code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def _snake_case ( lowercase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _snake_case ( ): _lowerCamelCase : List[Any] = 2 while True: if is_prime(lowercase__ ): yield num num += 1 def _snake_case ( lowercase__ = 2000000 ): return sum(takewhile(lambda lowercase__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowercase__ = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } lowercase__ = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } lowercase__ = """▁""" class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase = None , **lowercase , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase : List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token _lowerCamelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) _lowerCamelCase : Dict = vocab_file _lowerCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase ) ) _lowerCamelCase : str = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _lowerCamelCase : Optional[int] = len(self.sp_model ) - 1 _lowerCamelCase : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A_ ( self , lowercase , lowercase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : List[Any] = [self.cls_token_id] _lowerCamelCase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A_ ( self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Dict = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A_ ( self ): return len(self.sp_model ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self , lowercase ): return self.sp_model.encode(lowercase , out_type=lowercase ) def A_ ( self , lowercase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCamelCase : Dict = self.sp_model.PieceToId(lowercase ) return spm_id if spm_id else self.unk_token_id def A_ ( self , lowercase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : List[Any] = [] _lowerCamelCase : Tuple = '' _lowerCamelCase : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Tuple = [] else: current_sub_tokens.append(lowercase ) _lowerCamelCase : str = False out_string += self.sp_model.decode(lowercase ) return out_string.strip() def __getstate__( self ): _lowerCamelCase : Optional[Any] = self.__dict__.copy() _lowerCamelCase : Union[str, Any] = None return state def __setstate__( self , lowercase ): _lowerCamelCase : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCamelCase : Any = {} _lowerCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : List[Any] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , 'wb' ) as fi: _lowerCamelCase : Dict = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
"""simple docstring""" def _snake_case ( lowercase__ ): return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def _snake_case ( lowercase__ ): _lowerCamelCase : Any = credit_card_number _lowerCamelCase : str = 0 _lowerCamelCase : Tuple = len(lowercase__ ) - 2 for i in range(lowercase__ , -1 , -2 ): # double the value of every second digit _lowerCamelCase : List[Any] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _lowerCamelCase : Union[str, Any] = cc_number[:i] + str(lowercase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowercase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(lowercase__ ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(lowercase__ ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(lowercase__ ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
1
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig lowercase__ = logging.getLogger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """masked_bert""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase="topK" , lowercase="constant" , lowercase=0.0 , **lowercase , ): super().__init__(pad_token_id=lowercase , **lowercase ) _lowerCamelCase : int = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : Dict = type_vocab_size _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : List[Any] = pruning_method _lowerCamelCase : int = mask_init _lowerCamelCase : str = mask_scale
12
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
1
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , *lowercase , lowercase=None , lowercase=None , **lowercase ): super().__init__(*lowercase , **lowercase ) _lowerCamelCase : Tuple = eval_examples _lowerCamelCase : List[Any] = post_process_function def A_ ( self , lowercase = None , lowercase=None , lowercase = None , lowercase = "eval" , **lowercase , ): _lowerCamelCase : str = gen_kwargs.copy() _lowerCamelCase : Any = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) _lowerCamelCase : Optional[Any] = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) _lowerCamelCase : List[Any] = gen_kwargs _lowerCamelCase : Dict = self.eval_dataset if eval_dataset is None else eval_dataset _lowerCamelCase : Optional[int] = self.get_eval_dataloader(lowercase ) _lowerCamelCase : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _lowerCamelCase : int = self.compute_metrics _lowerCamelCase : List[Any] = None _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowerCamelCase : List[Any] = eval_loop( lowercase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: _lowerCamelCase : Optional[int] = compute_metrics _lowerCamelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _lowerCamelCase : int = self.post_process_function(lowercase , lowercase , lowercase ) _lowerCamelCase : int = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _lowerCamelCase : Optional[int] = metrics.pop(lowercase ) metrics.update(output.metrics ) else: _lowerCamelCase : Optional[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _lowerCamelCase : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase ) return metrics def A_ ( self , lowercase , lowercase , lowercase=None , lowercase = "test" , **lowercase ): _lowerCamelCase : str = gen_kwargs.copy() _lowerCamelCase : Any = self.get_test_dataloader(lowercase ) # Temporarily disable metric computation, we will do it in the loop here. _lowerCamelCase : int = self.compute_metrics _lowerCamelCase : Tuple = None _lowerCamelCase : List[str] = time.time() _lowerCamelCase : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowerCamelCase : Dict = eval_loop( lowercase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: _lowerCamelCase : Tuple = compute_metrics _lowerCamelCase : Optional[int] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _lowerCamelCase : Optional[Any] = self.post_process_function(lowercase , lowercase , lowercase , 'predict' ) _lowerCamelCase : Optional[int] = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _lowerCamelCase : int = metrics.pop(lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase )
12
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
1
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = test_results.split(' ' ) _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Tuple = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _lowerCamelCase : Dict = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _snake_case ( lowercase__ ): _lowerCamelCase : str = {} _lowerCamelCase : Optional[int] = None _lowerCamelCase : Dict = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , lowercase__ ): _lowerCamelCase : List[Any] = True _lowerCamelCase : Union[str, Any] = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): _lowerCamelCase : Dict = line _lowerCamelCase : Optional[Any] = False return failures class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Tuple = title _lowerCamelCase : Any = doc_test_results['time_spent'].split(',' )[0] _lowerCamelCase : List[Any] = doc_test_results['success'] _lowerCamelCase : Any = doc_test_results['failures'] _lowerCamelCase : Any = self.n_success + self.n_failures # Failures and success of the modeling tests _lowerCamelCase : int = doc_test_results @property def A_ ( self ): _lowerCamelCase : Tuple = [self._time_spent] _lowerCamelCase : str = 0 for time in time_spent: _lowerCamelCase : List[Any] = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowercase ) == 1: _lowerCamelCase : Union[str, Any] = [0, 0, time_parts[0]] _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(lowercase )}h{int(lowercase )}m{int(lowercase )}s''' @property def A_ ( self ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def A_ ( self ): return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def A_ ( self ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def A_ ( self ): _lowerCamelCase : str = 40 _lowerCamelCase : List[str] = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(lowercase , lowercase )} _lowerCamelCase : Union[str, Any] = '' for category, failures in category_failures.items(): if len(lowercase ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowercase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def A_ ( self ): _lowerCamelCase : List[Any] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowercase ) @staticmethod def A_ ( ): _lowerCamelCase : List[Any] = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(lowercase )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=lowercase , ) def A_ ( self ): print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) _lowerCamelCase : List[Any] = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else 'All tests passed.' _lowerCamelCase : Dict = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=lowercase , ) def A_ ( self , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = '' for key, value in failures.items(): _lowerCamelCase : Tuple = value[:200] + ' [Truncated]' if len(lowercase ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' _lowerCamelCase : Optional[Any] = job_name _lowerCamelCase : str = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: _lowerCamelCase : Optional[int] = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def A_ ( self ): if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) _lowerCamelCase : str = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) _lowerCamelCase : int = sorted(self.doc_test_results.items() , key=lambda lowercase : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): _lowerCamelCase : List[str] = F'''*Num failures* :{len(job_result['failed'] )} \n''' _lowerCamelCase : Any = job_result['failures'] _lowerCamelCase : Any = self.get_reply_blocks(lowercase , lowercase , lowercase , text=lowercase ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F'''Results for {job}''' , blocks=lowercase , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def _snake_case ( ): _lowerCamelCase : Optional[Any] = os.environ['GITHUB_RUN_ID'] _lowerCamelCase : Tuple = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' _lowerCamelCase : Optional[Any] = requests.get(lowercase__ ).json() _lowerCamelCase : Union[str, Any] = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) _lowerCamelCase : List[Any] = math.ceil((result['total_count'] - 100) / 100 ) for i in range(lowercase__ ): _lowerCamelCase : Tuple = requests.get(url + f'''&page={i + 2}''' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , lowercase__ ) return {} def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = {} if os.path.exists(lowercase__ ): _lowerCamelCase : List[Any] = os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding='utf-8' ) as f: _lowerCamelCase : Optional[int] = f.read() except UnicodeDecodeError as e: raise ValueError(f'''Could not open {os.path.join(lowercase__ , lowercase__ )}.''' ) from e return _artifact def _snake_case ( ): class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Optional[Any] = name _lowerCamelCase : Dict = [] def __str__( self ): return self.name def A_ ( self , lowercase ): self.paths.append({'name': self.name, 'path': path} ) _lowerCamelCase : Dict[str, Artifact] = {} _lowerCamelCase : Optional[Any] = filter(os.path.isdir , os.listdir() ) for directory in directories: _lowerCamelCase : Dict = directory if artifact_name not in _available_artifacts: _lowerCamelCase : List[str] = Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": lowercase__ = get_job_links() lowercase__ = retrieve_available_artifacts() lowercase__ = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowercase__ = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job lowercase__ = github_actions_job_links.get("""run_doctests""") lowercase__ = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] lowercase__ = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: lowercase__ , lowercase__ , lowercase__ = handle_test_results(artifact["""stats"""]) lowercase__ = failed lowercase__ = success lowercase__ = time_spent[1:-1] + """, """ lowercase__ = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): lowercase__ = line.replace("""FAILED """, """""") lowercase__ = line.split()[0].replace("""\n""", """""") if "::" in line: lowercase__ , lowercase__ = line.split("""::""") else: lowercase__ , lowercase__ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowercase__ = docs[file_regex] doc_test_results[category]["failed"].append(test) lowercase__ = all_failures[test] if test in all_failures else """N/A""" lowercase__ = failure break lowercase__ = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
12
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=False , lowercase=True , lowercase=False , lowercase=True , lowercase=33 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : List[str] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Dict = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : int = use_input_mask _lowerCamelCase : int = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : List[str] = type_sequence_label_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Optional[int] = num_labels _lowerCamelCase : Dict = num_choices _lowerCamelCase : Union[str, Any] = scope def A_ ( self ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : List[Any] = None if self.use_input_mask: _lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : List[str] = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : str = EsmModel(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase ) _lowerCamelCase : Optional[Any] = model(lowercase ) _lowerCamelCase : List[Any] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : int = EsmForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : int = self.num_labels _lowerCamelCase : Dict = EsmForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Dict = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self ): _lowerCamelCase : int = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = False lowerCamelCase__ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = () lowerCamelCase__ = ( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True def A_ ( self ): _lowerCamelCase : Dict = EsmModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : Any = type self.model_tester.create_and_check_model(*lowercase ) def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def A_ ( self ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : List[Any] = EsmModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def A_ ( self ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()[0] _lowerCamelCase : Dict = EsmEmbeddings(config=lowercase ) _lowerCamelCase : Optional[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _lowerCamelCase : Union[str, Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _lowerCamelCase : Any = create_position_ids_from_input_ids(lowercase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowercase , lowercase ) ) ) def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()[0] _lowerCamelCase : Any = EsmEmbeddings(config=lowercase ) _lowerCamelCase : int = torch.empty(2 , 4 , 30 ) _lowerCamelCase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _lowerCamelCase : Optional[int] = torch.as_tensor([expected_single_positions, expected_single_positions] ) _lowerCamelCase : Union[str, Any] = embeddings.create_position_ids_from_inputs_embeds(lowercase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowercase , lowercase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def A_ ( self ): pass @unittest.skip('Esm does not support embedding resizing' ) def A_ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A_ ( self ): pass @require_torch class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @slow def A_ ( self ): with torch.no_grad(): _lowerCamelCase : List[Any] = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() _lowerCamelCase : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _lowerCamelCase : int = model(lowercase )[0] _lowerCamelCase : Optional[Any] = 33 _lowerCamelCase : List[str] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[Any] = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) @slow def A_ ( self ): with torch.no_grad(): _lowerCamelCase : Any = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() _lowerCamelCase : Dict = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _lowerCamelCase : Union[str, Any] = model(lowercase )[0] # compare the actual values for a slice. _lowerCamelCase : str = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
12
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
1
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """char""" lowerCamelCase__ = """bpe""" lowerCamelCase__ = """wp""" lowercase__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""image_processor""", """char_tokenizer"""] lowerCamelCase__ = """ViTImageProcessor""" lowerCamelCase__ = """MgpstrTokenizer""" def __init__( self , lowercase=None , lowercase=None , **lowercase ): _lowerCamelCase : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase , ) _lowerCamelCase : List[Any] = kwargs.pop('feature_extractor' ) _lowerCamelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) _lowerCamelCase : Optional[int] = tokenizer _lowerCamelCase : Any = AutoTokenizer.from_pretrained('gpt2' ) _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(lowercase , lowercase ) def __call__( self , lowercase=None , lowercase=None , lowercase=None , **lowercase ): if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: _lowerCamelCase : Dict = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None: _lowerCamelCase : Tuple = self.char_tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Optional[int] = encodings['input_ids'] return inputs def A_ ( self , lowercase ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(lowercase , 'char' ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(lowercase , 'bpe' ) _lowerCamelCase, _lowerCamelCase : int = self._decode_helper(lowercase , 'wp' ) _lowerCamelCase : Tuple = [] _lowerCamelCase : int = [] for i in range(lowercase ): _lowerCamelCase : List[str] = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : Tuple = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : List[Any] = scores.index(max(lowercase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : str = {} _lowerCamelCase : Dict = final_strs _lowerCamelCase : Optional[Any] = final_scores _lowerCamelCase : int = char_strs _lowerCamelCase : List[Any] = bpe_strs _lowerCamelCase : Any = wp_strs return out def A_ ( self , lowercase , lowercase ): if format == DecodeType.CHARACTER: _lowerCamelCase : Any = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[Any] = '[s]' elif format == DecodeType.BPE: _lowerCamelCase : Union[str, Any] = self.bpe_decode _lowerCamelCase : int = 2 _lowerCamelCase : Dict = '#' elif format == DecodeType.WORDPIECE: _lowerCamelCase : List[Any] = self.wp_decode _lowerCamelCase : Optional[int] = 102 _lowerCamelCase : Tuple = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''' ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Optional[int] = pred_logits.size(0 ) _lowerCamelCase : Optional[int] = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = pred_logits.topk(1 , dim=-1 , largest=lowercase , sorted=lowercase ) _lowerCamelCase : Dict = preds_index.view(-1 , lowercase )[:, 1:] _lowerCamelCase : Union[str, Any] = decoder(lowercase ) _lowerCamelCase, _lowerCamelCase : Dict = torch.nn.functional.softmax(lowercase , dim=2 ).max(dim=2 ) _lowerCamelCase : int = preds_max_prob[:, 1:] for index in range(lowercase ): _lowerCamelCase : int = preds_str[index].find(lowercase ) _lowerCamelCase : int = preds_str[index][:pred_eos] _lowerCamelCase : Tuple = preds_index[index].cpu().tolist() _lowerCamelCase : str = pred_index.index(lowercase ) if eos_token in pred_index else -1 _lowerCamelCase : List[str] = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Tuple = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowercase ) conf_scores.append(lowercase ) return dec_strs, conf_scores def A_ ( self , lowercase ): _lowerCamelCase : Dict = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(lowercase )] return decode_strs def A_ ( self , lowercase ): return self.bpe_tokenizer.batch_decode(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : str = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(lowercase )] return decode_strs
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase__ = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ lowercase__ = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ lowercase__ = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _snake_case ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Optional[int] = simple_accuracy(lowercase__ , lowercase__ ) _lowerCamelCase : Dict = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Optional[int] = float(pearsonr(lowercase__ , lowercase__ )[0] ) _lowerCamelCase : int = float(spearmanr(lowercase__ , lowercase__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def A_ ( self ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A_ ( self , lowercase , lowercase ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def A_ ( self ): _lowerCamelCase : Optional[int] = self.dummy_uncond_unet _lowerCamelCase : Union[str, Any] = KarrasVeScheduler() _lowerCamelCase : Any = KarrasVePipeline(unet=lowercase , scheduler=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : str = torch.manual_seed(0 ) _lowerCamelCase : int = pipe(num_inference_steps=2 , generator=lowercase , output_type='numpy' ).images _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase , output_type='numpy' , return_dict=lowercase )[0] _lowerCamelCase : List[str] = image[0, -3:, -3:, -1] _lowerCamelCase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCamelCase : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = 'google/ncsnpp-celebahq-256' _lowerCamelCase : List[Any] = UNetaDModel.from_pretrained(lowercase ) _lowerCamelCase : List[Any] = KarrasVeScheduler() _lowerCamelCase : Tuple = KarrasVePipeline(unet=lowercase , scheduler=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Any = torch.manual_seed(0 ) _lowerCamelCase : int = pipe(num_inference_steps=20 , generator=lowercase , output_type='numpy' ).images _lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCamelCase : Any = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
