : int = int(z - (2 * c) )
_lowerCamelCase : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.' )
# Response
_lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
lowercase__ = parser.parse_args()
zeller(args.date_input) | 12 | 1 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ = logging.get_logger(__name__)
lowercase__ = """https://openaipublic.azureedge.net/jukebox/models/"""
lowercase__ = {
"""jukebox-1b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""1b_lyrics/prior_level_2.pth.tar""",
],
"""jukebox-5b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""5b_lyrics/prior_level_2.pth.tar""",
],
}
def _snake_case ( lowercase__ ):
if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10:
_lowerCamelCase : List[str] = key.replace('.model.1.bias' , '.conv1d_1.bias' )
elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10:
_lowerCamelCase : List[Any] = key.replace('.model.1.weight' , '.conv1d_1.weight' )
elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10:
_lowerCamelCase : Any = key.replace('.model.3.bias' , '.conv1d_2.bias' )
elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10:
_lowerCamelCase : List[str] = key.replace('.model.3.weight' , '.conv1d_2.weight' )
if "conditioner_blocks.0." in key:
_lowerCamelCase : List[str] = key.replace('conditioner_blocks.0' , 'conditioner_blocks' )
if "prime_prior" in key:
_lowerCamelCase : Optional[int] = key.replace('prime_prior' , 'encoder' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
_lowerCamelCase : Optional[int] = key.replace('.emb.' , '.' )
if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('.k' , '.codebook' )
if "y_emb." in key:
return key.replace('y_emb.' , 'metadata_embedding.' )
if "x_emb.emb." in key:
_lowerCamelCase : List[str] = key.replace('0.x_emb.emb' , 'embed_tokens' )
if "prime_state_ln" in key:
return key.replace('prime_state_ln' , 'encoder.final_layer_norm' )
if ".ln" in key:
return key.replace('.ln' , '.layer_norm' )
if "_ln" in key:
return key.replace('_ln' , '_layer_norm' )
if "prime_state_proj" in key:
return key.replace('prime_state_proj' , 'encoder.proj_in' )
if "prime_x_out" in key:
return key.replace('prime_x_out' , 'encoder.lm_head' )
if "prior.x_out" in key:
return key.replace('x_out' , 'fc_proj_out' )
if "x_emb" in key:
return key.replace('x_emb' , 'embed_tokens' )
return key
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Optional[Any] = {}
import re
_lowerCamelCase : Any = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_lowerCamelCase : Union[str, Any] = re.compile(
r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCamelCase : Dict = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_lowerCamelCase : Dict = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_lowerCamelCase : Tuple = re.compile(
r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCamelCase : str = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_lowerCamelCase : Optional[Any] = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' )
_lowerCamelCase : Tuple = re.compile(
r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCamelCase : List[Any] = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(lowercase__ ):
_lowerCamelCase : Optional[int] = re_encoder_block_conv_in.match(lowercase__ )
_lowerCamelCase : List[str] = regex_match.groups()
_lowerCamelCase : List[str] = int(groups[2] ) * 2 + int(groups[3] )
_lowerCamelCase : List[Any] = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'''
_lowerCamelCase : Optional[int] = re_encoder_block_conv_in.sub(lowercase__ , lowercase__ )
elif re_encoder_block_resnet.fullmatch(lowercase__ ):
_lowerCamelCase : Optional[int] = re_encoder_block_resnet.match(lowercase__ )
_lowerCamelCase : Union[str, Any] = regex_match.groups()
_lowerCamelCase : List[str] = int(groups[2] ) * 2 + int(groups[3] )
_lowerCamelCase : Dict = {'1': 1, '3': 2}[groups[-2]]
_lowerCamelCase : str = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'''
_lowerCamelCase : int = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
_lowerCamelCase : Union[str, Any] = prefix + resnet_block
_lowerCamelCase : List[str] = re_encoder_block_resnet.sub(lowercase__ , lowercase__ )
elif re_encoder_block_proj_out.fullmatch(lowercase__ ):
_lowerCamelCase : Tuple = re_encoder_block_proj_out.match(lowercase__ )
_lowerCamelCase : int = regex_match.groups()
_lowerCamelCase : int = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'''
_lowerCamelCase : int = re_encoder_block_proj_out.sub(lowercase__ , lowercase__ )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(lowercase__ ):
_lowerCamelCase : Tuple = re_decoder_block_conv_out.match(lowercase__ )
_lowerCamelCase : str = regex_match.groups()
_lowerCamelCase : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2
_lowerCamelCase : Dict = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'''
_lowerCamelCase : Optional[Any] = re_decoder_block_conv_out.sub(lowercase__ , lowercase__ )
elif re_decoder_block_resnet.fullmatch(lowercase__ ):
_lowerCamelCase : int = re_decoder_block_resnet.match(lowercase__ )
_lowerCamelCase : Optional[Any] = regex_match.groups()
_lowerCamelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) - 2
_lowerCamelCase : Union[str, Any] = {'1': 1, '3': 2}[groups[-2]]
_lowerCamelCase : int = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'''
_lowerCamelCase : Tuple = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
_lowerCamelCase : Tuple = prefix + resnet_block
_lowerCamelCase : int = re_decoder_block_resnet.sub(lowercase__ , lowercase__ )
elif re_decoder_block_proj_in.fullmatch(lowercase__ ):
_lowerCamelCase : Optional[Any] = re_decoder_block_proj_in.match(lowercase__ )
_lowerCamelCase : Optional[Any] = regex_match.groups()
_lowerCamelCase : str = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'''
_lowerCamelCase : Optional[Any] = re_decoder_block_proj_in.sub(lowercase__ , lowercase__ )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(lowercase__ ):
_lowerCamelCase : List[str] = re_prior_cond_conv_out.match(lowercase__ )
_lowerCamelCase : Union[str, Any] = regex_match.groups()
_lowerCamelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2
_lowerCamelCase : List[str] = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'''
_lowerCamelCase : int = re_prior_cond_conv_out.sub(lowercase__ , lowercase__ )
elif re_prior_cond_resnet.fullmatch(lowercase__ ):
_lowerCamelCase : Union[str, Any] = re_prior_cond_resnet.match(lowercase__ )
_lowerCamelCase : Optional[int] = regex_match.groups()
_lowerCamelCase : List[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2
_lowerCamelCase : List[Any] = {'1': 1, '3': 2}[groups[-2]]
_lowerCamelCase : Any = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.'''
_lowerCamelCase : List[Any] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
_lowerCamelCase : List[str] = prefix + resnet_block
_lowerCamelCase : Union[str, Any] = re_prior_cond_resnet.sub(lowercase__ , lowercase__ )
elif re_prior_cond_proj_in.fullmatch(lowercase__ ):
_lowerCamelCase : Optional[int] = re_prior_cond_proj_in.match(lowercase__ )
_lowerCamelCase : List[Any] = regex_match.groups()
_lowerCamelCase : Dict = f'''conditioner_blocks.upsampler.proj_in.{groups[-1]}'''
_lowerCamelCase : int = re_prior_cond_proj_in.sub(lowercase__ , lowercase__ )
# keep original key
else:
_lowerCamelCase : int = original_key
_lowerCamelCase : Tuple = replace_key(lowercase__ )
if f'''{key_prefix}.{key}''' not in model_state_dict or key is None:
print(f'''failed converting {original_key} to {key}, does not match''' )
# handle missmatched shape
elif value.shape != model_state_dict[f'''{key_prefix}.{key}'''].shape:
_lowerCamelCase : Optional[Any] = model_state_dict[f'''{key_prefix}.{key}''']
print(f'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' )
_lowerCamelCase : int = original_key
_lowerCamelCase : List[Any] = original_key
_lowerCamelCase : int = value
return new_dict
@torch.no_grad()
def _snake_case ( lowercase__=None , lowercase__=None ):
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ):
_lowerCamelCase : List[str] = requests.get(f'''{PREFIX}{file}''' , allow_redirects=lowercase__ )
os.makedirs(f'''{pytorch_dump_folder_path}/''' , exist_ok=lowercase__ )
open(f'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , 'wb' ).write(r.content )
_lowerCamelCase : int = MODEL_MAPPING[model_name.split('/' )[-1]]
_lowerCamelCase : List[str] = JukeboxConfig.from_pretrained(lowercase__ )
_lowerCamelCase : int = JukeboxModel(lowercase__ )
_lowerCamelCase : Any = []
_lowerCamelCase : Dict = {}
for i, dict_name in enumerate(lowercase__ ):
_lowerCamelCase : int = torch.load(f'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['model']
_lowerCamelCase : List[Any] = {}
for k in old_dic.keys():
if k.endswith('.b' ):
_lowerCamelCase : Dict = old_dic[k]
elif k.endswith('.w' ):
_lowerCamelCase : Optional[int] = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
_lowerCamelCase : str = old_dic[k]
else:
_lowerCamelCase : Tuple = old_dic[k]
_lowerCamelCase : Union[str, Any] = 'vqvae' if i == 0 else f'''priors.{3 - i}'''
_lowerCamelCase : List[str] = fix_jukebox_keys(lowercase__ , model.state_dict() , lowercase__ , lowercase__ )
weight_dict.append(lowercase__ )
_lowerCamelCase : Union[str, Any] = weight_dict.pop(0 )
model.vqvae.load_state_dict(lowercase__ )
for i in range(len(lowercase__ ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
with open(f'''{pytorch_dump_folder_path}/mapping.json''' , 'w' ) as txtfile:
json.dump(lowercase__ , lowercase__ )
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowercase__ )
return weight_dict
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""jukebox-5b-lyrics""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""jukebox-5b-lyrics-converted""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
lowercase__ = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path) | 12 |
"""simple docstring"""
import re
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' )
if match := re.search(lowercase__ , lowercase__ ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("""+918827897895""")) | 12 | 1 |
"""simple docstring"""
import numpy
# List of input, output pairs
lowercase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowercase__ = (((515, 22, 13), 555), ((61, 35, 49), 150))
lowercase__ = [2, 4, 1, 5]
lowercase__ = len(train_data)
lowercase__ = 0.009
def _snake_case ( lowercase__ , lowercase__="train" ):
return calculate_hypothesis_value(lowercase__ , lowercase__ ) - output(
lowercase__ , lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : int = 0
for i in range(len(lowercase__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _snake_case ( lowercase__ , lowercase__ ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _snake_case ( lowercase__ , lowercase__ ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _snake_case ( lowercase__ , lowercase__=m ):
_lowerCamelCase : Optional[int] = 0
for i in range(lowercase__ ):
if index == -1:
summation_value += _error(lowercase__ )
else:
summation_value += _error(lowercase__ ) * train_data[i][0][index]
return summation_value
def _snake_case ( lowercase__ ):
_lowerCamelCase : Dict = summation_of_cost_derivative(lowercase__ , lowercase__ ) / m
return cost_derivative_value
def _snake_case ( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
_lowerCamelCase : Tuple = 0.0_0_0_0_0_2
_lowerCamelCase : Optional[int] = 0
_lowerCamelCase : Optional[int] = 0
while True:
j += 1
_lowerCamelCase : List[Any] = [0, 0, 0, 0]
for i in range(0 , len(lowercase__ ) ):
_lowerCamelCase : List[Any] = get_cost_derivative(i - 1 )
_lowerCamelCase : List[str] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
lowercase__ , lowercase__ , atol=lowercase__ , rtol=lowercase__ , ):
break
_lowerCamelCase : List[Any] = temp_parameter_vector
print(('Number of iterations:', j) )
def _snake_case ( ):
for i in range(len(lowercase__ ) ):
print(('Actual output value:', output(lowercase__ , 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(lowercase__ , 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print("""\nTesting gradient descent for a linear hypothesis function.\n""")
test_gradient_descent() | 12 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
lowercase__ = Path(__file__).resolve().parents[3] / """src"""
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""}
lowercase__ = """zero2"""
lowercase__ = """zero3"""
lowercase__ = [ZEROa, ZEROa]
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
_lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) )
return f'''{func.__name__}_{param_based_name}'''
# Cartesian-product of zero stages with models to test
lowercase__ = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@require_torch_multi_gpu
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
@require_torch_multi_gpu
@parameterized.expand(lowercase , name_func=lowercase )
def A_ ( self , lowercase , lowercase ):
self.run_and_check(
stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , )
def A_ ( self , lowercase ):
# XXX: run_asr is premature and doesn't save any results
# so all we check for now is that the process didn't fail
pass
def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ):
_lowerCamelCase : List[str] = models[model]
_lowerCamelCase : Optional[int] = self.run_trainer(
stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , )
self.do_checks(lowercase )
return output_dir
def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ):
_lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase )
_lowerCamelCase : Any = F'''
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(lowercase )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
'''.split()
if fpaa:
args.extend(['--fp16'] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
_lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split()
_lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py''']
_lowerCamelCase : Dict = self.get_launcher(lowercase )
_lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(lowercase , env=self.get_env() )
return output_dir
def A_ ( self , lowercase=False ):
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
_lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1
return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split() | 12 | 1 |
"""simple docstring"""
