kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
8,769,803 | test = test.drop(['Pred'], axis=1)
test['Season'] = test['ID'].apply(lambda x: int(x.split('_')[0]))
test['WTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[1]))
test['LTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[2]))
test.head()<merge> | reg_case=ElasticNet(random_state=42,l1_ratio=0.1,max_iter=2200)
params = [{'alpha': [10**-4,10**-3, 10**-2,10**-1, 10**0,10**1, 10**2,10**3,10**4]}]
clf = RandomizedSearchCV(reg_case, params, cv=4, scoring='neg_root_mean_squared_error',return_train_score=True)
search=clf.fit(X_train_cases, y_train_cases)
results = pd.DataFrame.from_dict(clf.cv_results_)
print("The best parameter is:",search.best_params_ ) | COVID19 Global Forecasting (Week 3) |
8,769,803 | gameCities = pd.merge(data_dict['WGameCities'], data_dict['Cities'], how='left', on=['CityID'])
cols_to_use = gameCities.columns.difference(train.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
train = train.merge(gameCities[cols_to_use], how="left", on=["Season", "WTeamID", "LTeamID"])
train.head()
cols_to_use = data_dict["WSeasons"].columns.difference(train.columns ).tolist() + ["Season"]
train = train.merge(data_dict["WSeasons"][cols_to_use], how="left", on=["Season"])
train.head()
cols_to_use = data_dict["WTeams"].columns.difference(train.columns ).tolist()
train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["WTeamID"], right_on=["TeamID"])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head()<merge> | best_alpha=10000
best_itr=2400
final_reg_case=ElasticNet(random_state=42,alpha=best_alpha,l1_ratio=0.1,max_iter=best_itr)
final_reg_case.fit(X_train_cases,y_train_cases ) | COVID19 Global Forecasting (Week 3) |
8,769,803 | cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(train.columns ).tolist() + ['Season']
train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head()<merge> | pred=final_reg_case.predict(X_test_cases)
print("The RMSE value",(mean_squared_error(y_test_cases,pred)) **0.5 ) | COVID19 Global Forecasting (Week 3) |
8,769,803 | cols_to_use = gameCities.columns.difference(test.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
test = test.merge(gameCities[cols_to_use].drop_duplicates(subset=["Season", "WTeamID", "LTeamID"]),
how="left", on=["Season", "WTeamID", "LTeamID"])
del gameCities
gc.collect()
test.head()
cols_to_use = data_dict["WSeasons"].columns.difference(test.columns ).tolist() + ["Season"]
test = test.merge(data_dict["WSeasons"][cols_to_use].drop_duplicates(subset=["Season"]),
how="left", on=["Season"])
test.head()
cols_to_use = data_dict["WTeams"].columns.difference(test.columns ).tolist()
test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["WTeamID"], right_on=["TeamID"])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
test.head()
cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(test.columns ).tolist() + ['Season']
test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
print(test.shape)
test.head()<drop_column> | reg_fatal=ElasticNet(random_state=42,l1_ratio=0.1,max_iter=3500)
params = [{'alpha': [10**-4,10**-3, 10**-2,10**-1, 10**0,10**1, 10**2,10**3,10**4]}]
clf = RandomizedSearchCV(reg_fatal, params, cv=4, scoring='neg_root_mean_squared_error',return_train_score=True)
search=clf.fit(X_train_fatal, y_train_fatal)
results = pd.DataFrame.from_dict(clf.cv_results_)
print("The best parameter is:",search.best_params_ ) | COVID19 Global Forecasting (Week 3) |
8,769,803 | not_exist_in_test = [c for c in train.columns.values.tolist() if c not in test.columns.values.tolist() ]
print(not_exist_in_test)
train = train.drop(not_exist_in_test, axis=1)
train.head()<groupby> | best_alpha=100
best_iter=3500
final_reg_fatal = ElasticNet(random_state=42,alpha=best_alpha,l1_ratio=0.1,max_iter=best_iter)
final_reg_fatal.fit(X_train_fatal, y_train_fatal ) | COVID19 Global Forecasting (Week 3) |
8,769,803 | team_win_score = regularSeason.groupby(['Season', 'WTeamID'] ).agg({'WScore':['sum', 'count', 'var']} ).reset_index()
team_win_score.columns = [' '.join(col ).strip() for col in team_win_score.columns.values]
team_loss_score = regularSeason.groupby(['Season', 'LTeamID'] ).agg({'LScore':['sum', 'count', 'var']} ).reset_index()
team_loss_score.columns = [' '.join(col ).strip() for col in team_loss_score.columns.values]
del regularSeason
gc.collect()<merge> | pred=final_reg_fatal.predict(X_test_fatal)
print("The RMSE value",(mean_squared_error(y_test_fatal,pred)) **0.5 ) | COVID19 Global Forecasting (Week 3) |
8,769,803 | train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
train.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
train.head()<merge> | featured=pd.DataFrame(data)
X_y_f=shuffle(featured)
y_cases_f=X_y_f['target_infection']
y_fatal_f=X_y_f['target_fatal']
X_f=X_y_f.drop(['target_infection','target_fatal'],axis=1)
X_train_cases_f, X_test_cases_f, y_train_cases_f, y_test_cases_f = train_test_split(X_f, y_cases_f, test_size=0.33)
X_train_fatal_f, X_test_fatal_f, y_train_fatal_f, y_test_fatal_f = train_test_split(X_f, y_fatal_f, test_size=0.33)
print("Shape of featurized infection train dataset:",(X_train_cases_f.shape,y_train_cases_f.shape))
print("Shape of featurized infection test dataset:",(X_test_cases_f.shape,y_test_cases_f.shape))
print("Shape of featurized fatal train dataset:",(X_train_fatal_f.shape,y_train_fatal_f.shape))
print("Shape of featurized fatal test dataset:",(X_test_fatal_f.shape,y_test_fatal_f.shape)) | COVID19 Global Forecasting (Week 3) |
8,769,803 | test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
test.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
test.head()<feature_engineering> | reg_case_f=ElasticNet(random_state=42,l1_ratio=0.1,max_iter=2200)
params = [{'alpha': [10**-4,10**-3, 10**-2,10**-1, 10**0,10**1, 10**2,10**3,10**4]}]
clf_f= RandomizedSearchCV(reg_case_f, params, cv=4, scoring='neg_root_mean_squared_error',return_train_score=True)
search_f=clf_f.fit(X_train_cases_f, y_train_cases_f)
results_f = pd.DataFrame.from_dict(clf_f.cv_results_)
print("The best parameter is:",search_f.best_params_ ) | COVID19 Global Forecasting (Week 3) |
8,769,803 | def preprocess(df):
df['x_score'] = df['WScore sum_x'] + df['LScore sum_y']
df['y_score'] = df['WScore sum_y'] + df['LScore sum_x']
df['x_count'] = df['WScore count_x'] + df['LScore count_y']
df['y_count'] = df['WScore count_y'] + df['WScore count_x']
df['x_var'] = df['WScore var_x'] + df['LScore count_y']
df['y_var'] = df['WScore var_y'] + df['WScore var_x']
return df
train = preprocess(train)
test = preprocess(test )<drop_column> | best_alpha=100
best_itr=4200
final_reg_case_f=ElasticNet(random_state=42,alpha=best_alpha,l1_ratio=0.1,max_iter=best_itr)
final_reg_case_f.fit(X_train_cases_f,y_train_cases_f ) | COVID19 Global Forecasting (Week 3) |
8,769,803 | train_win = train.copy()
train_los = train.copy()
train_win = train_win[['Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_los = train_los[['Seed_L', 'Seed_W', 'TeamName_L', 'TeamName_W',
'y_score', 'x_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_win.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
train_los.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
test = test[['ID', 'Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
test.columns = ['ID', 'Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']<feature_engineering> | pred_f=final_reg_case_f.predict(X_test_cases_f)
print("RMSE is:",(mean_squared_error(y_test_cases_f,pred_f)) **0.5 ) | COVID19 Global Forecasting (Week 3) |
8,769,803 | def feature_engineering(df):
df['Seed_diff'] = df['Seed_1'] - df['Seed_2']
df['Score_diff'] = df['Score_1'] - df['Score_2']
df['Count_diff'] = df['Count_1'] - df['Count_2']
df['Var_diff'] = df['Var_1'] - df['Var_2']
df['Mean_score1'] = df['Score_1'] / df['Count_1']
df['Mean_score2'] = df['Score_2'] / df['Count_2']
df['Mean_score_diff'] = df['Mean_score1'] - df['Mean_score2']
df['FanoFactor_1'] = df['Var_1'] / df['Mean_score1']
df['FanoFactor_2'] = df['Var_2'] / df['Mean_score2']
return df
train_win = feature_engineering(train_win)
train_los = feature_engineering(train_los)
test = feature_engineering(test )<concatenate> | reg_fatal_f=ElasticNet(random_state=42,alpha=best_alpha,l1_ratio=0.1,max_iter=2200)
params = [{'alpha': [10**-4,10**-3, 10**-2,10**-1, 10**0,10**1, 10**2,10**3,10**4]}]
clf_f= RandomizedSearchCV(reg_fatal_f, params, cv=4, scoring='neg_root_mean_squared_error',return_train_score=True)
search_f=clf_f.fit(X_train_fatal_f, y_train_fatal_f)
results_f = pd.DataFrame.from_dict(clf_f.cv_results_)
print("The best parameter is:",search_f.best_params_)
| COVID19 Global Forecasting (Week 3) |
8,769,803 | data = pd.concat(( train_win, train_los)).reset_index(drop=True)
print(data.shape)
data.head()<categorify> | best_alpha=100
best_itr=2400
final_reg_fatal_f=ElasticNet(random_state=42,alpha=best_alpha,l1_ratio=0.1,max_iter=best_itr)
final_reg_fatal_f.fit(X_train_fatal_f,y_train_fatal_f ) | COVID19 Global Forecasting (Week 3) |
8,769,803 | categoricals = ["TeamName_1", "TeamName_2"]
for c in categoricals:
le = LabelEncoder()
data[c] = data[c].fillna("NaN")
data[c] = le.fit_transform(data[c])
test[c] = le.transform(test[c])
data.head()<drop_column> | pred_f=final_reg_fatal_f.predict(X_test_fatal_f)
print("RMSE is:",(mean_squared_error(y_test_fatal_f,pred_f)) **0.5 ) | COVID19 Global Forecasting (Week 3) |
8,769,803 | target = 'result'
features = data.columns.values.tolist()
features.remove(target )<train_model> | test["Province_State"].fillna("state", inplace = True)
test["Country_Region"] = [country_name.replace("'","")for country_name in test["Country_Region"]] | COVID19 Global Forecasting (Week 3) |
8,769,803 | lgbm = LgbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True )<load_from_csv> | test['ConfirmedCases']=list(map(int,predicted_case))
test['Fatalities']=list(map(int,predicted_fatal)) | COVID19 Global Forecasting (Week 3) |
8,769,803 | submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv')
submission_df['Pred'] = lgbm.y_pred
submission_df<save_to_csv> | submission=test[['ForecastId','ConfirmedCases','Fatalities']]
submission=shuffle(submission)
submission.to_csv("submission.csv",index=False ) | COVID19 Global Forecasting (Week 3) |
8,755,132 | submission_df.to_csv('submission.csv', index=False )<set_options> | from pandas_profiling import ProfileReport | COVID19 Global Forecasting (Week 3) |
8,755,132 | pd.set_option('max_columns', None)
plt.style.use('fivethirtyeight')
%matplotlib inline
py.init_notebook_mode(connected=True)
warnings.filterwarnings('ignore')
print("Libraries imported!" )<train_model> | xtrain = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/train.csv')
xtest = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv')
xsubmission = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/submission.csv')
xtrain.rename(columns={'Country_Region':'Country'}, inplace=True)
xtest.rename(columns={'Country_Region':'Country'}, inplace=True)
xtrain.rename(columns={'Province_State':'State'}, inplace=True)
xtest.rename(columns={'Province_State':'State'}, inplace=True)
xtrain.State=xtrain.State.fillna('NA')
xtest.State=xtest.State.fillna('NA')
xtrain['Date'] = pd.to_datetime(xtrain['Date'], infer_datetime_format=True)
xtest['Date'] = pd.to_datetime(xtest['Date'], infer_datetime_format=True)
for j in range(14):
train_lag=xtrain.groupby(['Country','State'] ).shift(periods=j+1)
xtrain['lag_'+str(j+1)+'_ConfirmedCases']=train_lag['ConfirmedCases'].fillna(0)
xtrain['lag_'+str(j+1)+'_Fatalities']=train_lag['Fatalities'].fillna(0)
| COVID19 Global Forecasting (Week 3) |
8,755,132 | class BaseModel(object):
def __init__(self, train_df, test_df, target, features, categoricals=[],
n_splits=3, cv_method="KFold", group=None, task="regression",
parameter_tuning=False, scaler=None, verbose=True):
self.train_df = train_df
self.test_df = test_df
self.target = target
self.features = features
self.n_splits = n_splits
self.categoricals = categoricals
self.cv_method = cv_method
self.group = group
self.task = task
self.parameter_tuning = parameter_tuning
self.scaler = scaler
self.cv = self.get_cv()
self.verbose = verbose
self.params = self.get_params()
self.y_pred, self.score, self.model, self.oof, self.y_val, self.fi_df = self.fit()
def train_model(self, train_set, val_set):
raise NotImplementedError
def get_params(self):
raise NotImplementedError
def convert_dataset(self, x_train, y_train, x_val, y_val):
raise NotImplementedError
def convert_x(self, x):
return x
def calc_metric(self, y_true, y_pred):
if self.task == "classification":
return log_loss(y_true, y_pred)
elif self.task == "regression":
return np.sqrt(mean_squared_error(y_true, y_pred))
def get_cv(self):
if self.cv_method == "KFold":
cv = KFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df)
elif self.cv_method == "StratifiedKFold":
cv = StratifiedKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target])
elif self.cv_method == "TimeSeriesSplit":
cv = TimeSeriesSplit(max_train_size=None, n_splits=self.n_splits)
return cv.split(self.train_df)
elif self.cv_method == "GroupKFold":
cv = GroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target], self.group)
elif self.cv_method == "StratifiedGroupKFold":