"""simple docstring""" class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Optional[int] = len(lowercase ) _lowerCamelCase : Optional[int] = [0] * len_array if len_array > 0: _lowerCamelCase : List[Any] = array[0] for i in range(1 , lowercase ): _lowerCamelCase : List[str] = self.prefix_sum[i - 1] + array[i] def A_ ( self , lowercase , lowercase ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def A_ ( self , lowercase ): _lowerCamelCase : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowercase ) return False if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _snake_case ( ): _lowerCamelCase : Optional[int] = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' _lowerCamelCase : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) return image def _snake_case ( lowercase__ ): _lowerCamelCase : str = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = dct.pop(lowercase__ ) _lowerCamelCase : Optional[int] = val def _snake_case ( lowercase__ , lowercase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCamelCase : Optional[int] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) _lowerCamelCase : int = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict _lowerCamelCase : Tuple = torch.cat((q_bias, torch.zeros_like(lowercase__ , requires_grad=lowercase__ ), v_bias) ) _lowerCamelCase : List[Any] = qkv_bias def _snake_case ( lowercase__ ): _lowerCamelCase : List[str] = 364 if 'coco' in model_name else 224 _lowerCamelCase : int = InstructBlipVisionConfig(image_size=lowercase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: _lowerCamelCase : Union[str, Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCamelCase : Dict = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: _lowerCamelCase : str = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: _lowerCamelCase : str = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=32001 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 _lowerCamelCase : Optional[int] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() _lowerCamelCase : Optional[int] = InstructBlipConfig(vision_config=lowercase__ , text_config=lowercase__ , qformer_config=lowercase__ ) return config, image_size @torch.no_grad() def _snake_case ( lowercase__ , lowercase__=None , lowercase__=False ): _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: _lowerCamelCase : List[Any] = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) _lowerCamelCase : int = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) _lowerCamelCase, _lowerCamelCase : Any = get_blipa_config(lowercase__ ) _lowerCamelCase : Dict = InstructBlipForConditionalGeneration(lowercase__ ).eval() _lowerCamelCase : Optional[Any] = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } _lowerCamelCase, _lowerCamelCase : int = model_name_to_original[model_name] # load original model print('Loading original model...' ) _lowerCamelCase : Dict = 'cuda:1' if torch.cuda.is_available() else 'cpu' _lowerCamelCase : int = 'cuda:2' if torch.cuda.is_available() else 'cpu' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = load_model_and_preprocess( name=lowercase__ , model_type=lowercase__ , is_eval=lowercase__ , device=lowercase__ ) original_model.eval() print('Done!' ) # update state dict keys _lowerCamelCase : List[Any] = original_model.state_dict() _lowerCamelCase : str = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCamelCase : List[str] = state_dict.pop(lowercase__ ) if key.startswith('Qformer.bert' ): _lowerCamelCase : Optional[Any] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: _lowerCamelCase : Optional[int] = key.replace('self' , 'attention' ) if "llm_proj" in key: _lowerCamelCase : Dict = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: _lowerCamelCase : List[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): _lowerCamelCase : int = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): _lowerCamelCase : Optional[Any] = key.replace('t5' , 'language' ) _lowerCamelCase : Optional[int] = val # read in qv biases read_in_q_v_bias(lowercase__ , lowercase__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(lowercase__ , strict=lowercase__ ) _lowerCamelCase : Any = load_demo_image() _lowerCamelCase : str = 'What is unusual about this image?' # create processor _lowerCamelCase : List[str] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowercase__ , image_std=lowercase__ ) _lowerCamelCase : List[Any] = InstructBlipProcessor( image_processor=lowercase__ , tokenizer=lowercase__ , qformer_tokenizer=lowercase__ , ) _lowerCamelCase : List[str] = processor(images=lowercase__ , text=lowercase__ , return_tensors='pt' ).to(lowercase__ ) # make sure processor creates exact same pixel values _lowerCamelCase : List[Any] = vis_processors['eval'](lowercase__ ).unsqueeze(0 ).to(lowercase__ ) _lowerCamelCase : Any = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowercase__ ) original_model.to(lowercase__ ) hf_model.to(lowercase__ ) with torch.no_grad(): if "vicuna" in model_name: _lowerCamelCase : List[Any] = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits _lowerCamelCase : List[str] = hf_model(**lowercase__ ).logits else: _lowerCamelCase : Dict = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits _lowerCamelCase : Tuple = tokenizer('\n' , return_tensors='pt' ).input_ids.to(lowercase__ ) _lowerCamelCase : List[str] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) _lowerCamelCase : Dict = hf_model(**lowercase__ , labels=lowercase__ ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape _lowerCamelCase : str = 1E-4 if 'vicuna' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , lowercase__ , atol=lowercase__ ) print('Looks ok!' ) print('Generating with original model...' ) _lowerCamelCase : str = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) _lowerCamelCase : Optional[int] = hf_model.generate( **lowercase__ , do_sample=lowercase__ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? _lowerCamelCase : Tuple = 2 print('Original generation:' , lowercase__ ) _lowerCamelCase : Tuple = processor.batch_decode(lowercase__ , skip_special_tokens=lowercase__ ) _lowerCamelCase : List[Any] = [text.strip() for text in output_text] print('HF generation:' , lowercase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() lowercase__ = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) lowercase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _lowerCamelCase, _lowerCamelCase : Tuple = coefficient_matrix.shape _lowerCamelCase, _lowerCamelCase : Dict = constant_matrix.shape if rowsa != colsa: _lowerCamelCase : Dict = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(lowercase__ ) if colsa != 1: _lowerCamelCase : Any = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(lowercase__ ) if rowsa != rowsa: _lowerCamelCase : Any = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(lowercase__ ) if len(lowercase__ ) != rowsa: _lowerCamelCase : List[str] = ( 'Number of initial values must be equal to number of rows in coefficient ' f'''matrix but received {len(lowercase__ )} and {rowsa}''' ) raise ValueError(lowercase__ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) _lowerCamelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _lowerCamelCase, _lowerCamelCase : Any = table.shape strictly_diagonally_dominant(lowercase__ ) # Iterates the whole matrix for given number of times for _ in range(lowercase__ ): _lowerCamelCase : List[str] = [] for row in range(lowercase__ ): _lowerCamelCase : Optional[int] = 0 for col in range(lowercase__ ): if col == row: _lowerCamelCase : Any = table[row][col] elif col == cols - 1: _lowerCamelCase : Optional[int] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _lowerCamelCase : List[str] = (temp + val) / denom new_val.append(lowercase__ ) _lowerCamelCase : List[Any] = new_val return [float(lowercase__ ) for i in new_val] def _snake_case ( lowercase__ ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = table.shape _lowerCamelCase : List[str] = True for i in range(0 , lowercase__ ): _lowerCamelCase : str = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
12
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ShapEImgaImgPipeline lowerCamelCase__ = ["""image"""] lowerCamelCase__ = ["""image"""] lowerCamelCase__ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCamelCase__ = False @property def A_ ( self ): return 32 @property def A_ ( self ): return 32 @property def A_ ( self ): return self.time_input_dim * 4 @property def A_ ( self ): return 8 @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _lowerCamelCase : Optional[int] = CLIPVisionModel(lowercase ) return model @property def A_ ( self ): _lowerCamelCase : Union[str, Any] = CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase , do_normalize=lowercase , do_resize=lowercase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[str] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _lowerCamelCase : Optional[Any] = PriorTransformer(**lowercase ) return model @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : int = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _lowerCamelCase : Dict = ShapERenderer(**lowercase ) return model def A_ ( self ): _lowerCamelCase : List[str] = self.dummy_prior _lowerCamelCase : List[Any] = self.dummy_image_encoder _lowerCamelCase : Optional[Any] = self.dummy_image_processor _lowerCamelCase : Optional[Any] = self.dummy_renderer _lowerCamelCase : Union[str, Any] = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) _lowerCamelCase : Union[str, Any] = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def A_ ( self , lowercase , lowercase=0 ): _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase ) ).to(lowercase ) if str(lowercase ).startswith('mps' ): _lowerCamelCase : Any = torch.manual_seed(lowercase ) else: _lowerCamelCase : Tuple = torch.Generator(device=lowercase ).manual_seed(lowercase ) _lowerCamelCase : Tuple = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def A_ ( self ): _lowerCamelCase : Any = 'cpu' _lowerCamelCase : Optional[Any] = self.get_dummy_components() _lowerCamelCase : int = self.pipeline_class(**lowercase ) _lowerCamelCase : Any = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(lowercase ) ) _lowerCamelCase : List[str] = output.images[0] _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCamelCase : int = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A_ ( self ): _lowerCamelCase : str = torch_device == 'cpu' _lowerCamelCase : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def A_ ( self ): _lowerCamelCase : Any = self.get_dummy_components() _lowerCamelCase : int = self.pipeline_class(**lowercase ) _lowerCamelCase : Optional[Any] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Dict = 1 _lowerCamelCase : Union[str, Any] = 2 _lowerCamelCase : List[Any] = self.get_dummy_inputs(lowercase ) for key in inputs.keys(): if key in self.batch_params: _lowerCamelCase : Optional[Any] = batch_size * [inputs[key]] _lowerCamelCase : Optional[int] = pipe(**lowercase , num_images_per_prompt=lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) _lowerCamelCase : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) _lowerCamelCase : Tuple = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) _lowerCamelCase : List[str] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : int = torch.Generator(device=lowercase ).manual_seed(0 ) _lowerCamelCase : Union[str, Any] = pipe( lowercase , generator=lowercase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase )
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('<mask>' ) == 1 _lowerCamelCase : Any = torch.tensor(tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) ).unsqueeze(0 ) # Batch size 1 _lowerCamelCase : List[str] = model(lowercase__ )[0] # The last hidden-state is the first element of the output tuple _lowerCamelCase : List[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _lowerCamelCase : List[Any] = logits[0, masked_index, :] _lowerCamelCase : Optional[int] = logits.softmax(dim=0 ) _lowerCamelCase, _lowerCamelCase : Tuple = prob.topk(k=lowercase__ , dim=0 ) _lowerCamelCase : Union[str, Any] = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase__ ) )] ) _lowerCamelCase : Any = tokenizer.mask_token _lowerCamelCase : List[str] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): _lowerCamelCase : str = predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(lowercase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(lowercase__ ) , lowercase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowercase__ , lowercase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowercase__ = CamembertTokenizer.from_pretrained("""camembert-base""") lowercase__ = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() lowercase__ = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
12
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
1
"""simple docstring""" import operator def _snake_case ( lowercase__ , lowercase__ = False , lowercase__ = None ): _lowerCamelCase : Dict = operator.lt if reverse else operator.gt _lowerCamelCase : Optional[int] = solution or [] if not arr: return solution _lowerCamelCase : Optional[int] = [arr.pop(0 )] for i, item in enumerate(lowercase__ ): if _operator(lowercase__ , sublist[-1] ): sublist.append(lowercase__ ) arr.pop(lowercase__ ) # merging sublist into solution list if not solution: solution.extend(lowercase__ ) else: while sublist: _lowerCamelCase : Tuple = sublist.pop(0 ) for i, xx in enumerate(lowercase__ ): if not _operator(lowercase__ , lowercase__ ): solution.insert(lowercase__ , lowercase__ ) break else: solution.append(lowercase__ ) strand_sort(lowercase__ , lowercase__ , lowercase__ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""cifar10""", metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """The column name of the images in the files."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """A folder containing the training data."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """A folder containing the validation data."""} ) lowerCamelCase__ = field( default=0.15, metadata={"""help""": """Percent to split off of train for validation."""} ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) }, ) def A_ ( self ): _lowerCamelCase : List[str] = {} if self.train_dir is not None: _lowerCamelCase : Optional[Any] = self.train_dir if self.validation_dir is not None: _lowerCamelCase : Any = self.validation_dir _lowerCamelCase : Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowerCamelCase__ = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Name or path of preprocessor config."""} ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) lowerCamelCase__ = field( default=0.75, metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = field( default=1e-3, metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowerCamelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase : Tuple = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowerCamelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _lowerCamelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _lowerCamelCase : List[Any] = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: _lowerCamelCase : Optional[int] = ds['train'].train_test_split(data_args.train_val_split ) _lowerCamelCase : Any = split['train'] _lowerCamelCase : List[str] = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : int = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _lowerCamelCase : Optional[int] = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: _lowerCamelCase : Optional[int] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: _lowerCamelCase : Any = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _lowerCamelCase : Tuple = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: _lowerCamelCase : Any = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: _lowerCamelCase : List[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: _lowerCamelCase : Optional[Any] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _lowerCamelCase : List[Any] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: _lowerCamelCase : Any = ds['train'].column_names else: _lowerCamelCase : Union[str, Any] = ds['validation'].column_names if data_args.image_column_name is not None: _lowerCamelCase : int = data_args.image_column_name elif "image" in column_names: _lowerCamelCase : int = 'image' elif "img" in column_names: _lowerCamelCase : int = 'img' else: _lowerCamelCase : List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _lowerCamelCase : Optional[int] = image_processor.size['shortest_edge'] else: _lowerCamelCase : Any = (image_processor.size['height'], image_processor.size['width']) _lowerCamelCase : Union[str, Any] = Compose( [ Lambda(lambda lowercase__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ ): _lowerCamelCase : Any = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _lowerCamelCase : Optional[Any] = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _lowerCamelCase : List[str] = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate _lowerCamelCase : Any = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _lowerCamelCase : Tuple = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _lowerCamelCase : Dict = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: _lowerCamelCase : Dict = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : Any = last_checkpoint _lowerCamelCase : Optional[Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCamelCase : Union[str, Any] = trainer.evaluate() trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) # Write model card and (optionally) push to hub _lowerCamelCase : List[str] = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def _snake_case ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = """▁""" lowercase__ = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} lowercase__ = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } lowercase__ = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } lowercase__ = { """ernie-m-base""": 514, """ernie-m-large""": 514, } lowercase__ = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["input_ids"] lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = RESOURCE_FILES_NAMES def __init__( self , lowercase , lowercase=None , lowercase=False , lowercase="utf8" , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase = None , **lowercase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , vocab_file=lowercase , encoding=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) _lowerCamelCase : int = do_lower_case _lowerCamelCase : Optional[Any] = sentencepiece_model_ckpt _lowerCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: _lowerCamelCase : List[str] = self.load_vocab(filepath=lowercase ) else: _lowerCamelCase : str = {self.sp_model.id_to_piece(lowercase ): id for id in range(self.sp_model.get_piece_size() )} _lowerCamelCase : Optional[int] = {v: k for k, v in self.vocab.items()} def A_ ( self , lowercase ): if text is None: return None _lowerCamelCase : int = self.tokenize(lowercase ) _lowerCamelCase, _lowerCamelCase : int = '', [] for i, ch in enumerate(lowercase ): if ch in self.SP_CHAR_MAPPING: _lowerCamelCase : Dict = self.SP_CHAR_MAPPING.get(lowercase ) else: _lowerCamelCase : Tuple = unicodedata.normalize('NFKC' , lowercase ) if self.is_whitespace(lowercase ): continue normalized_text += ch char_mapping.extend([i] * len(lowercase ) ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = normalized_text, [], 0 if self.do_lower_case: _lowerCamelCase : int = text.lower() for token in split_tokens: if token[:1] == "▁": _lowerCamelCase : Any = token[1:] _lowerCamelCase : Optional[int] = text[offset:].index(lowercase ) + offset _lowerCamelCase : Optional[int] = start + len(lowercase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) _lowerCamelCase : str = end return token_mapping @property def A_ ( self ): return len(self.vocab ) def A_ ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): _lowerCamelCase : str = self.__dict__.copy() _lowerCamelCase : List[str] = None return state def __setstate__( self , lowercase ): _lowerCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def A_ ( self , lowercase ): return "".join((self.SP_CHAR_MAPPING.get(lowercase , lowercase ) for c in text) ) def A_ ( self , lowercase , lowercase=False , lowercase=64 , lowercase=0.1 ): if self.sp_model_kwargs.get('enable_sampling' ) is True: _lowerCamelCase : Optional[int] = True if self.sp_model_kwargs.get('alpha' ) is not None: _lowerCamelCase : List[str] = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: _lowerCamelCase : Union[str, Any] = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: _lowerCamelCase : Any = self.sp_model.EncodeAsPieces(lowercase ) else: _lowerCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(lowercase , lowercase , lowercase ) _lowerCamelCase : Union[str, Any] = [] for pi, piece in enumerate(lowercase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(lowercase ) and pi != 0: new_pieces.append(lowercase ) continue else: continue _lowerCamelCase : List[str] = 0 for i, chunk in enumerate(lowercase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(lowercase ) or self.is_punct(lowercase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(lowercase ) _lowerCamelCase : Optional[int] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _lowerCamelCase : Optional[int] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _lowerCamelCase : Any = i if len(lowercase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def A_ ( self , lowercase ): _lowerCamelCase : Optional[int] = ''.join(lowercase ).replace(lowercase , ' ' ).strip() return out_string def A_ ( self , lowercase ): _lowerCamelCase : Dict = self.convert_ids_to_tokens(lowercase ) _lowerCamelCase : Union[str, Any] = ''.join(lowercase ).replace(lowercase , ' ' ).strip() return out_string def A_ ( self , lowercase ): return self.vocab.get(lowercase , self.vocab.get(self.unk_token ) ) def A_ ( self , lowercase ): return self.reverse_vocab.get(lowercase , self.unk_token ) def A_ ( self , lowercase , lowercase=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : Dict = [self.cls_token_id] _lowerCamelCase : str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def A_ ( self , lowercase , lowercase=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def A_ ( self , lowercase , lowercase=None , lowercase=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1] def A_ ( self , lowercase , lowercase = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(lowercase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(lowercase ) + 1) + [1] * (len(lowercase ) + 3) def A_ ( self , lowercase ): if "\u4e00" <= char <= "\u9fff": return True return False def A_ ( self , lowercase ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def A_ ( self , lowercase ): if char in ",;:.?!~,;:。?!《》【】": return True return False def A_ ( self , lowercase ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(lowercase ) == 1: _lowerCamelCase : str = unicodedata.category(lowercase ) if cat == "Zs": return True return False def A_ ( self , lowercase ): _lowerCamelCase : Tuple = {} with io.open(lowercase , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(lowercase ): _lowerCamelCase : Dict = line.rstrip('\n' ) _lowerCamelCase : Tuple = int(lowercase ) return token_to_idx def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Tuple = 0 if os.path.isdir(lowercase ): _lowerCamelCase : Optional[Any] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: _lowerCamelCase : Dict = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(lowercase , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) _lowerCamelCase : List[str] = token_index writer.write(token + '\n' ) index += 1 _lowerCamelCase : str = os.path.join(lowercase , 'sentencepiece.bpe.model' ) with open(lowercase , 'wb' ) as fi: _lowerCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (vocab_file,)
12
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
1