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
lowercase__ = re.compile(R"""\b(a|an|the)\b""", re.UNICODE)
lowercase__ = None
def _snake_case ( ):
_lowerCamelCase : int = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' )
parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' )
parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' )
parser.add_argument(
'--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' )
parser.add_argument(
'--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' )
parser.add_argument(
'--na-prob-thresh' , '-t' , type=lowercase__ , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , )
parser.add_argument(
'--out-image-dir' , '-p' , metavar='out_images' , default=lowercase__ , help='Save precision-recall curves to directory.' )
parser.add_argument('--verbose' , '-v' , action='store_true' )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[Any] = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
_lowerCamelCase : int = bool(qa['answers']['text'] )
return qid_to_has_ans
def _snake_case ( lowercase__ ):
def remove_articles(lowercase__ ):
return ARTICLES_REGEX.sub(' ' , lowercase__ )
def white_space_fix(lowercase__ ):
return " ".join(text.split() )
def remove_punc(lowercase__ ):
_lowerCamelCase : Dict = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(lowercase__ ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowercase__ ) ) ) )
def _snake_case ( lowercase__ ):
if not s:
return []
return normalize_answer(lowercase__ ).split()
def _snake_case ( lowercase__ , lowercase__ ):
return int(normalize_answer(lowercase__ ) == normalize_answer(lowercase__ ) )
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : Union[str, Any] = get_tokens(lowercase__ )
_lowerCamelCase : str = get_tokens(lowercase__ )
_lowerCamelCase : Any = collections.Counter(lowercase__ ) & collections.Counter(lowercase__ )
_lowerCamelCase : Union[str, Any] = sum(common.values() )
if len(lowercase__ ) == 0 or len(lowercase__ ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
_lowerCamelCase : List[Any] = 1.0 * num_same / len(lowercase__ )
_lowerCamelCase : List[str] = 1.0 * num_same / len(lowercase__ )
_lowerCamelCase : str = (2 * precision * recall) / (precision + recall)
return fa
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : Union[str, Any] = {}
_lowerCamelCase : int = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
_lowerCamelCase : List[Any] = qa['id']
_lowerCamelCase : int = [t for t in qa['answers']['text'] if normalize_answer(lowercase__ )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
_lowerCamelCase : List[Any] = ['']
if qid not in preds:
print(f'''Missing prediction for {qid}''' )
continue
_lowerCamelCase : Tuple = preds[qid]
# Take max over all gold answers
_lowerCamelCase : str = max(compute_exact(lowercase__ , lowercase__ ) for a in gold_answers )
_lowerCamelCase : Optional[int] = max(compute_fa(lowercase__ , lowercase__ ) for a in gold_answers )
return exact_scores, fa_scores
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = {}
for qid, s in scores.items():
_lowerCamelCase : List[Any] = na_probs[qid] > na_prob_thresh
if pred_na:
_lowerCamelCase : List[Any] = float(not qid_to_has_ans[qid] )
else:
_lowerCamelCase : List[Any] = s
return new_scores
def _snake_case ( lowercase__ , lowercase__ , lowercase__=None ):
if not qid_list:
_lowerCamelCase : Optional[Any] = len(lowercase__ )
return collections.OrderedDict(
[
('exact', 1_0_0.0 * sum(exact_scores.values() ) / total),
('f1', 1_0_0.0 * sum(fa_scores.values() ) / total),
('total', total),
] )
else:
_lowerCamelCase : List[Any] = len(lowercase__ )
return collections.OrderedDict(
[
('exact', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total),
('f1', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total),
('total', total),
] )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
for k in new_eval:
_lowerCamelCase : Optional[int] = new_eval[k]
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
plt.step(lowercase__ , lowercase__ , color='b' , alpha=0.2 , where='post' )
plt.fill_between(lowercase__ , lowercase__ , step='post' , alpha=0.2 , color='b' )
plt.xlabel('Recall' )
plt.ylabel('Precision' )
plt.xlim([0.0, 1.0_5] )
plt.ylim([0.0, 1.0_5] )
plt.title(lowercase__ )
plt.savefig(lowercase__ )
plt.clf()
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ):
_lowerCamelCase : List[str] = sorted(lowercase__ , key=lambda lowercase__ : na_probs[k] )
_lowerCamelCase : List[str] = 0.0
_lowerCamelCase : Optional[Any] = 1.0
_lowerCamelCase : List[str] = 0.0
_lowerCamelCase : List[Any] = [1.0]
_lowerCamelCase : List[Any] = [0.0]
_lowerCamelCase : Dict = 0.0
for i, qid in enumerate(lowercase__ ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
_lowerCamelCase : int = true_pos / float(i + 1 )
_lowerCamelCase : List[Any] = true_pos / float(lowercase__ )
if i == len(lowercase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(lowercase__ )
recalls.append(lowercase__ )
if out_image:
plot_pr_curve(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
return {"ap": 1_0_0.0 * avg_prec}
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
if out_image_dir and not os.path.exists(lowercase__ ):
os.makedirs(lowercase__ )
_lowerCamelCase : Optional[int] = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
_lowerCamelCase : int = make_precision_recall_eval(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , )
_lowerCamelCase : int = make_precision_recall_eval(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , )
_lowerCamelCase : Optional[int] = {k: float(lowercase__ ) for k, v in qid_to_has_ans.items()}
_lowerCamelCase : int = make_precision_recall_eval(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , )
merge_eval(lowercase__ , lowercase__ , 'pr_exact' )
merge_eval(lowercase__ , lowercase__ , 'pr_f1' )
merge_eval(lowercase__ , lowercase__ , 'pr_oracle' )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
if not qid_list:
return
_lowerCamelCase : Tuple = [na_probs[k] for k in qid_list]
_lowerCamelCase : Optional[Any] = np.ones_like(lowercase__ ) / float(len(lowercase__ ) )
plt.hist(lowercase__ , weights=lowercase__ , bins=20 , range=(0.0, 1.0) )
plt.xlabel('Model probability of no-answer' )
plt.ylabel('Proportion of dataset' )
plt.title(f'''Histogram of no-answer probability: {name}''' )
plt.savefig(os.path.join(lowercase__ , f'''na_prob_hist_{name}.png''' ) )
plt.clf()
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Optional[int] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
_lowerCamelCase : int = num_no_ans
_lowerCamelCase : List[str] = cur_score
_lowerCamelCase : Dict = 0.0
_lowerCamelCase : Optional[Any] = sorted(lowercase__ , key=lambda lowercase__ : na_probs[k] )
for i, qid in enumerate(lowercase__ ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
_lowerCamelCase : int = scores[qid]
else:
if preds[qid]:
_lowerCamelCase : int = -1
else:
_lowerCamelCase : List[Any] = 0
cur_score += diff
if cur_score > best_score:
_lowerCamelCase : Optional[int] = cur_score
_lowerCamelCase : List[str] = na_probs[qid]
return 1_0_0.0 * best_score / len(lowercase__ ), best_thresh
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase, _lowerCamelCase : int = find_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = find_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
_lowerCamelCase : List[Any] = best_exact
_lowerCamelCase : List[str] = exact_thresh
_lowerCamelCase : Dict = best_fa
_lowerCamelCase : Any = fa_thresh
def _snake_case ( ):
with open(OPTS.data_file ) as f:
_lowerCamelCase : Union[str, Any] = json.load(lowercase__ )
_lowerCamelCase : str = dataset_json['data']
with open(OPTS.pred_file ) as f:
_lowerCamelCase : List[Any] = json.load(lowercase__ )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
_lowerCamelCase : Optional[Any] = json.load(lowercase__ )
else:
_lowerCamelCase : Optional[Any] = {k: 0.0 for k in preds}
_lowerCamelCase : Dict = make_qid_to_has_ans(lowercase__ ) # maps qid to True/False
_lowerCamelCase : Optional[Any] = [k for k, v in qid_to_has_ans.items() if v]
_lowerCamelCase : Dict = [k for k, v in qid_to_has_ans.items() if not v]
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_raw_scores(lowercase__ , lowercase__ )
_lowerCamelCase : Tuple = apply_no_ans_threshold(lowercase__ , lowercase__ , lowercase__ , OPTS.na_prob_thresh )
_lowerCamelCase : Dict = apply_no_ans_threshold(lowercase__ , lowercase__ , lowercase__ , OPTS.na_prob_thresh )
_lowerCamelCase : Tuple = make_eval_dict(lowercase__ , lowercase__ )
if has_ans_qids:
_lowerCamelCase : str = make_eval_dict(lowercase__ , lowercase__ , qid_list=lowercase__ )
merge_eval(lowercase__ , lowercase__ , 'HasAns' )
if no_ans_qids:
_lowerCamelCase : str = make_eval_dict(lowercase__ , lowercase__ , qid_list=lowercase__ )
merge_eval(lowercase__ , lowercase__ , 'NoAns' )
if OPTS.na_prob_file:
find_all_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , OPTS.out_image_dir )
histogram_na_prob(lowercase__ , lowercase__ , OPTS.out_image_dir , 'hasAns' )
histogram_na_prob(lowercase__ , lowercase__ , OPTS.out_image_dir , 'noAns' )
if OPTS.out_file:
with open(OPTS.out_file , 'w' ) as f:
json.dump(lowercase__ , lowercase__ )
else:
print(json.dumps(lowercase__ , indent=2 ) )
if __name__ == "__main__":
lowercase__ = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use("""Agg""")
import matplotlib.pyplot as plt
main() | 12 |
"""simple docstring"""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""pixel_values"""]
def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ):
super().__init__(**lowercase )
_lowerCamelCase : Optional[Any] = do_rescale
_lowerCamelCase : Union[str, Any] = rescale_factor
_lowerCamelCase : Any = do_pad
_lowerCamelCase : Optional[int] = pad_size
def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ):
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A_ ( self , lowercase , lowercase , lowercase = None ):
_lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase )
_lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height
_lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width
return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase )
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ):
_lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale
_lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad
_lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size
_lowerCamelCase : Dict = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
_lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images]
if do_rescale:
_lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_pad:
_lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images]
_lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
_lowerCamelCase : Union[str, Any] = {'pixel_values': images}
return BatchFeature(data=lowercase , tensor_type=lowercase ) | 12 | 1 |
"""simple docstring"""
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
lowercase__ = """true"""
def _snake_case ( lowercase__ , lowercase__=82 , lowercase__=16 ):
set_seed(42 )
_lowerCamelCase : Dict = RegressionModel()
_lowerCamelCase : Dict = deepcopy(lowercase__ )
_lowerCamelCase : Tuple = RegressionDataset(length=lowercase__ )
_lowerCamelCase : Optional[Any] = DataLoader(lowercase__ , batch_size=lowercase__ )
model.to(accelerator.device )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = accelerator.prepare(lowercase__ , lowercase__ )
return model, ddp_model, dataloader
def _snake_case ( lowercase__ , lowercase__=False ):
_lowerCamelCase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' )
_lowerCamelCase : List[Any] = load_dataset('glue' , 'mrpc' , split='validation' )
def tokenize_function(lowercase__ ):
_lowerCamelCase : Tuple = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase__ , max_length=lowercase__ )
return outputs
with accelerator.main_process_first():
_lowerCamelCase : List[str] = dataset.map(
lowercase__ , batched=lowercase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
_lowerCamelCase : Any = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(lowercase__ ):
if use_longest:
return tokenizer.pad(lowercase__ , padding='longest' , return_tensors='pt' )
return tokenizer.pad(lowercase__ , padding='max_length' , max_length=128 , return_tensors='pt' )
return DataLoader(lowercase__ , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=16 )
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : Dict = Accelerator(dispatch_batches=lowercase__ , split_batches=lowercase__ )
_lowerCamelCase : List[Any] = get_dataloader(lowercase__ , not dispatch_batches )
_lowerCamelCase : str = AutoModelForSequenceClassification.from_pretrained(
'hf-internal-testing/mrpc-bert-base-cased' , return_dict=lowercase__ )
_lowerCamelCase, _lowerCamelCase : int = accelerator.prepare(lowercase__ , lowercase__ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Dict = []
for batch in dataloader:
_lowerCamelCase, _lowerCamelCase : str = batch.values()
with torch.no_grad():
_lowerCamelCase : List[Any] = model(lowercase__ )
_lowerCamelCase, _lowerCamelCase : Dict = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
_lowerCamelCase, _lowerCamelCase : Any = [], []
for logit, targ in logits_and_targets:
logits.append(lowercase__ )
targs.append(lowercase__ )
_lowerCamelCase, _lowerCamelCase : str = torch.cat(lowercase__ ), torch.cat(lowercase__ )
return logits, targs
def _snake_case ( lowercase__ , lowercase__=82 , lowercase__=False , lowercase__=False , lowercase__=16 ):
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = get_basic_setup(lowercase__ , lowercase__ , lowercase__ )
_lowerCamelCase, _lowerCamelCase : Any = generate_predictions(lowercase__ , lowercase__ , lowercase__ )
assert (
len(lowercase__ ) == num_samples
), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}'''
def _snake_case ( lowercase__ = False , lowercase__ = False ):
_lowerCamelCase : Tuple = evaluate.load('glue' , 'mrpc' )
_lowerCamelCase, _lowerCamelCase : Any = get_mrpc_setup(lowercase__ , lowercase__ )
# First do baseline
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = setup['no']
model.to(lowercase__ )
model.eval()
for batch in dataloader:
batch.to(lowercase__ )
with torch.inference_mode():
_lowerCamelCase : List[str] = model(**lowercase__ )
_lowerCamelCase : str = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=lowercase__ , references=batch['labels'] )