cv = StratifiedGroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target], self.group)
def fit(self):
oof_pred = np.zeros(( self.train_df.shape[0],))
y_vals = np.zeros(( self.train_df.shape[0],))
y_pred = np.zeros(( self.test_df.shape[0],))
if self.group is not None:
if self.group in self.features:
self.features.remove(self.group)
if self.group in self.categoricals:
self.categoricals.remove(self.group)
fi = np.zeros(( self.n_splits, len(self.features)))
if self.scaler is not None:
numerical_features = [f for f in self.features if f not in self.categoricals]
self.train_df[numerical_features] = self.train_df[numerical_features].fillna(self.train_df[numerical_features].median())
self.test_df[numerical_features] = self.test_df[numerical_features].fillna(self.test_df[numerical_features].median())
self.train_df[self.categoricals] = self.train_df[self.categoricals].fillna(self.train_df[self.categoricals].mode().iloc[0])
self.test_df[self.categoricals] = self.test_df[self.categoricals].fillna(self.test_df[self.categoricals].mode().iloc[0])
if self.scaler == "MinMax":
scaler = MinMaxScaler()
elif self.scaler == "Standard":
scaler = StandardScaler()
df = pd.concat([self.train_df[numerical_features], self.test_df[numerical_features]], ignore_index=True)
scaler.fit(df[numerical_features])
x_test = self.test_df.copy()
x_test[numerical_features] = scaler.transform(x_test[numerical_features])
x_test = [np.absolute(x_test[i])for i in self.categoricals] + [x_test[numerical_features]]
else:
x_test = self.test_df[self.features]
for fold,(train_idx, val_idx)in enumerate(self.cv):
x_train, x_val = self.train_df.loc[train_idx, self.features], self.train_df.loc[val_idx, self.features]
y_train, y_val = self.train_df.loc[train_idx, self.target], self.train_df.loc[val_idx, self.target]
if self.scaler is not None:
x_train[numerical_features] = scaler.transform(x_train[numerical_features])
x_val[numerical_features] = scaler.transform(x_val[numerical_features])
x_train = [np.absolute(x_train[i])for i in self.categoricals] + [x_train[numerical_features]]
x_val = [np.absolute(x_val[i])for i in self.categoricals] + [x_val[numerical_features]]
train_set, val_set = self.convert_dataset(x_train, y_train, x_val, y_val)
model, importance = self.train_model(train_set, val_set)
fi[fold, :] = importance
conv_x_val = self.convert_x(x_val)
y_vals[val_idx] = y_val
oof_pred[val_idx] = model.predict(conv_x_val ).reshape(oof_pred[val_idx].shape)
x_test = self.convert_x(x_test)
y_pred += model.predict(x_test ).reshape(y_pred.shape)/ self.n_splits
print('Partial score of fold {} is: {}'.format(fold, self.calc_metric(y_val, oof_pred[val_idx])))
fi_df = pd.DataFrame()
for n in np.arange(self.n_splits):
tmp = pd.DataFrame()
tmp["features"] = self.features
tmp["importance"] = fi[n, :]
tmp["fold"] = n
fi_df = pd.concat([fi_df, tmp], ignore_index=True)
gfi = fi_df[["features", "importance"]].groupby(["features"] ).mean().reset_index()
fi_df = fi_df.merge(gfi, on="features", how="left", suffixes=('', '_mean'))
loss_score = self.calc_metric(self.train_df[self.target], oof_pred)
if self.verbose:
print('Our oof loss score is: ', loss_score)
return y_pred, loss_score, model, oof_pred, y_vals, fi_df
def plot_feature_importance(self, rank_range=[1, 50]):
fig, ax = plt.subplots(1, 1, figsize=(10, 20))
sorted_df = self.fi_df.sort_values(by = "importance_mean", ascending=False ).reset_index().iloc[self.n_splits *(rank_range[0]-1): self.n_splits * rank_range[1]]
sns.barplot(data=sorted_df, x ="importance", y ="features", orient='h')
ax.set_xlabel("feature importance")
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
return sorted_df<train_model> | xtrain.rename(columns={'Country_Region':'Country'}, inplace=True)
xtest.rename(columns={'Country_Region':'Country'}, inplace=True)
xtrain.rename(columns={'Province_State':'State'}, inplace=True)
xtest.rename(columns={'Province_State':'State'}, inplace=True)
xtrain['Date'] = pd.to_datetime(xtrain['Date'], infer_datetime_format=True)
xtest['Date'] = pd.to_datetime(xtest['Date'], infer_datetime_format=True)
xtrain.info()
xtest.info()
for_y=xtest.merge(xtrain,on=['State','Country','Date'],how='inner')
y1_xTrain = xtrain.ConfirmedCases
y1_xTrain.head()
y1_xTest = for_y.ConfirmedCases
y1_xTest.head()
y2_xTrain = xtrain.Fatalities
y2_xTrain.head()
y2_xTest = for_y.Fatalities
y2_xTest.head()
EMPTY_VAL = "NA"
def fillState(state, country):
if state == EMPTY_VAL: return country
return state
| COVID19 Global Forecasting (Week 3) |
8,755,132 | class LgbModel(BaseModel):
def train_model(self, train_set, val_set):
verbosity = 100 if self.verbose else 0
model = lgb.train(self.params, train_set, num_boost_round = 5000, valid_sets=[train_set, val_set], verbose_eval=verbosity)
fi = model.feature_importance(importance_type="gain")
return model, fi
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = lgb.Dataset(x_train, y_train, categorical_feature=self.categoricals)
val_set = lgb.Dataset(x_val, y_val, categorical_feature=self.categoricals)
return train_set, val_set
def get_params(self):
params = {
'num_leaves': 127,
'min_data_in_leaf': 50,
'max_depth': -1,
'learning_rate': 0.005,
"boosting_type": "gbdt",
"bagging_seed": 11,
"verbosity": -1,
'random_state': 42,
}
if self.task == "regression":
params["objective"] = "regression"
params["metric"] = "rmse"
elif self.task == "classification":
params["objective"] = "binary"
params["metric"] = "binary_logloss"
if self.parameter_tuning == True:
def objective(trial):
train_x, test_x, train_y, test_y = train_test_split(self.train_df[self.features],
self.train_df[self.target],
test_size=0.3, random_state=42)
dtrain = lgb.Dataset(train_x, train_y, categorical_feature=self.categoricals)
dtest = lgb.Dataset(test_x, test_y, categorical_feature=self.categoricals)
hyperparams = {'num_leaves': trial.suggest_int('num_leaves', 24, 1024),
'boosting_type': 'gbdt',
'objective': params["objective"],
'metric': params["metric"],
'max_depth': trial.suggest_int('max_depth', 4, 16),
'min_child_weight': trial.suggest_int('min_child_weight', 1, 20),
'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
'lambda_l1': trial.suggest_loguniform('lambda_l1', 1e-8, 10.0),
'lambda_l2': trial.suggest_loguniform('lambda_l2', 1e-8, 10.0),
'early_stopping_rounds': 100
}
model = lgb.train(hyperparams, dtrain, valid_sets=dtest, verbose_eval=500)
pred = model.predict(test_x)
if self.task == "classification":
return log_loss(test_y, pred)
elif self.task == "regression":
return np.sqrt(mean_squared_error(test_y, pred))
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50)
print('Number of finished trials: {}'.format(len(study.trials)))
print('Best trial:')
trial = study.best_trial
print(' Value: {}'.format(trial.value))
print(' Params: ')
for key, value in trial.params.items() :
print(' {}: {}'.format(key, value))
params = trial.params
params["learning_rate"] = 0.001
plot_optimization_history(study)
return params<train_model> | X_xTrain = xtrain.copy()
X_xTrain['State'].fillna(EMPTY_VAL, inplace=True)
X_xTrain['State'] = X_xTrain.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1)
X_xTrain.loc[:, 'Date_ACT'] = X_xTrain.Date
X_xTrain.loc[:, 'Date'] = X_xTrain.Date.dt.strftime("%m%d")
X_xTrain["Date"] = X_xTrain["Date"].astype(int)
print(X_xTrain.head())
X_xTest = for_y.copy()
X_xTest['State'].fillna(EMPTY_VAL, inplace=True)
X_xTest['State'] = X_xTest.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1)
X_xTest.loc[:, 'Date'] = X_xTest.Date.dt.strftime("%m%d")
X_xTest["Date"] = X_xTest["Date"].astype(int)
print(X_xTest.head() ) | COVID19 Global Forecasting (Week 3) |
8,755,132 | class CatbModel(BaseModel):
def train_model(self, train_set, val_set):
verbosity = 100 if self.verbose else 0
if self.task == "regression":
model = CatBoostRegressor(**self.params)
elif self.task == "classification":
model = CatBoostClassifier(**self.params)
model.fit(train_set['X'], train_set['y'], eval_set=(val_set['X'], val_set['y']),
verbose=verbosity, cat_features=self.categoricals)
return model, model.get_feature_importance()
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = {'X': x_train, 'y': y_train}
val_set = {'X': x_val, 'y': y_val}
return train_set, val_set
def get_params(self):
params = { 'task_type': "CPU",
'learning_rate': 0.01,
'iterations': 1000,
'random_seed': 42,
'use_best_model': True
}
if self.task == "regression":
params["loss_function"] = "RMSE"
elif self.task == "classification":
params["loss_function"] = "Logloss"
return params<normalization> | lec = preprocessing.LabelEncoder()
les = preprocessing.LabelEncoder()
X_xTrain.Country = lec.fit_transform(X_xTrain.Country)
X_xTrain['State'] = les.fit_transform(X_xTrain['State'])
print(X_xTrain.head())
X_xTest.Country = lec.transform(X_xTest.Country)
X_xTest['State'] = les.transform(X_xTest['State'])
print(X_xTest.head())
xtrain.loc[xtrain.Country == 'Afghanistan', :]
print(xtest.tail() ) | COVID19 Global Forecasting (Week 3) |
8,755,132 | class Mish(Layer):
def __init__(self, **kwargs):
super(Mish, self ).__init__(**kwargs)
def build(self, input_shape):
super(Mish, self ).build(input_shape)
def call(self, x):
return x * K.tanh(K.softplus(x))
def compute_output_shape(self, input_shape):
return input_shape
class LayerNormalization(keras.layers.Layer):
def __init__(self,
center=True,
scale=True,
epsilon=None,
gamma_initializer='ones',
beta_initializer='zeros',
gamma_regularizer=None,
beta_regularizer=None,
gamma_constraint=None,
beta_constraint=None,
**kwargs):
super(LayerNormalization, self ).__init__(**kwargs)
self.supports_masking = True
self.center = center
self.scale = scale
if epsilon is None:
epsilon = K.epsilon() * K.epsilon()
self.epsilon = epsilon
self.gamma_initializer = keras.initializers.get(gamma_initializer)
self.beta_initializer = keras.initializers.get(beta_initializer)
self.gamma_regularizer = keras.regularizers.get(gamma_regularizer)
self.beta_regularizer = keras.regularizers.get(beta_regularizer)
self.gamma_constraint = keras.constraints.get(gamma_constraint)
self.beta_constraint = keras.constraints.get(beta_constraint)
self.gamma, self.beta = None, None
def get_config(self):
config = {
'center': self.center,
'scale': self.scale,
'epsilon': self.epsilon,
'gamma_initializer': keras.initializers.serialize(self.gamma_initializer),
'beta_initializer': keras.initializers.serialize(self.beta_initializer),
'gamma_regularizer': keras.regularizers.serialize(self.gamma_regularizer),
'beta_regularizer': keras.regularizers.serialize(self.beta_regularizer),
'gamma_constraint': keras.constraints.serialize(self.gamma_constraint),
'beta_constraint': keras.constraints.serialize(self.beta_constraint),
}
base_config = super(LayerNormalization, self ).get_config()
return dict(list(base_config.items())+ list(config.items()))
def compute_output_shape(self, input_shape):
return input_shape
def compute_mask(self, inputs, input_mask=None):
return input_mask
def build(self, input_shape):
shape = input_shape[-1:]
if self.scale:
self.gamma = self.add_weight(
shape=shape,
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint,
name='gamma',
)
if self.center:
self.beta = self.add_weight(
shape=shape,
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint,
name='beta',
)
super(LayerNormalization, self ).build(input_shape)
def call(self, inputs, training=None):
mean = K.mean(inputs, axis=-1, keepdims=True)
variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True)
std = K.sqrt(variance + self.epsilon)
outputs =(inputs - mean)/ std
if self.scale:
outputs *= self.gamma
if self.center:
outputs += self.beta
return outputs<train_model> | filterwarnings('ignore')
le = preprocessing.LabelEncoder()
countries = X_xTrain.Country.unique()
| COVID19 Global Forecasting (Week 3) |
8,755,132 | class NeuralNetworkModel(BaseModel):
def train_model(self, train_set, val_set):
inputs = []
embeddings = []
embedding_out_dim = self.params['embedding_out_dim']
n_neuron = self.params['hidden_units']
for i in self.categoricals:
input_ = Input(shape=(1,))
embedding = Embedding(int(np.absolute(self.train_df[i] ).max() + 1), embedding_out_dim, input_length=1 )(input_)
embedding = Reshape(target_shape=(embedding_out_dim,))(embedding)
inputs.append(input_)
embeddings.append(embedding)
input_numeric = Input(shape=(len(self.features)- len(self.categoricals),))
embedding_numeric = Dense(n_neuron )(input_numeric)
embedding_numeric = Mish()(embedding_numeric)
inputs.append(input_numeric)
embeddings.append(embedding_numeric)
x = Concatenate()(embeddings)
for i in np.arange(self.params['hidden_layers'] - 1):
x = Dense(n_neuron //(2 *(i+1)) )(x)
x = Mish()(x)
x = Dropout(self.params['hidden_dropout'] )(x)
x = LayerNormalization()(x)
if self.task == "regression":
out = Dense(1, activation="linear", name = "out" )(x)
loss = "mse"
elif self.task == "classification":
out = Dense(1, activation='sigmoid', name = 'out' )(x)
loss = "binary_crossentropy"
model = Model(inputs=inputs, outputs=out)
model.compile(loss=loss, optimizer=Adam(lr=1e-04, beta_1=0.9, beta_2=0.999, decay=1e-04))
er = EarlyStopping(patience=10, min_delta=1e-4, restore_best_weights=True, monitor='val_loss')
ReduceLR = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=7, verbose=1, epsilon=1e-4, mode='min')