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _snake_case ( lowercase__ ): # picklable for multiprocessing return x.sum() def _snake_case ( lowercase__ ): # picklable for multiprocessing return i + 1 @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = 42 class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = [1, 2] _lowerCamelCase : List[str] = {'a': 1, 'b': 2} _lowerCamelCase : int = {'a': [1, 2], 'b': [3, 4]} _lowerCamelCase : Dict = {'a': {'1': 1}, 'b': 2} _lowerCamelCase : Union[str, Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} _lowerCamelCase : List[str] = {} _lowerCamelCase : Dict = [] _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = [2, 3] _lowerCamelCase : List[str] = {'a': 2, 'b': 3} _lowerCamelCase : Optional[int] = {'a': [2, 3], 'b': [4, 5]} _lowerCamelCase : Optional[Any] = {'a': {'1': 2}, 'b': 3} _lowerCamelCase : List[Any] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(lowercase , lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase ) , lowercase ) _lowerCamelCase : Union[str, Any] = 2 self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase ) self.assertEqual(map_nested(lowercase , lowercase , num_proc=lowercase ) , lowercase ) _lowerCamelCase : Tuple = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} _lowerCamelCase : Any = {'a': 2, 'b': 0, 'c': 2} _lowerCamelCase : List[Any] = { 'a': np.eye(2 ).astype(lowercase ), 'b': np.zeros(3 ).astype(lowercase ), 'c': np.ones(2 ).astype(lowercase ), } self.assertEqual(map_nested(lowercase , lowercase , map_numpy=lowercase ) , lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase , lowercase , map_numpy=lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(lowercase , lowercase , map_numpy=lowercase , num_proc=lowercase ) , lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase , lowercase , map_numpy=lowercase , num_proc=lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(lowercase ): # can't pickle a local lambda map_nested(lambda lowercase : x + 1 , lowercase , num_proc=lowercase ) def A_ ( self ): _lowerCamelCase : Tuple = {'a': 1, 'b': 2} _lowerCamelCase : Tuple = {'a': 3, 'b': 4} _lowerCamelCase : Union[str, Any] = {'a': 5, 'b': 6} _lowerCamelCase : Optional[Any] = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowercase , lowercase , lowercase ) ) , lowercase ) def A_ ( self ): class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = """bar""" _lowerCamelCase : Any = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(lowercase , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: _lowerCamelCase : Tuple = {f'''{i}''': i for i in range(lowercase__ )} _lowerCamelCase : Dict = map_nested(lambda lowercase__ : x + 10 , lowercase__ , num_proc=lowercase__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @require_tf def A_ ( self ): import tensorflow as tf from tensorflow.keras import layers _lowerCamelCase : List[Any] = layers.Dense(2 ) def gen_random_output(): _lowerCamelCase : List[Any] = tf.random.uniform((1, 3) ) return model(lowercase ).numpy() with temp_seed(42 , set_tensorflow=lowercase ): _lowerCamelCase : Union[str, Any] = gen_random_output() with temp_seed(42 , set_tensorflow=lowercase ): _lowerCamelCase : Optional[Any] = gen_random_output() _lowerCamelCase : Union[str, Any] = gen_random_output() np.testing.assert_equal(lowercase , lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def A_ ( self ): import torch def gen_random_output(): _lowerCamelCase : Any = torch.nn.Linear(3 , 2 ) _lowerCamelCase : str = torch.rand(1 , 3 ) return model(lowercase ).detach().numpy() with temp_seed(42 , set_pytorch=lowercase ): _lowerCamelCase : Any = gen_random_output() with temp_seed(42 , set_pytorch=lowercase ): _lowerCamelCase : List[str] = gen_random_output() _lowerCamelCase : Union[str, Any] = gen_random_output() np.testing.assert_equal(lowercase , lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def A_ ( self ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): _lowerCamelCase : List[str] = gen_random_output() with temp_seed(42 ): _lowerCamelCase : List[Any] = gen_random_output() _lowerCamelCase : Dict = gen_random_output() np.testing.assert_equal(lowercase , lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = NestedDataStructure(lowercase__ ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : str = NestedDataStructure(lowercase__ ).flatten() assert output == expected_output def _snake_case ( ): _lowerCamelCase : Tuple = A(x=1 , y='foobar' ) _lowerCamelCase : List[str] = {'x': 1, 'y': 'foobar'} assert asdict(lowercase__ ) == expected_output _lowerCamelCase : Dict = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]} _lowerCamelCase : int = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(lowercase__ ) == expected_output with pytest.raises(lowercase__ ): asdict([1, A(x=10 , y='foo' )] ) def _snake_case ( lowercase__ ): return text.split() def _snake_case ( lowercase__ ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _snake_case ( ): with Pool(2 ) as pool: _lowerCamelCase : List[str] = list(iflatmap_unordered(lowercase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(lowercase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _lowerCamelCase : List[str] = list(iflatmap_unordered(lowercase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(lowercase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _lowerCamelCase : int = [] for yield_time, content in iflatmap_unordered( lowercase__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowercase__ ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(lowercase__ ) == 4
12
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
1
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): return price * (1 + tax_rate) if __name__ == "__main__": print(F"{price_plus_tax(100, 0.25) = }") print(F"{price_plus_tax(125.50, 0.05) = }")
12
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
1
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import argparse import os import re import packaging.version lowercase__ = """examples/""" lowercase__ = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } lowercase__ = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } lowercase__ = """README.md""" def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): with open(lowercase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCamelCase : Optional[Any] = f.read() _lowerCamelCase, _lowerCamelCase : Union[str, Any] = REPLACE_PATTERNS[pattern] _lowerCamelCase : Dict = replace.replace('VERSION' , lowercase__ ) _lowerCamelCase : int = re_pattern.sub(lowercase__ , lowercase__ ) with open(lowercase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(lowercase__ ) def _snake_case ( lowercase__ ): for folder, directories, fnames in os.walk(lowercase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(lowercase__ , lowercase__ ) , lowercase__ , pattern='examples' ) def _snake_case ( lowercase__ , lowercase__=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase__ , lowercase__ , lowercase__ ) if not patch: update_version_in_examples(lowercase__ ) def _snake_case ( ): _lowerCamelCase : Union[str, Any] = '🤗 Transformers currently provides the following architectures' _lowerCamelCase : Tuple = '1. Want to contribute a new model?' with open(lowercase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCamelCase : Union[str, Any] = f.readlines() # Find the start of the list. _lowerCamelCase : List[str] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _lowerCamelCase : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): _lowerCamelCase : List[Any] = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(lowercase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowercase__ ) def _snake_case ( ): with open(REPLACE_FILES['init'] , 'r' ) as f: _lowerCamelCase : int = f.read() _lowerCamelCase : int = REPLACE_PATTERNS['init'][0].search(lowercase__ ).groups()[0] return packaging.version.parse(lowercase__ ) def _snake_case ( lowercase__=False ): _lowerCamelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: _lowerCamelCase : Any = default_version.base_version elif patch: _lowerCamelCase : List[Any] = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _lowerCamelCase : Optional[Any] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _lowerCamelCase : List[str] = input(f'''Which version are you releasing? [{default_version}]''' ) if len(lowercase__ ) == 0: _lowerCamelCase : Any = default_version print(f'''Updating version to {version}.''' ) global_version_update(lowercase__ , patch=lowercase__ ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _snake_case ( ): _lowerCamelCase : Tuple = get_version() _lowerCamelCase : List[Any] = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _lowerCamelCase : List[str] = current_version.base_version # Check with the user we got that right. _lowerCamelCase : str = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(lowercase__ ) == 0: _lowerCamelCase : str = dev_version print(f'''Updating version to {version}.''' ) global_version_update(lowercase__ ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") lowercase__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
12
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
1
"""simple docstring""" import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=2 , lowercase=56 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=2 , lowercase=7 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , lowercase="block_sparse" , lowercase=True , lowercase=False , lowercase=2 , lowercase=3 , ): _lowerCamelCase : Any = parent _lowerCamelCase : int = batch_size _lowerCamelCase : int = seq_length _lowerCamelCase : List[Any] = is_training _lowerCamelCase : Any = use_attention_mask _lowerCamelCase : Dict = use_token_type_ids _lowerCamelCase : str = use_labels _lowerCamelCase : Dict = vocab_size _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : int = type_vocab_size _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : int = num_choices _lowerCamelCase : Optional[Any] = rescale_embeddings _lowerCamelCase : str = attention_type _lowerCamelCase : Optional[Any] = use_bias _lowerCamelCase : Optional[Any] = block_size _lowerCamelCase : List[str] = num_random_blocks def A_ ( self ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : int = None if self.use_attention_mask: _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Union[str, Any] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def A_ ( self ): _lowerCamelCase : Dict = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = config_and_inputs _lowerCamelCase : Optional[Any] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Tuple = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def A_ ( self ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def A_ ( self ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def A_ ( self ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def A_ ( self ): super().test_hidden_states_output() @slow def A_ ( self ): for model_class_name in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(lowercase ) def A_ ( self ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : int = self._prepare_for_class(lowercase , lowercase ) _lowerCamelCase : Optional[Any] = model_class(lowercase ) @jax.jit def model_jitted(lowercase , lowercase=None , **lowercase ): return model(input_ids=lowercase , attention_mask=lowercase , **lowercase ) with self.subTest('JIT Enabled' ): _lowerCamelCase : Tuple = model_jitted(**lowercase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCamelCase : List[Any] = model_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def A_ ( self , lowercase , lowercase , lowercase , lowercase=1E-5 , lowercase="outputs" , lowercase=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
12
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase__ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowercase__ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowercase__ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = RealmTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ): super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) _lowerCamelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase ) != tokenize_chinese_chars ): _lowerCamelCase : List[str] = getattr(lowercase , normalizer_state.pop('type' ) ) _lowerCamelCase : str = do_lower_case _lowerCamelCase : Tuple = strip_accents _lowerCamelCase : Union[str, Any] = tokenize_chinese_chars _lowerCamelCase : int = normalizer_class(**lowercase ) _lowerCamelCase : str = do_lower_case def A_ ( self , lowercase , **lowercase ): _lowerCamelCase : Tuple = PaddingStrategy.MAX_LENGTH _lowerCamelCase : List[str] = text _lowerCamelCase : int = kwargs.pop('text_pair' , lowercase ) _lowerCamelCase : Tuple = kwargs.pop('return_tensors' , lowercase ) _lowerCamelCase : Union[str, Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(lowercase ): if batch_text_pair is not None: _lowerCamelCase : List[Any] = batch_text_pair[idx] else: _lowerCamelCase : Dict = None _lowerCamelCase : List[str] = super().__call__(lowercase , lowercase , return_tensors=lowercase , **lowercase ) _lowerCamelCase : int = encoded_candidates.get('input_ids' ) _lowerCamelCase : Any = encoded_candidates.get('attention_mask' ) _lowerCamelCase : Optional[int] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowercase ) _lowerCamelCase : str = {key: item for key, item in output_data.items() if len(lowercase ) != 0} return BatchEncoding(lowercase , tensor_type=lowercase ) def A_ ( self , lowercase , lowercase=None ): _lowerCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : str = [self.sep_token_id] _lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Any = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
12
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
1
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase__ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=None , lowercase=True , lowercase=True , lowercase=None , ): _lowerCamelCase : List[str] = size if size is not None else {'height': 20, 'width': 20} _lowerCamelCase : Dict = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : Tuple = min_resolution _lowerCamelCase : Optional[Any] = max_resolution _lowerCamelCase : Union[str, Any] = size _lowerCamelCase : Dict = do_normalize _lowerCamelCase : Dict = do_convert_rgb _lowerCamelCase : Union[str, Any] = [512, 1024, 2048, 4096] _lowerCamelCase : Optional[int] = patch_size if patch_size is not None else {'height': 16, 'width': 16} def A_ ( self ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def A_ ( self ): _lowerCamelCase : str = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' _lowerCamelCase : Optional[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""", ) @require_torch @require_vision class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = PixaStructImageProcessor if is_vision_available() else None def A_ ( self ): _lowerCamelCase : Optional[Any] = PixaStructImageProcessingTester(self ) @property def A_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self ): _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase , 'do_convert_rgb' ) ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.image_processor_tester.prepare_dummy_image() _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase : List[Any] = 2048 _lowerCamelCase : str = image_processor(lowercase , return_tensors='pt' , max_patches=lowercase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1E-3 , rtol=1E-3 ) ) def A_ ( self ): # Initialize image_processor _lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _lowerCamelCase : int = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCamelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowerCamelCase : Union[str, Any] = image_processor( lowercase , return_tensors='pt' , max_patches=lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A_ ( self ): # Initialize image_processor _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _lowerCamelCase : Optional[int] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 _lowerCamelCase : List[Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowercase ): _lowerCamelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase ).flattened_patches _lowerCamelCase : Optional[int] = 'Hello' _lowerCamelCase : int = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase , header_text=lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowerCamelCase : List[Any] = image_processor( lowercase , return_tensors='pt' , max_patches=lowercase , header_text=lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A_ ( self ): # Initialize image_processor _lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) _lowerCamelCase : Tuple = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCamelCase : Dict = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowerCamelCase : Dict = image_processor( lowercase , return_tensors='pt' , max_patches=lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A_ ( self ): # Initialize image_processor _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input _lowerCamelCase : Tuple = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCamelCase : Optional[Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowerCamelCase : Dict = image_processor( lowercase , return_tensors='pt' , max_patches=lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""", ) @require_torch @require_vision class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = PixaStructImageProcessor if is_vision_available() else None def A_ ( self ): _lowerCamelCase : str = PixaStructImageProcessingTester(self , num_channels=4 ) _lowerCamelCase : Union[str, Any] = 3 @property def A_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self ): _lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase , 'do_convert_rgb' ) ) def A_ ( self ): # Initialize image_processor _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _lowerCamelCase : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCamelCase : int = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowerCamelCase : int = image_processor( lowercase , return_tensors='pt' , max_patches=lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""MaskFormerFeatureExtractor"""] lowercase__ = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] lowercase__ = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _lowerCamelCase : Union[str, Any] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: _lowerCamelCase : Any = 1 - (matter_density + radiation_density + dark_energy) _lowerCamelCase : str = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _lowerCamelCase : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowercase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowercase__ = get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = """dummy_data""" lowerCamelCase__ = """datasets""" lowerCamelCase__ = False def __init__( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = False , lowercase = True , lowercase = None , ): _lowerCamelCase : str = 0 _lowerCamelCase : Union[str, Any] = dataset_name _lowerCamelCase : List[Any] = cache_dir _lowerCamelCase : str = use_local_dummy_data _lowerCamelCase : List[Any] = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : List[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Optional[Any] = str(lowercase ) # to be downloaded _lowerCamelCase : Optional[int] = None _lowerCamelCase : Any = None @property def A_ ( self ): if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def A_ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def A_ ( self ): return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def A_ ( self ): _lowerCamelCase : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : int = cached_path( lowercase , cache_dir=self.cache_dir , extract_compressed_file=lowercase , force_extract=lowercase ) return os.path.join(lowercase , self.dummy_file_name ) @property def A_ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def A_ ( self ): if self._bucket_url is None: _lowerCamelCase : Tuple = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def A_ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def A_ ( self , lowercase , *lowercase ): if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : int = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : List[str] = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase , lowercase ): return self.create_dummy_data_dict(lowercase , lowercase ) elif isinstance(lowercase , (list, tuple) ): return self.create_dummy_data_list(lowercase , lowercase ) else: return self.create_dummy_data_single(lowercase , lowercase ) def A_ ( self , lowercase , *lowercase ): return self.download_and_extract(lowercase ) def A_ ( self , lowercase , lowercase ): return self.download_and_extract(lowercase ) def A_ ( self , lowercase , *lowercase , **lowercase ): return path def A_ ( self ): return {} def A_ ( self , lowercase , lowercase ): _lowerCamelCase : List[str] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase , lowercase ): for single_url in single_urls: download_callback(lowercase ) else: _lowerCamelCase : Dict = single_urls download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase , lowercase ): _lowerCamelCase : Optional[Any] = [os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) for x in single_urls] else: _lowerCamelCase : Tuple = single_urls _lowerCamelCase : Dict = os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(lowercase , lowercase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : Dict = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : int = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : str = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , lowercase ) ) for url in data_url ) _lowerCamelCase : str = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Optional[Any] = [data_url[0]] * len(lowercase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Dict = os.path.join(lowercase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(lowercase ) return dummy_data_list def A_ ( self , lowercase , lowercase ): for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Dict = os.path.join(lowercase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(lowercase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def A_ ( self ): pass def A_ ( self ): pass def A_ ( self , lowercase ): def _iter_archive_members(lowercase ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : List[Any] = Path(self.dummy_file ).parent _lowerCamelCase : Tuple = path.relative_to(lowercase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Union[str, Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowercase ) _lowerCamelCase : Any = Path(lowercase ) _lowerCamelCase : Optional[int] = _iter_archive_members(lowercase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(lowercase ).as_posix(), file_path.open('rb' ) def A_ ( self , lowercase ): if not isinstance(lowercase , lowercase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(lowercase ): if os.path.basename(lowercase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase ): if os.path.basename(lowercase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(lowercase ): if filename.startswith(('.', '__') ): continue yield os.path.join(lowercase , lowercase )
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def _snake_case ( lowercase__ , lowercase__ ): if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """bert-generation""" def __init__( self , lowercase=50358 , lowercase=1024 , lowercase=24 , lowercase=16 , lowercase=4096 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase=2 , lowercase=1 , lowercase="absolute" , lowercase=True , **lowercase , ): super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) _lowerCamelCase : int = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : str = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : Union[str, Any] = position_embedding_type _lowerCamelCase : Optional[Any] = use_cache