_lowerCamelCase : List[Any] = metric.compute()
# Then do distributed
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = setup['ddp']
model.eval()
for batch in dataloader:
with torch.inference_mode():
_lowerCamelCase : Any = model(**lowercase__ )
_lowerCamelCase : Optional[Any] = outputs.logits.argmax(dim=-1 )
_lowerCamelCase : Any = batch['labels']
_lowerCamelCase, _lowerCamelCase : Optional[int] = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=lowercase__ , references=lowercase__ )
_lowerCamelCase : str = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'''
def _snake_case ( ):
_lowerCamelCase : List[Any] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('**Testing gather_for_metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' )
test_mrpc(lowercase__ , lowercase__ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test torch metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
_lowerCamelCase : List[str] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ )
if accelerator.is_local_main_process:
print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' )
test_torch_metrics(lowercase__ , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test last batch is not dropped when perfectly divisible**' )
_lowerCamelCase : Optional[int] = Accelerator()
test_torch_metrics(lowercase__ , 512 )
accelerator.state._reset_state()
def _snake_case ( lowercase__ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 12 |
"""simple docstring"""
import os
import string
import sys
lowercase__ = 1 << 8
lowercase__ = {
"""tab""": ord("""\t"""),
"""newline""": ord("""\r"""),
"""esc""": 27,
"""up""": 65 + ARROW_KEY_FLAG,
"""down""": 66 + ARROW_KEY_FLAG,
"""right""": 67 + ARROW_KEY_FLAG,
"""left""": 68 + ARROW_KEY_FLAG,
"""mod_int""": 91,
"""undefined""": sys.maxsize,
"""interrupt""": 3,
"""insert""": 50,
"""delete""": 51,
"""pg_up""": 53,
"""pg_down""": 54,
}
lowercase__ = KEYMAP["""up"""]
lowercase__ = KEYMAP["""left"""]
if sys.platform == "win32":
lowercase__ = []
lowercase__ = {
B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
}
for i in range(10):
lowercase__ = ord(str(i))
def _snake_case ( ):
if os.name == "nt":
import msvcrt
_lowerCamelCase : Any = 'mbcs'
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(lowercase__ ) == 0:
# Read the keystroke
_lowerCamelCase : str = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
_lowerCamelCase : List[Any] = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
_lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) )
WIN_CH_BUFFER.append(lowercase__ )
if ord(lowercase__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
_lowerCamelCase : List[Any] = chr(KEYMAP['esc'] )
except KeyError:
_lowerCamelCase : int = cha[1]
else:
_lowerCamelCase : Optional[int] = ch.decode(lowercase__ )
else:
_lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
_lowerCamelCase : List[str] = sys.stdin.fileno()
_lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ )
try:
tty.setraw(lowercase__ )
_lowerCamelCase : Optional[Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ )
return ch
def _snake_case ( ):
_lowerCamelCase : int = get_raw_chars()
if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(lowercase__ ) == KEYMAP["esc"]:
_lowerCamelCase : Union[str, Any] = get_raw_chars()
if ord(lowercase__ ) == KEYMAP["mod_int"]:
_lowerCamelCase : List[Any] = get_raw_chars()
if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(lowercase__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"] | 12 | 1 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
import timm
import torch
from huggingface_hub import hf_hub_download
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ = logging.get_logger()
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True ):
print(f'''Converting {name}...''' )
with torch.no_grad():
if hidden_sizes == 128:
if name[-1] == "S":
_lowerCamelCase : Union[str, Any] = timm.create_model('levit_128s' , pretrained=lowercase__ )
else:
_lowerCamelCase : Optional[Any] = timm.create_model('levit_128' , pretrained=lowercase__ )
if hidden_sizes == 192:
_lowerCamelCase : List[Any] = timm.create_model('levit_192' , pretrained=lowercase__ )
if hidden_sizes == 256:
_lowerCamelCase : str = timm.create_model('levit_256' , pretrained=lowercase__ )
if hidden_sizes == 384:
_lowerCamelCase : Tuple = timm.create_model('levit_384' , pretrained=lowercase__ )
from_model.eval()
_lowerCamelCase : Any = LevitForImageClassificationWithTeacher(lowercase__ ).eval()
_lowerCamelCase : Tuple = OrderedDict()
_lowerCamelCase : Dict = from_model.state_dict()
_lowerCamelCase : Optional[Any] = list(from_model.state_dict().keys() )
_lowerCamelCase : Any = list(our_model.state_dict().keys() )
print(len(lowercase__ ) , len(lowercase__ ) )
for i in range(len(lowercase__ ) ):
_lowerCamelCase : Optional[Any] = weights[og_keys[i]]
our_model.load_state_dict(lowercase__ )
_lowerCamelCase : Tuple = torch.randn((2, 3, 224, 224) )
_lowerCamelCase : Union[str, Any] = from_model(lowercase__ )
_lowerCamelCase : Optional[int] = our_model(lowercase__ ).logits
assert torch.allclose(lowercase__ , lowercase__ ), "The model logits don't match the original one."
_lowerCamelCase : Optional[Any] = name
print(lowercase__ )
if push_to_hub:
our_model.save_pretrained(save_directory / checkpoint_name )
_lowerCamelCase : List[Any] = LevitImageProcessor()
image_processor.save_pretrained(save_directory / checkpoint_name )
print(f'''Pushed {checkpoint_name}''' )
def _snake_case ( lowercase__ , lowercase__ = None , lowercase__ = True ):
_lowerCamelCase : List[str] = 'imagenet-1k-id2label.json'
_lowerCamelCase : List[Any] = 1000
_lowerCamelCase : Any = (1, num_labels)
_lowerCamelCase : Any = 'huggingface/label-files'
_lowerCamelCase : List[Any] = num_labels
_lowerCamelCase : Dict = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) )
_lowerCamelCase : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()}
_lowerCamelCase : str = idalabel
_lowerCamelCase : str = {v: k for k, v in idalabel.items()}
_lowerCamelCase : List[Any] = partial(lowercase__ , num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ )
_lowerCamelCase : str = {
'levit-128S': 128,
'levit-128': 128,
'levit-192': 192,
'levit-256': 256,
'levit-384': 384,
}
_lowerCamelCase : Optional[Any] = {
'levit-128S': ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
'levit-128': ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
'levit-192': ImageNetPreTrainedConfig(
hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
'levit-256': ImageNetPreTrainedConfig(
hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
'levit-384': ImageNetPreTrainedConfig(
hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ),
}
if model_name:
convert_weight_and_push(
names_to_hidden_sizes[model_name] , lowercase__ , names_to_config[model_name] , lowercase__ , lowercase__ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(names_to_hidden_sizes[model_name] , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
return config, expected_shape
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""levit-dump-folder/""",
type=Path,
required=False,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
parser.add_argument(
"""--no-push_to_hub""",
dest="""push_to_hub""",
action="""store_false""",
help="""Do not push model and image processor to the hub""",
)
lowercase__ = parser.parse_args()
lowercase__ = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub) | 12 |
"""simple docstring"""
from typing import Any
def _snake_case ( lowercase__ ):
if not input_list:
return []
_lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list]
_lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] )
class lowerCAmelCase__ ( metaclass=lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""sentencepiece"""]
def __init__( self , *lowercase , **lowercase ):
requires_backends(self , ['sentencepiece'] ) | 12 |
"""simple docstring"""
def _snake_case ( lowercase__ ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
_lowerCamelCase : List[str] = len(lowercase__ )
_lowerCamelCase : List[str] = max(lowercase__ )
_lowerCamelCase : List[str] = min(lowercase__ )
# create the counting array
_lowerCamelCase : List[Any] = coll_max + 1 - coll_min
_lowerCamelCase : List[Any] = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , lowercase__ ):
_lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1]
# create the output collection
_lowerCamelCase : Dict = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , lowercase__ ) ):
_lowerCamelCase : Any = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def _snake_case ( lowercase__ ):
return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt"
lowercase__ = input("""Enter numbers separated by a comma:\n""").strip()
lowercase__ = [int(item) for item in user_input.split(""",""")]
print(counting_sort(unsorted)) | 12 | 1 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
lowercase__ = logging.get_logger(__name__)
lowercase__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
lowercase__ = {
"""vocab_file""": {
"""distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""",
"""distilbert-base-uncased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"""
),
"""distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""",
"""distilbert-base-cased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"""
),
"""distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""",
"""distilbert-base-multilingual-cased""": (
"""https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""",
"""distilbert-base-uncased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"""
),
"""distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""",
"""distilbert-base-cased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"""
),
"""distilbert-base-german-cased""": (
"""https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"""
),
"""distilbert-base-multilingual-cased""": (
"""https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
},
}
lowercase__ = {
"""distilbert-base-uncased""": 512,
"""distilbert-base-uncased-distilled-squad""": 512,
"""distilbert-base-cased""": 512,
"""distilbert-base-cased-distilled-squad""": 512,
"""distilbert-base-german-cased""": 512,
"""distilbert-base-multilingual-cased""": 512,
}
lowercase__ = {
"""distilbert-base-uncased""": {"""do_lower_case""": True},
"""distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True},
"""distilbert-base-cased""": {"""do_lower_case""": False},
"""distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False},
"""distilbert-base-german-cased""": {"""do_lower_case""": False},
"""distilbert-base-multilingual-cased""": {"""do_lower_case""": False},
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase__ = ["""input_ids""", """attention_mask"""]
lowerCamelCase__ = DistilBertTokenizer
def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ):
super().__init__(
lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , )
_lowerCamelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , lowercase ) != do_lower_case
or normalizer_state.get('strip_accents' , lowercase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , lowercase ) != tokenize_chinese_chars
):
_lowerCamelCase : Optional[int] = getattr(lowercase , normalizer_state.pop('type' ) )
_lowerCamelCase : Optional[Any] = do_lower_case
_lowerCamelCase : Union[str, Any] = strip_accents
_lowerCamelCase : int = tokenize_chinese_chars
_lowerCamelCase : Optional[Any] = normalizer_class(**lowercase )
_lowerCamelCase : List[Any] = do_lower_case
def A_ ( self , lowercase , lowercase=None ):
_lowerCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A_ ( self , lowercase , lowercase = None ):
_lowerCamelCase : List[Any] = [self.sep_token_id]
_lowerCamelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A_ ( self , lowercase , lowercase = None ):
_lowerCamelCase : List[str] = self._tokenizer.model.save(lowercase , name=lowercase )
return tuple(lowercase ) | 12 |
"""simple docstring"""
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"""--original_config_file""",
default=None,
type=str,
help="""The YAML config file corresponding to the original architecture.""",
)
parser.add_argument(
"""--num_in_channels""",
default=None,
type=int,
help="""The number of input channels. If `None` number of input channels will be automatically inferred.""",
)
parser.add_argument(
"""--scheduler_type""",
default="""pndm""",
type=str,
help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""",
)
parser.add_argument(
"""--pipeline_type""",
default=None,
type=str,
help=(
"""The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"""
""". If `None` pipeline will be automatically inferred."""
),
)
parser.add_argument(
"""--image_size""",
default=None,
type=int,
help=(
"""The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"""
""" Base. Use 768 for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--prediction_type""",
default=None,
type=str,
help=(
"""The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"""
""" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--extract_ema""",
action="""store_true""",
help=(
"""Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"""
""" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"""
""" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."""
),
)
parser.add_argument(
"""--upcast_attention""",
action="""store_true""",
help=(
"""Whether the attention computation should always be upcasted. This is necessary when running stable"""
""" diffusion 2.1."""
),
)
parser.add_argument(
"""--from_safetensors""",
action="""store_true""",
help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""",
)
parser.add_argument(
"""--to_safetensors""",
action="""store_true""",
help="""Whether to store pipeline in safetensors format or not.""",
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
parser.add_argument(
"""--stable_unclip""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""",
)
parser.add_argument(
"""--stable_unclip_prior""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""",
)
parser.add_argument(
"""--clip_stats_path""",
type=str,
help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""",
required=False,
)
parser.add_argument(
"""--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint."""