model.fit(train_set['X'], train_set['y'], callbacks=[er, ReduceLR],
epochs=self.params['epochs'], batch_size=self.params['batch_size'],
validation_data=[val_set['X'], val_set['y']])
fi = np.zeros(len(self.features))
return model, fi
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = {'X': x_train, 'y': y_train}
val_set = {'X': x_val, 'y': y_val}
return train_set, val_set
def get_params(self):
params = {
'input_dropout': 0.0,
'hidden_layers': 2,
'hidden_units': 128,
'embedding_out_dim': 4,
'hidden_activation': 'relu',
'hidden_dropout': 0.05,
'batch_norm': 'before_act',
'optimizer': {'type': 'adam', 'lr': 0.001},
'batch_size': 128,
'epochs': 80
}
return params<load_from_csv> | COVID19 Global Forecasting (Week 3) |
|
8,755,132 | data_dict = {}
for i in glob.glob('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WDataFiles_Stage1/*'):
name = i.split('/')[-1].split('.')[0]
if name != 'WTeamSpellings':
data_dict[name] = pd.read_csv(i)
else:
data_dict[name] = pd.read_csv(i, encoding='cp1252' )<feature_engineering> | xout = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []})
k_log_col=['lag_'+str(j+1)+'_ConfirmedCases' for j in range(14)]+['lag_'+str(j+1)+'_Fatalities' for j in range(14)]
params = {'min_child_weight':[4,5], 'gamma':[i/10.0 for i in range(3,6)], 'subsample':[i/10.0 for i in range(6,8)],
'colsample_bytree':[i/10.0 for i in range(6,8)], 'max_depth': [3,4,5],'n_estimators':[500,1000],'learning_rate': [.03, 0.05,.07],
'objective':['reg:squaredlogerror']}
params = {'min_child_weight':[4,5], 'max_depth': [6],'n_estimators':[1000]}
def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)))
X_xTrain_CS = X_xTrain.loc[:, ['State', 'Country', 'Date','Date_ACT', 'ConfirmedCases', 'Fatalities']+k_log_col]
y1_xTrain_CS = X_xTrain_CS[X_xTrain_CS['ConfirmedCases'] - X_xTrain_CS['lag_1_ConfirmedCases'] >0]['ConfirmedCases']-X_xTrain_CS[X_xTrain_CS['ConfirmedCases'] - X_xTrain_CS['lag_1_ConfirmedCases'] >0]['lag_1_ConfirmedCases']
y2_xTrain_CS = X_xTrain_CS[X_xTrain_CS['ConfirmedCases'] - X_xTrain_CS['lag_1_ConfirmedCases'] >0]['Fatalities']-X_xTrain_CS[X_xTrain_CS['ConfirmedCases'] - X_xTrain_CS['lag_1_ConfirmedCases'] >0]['lag_1_Fatalities']
X_xTrain_CS1=X_xTrain_CS[(X_xTrain_CS['ConfirmedCases'] - X_xTrain_CS['lag_1_ConfirmedCases'])>0].loc[:, ['State', 'Country']+k_log_col].reset_index(drop=True)
oh1=preprocessing.OneHotEncoder(sparse=False ).fit(X_xTrain_CS.Country.values.reshape(X_xTrain_CS.Country.shape[0],1))
oh2=preprocessing.OneHotEncoder(sparse=False ).fit(X_xTrain_CS.State.values.reshape(X_xTrain_CS.Country.shape[0],1))
all_val=oh1.transform(X_xTrain_CS1.Country.values.reshape(X_xTrain_CS1.Country.shape[0],1))
col=['cnty_'+str(k)for k in range(all_val.shape[1])]
X_xTrain_CS1=pd.concat([X_xTrain_CS1,pd.DataFrame(all_val,columns=col)],axis=1)
all_val_State=oh2.transform(X_xTrain_CS1.State.values.reshape(X_xTrain_CS1.State.shape[0],1))
col_State=['state_'+str(k)for k in range(all_val_State.shape[1])]
X_xTrain_CS1=pd.concat([X_xTrain_CS1,pd.DataFrame(all_val_State,columns=col_State)],axis=1)
X_xTest_CS = X_xTest.loc[:, ['State', 'Country', 'Date', 'ForecastId']+k_log_col]
y1_xTest_CS = for_y.loc[:, 'ConfirmedCases']-for_y.loc[:, 'lag_1_ConfirmedCases']
y2_xTest_CS = for_y.loc[:, 'Fatalities']-for_y.loc[:, 'lag_1_Fatalities']
X_xTest_CS_Id = X_xTest_CS.loc[:, 'ForecastId']
X_xTest_CS1 = X_xTest_CS.loc[:, ['State', 'Country']+k_log_col]
all_val=oh1.transform(X_xTest_CS1.Country.values.reshape(X_xTest_CS1.Country.shape[0],1))
col=['cnty_'+str(k)for k in range(all_val.shape[1])]
X_xTest_CS1=pd.concat([X_xTest_CS1,pd.DataFrame(all_val,columns=col)],axis=1)
all_val_State=oh2.transform(X_xTest_CS1.State.values.reshape(X_xTest_CS1.State.shape[0],1))
col_State=['state_'+str(k)for k in range(all_val_State.shape[1])]
X_xTest_CS1=pd.concat([X_xTest_CS1,pd.DataFrame(all_val_State,columns=col_State)],axis=1)
| COVID19 Global Forecasting (Week 3) |
8,755,132 | data_dict['WNCAATourneySeeds']['Seed'] = data_dict['WNCAATourneySeeds']['Seed'].apply(lambda x: int(x[1:3]))
data_dict[fname].head()<load_from_csv> | xgb1 = XGBRegressor(nthread=-1,n_jobs=-1)
grid = GridSearchCV(xgb1, params)
grid.fit(X_xTrain_CS1, y1_xTrain_CS)
| COVID19 Global Forecasting (Week 3) |
8,755,132 | test = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv')
print(test.shape)
test.head()<feature_engineering> | print(r2_score(y1_xTest_CS, np.where(grid.best_estimator_.predict(X_xTest_CS1)<0,0,grid.best_estimator_.predict(X_xTest_CS1))))
print(RMSLE(np.where(y1_xTest_CS<=0,0.001,y1_xTest_CS), np.where(grid.best_estimator_.predict(X_xTest_CS1)<=0,0.001,grid.best_estimator_.predict(X_xTest_CS1))))
xgb2 = XGBRegressor(nthread=-1,n_jobs=-1)
grid1 = GridSearchCV(xgb2, params)
grid1.fit(X_xTrain_CS1, y2_xTrain_CS)
print(r2_score(y2_xTest_CS, np.where(grid1.best_estimator_.predict(X_xTest_CS1)<0,0,grid1.best_estimator_.predict(X_xTest_CS1))))
print(RMSLE(np.where(y2_xTest_CS<=0,0.001,y2_xTest_CS), np.where(grid1.best_estimator_.predict(X_xTest_CS1)<=0,0.001,grid1.best_estimator_.predict(X_xTest_CS1))))
print(r2_score(y2_xTest_CS, grid1.best_estimator_.predict(X_xTest_CS1)))
print(RMSLE(y2_xTest_CS, grid1.best_estimator_.predict(X_xTest_CS1)))
y2_xpred = grid1.best_estimator_.predict(X_xTest_CS1)
| COVID19 Global Forecasting (Week 3) |
8,755,132 | test = test.drop(['Pred'], axis=1)
test['Season'] = test['ID'].apply(lambda x: int(x.split('_')[0]))
test['WTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[1]))
test['LTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[2]))
test.head()<merge> | X_xTrain_CS1_bk=X_xTrain_CS1.copy()
X_xTrain_CS12=X_xTrain_CS.copy()
all_val=oh1.transform(X_xTrain_CS12.Country.values.reshape(X_xTrain_CS12.Country.shape[0],1))
col=['cnty_'+str(k)for k in range(all_val.shape[1])]
X_xTrain_CS12=pd.concat([X_xTrain_CS12,pd.DataFrame(all_val,columns=col)],axis=1)
all_val_State=oh2.transform(X_xTrain_CS12.State.values.reshape(X_xTrain_CS12.State.shape[0],1))
col_State=['state_'+str(k)for k in range(all_val_State.shape[1])]
X_xTrain_CS12=pd.concat([X_xTrain_CS12,pd.DataFrame(all_val_State,columns=col_State)],axis=1)
X_xTrain_CS12=X_xTrain_CS12[X_xTrain_CS1.columns].copy()
X_xTrain_CS12['Date_ACT']=X_xTrain_CS['Date_ACT']
X_xTrain_CS12['Fatalities']=X_xTrain_CS['Fatalities']
X_xTrain_CS12['ConfirmedCases']=X_xTrain_CS['ConfirmedCases'] | COVID19 Global Forecasting (Week 3) |
8,755,132 | gameCities = pd.merge(data_dict['WGameCities'], data_dict['Cities'], how='left', on=['CityID'])
cols_to_use = gameCities.columns.difference(train.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
train = train.merge(gameCities[cols_to_use], how="left", on=["Season", "WTeamID", "LTeamID"])
train.head()
cols_to_use = data_dict["WSeasons"].columns.difference(train.columns ).tolist() + ["Season"]
train = train.merge(data_dict["WSeasons"][cols_to_use], how="left", on=["Season"])
train.head()
cols_to_use = data_dict["WTeams"].columns.difference(train.columns ).tolist()
train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["WTeamID"], right_on=["TeamID"])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head()<merge> | for k in range(60):
X_xTrain_CS12
prev=X_xTrain_CS12[X_xTrain_CS12['Date_ACT']==X_xTrain_CS12.Date_ACT.max() ]
lt=[ 'lag_1_ConfirmedCases','lag_2_ConfirmedCases', 'lag_3_ConfirmedCases',
'lag_4_ConfirmedCases', 'lag_5_ConfirmedCases', 'lag_6_ConfirmedCases',
'lag_7_ConfirmedCases', 'lag_8_ConfirmedCases', 'lag_9_ConfirmedCases',
'lag_10_ConfirmedCases', 'lag_11_ConfirmedCases',
'lag_12_ConfirmedCases', 'lag_13_ConfirmedCases',
'lag_14_ConfirmedCases', 'lag_1_Fatalities','lag_2_Fatalities',
'lag_3_Fatalities', 'lag_4_Fatalities', 'lag_5_Fatalities',
'lag_6_Fatalities', 'lag_7_Fatalities', 'lag_8_Fatalities',
'lag_9_Fatalities', 'lag_10_Fatalities', 'lag_11_Fatalities',
'lag_12_Fatalities', 'lag_13_Fatalities', 'lag_14_Fatalities']
lt1=['ConfirmedCases','lag_1_ConfirmedCases', 'lag_2_ConfirmedCases', 'lag_3_ConfirmedCases',
'lag_4_ConfirmedCases', 'lag_5_ConfirmedCases', 'lag_6_ConfirmedCases',
'lag_7_ConfirmedCases', 'lag_8_ConfirmedCases', 'lag_9_ConfirmedCases',
'lag_10_ConfirmedCases', 'lag_11_ConfirmedCases',
'lag_12_ConfirmedCases', 'lag_13_ConfirmedCases',
'Fatalities', 'lag_1_Fatalities', 'lag_2_Fatalities',
'lag_3_Fatalities', 'lag_4_Fatalities', 'lag_5_Fatalities',
'lag_6_Fatalities', 'lag_7_Fatalities', 'lag_8_Fatalities',
'lag_9_Fatalities', 'lag_10_Fatalities', 'lag_11_Fatalities',
'lag_12_Fatalities', 'lag_13_Fatalities']
prev[lt]=X_xTrain_CS12[X_xTrain_CS12['Date_ACT']==X_xTrain_CS12.Date_ACT.max() ][lt1]
cc=grid.best_estimator_.predict(X_xTrain_CS12[X_xTrain_CS12['Date_ACT']==X_xTrain_CS12.Date_ACT.max() ][ ['State', 'Country']+k_log_col+col+col_State])
prev['ConfirmedCases']=prev['lag_1_ConfirmedCases']+np.where(cc<=0,0.001,cc)
Fl=grid1.best_estimator_.predict(X_xTrain_CS12[X_xTrain_CS12['Date_ACT']==X_xTrain_CS12.Date_ACT.max() ][ ['State', 'Country']+k_log_col+col+col_State])
prev['Fatalities']=prev['lag_1_Fatalities']+np.where(Fl<=0,0.001,Fl)
prev['Date_ACT']=X_xTrain_CS12.Date_ACT.max() + datetime.timedelta(days=1)
prev.index=prev.index+1
X_xTrain_CS12=X_xTrain_CS12.append(prev)
| COVID19 Global Forecasting (Week 3) |
8,755,132 | cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(train.columns ).tolist() + ['Season']
train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head()<merge> | X_xTrain_CS2=X_xTrain_CS12.copy() | COVID19 Global Forecasting (Week 3) |
8,755,132 | cols_to_use = gameCities.columns.difference(test.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
test = test.merge(gameCities[cols_to_use].drop_duplicates(subset=["Season", "WTeamID", "LTeamID"]),
how="left", on=["Season", "WTeamID", "LTeamID"])
del gameCities
gc.collect()
test.head()
cols_to_use = data_dict["WSeasons"].columns.difference(test.columns ).tolist() + ["Season"]
test = test.merge(data_dict["WSeasons"][cols_to_use].drop_duplicates(subset=["Season"]),
how="left", on=["Season"])
test.head()
cols_to_use = data_dict["WTeams"].columns.difference(test.columns ).tolist()
test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["WTeamID"], right_on=["TeamID"])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
test.head()
cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(test.columns ).tolist() + ['Season']
test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
print(test.shape)
test.head()<drop_column> | X_xTrain_CS2['Country_1']=lec.inverse_transform(X_xTrain_CS2['Country'])
X_xTrain_CS2['State_1']=les.inverse_transform(X_xTrain_CS2['State'] ) | COVID19 Global Forecasting (Week 3) |
8,755,132 | not_exist_in_test = [c for c in train.columns.values.tolist() if c not in test.columns.values.tolist() ]
print(not_exist_in_test)
train = train.drop(not_exist_in_test, axis=1)
train.head()<groupby> | xtest = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv')
xsubmission = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/submission.csv')
xtest.rename(columns={'Country_Region':'Country'}, inplace=True)
xtest.rename(columns={'Province_State':'State'}, inplace=True)
EMPTY_VAL = "NA"
def fillState(state, country):
if state == EMPTY_VAL: return country
return state
xtest['Date'] = pd.to_datetime(xtest['Date'], infer_datetime_format=True)
xtest['State'].fillna(EMPTY_VAL, inplace=True)
xtest['State'] = xtest.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1)
xtest | COVID19 Global Forecasting (Week 3) |
8,755,132 | team_win_score = regularSeason.groupby(['Season', 'WTeamID'] ).agg({'WScore':['sum', 'count', 'var']} ).reset_index()
team_win_score.columns = [' '.join(col ).strip() for col in team_win_score.columns.values]
team_loss_score = regularSeason.groupby(['Season', 'LTeamID'] ).agg({'LScore':['sum', 'count', 'var']} ).reset_index()
team_loss_score.columns = [' '.join(col ).strip() for col in team_loss_score.columns.values]
del regularSeason
gc.collect()<merge> | xtest1=xtest.merge(X_xTrain_CS2,left_on=['State','Country','Date'],right_on=['State_1','Country_1','Date_ACT'],how='inner')
xtest1 | COVID19 Global Forecasting (Week 3) |
8,755,132 | train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
train.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
train.head()<merge> | xtest1[(xtest1['Country_x']=='US')&(xtest1['State_x']=='New York')][['Date','ConfirmedCases','Fatalities']] | COVID19 Global Forecasting (Week 3) |
8,755,132 | test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
test.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
test.head()<feature_engineering> | xtest1[(xtest1['Country_x']=='India')&(xtest1['State_x']=='India')][['Date','ConfirmedCases','Fatalities']] | COVID19 Global Forecasting (Week 3) |
8,755,132 | def preprocess(df):
df['x_score'] = df['WScore sum_x'] + df['LScore sum_y']
df['y_score'] = df['WScore sum_y'] + df['LScore sum_x']
df['x_count'] = df['WScore count_x'] + df['LScore count_y']
df['y_count'] = df['WScore count_y'] + df['WScore count_x']
df['x_var'] = df['WScore var_x'] + df['LScore count_y']
df['y_var'] = df['WScore var_y'] + df['WScore var_x']
return df
train = preprocess(train)
test = preprocess(test )<drop_column> | xtest1[['Fatalities','ConfirmedCases','ForecastId']].to_csv('submission.csv', index=False)