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowercase__ = pytest.mark.integration lowercase__ = {"""comet"""} lowercase__ = importlib.util.find_spec("""fairseq""") is not None lowercase__ = {"""code_eval"""} lowercase__ = os.name == """nt""" lowercase__ = {"""bertscore""", """frugalscore""", """perplexity"""} lowercase__ = importlib.util.find_spec("""transformers""") is not None def _snake_case ( lowercase__ ): @wraps(lowercase__ ) def wrapper(self , lowercase__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , lowercase__ ) return wrapper def _snake_case ( lowercase__ ): @wraps(lowercase__ ) def wrapper(self , lowercase__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , lowercase__ ) return wrapper def _snake_case ( lowercase__ ): @wraps(lowercase__ ) def wrapper(self , lowercase__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , lowercase__ ) return wrapper def _snake_case ( ): _lowerCamelCase : Optional[int] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowercase, lowercase, lowercase ) @local class lowerCAmelCase__ ( parameterized.TestCase ): '''simple docstring''' lowerCamelCase__ = {} lowerCamelCase__ = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def A_ ( self , lowercase ): _lowerCamelCase : Tuple = '[...]' _lowerCamelCase : int = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , lowercase ) ).module_path ) _lowerCamelCase : Union[str, Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=lowercase ) # check parameters _lowerCamelCase : Dict = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowercase , metric_module.__name__ ): with self.use_local_metrics(): try: _lowerCamelCase : str = doctest.testmod(lowercase , verbose=lowercase , raise_on_error=lowercase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def A_ ( self , lowercase ): _lowerCamelCase : Union[str, Any] = '[...]' _lowerCamelCase : List[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , lowercase ) ).module_path ) # run doctest with self.use_local_metrics(): _lowerCamelCase : int = doctest.testmod(lowercase , verbose=lowercase , raise_on_error=lowercase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def A_ ( self , lowercase , lowercase ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowercase ): yield else: yield @contextmanager def A_ ( self ): def load_local_metric(lowercase , *lowercase , **lowercase ): return load_metric(os.path.join('metrics' , lowercase ) , *lowercase , **lowercase ) with patch('datasets.load_metric' ) as mock_load_metric: _lowerCamelCase : List[str] = load_local_metric yield @classmethod def A_ ( cls , lowercase ): def wrapper(lowercase ): _lowerCamelCase : Optional[int] = contextmanager(lowercase ) _lowerCamelCase : int = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def _snake_case ( lowercase__ ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self , lowercase ): assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: _lowerCamelCase : Optional[int] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def _snake_case ( lowercase__ ): import torch def bert_cos_score_idf(lowercase__ , lowercase__ , *lowercase__ , **lowercase__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowercase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: _lowerCamelCase : Dict = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def _snake_case ( lowercase__ ): def load_from_checkpoint(lowercase__ ): class lowerCAmelCase__ : '''simple docstring''' def A_ ( self , lowercase , *lowercase , **lowercase ): assert len(lowercase ) == 2 _lowerCamelCase : Dict = [0.19, 0.92] return scores, sum(lowercase ) / len(lowercase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: _lowerCamelCase : int = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: _lowerCamelCase : List[Any] = load_from_checkpoint yield def _snake_case ( ): _lowerCamelCase : int = load_metric(os.path.join('metrics' , 'seqeval' ) ) _lowerCamelCase : List[Any] = 'ERROR' _lowerCamelCase : Optional[int] = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(lowercase__ , match=re.escape(lowercase__ ) ): metric.compute(predictions=[] , references=[] , scheme=lowercase__ )
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = LxmertTokenizer lowerCamelCase__ = LxmertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self , lowercase ): _lowerCamelCase : str = 'UNwant\u00E9d,running' _lowerCamelCase : List[str] = 'unwanted, running' return input_text, output_text def A_ ( self ): _lowerCamelCase : Tuple = self.tokenizer_class(self.vocab_file ) _lowerCamelCase : Union[str, Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowercase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [7, 4, 5, 10, 8, 9] ) def A_ ( self ): if not self.test_rust_tokenizer: return _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : Optional[int] = self.get_rust_tokenizer() _lowerCamelCase : int = 'I was born in 92000, and this is falsé.' _lowerCamelCase : int = tokenizer.tokenize(lowercase ) _lowerCamelCase : List[str] = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : List[Any] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : int = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : Any = self.get_rust_tokenizer() _lowerCamelCase : str = tokenizer.encode(lowercase ) _lowerCamelCase : Optional[Any] = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase )
12
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
1
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _snake_case ( lowercase__ ): return 1 / (1 + np.exp(-z )) def _snake_case ( lowercase__ , lowercase__ ): return (-y * np.log(lowercase__ ) - (1 - y) * np.log(1 - h )).mean() def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = np.dot(lowercase__ , lowercase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowercase__ ) ) ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=70000 ): _lowerCamelCase : int = np.zeros(x.shape[1] ) for iterations in range(lowercase__ ): _lowerCamelCase : Dict = np.dot(lowercase__ , lowercase__ ) _lowerCamelCase : List[Any] = sigmoid_function(lowercase__ ) _lowerCamelCase : Optional[int] = np.dot(x.T , h - y ) / y.size _lowerCamelCase : Any = theta - alpha * gradient # updating the weights _lowerCamelCase : int = np.dot(lowercase__ , lowercase__ ) _lowerCamelCase : Any = sigmoid_function(lowercase__ ) _lowerCamelCase : str = cost_function(lowercase__ , lowercase__ ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowercase__ = datasets.load_iris() lowercase__ = iris.data[:, :2] lowercase__ = (iris.target != 0) * 1 lowercase__ = 0.1 lowercase__ = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def _snake_case ( lowercase__ ): return sigmoid_function( np.dot(lowercase__ , lowercase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((lowercase__) , (lowercase__)) = (x[:, 0].min(), x[:, 0].max()) ((lowercase__) , (lowercase__)) = (x[:, 1].min(), x[:, 1].max()) ((lowercase__) , (lowercase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowercase__ = np.c_[xxa.ravel(), xxa.ravel()] lowercase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
1
"""simple docstring""" lowercase__ = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609344, "knot": 1.852, } lowercase__ = { "km/h": 1.0, "m/s": 0.277777778, "mph": 0.621371192, "knot": 0.539956803, } def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: _lowerCamelCase : Optional[Any] = ( f'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' f'''Valid values are: {', '.join(lowercase__ )}''' ) raise ValueError(lowercase__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
1
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
"""simple docstring""" import numpy as np def _snake_case ( lowercase__ , lowercase__ ): return np.where(vector > 0 , lowercase__ , (alpha * (np.exp(lowercase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
12
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase__ = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = PegasusConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ): _lowerCamelCase : Dict = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Dict = seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : int = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : Optional[Any] = eos_token_id _lowerCamelCase : List[Any] = pad_token_id _lowerCamelCase : List[str] = bos_token_id def A_ ( self ): _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _lowerCamelCase : Union[str, Any] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : List[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCamelCase : Optional[int] = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : List[str] = 20 _lowerCamelCase : Any = model_class_name(lowercase ) _lowerCamelCase : Tuple = model.encode(inputs_dict['input_ids'] ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowerCamelCase : List[Any] = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) _lowerCamelCase : Dict = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowerCamelCase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCamelCase : List[Any] = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) _lowerCamelCase : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowerCamelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , ) _lowerCamelCase : Tuple = model.decode(lowercase , lowercase ) _lowerCamelCase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Dict = 20 _lowerCamelCase : Optional[Any] = model_class_name(lowercase ) _lowerCamelCase : Any = model.encode(inputs_dict['input_ids'] ) _lowerCamelCase, _lowerCamelCase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowerCamelCase : List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowerCamelCase : List[str] = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) _lowerCamelCase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCamelCase : str = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) _lowerCamelCase : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowerCamelCase : int = model.decode( decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , ) _lowerCamelCase : Optional[Any] = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase ) _lowerCamelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , ): if attention_mask is None: _lowerCamelCase : Any = np.not_equal(lowercase__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _lowerCamelCase : Tuple = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCamelCase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : str = FlaxPegasusModelTester(self ) _lowerCamelCase : str = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : Tuple = self._prepare_for_class(lowercase , lowercase ) _lowerCamelCase : List[Any] = model_class(lowercase ) @jax.jit def encode_jitted(lowercase , lowercase=None , **lowercase ): return model.encode(input_ids=lowercase , attention_mask=lowercase ) with self.subTest('JIT Enabled' ): _lowerCamelCase : Any = encode_jitted(**lowercase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCamelCase : Tuple = encode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : Any = model_class(lowercase ) _lowerCamelCase : Optional[Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowerCamelCase : int = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowercase , lowercase , lowercase ): return model.decode( decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , ) with self.subTest('JIT Enabled' ): _lowerCamelCase : Any = decode_jitted(**lowercase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCamelCase : Tuple = decode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A_ ( self ): for model_class_name in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class_name.from_pretrained('google/pegasus-large' , from_pt=lowercase ) _lowerCamelCase : Optional[Any] = np.ones((1, 1) ) _lowerCamelCase : Optional[int] = model(lowercase ) self.assertIsNotNone(lowercase ) @slow def A_ ( self ): _lowerCamelCase : int = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) _lowerCamelCase : Optional[Any] = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) _lowerCamelCase : Optional[int] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] _lowerCamelCase : Dict = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] _lowerCamelCase : int = tokenizer(lowercase , return_tensors='np' , truncation=lowercase , max_length=512 , padding=lowercase ) _lowerCamelCase : Tuple = model.generate(**lowercase , num_beams=2 ).sequences _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) assert tgt_text == decoded
12
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _snake_case ( lowercase__ ): if is_torch_version('<' , '2.0.0' ) or not hasattr(lowercase__ , '_dynamo' ): return False return isinstance(lowercase__ , torch._dynamo.eval_frame.OptimizedModule ) def _snake_case ( lowercase__ , lowercase__ = True ): _lowerCamelCase : Optional[int] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _lowerCamelCase : Optional[int] = is_compiled_module(lowercase__ ) if is_compiled: _lowerCamelCase : Optional[int] = model _lowerCamelCase : int = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = model.module if not keep_fpaa_wrapper: _lowerCamelCase : Any = getattr(lowercase__ , 'forward' ) _lowerCamelCase : Tuple = model.__dict__.pop('_original_forward' , lowercase__ ) if original_forward is not None: while hasattr(lowercase__ , '__wrapped__' ): _lowerCamelCase : List[Any] = forward.__wrapped__ if forward == original_forward: break _lowerCamelCase : Optional[Any] = forward if getattr(lowercase__ , '_converted_to_transformer_engine' , lowercase__ ): convert_model(lowercase__ , to_transformer_engine=lowercase__ ) if is_compiled: _lowerCamelCase : List[Any] = model _lowerCamelCase : str = compiled_model return model def _snake_case ( ): PartialState().wait_for_everyone() def _snake_case ( lowercase__ , lowercase__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(lowercase__ , lowercase__ ) elif PartialState().local_process_index == 0: torch.save(lowercase__ , lowercase__ ) @contextmanager def _snake_case ( **lowercase__ ): for key, value in kwargs.items(): _lowerCamelCase : List[str] = str(lowercase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _snake_case ( lowercase__ ): if not hasattr(lowercase__ , '__qualname__' ) and not hasattr(lowercase__ , '__name__' ): _lowerCamelCase : List[Any] = getattr(lowercase__ , '__class__' , lowercase__ ) if hasattr(lowercase__ , '__qualname__' ): return obj.__qualname__ if hasattr(lowercase__ , '__name__' ): return obj.__name__ return str(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ ): for key, value in source.items(): if isinstance(lowercase__ , lowercase__ ): _lowerCamelCase : List[Any] = destination.setdefault(lowercase__ , {} ) merge_dicts(lowercase__ , lowercase__ ) else: _lowerCamelCase : Union[str, Any] = value return destination def _snake_case ( lowercase__ = None ): if port is None: _lowerCamelCase : List[str] = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
12
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
1
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): assert x is not None assert y is not None _lowerCamelCase : Union[str, Any] = len(lowercase__ ) _lowerCamelCase : Dict = len(lowercase__ ) # declaring the array for storing the dp values _lowerCamelCase : List[Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _lowerCamelCase : Any = 1 if x[i - 1] == y[j - 1] else 0 _lowerCamelCase : Any = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _lowerCamelCase : List[str] = '' _lowerCamelCase, _lowerCamelCase : Union[str, Any] = m, n while i > 0 and j > 0: _lowerCamelCase : Tuple = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _lowerCamelCase : List[str] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowercase__ = """AGGTAB""" lowercase__ = """GXTXAYB""" lowercase__ = 4 lowercase__ = """GTAB""" lowercase__ , lowercase__ = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
12
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
1
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowercase__ ) _lowerCamelCase : Tuple = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: _lowerCamelCase : Optional[int] = dataset_size < in_memory_max_size else: _lowerCamelCase : Tuple = False _lowerCamelCase : int = is_small_dataset(lowercase__ ) assert result == expected
12
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" def _snake_case ( lowercase__=28123 ): _lowerCamelCase : List[Any] = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _lowerCamelCase : Tuple = set() _lowerCamelCase : Any = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
12
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
1
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase , ): super().__init__() _lowerCamelCase : Optional[int] = value_function _lowerCamelCase : Optional[int] = unet _lowerCamelCase : Any = scheduler _lowerCamelCase : Dict = env _lowerCamelCase : Any = env.get_dataset() _lowerCamelCase : Any = {} for key in self.data.keys(): try: _lowerCamelCase : Union[str, Any] = self.data[key].mean() except: # noqa: E722 pass _lowerCamelCase : Optional[int] = {} for key in self.data.keys(): try: _lowerCamelCase : Optional[Any] = self.data[key].std() except: # noqa: E722 pass _lowerCamelCase : int = env.observation_space.shape[0] _lowerCamelCase : Union[str, Any] = env.action_space.shape[0] def A_ ( self , lowercase , lowercase ): return (x_in - self.means[key]) / self.stds[key] def A_ ( self , lowercase , lowercase ): return x_in * self.stds[key] + self.means[key] def A_ ( self , lowercase ): if type(lowercase ) is dict: return {k: self.to_torch(lowercase ) for k, v in x_in.items()} elif torch.is_tensor(lowercase ): return x_in.to(self.unet.device ) return torch.tensor(lowercase , device=self.unet.device ) def A_ ( self , lowercase , lowercase , lowercase ): for key, val in cond.items(): _lowerCamelCase : Union[str, Any] = val.clone() return x_in def A_ ( self , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = x.shape[0] _lowerCamelCase : Union[str, Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _lowerCamelCase : Optional[int] = torch.full((batch_size,) , lowercase , device=self.unet.device , dtype=torch.long ) for _ in range(lowercase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _lowerCamelCase : Optional[Any] = self.value_function(x.permute(0 , 2 , 1 ) , lowercase ).sample _lowerCamelCase : int = torch.autograd.grad([y.sum()] , [x] )[0] _lowerCamelCase : List[Any] = self.scheduler._get_variance(lowercase ) _lowerCamelCase : Union[str, Any] = torch.exp(0.5 * posterior_variance ) _lowerCamelCase : Optional[int] = model_std * grad _lowerCamelCase : List[Any] = 0 _lowerCamelCase : int = x.detach() _lowerCamelCase : Union[str, Any] = x + scale * grad _lowerCamelCase : Union[str, Any] = self.reset_xa(lowercase , lowercase , self.action_dim ) _lowerCamelCase : Union[str, Any] = self.unet(x.permute(0 , 2 , 1 ) , lowercase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _lowerCamelCase : Dict = self.scheduler.step(lowercase , lowercase , lowercase , predict_epsilon=lowercase )['prev_sample'] # apply conditions to the trajectory (set the initial state) _lowerCamelCase : List[str] = self.reset_xa(lowercase , lowercase , self.action_dim ) _lowerCamelCase : int = self.to_torch(lowercase ) return x, y def __call__( self , lowercase , lowercase=64 , lowercase=32 , lowercase=2 , lowercase=0.1 ): # normalize the observations and create batch dimension _lowerCamelCase : Optional[int] = self.normalize(lowercase , 'observations' ) _lowerCamelCase : int = obs[None].repeat(lowercase , axis=0 ) _lowerCamelCase : Any = {0: self.to_torch(lowercase )} _lowerCamelCase : str = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _lowerCamelCase : Tuple = randn_tensor(lowercase , device=self.unet.device ) _lowerCamelCase : Optional[Any] = self.reset_xa(lowercase , lowercase , self.action_dim ) _lowerCamelCase : int = self.to_torch(lowercase ) # run the diffusion process _lowerCamelCase, _lowerCamelCase : List[Any] = self.run_diffusion(lowercase , lowercase , lowercase , lowercase ) # sort output trajectories by value _lowerCamelCase : List[Any] = y.argsort(0 , descending=lowercase ).squeeze() _lowerCamelCase : List[str] = x[sorted_idx] _lowerCamelCase : Any = sorted_values[:, :, : self.action_dim] _lowerCamelCase : Union[str, Any] = actions.detach().cpu().numpy() _lowerCamelCase : Dict = self.de_normalize(lowercase , key='actions' ) # select the action with the highest value if y is not None: _lowerCamelCase : List[Any] = 0 else: # if we didn't run value guiding, select a random action _lowerCamelCase : Union[str, Any] = np.random.randint(0 , lowercase ) _lowerCamelCase : Union[str, Any] = denorm_actions[selected_index, 0] return denorm_actions
12
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
1
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
1
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
"""simple docstring""" import string from math import logaa def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : List[Any] = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) _lowerCamelCase : Union[str, Any] = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : int = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' _lowerCamelCase : List[str] = corpus_without_punctuation.split('\n' ) _lowerCamelCase : Union[str, Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase__ )) def _snake_case ( lowercase__ , lowercase__ , lowercase__=False ): if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def _snake_case ( lowercase__ , lowercase__ ): return round(tf * idf , 3 )
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowercase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase__ = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) _lowerCamelCase : Dict = self.transformer_dir shutil.copy( os.path.join(lowercase , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def A_ ( self ): _lowerCamelCase : int = 'src/transformers' shutil.rmtree(self.transformer_dir ) def A_ ( self , lowercase , lowercase , lowercase , lowercase=None ): _lowerCamelCase : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _lowerCamelCase : Union[str, Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _lowerCamelCase : Tuple = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCamelCase : Tuple = black.format_str(lowercase , mode=lowercase ) _lowerCamelCase : Any = os.path.join(self.transformer_dir , 'new_code.py' ) with open(lowercase , 'w' , newline='\n' ) as f: f.write(lowercase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase ) with open(lowercase , 'r' ) as f: self.assertTrue(f.read() , lowercase ) def A_ ( self ): _lowerCamelCase : Tuple = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(lowercase , lowercase ) def A_ ( self ): # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowercase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowercase ) , ) # Copy consistency with a really long name _lowerCamelCase : int = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub('Bert' , lowercase , lowercase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowercase , overwrite_result=re.sub('Bert' , 'TestModel' , lowercase ) , ) def A_ ( self ): _lowerCamelCase : List[Any] = check_copies.LOCALIZED_READMES['README_zh-hans.md'] _lowerCamelCase : List[str] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _lowerCamelCase : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowerCamelCase : Any = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _lowerCamelCase, _lowerCamelCase : Any = check_copies.convert_to_localized_md( lowercase , lowercase , localized_readme['format_model_list'] ) self.assertFalse(lowercase ) self.assertEqual(lowercase , lowercase ) _lowerCamelCase, _lowerCamelCase : List[Any] = check_copies.convert_to_localized_md( lowercase , lowercase , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase ) _lowerCamelCase : List[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _lowerCamelCase : Dict = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowerCamelCase : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowerCamelCase, _lowerCamelCase : Tuple = check_copies.convert_to_localized_md( lowercase , lowercase , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(lowercase , lowercase )