)
parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""")
parser.add_argument(
"""--vae_path""",
type=str,
default=None,
required=False,
help="""Set to a path, hub id to an already converted vae to not convert it again.""",
)
lowercase__ = parser.parse_args()
lowercase__ = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | 12 | 1 |
"""simple docstring"""
import copy
import random
from transformers import CLIPTokenizer
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def __init__( self , *lowercase , **lowercase ):
super().__init__(*lowercase , **lowercase )
_lowerCamelCase : Any = {}
def A_ ( self , lowercase , *lowercase , **lowercase ):
_lowerCamelCase : Optional[int] = super().add_tokens(lowercase , *lowercase , **lowercase )
if num_added_tokens == 0:
raise ValueError(
F'''The tokenizer already contains the token {placeholder_token}. Please pass a different'''
' `placeholder_token` that is not already in the tokenizer.' )
def A_ ( self , lowercase , *lowercase , lowercase=1 , **lowercase ):
_lowerCamelCase : Optional[int] = []
if num_vec_per_token == 1:
self.try_adding_tokens(lowercase , *lowercase , **lowercase )
output.append(lowercase )
else:
_lowerCamelCase : Any = []
for i in range(lowercase ):
_lowerCamelCase : Any = placeholder_token + F'''_{i}'''
self.try_adding_tokens(lowercase , *lowercase , **lowercase )
output.append(lowercase )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
F'''The tokenizer already has placeholder token {token} that can get confused with'''
F''' {placeholder_token}keep placeholder tokens independent''' )
_lowerCamelCase : Dict = output
def A_ ( self , lowercase , lowercase=False , lowercase=1.0 ):
if isinstance(lowercase , lowercase ):
_lowerCamelCase : List[str] = []
for i in range(len(lowercase ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowercase ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
_lowerCamelCase : List[str] = self.token_map[placeholder_token]
_lowerCamelCase : Any = tokens[: 1 + int(len(lowercase ) * prop_tokens_to_load )]
if vector_shuffle:
_lowerCamelCase : List[Any] = copy.copy(lowercase )
random.shuffle(lowercase )
_lowerCamelCase : List[Any] = text.replace(lowercase , ' '.join(lowercase ) )
return text
def __call__( self , lowercase , *lowercase , lowercase=False , lowercase=1.0 , **lowercase ):
return super().__call__(
self.replace_placeholder_tokens_in_text(
lowercase , vector_shuffle=lowercase , prop_tokens_to_load=lowercase ) , *lowercase , **lowercase , )
def A_ ( self , lowercase , *lowercase , lowercase=False , lowercase=1.0 , **lowercase ):
return super().encode(
self.replace_placeholder_tokens_in_text(
lowercase , vector_shuffle=lowercase , prop_tokens_to_load=lowercase ) , *lowercase , **lowercase , ) | 12 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = (UnCLIPScheduler,)
def A_ ( self , **lowercase ):
_lowerCamelCase : Any = {
'num_train_timesteps': 1000,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**lowercase )
return config
def A_ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase )
def A_ ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=lowercase )
def A_ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase )
def A_ ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=lowercase )
def A_ ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=lowercase )
def A_ ( self ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=lowercase , prev_timestep=lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' )
_lowerCamelCase : str = scheduler_class(**lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5
def A_ ( self ):
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' )
_lowerCamelCase : int = scheduler_class(**lowercase )
_lowerCamelCase : List[str] = 0.5
assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5
def A_ ( self ):
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config()
_lowerCamelCase : Tuple = scheduler_class(**lowercase )
_lowerCamelCase : Union[str, Any] = scheduler.timesteps
_lowerCamelCase : Any = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter
_lowerCamelCase : Optional[int] = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : Tuple = model(lowercase , lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : Optional[int] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2
assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3
def A_ ( self ):
_lowerCamelCase : Tuple = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Optional[Any] = scheduler_class(**lowercase )
scheduler.set_timesteps(25 )
_lowerCamelCase : Optional[Any] = scheduler.timesteps
_lowerCamelCase : Optional[int] = self.dummy_model()
_lowerCamelCase : Any = self.dummy_sample_deter
_lowerCamelCase : str = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : List[Any] = model(lowercase , lowercase )
if i + 1 == timesteps.shape[0]:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : List[str] = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : Union[str, Any] = scheduler.step(
lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : List[Any] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2
assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3
def A_ ( self ):
pass
def A_ ( self ):
pass | 12 | 1 |
"""simple docstring"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Dict = set()
# edges = list of graph's edges
_lowerCamelCase : Optional[Any] = get_edges(lowercase__ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
_lowerCamelCase, _lowerCamelCase : str = edges.pop()
chosen_vertices.add(lowercase__ )
chosen_vertices.add(lowercase__ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(lowercase__ )
return chosen_vertices
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}") | 12 |
"""simple docstring"""
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """data2vec-audio"""
def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ):
super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase )
_lowerCamelCase : str = hidden_size
_lowerCamelCase : str = feat_extract_activation
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Optional[Any] = conv_bias
_lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings
_lowerCamelCase : List[Any] = num_conv_pos_embedding_groups
_lowerCamelCase : List[Any] = conv_pos_kernel_size
_lowerCamelCase : Optional[int] = len(self.conv_dim )
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : Any = hidden_dropout
_lowerCamelCase : Union[str, Any] = attention_dropout
_lowerCamelCase : str = activation_dropout
_lowerCamelCase : Any = feat_proj_dropout
_lowerCamelCase : Tuple = final_dropout
_lowerCamelCase : Union[str, Any] = layerdrop
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : Optional[Any] = initializer_range
_lowerCamelCase : Optional[int] = vocab_size
_lowerCamelCase : Tuple = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCamelCase : Optional[Any] = mask_time_prob
_lowerCamelCase : List[Any] = mask_time_length
_lowerCamelCase : List[Any] = mask_time_min_masks
_lowerCamelCase : Tuple = mask_feature_prob
_lowerCamelCase : Optional[Any] = mask_feature_length
_lowerCamelCase : Dict = mask_feature_min_masks
# ctc loss
_lowerCamelCase : Tuple = ctc_loss_reduction
_lowerCamelCase : str = ctc_zero_infinity
# adapter
_lowerCamelCase : Union[str, Any] = add_adapter
_lowerCamelCase : List[Any] = adapter_kernel_size
_lowerCamelCase : Optional[Any] = adapter_stride
_lowerCamelCase : List[Any] = num_adapter_layers
_lowerCamelCase : int = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCamelCase : Optional[int] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCamelCase : List[str] = list(lowercase )
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Any = list(lowercase )
_lowerCamelCase : Optional[Any] = xvector_output_dim
@property
def A_ ( self ):
return math.prod(self.conv_stride ) | 12 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""caidas/swin2sr-classicalsr-x2-64""": (
"""https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json"""
),
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """swin2sr"""
lowerCamelCase__ = {
"""hidden_size""": """embed_dim""",
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self , lowercase=64 , lowercase=1 , lowercase=3 , lowercase=180 , lowercase=[6, 6, 6, 6, 6, 6] , lowercase=[6, 6, 6, 6, 6, 6] , lowercase=8 , lowercase=2.0 , lowercase=True , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase="gelu" , lowercase=False , lowercase=0.02 , lowercase=1E-5 , lowercase=2 , lowercase=1.0 , lowercase="1conv" , lowercase="pixelshuffle" , **lowercase , ):
super().__init__(**lowercase )
_lowerCamelCase : str = image_size
_lowerCamelCase : Optional[int] = patch_size
_lowerCamelCase : Dict = num_channels
_lowerCamelCase : Optional[Any] = embed_dim
_lowerCamelCase : Tuple = depths
_lowerCamelCase : int = len(lowercase )
_lowerCamelCase : Union[str, Any] = num_heads
_lowerCamelCase : Any = window_size
_lowerCamelCase : str = mlp_ratio
_lowerCamelCase : Optional[int] = qkv_bias
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : Optional[int] = attention_probs_dropout_prob
_lowerCamelCase : Tuple = drop_path_rate
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : Union[str, Any] = use_absolute_embeddings
_lowerCamelCase : Dict = layer_norm_eps
_lowerCamelCase : Optional[int] = initializer_range
_lowerCamelCase : Tuple = upscale
_lowerCamelCase : Dict = img_range
_lowerCamelCase : Dict = resi_connection
_lowerCamelCase : Any = upsampler | 12 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
lowercase__ = {
"""Acehnese Arabic""": """ace_Arab""",
"""Acehnese Latin""": """ace_Latn""",
"""Mesopotamian Arabic""": """acm_Arab""",
"""Ta'izzi-Adeni Arabic""": """acq_Arab""",
"""Tunisian Arabic""": """aeb_Arab""",
"""Afrikaans""": """afr_Latn""",
"""South Levantine Arabic""": """ajp_Arab""",
"""Akan""": """aka_Latn""",
"""Amharic""": """amh_Ethi""",
"""North Levantine Arabic""": """apc_Arab""",
"""Modern Standard Arabic""": """arb_Arab""",
"""Modern Standard Arabic Romanized""": """arb_Latn""",
"""Najdi Arabic""": """ars_Arab""",
"""Moroccan Arabic""": """ary_Arab""",
"""Egyptian Arabic""": """arz_Arab""",
"""Assamese""": """asm_Beng""",
"""Asturian""": """ast_Latn""",
"""Awadhi""": """awa_Deva""",
"""Central Aymara""": """ayr_Latn""",
"""South Azerbaijani""": """azb_Arab""",
"""North Azerbaijani""": """azj_Latn""",
"""Bashkir""": """bak_Cyrl""",
"""Bambara""": """bam_Latn""",
"""Balinese""": """ban_Latn""",
"""Belarusian""": """bel_Cyrl""",
"""Bemba""": """bem_Latn""",
"""Bengali""": """ben_Beng""",
"""Bhojpuri""": """bho_Deva""",
"""Banjar Arabic""": """bjn_Arab""",
"""Banjar Latin""": """bjn_Latn""",
"""Standard Tibetan""": """bod_Tibt""",
"""Bosnian""": """bos_Latn""",
"""Buginese""": """bug_Latn""",
"""Bulgarian""": """bul_Cyrl""",
"""Catalan""": """cat_Latn""",
"""Cebuano""": """ceb_Latn""",
"""Czech""": """ces_Latn""",
"""Chokwe""": """cjk_Latn""",
"""Central Kurdish""": """ckb_Arab""",
"""Crimean Tatar""": """crh_Latn""",
"""Welsh""": """cym_Latn""",
"""Danish""": """dan_Latn""",
"""German""": """deu_Latn""",
"""Southwestern Dinka""": """dik_Latn""",
"""Dyula""": """dyu_Latn""",
"""Dzongkha""": """dzo_Tibt""",
"""Greek""": """ell_Grek""",
"""English""": """eng_Latn""",
"""Esperanto""": """epo_Latn""",
"""Estonian""": """est_Latn""",
"""Basque""": """eus_Latn""",
"""Ewe""": """ewe_Latn""",
"""Faroese""": """fao_Latn""",
"""Fijian""": """fij_Latn""",
"""Finnish""": """fin_Latn""",
"""Fon""": """fon_Latn""",
"""French""": """fra_Latn""",
"""Friulian""": """fur_Latn""",
"""Nigerian Fulfulde""": """fuv_Latn""",
"""Scottish Gaelic""": """gla_Latn""",
"""Irish""": """gle_Latn""",
"""Galician""": """glg_Latn""",
"""Guarani""": """grn_Latn""",
"""Gujarati""": """guj_Gujr""",
"""Haitian Creole""": """hat_Latn""",
"""Hausa""": """hau_Latn""",
"""Hebrew""": """heb_Hebr""",
"""Hindi""": """hin_Deva""",
"""Chhattisgarhi""": """hne_Deva""",
"""Croatian""": """hrv_Latn""",
"""Hungarian""": """hun_Latn""",
"""Armenian""": """hye_Armn""",
"""Igbo""": """ibo_Latn""",
"""Ilocano""": """ilo_Latn""",
"""Indonesian""": """ind_Latn""",
"""Icelandic""": """isl_Latn""",
"""Italian""": """ita_Latn""",
"""Javanese""": """jav_Latn""",
"""Japanese""": """jpn_Jpan""",
"""Kabyle""": """kab_Latn""",
"""Jingpho""": """kac_Latn""",
"""Kamba""": """kam_Latn""",
"""Kannada""": """kan_Knda""",
"""Kashmiri Arabic""": """kas_Arab""",
"""Kashmiri Devanagari""": """kas_Deva""",
"""Georgian""": """kat_Geor""",
"""Central Kanuri Arabic""": """knc_Arab""",
"""Central Kanuri Latin""": """knc_Latn""",
"""Kazakh""": """kaz_Cyrl""",
"""Kabiyè""": """kbp_Latn""",
"""Kabuverdianu""": """kea_Latn""",
"""Khmer""": """khm_Khmr""",
"""Kikuyu""": """kik_Latn""",
"""Kinyarwanda""": """kin_Latn""",
"""Kyrgyz""": """kir_Cyrl""",
"""Kimbundu""": """kmb_Latn""",
"""Northern Kurdish""": """kmr_Latn""",
"""Kikongo""": """kon_Latn""",
"""Korean""": """kor_Hang""",
"""Lao""": """lao_Laoo""",
"""Ligurian""": """lij_Latn""",
"""Limburgish""": """lim_Latn""",
"""Lingala""": """lin_Latn""",
"""Lithuanian""": """lit_Latn""",
"""Lombard""": """lmo_Latn""",
"""Latgalian""": """ltg_Latn""",
"""Luxembourgish""": """ltz_Latn""",
"""Luba-Kasai""": """lua_Latn""",
"""Ganda""": """lug_Latn""",
"""Luo""": """luo_Latn""",
"""Mizo""": """lus_Latn""",
"""Standard Latvian""": """lvs_Latn""",
"""Magahi""": """mag_Deva""",
"""Maithili""": """mai_Deva""",
"""Malayalam""": """mal_Mlym""",
"""Marathi""": """mar_Deva""",
"""Minangkabau Arabic """: """min_Arab""",
"""Minangkabau Latin""": """min_Latn""",
"""Macedonian""": """mkd_Cyrl""",
"""Plateau Malagasy""": """plt_Latn""",
"""Maltese""": """mlt_Latn""",
"""Meitei Bengali""": """mni_Beng""",
"""Halh Mongolian""": """khk_Cyrl""",
"""Mossi""": """mos_Latn""",
"""Maori""": """mri_Latn""",
"""Burmese""": """mya_Mymr""",
"""Dutch""": """nld_Latn""",
"""Norwegian Nynorsk""": """nno_Latn""",
"""Norwegian Bokmål""": """nob_Latn""",
"""Nepali""": """npi_Deva""",
"""Northern Sotho""": """nso_Latn""",
"""Nuer""": """nus_Latn""",
"""Nyanja""": """nya_Latn""",
"""Occitan""": """oci_Latn""",
"""West Central Oromo""": """gaz_Latn""",
"""Odia""": """ory_Orya""",
"""Pangasinan""": """pag_Latn""",
"""Eastern Panjabi""": """pan_Guru""",
"""Papiamento""": """pap_Latn""",
"""Western Persian""": """pes_Arab""",
"""Polish""": """pol_Latn""",
"""Portuguese""": """por_Latn""",
"""Dari""": """prs_Arab""",