print("Submission file Created....." ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | train_win = train.copy()
train_los = train.copy()
train_win = train_win[['Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_los = train_los[['Seed_L', 'Seed_W', 'TeamName_L', 'TeamName_W',
'y_score', 'x_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_win.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
train_los.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
test = test[['ID', 'Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
test.columns = ['ID', 'Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']<feature_engineering> | import plotly.graph_objects as go
import matplotlib.pyplot as plt
from tqdm import tqdm
import time
from datetime import datetime
from pathlib import Path
from sklearn import preprocessing
import keras.backend as K
from keras.models import Sequential
from keras.layers import Dense, LSTM, RNN, Dropout
from keras.callbacks import EarlyStopping
from keras import optimizers
from sklearn.preprocessing import StandardScaler, MinMaxScaler | COVID19 Global Forecasting (Week 3) |
8,779,099 | def feature_engineering(df):
df['Seed_diff'] = df['Seed_1'] - df['Seed_2']
df['Score_diff'] = df['Score_1'] - df['Score_2']
df['Count_diff'] = df['Count_1'] - df['Count_2']
df['Var_diff'] = df['Var_1'] - df['Var_2']
df['Mean_score1'] = df['Score_1'] / df['Count_1']
df['Mean_score2'] = df['Score_2'] / df['Count_2']
df['Mean_score_diff'] = df['Mean_score1'] - df['Mean_score2']
df['FanoFactor_1'] = df['Var_1'] / df['Mean_score1']
df['FanoFactor_2'] = df['Var_2'] / df['Mean_score2']
return df
train_win = feature_engineering(train_win)
train_los = feature_engineering(train_los)
test = feature_engineering(test )<concatenate> | train = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/train.csv")
test = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/test.csv")
train.tail() | COVID19 Global Forecasting (Week 3) |
8,779,099 | data = pd.concat(( train_win, train_los)).reset_index(drop=True)
print(data.shape)
data.head()<categorify> | mask = train['Date'].max()
world_cum_confirmed = sum(train[train['Date'] == mask].ConfirmedCases)
world_cum_fatal = sum(train[train['Date'] == mask].Fatalities ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | categoricals = ["TeamName_1", "TeamName_2"]
for c in categoricals:
le = LabelEncoder()
data[c] = data[c].fillna("NaN")
data[c] = le.fit_transform(data[c])
test[c] = le.transform(test[c])
data.head()<drop_column> | print('Number of Countires are: ', len(train['Country_Region'].unique()))
print('Training dataset ends at: ', mask)
print('Number of cumulative confirmed cases worldwide are: ', world_cum_confirmed)
print('Number of cumulative fatal cases worldwide are: ', world_cum_fatal ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | target = 'result'
features = data.columns.values.tolist()
features.remove(target )<train_on_grid> | cum_per_country = train[train['Date'] == mask].groupby(['Date','Country_Region'] ).sum().sort_values(['ConfirmedCases'], ascending=False)
cum_per_country[:10] | COVID19 Global Forecasting (Week 3) |
8,779,099 | nn = NeuralNetworkModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler="MinMax", verbose=True )<train_model> | date = train['Date'].unique()
cc_us = train[train['Country_Region'] == 'US'].groupby(['Date'] ).sum().ConfirmedCases
ft_us = train[train['Country_Region'] == 'US'].groupby(['Date'] ).sum().Fatalities
cc_ity = train[train['Country_Region'] == 'Italy'].groupby(['Date'] ).sum().ConfirmedCases
ft_ity = train[train['Country_Region'] == 'Italy'].groupby(['Date'] ).sum().Fatalities
cc_spn = train[train['Country_Region'] == 'Spain'].groupby(['Date'] ).sum().ConfirmedCases
ft_spn = train[train['Country_Region'] == 'Spain'].groupby(['Date'] ).sum().Fatalities
cc_gmn = train[train['Country_Region'] == 'Germany'].groupby(['Date'] ).sum().ConfirmedCases
ft_gmn = train[train['Country_Region'] == 'Germany'].groupby(['Date'] ).sum().Fatalities
cc_frc = train[train['Country_Region'] == 'France'].groupby(['Date'] ).sum().ConfirmedCases
ft_frc = train[train['Country_Region'] == 'France'].groupby(['Date'] ).sum().Fatalities
fig = go.Figure()
fig.add_trace(go.Scatter(x=date, y=cc_us, name='US'))
fig.add_trace(go.Scatter(x=date, y=cc_ity, name='Italy'))
fig.add_trace(go.Scatter(x=date, y=cc_spn, name='Spain'))
fig.add_trace(go.Scatter(x=date, y=cc_gmn, name='Germany'))
fig.add_trace(go.Scatter(x=date, y=cc_frc, name='France'))
fig.update_layout(title="Plot of Cumulative Cases for Top 5 countires(except China)",
xaxis_title="Date",
yaxis_title="Cases")
fig.update_xaxes(nticks=30)
fig.show() | COVID19 Global Forecasting (Week 3) |
8,779,099 | lgbm = LgbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True )<create_dataframe> | train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train['Country_Region'] = train['Country_Region'].astype(str)
test['Country_Region'] = test['Country_Region'].astype(str)
| COVID19 Global Forecasting (Week 3) |
8,779,099 | catb = CatbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True )<load_from_csv> | EMPTY_VAL = "EMPTY_VAL"
def fillState(state, country):
if state == EMPTY_VAL: return country
return state
train['Province_State'].fillna(EMPTY_VAL, inplace=True)
train['Province_State'] = train.loc[:, ['Province_State', 'Country_Region']].apply(lambda x : fillState(x['Province_State'], x['Country_Region']), axis=1)
test['Province_State'].fillna(EMPTY_VAL, inplace=True)
test['Province_State'] = test.loc[:, ['Province_State', 'Country_Region']].apply(lambda x : fillState(x['Province_State'], x['Country_Region']), axis=1 ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv')
submission_df['Pred'] = 0.7 * lgbm.y_pred + 0.2 * catb.y_pred + 0.1 * nn.y_pred
submission_df<save_to_csv> | le = preprocessing.LabelEncoder()
train['country_encoder'] = le.fit_transform(train['Country_Region'])
train['date_int'] = train['Date'].apply(lambda x: datetime.strftime(x, '%m%d')).astype(int)
test['country_encoder'] = le.transform(test['Country_Region'])
test['date_int'] = test['Date'].apply(lambda x: datetime.strftime(x, '%m%d')).astype(int ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | submission_df.to_csv('submission.csv', index=False )<set_options> | le = preprocessing.LabelEncoder()
train['province_encoder'] = le.fit_transform(train['Province_State'])
test['province_encoder'] = le.transform(test['Province_State'] ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | pd.set_option('max_columns', None)
plt.style.use('fivethirtyeight')
%matplotlib inline
py.init_notebook_mode(connected=True)
warnings.filterwarnings('ignore')
print("Libraries imported!" )<train_model> | start_time = time.time()
country = train['Country_Region'].drop_duplicates()
train_df = train.copy()
train_df.rename(columns={'Date': 'date', 'ConfirmedCases': 'cc_cases', 'Fatalities': 'ft_cases', 'Country_Region': 'country', 'Province_State': 'province'}, inplace=True)
lags = np.arange(1,8,1)
with tqdm(total = len(list(train_df['date'].unique())))as pbar:
for d in train_df['date'].drop_duplicates() :
for i in country:
province = train_df[train_df['country'] == i]['province'].drop_duplicates()
for j in province:
mask =(train_df['date'] == d)&(train_df['country'] == i)&(train_df['province'] == j)
for lag in lags:
mask_org =(train_df['date'] ==(d - pd.Timedelta(days=lag)))&(train_df['country'] == i)&(train_df['province'] == j)
try:
train_df.loc[mask, 'cc_cases_' + str(lag)] = train_df.loc[mask_org, 'cc_cases'].values
except:
train_df.loc[mask, 'cc_cases_' + str(lag)] = 0
try:
train_df.loc[mask, 'ft_cases_' + str(lag)] = train_df.loc[mask_org, 'ft_cases'].values
except:
train_df.loc[mask, 'ft_cases_' + str(lag)] = 0
pbar.update(1)
print('Time spent for building features is {} minutes'.format(round(( time.time() -start_time)/60,1)) ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | class BaseModel(object):
def __init__(self, train_df, test_df, target, features, categoricals=[],
n_splits=3, cv_method="KFold", group=None, task="regression",
parameter_tuning=False, scaler=None, verbose=True):
self.train_df = train_df
self.test_df = test_df
self.target = target
self.features = features
self.n_splits = n_splits
self.categoricals = categoricals
self.cv_method = cv_method
self.group = group
self.task = task
self.parameter_tuning = parameter_tuning
self.scaler = scaler
self.cv = self.get_cv()
self.verbose = verbose
self.params = self.get_params()
self.y_pred, self.score, self.model, self.oof, self.y_val, self.fi_df = self.fit()
def train_model(self, train_set, val_set):
raise NotImplementedError
def get_params(self):
raise NotImplementedError
def convert_dataset(self, x_train, y_train, x_val, y_val):
raise NotImplementedError
def convert_x(self, x):
return x
def calc_metric(self, y_true, y_pred):
if self.task == "classification":
return log_loss(y_true, y_pred)
elif self.task == "regression":
return np.sqrt(mean_squared_error(y_true, y_pred))
def get_cv(self):
if self.cv_method == "KFold":
cv = KFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df)
elif self.cv_method == "StratifiedKFold":
cv = StratifiedKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target])
elif self.cv_method == "TimeSeriesSplit":
cv = TimeSeriesSplit(max_train_size=None, n_splits=self.n_splits)
return cv.split(self.train_df)
elif self.cv_method == "GroupKFold":
cv = GroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target], self.group)
elif self.cv_method == "StratifiedGroupKFold":
cv = StratifiedGroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target], self.group)
def fit(self):
oof_pred = np.zeros(( self.train_df.shape[0],))
y_vals = np.zeros(( self.train_df.shape[0],))
y_pred = np.zeros(( self.test_df.shape[0],))
if self.group is not None:
if self.group in self.features:
self.features.remove(self.group)
if self.group in self.categoricals:
self.categoricals.remove(self.group)
fi = np.zeros(( self.n_splits, len(self.features)))
if self.scaler is not None:
numerical_features = [f for f in self.features if f not in self.categoricals]
self.train_df[numerical_features] = self.train_df[numerical_features].fillna(self.train_df[numerical_features].median())
self.test_df[numerical_features] = self.test_df[numerical_features].fillna(self.test_df[numerical_features].median())
self.train_df[self.categoricals] = self.train_df[self.categoricals].fillna(self.train_df[self.categoricals].mode().iloc[0])
self.test_df[self.categoricals] = self.test_df[self.categoricals].fillna(self.test_df[self.categoricals].mode().iloc[0])
if self.scaler == "MinMax":
scaler = MinMaxScaler()
elif self.scaler == "Standard":
scaler = StandardScaler()
df = pd.concat([self.train_df[numerical_features], self.test_df[numerical_features]], ignore_index=True)
scaler.fit(df[numerical_features])
x_test = self.test_df.copy()
x_test[numerical_features] = scaler.transform(x_test[numerical_features])
x_test = [np.absolute(x_test[i])for i in self.categoricals] + [x_test[numerical_features]]
else:
x_test = self.test_df[self.features]
for fold,(train_idx, val_idx)in enumerate(self.cv):
x_train, x_val = self.train_df.loc[train_idx, self.features], self.train_df.loc[val_idx, self.features]
y_train, y_val = self.train_df.loc[train_idx, self.target], self.train_df.loc[val_idx, self.target]
if self.scaler is not None:
x_train[numerical_features] = scaler.transform(x_train[numerical_features])
x_val[numerical_features] = scaler.transform(x_val[numerical_features])
x_train = [np.absolute(x_train[i])for i in self.categoricals] + [x_train[numerical_features]]
x_val = [np.absolute(x_val[i])for i in self.categoricals] + [x_val[numerical_features]]
train_set, val_set = self.convert_dataset(x_train, y_train, x_val, y_val)
model, importance = self.train_model(train_set, val_set)
fi[fold, :] = importance
conv_x_val = self.convert_x(x_val)
y_vals[val_idx] = y_val
oof_pred[val_idx] = model.predict(conv_x_val ).reshape(oof_pred[val_idx].shape)
x_test = self.convert_x(x_test)
y_pred += model.predict(x_test ).reshape(y_pred.shape)/ self.n_splits
print('Partial score of fold {} is: {}'.format(fold, self.calc_metric(y_val, oof_pred[val_idx])))
fi_df = pd.DataFrame()
for n in np.arange(self.n_splits):
tmp = pd.DataFrame()
tmp["features"] = self.features
tmp["importance"] = fi[n, :]
tmp["fold"] = n
fi_df = pd.concat([fi_df, tmp], ignore_index=True)
gfi = fi_df[["features", "importance"]].groupby(["features"] ).mean().reset_index()
fi_df = fi_df.merge(gfi, on="features", how="left", suffixes=('', '_mean'))
loss_score = self.calc_metric(self.train_df[self.target], oof_pred)
if self.verbose:
print('Our oof loss score is: ', loss_score)
return y_pred, loss_score, model, oof_pred, y_vals, fi_df
def plot_feature_importance(self, rank_range=[1, 50]):
fig, ax = plt.subplots(1, 1, figsize=(10, 20))
sorted_df = self.fi_df.sort_values(by = "importance_mean", ascending=False ).reset_index().iloc[self.n_splits *(rank_range[0]-1): self.n_splits * rank_range[1]]
sns.barplot(data=sorted_df, x ="importance", y ="features", orient='h')
ax.set_xlabel("feature importance")
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
return sorted_df<train_model> | train_df = train_df[train_df['date_int']>=301]