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ ): _lowerCamelCase : str = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: _lowerCamelCase : Tuple = 1024 _lowerCamelCase : int = 4096 _lowerCamelCase : List[str] = 24 _lowerCamelCase : Tuple = 16 _lowerCamelCase : Union[str, Any] = [5, 11, 17, 23] _lowerCamelCase : str = [256, 512, 1024, 1024] _lowerCamelCase : str = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _lowerCamelCase : Tuple = 768 _lowerCamelCase : Optional[int] = [1, 1, 1, 0.5] _lowerCamelCase : List[Any] = [256, 512, 768, 768] _lowerCamelCase : Union[str, Any] = 150 _lowerCamelCase : int = 16 _lowerCamelCase : Optional[Any] = (1, 384, 384) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Optional[int] = 'project' if "ade" in checkpoint_url: _lowerCamelCase : List[str] = True _lowerCamelCase : Dict = 768 _lowerCamelCase : Optional[int] = [1, 1, 1, 0.5] _lowerCamelCase : Tuple = 150 _lowerCamelCase : str = 16 _lowerCamelCase : Dict = 'huggingface/label-files' _lowerCamelCase : int = 'ade20k-id2label.json' _lowerCamelCase : Dict = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' ) ) , 'r' ) ) _lowerCamelCase : Dict = {int(lowercase__ ): v for k, v in idalabel.items()} _lowerCamelCase : Tuple = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = [1, 150, 480, 480] return config, expected_shape def _snake_case ( lowercase__ ): _lowerCamelCase : int = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def _snake_case ( lowercase__ ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCamelCase : str = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _lowerCamelCase : Optional[int] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _lowerCamelCase : str = name.replace('patch_embed' , '' ) if "pos_embed" in name: _lowerCamelCase : Any = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _lowerCamelCase : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _lowerCamelCase : Union[str, Any] = name.replace('proj' , 'projection' ) if "blocks" in name: _lowerCamelCase : Any = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _lowerCamelCase : Tuple = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : Optional[Any] = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: _lowerCamelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: _lowerCamelCase : int = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _lowerCamelCase : Dict = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _lowerCamelCase : Union[str, Any] = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _lowerCamelCase : Dict = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _lowerCamelCase : Any = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _lowerCamelCase : Union[str, Any] = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _lowerCamelCase : Dict = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _lowerCamelCase : Union[str, Any] = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCamelCase : List[Any] = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _lowerCamelCase : int = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _lowerCamelCase : str = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _lowerCamelCase : Optional[int] = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _lowerCamelCase : List[str] = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _lowerCamelCase : List[Any] = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCamelCase : Dict = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCamelCase : str = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCamelCase : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _lowerCamelCase : Any = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _lowerCamelCase : Optional[Any] = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _lowerCamelCase : List[str] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _lowerCamelCase : Any = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _lowerCamelCase : List[Any] = name.replace('pretrained' , 'dpt' ) if "bn" in name: _lowerCamelCase : Dict = name.replace('bn' , 'batch_norm' ) if "head" in name: _lowerCamelCase : Any = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _lowerCamelCase : List[Any] = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _lowerCamelCase : int = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: _lowerCamelCase : str = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: _lowerCamelCase : Dict = name.replace('..' , '.' ) if "stem.conv" in name: _lowerCamelCase : Union[str, Any] = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _lowerCamelCase : Union[str, Any] = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: _lowerCamelCase : Tuple = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: _lowerCamelCase : List[Any] = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: _lowerCamelCase : List[Any] = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: _lowerCamelCase : Optional[Any] = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: _lowerCamelCase : Any = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def _snake_case ( lowercase__ , lowercase__ ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Dict = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _lowerCamelCase : Optional[Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[Any] = in_proj_weight[: config.hidden_size, :] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Any = in_proj_bias[-config.hidden_size :] def _snake_case ( ): _lowerCamelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : str = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase, _lowerCamelCase : Any = get_dpt_config(lowercase__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _lowerCamelCase : str = torch.load(lowercase__ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(lowercase__ ) # rename keys for key in state_dict.copy().keys(): _lowerCamelCase : Any = state_dict.pop(lowercase__ ) _lowerCamelCase : str = val # read in qkv matrices read_in_q_k_v(lowercase__ , lowercase__ ) # load HuggingFace model _lowerCamelCase : List[Any] = DPTForSemanticSegmentation(lowercase__ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() # Check outputs on an image _lowerCamelCase : Optional[int] = 480 if 'ade' in checkpoint_url else 384 _lowerCamelCase : Union[str, Any] = DPTImageProcessor(size=lowercase__ ) _lowerCamelCase : Optional[int] = prepare_img() _lowerCamelCase : str = image_processor(lowercase__ , return_tensors='pt' ) # forward pass _lowerCamelCase : Tuple = model(**lowercase__ ).logits if 'ade' in checkpoint_url else model(**lowercase__ ).predicted_depth if show_prediction: _lowerCamelCase : Optional[int] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=lowercase__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) lowercase__ = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=99 , lowercase=13 , lowercase=16 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=2 , lowercase=32 , lowercase=4 , lowercase=4 , lowercase=30 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=None , ): _lowerCamelCase : int = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[Any] = decoder_seq_length # For common tests _lowerCamelCase : List[Any] = self.decoder_seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : Optional[Any] = use_attention_mask _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : str = d_model _lowerCamelCase : List[str] = d_model _lowerCamelCase : Union[str, Any] = decoder_layers _lowerCamelCase : Dict = decoder_layers _lowerCamelCase : Optional[Any] = decoder_ffn_dim _lowerCamelCase : List[str] = decoder_attention_heads _lowerCamelCase : Any = decoder_attention_heads _lowerCamelCase : List[str] = eos_token_id _lowerCamelCase : Any = bos_token_id _lowerCamelCase : int = pad_token_id _lowerCamelCase : Any = decoder_start_token_id _lowerCamelCase : Optional[Any] = use_cache _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Dict = decoder_seq_length _lowerCamelCase : Optional[int] = 2 _lowerCamelCase : Optional[Any] = 1 def A_ ( self ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCamelCase : str = None if self.use_attention_mask: _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCamelCase : Union[str, Any] = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCamelCase : List[Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def A_ ( self , lowercase , lowercase , lowercase , lowercase , ): _lowerCamelCase : Dict = True _lowerCamelCase : List[Any] = TrOCRDecoder(config=lowercase ).to(lowercase ).eval() _lowerCamelCase : Union[str, Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCamelCase : Union[str, Any] = model(lowercase , use_cache=lowercase ) _lowerCamelCase : Optional[Any] = model(lowercase ) _lowerCamelCase : Dict = model(lowercase , use_cache=lowercase ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) + 1 ) _lowerCamelCase : str = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids _lowerCamelCase : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCamelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase : List[str] = model(lowercase )['last_hidden_state'] _lowerCamelCase : Union[str, Any] = model(lowercase , past_key_values=lowercase )['last_hidden_state'] # select random slice _lowerCamelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase : List[str] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCamelCase : Tuple = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowercase , lowercase , atol=1E-3 ) def A_ ( self ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = config_and_inputs _lowerCamelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase__ = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase__ = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase__ = True lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=lowercase ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): pass def A_ ( self ): pass def A_ ( self ): pass def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowercase ) def A_ ( self ): return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def A_ ( self ): pass
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _snake_case ( lowercase__ ): def wrapper(*lowercase__ , **lowercase__ ): _lowerCamelCase : Tuple = timeit.default_timer() _lowerCamelCase : Tuple = func(*lowercase__ , **lowercase__ ) _lowerCamelCase : str = timeit.default_timer() - starttime return delta _lowerCamelCase : List[Any] = func.__name__ return wrapper def _snake_case ( lowercase__ , lowercase__=100 , lowercase__=None ): _lowerCamelCase : Dict = [] _lowerCamelCase : List[str] = seq_shapes or {} for i in range(lowercase__ ): _lowerCamelCase : Optional[int] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowercase__ , _ArrayXD ): _lowerCamelCase : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowercase__ , datasets.Value ): if v.dtype == "string": _lowerCamelCase : Any = 'The small grey turtle was surprisingly fast when challenged.' else: _lowerCamelCase : List[str] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowercase__ , datasets.Sequence ): while isinstance(lowercase__ , datasets.Sequence ): _lowerCamelCase : Tuple = v.feature _lowerCamelCase : List[Any] = seq_shapes[k] _lowerCamelCase : int = np.random.rand(*lowercase__ ).astype(v.dtype ) _lowerCamelCase : List[str] = data dummy_data.append((i, example) ) return dummy_data def _snake_case ( lowercase__ , lowercase__ , lowercase__=100 , lowercase__=None ): _lowerCamelCase : List[str] = generate_examples(lowercase__ , num_examples=lowercase__ , seq_shapes=lowercase__ ) with ArrowWriter(features=lowercase__ , path=lowercase__ ) as writer: for key, record in dummy_data: _lowerCamelCase : str = features.encode_example(lowercase__ ) writer.write(lowercase__ ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) _lowerCamelCase : Optional[int] = datasets.Dataset.from_file(filename=lowercase__ , info=datasets.DatasetInfo(features=lowercase__ ) ) return dataset
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # Initialise PyTorch model _lowerCamelCase : Any = FunnelConfig.from_json_file(lowercase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCamelCase : Optional[int] = FunnelBaseModel(lowercase__ ) if base_model else FunnelModel(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) lowercase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
12
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
1
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _snake_case ( lowercase__ , lowercase__=False ): _lowerCamelCase : List[Any] = OmegaConf.load(lowercase__ ) if display: print(yaml.dump(OmegaConf.to_container(lowercase__ ) ) ) return config def _snake_case ( lowercase__ , lowercase__=None , lowercase__=None ): if conf_path is None: _lowerCamelCase : List[Any] = './model_checkpoints/vqgan_only.yaml' _lowerCamelCase : int = load_config(lowercase__ , display=lowercase__ ) _lowerCamelCase : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: _lowerCamelCase : List[str] = './model_checkpoints/vqgan_only.pt' _lowerCamelCase : str = torch.load(lowercase__ , map_location=lowercase__ ) if ".ckpt" in ckpt_path: _lowerCamelCase : Optional[Any] = sd['state_dict'] model.load_state_dict(lowercase__ , strict=lowercase__ ) model.to(lowercase__ ) del sd return model def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = model.encode(lowercase__ ) print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) _lowerCamelCase : int = model.decode(lowercase__ ) return xrec def _snake_case ( lowercase__ , lowercase__=False ): _lowerCamelCase, _lowerCamelCase : Optional[int] = string.rsplit('.' , 1 ) if reload: _lowerCamelCase : str = importlib.import_module(lowercase__ ) importlib.reload(lowercase__ ) return getattr(importlib.import_module(lowercase__ , package=lowercase__ ) , cls ) def _snake_case ( lowercase__ ): if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def _snake_case ( lowercase__ , lowercase__ , lowercase__=True , lowercase__=True ): _lowerCamelCase : Optional[int] = instantiate_from_config(lowercase__ ) if sd is not None: model.load_state_dict(lowercase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # load the specified checkpoint if ckpt: _lowerCamelCase : str = torch.load(lowercase__ , map_location='cpu' ) _lowerCamelCase : int = pl_sd['global_step'] print(f'''loaded model from global step {global_step}.''' ) else: _lowerCamelCase : Any = {'state_dict': None} _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Union[str, Any] = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=lowercase__ , eval_mode=lowercase__ )['model'] return model, global_step
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowercase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowercase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowercase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : str = len([g for position, g in enumerate(lowercase__ ) if g == main_target[position]] ) return (item, float(lowercase__ )) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Any = random.randint(0 , len(lowercase__ ) - 1 ) _lowerCamelCase : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] _lowerCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : List[str] = list(lowercase__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _lowerCamelCase : Tuple = random.choice(lowercase__ ) return "".join(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , ): _lowerCamelCase : Tuple = [] # Generate more children proportionally to the fitness score. _lowerCamelCase : str = int(parent_a[1] * 100 ) + 1 _lowerCamelCase : Dict = 10 if child_n >= 10 else child_n for _ in range(lowercase__ ): _lowerCamelCase : str = population_score[random.randint(0 , lowercase__ )][0] _lowerCamelCase, _lowerCamelCase : Dict = crossover(parent_a[0] , lowercase__ ) # Append new string to the population list. pop.append(mutate(lowercase__ , lowercase__ ) ) pop.append(mutate(lowercase__ , lowercase__ ) ) return pop def _snake_case ( lowercase__ , lowercase__ , lowercase__ = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _lowerCamelCase : str = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase__ ) # Verify that the target contains no genes besides the ones inside genes variable. _lowerCamelCase : Tuple = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _lowerCamelCase : Tuple = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase__ ) # Generate random starting population. _lowerCamelCase : Tuple = [] for _ in range(lowercase__ ): population.append(''.join([random.choice(lowercase__ ) for i in range(len(lowercase__ ) )] ) ) # Just some logs to know what the algorithms is doing. _lowerCamelCase, _lowerCamelCase : Optional[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _lowerCamelCase : Union[str, Any] = [evaluate(lowercase__ , lowercase__ ) for item in population] # Check if there is a matching evolution. _lowerCamelCase : List[str] = sorted(lowercase__ , key=lambda lowercase__ : x[1] , reverse=lowercase__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _lowerCamelCase : Tuple = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase__ ) # Normalize population score to be between 0 and 1. _lowerCamelCase : str = [ (item, score / len(lowercase__ )) for item, score in population_score ] # This is selection for i in range(lowercase__ ): population.extend(select(population_score[int(lowercase__ )] , lowercase__ , lowercase__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase__ ) > N_POPULATION: break if __name__ == "__main__": lowercase__ = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) lowercase__ = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) lowercase__ , lowercase__ , lowercase__ = basic(target_str, genes_list) print( F"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
12
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
1
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowercase__ = logging.get_logger(__name__) # General docstring lowercase__ = """RegNetConfig""" # Base docstring lowercase__ = """facebook/regnet-y-040""" lowercase__ = [1, 1088, 7, 7] # Image classification docstring lowercase__ = """facebook/regnet-y-040""" lowercase__ = """tabby, tabby cat""" lowercase__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 3 , lowercase = 1 , lowercase = 1 , lowercase = "relu" , **lowercase , ): super().__init__(**lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _lowerCamelCase : Optional[int] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _lowerCamelCase : List[str] = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=lowercase , strides=lowercase , padding='VALID' , groups=lowercase , use_bias=lowercase , name='convolution' , ) _lowerCamelCase : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) _lowerCamelCase : Optional[Any] = ACTaFN[activation] if activation is not None else tf.identity def A_ ( self , lowercase ): _lowerCamelCase : Any = self.convolution(self.padding(lowercase ) ) _lowerCamelCase : List[str] = self.normalization(lowercase ) _lowerCamelCase : Tuple = self.activation(lowercase ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : int = config.num_channels _lowerCamelCase : int = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def A_ ( self , lowercase ): _lowerCamelCase : Optional[Any] = shape_list(lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _lowerCamelCase : Optional[int] = tf.transpose(lowercase , perm=(0, 2, 3, 1) ) _lowerCamelCase : Dict = self.embedder(lowercase ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 2 , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : List[str] = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=1 , strides=lowercase , use_bias=lowercase , name='convolution' ) _lowerCamelCase : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def A_ ( self , lowercase , lowercase = False ): return self.normalization(self.convolution(lowercase ) , training=lowercase ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : str = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) _lowerCamelCase : Union[str, Any] = [ tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def A_ ( self , lowercase ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _lowerCamelCase : Tuple = self.pooler(lowercase ) for layer_module in self.attention: _lowerCamelCase : List[str] = layer_module(lowercase ) _lowerCamelCase : Tuple = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : Dict = in_channels != out_channels or stride != 1 _lowerCamelCase : Dict = max(1 , out_channels // config.groups_width ) _lowerCamelCase : Any = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _lowerCamelCase : str = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.2' ), ] _lowerCamelCase : Union[str, Any] = ACTaFN[config.hidden_act] def A_ ( self , lowercase ): _lowerCamelCase : Optional[int] = hidden_state for layer_module in self.layers: _lowerCamelCase : Optional[int] = layer_module(lowercase ) _lowerCamelCase : str = self.shortcut(lowercase ) hidden_state += residual _lowerCamelCase : Tuple = self.activation(lowercase ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : Tuple = in_channels != out_channels or stride != 1 _lowerCamelCase : List[Any] = max(1 , out_channels // config.groups_width ) _lowerCamelCase : List[Any] = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) _lowerCamelCase : List[str] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.3' ), ] _lowerCamelCase : List[str] = ACTaFN[config.hidden_act] def A_ ( self , lowercase ): _lowerCamelCase : Optional[Any] = hidden_state for layer_module in self.layers: _lowerCamelCase : Optional[Any] = layer_module(lowercase ) _lowerCamelCase : Any = self.shortcut(lowercase ) hidden_state += residual _lowerCamelCase : Tuple = self.activation(lowercase ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : Dict = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer _lowerCamelCase : List[Any] = [ # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , lowercase , stride=lowercase , name='layers.0' ), *[layer(lowercase , lowercase , lowercase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def A_ ( self , lowercase ): for layer_module in self.layers: _lowerCamelCase : Dict = layer_module(lowercase ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : List[str] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) _lowerCamelCase : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase , lowercase , lowercase , depth=lowercase , name=F'''stages.{i+1}''' ) ) def A_ ( self , lowercase , lowercase = False , lowercase = True ): _lowerCamelCase : int = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCamelCase : List[Any] = hidden_states + (hidden_state,) _lowerCamelCase : Any = stage_module(lowercase ) if output_hidden_states: _lowerCamelCase : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase__ = RegNetConfig def __init__( self , lowercase , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : Dict = config _lowerCamelCase : Optional[Any] = TFRegNetEmbeddings(lowercase , name='embedder' ) _lowerCamelCase : int = TFRegNetEncoder(lowercase , name='encoder' ) _lowerCamelCase : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) @unpack_inputs def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = False , ): _lowerCamelCase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : Dict = self.embedder(lowercase , training=lowercase ) _lowerCamelCase : List[Any] = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) _lowerCamelCase : Optional[Any] = encoder_outputs[0] _lowerCamelCase : str = self.pooler(lowercase ) # Change to NCHW output format have uniformity in the modules _lowerCamelCase : Any = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) _lowerCamelCase : List[str] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _lowerCamelCase : int = tuple([tf.transpose(lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = RegNetConfig lowerCamelCase__ = """regnet""" lowerCamelCase__ = """pixel_values""" @property def A_ ( self ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowercase__ = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ lowercase__ = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""", lowercase, ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): super().