"""Southern Pashto""": """pbt_Arab""",
"""Ayacucho Quechua""": """quy_Latn""",
"""Romanian""": """ron_Latn""",
"""Rundi""": """run_Latn""",
"""Russian""": """rus_Cyrl""",
"""Sango""": """sag_Latn""",
"""Sanskrit""": """san_Deva""",
"""Santali""": """sat_Olck""",
"""Sicilian""": """scn_Latn""",
"""Shan""": """shn_Mymr""",
"""Sinhala""": """sin_Sinh""",
"""Slovak""": """slk_Latn""",
"""Slovenian""": """slv_Latn""",
"""Samoan""": """smo_Latn""",
"""Shona""": """sna_Latn""",
"""Sindhi""": """snd_Arab""",
"""Somali""": """som_Latn""",
"""Southern Sotho""": """sot_Latn""",
"""Spanish""": """spa_Latn""",
"""Tosk Albanian""": """als_Latn""",
"""Sardinian""": """srd_Latn""",
"""Serbian""": """srp_Cyrl""",
"""Swati""": """ssw_Latn""",
"""Sundanese""": """sun_Latn""",
"""Swedish""": """swe_Latn""",
"""Swahili""": """swh_Latn""",
"""Silesian""": """szl_Latn""",
"""Tamil""": """tam_Taml""",
"""Tatar""": """tat_Cyrl""",
"""Telugu""": """tel_Telu""",
"""Tajik""": """tgk_Cyrl""",
"""Tagalog""": """tgl_Latn""",
"""Thai""": """tha_Thai""",
"""Tigrinya""": """tir_Ethi""",
"""Tamasheq Latin""": """taq_Latn""",
"""Tamasheq Tifinagh""": """taq_Tfng""",
"""Tok Pisin""": """tpi_Latn""",
"""Tswana""": """tsn_Latn""",
"""Tsonga""": """tso_Latn""",
"""Turkmen""": """tuk_Latn""",
"""Tumbuka""": """tum_Latn""",
"""Turkish""": """tur_Latn""",
"""Twi""": """twi_Latn""",
"""Central Atlas Tamazight""": """tzm_Tfng""",
"""Uyghur""": """uig_Arab""",
"""Ukrainian""": """ukr_Cyrl""",
"""Umbundu""": """umb_Latn""",
"""Urdu""": """urd_Arab""",
"""Northern Uzbek""": """uzn_Latn""",
"""Venetian""": """vec_Latn""",
"""Vietnamese""": """vie_Latn""",
"""Waray""": """war_Latn""",
"""Wolof""": """wol_Latn""",
"""Xhosa""": """xho_Latn""",
"""Eastern Yiddish""": """ydd_Hebr""",
"""Yoruba""": """yor_Latn""",
"""Yue Chinese""": """yue_Hant""",
"""Chinese Simplified""": """zho_Hans""",
"""Chinese Traditional""": """zho_Hant""",
"""Standard Malay""": """zsm_Latn""",
"""Zulu""": """zul_Latn""",
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """facebook/nllb-200-distilled-600M"""
lowerCamelCase__ = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
lowerCamelCase__ = """translator"""
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSeqaSeqLM
lowerCamelCase__ = LANGUAGE_CODES
lowerCamelCase__ = ["""text""", """text""", """text"""]
lowerCamelCase__ = ["""text"""]
def A_ ( self , lowercase , lowercase , lowercase ):
if src_lang not in self.lang_to_code:
raise ValueError(F'''{src_lang} is not a supported language.''' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'''{tgt_lang} is not a supported language.''' )
_lowerCamelCase : str = self.lang_to_code[src_lang]
_lowerCamelCase : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase )
def A_ ( self , lowercase ):
return self.model.generate(**lowercase )
def A_ ( self , lowercase ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase ) | 12 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ):
if attention_mask is None:
_lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = OPTConfig
lowerCamelCase__ = {}
lowerCamelCase__ = """gelu"""
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ):
_lowerCamelCase : Tuple = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Tuple = seq_length
_lowerCamelCase : str = is_training
_lowerCamelCase : Optional[int] = use_labels
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Dict = hidden_size
_lowerCamelCase : str = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Dict = hidden_act
_lowerCamelCase : Any = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : List[Any] = eos_token_id
_lowerCamelCase : Tuple = pad_token_id
_lowerCamelCase : List[str] = bos_token_id
_lowerCamelCase : Optional[int] = embed_dim
_lowerCamelCase : List[str] = word_embed_proj_dim
_lowerCamelCase : Any = False
def A_ ( self ):
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 )
_lowerCamelCase : Tuple = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , )
_lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase )
return config, inputs_dict
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase )
_lowerCamelCase : Optional[Any] = inputs_dict['input_ids']
_lowerCamelCase : str = input_ids[:1, :]
_lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :]
_lowerCamelCase : Optional[Any] = 1
# first forward pass
_lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase )
_lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
_lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0]
_lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx]
_lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
@require_tf
class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else ()
lowerCamelCase__ = (
{"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = 10
def A_ ( self ):
_lowerCamelCase : int = TFOPTModelTester(self )
_lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase )
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase , lowercase ):
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
_lowerCamelCase : Optional[int] = model_class(config=lowercase )
_lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase )
_lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
_lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase )
# check that weights remain the same after resizing
_lowerCamelCase : int = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Optional[Any] = False
self.assertTrue(lowercase )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase )
_lowerCamelCase : Dict = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Union[str, Any] = False
self.assertTrue(lowercase )
def _snake_case ( lowercase__ ):
return tf.constant(lowercase__ , dtype=tf.intaa )
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = 99
def A_ ( self ):
_lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2
_lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
_lowerCamelCase : int = input_ids.shape[0]
_lowerCamelCase : List[Any] = OPTConfig(
vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def A_ ( self ):
_lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' )
_lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
_lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id )
with tf.GradientTape():
_lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state
_lowerCamelCase : Optional[Any] = (1, 11, 512)
self.assertEqual(output.shape , lowercase )
_lowerCamelCase : List[str] = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) )
_lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
super().setUp()
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
def A_ ( self ):
_lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model )
_lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model )
_lowerCamelCase : List[str] = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase )
_lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
_lowerCamelCase : Any = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
_lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def A_ ( self ):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def A_ ( self ):
_lowerCamelCase : str = 'facebook/opt-125m'
_lowerCamelCase : Dict = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : int = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase )
def A_ ( self ):
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
_lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase )
_lowerCamelCase : Any = 'left'
# use different length sentences to test batching
_lowerCamelCase : Optional[int] = [
'Hello, my dog is a little',
'Today, I',
]
_lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase )
_lowerCamelCase : int = inputs['input_ids']
_lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] )
_lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase )
_lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
_lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings )
_lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
_lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase , lowercase )
self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] )
def A_ ( self ):
_lowerCamelCase : Tuple = 'facebook/opt-350m'
_lowerCamelCase : List[Any] = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase ) | 12 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def A_ ( self , lowercase , lowercase , lowercase ):
_lowerCamelCase : Optional[int] = hf_hub_download(
repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 )
_lowerCamelCase : List[str] = [
example_video_filepath,
'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4',
]
return video_classifier, examples
def A_ ( self , lowercase , lowercase ):
for example in examples:
_lowerCamelCase : Tuple = video_classifier(lowercase )
self.assertEqual(
lowercase , [
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
] , )
@require_torch
def A_ ( self ):
_lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification'
_lowerCamelCase : Tuple = VideoMAEFeatureExtractor(
size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} )
_lowerCamelCase : Dict = pipeline(
'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 )
_lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , )
_lowerCamelCase : str = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
] , )
@require_tf
def A_ ( self ):
pass | 12 | 1 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""image_processor""", """tokenizer"""]
lowerCamelCase__ = """CLIPImageProcessor"""
lowerCamelCase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self , lowercase=None , lowercase=None , **lowercase ):
_lowerCamelCase : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , lowercase , )
_lowerCamelCase : int = kwargs.pop('feature_extractor' )
_lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(lowercase , lowercase )
def __call__( self , lowercase=None , lowercase=None , lowercase=None , **lowercase ):
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
_lowerCamelCase : Any = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase )
if images is not None:
_lowerCamelCase : Optional[Any] = self.image_processor(lowercase , return_tensors=lowercase , **lowercase )
if text is not None and images is not None:
_lowerCamelCase : Any = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.tokenizer.batch_decode(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.tokenizer.decode(*lowercase , **lowercase )
@property
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.tokenizer.model_input_names
_lowerCamelCase : List[str] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A_ ( self ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase , )
return self.image_processor_class
@property
def A_ ( self ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase , )
return self.image_processor | 12 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowercase__ = {
"""configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegaForCausalLM""",
"""MegaForMaskedLM""",
"""MegaForMultipleChoice""",
"""MegaForQuestionAnswering""",
"""MegaForSequenceClassification""",
"""MegaForTokenClassification""",
"""MegaModel""",
"""MegaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = 42
lowerCamelCase__ = None
lowerCamelCase__ = None
lowercase__ = namedtuple("""CoinsDistribResult""", """moves excess""")
def _snake_case ( lowercase__ ):
if root is None:
return 0
# Validation
def count_nodes(lowercase__ ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(lowercase__ ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(lowercase__ ) != count_coins(lowercase__ ):
raise ValueError('The nodes number should be same as the number of coins' )
# Main calculation
def get_distrib(lowercase__ ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
_lowerCamelCase, _lowerCamelCase : str = get_distrib(node.left )
_lowerCamelCase, _lowerCamelCase : str = get_distrib(node.right )
_lowerCamelCase : Optional[Any] = 1 - left_distrib_excess
_lowerCamelCase : Tuple = 1 - right_distrib_excess
_lowerCamelCase : Optional[Any] = (
left_distrib_moves
+ right_distrib_moves
+ abs(lowercase__ )
+ abs(lowercase__ )
)
_lowerCamelCase : Tuple = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(lowercase__ , lowercase__ )
return get_distrib(lowercase__ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ):
if attention_mask is None:
_lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = OPTConfig
lowerCamelCase__ = {}
lowerCamelCase__ = """gelu"""
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ):
_lowerCamelCase : Tuple = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Tuple = seq_length
_lowerCamelCase : str = is_training
_lowerCamelCase : Optional[int] = use_labels
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Dict = hidden_size
_lowerCamelCase : str = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Dict = hidden_act
_lowerCamelCase : Any = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : List[Any] = eos_token_id
_lowerCamelCase : Tuple = pad_token_id
_lowerCamelCase : List[str] = bos_token_id
_lowerCamelCase : Optional[int] = embed_dim
_lowerCamelCase : List[str] = word_embed_proj_dim
_lowerCamelCase : Any = False
def A_ ( self ):
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 )
_lowerCamelCase : Tuple = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , )
_lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase )
return config, inputs_dict
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase )
_lowerCamelCase : Optional[Any] = inputs_dict['input_ids']
_lowerCamelCase : str = input_ids[:1, :]
_lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :]
_lowerCamelCase : Optional[Any] = 1
# first forward pass
_lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase )
_lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
_lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0]
_lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx]
_lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
@require_tf
class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else ()
lowerCamelCase__ = (
{"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = 10
def A_ ( self ):
_lowerCamelCase : int = TFOPTModelTester(self )
_lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase )
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase , lowercase ):
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