train_df['weekday'] = train_df['date'].dt.weekday
train_df[train_df['country'] == 'Italy'].tail(10 ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | class LgbModel(BaseModel):
def train_model(self, train_set, val_set):
verbosity = 100 if self.verbose else 0
model = lgb.train(self.params, train_set, num_boost_round = 5000, valid_sets=[train_set, val_set], verbose_eval=verbosity)
fi = model.feature_importance(importance_type="gain")
return model, fi
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = lgb.Dataset(x_train, y_train, categorical_feature=self.categoricals)
val_set = lgb.Dataset(x_val, y_val, categorical_feature=self.categoricals)
return train_set, val_set
def get_params(self):
params = {
'num_leaves': 127,
'min_data_in_leaf': 50,
'max_depth': -1,
'learning_rate': 0.005,
"boosting_type": "gbdt",
"bagging_seed": 11,
"verbosity": -1,
'random_state': 42,
}
if self.task == "regression":
params["objective"] = "regression"
params["metric"] = "rmse"
elif self.task == "classification":
params["objective"] = "binary"
params["metric"] = "binary_logloss"
if self.parameter_tuning == True:
def objective(trial):
train_x, test_x, train_y, test_y = train_test_split(self.train_df[self.features],
self.train_df[self.target],
test_size=0.3, random_state=42)
dtrain = lgb.Dataset(train_x, train_y, categorical_feature=self.categoricals)
dtest = lgb.Dataset(test_x, test_y, categorical_feature=self.categoricals)
hyperparams = {'num_leaves': trial.suggest_int('num_leaves', 24, 1024),
'boosting_type': 'gbdt',
'objective': params["objective"],
'metric': params["metric"],
'max_depth': trial.suggest_int('max_depth', 4, 16),
'min_child_weight': trial.suggest_int('min_child_weight', 1, 20),
'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
'lambda_l1': trial.suggest_loguniform('lambda_l1', 1e-8, 10.0),
'lambda_l2': trial.suggest_loguniform('lambda_l2', 1e-8, 10.0),
'early_stopping_rounds': 100
}
model = lgb.train(hyperparams, dtrain, valid_sets=dtest, verbose_eval=500)
pred = model.predict(test_x)
if self.task == "classification":
return log_loss(test_y, pred)
elif self.task == "regression":
return np.sqrt(mean_squared_error(test_y, pred))
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50)
print('Number of finished trials: {}'.format(len(study.trials)))
print('Best trial:')
trial = study.best_trial
print(' Value: {}'.format(trial.value))
print(' Params: ')
for key, value in trial.params.items() :
print(' {}: {}'.format(key, value))
params = trial.params
params["learning_rate"] = 0.001
plot_optimization_history(study)
return params<train_model> | def split_train_val(df, val_ratio):
val_len = int(len(df)* val_ratio)
train_set = df[:-val_len]
val_set = df[-val_len:]
return train_set, val_set | COVID19 Global Forecasting (Week 3) |
8,779,099 | class CatbModel(BaseModel):
def train_model(self, train_set, val_set):
verbosity = 100 if self.verbose else 0
if self.task == "regression":
model = CatBoostRegressor(**self.params)
elif self.task == "classification":
model = CatBoostClassifier(**self.params)
model.fit(train_set['X'], train_set['y'], eval_set=(val_set['X'], val_set['y']),
verbose=verbosity, cat_features=self.categoricals)
return model, model.get_feature_importance()
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = {'X': x_train, 'y': y_train}
val_set = {'X': x_val, 'y': y_val}
return train_set, val_set
def get_params(self):
params = { 'task_type': "CPU",
'learning_rate': 0.01,
'iterations': 1000,
'random_seed': 42,
'use_best_model': True
}
if self.task == "regression":
params["loss_function"] = "RMSE"
elif self.task == "classification":
params["loss_function"] = "Logloss"
return params<normalization> | test_fixed_cols = ['ForecastId', 'Province_State', 'Country_Region', 'Date']
fixed_cols = ['Id', 'province', 'country', 'date']
output_cols = ['cc_cases', 'ft_cases']
input_cols = list(set(train_df.columns.to_list())- set(fixed_cols)- set(output_cols))
print('output columns are ', output_cols)
print('input columns are ', input_cols)
X = train_df[input_cols]
y = train_df[output_cols] | COVID19 Global Forecasting (Week 3) |
8,779,099 | class Mish(Layer):
def __init__(self, **kwargs):
super(Mish, self ).__init__(**kwargs)
def build(self, input_shape):
super(Mish, self ).build(input_shape)
def call(self, x):
return x * K.tanh(K.softplus(x))
def compute_output_shape(self, input_shape):
return input_shape
class LayerNormalization(keras.layers.Layer):
def __init__(self,
center=True,
scale=True,
epsilon=None,
gamma_initializer='ones',
beta_initializer='zeros',
gamma_regularizer=None,
beta_regularizer=None,
gamma_constraint=None,
beta_constraint=None,
**kwargs):
super(LayerNormalization, self ).__init__(**kwargs)
self.supports_masking = True
self.center = center
self.scale = scale
if epsilon is None:
epsilon = K.epsilon() * K.epsilon()
self.epsilon = epsilon
self.gamma_initializer = keras.initializers.get(gamma_initializer)
self.beta_initializer = keras.initializers.get(beta_initializer)
self.gamma_regularizer = keras.regularizers.get(gamma_regularizer)
self.beta_regularizer = keras.regularizers.get(beta_regularizer)
self.gamma_constraint = keras.constraints.get(gamma_constraint)
self.beta_constraint = keras.constraints.get(beta_constraint)
self.gamma, self.beta = None, None
def get_config(self):
config = {
'center': self.center,
'scale': self.scale,
'epsilon': self.epsilon,
'gamma_initializer': keras.initializers.serialize(self.gamma_initializer),
'beta_initializer': keras.initializers.serialize(self.beta_initializer),
'gamma_regularizer': keras.regularizers.serialize(self.gamma_regularizer),
'beta_regularizer': keras.regularizers.serialize(self.beta_regularizer),
'gamma_constraint': keras.constraints.serialize(self.gamma_constraint),
'beta_constraint': keras.constraints.serialize(self.beta_constraint),
}
base_config = super(LayerNormalization, self ).get_config()
return dict(list(base_config.items())+ list(config.items()))
def compute_output_shape(self, input_shape):
return input_shape
def compute_mask(self, inputs, input_mask=None):
return input_mask
def build(self, input_shape):
shape = input_shape[-1:]
if self.scale:
self.gamma = self.add_weight(
shape=shape,
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint,
name='gamma',
)
if self.center:
self.beta = self.add_weight(
shape=shape,
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint,
name='beta',
)
super(LayerNormalization, self ).build(input_shape)
def call(self, inputs, training=None):
mean = K.mean(inputs, axis=-1, keepdims=True)
variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True)
std = K.sqrt(variance + self.epsilon)
outputs =(inputs - mean)/ std
if self.scale:
outputs *= self.gamma
if self.center:
outputs += self.beta
return outputs<train_model> | cc_input = ['country_encoder', 'province_encoder', 'weekday', 'date_int','cc_cases_1', 'cc_cases_2', 'cc_cases_3', 'cc_cases_4', 'cc_cases_5', 'cc_cases_6', 'cc_cases_7']
ft_input = ['country_encoder', 'province_encoder', 'weekday' , 'date_int', 'ft_cases_1', 'ft_cases_2', 'ft_cases_3', 'ft_cases_4', 'ft_cases_5', 'ft_cases_6', 'ft_cases_7']
cc_output = ['cc_cases']
ft_output = ['ft_cases']
val_ratio = 0.05
X_cc = X[cc_input]
X_ft = X[ft_input]
y_cc = y[cc_output]
y_ft = y[ft_output]
train_X_cc, val_X_cc = split_train_val(df = X_cc, val_ratio = val_ratio)
train_y_cc, val_y_cc = split_train_val(df = y_cc, val_ratio = val_ratio)
train_X_ft, val_X_ft = split_train_val(df = X_ft, val_ratio = val_ratio)
train_y_ft, val_y_ft = split_train_val(df = y_ft, val_ratio = val_ratio ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | class NeuralNetworkModel(BaseModel):
def train_model(self, train_set, val_set):
inputs = []
embeddings = []
embedding_out_dim = self.params['embedding_out_dim']
n_neuron = self.params['hidden_units']
for i in self.categoricals:
input_ = Input(shape=(1,))
embedding = Embedding(int(np.absolute(self.train_df[i] ).max() + 1), embedding_out_dim, input_length=1 )(input_)
embedding = Reshape(target_shape=(embedding_out_dim,))(embedding)
inputs.append(input_)
embeddings.append(embedding)
input_numeric = Input(shape=(len(self.features)- len(self.categoricals),))
embedding_numeric = Dense(n_neuron )(input_numeric)
embedding_numeric = Mish()(embedding_numeric)
inputs.append(input_numeric)
embeddings.append(embedding_numeric)
x = Concatenate()(embeddings)
for i in np.arange(self.params['hidden_layers'] - 1):
x = Dense(n_neuron //(2 *(i+1)) )(x)
x = Mish()(x)
x = Dropout(self.params['hidden_dropout'] )(x)
x = LayerNormalization()(x)
if self.task == "regression":
out = Dense(1, activation="linear", name = "out" )(x)
loss = "mse"
elif self.task == "classification":
out = Dense(1, activation='sigmoid', name = 'out' )(x)
loss = "binary_crossentropy"
model = Model(inputs=inputs, outputs=out)
model.compile(loss=loss, optimizer=Adam(lr=1e-04, beta_1=0.9, beta_2=0.999, decay=1e-04))
er = EarlyStopping(patience=10, min_delta=1e-4, restore_best_weights=True, monitor='val_loss')
ReduceLR = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=7, verbose=1, epsilon=1e-4, mode='min')
model.fit(train_set['X'], train_set['y'], callbacks=[er, ReduceLR],
epochs=self.params['epochs'], batch_size=self.params['batch_size'],
validation_data=[val_set['X'], val_set['y']])
fi = np.zeros(len(self.features))
return model, fi
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = {'X': x_train, 'y': y_train}
val_set = {'X': x_val, 'y': y_val}
return train_set, val_set
def get_params(self):
params = {
'input_dropout': 0.0,
'hidden_layers': 2,
'hidden_units': 128,
'embedding_out_dim': 4,
'hidden_activation': 'relu',
'hidden_dropout': 0.05,
'batch_norm': 'before_act',
'optimizer': {'type': 'adam', 'lr': 0.001},
'batch_size': 128,
'epochs': 80
}
return params<load_from_csv> | COVID19 Global Forecasting (Week 3) |
|
8,779,099 | data_dict = {}
for i in glob.glob('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WDataFiles_Stage1/*'):
name = i.split('/')[-1].split('.')[0]
if name != 'WTeamSpellings':
data_dict[name] = pd.read_csv(i)
else:
data_dict[name] = pd.read_csv(i, encoding='cp1252' )<feature_engineering> | COVID19 Global Forecasting (Week 3) |
|
8,779,099 | data_dict['WNCAATourneySeeds']['Seed'] = data_dict['WNCAATourneySeeds']['Seed'].apply(lambda x: int(x[1:3]))
data_dict[fname].head()<load_from_csv> | X_train_cc = train_X_cc.to_numpy()
X_val_cc = val_X_cc.to_numpy()
X_train_ft = train_X_ft.to_numpy()
X_val_ft = val_X_ft.to_numpy()
y_train_cc = train_y_cc.to_numpy()
y_val_cc = val_y_cc.to_numpy()
y_train_ft = train_y_ft.to_numpy()
y_val_ft = val_y_ft.to_numpy() | COVID19 Global Forecasting (Week 3) |
8,779,099 | test = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv')
print(test.shape)
test.head()<feature_engineering> | def root_mean_squared_log_error(y_true, y_pred):
return K.sqrt(K.mean(K.square(K.log(y_pred + 1)- K.log(y_true + 1)))) | COVID19 Global Forecasting (Week 3) |
8,779,099 | test = test.drop(['Pred'], axis=1)
test['Season'] = test['ID'].apply(lambda x: int(x.split('_')[0]))
test['WTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[1]))
test['LTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[2]))
test.head()<merge> | def LSTM_model(n_1, input_dim, output_dim):
model = Sequential()
model.add(LSTM(n_1,input_shape=(1, input_dim), activation='relu'))
model.add(Dense(output_dim, activation='relu'))
model.compile(loss=root_mean_squared_log_error, optimizer='adam')
return model | COVID19 Global Forecasting (Week 3) |
8,779,099 | gameCities = pd.merge(data_dict['WGameCities'], data_dict['Cities'], how='left', on=['CityID'])
cols_to_use = gameCities.columns.difference(train.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
train = train.merge(gameCities[cols_to_use], how="left", on=["Season", "WTeamID", "LTeamID"])
train.head()
cols_to_use = data_dict["WSeasons"].columns.difference(train.columns ).tolist() + ["Season"]
train = train.merge(data_dict["WSeasons"][cols_to_use], how="left", on=["Season"])
train.head()
cols_to_use = data_dict["WTeams"].columns.difference(train.columns ).tolist()
train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["WTeamID"], right_on=["TeamID"])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head()<merge> | K.clear_session()
model_cc = LSTM_model(4, X_train_cc.shape[-1], y_train_cc.shape[-1])
model_ft = LSTM_model(4, X_train_ft.shape[-1], y_train_ft.shape[-1])
early_stop_cc = EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='min')
early_stop_ft = EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='min' ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(train.columns ).tolist() + ['Season']
train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head()<merge> | print('Start model training')
start_time = time.time()
history_cc = model_cc.fit(X_train_cc, y_train_cc, batch_size = 16, epochs = 100,validation_data =(X_val_cc, y_val_cc), verbose = 2, callbacks=[early_stop_cc])
model_cc.save("model_cc.h5")
print('Time spent for model training is {} minutes'.format(round(( time.time() -start_time)/60,1)) ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | cols_to_use = gameCities.columns.difference(test.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