__init__(lowercase , *lowercase , **lowercase ) _lowerCamelCase : Any = TFRegNetMainLayer(lowercase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=False , ): _lowerCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : List[Any] = self.regnet( pixel_values=lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, lowercase, ) class lowerCAmelCase__ ( lowercase, lowercase ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): super().__init__(lowercase , *lowercase , **lowercase ) _lowerCamelCase : List[Any] = config.num_labels _lowerCamelCase : int = TFRegNetMainLayer(lowercase , name='regnet' ) # classification head _lowerCamelCase : List[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A_ ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase=False , ): _lowerCamelCase : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : Tuple = self.regnet( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) _lowerCamelCase : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] _lowerCamelCase : Any = self.classifier[0](lowercase ) _lowerCamelCase : Dict = self.classifier[1](lowercase ) _lowerCamelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowercase , logits=lowercase ) if not return_dict: _lowerCamelCase : Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = DistilBertTokenizer lowerCamelCase__ = DistilBertTokenizerFast lowerCamelCase__ = True @slow def A_ ( self ): _lowerCamelCase : Dict = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) _lowerCamelCase : str = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) _lowerCamelCase : str = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase ) _lowerCamelCase : int = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=lowercase , dtype=jnp.bfloataa ) _lowerCamelCase, _lowerCamelCase : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=lowercase , from_pt=lowercase , dtype=jnp.bfloataa ) _lowerCamelCase : Any = controlnet_params _lowerCamelCase : List[Any] = 'bird' _lowerCamelCase : Union[str, Any] = jax.device_count() _lowerCamelCase : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) _lowerCamelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) _lowerCamelCase : Optional[Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) _lowerCamelCase : Dict = jax.random.PRNGKey(0 ) _lowerCamelCase : str = jax.random.split(lowercase , jax.device_count() ) _lowerCamelCase : str = replicate(lowercase ) _lowerCamelCase : List[Any] = shard(lowercase ) _lowerCamelCase : str = shard(lowercase ) _lowerCamelCase : int = pipe( prompt_ids=lowercase , image=lowercase , params=lowercase , prng_seed=lowercase , num_inference_steps=50 , jit=lowercase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _lowerCamelCase : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : Optional[int] = images[0, 253:256, 253:256, -1] _lowerCamelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : Dict = jnp.array( [0.16_79_69, 0.11_66_99, 0.08_15_43, 0.15_42_97, 0.13_28_12, 0.10_88_87, 0.16_99_22, 0.16_99_22, 0.20_50_78] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase, _lowerCamelCase : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=lowercase , dtype=jnp.bfloataa ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=lowercase , from_pt=lowercase , dtype=jnp.bfloataa ) _lowerCamelCase : Optional[Any] = controlnet_params _lowerCamelCase : List[str] = 'Chef in the kitchen' _lowerCamelCase : List[Any] = jax.device_count() _lowerCamelCase : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) _lowerCamelCase : Any = pipe.prepare_image_inputs([pose_image] * num_samples ) _lowerCamelCase : Any = jax.random.PRNGKey(0 ) _lowerCamelCase : Any = jax.random.split(lowercase , jax.device_count() ) _lowerCamelCase : Optional[int] = replicate(lowercase ) _lowerCamelCase : str = shard(lowercase ) _lowerCamelCase : Tuple = shard(lowercase ) _lowerCamelCase : Any = pipe( prompt_ids=lowercase , image=lowercase , params=lowercase , prng_seed=lowercase , num_inference_steps=50 , jit=lowercase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _lowerCamelCase : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : str = images[0, 253:256, 253:256, -1] _lowerCamelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : Optional[Any] = jnp.array( [[0.27_14_84, 0.26_17_19, 0.27_53_91, 0.27_73_44, 0.27_92_97, 0.29_10_16, 0.29_49_22, 0.30_27_34, 0.30_27_34]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
12
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
1
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
1
"""simple docstring""" def _snake_case ( lowercase__ = 10 , lowercase__ = 22 ): _lowerCamelCase : Dict = range(1 , lowercase__ ) _lowerCamelCase : List[str] = range(1 , lowercase__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
12
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
1
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _snake_case ( ): _lowerCamelCase : Optional[Any] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _lowerCamelCase : Tuple = Dataset.from_dict(lowercase__ ) return dataset class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : int = get_dataset() _lowerCamelCase : List[Any] = make_duplicate_clusters(lowercase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A_ ( self ): _lowerCamelCase : List[Any] = get_dataset() _lowerCamelCase, _lowerCamelCase : str = deduplicate_dataset(lowercase ) self.assertEqual(len(lowercase ) , 2 ) print(lowercase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , lowercase )
12
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """bart""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowercase=50265 , lowercase=1024 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=0.0 , lowercase=0.0 , lowercase="gelu" , lowercase=1024 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=0.0 , lowercase=False , lowercase=True , lowercase=3 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=True , lowercase=2 , lowercase=2 , **lowercase , ): _lowerCamelCase : Dict = vocab_size _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : Dict = d_model _lowerCamelCase : Optional[Any] = encoder_ffn_dim _lowerCamelCase : str = encoder_layers _lowerCamelCase : Any = encoder_attention_heads _lowerCamelCase : str = decoder_ffn_dim _lowerCamelCase : Optional[int] = decoder_layers _lowerCamelCase : int = decoder_attention_heads _lowerCamelCase : int = dropout _lowerCamelCase : Optional[int] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : int = activation_function _lowerCamelCase : Tuple = init_std _lowerCamelCase : Any = encoder_layerdrop _lowerCamelCase : Union[str, Any] = decoder_layerdrop _lowerCamelCase : List[Any] = classifier_dropout _lowerCamelCase : Union[str, Any] = use_cache _lowerCamelCase : int = encoder_layers _lowerCamelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , lowercase ): _lowerCamelCase : int = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @property def A_ ( self ): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowerCamelCase : str = {0: 'batch'} _lowerCamelCase : List[str] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _lowerCamelCase : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} _lowerCamelCase : Any = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCamelCase : List[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowerCamelCase, _lowerCamelCase : Tuple = self.num_layers for i in range(lowercase ): _lowerCamelCase : Optional[Any] = {0: 'batch', 2: 'past_sequence + sequence'} _lowerCamelCase : int = {0: 'batch', 2: 'past_sequence + sequence'} else: _lowerCamelCase : Tuple = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def A_ ( self ): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Any = super().outputs else: _lowerCamelCase : Tuple = super(lowercase , self ).outputs if self.use_past: _lowerCamelCase, _lowerCamelCase : Tuple = self.num_layers for i in range(lowercase ): _lowerCamelCase : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} _lowerCamelCase : Union[str, Any] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): _lowerCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs _lowerCamelCase : Dict = seq_length if not self.use_past else 1 _lowerCamelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) _lowerCamelCase : Optional[int] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCamelCase : List[str] = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCamelCase, _lowerCamelCase : Optional[int] = common_inputs['input_ids'].shape _lowerCamelCase : Dict = common_inputs['decoder_input_ids'].shape[1] _lowerCamelCase, _lowerCamelCase : List[str] = self.num_attention_heads _lowerCamelCase : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : Union[str, Any] = decoder_seq_length + 3 _lowerCamelCase : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCamelCase : Dict = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowercase , lowercase )] , dim=1 ) _lowerCamelCase : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCamelCase, _lowerCamelCase : str = self.num_layers _lowerCamelCase : Tuple = min(lowercase , lowercase ) _lowerCamelCase : int = max(lowercase , lowercase ) - min_num_layers _lowerCamelCase : Any = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. _lowerCamelCase : Optional[Any] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): _lowerCamelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCamelCase, _lowerCamelCase : Any = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowerCamelCase : List[str] = seqlen + 2 _lowerCamelCase, _lowerCamelCase : List[Any] = self.num_layers _lowerCamelCase, _lowerCamelCase : List[str] = self.num_attention_heads _lowerCamelCase : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : str = common_inputs['attention_mask'].dtype _lowerCamelCase : List[str] = torch.cat( [common_inputs['attention_mask'], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) _lowerCamelCase : Union[str, Any] = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase : List[Any] = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase : List[str] = tokenizer.num_special_tokens_to_add(lowercase ) _lowerCamelCase : int = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase : str = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCamelCase : List[str] = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) elif self.task == "causal-lm": _lowerCamelCase : Tuple = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: _lowerCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A_ ( self , lowercase , lowercase , lowercase , lowercase ): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : int = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: _lowerCamelCase : List[Any] = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase )
12
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
1
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = """https://openaipublic.azureedge.net/jukebox/models/""" lowercase__ = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def _snake_case ( lowercase__ ): if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCamelCase : List[str] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCamelCase : List[Any] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCamelCase : Any = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCamelCase : List[str] = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCamelCase : List[str] = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCamelCase : Optional[int] = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCamelCase : Optional[int] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCamelCase : List[str] = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = {} import re _lowerCamelCase : Any = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCamelCase : Union[str, Any] = re.compile( r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCamelCase : Dict = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCamelCase : Dict = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCamelCase : Tuple = re.compile( r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCamelCase : str = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCamelCase : Optional[Any] = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCamelCase : Tuple = re.compile( r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCamelCase : List[Any] = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowercase__ ): _lowerCamelCase : Optional[int] = re_encoder_block_conv_in.match(lowercase__ ) _lowerCamelCase : List[str] = regex_match.groups() _lowerCamelCase : List[str] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCamelCase : List[Any] = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' _lowerCamelCase : Optional[int] = re_encoder_block_conv_in.sub(lowercase__ , lowercase__ ) elif re_encoder_block_resnet.fullmatch(lowercase__ ): _lowerCamelCase : Optional[int] = re_encoder_block_resnet.match(lowercase__ ) _lowerCamelCase : Union[str, Any] = regex_match.groups() _lowerCamelCase : List[str] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCamelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCamelCase : str = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' _lowerCamelCase : int = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _lowerCamelCase : Union[str, Any] = prefix + resnet_block _lowerCamelCase : List[str] = re_encoder_block_resnet.sub(lowercase__ , lowercase__ ) elif re_encoder_block_proj_out.fullmatch(lowercase__ ): _lowerCamelCase : Tuple = re_encoder_block_proj_out.match(lowercase__ ) _lowerCamelCase : int = regex_match.groups() _lowerCamelCase : int = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' _lowerCamelCase : int = re_encoder_block_proj_out.sub(lowercase__ , lowercase__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowercase__ ): _lowerCamelCase : Tuple = re_decoder_block_conv_out.match(lowercase__ ) _lowerCamelCase : str = regex_match.groups() _lowerCamelCase : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCamelCase : Dict = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' _lowerCamelCase : Optional[Any] = re_decoder_block_conv_out.sub(lowercase__ , lowercase__ ) elif re_decoder_block_resnet.fullmatch(lowercase__ ): _lowerCamelCase : int = re_decoder_block_resnet.match(lowercase__ ) _lowerCamelCase : Optional[Any] = regex_match.groups() _lowerCamelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCamelCase : Union[str, Any] = {'1': 1, '3': 2}[groups[-2]] _lowerCamelCase : int = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' _lowerCamelCase : Tuple = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _lowerCamelCase : Tuple = prefix + resnet_block _lowerCamelCase : int = re_decoder_block_resnet.sub(lowercase__ , lowercase__ ) elif re_decoder_block_proj_in.fullmatch(lowercase__ ): _lowerCamelCase : Optional[Any] = re_decoder_block_proj_in.match(lowercase__ ) _lowerCamelCase : Optional[Any] = regex_match.groups() _lowerCamelCase : str = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' _lowerCamelCase : Optional[Any] = re_decoder_block_proj_in.sub(lowercase__ , lowercase__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowercase__ ): _lowerCamelCase : List[str] = re_prior_cond_conv_out.match(lowercase__ ) _lowerCamelCase : Union[str, Any] = regex_match.groups() _lowerCamelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCamelCase : List[str] = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' _lowerCamelCase : int = re_prior_cond_conv_out.sub(lowercase__ , lowercase__ ) elif re_prior_cond_resnet.fullmatch(lowercase__ ): _lowerCamelCase : Union[str, Any] = re_prior_cond_resnet.match(lowercase__ ) _lowerCamelCase : Optional[int] = regex_match.groups() _lowerCamelCase : List[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCamelCase : List[Any] = {'1': 1, '3': 2}[groups[-2]] _lowerCamelCase : Any = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' _lowerCamelCase : List[Any] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _lowerCamelCase : List[str] = prefix + resnet_block _lowerCamelCase : Union[str, Any] = re_prior_cond_resnet.sub(lowercase__ , lowercase__ ) elif re_prior_cond_proj_in.fullmatch(lowercase__ ): _lowerCamelCase : Optional[int] = re_prior_cond_proj_in.match(lowercase__ ) _lowerCamelCase : List[Any] = regex_match.groups() _lowerCamelCase : Dict = f'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' _lowerCamelCase : int = re_prior_cond_proj_in.sub(lowercase__ , lowercase__ ) # keep original key else: _lowerCamelCase : int = original_key _lowerCamelCase : Tuple = replace_key(lowercase__ ) if f'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(f'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[f'''{key_prefix}.{key}'''].shape: _lowerCamelCase : Optional[Any] = model_state_dict[f'''{key_prefix}.{key}'''] print(f'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) _lowerCamelCase : int = original_key _lowerCamelCase : List[Any] = original_key _lowerCamelCase : int = value return new_dict @torch.no_grad() def _snake_case ( lowercase__=None , lowercase__=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): _lowerCamelCase : List[str] = requests.get(f'''{PREFIX}{file}''' , allow_redirects=lowercase__ ) os.makedirs(f'''{pytorch_dump_folder_path}/''' , exist_ok=lowercase__ ) open(f'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , 'wb' ).write(r.content ) _lowerCamelCase : int = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCamelCase : List[str] = JukeboxConfig.from_pretrained(lowercase__ ) _lowerCamelCase : int = JukeboxModel(lowercase__ ) _lowerCamelCase : Any = [] _lowerCamelCase : Dict = {} for i, dict_name in enumerate(lowercase__ ): _lowerCamelCase : int = torch.load(f'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['model'] _lowerCamelCase : List[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCamelCase : Dict = old_dic[k] elif k.endswith('.w' ): _lowerCamelCase : Optional[int] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCamelCase : str = old_dic[k] else: _lowerCamelCase : Tuple = old_dic[k] _lowerCamelCase : Union[str, Any] = 'vqvae' if i == 0 else f'''priors.{3 - i}''' _lowerCamelCase : List[str] = fix_jukebox_keys(lowercase__ , model.state_dict() , lowercase__ , lowercase__ ) weight_dict.append(lowercase__ ) _lowerCamelCase : Union[str, Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowercase__ ) for i in range(len(lowercase__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) with open(f'''{pytorch_dump_folder_path}/mapping.json''' , 'w' ) as txtfile: json.dump(lowercase__ , lowercase__ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) return weight_dict if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) lowercase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1
"""simple docstring""" import numpy # List of input, output pairs lowercase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowercase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowercase__ = [2, 4, 1, 5] lowercase__ = len(train_data) lowercase__ = 0.009 def _snake_case ( lowercase__ , lowercase__="train" ): return calculate_hypothesis_value(lowercase__ , lowercase__ ) - output( lowercase__ , lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : int = 0 for i in range(len(lowercase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _snake_case ( lowercase__ , lowercase__ ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _snake_case ( lowercase__ , lowercase__ ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _snake_case ( lowercase__ , lowercase__=m ): _lowerCamelCase : Optional[int] = 0 for i in range(lowercase__ ): if index == -1: summation_value += _error(lowercase__ ) else: summation_value += _error(lowercase__ ) * train_data[i][0][index] return summation_value def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = summation_of_cost_derivative(lowercase__ , lowercase__ ) / m return cost_derivative_value def _snake_case ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output _lowerCamelCase : Tuple = 0.0_0_0_0_0_2 _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Optional[int] = 0 while True: j += 1 _lowerCamelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(lowercase__ ) ): _lowerCamelCase : List[Any] = get_cost_derivative(i - 1 ) _lowerCamelCase : List[str] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowercase__ , lowercase__ , atol=lowercase__ , rtol=lowercase__ , ): break _lowerCamelCase : List[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def _snake_case ( ): for i in range(len(lowercase__ ) ): print(('Actual output value:', output(lowercase__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(lowercase__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np lowercase__ = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) lowercase__ = None def _snake_case ( ): _lowerCamelCase : int = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=lowercase__ , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=lowercase__ , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _lowerCamelCase : int = bool(qa['answers']['text'] ) return qid_to_has_ans def _snake_case ( lowercase__ ): def remove_articles(lowercase__ ): return ARTICLES_REGEX.sub(' ' , lowercase__ ) def white_space_fix(lowercase__ ): return " ".join(text.split() ) def remove_punc(lowercase__ ): _lowerCamelCase : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase__ ) ) ) ) def _snake_case ( lowercase__ ): if not s: return [] return normalize_answer(lowercase__ ).split() def _snake_case ( lowercase__ , lowercase__ ): return int(normalize_answer(lowercase__ ) == normalize_answer(lowercase__ ) ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = get_tokens(lowercase__ ) _lowerCamelCase : str = get_tokens(lowercase__ ) _lowerCamelCase : Any = collections.Counter(lowercase__ ) & collections.Counter(lowercase__ ) _lowerCamelCase : Union[str, Any] = sum(common.values() ) if len(lowercase__ ) == 0 or len(lowercase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _lowerCamelCase : List[Any] = 1.0 * num_same / len(lowercase__ ) _lowerCamelCase : List[str] = 1.0 * num_same / len(lowercase__ ) _lowerCamelCase : str = (2 * precision * recall) / (precision + recall) return fa def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _lowerCamelCase : List[Any] = qa['id'] _lowerCamelCase : int = [t for t in qa['answers']['text'] if normalize_answer(lowercase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _lowerCamelCase : List[Any] = [''] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue _lowerCamelCase : Tuple = preds[qid] # Take max over all gold answers _lowerCamelCase : str = max(compute_exact(lowercase__ , lowercase__ ) for a in gold_answers ) _lowerCamelCase : Optional[int] = max(compute_fa(lowercase__ , lowercase__ ) for a in gold_answers ) return exact_scores, fa_scores def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = {} for qid, s in scores.items(): _lowerCamelCase : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: _lowerCamelCase : List[Any] = float(not qid_to_has_ans[qid] ) else: _lowerCamelCase : List[Any] = s return new_scores def _snake_case ( lowercase__ , lowercase__ , lowercase__=None ): if not qid_list: _lowerCamelCase : Optional[Any] = len(lowercase__ ) return collections.OrderedDict( [ ('exact', 1_0_0.0 * sum(exact_scores.values() ) / total), ('f1', 1_0_0.