_lowerCamelCase : Optional[int] = model_class(config=lowercase )
_lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase )
_lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
_lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase )
# check that weights remain the same after resizing
_lowerCamelCase : int = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Optional[Any] = False
self.assertTrue(lowercase )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase )
_lowerCamelCase : Dict = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Union[str, Any] = False
self.assertTrue(lowercase )
def _snake_case ( lowercase__ ):
return tf.constant(lowercase__ , dtype=tf.intaa )
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = 99
def A_ ( self ):
_lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2
_lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
_lowerCamelCase : int = input_ids.shape[0]
_lowerCamelCase : List[Any] = OPTConfig(
vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def A_ ( self ):
_lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' )
_lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
_lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id )
with tf.GradientTape():
_lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state
_lowerCamelCase : Optional[Any] = (1, 11, 512)
self.assertEqual(output.shape , lowercase )
_lowerCamelCase : List[str] = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) )
_lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
super().setUp()
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
def A_ ( self ):
_lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model )
_lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model )
_lowerCamelCase : List[str] = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase )
_lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
_lowerCamelCase : Any = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
_lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def A_ ( self ):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def A_ ( self ):
_lowerCamelCase : str = 'facebook/opt-125m'
_lowerCamelCase : Dict = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : int = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase )
def A_ ( self ):
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
_lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase )
_lowerCamelCase : Any = 'left'
# use different length sentences to test batching
_lowerCamelCase : Optional[int] = [
'Hello, my dog is a little',
'Today, I',
]
_lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase )
_lowerCamelCase : int = inputs['input_ids']
_lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] )
_lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase )
_lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
_lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings )
_lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
_lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase , lowercase )
self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] )
def A_ ( self ):
_lowerCamelCase : Tuple = 'facebook/opt-350m'
_lowerCamelCase : List[Any] = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase ) | 12 | 1 |
"""simple docstring"""
from math import factorial
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase ):
_lowerCamelCase : Any = real
if isinstance(lowercase , lowercase ):
_lowerCamelCase : int = [1] * rank
else:
_lowerCamelCase : int = rank
def __repr__( self ):
return (
F'''{self.real}+'''
F'''{'+'.join(str(lowercase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}'''
)
def A_ ( self ):
_lowerCamelCase : Tuple = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real , lowercase )
def __add__( self , lowercase ):
if not isinstance(lowercase , lowercase ):
return Dual(self.real + other , self.duals )
_lowerCamelCase : Any = self.duals.copy()
_lowerCamelCase : List[str] = other.duals.copy()
if len(lowercase ) > len(lowercase ):
o_dual.extend([1] * (len(lowercase ) - len(lowercase )) )
elif len(lowercase ) < len(lowercase ):
s_dual.extend([1] * (len(lowercase ) - len(lowercase )) )
_lowerCamelCase : Any = []
for i in range(len(lowercase ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real , lowercase )
lowerCamelCase__ = __add__
def __sub__( self , lowercase ):
return self + other * -1
def __mul__( self , lowercase ):
if not isinstance(lowercase , lowercase ):
_lowerCamelCase : Optional[Any] = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other , lowercase )
_lowerCamelCase : Any = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , lowercase )
lowerCamelCase__ = __mul__
def __truediv__( self , lowercase ):
if not isinstance(lowercase , lowercase ):
_lowerCamelCase : Optional[Any] = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other , lowercase )
raise ValueError
def __floordiv__( self , lowercase ):
if not isinstance(lowercase , lowercase ):
_lowerCamelCase : Optional[Any] = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other , lowercase )
raise ValueError
def __pow__( self , lowercase ):
if n < 0 or isinstance(lowercase , lowercase ):
raise ValueError('power must be a positive integer' )
if n == 0:
return 1
if n == 1:
return self
_lowerCamelCase : Dict = self
for _ in range(n - 1 ):
x *= self
return x
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
if not callable(lowercase__ ):
raise ValueError('differentiate() requires a function as input for func' )
if not isinstance(lowercase__ , (float, int) ):
raise ValueError('differentiate() requires a float as input for position' )
if not isinstance(lowercase__ , lowercase__ ):
raise ValueError('differentiate() requires an int as input for order' )
_lowerCamelCase : Optional[Any] = Dual(lowercase__ , 1 )
_lowerCamelCase : Dict = func(lowercase__ )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(lowercase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
def _snake_case ( lowercase__ ):
return y**2 * y**4
print(differentiate(f, 9, 2)) | 12 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """philschmid/bart-large-cnn-samsum"""
lowerCamelCase__ = (
"""This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """
"""and returns a summary of the text."""
)
lowerCamelCase__ = """summarizer"""
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSeqaSeqLM
lowerCamelCase__ = ["""text"""]
lowerCamelCase__ = ["""text"""]
def A_ ( self , lowercase ):
return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase )
def A_ ( self , lowercase ):
return self.model.generate(**lowercase )[0]
def A_ ( self , lowercase ):
return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) | 12 | 1 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
lowercase__ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("""""", """|""", """|"""),
datarow=DataRow("""""", """|""", """|"""),
padding=1,
with_header_hide=None,
)
lowercase__ = []
lowercase__ = []
lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}}
lowercase__ = [
{
"""type""": """header""",
"""text""": {
"""type""": """plain_text""",
"""text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results",
"""emoji""": True,
},
}
]
lowercase__ = 0
for log in Path().glob("""*.log"""):
lowercase__ = 0
with open(log, """r""") as f:
for line in f:
lowercase__ = json.loads(line)
if line.get("""nodeid""", """""") != "":
lowercase__ = line["""nodeid"""]
if line.get("""duration""", None) is not None:
lowercase__ = F"{line['duration']:.4f}"
if line.get("""outcome""", """""") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("""_""")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
lowercase__ = []
log.unlink()
lowercase__ = """"""
lowercase__ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
lowercase__ = []
lowercase__ = {}
for test in failed_tests:
lowercase__ = test[0].split("""::""")
lowercase__ = data[0].split("""/""")[-1]
if data[0] not in filesafailed:
lowercase__ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
lowercase__ = [test[0] for test in failed_table]
lowercase__ = list(set(files))
# Count number of instances in failed_tests
lowercase__ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
lowercase__ = tabulate(
table,
headers=["""Test Location""", """Num Failed"""],
tablefmt=hf_table_format,
stralign="""right""",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
lowercase__ = """Too many failed tests, please see the full report in the Action results."""
lowercase__ = len(err) + 10
lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}"
print(F"### {message}")
else:
lowercase__ = """No failed tests! 🤗"""
print(F"## {message}")
payload.append(no_error_payload)
if os.environ.get("""TEST_TYPE""", """""") != "":
from slack_sdk import WebClient
lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""])
if message != "No failed tests! 🤗":
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": message,
},
}
payload.append(md_report)
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": """*For more details:*""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {
"""type""": """plain_text""",
"""text""": """Check Action results""",
"""emoji""": True,
},
"""url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
payload.append(action_button)
lowercase__ = {
"""type""": """context""",
"""elements""": [
{
"""type""": """plain_text""",
"""text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}",
}
],
}
payload.append(date_report)
lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload)
lowercase__ = response.data["""ts"""]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
lowercase__ = """"""
for i, row in enumerate(test_failures):
if row[0] != test_class:
lowercase__ = row[0]
else:
lowercase__ = """"""
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```",
},
}
client.chat_postMessage(
channel="""#accelerate-ci-daily""",
thread_ts=ts,
blocks=[payload],
) | 12 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) )
_lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )]
index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ )
_lowerCamelCase : float = 0
_lowerCamelCase : list[float] = [0] * len(lowercase__ )
for i in index:
if weight[i] <= capacity:
_lowerCamelCase : int = 1
max_value += value[i]
capacity -= weight[i]
else:
_lowerCamelCase : Any = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
from __future__ import annotations
import bisect
def _snake_case ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ):
if hi < 0:
_lowerCamelCase : str = len(lowercase__ )
while lo < hi:
_lowerCamelCase : Union[str, Any] = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
_lowerCamelCase : List[Any] = mid + 1
else:
_lowerCamelCase : Optional[int] = mid
return lo
def _snake_case ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ):
if hi < 0:
_lowerCamelCase : str = len(lowercase__ )
while lo < hi:
_lowerCamelCase : Optional[Any] = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
_lowerCamelCase : str = mid + 1
else:
_lowerCamelCase : Optional[int] = mid
return lo
def _snake_case ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ):
sorted_collection.insert(bisect_left(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ):
sorted_collection.insert(bisect_right(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ )
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : Optional[Any] = 0
_lowerCamelCase : List[Any] = len(lowercase__ ) - 1
while left <= right:
_lowerCamelCase : Tuple = left + (right - left) // 2
_lowerCamelCase : Optional[Any] = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
_lowerCamelCase : Any = midpoint - 1
else:
_lowerCamelCase : List[Any] = midpoint + 1
return None
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : List[Any] = bisect.bisect_left(lowercase__ , lowercase__ )
if index != len(lowercase__ ) and sorted_collection[index] == item:
return index
return None
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
if right < left:
return None
_lowerCamelCase : Dict = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , midpoint - 1 )
else:
return binary_search_by_recursion(lowercase__ , lowercase__ , midpoint + 1 , lowercase__ )
if __name__ == "__main__":
lowercase__ = input("""Enter numbers separated by comma:\n""").strip()
lowercase__ = sorted(int(item) for item in user_input.split(""","""))
lowercase__ = int(input("""Enter a single number to be found in the list:\n"""))
lowercase__ = binary_search(collection, target)
if result is None:
print(F"{target} was not found in {collection}.")
else:
print(F"{target} was found at position {result} in {collection}.") | 12 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
lowercase__ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("""""", """|""", """|"""),
datarow=DataRow("""""", """|""", """|"""),
padding=1,
with_header_hide=None,
)
lowercase__ = []
lowercase__ = []
lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}}
lowercase__ = [
{
"""type""": """header""",
"""text""": {
"""type""": """plain_text""",
"""text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results",
"""emoji""": True,
},
}
]
lowercase__ = 0
for log in Path().glob("""*.log"""):
lowercase__ = 0
with open(log, """r""") as f:
for line in f:
lowercase__ = json.loads(line)
if line.get("""nodeid""", """""") != "":
lowercase__ = line["""nodeid"""]
if line.get("""duration""", None) is not None:
lowercase__ = F"{line['duration']:.4f}"
if line.get("""outcome""", """""") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("""_""")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
lowercase__ = []
log.unlink()
lowercase__ = """"""
lowercase__ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
lowercase__ = []
lowercase__ = {}
for test in failed_tests:
lowercase__ = test[0].split("""::""")
lowercase__ = data[0].split("""/""")[-1]
if data[0] not in filesafailed:
lowercase__ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
lowercase__ = [test[0] for test in failed_table]
lowercase__ = list(set(files))
# Count number of instances in failed_tests
lowercase__ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
lowercase__ = tabulate(
table,
headers=["""Test Location""", """Num Failed"""],
tablefmt=hf_table_format,
stralign="""right""",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
lowercase__ = """Too many failed tests, please see the full report in the Action results."""