test = test.merge(gameCities[cols_to_use].drop_duplicates(subset=["Season", "WTeamID", "LTeamID"]),
how="left", on=["Season", "WTeamID", "LTeamID"])
del gameCities
gc.collect()
test.head()
cols_to_use = data_dict["WSeasons"].columns.difference(test.columns ).tolist() + ["Season"]
test = test.merge(data_dict["WSeasons"][cols_to_use].drop_duplicates(subset=["Season"]),
how="left", on=["Season"])
test.head()
cols_to_use = data_dict["WTeams"].columns.difference(test.columns ).tolist()
test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["WTeamID"], right_on=["TeamID"])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
test.head()
cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(test.columns ).tolist() + ['Season']
test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
print(test.shape)
test.head()<drop_column> | print('Start model training')
start_time = time.time()
history_ft = model_ft.fit(X_train_ft, y_train_ft, batch_size = 16, epochs = 8,validation_data =(X_val_ft, y_val_ft), verbose = 2, callbacks=[early_stop_ft])
model_ft.save("model_ft.h5")
print('Time spent for model training is {} minutes'.format(round(( time.time() -start_time)/60,1)) ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | not_exist_in_test = [c for c in train.columns.values.tolist() if c not in test.columns.values.tolist() ]
print(not_exist_in_test)
train = train.drop(not_exist_in_test, axis=1)
train.head()<groupby> | yhat_val_cc = model_cc.predict(X_val_cc)
print(yhat_val_cc[50:70] ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | team_win_score = regularSeason.groupby(['Season', 'WTeamID'] ).agg({'WScore':['sum', 'count', 'var']} ).reset_index()
team_win_score.columns = [' '.join(col ).strip() for col in team_win_score.columns.values]
team_loss_score = regularSeason.groupby(['Season', 'LTeamID'] ).agg({'LScore':['sum', 'count', 'var']} ).reset_index()
team_loss_score.columns = [' '.join(col ).strip() for col in team_loss_score.columns.values]
del regularSeason
gc.collect()<merge> | yhat_val_ft = model_ft.predict(X_val_ft)
print(yhat_val_ft[60:70] ) | COVID19 Global Forecasting (Week 3) |
8,779,099 | train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
train.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
train.head()<merge> | submission = pd.DataFrame()
submission['ForecastId'] = test_df['ForecastId']
submission['ConfirmedCases'] = test_df['cc_cases']
submission['Fatalities'] = test_df['ft_cases'] | COVID19 Global Forecasting (Week 3) |
8,779,099 | <feature_engineering><EOS> | submission.to_csv("submission.csv",index=False ) | COVID19 Global Forecasting (Week 3) |
8,810,090 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<drop_column> | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.arima_model import ARIMA
from random import random
| COVID19 Global Forecasting (Week 3) |
8,810,090 | train_win = train.copy()
train_los = train.copy()
train_win = train_win[['Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_los = train_los[['Seed_L', 'Seed_W', 'TeamName_L', 'TeamName_W',
'y_score', 'x_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_win.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
train_los.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
test = test[['ID', 'Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
test.columns = ['ID', 'Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']<feature_engineering> | PATH_WEEK2='/kaggle/input/covid19-global-forecasting-week-3'
df_train = pd.read_csv(f'{PATH_WEEK2}/train.csv')
df_test = pd.read_csv(f'{PATH_WEEK2}/test.csv')
df_train.head()
df_test.head()
df_train.rename(columns={'Country_Region':'Country'}, inplace=True)
df_test.rename(columns={'Country_Region':'Country'}, inplace=True)
df_train.rename(columns={'Province_State':'State'}, inplace=True)
df_test.rename(columns={'Province_State':'State'}, inplace=True)
df_train['Date'] = pd.to_datetime(df_train['Date'], infer_datetime_format=True)
df_test['Date'] = pd.to_datetime(df_test['Date'], infer_datetime_format=True)
df_train.info()
df_test.info()
y1_Train = df_train.iloc[:, -2]
y1_Train.head()
y2_Train = df_train.iloc[:, -1]
y2_Train.head()
EMPTY_VAL = "EMPTY_VAL"
def fillState(state, country):
if state == EMPTY_VAL: return country
return state | COVID19 Global Forecasting (Week 3) |
8,810,090 | def feature_engineering(df):
df['Seed_diff'] = df['Seed_1'] - df['Seed_2']
df['Score_diff'] = df['Score_1'] - df['Score_2']
df['Count_diff'] = df['Count_1'] - df['Count_2']
df['Var_diff'] = df['Var_1'] - df['Var_2']
df['Mean_score1'] = df['Score_1'] / df['Count_1']
df['Mean_score2'] = df['Score_2'] / df['Count_2']
df['Mean_score_diff'] = df['Mean_score1'] - df['Mean_score2']
df['FanoFactor_1'] = df['Var_1'] / df['Mean_score1']
df['FanoFactor_2'] = df['Var_2'] / df['Mean_score2']
return df
train_win = feature_engineering(train_win)
train_los = feature_engineering(train_los)
test = feature_engineering(test )<concatenate> | X_Train = df_train.copy()
X_Train['State'].fillna(EMPTY_VAL, inplace=True)
X_Train['State'] = X_Train.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1)
X_Train.loc[:, 'Date'] = X_Train.Date.dt.strftime("%m%d")
X_Train["Date"] = X_Train["Date"].astype(int)
X_Train.head()
X_Test = df_test.copy()
X_Test['State'].fillna(EMPTY_VAL, inplace=True)
X_Test['State'] = X_Test.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1)
X_Test.loc[:, 'Date'] = X_Test.Date.dt.strftime("%m%d")
X_Test["Date"] = X_Test["Date"].astype(int)
X_Test.head() | COVID19 Global Forecasting (Week 3) |
8,810,090 | data = pd.concat(( train_win, train_los)).reset_index(drop=True)
print(data.shape)
data.head()<categorify> | le = preprocessing.LabelEncoder()
X_Train.Country = le.fit_transform(X_Train.Country)
X_Train['State'] = le.fit_transform(X_Train['State'])
X_Train.head()
X_Test.Country = le.fit_transform(X_Test.Country)
X_Test['State'] = le.fit_transform(X_Test['State'])
X_Test.head()
df_train.head()
df_train.loc[df_train.Country == 'Afghanistan', :]
df_test.tail() | COVID19 Global Forecasting (Week 3) |
8,810,090 | categoricals = ["TeamName_1", "TeamName_2"]
for c in categoricals:
le = LabelEncoder()
data[c] = data[c].fillna("NaN")
data[c] = le.fit_transform(data[c])
test[c] = le.transform(test[c])
data.head()<drop_column> | filterwarnings('ignore')
le = preprocessing.LabelEncoder()
countries = X_Train.Country.unique()
df_out = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []})
for country in countries:
states = X_Train.loc[X_Train.Country == country, :].State.unique()
for state in states:
X_Train_CS = X_Train.loc[(X_Train.Country == country)&(X_Train.State == state), ['State', 'Country', 'Date', 'ConfirmedCases', 'Fatalities']]
y1_Train_CS = X_Train_CS.loc[:, 'ConfirmedCases']
y2_Train_CS = X_Train_CS.loc[:, 'Fatalities']
X_Train_CS = X_Train_CS.loc[:, ['State', 'Country', 'Date']]
X_Train_CS.Country = le.fit_transform(X_Train_CS.Country)
X_Train_CS['State'] = le.fit_transform(X_Train_CS['State'])
X_Test_CS = X_Test.loc[(X_Test.Country == country)&(X_Test.State == state), ['State', 'Country', 'Date', 'ForecastId']]
X_Test_CS_Id = X_Test_CS.loc[:, 'ForecastId']
X_Test_CS = X_Test_CS.loc[:, ['State', 'Country', 'Date']]
X_Test_CS.Country = le.fit_transform(X_Test_CS.Country)
X_Test_CS['State'] = le.fit_transform(X_Test_CS['State'])
model1 = XGBRegressor(n_estimators=1000)
model1.fit(X_Train_CS, y1_Train_CS)
y1_pred = model1.predict(X_Test_CS)
model2 = XGBRegressor(n_estimators=1000)
model2.fit(X_Train_CS, y2_Train_CS)
y2_pred = model2.predict(X_Test_CS)
df = pd.DataFrame({'ForecastId': X_Test_CS_Id, 'ConfirmedCases': y1_pred, 'Fatalities': y2_pred})
df_out = pd.concat([df_out, df], axis=0)
| COVID19 Global Forecasting (Week 3) |
8,810,090 | <train_on_grid><EOS> | df_out.ForecastId = df_out.ForecastId.astype('int')
df_out.tail()
df_out.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,794,000 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<train_model> | folder = '/kaggle/input/covid19-global-forecasting-week-3/'
submission = pd.read_csv(folder+'submission.csv',index_col=0)
test = pd.read_csv(folder+'test.csv',index_col=0)
test['Date'] = pd.to_datetime(test['Date'],format='%Y-%m-%d')
test['Province_State'] = test['Province_State'].fillna(value='NaN')
data_cases = format_kaggle(folder,'ConfirmedCases')
data_deaths = format_kaggle(folder,'Fatalities' ) | COVID19 Global Forecasting (Week 3) |
8,794,000 | lgbm = LgbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True )<create_dataframe> | params_cases = fit_all(data_cases,plot=True,ylabel='Confirmed Cases',p0=1e2,prior=(8,500))
params_cases.to_csv('params_cases.csv' ) | COVID19 Global Forecasting (Week 3) |
8,794,000 | catb = CatbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True )<load_from_csv> | params_deaths = fit_all(data_deaths,plot=True,ylabel='Fatalities',p0=10,prior=(8,200))
params_deaths.to_csv('params_deaths.csv' ) | COVID19 Global Forecasting (Week 3) |
8,794,000 | <save_to_csv><EOS> | for item in submission.index:
country = test.loc[item,'Country_Region']
province = test.loc[item,'Province_State']
t_abs = test.loc[item,'Date']
t =(t_abs-tref)/pd.to_timedelta(1,unit='days')
th, logK, sigma = params_cases[['th','logK','sigma']].loc[country,province]
if not np.isnan(th):
tau =(t-th)/(np.sqrt(2)*sigma)
submission.loc[item,'ConfirmedCases'] = np.exp(logK)*(1+erf(tau)) /2
else:
if t_abs in data_cases.index:
submission.loc[item,'ConfirmedCases'] = data_cases[country,province].loc[t_abs]
else:
submission.loc[item,'ConfirmedCases'] = data_cases[country,province].max()
th, logK, sigma = params_deaths[['th','logK','sigma']].loc[country,province]
if not np.isnan(th):
tau =(t-th)/(np.sqrt(2)*sigma)
submission.loc[item,'Fatalities'] = np.exp(logK)*(1+erf(tau)) /2
else:
if t_abs in data_deaths.index:
submission.loc[item,'Fatalities'] = data_deaths[country,province].loc[t_abs]
else:
submission.loc[item,'Fatalities'] = data_deaths[country,province].max()
submission.to_csv('submission.csv' ) | COVID19 Global Forecasting (Week 3) |
8,825,784 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<load_from_csv> | warnings.filterwarnings('ignore')
daybasecount = 4
baseday = 98 - float(daybasecount-1)/2.
exponent = 1./float(daybasecount)
fatalityBaseDayShift = 10
maxincrease = 140
maxDeadPrDay = 1500 | COVID19 Global Forecasting (Week 3) |
8,825,784 | path = '.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/'
tourney_result = pd.read_csv(path + 'WDataFiles_Stage1/WNCAATourneyCompactResults.csv')
tourney_seed = pd.read_csv(path + 'WDataFiles_Stage1/WNCAATourneySeeds.csv')
season_result = pd.read_csv(path + 'WDataFiles_Stage1/WRegularSeasonCompactResults.csv' )<load_from_csv> | dftrain = pd.read_csv('.. /input/covid19-global-forecasting-week-3/train.csv', parse_dates=['Date'] ).sort_values(by=['Country_Region', 'Date'])
dftest = pd.read_csv('.. /input/covid19-global-forecasting-week-3/test.csv', parse_dates=['Date'] ).sort_values(by=['Country_Region', 'Date'])
ppp_tabel = pd.read_csv('.. /input/country-ppp/Country_PPP.csv', sep='\s+')
ppp_tabel.drop('Id', 1,inplace=True)
ppp_tabel = ppp_tabel.append({'Country' : 'Burma' , 'ppp' : 8000} , ignore_index=True)
ppp_tabel = ppp_tabel.append({'Country' : 'MS_Zaandam' , 'ppp' : 40000} , ignore_index=True)
ppp_tabel = ppp_tabel.append({'Country' : 'West_Bank_and_Gaza' , 'ppp' : 20000} , ignore_index=True)
ppp_tabel["Country"].replace('_',' ', regex=True,inplace=True)
ppp_tabel["Country"].replace('United States','US', regex=True,inplace=True)
ppp_tabel.rename(columns={'Country':'Country_Region'},inplace=True)
ppp_tabel.sort_values('Country_Region',inplace=True ) | COVID19 Global Forecasting (Week 3) |
8,825,784 | test_df= pd.read_csv(path +'WSampleSubmissionStage1_2020.csv' )<drop_column> | dftrain['Dayofyear'] = dftrain['Date'].dt.dayofyear
dftest['Dayofyear'] = dftest['Date'].dt.dayofyear
dftest['Expo'] = dftest['Dayofyear']-baseday
print(dftrain.tail(5))
dftest = dftest.merge(dftrain[['Country_Region','Province_State','Date','ConfirmedCases','Fatalities']]
, on=['Country_Region','Province_State','Date'], how='left', indicator=True)
| COVID19 Global Forecasting (Week 3) |
8,825,784 | tourney_result = tourney_result.drop(['DayNum', 'WScore', 'LScore', 'WLoc', 'NumOT'], axis=1)
tourney_result<merge> | grouped=dftrain.groupby(['Country_Region','Province_State'] ).tail(daybasecount*2)
grouped=grouped.groupby(['Country_Region','Province_State'] ).head(daybasecount)
grouped.drop(['FatalityBasis'],axis=1,inplace=True)
to_sum = ['NewCases','NewFatalities']
grouped1 = grouped.groupby(['Country_Region'])[to_sum].sum()
grouped1.rename(columns={'NewCases':'NewCases1','NewFatalities':'NewFatalities1'}, inplace=True)
grouped = pd.merge(grouped1, grouped2, on=['Country_Region'])
grouped['CasesIncreasePct'] = 100*(grouped['NewCases2']/grouped['NewCases1']-1)
mask = grouped['CasesIncreasePct'] > maxincrease
grouped.loc[mask,'CasesIncreasePct'] = maxincrease
mask = grouped['CasesIncreasePct'] < 0
grouped.loc[mask,'CasesIncreasePct'] = 0
mask = grouped['CasesIncreasePct'].isnull()
grouped.loc[mask,'CasesIncreasePct'] = 0
grouped['Factor'] =(grouped['CasesIncreasePct']/100+1)**exponent
grouped = pd.merge(grouped, ppp_tabel, on=['Country_Region'])
grouped['ppp'] = grouped['ppp']/10000.