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: _lowerCamelCase : List[Any] = len(lowercase__ ) return collections.OrderedDict( [ ('exact', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): for k in new_eval: _lowerCamelCase : Optional[int] = new_eval[k] def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): plt.step(lowercase__ , lowercase__ , color='b' , alpha=0.2 , where='post' ) plt.fill_between(lowercase__ , lowercase__ , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(lowercase__ ) plt.savefig(lowercase__ ) plt.clf() def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): _lowerCamelCase : List[str] = sorted(lowercase__ , key=lambda lowercase__ : na_probs[k] ) _lowerCamelCase : List[str] = 0.0 _lowerCamelCase : Optional[Any] = 1.0 _lowerCamelCase : List[str] = 0.0 _lowerCamelCase : List[Any] = [1.0] _lowerCamelCase : List[Any] = [0.0] _lowerCamelCase : Dict = 0.0 for i, qid in enumerate(lowercase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] _lowerCamelCase : int = true_pos / float(i + 1 ) _lowerCamelCase : List[Any] = true_pos / float(lowercase__ ) if i == len(lowercase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowercase__ ) recalls.append(lowercase__ ) if out_image: plot_pr_curve(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return {"ap": 1_0_0.0 * avg_prec} def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if out_image_dir and not os.path.exists(lowercase__ ): os.makedirs(lowercase__ ) _lowerCamelCase : Optional[int] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _lowerCamelCase : int = make_precision_recall_eval( lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) _lowerCamelCase : int = make_precision_recall_eval( lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) _lowerCamelCase : Optional[int] = {k: float(lowercase__ ) for k, v in qid_to_has_ans.items()} _lowerCamelCase : int = make_precision_recall_eval( lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(lowercase__ , lowercase__ , 'pr_exact' ) merge_eval(lowercase__ , lowercase__ , 'pr_f1' ) merge_eval(lowercase__ , lowercase__ , 'pr_oracle' ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if not qid_list: return _lowerCamelCase : Tuple = [na_probs[k] for k in qid_list] _lowerCamelCase : Optional[Any] = np.ones_like(lowercase__ ) / float(len(lowercase__ ) ) plt.hist(lowercase__ , weights=lowercase__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(lowercase__ , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Optional[int] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _lowerCamelCase : int = num_no_ans _lowerCamelCase : List[str] = cur_score _lowerCamelCase : Dict = 0.0 _lowerCamelCase : Optional[Any] = sorted(lowercase__ , key=lambda lowercase__ : na_probs[k] ) for i, qid in enumerate(lowercase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: _lowerCamelCase : int = scores[qid] else: if preds[qid]: _lowerCamelCase : int = -1 else: _lowerCamelCase : List[Any] = 0 cur_score += diff if cur_score > best_score: _lowerCamelCase : Optional[int] = cur_score _lowerCamelCase : List[str] = na_probs[qid] return 1_0_0.0 * best_score / len(lowercase__ ), best_thresh def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase, _lowerCamelCase : int = find_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = find_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase : List[Any] = best_exact _lowerCamelCase : List[str] = exact_thresh _lowerCamelCase : Dict = best_fa _lowerCamelCase : Any = fa_thresh def _snake_case ( ): with open(OPTS.data_file ) as f: _lowerCamelCase : Union[str, Any] = json.load(lowercase__ ) _lowerCamelCase : str = dataset_json['data'] with open(OPTS.pred_file ) as f: _lowerCamelCase : List[Any] = json.load(lowercase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _lowerCamelCase : Optional[Any] = json.load(lowercase__ ) else: _lowerCamelCase : Optional[Any] = {k: 0.0 for k in preds} _lowerCamelCase : Dict = make_qid_to_has_ans(lowercase__ ) # maps qid to True/False _lowerCamelCase : Optional[Any] = [k for k, v in qid_to_has_ans.items() if v] _lowerCamelCase : Dict = [k for k, v in qid_to_has_ans.items() if not v] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_raw_scores(lowercase__ , lowercase__ ) _lowerCamelCase : Tuple = apply_no_ans_threshold(lowercase__ , lowercase__ , lowercase__ , OPTS.na_prob_thresh ) _lowerCamelCase : Dict = apply_no_ans_threshold(lowercase__ , lowercase__ , lowercase__ , OPTS.na_prob_thresh ) _lowerCamelCase : Tuple = make_eval_dict(lowercase__ , lowercase__ ) if has_ans_qids: _lowerCamelCase : str = make_eval_dict(lowercase__ , lowercase__ , qid_list=lowercase__ ) merge_eval(lowercase__ , lowercase__ , 'HasAns' ) if no_ans_qids: _lowerCamelCase : str = make_eval_dict(lowercase__ , lowercase__ , qid_list=lowercase__ ) merge_eval(lowercase__ , lowercase__ , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , OPTS.out_image_dir ) histogram_na_prob(lowercase__ , lowercase__ , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(lowercase__ , lowercase__ , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) else: print(json.dumps(lowercase__ , indent=2 ) ) if __name__ == "__main__": lowercase__ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowercase__ = """true""" def _snake_case ( lowercase__ , lowercase__=82 , lowercase__=16 ): set_seed(42 ) _lowerCamelCase : Dict = RegressionModel() _lowerCamelCase : Dict = deepcopy(lowercase__ ) _lowerCamelCase : Tuple = RegressionDataset(length=lowercase__ ) _lowerCamelCase : Optional[Any] = DataLoader(lowercase__ , batch_size=lowercase__ ) model.to(accelerator.device ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = accelerator.prepare(lowercase__ , lowercase__ ) return model, ddp_model, dataloader def _snake_case ( lowercase__ , lowercase__=False ): _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) _lowerCamelCase : List[Any] = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(lowercase__ ): _lowerCamelCase : Tuple = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase__ , max_length=lowercase__ ) return outputs with accelerator.main_process_first(): _lowerCamelCase : List[str] = dataset.map( lowercase__ , batched=lowercase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) _lowerCamelCase : Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase__ ): if use_longest: return tokenizer.pad(lowercase__ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(lowercase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(lowercase__ , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=16 ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Dict = Accelerator(dispatch_batches=lowercase__ , split_batches=lowercase__ ) _lowerCamelCase : List[Any] = get_dataloader(lowercase__ , not dispatch_batches ) _lowerCamelCase : str = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=lowercase__ ) _lowerCamelCase, _lowerCamelCase : int = accelerator.prepare(lowercase__ , lowercase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Dict = [] for batch in dataloader: _lowerCamelCase, _lowerCamelCase : str = batch.values() with torch.no_grad(): _lowerCamelCase : List[Any] = model(lowercase__ ) _lowerCamelCase, _lowerCamelCase : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _lowerCamelCase, _lowerCamelCase : Any = [], [] for logit, targ in logits_and_targets: logits.append(lowercase__ ) targs.append(lowercase__ ) _lowerCamelCase, _lowerCamelCase : str = torch.cat(lowercase__ ), torch.cat(lowercase__ ) return logits, targs def _snake_case ( lowercase__ , lowercase__=82 , lowercase__=False , lowercase__=False , lowercase__=16 ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = get_basic_setup(lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase, _lowerCamelCase : Any = generate_predictions(lowercase__ , lowercase__ , lowercase__ ) assert ( len(lowercase__ ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}''' def _snake_case ( lowercase__ = False , lowercase__ = False ): _lowerCamelCase : Tuple = evaluate.load('glue' , 'mrpc' ) _lowerCamelCase, _lowerCamelCase : Any = get_mrpc_setup(lowercase__ , lowercase__ ) # First do baseline _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = setup['no'] model.to(lowercase__ ) model.eval() for batch in dataloader: batch.to(lowercase__ ) with torch.inference_mode(): _lowerCamelCase : List[str] = model(**lowercase__ ) _lowerCamelCase : str = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase__ , references=batch['labels'] ) _lowerCamelCase : List[Any] = metric.compute() # Then do distributed _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): _lowerCamelCase : Any = model(**lowercase__ ) _lowerCamelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) _lowerCamelCase : Any = batch['labels'] _lowerCamelCase, _lowerCamelCase : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase__ , references=lowercase__ ) _lowerCamelCase : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _snake_case ( ): _lowerCamelCase : List[Any] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase__ , lowercase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _lowerCamelCase : List[str] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) _lowerCamelCase : Optional[int] = Accelerator() test_torch_metrics(lowercase__ , 512 ) accelerator.state._reset_state() def _snake_case ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger() def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True ): print(f'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": _lowerCamelCase : Union[str, Any] = timm.create_model('levit_128s' , pretrained=lowercase__ ) else: _lowerCamelCase : Optional[Any] = timm.create_model('levit_128' , pretrained=lowercase__ ) if hidden_sizes == 192: _lowerCamelCase : List[Any] = timm.create_model('levit_192' , pretrained=lowercase__ ) if hidden_sizes == 256: _lowerCamelCase : str = timm.create_model('levit_256' , pretrained=lowercase__ ) if hidden_sizes == 384: _lowerCamelCase : Tuple = timm.create_model('levit_384' , pretrained=lowercase__ ) from_model.eval() _lowerCamelCase : Any = LevitForImageClassificationWithTeacher(lowercase__ ).eval() _lowerCamelCase : Tuple = OrderedDict() _lowerCamelCase : Dict = from_model.state_dict() _lowerCamelCase : Optional[Any] = list(from_model.state_dict().keys() ) _lowerCamelCase : Any = list(our_model.state_dict().keys() ) print(len(lowercase__ ) , len(lowercase__ ) ) for i in range(len(lowercase__ ) ): _lowerCamelCase : Optional[Any] = weights[og_keys[i]] our_model.load_state_dict(lowercase__ ) _lowerCamelCase : Tuple = torch.randn((2, 3, 224, 224) ) _lowerCamelCase : Union[str, Any] = from_model(lowercase__ ) _lowerCamelCase : Optional[int] = our_model(lowercase__ ).logits assert torch.allclose(lowercase__ , lowercase__ ), "The model logits don't match the original one." _lowerCamelCase : Optional[Any] = name print(lowercase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _lowerCamelCase : List[Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'''Pushed {checkpoint_name}''' ) def _snake_case ( lowercase__ , lowercase__ = None , lowercase__ = True ): _lowerCamelCase : List[str] = 'imagenet-1k-id2label.json' _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : Any = (1, num_labels) _lowerCamelCase : Any = 'huggingface/label-files' _lowerCamelCase : List[Any] = num_labels _lowerCamelCase : Dict = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} _lowerCamelCase : str = idalabel _lowerCamelCase : str = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[Any] = partial(lowercase__ , num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ ) _lowerCamelCase : str = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } _lowerCamelCase : Optional[Any] = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowercase__ , names_to_config[model_name] , lowercase__ , lowercase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return config, expected_shape if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) lowercase__ = parser.parse_args() lowercase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] ) class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""sentencepiece"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['sentencepiece'] )
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase__ = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } lowercase__ = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } lowercase__ = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = DistilBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ): super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) _lowerCamelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase ) != tokenize_chinese_chars ): _lowerCamelCase : Optional[int] = getattr(lowercase , normalizer_state.pop('type' ) ) _lowerCamelCase : Optional[Any] = do_lower_case _lowerCamelCase : Union[str, Any] = strip_accents _lowerCamelCase : int = tokenize_chinese_chars _lowerCamelCase : Optional[Any] = normalizer_class(**lowercase ) _lowerCamelCase : List[Any] = do_lower_case def A_ ( self , lowercase , lowercase=None ): _lowerCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): super().__init__(*lowercase , **lowercase ) _lowerCamelCase : Any = {} def A_ ( self , lowercase , *lowercase , **lowercase ): _lowerCamelCase : Optional[int] = super().add_tokens(lowercase , *lowercase , **lowercase ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ' `placeholder_token` that is not already in the tokenizer.' ) def A_ ( self , lowercase , *lowercase , lowercase=1 , **lowercase ): _lowerCamelCase : Optional[int] = [] if num_vec_per_token == 1: self.try_adding_tokens(lowercase , *lowercase , **lowercase ) output.append(lowercase ) else: _lowerCamelCase : Any = [] for i in range(lowercase ): _lowerCamelCase : Any = placeholder_token + F'''_{i}''' self.try_adding_tokens(lowercase , *lowercase , **lowercase ) output.append(lowercase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) _lowerCamelCase : Dict = output def A_ ( self , lowercase , lowercase=False , lowercase=1.0 ): if isinstance(lowercase , lowercase ): _lowerCamelCase : List[str] = [] for i in range(len(lowercase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowercase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _lowerCamelCase : List[str] = self.token_map[placeholder_token] _lowerCamelCase : Any = tokens[: 1 + int(len(lowercase ) * prop_tokens_to_load )] if vector_shuffle: _lowerCamelCase : List[Any] = copy.copy(lowercase ) random.shuffle(lowercase ) _lowerCamelCase : List[Any] = text.replace(lowercase , ' '.join(lowercase ) ) return text def __call__( self , lowercase , *lowercase , lowercase=False , lowercase=1.0 , **lowercase ): return super().__call__( self.replace_placeholder_tokens_in_text( lowercase , vector_shuffle=lowercase , prop_tokens_to_load=lowercase ) , *lowercase , **lowercase , ) def A_ ( self , lowercase , *lowercase , lowercase=False , lowercase=1.0 , **lowercase ): return super().encode( self.replace_placeholder_tokens_in_text( lowercase , vector_shuffle=lowercase , prop_tokens_to_load=lowercase ) , *lowercase , **lowercase , )
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = set() # edges = list of graph's edges _lowerCamelCase : Optional[Any] = get_edges(lowercase__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _lowerCamelCase, _lowerCamelCase : str = edges.pop() chosen_vertices.add(lowercase__ ) chosen_vertices.add(lowercase__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase__ ) return chosen_vertices def _snake_case ( lowercase__ ): _lowerCamelCase : str = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
12
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """swin2sr""" lowerCamelCase__ = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowercase=64 , lowercase=1 , lowercase=3 , lowercase=180 , lowercase=[6, 6, 6, 6, 6, 6] , lowercase=[6, 6, 6, 6, 6, 6] , lowercase=8 , lowercase=2.0 , lowercase=True , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase="gelu" , lowercase=False , lowercase=0.02 , lowercase=1E-5 , lowercase=2 , lowercase=1.0 , lowercase="1conv" , lowercase="pixelshuffle" , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : str = image_size _lowerCamelCase : Optional[int] = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Optional[Any] = embed_dim _lowerCamelCase : Tuple = depths _lowerCamelCase : int = len(lowercase ) _lowerCamelCase : Union[str, Any] = num_heads _lowerCamelCase : Any = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : Dict = layer_norm_eps _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Tuple = upscale _lowerCamelCase : Dict = img_range _lowerCamelCase : Dict = resi_connection _lowerCamelCase : Any = upsampler
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""image_processor""", """tokenizer"""] lowerCamelCase__ = """CLIPImageProcessor""" lowerCamelCase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , lowercase=None , lowercase=None , **lowercase ): _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase , ) _lowerCamelCase : int = kwargs.pop('feature_extractor' ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase , lowercase ) def __call__( self , lowercase=None , lowercase=None , lowercase=None , **lowercase ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCamelCase : Any = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: _lowerCamelCase : Optional[Any] = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: _lowerCamelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def A_ ( self ): _lowerCamelCase : Optional[Any] = self.tokenizer.model_input_names _lowerCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase , ) return self.image_processor_class @property def A_ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase , ) return self.image_processor
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = None lowerCamelCase__ = None lowercase__ = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case ( lowercase__ ): if root is None: return 0 # Validation def count_nodes(lowercase__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase__ ) != count_coins(lowercase__ ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _lowerCamelCase, _lowerCamelCase : str = get_distrib(node.left ) _lowerCamelCase, _lowerCamelCase : str = get_distrib(node.right ) _lowerCamelCase : Optional[Any] = 1 - left_distrib_excess _lowerCamelCase : Tuple = 1 - right_distrib_excess _lowerCamelCase : Optional[Any] = ( left_distrib_moves + right_distrib_moves + abs(lowercase__ ) + abs(lowercase__ ) ) _lowerCamelCase : Tuple = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase__ , lowercase__ ) return get_distrib(lowercase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
"""simple docstring""" from math import factorial class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Any = real if isinstance(lowercase , lowercase ): _lowerCamelCase : int = [1] * rank else: _lowerCamelCase : int = rank def __repr__( self ): return ( F'''{self.real}+''' F'''{'+'.join(str(lowercase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def A_ ( self ): _lowerCamelCase : Tuple = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase ) def __add__( self , lowercase ): if not isinstance(lowercase , lowercase ): return Dual(self.real + other , self.duals ) _lowerCamelCase : Any = self.duals.copy() _lowerCamelCase : List[str] = other.duals.copy() if len(lowercase ) > len(lowercase ): o_dual.extend([1] * (len(lowercase ) - len(lowercase )) ) elif len(lowercase ) < len(lowercase ): s_dual.extend([1] * (len(lowercase ) - len(lowercase )) ) _lowerCamelCase : Any = [] for i in range(len(lowercase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase ) lowerCamelCase__ = __add__ def __sub__( self , lowercase ): return self + other * -1 def __mul__( self , lowercase ): if not isinstance(lowercase , lowercase ): _lowerCamelCase : Optional[Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase ) _lowerCamelCase : Any = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase ) lowerCamelCase__ = __mul__ def __truediv__( self , lowercase ): if not isinstance(lowercase , lowercase ): _lowerCamelCase : Optional[Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase ) raise ValueError def __floordiv__( self , lowercase ): if not isinstance(lowercase , lowercase ): _lowerCamelCase : Optional[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase ) raise ValueError def __pow__( self , lowercase ): if n < 0 or isinstance(lowercase , lowercase ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self _lowerCamelCase : Dict = self for _ in range(n - 1 ): x *= self return x def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if not callable(lowercase__ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(lowercase__ , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(lowercase__ , lowercase__ ): raise ValueError('differentiate() requires an int as input for order' ) _lowerCamelCase : Optional[Any] = Dual(lowercase__ , 1 ) _lowerCamelCase : Dict = func(lowercase__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() def _snake_case ( lowercase__ ): return y**2 * y**4 print(differentiate(f, 9, 2))
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" from __future__ import annotations import bisect def _snake_case ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: _lowerCamelCase : str = len(lowercase__ ) while lo < hi: _lowerCamelCase : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _lowerCamelCase : List[Any] = mid + 1 else: _lowerCamelCase : Optional[int] = mid return lo def _snake_case ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: _lowerCamelCase : str = len(lowercase__ ) while lo < hi: _lowerCamelCase : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _lowerCamelCase : str = mid + 1 else: _lowerCamelCase : Optional[int] = mid return lo def _snake_case ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_left(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_right(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : List[Any] = len(lowercase__ ) - 1 while left <= right: _lowerCamelCase : Tuple = left + (right - left) // 2 _lowerCamelCase : Optional[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _lowerCamelCase : Any = midpoint - 1 else: _lowerCamelCase : List[Any] = midpoint + 1 return None def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : List[Any] = bisect.bisect_left(lowercase__ , lowercase__ ) if index != len(lowercase__ ) and sorted_collection[index] == item: return index return None def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if right < left: return None _lowerCamelCase : Dict = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , midpoint - 1 ) else: return binary_search_by_recursion(lowercase__ , lowercase__ , midpoint + 1 , lowercase__ ) if __name__ == "__main__": lowercase__ = input("""Enter numbers separated by comma:\n""").strip() lowercase__ = sorted(int(item) for item in user_input.split(""",""")) lowercase__ = int(input("""Enter a single number to be found in the list:\n""")) lowercase__ = binary_search(collection, target) if result is None: print(F"{target} was not found in {collection}.") else: print(F"{target} was found at position {result} in {collection}.")