lowercase__ = len(err) + 10
lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}"
print(F"### {message}")
else:
lowercase__ = """No failed tests! 🤗"""
print(F"## {message}")
payload.append(no_error_payload)
if os.environ.get("""TEST_TYPE""", """""") != "":
from slack_sdk import WebClient
lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""])
if message != "No failed tests! 🤗":
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": message,
},
}
payload.append(md_report)
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": """*For more details:*""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {
"""type""": """plain_text""",
"""text""": """Check Action results""",
"""emoji""": True,
},
"""url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
payload.append(action_button)
lowercase__ = {
"""type""": """context""",
"""elements""": [
{
"""type""": """plain_text""",
"""text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}",
}
],
}
payload.append(date_report)
lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload)
lowercase__ = response.data["""ts"""]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
lowercase__ = """"""
for i, row in enumerate(test_failures):
if row[0] != test_class:
lowercase__ = row[0]
else:
lowercase__ = """"""
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```",
},
}
client.chat_postMessage(
channel="""#accelerate-ci-daily""",
thread_ts=ts,
blocks=[payload],
) | 12 | 1 |
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """upernet"""
def __init__( self , lowercase=None , lowercase=512 , lowercase=0.02 , lowercase=[1, 2, 3, 6] , lowercase=True , lowercase=0.4 , lowercase=384 , lowercase=256 , lowercase=1 , lowercase=False , lowercase=255 , **lowercase , ):
super().__init__(**lowercase )
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
_lowerCamelCase : Any = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
elif isinstance(lowercase , lowercase ):
_lowerCamelCase : int = backbone_config.get('model_type' )
_lowerCamelCase : str = CONFIG_MAPPING[backbone_model_type]
_lowerCamelCase : List[Any] = config_class.from_dict(lowercase )
_lowerCamelCase : List[Any] = backbone_config
_lowerCamelCase : str = hidden_size
_lowerCamelCase : Dict = initializer_range
_lowerCamelCase : int = pool_scales
_lowerCamelCase : List[str] = use_auxiliary_head
_lowerCamelCase : Optional[Any] = auxiliary_loss_weight
_lowerCamelCase : Optional[int] = auxiliary_in_channels
_lowerCamelCase : Any = auxiliary_channels
_lowerCamelCase : Dict = auxiliary_num_convs
_lowerCamelCase : Optional[Any] = auxiliary_concat_input
_lowerCamelCase : str = loss_ignore_index
def A_ ( self ):
_lowerCamelCase : str = copy.deepcopy(self.__dict__ )
_lowerCamelCase : int = self.backbone_config.to_dict()
_lowerCamelCase : List[str] = self.__class__.model_type
return output | 12 |
"""simple docstring"""
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """AutoTokenizer"""
lowerCamelCase__ = ["""tokenizer"""]
lowerCamelCase__ = {
"""semantic_prompt""": 1,
"""coarse_prompt""": 2,
"""fine_prompt""": 2,
}
def __init__( self , lowercase , lowercase=None ):
super().__init__(lowercase )
_lowerCamelCase : Optional[int] = speaker_embeddings
@classmethod
def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ):
if speaker_embeddings_dict_path is not None:
_lowerCamelCase : Optional[Any] = get_file_from_repo(
lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if speaker_embeddings_path is None:
logger.warning(
F'''`{os.path.join(lowercase , lowercase )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
_lowerCamelCase : List[Any] = None
else:
with open(lowercase ) as speaker_embeddings_json:
_lowerCamelCase : Union[str, Any] = json.load(lowercase )
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase )
return cls(tokenizer=lowercase , speaker_embeddings=lowercase )
def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ):
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase )
_lowerCamelCase : int = {}
_lowerCamelCase : List[Any] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
_lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase )
_lowerCamelCase : Any = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , )
_lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' )
_lowerCamelCase : Optional[Any] = tmp_dict
with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp:
json.dump(lowercase , lowercase )
super().save_pretrained(lowercase , lowercase , **lowercase )
def A_ ( self , lowercase = None , **lowercase ):
_lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset]
_lowerCamelCase : Any = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
_lowerCamelCase : Union[str, Any] = get_file_from_repo(
self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if path is None:
raise ValueError(
F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
_lowerCamelCase : List[str] = np.load(lowercase )
return voice_preset_dict
def A_ ( self , lowercase = None ):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ):
if voice_preset is not None and not isinstance(lowercase , lowercase ):
if (
isinstance(lowercase , lowercase )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
_lowerCamelCase : Any = self._load_voice_preset(lowercase )
else:
if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ):
_lowerCamelCase : Optional[Any] = voice_preset + '.npz'
_lowerCamelCase : Union[str, Any] = np.load(lowercase )
if voice_preset is not None:
self._validate_voice_preset_dict(lowercase , **lowercase )
_lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase )
_lowerCamelCase : Any = self.tokenizer(
lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , )
if voice_preset is not None:
_lowerCamelCase : Optional[int] = voice_preset
return encoded_text | 12 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( lowercase, lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = StableDiffusionInpaintPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowerCamelCase__ = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowerCamelCase__ = frozenset([] )
def A_ ( self ):
torch.manual_seed(0 )
_lowerCamelCase : Union[str, Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase , )
_lowerCamelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=lowercase )
torch.manual_seed(0 )
_lowerCamelCase : Optional[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
_lowerCamelCase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , )
_lowerCamelCase : int = CLIPTextModel(lowercase )
_lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
_lowerCamelCase : Optional[int] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def A_ ( self , lowercase , lowercase=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
_lowerCamelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase )
_lowerCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCamelCase : Optional[int] = Image.fromarray(np.uinta(lowercase ) ).convert('RGB' ).resize((64, 64) )
_lowerCamelCase : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) )
if str(lowercase ).startswith('mps' ):
_lowerCamelCase : str = torch.manual_seed(lowercase )
else:
_lowerCamelCase : int = torch.Generator(device=lowercase ).manual_seed(lowercase )
_lowerCamelCase : str = {
'prompt': 'A painting of a squirrel eating a burger',
'image': init_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def A_ ( self ):
_lowerCamelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowerCamelCase : Union[str, Any] = self.get_dummy_components()
_lowerCamelCase : Union[str, Any] = StableDiffusionInpaintPipeline(**lowercase )
_lowerCamelCase : Tuple = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : Dict = self.get_dummy_inputs(lowercase )
_lowerCamelCase : Any = sd_pipe(**lowercase ).images
_lowerCamelCase : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_lowerCamelCase : List[Any] = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A_ ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A_ ( self ):
_lowerCamelCase : Dict = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
_lowerCamelCase : str = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
_lowerCamelCase : str = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench.npy' )
_lowerCamelCase : List[Any] = 'stabilityai/stable-diffusion-2-inpainting'
_lowerCamelCase : List[str] = StableDiffusionInpaintPipeline.from_pretrained(lowercase , safety_checker=lowercase )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
pipe.enable_attention_slicing()
_lowerCamelCase : Optional[int] = 'Face of a yellow cat, high resolution, sitting on a park bench'
_lowerCamelCase : Tuple = torch.manual_seed(0 )
_lowerCamelCase : Optional[int] = pipe(
prompt=lowercase , image=lowercase , mask_image=lowercase , generator=lowercase , output_type='np' , )
_lowerCamelCase : Optional[Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def A_ ( self ):
_lowerCamelCase : Any = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
_lowerCamelCase : List[str] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
_lowerCamelCase : Optional[int] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench_fp16.npy' )
_lowerCamelCase : int = 'stabilityai/stable-diffusion-2-inpainting'
_lowerCamelCase : List[Any] = StableDiffusionInpaintPipeline.from_pretrained(
lowercase , torch_dtype=torch.floataa , safety_checker=lowercase , )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
pipe.enable_attention_slicing()
_lowerCamelCase : List[str] = 'Face of a yellow cat, high resolution, sitting on a park bench'
_lowerCamelCase : str = torch.manual_seed(0 )
_lowerCamelCase : List[str] = pipe(
prompt=lowercase , image=lowercase , mask_image=lowercase , generator=lowercase , output_type='np' , )
_lowerCamelCase : Tuple = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def A_ ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCamelCase : Union[str, Any] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
_lowerCamelCase : Any = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
_lowerCamelCase : Optional[Any] = 'stabilityai/stable-diffusion-2-inpainting'
_lowerCamelCase : List[Any] = PNDMScheduler.from_pretrained(lowercase , subfolder='scheduler' )
_lowerCamelCase : Union[str, Any] = StableDiffusionInpaintPipeline.from_pretrained(
lowercase , safety_checker=lowercase , scheduler=lowercase , torch_dtype=torch.floataa , )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCamelCase : str = 'Face of a yellow cat, high resolution, sitting on a park bench'
_lowerCamelCase : List[str] = torch.manual_seed(0 )
_lowerCamelCase : Dict = pipe(
prompt=lowercase , image=lowercase , mask_image=lowercase , generator=lowercase , num_inference_steps=2 , output_type='np' , )
_lowerCamelCase : int = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9 | 12 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
lowercase__ = False
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : Tuple = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
_lowerCamelCase : Dict = torch.manual_seed(0 )
_lowerCamelCase : Dict = pipe(
image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images
_lowerCamelCase : str = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
_lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 12 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = tempfile.mkdtemp()
# fmt: off
_lowerCamelCase : Tuple = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
_lowerCamelCase : Optional[Any] = dict(zip(lowercase , range(len(lowercase ) ) ) )
_lowerCamelCase : Tuple = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
_lowerCamelCase : Optional[int] = {'unk_token': '<unk>'}
_lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
_lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(lowercase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(lowercase ) )
_lowerCamelCase : int = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
_lowerCamelCase : Dict = os.path.join(self.tmpdirname , lowercase )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(lowercase , lowercase )
def A_ ( self , **lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **lowercase )
def A_ ( self , **lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **lowercase )
def A_ ( self , **lowercase ):
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase )
def A_ ( self ):
shutil.rmtree(self.tmpdirname )
def A_ ( self ):
_lowerCamelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_lowerCamelCase : Dict = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = self.get_tokenizer()
_lowerCamelCase : Union[str, Any] = self.get_rust_tokenizer()
_lowerCamelCase : Any = self.get_image_processor()
_lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
processor_slow.save_pretrained(self.tmpdirname )
_lowerCamelCase : List[str] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase )
_lowerCamelCase : Dict = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
processor_fast.save_pretrained(self.tmpdirname )
_lowerCamelCase : str = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , lowercase )
self.assertIsInstance(processor_fast.tokenizer , lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , lowercase )
self.assertIsInstance(processor_fast.image_processor , lowercase )
def A_ ( self ):
_lowerCamelCase : int = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_lowerCamelCase : str = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowerCamelCase : Optional[Any] = self.get_image_processor(do_normalize=lowercase )
_lowerCamelCase : Dict = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase )
def A_ ( self ):
_lowerCamelCase : str = self.get_image_processor()
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : Tuple = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
_lowerCamelCase : Union[str, Any] = self.prepare_image_inputs()
_lowerCamelCase : List[str] = image_processor(lowercase , return_tensors='np' )
_lowerCamelCase : Union[str, Any] = processor(images=lowercase , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : Tuple = self.get_tokenizer()
_lowerCamelCase : Any = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
_lowerCamelCase : Optional[int] = 'lower newer'
_lowerCamelCase : Union[str, Any] = processor(text=lowercase , return_tensors='np' )
_lowerCamelCase : Optional[Any] = tokenizer(lowercase , return_tensors='np' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def A_ ( self ):
_lowerCamelCase : List[Any] = self.get_image_processor()
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : int = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
_lowerCamelCase : int = 'lower newer'
_lowerCamelCase : List[Any] = self.prepare_image_inputs()
_lowerCamelCase : List[Any] = processor(text=lowercase , images=lowercase )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(lowercase ):
processor()
def A_ ( self ):
_lowerCamelCase : Optional[Any] = 'google/owlvit-base-patch32'
_lowerCamelCase : Any = OwlViTProcessor.from_pretrained(lowercase )
_lowerCamelCase : List[Any] = ['cat', 'nasa badge']
_lowerCamelCase : Optional[int] = processor(text=lowercase )
_lowerCamelCase : Any = 16
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(lowercase ):
processor()
def A_ ( self ):
_lowerCamelCase : Any = 'google/owlvit-base-patch32'
_lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(lowercase )
_lowerCamelCase : List[str] = [['cat', 'nasa badge'], ['person']]
_lowerCamelCase : Optional[Any] = processor(text=lowercase )
_lowerCamelCase : Union[str, Any] = 16
_lowerCamelCase : List[Any] = len(lowercase )
_lowerCamelCase : List[Any] = max([len(lowercase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(lowercase ):
processor()
def A_ ( self ):
_lowerCamelCase : List[Any] = 'google/owlvit-base-patch32'
_lowerCamelCase : Union[str, Any] = OwlViTProcessor.from_pretrained(lowercase )
_lowerCamelCase : Union[str, Any] = ['cat', 'nasa badge']
_lowerCamelCase : Tuple = processor(text=lowercase )
_lowerCamelCase : Optional[int] = 16
_lowerCamelCase : Union[str, Any] = inputs['input_ids']
_lowerCamelCase : Tuple = [
[49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : Any = self.get_tokenizer()
_lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
_lowerCamelCase : Any = self.prepare_image_inputs()
_lowerCamelCase : int = self.prepare_image_inputs()
_lowerCamelCase : str = processor(images=lowercase , query_images=lowercase )
self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(lowercase ):
processor()
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.get_image_processor()
_lowerCamelCase : str = self.get_tokenizer()
_lowerCamelCase : Tuple = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
_lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowerCamelCase : Dict = processor.batch_decode(lowercase )
_lowerCamelCase : Optional[int] = tokenizer.batch_decode(lowercase )
self.assertListEqual(lowercase , lowercase ) | 12 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
lowercase__ = {
"""E""": 12.70,
"""T""": 9.06,
"""A""": 8.17,
"""O""": 7.51,
"""I""": 6.97,
"""N""": 6.75,
"""S""": 6.33,
"""H""": 6.09,
"""R""": 5.99,
"""D""": 4.25,
"""L""": 4.03,
"""C""": 2.78,
"""U""": 2.76,
"""M""": 2.41,
"""W""": 2.36,
"""F""": 2.23,
"""G""": 2.02,
"""Y""": 1.97,
"""P""": 1.93,
"""B""": 1.29,
"""V""": 0.98,
"""K""": 0.77,
"""J""": 0.15,
"""X""": 0.15,
"""Q""": 0.10,
"""Z""": 0.07,
}
lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ"""
lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def _snake_case ( lowercase__ ):
return x[0]
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = get_letter_count(lowercase__ )
_lowerCamelCase : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(lowercase__ )
_lowerCamelCase : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ )
_lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] )
_lowerCamelCase : Any = list(freq_to_letter_str.items() )
freq_pairs.sort(key=lowercase__ , reverse=lowercase__ )
_lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = get_frequency_order(lowercase__ )
_lowerCamelCase : Union[str, Any] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 1 |
"""simple docstring"""
def _snake_case ( lowercase__ ):
if number > 0:
raise ValueError('input must be a negative integer' )
_lowerCamelCase : Dict = len(bin(lowercase__ )[3:] )
_lowerCamelCase : Tuple = bin(abs(lowercase__ ) - (1 << binary_number_length) )[3:]
_lowerCamelCase : Tuple = (
(
'1'
+ '0' * (binary_number_length - len(lowercase__ ))
+ twos_complement_number
)
if number < 0
else '0'
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 |
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase ):
_lowerCamelCase : Dict = question_encoder
_lowerCamelCase : List[Any] = generator
_lowerCamelCase : Optional[Any] = self.question_encoder
def A_ ( self , lowercase ):
if os.path.isfile(lowercase ):
raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(lowercase , exist_ok=lowercase )
_lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' )
_lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' )
self.question_encoder.save_pretrained(lowercase )
self.generator.save_pretrained(lowercase )
@classmethod
def A_ ( cls , lowercase , **lowercase ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
_lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase )
if config is None:
_lowerCamelCase : int = RagConfig.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(
lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' )
_lowerCamelCase : Dict = AutoTokenizer.from_pretrained(
lowercase , config=config.generator , subfolder='generator_tokenizer' )
return cls(question_encoder=lowercase , generator=lowercase )
def __call__( self , *lowercase , **lowercase ):
return self.current_tokenizer(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.batch_decode(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.decode(*lowercase , **lowercase )
def A_ ( self ):
_lowerCamelCase : Any = self.question_encoder
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.generator
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ):
warnings.warn(
'`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '
'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '
'context manager to prepare your targets. See the documentation of your specific tokenizer for more '
'details' , lowercase , )
if max_length is None:
_lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length
_lowerCamelCase : Optional[Any] = self(
lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
_lowerCamelCase : int = self.current_tokenizer.model_max_length
_lowerCamelCase : str = self(
text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , )
_lowerCamelCase : int = labels['input_ids']
return model_inputs | 12 | 1 |
"""simple docstring"""
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def _snake_case ( lowercase__ ):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self , lowercase , lowercase ):
super().__init__()
_lowerCamelCase : Tuple = module
_lowerCamelCase : int = nn.Sequential(
nn.Linear(module.in_features , lowercase , bias=lowercase ) , nn.Linear(lowercase , module.out_features , bias=lowercase ) , )
_lowerCamelCase : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=lowercase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def A_ ( self , lowercase , *lowercase , **lowercase ):
return self.module(lowercase , *lowercase , **lowercase ) + self.adapter(lowercase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = """bigscience/bloom-1b7"""
# Constant values
lowerCamelCase__ = 2.109659552692574
lowerCamelCase__ = """Hello my name is"""
lowerCamelCase__ = set()
EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" )
EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" )
EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" )
lowerCamelCase__ = 10
def A_ ( self ):
# Models and tokenizer
_lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(self.model_name )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def A_ ( self ):
super().setUp()
# Models and tokenizer
_lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
_lowerCamelCase : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowercase , device_map='auto' )
def A_ ( self ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def A_ ( self ):
_lowerCamelCase : int = self.model_abit.config
self.assertTrue(hasattr(lowercase , 'quantization_config' ) )
_lowerCamelCase : Optional[int] = config.to_dict()
_lowerCamelCase : List[str] = config.to_diff_dict()
_lowerCamelCase : Optional[int] = config.to_json_string()
def A_ ( self ):
from bitsandbytes.nn import Paramsabit
_lowerCamelCase : Dict = self.model_fpaa.get_memory_footprint()
_lowerCamelCase : Dict = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
_lowerCamelCase : str = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def A_ ( self ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(lowercase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' )
_lowerCamelCase : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowercase ) , self.EXPECTED_OUTPUTS )
def A_ ( self ):
_lowerCamelCase : Dict = BitsAndBytesConfig()
_lowerCamelCase : Optional[Any] = True
_lowerCamelCase : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowercase , device_map='auto' )
_lowerCamelCase : int = self.tokenizer(self.input_text , return_tensors='pt' )
_lowerCamelCase : Union[str, Any] = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowercase ) , self.EXPECTED_OUTPUTS )
def A_ ( self ):
with self.assertRaises(lowercase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[int] = BitsAndBytesConfig()
with self.assertRaises(lowercase ):
_lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowercase , load_in_abit=lowercase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def A_ ( self ):
with self.assertRaises(lowercase ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(lowercase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(lowercase ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(lowercase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(lowercase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
_lowerCamelCase : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' )
_lowerCamelCase : Any = self.model_fpaa.to(torch.floataa )
_lowerCamelCase : List[Any] = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
_lowerCamelCase : int = self.model_fpaa.to('cpu' )
# Check this does not throw an error
_lowerCamelCase : Any = self.model_fpaa.half()
# Check this does not throw an error
_lowerCamelCase : Optional[int] = self.model_fpaa.float()
def A_ ( self ):
_lowerCamelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=lowercase , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def A_ ( cls ):
_lowerCamelCase : List[str] = 't5-small'
_lowerCamelCase : Optional[int] = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
_lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(cls.model_name )
_lowerCamelCase : Optional[int] = 'Translate in German: Hello, my dog is cute'
def A_ ( self ):
gc.collect()
torch.cuda.empty_cache()
def A_ ( self ):
from transformers import TaForConditionalGeneration
_lowerCamelCase : List[str] = TaForConditionalGeneration._keep_in_fpaa_modules
_lowerCamelCase : Dict = None
# test with `t5-small`
_lowerCamelCase : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowercase , device_map='auto' )
_lowerCamelCase : List[str] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
_lowerCamelCase : List[Any] = model.generate(**lowercase )
# test with `flan-t5-small`
_lowerCamelCase : Union[str, Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowercase , device_map='auto' )
_lowerCamelCase : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
_lowerCamelCase : str = model.generate(**lowercase )
_lowerCamelCase : Tuple = modules
def A_ ( self ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
_lowerCamelCase : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowercase , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
_lowerCamelCase : Dict = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
_lowerCamelCase : Union[str, Any] = model.generate(**lowercase )
# test with `flan-t5-small`
_lowerCamelCase : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowercase , device_map='auto' )
_lowerCamelCase : List[Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
_lowerCamelCase : List[Any] = model.generate(**lowercase )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def A_ ( self ):
super().setUp()
# model_name
_lowerCamelCase : Optional[int] = 'bigscience/bloom-560m'
_lowerCamelCase : Tuple = 't5-small'
# Different types of model
_lowerCamelCase : str = AutoModel.from_pretrained(self.model_name , load_in_abit=lowercase , device_map='auto' )
# Sequence classification model
_lowerCamelCase : List[str] = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=lowercase , device_map='auto' )
# CausalLM model
_lowerCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowercase , device_map='auto' )
# Seq2seq model
_lowerCamelCase : str = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=lowercase , device_map='auto' )
def A_ ( self ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def A_ ( self ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def A_ ( self ):
super().setUp()
def A_ ( self ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def A_ ( self ):
_lowerCamelCase : Optional[Any] = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
_lowerCamelCase : List[str] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def A_ ( self ):
super().setUp()
def A_ ( self ):
_lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=lowercase , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
_lowerCamelCase : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
_lowerCamelCase : Optional[int] = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowercase ) , self.EXPECTED_OUTPUTS )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Optional[int] = 'facebook/opt-350m'
super().setUp()
def A_ ( self ):
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
_lowerCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowercase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
_lowerCamelCase : Optional[int] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
_lowerCamelCase : Union[str, Any] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(lowercase ) ):
_lowerCamelCase : str = LoRALayer(module.q_proj , rank=16 )
_lowerCamelCase : List[str] = LoRALayer(module.k_proj , rank=16 )
_lowerCamelCase : Dict = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
_lowerCamelCase : Tuple = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
_lowerCamelCase : Optional[Any] = model.forward(**lowercase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(lowercase , lowercase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(lowercase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """gpt2-xl"""
lowerCamelCase__ = 3.3191854854152187 | 12 |
"""simple docstring"""
def _snake_case ( lowercase__ = 10 ):
if not isinstance(lowercase__ , lowercase__ ) or n < 0:
raise ValueError('Invalid input' )
_lowerCamelCase : str = 10**n
_lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F"{solution(10) = }") | 12 | 1 |
"""simple docstring"""
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
lowercase__ = 4
lowercase__ = 3
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
pass
def _snake_case ( lowercase__ ):
for shard in shards:
for i in range(lowercase__ ):
yield {"i": i, "shard": shard}
def _snake_case ( ):
_lowerCamelCase : str = int(os.environ['RANK'] )
_lowerCamelCase : Tuple = int(os.environ['WORLD_SIZE'] )
_lowerCamelCase : List[str] = ArgumentParser()
parser.add_argument('--streaming' , type=lowercase__ )
parser.add_argument('--local_rank' , type=lowercase__ )
parser.add_argument('--num_workers' , type=lowercase__ , default=0 )
_lowerCamelCase : str = parser.parse_args()
_lowerCamelCase : Any = args.streaming
_lowerCamelCase : Tuple = args.num_workers
_lowerCamelCase : Dict = {'shards': [f'''shard_{shard_idx}''' for shard_idx in range(lowercase__ )]}
_lowerCamelCase : Dict = IterableDataset.from_generator(lowercase__ , gen_kwargs=lowercase__ )
if not streaming:
_lowerCamelCase : Tuple = Dataset.from_list(list(lowercase__ ) )
_lowerCamelCase : str = split_dataset_by_node(lowercase__ , rank=lowercase__ , world_size=lowercase__ )
_lowerCamelCase : Optional[Any] = torch.utils.data.DataLoader(lowercase__ , num_workers=lowercase__ )
_lowerCamelCase : Union[str, Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
_lowerCamelCase : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
_lowerCamelCase : Optional[Any] = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' )
if __name__ == "__main__":
main() | 12 |
"""simple docstring"""
import argparse
import datetime
def _snake_case ( lowercase__ ):
_lowerCamelCase : Dict = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
_lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase__ ) < 11:
raise ValueError('Must be 10 characters long' )
# Get month
_lowerCamelCase : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12' )
_lowerCamelCase : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get day
_lowerCamelCase : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31' )
# Get second separator
_lowerCamelCase : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get year
_lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?' )
# Get datetime obj for validation
_lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) )
# Start math
if m <= 2:
_lowerCamelCase : str = y - 1
_lowerCamelCase : Tuple = m + 12
# maths var
_lowerCamelCase : int = int(str(lowercase__ )[:2] )
_lowerCamelCase : int = int(str(lowercase__ )[2:] )
_lowerCamelCase : int = int(2.6 * m - 5.3_9 )
_lowerCamelCase : int = int(c / 4 )
_lowerCamelCase : int = int(k / 4 )
_lowerCamelCase : int = int(d + k )
_lowerCamelCase : int = int(t + u + v + x )
_lowerCamelCase : int = int(z - (2 * c) )
_lowerCamelCase : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.' )
# Response
_lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
lowercase__ = parser.parse_args()
zeller(args.date_input) | 12 | 1 |
"""simple docstring"""
import os
def _snake_case ( ):
_lowerCamelCase : Tuple = os.path.dirname(os.path.realpath(lowercase__ ) )
_lowerCamelCase : Any = os.path.join(lowercase__ , 'triangle.txt' )
with open(lowercase__ ) as f:
_lowerCamelCase : List[str] = f.readlines()
_lowerCamelCase : List[Any] = []
for line in triangle:
_lowerCamelCase : str = []
for number in line.strip().split(' ' ):
numbers_from_line.append(int(lowercase__ ) )
a.append(lowercase__ )
for i in range(1 , len(lowercase__ ) ):
for j in range(len(a[i] ) ):
_lowerCamelCase : List[str] = a[i - 1][j] if j != len(a[i - 1] ) else 0
_lowerCamelCase : Any = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(lowercase__ , lowercase__ )
return max(a[-1] )
if __name__ == "__main__":
print(solution()) | 12 |
"""simple docstring"""
import re
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' )
if match := re.search(lowercase__ , lowercase__ ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("""+918827897895""")) | 12 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.