if False:
mask =(grouped['FatalityPct2'] > 9)&(grouped['ppp'] <= 1)
grouped.loc[mask,'FatalityPct2'] = 5
mask =(grouped['FatalityPct2'] < 5)&(grouped['ppp'] <= 1)
grouped.loc[mask,'FatalityPct2'] = 5
mask =(grouped['FatalityPct2'] > 6)&(grouped['ppp'] >= 7)
grouped.loc[mask,'FatalityPct2'] = 6
mask =(grouped['FatalityPct2'] < 1.5)&(grouped['ppp'] >= 7)
grouped.loc[mask,'FatalityPct2'] = 1.5
mask =(grouped['FatalityPct2'] >(9.5 - 0.43*grouped['ppp'])) &(grouped['ppp'] > 1)&(grouped['ppp'] < 7)
grouped.loc[mask,'FatalityPct2'] =(9.5 - 0.43*grouped['ppp'])
mask =(grouped['FatalityPct2'] <(5.6 - 0.5*grouped['ppp'])) &(grouped['ppp'] > 1)&(grouped['ppp'] < 7)
grouped.loc[mask,'FatalityPct2'] =(5.6 - 0.5*grouped['ppp'])
mask =(grouped['FatalityPct2'].isnull())&(grouped['ppp'] <= 1)
grouped.loc[mask,'FatalityPct2'] = 7
mask =(grouped['FatalityPct2'].isnull())&(grouped['ppp'] >= 7)
grouped.loc[mask,'FatalityPct2'] = 4
mask =(grouped['FatalityPct2'].isnull())&(grouped['ppp'] > 1)&(grouped['ppp'] < 7)
grouped.loc[mask,'FatalityPct2'] =(7.5 - 0.5*grouped['ppp'])
else:
mask =(grouped['FatalityPct2'] > 4)&(grouped['ppp'] <= 1)
grouped.loc[mask,'FatalityPct2'] = 3
mask =(grouped['FatalityPct2'] < 1)&(grouped['ppp'] <= 1)
grouped.loc[mask,'FatalityPct2'] = 2
mask =(grouped['FatalityPct2'] > 1.5)&(grouped['ppp'] >= 7)
grouped.loc[mask,'FatalityPct2'] = 1.5
mask =(grouped['FatalityPct2'] < 0.5)&(grouped['ppp'] >= 7)
grouped.loc[mask,'FatalityPct2'] = 0.5
mask =(grouped['FatalityPct2'] >(4.5 - 0.43*grouped['ppp'])) &(grouped['ppp'] > 1)&(grouped['ppp'] < 7)
grouped.loc[mask,'FatalityPct2'] =(4.5 - 0.43*grouped['ppp'])
mask =(grouped['FatalityPct2'] <(1.1 - 0.1*grouped['ppp'])) &(grouped['ppp'] > 1)&(grouped['ppp'] < 7)
grouped.loc[mask,'FatalityPct2'] =(1.1 - 0.1*grouped['ppp'])
mask =(grouped['FatalityPct2'].isnull())&(grouped['ppp'] <= 1)
grouped.loc[mask,'FatalityPct2'] = 3
mask =(grouped['FatalityPct2'].isnull())&(grouped['ppp'] >= 7)
grouped.loc[mask,'FatalityPct2'] = 1
mask =(grouped['FatalityPct2'].isnull())&(grouped['ppp'] > 1)&(grouped['ppp'] < 7)
grouped.loc[mask,'FatalityPct2'] =(2.6 - 0.23*grouped['ppp'] ) | COVID19 Global Forecasting (Week 3) |
8,825,784 | tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Seed':'WSeed'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Seed':'LSeed'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result<categorify> | dftest.drop('_merge',axis=1,inplace= True)
dftest = dftest.merge(grouped[['Country_Region','FatalityPct2','Factor']], on=['Country_Region'], how='left')
dftest = dftest.merge(grouped_gem[['Province_State','Country_Region','ConfirmedCases_base','ConfirmedCases_init','NewCases_base','Fatalities_init','FatalityBasis']], on=['Province_State','Country_Region'], how='left')
| COVID19 Global Forecasting (Week 3) |
8,825,784 | def get_seed(x):
return int(x[1:3])
tourney_result['WSeed'] = tourney_result['WSeed'].map(lambda x: get_seed(x))
tourney_result['LSeed'] = tourney_result['LSeed'].map(lambda x: get_seed(x))
tourney_result<concatenate> | dftest['ConfirmedCases_shift'] = dftest.groupby(['Country_Region', 'Province_State'])[['ConfirmedCases']].transform(lambda x: x.shift(1))
mask = dftest['ConfirmedCases'].isnull()
dftest.loc[mask,'NewCases'] = dftest.loc[mask,'NewCases_base']*(dftest.loc[mask,'Factor']**dftest.loc[mask,'Expo'])
dftest['NewCases_cum'] = dftest.groupby(['Country_Region', 'Province_State'])[['NewCases']].cumsum()
dftest.loc[mask,'ConfirmedCases'] = dftest.loc[mask,'ConfirmedCases_init'] + dftest.loc[mask,'NewCases_cum']
mask3 = dftest['ConfirmedCases'] > 400000
dftest.loc[mask3,'FatalityPct2'] = dftest.loc[mask3,'FatalityPct2']*0.7
mask4 = dftest['ConfirmedCases'] > 800000
dftest.loc[mask4,'FatalityPct2'] = dftest.loc[mask4,'FatalityPct2']*0.7
dftest['FatalityBasis'] = dftest.groupby(['Country_Region', 'Province_State'])[
['ConfirmedCases']].transform(lambda x: x.shift(10))
dftest.loc[mask,'NewFatalities'] = dftest.loc[mask,'FatalityBasis'] * dftest.loc[mask,'FatalityPct2']/100
mask2 = dftest['NewFatalities'] > maxDeadPrDay
dftest.loc[mask2,'NewFatalities'] = maxDeadPrDay
dftest['NewFatalities_cum'] = dftest.groupby(['Country_Region', 'Province_State'])[['NewFatalities']].cumsum()
dftest.loc[mask,'Fatalities'] = dftest.loc[mask,'Fatalities_init'] + dftest.loc[mask,'NewFatalities_cum']
| COVID19 Global Forecasting (Week 3) |
8,825,784 | season_win_result = season_result[['Season', 'WTeamID', 'WScore']]
season_lose_result = season_result[['Season', 'LTeamID', 'LScore']]
season_win_result.rename(columns={'WTeamID':'TeamID', 'WScore':'Score'}, inplace=True)
season_lose_result.rename(columns={'LTeamID':'TeamID', 'LScore':'Score'}, inplace=True)
season_result = pd.concat(( season_win_result, season_lose_result)).reset_index(drop=True)
season_result<groupby> | dftest.drop(['Dayofyear',
'Expo','FatalityPct2', 'Factor',
'ConfirmedCases_base', 'ConfirmedCases_init',
'NewCases_base', 'Fatalities_init', 'FatalityBasis',
'ConfirmedCases_shift',
'NewCases', 'NewCases_cum', 'NewFatalities','NewFatalities_cum'],axis=1,inplace=True)
final = dftest.groupby(['Country_Region','Province_State'] ).tail(1)
dftest.drop(['Province_State'],axis=1,inplace=True)
dftest.rename(columns={'Province_State_orig':'Province_State'},inplace=True ) | COVID19 Global Forecasting (Week 3) |
8,825,784 | season_score = season_result.groupby(['Season', 'TeamID'])['Score'].sum().reset_index()
season_score<merge> | mask = dftest["ConfirmedCases"].isnull()
print(mask.sum())
errors = dftest.loc[mask]
print(errors)
mask = dftest["Fatalities"].isnull()
print(mask.sum())
errors = dftest.loc[mask]
print(errors)
dftest.drop(['Province_State','Country_Region','Date'],axis=1,inplace=True)
print("dftest columns =",dftest.columns)
| COVID19 Global Forecasting (Week 3) |
8,825,784 | <drop_column><EOS> | dftest.ForecastId = dftest.ForecastId.astype('int')
dftest['ConfirmedCases'] = dftest['ConfirmedCases'].round().astype(int)
dftest['Fatalities'] = dftest['Fatalities'].round().astype(int)
dftest.to_csv('submission.csv', index=False)
| COVID19 Global Forecasting (Week 3) |
8,824,227 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<prepare_output> | %matplotlib inline
InteractiveShell.ast_node_interactivity = "all"
pd.set_option('display.max_columns', 99)
pd.set_option('display.max_rows', 99)
| COVID19 Global Forecasting (Week 3) |
8,824,227 | tourney_lose_result = tourney_win_result.copy()
tourney_lose_result['Seed1'] = tourney_win_result['Seed2']
tourney_lose_result['Seed2'] = tourney_win_result['Seed1']
tourney_lose_result['ScoreT1'] = tourney_win_result['ScoreT2']
tourney_lose_result['ScoreT2'] = tourney_win_result['ScoreT1']
tourney_lose_result<feature_engineering> | plt.rcParams['figure.figsize'] = [16, 10]
plt.rcParams['font.size'] = 14
sns.set_palette(sns.color_palette('tab20', 20))
| COVID19 Global Forecasting (Week 3) |
8,824,227 | tourney_win_result['Seed_diff'] = tourney_win_result['Seed1'] - tourney_win_result['Seed2']
tourney_win_result['ScoreT_diff'] = tourney_win_result['ScoreT1'] - tourney_win_result['ScoreT2']
tourney_lose_result['Seed_diff'] = tourney_lose_result['Seed1'] - tourney_lose_result['Seed2']
tourney_lose_result['ScoreT_diff'] = tourney_lose_result['ScoreT1'] - tourney_lose_result['ScoreT2']<feature_engineering> | COMP = '.. /input/covid19-global-forecasting-week-3'
DATEFORMAT = '%Y-%m-%d'
def get_comp_data(COMP):
train = pd.read_csv(f'{COMP}/train.csv')
test = pd.read_csv(f'{COMP}/test.csv')
submission = pd.read_csv(f'{COMP}/submission.csv')
print(train.shape, test.shape, submission.shape)
train['Country_Region'] = train['Country_Region'].str.replace(',', '')
test['Country_Region'] = test['Country_Region'].str.replace(',', '')
train['Location'] = train['Country_Region'] + '-' + train['Province_State'].fillna('')
test['Location'] = test['Country_Region'] + '-' + test['Province_State'].fillna('')
train['LogConfirmed'] = to_log(train.ConfirmedCases)
train['LogFatalities'] = to_log(train.Fatalities)
train = train.drop(columns=['Province_State'])
test = test.drop(columns=['Province_State'])
country_codes = pd.read_csv('.. /input/covid19-metadata/country_codes.csv', keep_default_na=False)
train = train.merge(country_codes, on='Country_Region', how='left')
test = test.merge(country_codes, on='Country_Region', how='left')
train['DateTime'] = pd.to_datetime(train['Date'])
test['DateTime'] = pd.to_datetime(test['Date'])
return train, test, submission
def process_each_location(df):
dfs = []
for loc, df in tqdm(df.groupby('Location')) :
df = df.sort_values(by='Date')
df['Fatalities'] = df['Fatalities'].cummax()
df['ConfirmedCases'] = df['ConfirmedCases'].cummax()
df['LogFatalities'] = df['LogFatalities'].cummax()
df['LogConfirmed'] = df['LogConfirmed'].cummax()
df['LogConfirmedNextDay'] = df['LogConfirmed'].shift(-1)
df['ConfirmedNextDay'] = df['ConfirmedCases'].shift(-1)
df['DateNextDay'] = df['Date'].shift(-1)
df['LogFatalitiesNextDay'] = df['LogFatalities'].shift(-1)
df['FatalitiesNextDay'] = df['Fatalities'].shift(-1)
df['LogConfirmedDelta'] = df['LogConfirmedNextDay'] - df['LogConfirmed']
df['ConfirmedDelta'] = df['ConfirmedNextDay'] - df['ConfirmedCases']
df['LogFatalitiesDelta'] = df['LogFatalitiesNextDay'] - df['LogFatalities']
df['FatalitiesDelta'] = df['FatalitiesNextDay'] - df['Fatalities']
dfs.append(df)
return pd.concat(dfs)
def add_days(d, k):
return dt.datetime.strptime(d, DATEFORMAT)+ dt.timedelta(days=k)
def to_log(x):
return np.log(x + 1)
def to_exp(x):
return np.exp(x)- 1
| COVID19 Global Forecasting (Week 3) |
8,824,227 | test_df['Season'] = test_df['ID'].map(lambda x: int(x[:4]))
test_df['WTeamID'] = test_df['ID'].map(lambda x: int(x[5:9]))
test_df['LTeamID'] = test_df['ID'].map(lambda x: int(x[10:14]))
test_df<merge> | train[train.geo_region.isna() ].Country_Region.unique()
train = train.fillna('
test = test.fillna('
train[train.duplicated(['Date', 'Location'])]
train.count() | COVID19 Global Forecasting (Week 3) |
8,824,227 | test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Seed':'Seed1'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Seed':'Seed2'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Score':'ScoreT1'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Score':'ScoreT2'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df<feature_engineering> | train = train.sort_values(by='Date')
countries_latest_state = train[train['Date'] == TRAIN_END].groupby([
'Country_Region', 'continent', 'geo_region', 'country_iso_code_3'] ).sum() [[
'ConfirmedCases', 'Fatalities']].reset_index()
countries_latest_state['Log10Confirmed'] = np.log10(countries_latest_state.ConfirmedCases + 1)
countries_latest_state['Log10Fatalities'] = np.log10(countries_latest_state.Fatalities + 1)
countries_latest_state = countries_latest_state.sort_values(by='Fatalities', ascending=False)
countries_latest_state.to_csv('countries_latest_state.csv', index=False)
countries_latest_state.shape
countries_latest_state.head() | COVID19 Global Forecasting (Week 3) |
8,824,227 | test_df['Seed1'] = test_df['Seed1'].map(lambda x: get_seed(x))
test_df['Seed2'] = test_df['Seed2'].map(lambda x: get_seed(x))
test_df['Seed_diff'] = test_df['Seed1'] - test_df['Seed2']
test_df['ScoreT_diff'] = test_df['ScoreT1'] - test_df['ScoreT2']
test_df = test_df.drop(['ID', 'Pred', 'Season', 'WTeamID', 'LTeamID'], axis=1)
test_df<concatenate> | latest_loc = train[train['Date'] == TRAIN_END][['Location', 'ConfirmedCases', 'Fatalities']]
max_loc = train.groupby(['Location'])[['ConfirmedCases', 'Fatalities']].max().reset_index()
check = pd.merge(latest_loc, max_loc, on='Location')
np.mean(check.ConfirmedCases_x == check.ConfirmedCases_y)
np.mean(check.Fatalities_x == check.Fatalities_y)
check[check.Fatalities_x != check.Fatalities_y]
check[check.ConfirmedCases_x != check.ConfirmedCases_y] | COVID19 Global Forecasting (Week 3) |
8,824,227 | tourney_win_result['result'] = 1
tourney_lose_result['result'] = 0
tourney_result = pd.concat(( tourney_win_result, tourney_lose_result)).reset_index(drop=True)
tourney_result<prepare_x_and_y> | regional_progress = train_clean.groupby(['DateTime', 'continent'] ).sum() [['ConfirmedCases', 'Fatalities']].reset_index()
regional_progress['Log10Confirmed'] = np.log10(regional_progress.ConfirmedCases + 1)
regional_progress['Log10Fatalities'] = np.log10(regional_progress.Fatalities + 1)
regional_progress = regional_progress[regional_progress.continent != ' | COVID19 Global Forecasting (Week 3) |
8,824,227 | X_train = tourney_result.drop('result', axis=1)
y_train = tourney_result.result<import_modules> | countries_0301 = country_progress[country_progress.Date == '2020-03-01'][[
'Country_Region', 'ConfirmedCases', 'Fatalities']]
countries_0331 = country_progress[country_progress.Date == '2020-03-31'][[
'Country_Region', 'ConfirmedCases', 'Fatalities']]
countries_in_march = pd.merge(countries_0301, countries_0331, on='Country_Region', suffixes=['_0301', '_0331'])
countries_in_march['IncreaseInMarch'] = countries_in_march.ConfirmedCases_0331 /(countries_in_march.ConfirmedCases_0301 + 1)
countries_in_march = countries_in_march[countries_in_march.ConfirmedCases_0331 > 200].sort_values(
by='IncreaseInMarch', ascending=False)
countries_in_march.tail(15 ) | COVID19 Global Forecasting (Week 3) |
8,824,227 | from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold
import lightgbm as lgb
import xgboost as xgb
from xgboost import XGBClassifier
import gc<init_hyperparams> | train_clean['Geo
latest = train_clean[train_clean.Date == TRAIN_END][[
'Geo