12
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """upernet""" def __init__( self , lowercase=None , lowercase=512 , lowercase=0.02 , lowercase=[1, 2, 3, 6] , lowercase=True , lowercase=0.4 , lowercase=384 , lowercase=256 , lowercase=1 , lowercase=False , lowercase=255 , **lowercase , ): super().__init__(**lowercase ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowerCamelCase : Any = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(lowercase , lowercase ): _lowerCamelCase : int = backbone_config.get('model_type' ) _lowerCamelCase : str = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : List[Any] = config_class.from_dict(lowercase ) _lowerCamelCase : List[Any] = backbone_config _lowerCamelCase : str = hidden_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : int = pool_scales _lowerCamelCase : List[str] = use_auxiliary_head _lowerCamelCase : Optional[Any] = auxiliary_loss_weight _lowerCamelCase : Optional[int] = auxiliary_in_channels _lowerCamelCase : Any = auxiliary_channels _lowerCamelCase : Dict = auxiliary_num_convs _lowerCamelCase : Optional[Any] = auxiliary_concat_input _lowerCamelCase : str = loss_ignore_index def A_ ( self ): _lowerCamelCase : str = copy.deepcopy(self.__dict__ ) _lowerCamelCase : int = self.backbone_config.to_dict() _lowerCamelCase : List[str] = self.__class__.model_type return output
12
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( lowercase, lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = StableDiffusionInpaintPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCamelCase__ = frozenset([] ) def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase , ) _lowerCamelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=lowercase ) torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _lowerCamelCase : int = CLIPTextModel(lowercase ) _lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCamelCase : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A_ ( self , lowercase , lowercase=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched _lowerCamelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) _lowerCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase : Optional[int] = Image.fromarray(np.uinta(lowercase ) ).convert('RGB' ).resize((64, 64) ) _lowerCamelCase : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(lowercase ).startswith('mps' ): _lowerCamelCase : str = torch.manual_seed(lowercase ) else: _lowerCamelCase : int = torch.Generator(device=lowercase ).manual_seed(lowercase ) _lowerCamelCase : str = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A_ ( self ): _lowerCamelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Union[str, Any] = self.get_dummy_components() _lowerCamelCase : Union[str, Any] = StableDiffusionInpaintPipeline(**lowercase ) _lowerCamelCase : Tuple = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Dict = self.get_dummy_inputs(lowercase ) _lowerCamelCase : Any = sd_pipe(**lowercase ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : List[Any] = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _lowerCamelCase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _lowerCamelCase : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) _lowerCamelCase : List[Any] = 'stabilityai/stable-diffusion-2-inpainting' _lowerCamelCase : List[str] = StableDiffusionInpaintPipeline.from_pretrained(lowercase , safety_checker=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _lowerCamelCase : Optional[int] = 'Face of a yellow cat, high resolution, sitting on a park bench' _lowerCamelCase : Tuple = torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , generator=lowercase , output_type='np' , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def A_ ( self ): _lowerCamelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _lowerCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) _lowerCamelCase : int = 'stabilityai/stable-diffusion-2-inpainting' _lowerCamelCase : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( lowercase , torch_dtype=torch.floataa , safety_checker=lowercase , ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _lowerCamelCase : List[str] = 'Face of a yellow cat, high resolution, sitting on a park bench' _lowerCamelCase : str = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , generator=lowercase , output_type='np' , ) _lowerCamelCase : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def A_ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _lowerCamelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _lowerCamelCase : Optional[Any] = 'stabilityai/stable-diffusion-2-inpainting' _lowerCamelCase : List[Any] = PNDMScheduler.from_pretrained(lowercase , subfolder='scheduler' ) _lowerCamelCase : Union[str, Any] = StableDiffusionInpaintPipeline.from_pretrained( lowercase , safety_checker=lowercase , scheduler=lowercase , torch_dtype=torch.floataa , ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCamelCase : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _lowerCamelCase : List[str] = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , generator=lowercase , num_inference_steps=2 , output_type='np' , ) _lowerCamelCase : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
12
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Tuple = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(lowercase , range(len(lowercase ) ) ) ) _lowerCamelCase : Tuple = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _lowerCamelCase : Optional[int] = {'unk_token': '<unk>'} _lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) _lowerCamelCase : int = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _lowerCamelCase : Dict = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowercase , lowercase ) def A_ ( self , **lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **lowercase ) def A_ ( self , **lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **lowercase ) def A_ ( self , **lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def A_ ( self ): shutil.rmtree(self.tmpdirname ) def A_ ( self ): _lowerCamelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCamelCase : Dict = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = self.get_rust_tokenizer() _lowerCamelCase : Any = self.get_image_processor() _lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCamelCase : List[str] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase ) _lowerCamelCase : Dict = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCamelCase : str = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase ) self.assertIsInstance(processor_fast.tokenizer , lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase ) self.assertIsInstance(processor_fast.image_processor , lowercase ) def A_ ( self ): _lowerCamelCase : int = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : str = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCamelCase : Optional[Any] = self.get_image_processor(do_normalize=lowercase ) _lowerCamelCase : Dict = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def A_ ( self ): _lowerCamelCase : str = self.get_image_processor() _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Tuple = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : List[str] = image_processor(lowercase , return_tensors='np' ) _lowerCamelCase : Union[str, Any] = processor(images=lowercase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Any = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) _lowerCamelCase : Optional[int] = 'lower newer' _lowerCamelCase : Union[str, Any] = processor(text=lowercase , return_tensors='np' ) _lowerCamelCase : Optional[Any] = tokenizer(lowercase , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def A_ ( self ): _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : int = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) _lowerCamelCase : int = 'lower newer' _lowerCamelCase : List[Any] = self.prepare_image_inputs() _lowerCamelCase : List[Any] = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A_ ( self ): _lowerCamelCase : Optional[Any] = 'google/owlvit-base-patch32' _lowerCamelCase : Any = OwlViTProcessor.from_pretrained(lowercase ) _lowerCamelCase : List[Any] = ['cat', 'nasa badge'] _lowerCamelCase : Optional[int] = processor(text=lowercase ) _lowerCamelCase : Any = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A_ ( self ): _lowerCamelCase : Any = 'google/owlvit-base-patch32' _lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(lowercase ) _lowerCamelCase : List[str] = [['cat', 'nasa badge'], ['person']] _lowerCamelCase : Optional[Any] = processor(text=lowercase ) _lowerCamelCase : Union[str, Any] = 16 _lowerCamelCase : List[Any] = len(lowercase ) _lowerCamelCase : List[Any] = max([len(lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A_ ( self ): _lowerCamelCase : List[Any] = 'google/owlvit-base-patch32' _lowerCamelCase : Union[str, Any] = OwlViTProcessor.from_pretrained(lowercase ) _lowerCamelCase : Union[str, Any] = ['cat', 'nasa badge'] _lowerCamelCase : Tuple = processor(text=lowercase ) _lowerCamelCase : Optional[int] = 16 _lowerCamelCase : Union[str, Any] = inputs['input_ids'] _lowerCamelCase : Tuple = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) _lowerCamelCase : Any = self.prepare_image_inputs() _lowerCamelCase : int = self.prepare_image_inputs() _lowerCamelCase : str = processor(images=lowercase , query_images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A_ ( self ): _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Tuple = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Dict = processor.batch_decode(lowercase ) _lowerCamelCase : Optional[int] = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase )
12
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" def _snake_case ( lowercase__ ): if number > 0: raise ValueError('input must be a negative integer' ) _lowerCamelCase : Dict = len(bin(lowercase__ )[3:] ) _lowerCamelCase : Tuple = bin(abs(lowercase__ ) - (1 << binary_number_length) )[3:] _lowerCamelCase : Tuple = ( ( '1' + '0' * (binary_number_length - len(lowercase__ )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
1
"""simple docstring""" import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _snake_case ( lowercase__ ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase , lowercase ): super().__init__() _lowerCamelCase : Tuple = module _lowerCamelCase : int = nn.Sequential( nn.Linear(module.in_features , lowercase , bias=lowercase ) , nn.Linear(lowercase , module.out_features , bias=lowercase ) , ) _lowerCamelCase : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowercase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def A_ ( self , lowercase , *lowercase , **lowercase ): return self.module(lowercase , *lowercase , **lowercase ) + self.adapter(lowercase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = """bigscience/bloom-1b7""" # Constant values lowerCamelCase__ = 2.109659552692574 lowerCamelCase__ = """Hello my name is""" lowerCamelCase__ = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCamelCase__ = 10 def A_ ( self ): # Models and tokenizer _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(self.model_name ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): super().setUp() # Models and tokenizer _lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) _lowerCamelCase : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowercase , device_map='auto' ) def A_ ( self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : int = self.model_abit.config self.assertTrue(hasattr(lowercase , 'quantization_config' ) ) _lowerCamelCase : Optional[int] = config.to_dict() _lowerCamelCase : List[str] = config.to_diff_dict() _lowerCamelCase : Optional[int] = config.to_json_string() def A_ ( self ): from bitsandbytes.nn import Paramsabit _lowerCamelCase : Dict = self.model_fpaa.get_memory_footprint() _lowerCamelCase : Dict = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) _lowerCamelCase : str = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def A_ ( self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowercase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ) _lowerCamelCase : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowercase ) , self.EXPECTED_OUTPUTS ) def A_ ( self ): _lowerCamelCase : Dict = BitsAndBytesConfig() _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowercase , device_map='auto' ) _lowerCamelCase : int = self.tokenizer(self.input_text , return_tensors='pt' ) _lowerCamelCase : Union[str, Any] = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowercase ) , self.EXPECTED_OUTPUTS ) def A_ ( self ): with self.assertRaises(lowercase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowercase ) def A_ ( self ): _lowerCamelCase : Optional[int] = BitsAndBytesConfig() with self.assertRaises(lowercase ): _lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowercase , load_in_abit=lowercase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def A_ ( self ): with self.assertRaises(lowercase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(lowercase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowercase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(lowercase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowercase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything _lowerCamelCase : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ) _lowerCamelCase : Any = self.model_fpaa.to(torch.floataa ) _lowerCamelCase : List[Any] = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error _lowerCamelCase : int = self.model_fpaa.to('cpu' ) # Check this does not throw an error _lowerCamelCase : Any = self.model_fpaa.half() # Check this does not throw an error _lowerCamelCase : Optional[int] = self.model_fpaa.float() def A_ ( self ): _lowerCamelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=lowercase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def A_ ( cls ): _lowerCamelCase : List[str] = 't5-small' _lowerCamelCase : Optional[int] = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(cls.model_name ) _lowerCamelCase : Optional[int] = 'Translate in German: Hello, my dog is cute' def A_ ( self ): gc.collect() torch.cuda.empty_cache() def A_ ( self ): from transformers import TaForConditionalGeneration _lowerCamelCase : List[str] = TaForConditionalGeneration._keep_in_fpaa_modules _lowerCamelCase : Dict = None # test with `t5-small` _lowerCamelCase : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowercase , device_map='auto' ) _lowerCamelCase : List[str] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowerCamelCase : List[Any] = model.generate(**lowercase ) # test with `flan-t5-small` _lowerCamelCase : Union[str, Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowercase , device_map='auto' ) _lowerCamelCase : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowerCamelCase : str = model.generate(**lowercase ) _lowerCamelCase : Tuple = modules def A_ ( self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` _lowerCamelCase : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowercase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) _lowerCamelCase : Dict = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowerCamelCase : Union[str, Any] = model.generate(**lowercase ) # test with `flan-t5-small` _lowerCamelCase : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowercase , device_map='auto' ) _lowerCamelCase : List[Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowerCamelCase : List[Any] = model.generate(**lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): super().setUp() # model_name _lowerCamelCase : Optional[int] = 'bigscience/bloom-560m' _lowerCamelCase : Tuple = 't5-small' # Different types of model _lowerCamelCase : str = AutoModel.from_pretrained(self.model_name , load_in_abit=lowercase , device_map='auto' ) # Sequence classification model _lowerCamelCase : List[str] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowercase , device_map='auto' ) # CausalLM model _lowerCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowercase , device_map='auto' ) # Seq2seq model _lowerCamelCase : str = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowercase , device_map='auto' ) def A_ ( self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def A_ ( self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): super().setUp() def A_ ( self ): del self.pipe gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : Optional[Any] = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass _lowerCamelCase : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): super().setUp() def A_ ( self ): _lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowercase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model _lowerCamelCase : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch _lowerCamelCase : Optional[int] = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowercase ) , self.EXPECTED_OUTPUTS ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Optional[int] = 'facebook/opt-350m' super().setUp() def A_ ( self ): if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters _lowerCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowercase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): _lowerCamelCase : Optional[int] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability _lowerCamelCase : Union[str, Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowercase ) ): _lowerCamelCase : str = LoRALayer(module.q_proj , rank=16 ) _lowerCamelCase : List[str] = LoRALayer(module.k_proj , rank=16 ) _lowerCamelCase : Dict = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch _lowerCamelCase : Tuple = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): _lowerCamelCase : Optional[Any] = model.forward(**lowercase ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowercase , lowercase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowercase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """gpt2-xl""" lowerCamelCase__ = 3.3191854854152187
12
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowercase__ = 4 lowercase__ = 3 class lowerCAmelCase__ ( lowercase ): '''simple docstring''' pass def _snake_case ( lowercase__ ): for shard in shards: for i in range(lowercase__ ): yield {"i": i, "shard": shard} def _snake_case ( ): _lowerCamelCase : str = int(os.environ['RANK'] ) _lowerCamelCase : Tuple = int(os.environ['WORLD_SIZE'] ) _lowerCamelCase : List[str] = ArgumentParser() parser.add_argument('--streaming' , type=lowercase__ ) parser.add_argument('--local_rank' , type=lowercase__ ) parser.add_argument('--num_workers' , type=lowercase__ , default=0 ) _lowerCamelCase : str = parser.parse_args() _lowerCamelCase : Any = args.streaming _lowerCamelCase : Tuple = args.num_workers _lowerCamelCase : Dict = {'shards': [f'''shard_{shard_idx}''' for shard_idx in range(lowercase__ )]} _lowerCamelCase : Dict = IterableDataset.from_generator(lowercase__ , gen_kwargs=lowercase__ ) if not streaming: _lowerCamelCase : Tuple = Dataset.from_list(list(lowercase__ ) ) _lowerCamelCase : str = split_dataset_by_node(lowercase__ , rank=lowercase__ , world_size=lowercase__ ) _lowerCamelCase : Optional[Any] = torch.utils.data.DataLoader(lowercase__ , num_workers=lowercase__ ) _lowerCamelCase : Union[str, Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD _lowerCamelCase : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _lowerCamelCase : Optional[Any] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
12
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
1
"""simple docstring""" import os def _snake_case ( ): _lowerCamelCase : Tuple = os.path.dirname(os.path.realpath(lowercase__ ) ) _lowerCamelCase : Any = os.path.join(lowercase__ , 'triangle.txt' ) with open(lowercase__ ) as f: _lowerCamelCase : List[str] = f.readlines() _lowerCamelCase : List[Any] = [] for line in triangle: _lowerCamelCase : str = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(lowercase__ ) ) a.append(lowercase__ ) for i in range(1 , len(lowercase__ ) ): for j in range(len(a[i] ) ): _lowerCamelCase : List[str] = a[i - 1][j] if j != len(a[i - 1] ) else 0 _lowerCamelCase : Any = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowercase__ , lowercase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1