daily_confirmed_deltas = train_clean[train_clean.Date >= '2020-03-17'].pivot(
'Geo
daily_confirmed_deltas = latest.merge(daily_confirmed_deltas, on='Geo
daily_confirmed_deltas.shape
daily_confirmed_deltas.head()
daily_confirmed_deltas.to_csv('daily_confirmed_deltas.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,824,227 | params_lgb = {'num_leaves': 400,
'min_child_weight': 0.034,
'feature_fraction': 0.379,
'bagging_fraction': 0.418,
'min_data_in_leaf': 106,
'objective': 'binary',
'max_depth': 50,
'learning_rate': 0.0068,
"boosting_type": "gbdt",
"bagging_seed": 11,
"metric": 'logloss',
"verbosity": -1,
'reg_alpha': 0.3899,
'reg_lambda': 0.648,
'random_state': 47,
}
params_xgb = {'colsample_bytree': 0.8,
'learning_rate': 0.0004,
'max_depth': 31,
'subsample': 1,
'objective':'binary:logistic',
'eval_metric':'logloss',
'min_child_weight':3,
'gamma':0.25,
'n_estimators':5000
}<split> | deltas = train_clean[np.logical_and(
train_clean.LogConfirmed > 2,
~train_clean.Location.str.startswith('China')
)].dropna().sort_values(by='LogConfirmedDelta', ascending=False)
deltas['start'] = deltas['LogConfirmed'].round(0)
confirmed_deltas = pd.concat([
deltas.groupby('start')[['LogConfirmedDelta']].mean() ,
deltas.groupby('start')[['LogConfirmedDelta']].std() ,
deltas.groupby('start')[['LogConfirmedDelta']].count()
], axis=1)
deltas.mean()
confirmed_deltas.columns = ['avg', 'std', 'cnt']
confirmed_deltas
confirmed_deltas.to_csv('confirmed_deltas.csv' ) | COVID19 Global Forecasting (Week 3) |
8,824,227 | NFOLDS = 200
folds = KFold(n_splits=NFOLDS)
columns = X_train.columns
splits = folds.split(X_train, y_train )<define_variables> | DECAY = 0.95
DECAY ** 7, DECAY ** 14, DECAY ** 21, DECAY ** 28
confirmed_deltas = train.groupby(['Location', 'Country_Region', 'continent'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.07
confirmed_deltas['DELTA'] = GLOBAL_DELTA
confirmed_deltas.loc[confirmed_deltas.continent=='Africa', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.continent=='Oceania', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.continent=='
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Korea South', 'DELTA'] = 0.01
confirmed_deltas.loc[confirmed_deltas.Country_Region=='US', 'DELTA'] = 0.09
confirmed_deltas.loc[confirmed_deltas.Country_Region=='China', 'DELTA'] = 0.008
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Japan', 'DELTA'] = 0.07
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Singapore', 'DELTA'] = 0.07
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.02
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.03
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Czechia', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Serbia', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Romania', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Hungary', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Poland', 'DELTA'] = 0.09
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Norway', 'DELTA'] = 0.03
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iceland', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Luxembourg', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Austria', 'DELTA'] = 0.03
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Italy', 'DELTA'] = 0.03
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Spain', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Portugal', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Israel', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iran', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Germany', 'DELTA'] = 0.045
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Thailand', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Russia', 'DELTA'] = 0.15
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Belarus', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='South Africa', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Egypt', 'DELTA'] = 0.1
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Moldova', 'DELTA'] = 0.11
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Brazil', 'DELTA'] = 0.11
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Mexico', 'DELTA'] = 0.11
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Peru', 'DELTA'] = 0.11
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Turkey', 'DELTA'] = 0.13
confirmed_deltas.loc[confirmed_deltas.Country_Region=='India', 'DELTA'] = 0.15
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Pakistan', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Philippines', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='United Arab Emirates', 'DELTA'] = 0.13
confirmed_deltas.loc[confirmed_deltas.Location=='France-', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Location=='United Kingdom-', 'DELTA'] = 0.09
confirmed_deltas.loc[confirmed_deltas.Location=='Diamond Princess-', 'DELTA'] = 0.00
confirmed_deltas.loc[confirmed_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.03
confirmed_deltas.loc[confirmed_deltas.Location=='San Marino-', 'DELTA'] = 0.03
confirmed_deltas.loc[confirmed_deltas.Location=='US-New York', 'DELTA'] = 0.07
confirmed_deltas.loc[confirmed_deltas.Location=='US-Washington', 'DELTA'] = 0.07
confirmed_deltas.loc[confirmed_deltas.Location=='Netherlands-', 'DELTA'] = 0.06
confirmed_deltas.shape, confirmed_deltas.DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].shape, confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA]
confirmed_deltas.describe() | COVID19 Global Forecasting (Week 3) |
8,824,227 | y_preds_lgb = np.zeros(test_df.shape[0])
y_oof_lgb = np.zeros(X_train.shape[0] )<train_model> | daily_log_confirmed = train_clean.pivot('Location', 'Date', 'LogConfirmed' ).reset_index()
daily_log_confirmed = daily_log_confirmed.sort_values(TRAIN_END, ascending=False)
daily_log_confirmed.to_csv('daily_log_confirmed.csv', index=False)
for i, d in tqdm(enumerate(pd.date_range(add_days(TRAIN_END, 1), add_days(TEST_END, 1)))) :
new_day = str(d ).split(' ')[0]
last_day = dt.datetime.strptime(new_day, DATEFORMAT)- dt.timedelta(days=1)
last_day = last_day.strftime(DATEFORMAT)
for loc in confirmed_deltas.Location.values:
confirmed_delta = confirmed_deltas.loc[confirmed_deltas.Location == loc, 'DELTA'].values[0]
daily_log_confirmed.loc[daily_log_confirmed.Location == loc, new_day] = daily_log_confirmed.loc[daily_log_confirmed.Location == loc, last_day] + \
confirmed_delta * DECAY ** i | COVID19 Global Forecasting (Week 3) |
8,824,227 | for fold_n,(train_index, valid_index)in enumerate(splits):
print('Fold:',fold_n+1)
X_train1, X_valid1 = X_train[columns].iloc[train_index], X_train[columns].iloc[valid_index]
y_train1, y_valid1 = y_train.iloc[train_index], y_train.iloc[valid_index]
dtrain = lgb.Dataset(X_train1, label=y_train1)
dvalid = lgb.Dataset(X_valid1, label=y_valid1)
clf = lgb.train(params_lgb, dtrain, 10000, valid_sets = [dtrain, dvalid], verbose_eval=200)
y_pred_valid = clf.predict(X_valid1)
y_oof_lgb[valid_index] = y_pred_valid
y_preds_lgb += clf.predict(test_df)/ NFOLDS
del X_train1, X_valid1, y_train1, y_valid1
gc.collect()<prepare_x_and_y> | train_clean['Geo
latest = train_clean[train_clean.Date == TRAIN_END][[
'Geo
daily_death_deltas = train_clean[train_clean.Date >= '2020-03-17'].pivot(
'Geo
daily_death_deltas = latest.merge(daily_death_deltas, on='Geo
daily_death_deltas.shape
daily_death_deltas.head()
daily_death_deltas.to_csv('daily_death_deltas.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,824,227 | del X_train2, X_valid2, y_train2, y_valid2
gc.collect()<load_from_csv> | death_deltas = train.groupby(['Location', 'Country_Region', 'continent'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.07
death_deltas['DELTA'] = GLOBAL_DELTA
death_deltas.loc[death_deltas.continent=='Oceania', 'DELTA'] = 0.06
death_deltas.loc[death_deltas.continent=='Africa', 'DELTA'] = 0.06
death_deltas.loc[death_deltas.Country_Region=='China', 'DELTA'] = 0.005
death_deltas.loc[death_deltas.Country_Region=='Korea South', 'DELTA'] = 0.025
death_deltas.loc[death_deltas.Country_Region=='Japan', 'DELTA'] = 0.05
death_deltas.loc[death_deltas.Country_Region=='Singapore', 'DELTA'] = 0.05
death_deltas.loc[death_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.03
death_deltas.loc[death_deltas.Country_Region=='US', 'DELTA'] = 0.12
death_deltas.loc[death_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.07
death_deltas.loc[death_deltas.Country_Region=='Norway', 'DELTA'] = 0.10
death_deltas.loc[death_deltas.Country_Region=='Sweden', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Belgium', 'DELTA'] = 0.12
death_deltas.loc[death_deltas.Country_Region=='Netherlands', 'DELTA'] = 0.10
death_deltas.loc[death_deltas.Country_Region=='Poland', 'DELTA'] = 0.13
death_deltas.loc[death_deltas.Country_Region=='Hungary', 'DELTA'] = 0.13
death_deltas.loc[death_deltas.Country_Region=='Romania', 'DELTA'] = 0.11
death_deltas.loc[death_deltas.Country_Region=='Iceland', 'DELTA'] = 0.02
death_deltas.loc[death_deltas.Country_Region=='Austria', 'DELTA'] = 0.08
death_deltas.loc[death_deltas.Country_Region=='Italy', 'DELTA'] = 0.045
death_deltas.loc[death_deltas.Country_Region=='Spain', 'DELTA'] = 0.045
death_deltas.loc[death_deltas.Country_Region=='Portugal', 'DELTA'] = 0.09
death_deltas.loc[death_deltas.Country_Region=='Ireland', 'DELTA'] = 0.1
death_deltas.loc[death_deltas.Country_Region=='Israel', 'DELTA'] = 0.1
death_deltas.loc[death_deltas.Country_Region=='Iran', 'DELTA'] = 0.05
death_deltas.loc[death_deltas.Country_Region=='Germany', 'DELTA'] = 0.10
death_deltas.loc[death_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.05
death_deltas.loc[death_deltas.Country_Region=='Russia', 'DELTA'] = 0.13
death_deltas.loc[death_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.13
death_deltas.loc[death_deltas.Country_Region=='Brazil', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Turkey', 'DELTA'] = 0.16
death_deltas.loc[death_deltas.Country_Region=='Philippines', 'DELTA'] = 0.08
death_deltas.loc[death_deltas.Country_Region=='Saudi Arabia', 'DELTA'] = 0.1
death_deltas.loc[death_deltas.Location=='France-', 'DELTA'] = 0.08
death_deltas.loc[death_deltas.Location=='United Kingdom-', 'DELTA'] = 0.12
death_deltas.loc[death_deltas.Location=='Diamond Princess-', 'DELTA'] = 0.00
death_deltas.loc[death_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.01
death_deltas.loc[death_deltas.Location=='San Marino-', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Location=='Netherlands-', 'DELTA'] = 0.09
death_deltas.loc[death_deltas.Country_Region=='Mexico', 'DELTA'] = 0.18
death_deltas.loc[death_deltas.Country_Region=='Peru', 'DELTA'] = 0.18
death_deltas.loc[death_deltas.Country_Region=='India', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Pakistan', 'DELTA'] = 0.16
death_deltas.shape
death_deltas.DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].shape
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA]
death_deltas.describe() | COVID19 Global Forecasting (Week 3) |
8,824,227 | submission_df = pd.read_csv(path + 'WSampleSubmissionStage1_2020.csv')
submission_df['Pred'] = y_preds_lgb
submission_df<save_to_csv> | daily_log_deaths = train_clean.pivot('Location', 'Date', 'LogFatalities' ).reset_index()
daily_log_deaths = daily_log_deaths.sort_values(TRAIN_END, ascending=False)
daily_log_deaths.to_csv('daily_log_deaths.csv', index=False)
for i, d in tqdm(enumerate(pd.date_range(add_days(TRAIN_END, 1), add_days(TEST_END, 1)))) :
new_day = str(d ).split(' ')[0]
last_day = dt.datetime.strptime(new_day, DATEFORMAT)- dt.timedelta(days=1)
last_day = last_day.strftime(DATEFORMAT)
for loc in death_deltas.Location:
death_delta = death_deltas.loc[death_deltas.Location == loc, 'DELTA'].values[0]
daily_log_deaths.loc[daily_log_deaths.Location == loc, new_day] = daily_log_deaths.loc[daily_log_deaths.Location == loc, last_day] + \
death_delta * DECAY ** i | COVID19 Global Forecasting (Week 3) |
8,824,227 | submission_df.to_csv('submission.csv', index=False )<set_options> | confirmed = []
fatalities = []
for id, d, loc in tqdm(test[['ForecastId', 'Date', 'Location']].values):
c = to_exp(daily_log_confirmed.loc[daily_log_confirmed.Location == loc, d].values[0])
f = to_exp(daily_log_deaths.loc[daily_log_deaths.Location == loc, d].values[0])
confirmed.append(c)
fatalities.append(f ) | COVID19 Global Forecasting (Week 3) |
8,824,227 | warnings.filterwarnings('ignore' )<load_from_csv> | my_submission = test.copy()
my_submission['ConfirmedCases'] = confirmed
my_submission['Fatalities'] = fatalities
my_submission.shape
my_submission.head()
| COVID19 Global Forecasting (Week 3) |
8,824,227 | df_features = pd.read_csv('.. /input/walmart-recruiting-store-sales-forecasting/features.csv.zip', sep=',')
df_stores = pd.read_csv('.. /input/walmart-recruiting-store-sales-forecasting/stores.csv', sep=',')
df_features_stores = df_features.merge(df_stores, how='inner', on='Store')
df_features_stores.head()<load_from_csv> | my_submission[[
'ForecastId', 'ConfirmedCases', 'Fatalities'
]].to_csv('submission.csv', index=False)
print(DECAY)
my_submission.head()
my_submission.tail()
my_submission.shape | COVID19 Global Forecasting (Week 3) |
8,824,227 | df_train = pd.read_csv('.. /input/walmart-recruiting-store-sales-forecasting/train.csv.zip', sep=',')
train = df_train.merge(df_features_stores, how='inner', on=['Store','Date','IsHoliday'])
train.head()<load_from_csv> | end = dt.datetime.now()
print('Finished', end,(end - start ).seconds, 's' ) | COVID19 Global Forecasting (Week 3) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.