kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
8,791,119 | y_logreg_train = logreg.predict(train_log)
y_logreg_pred = logreg.predict_proba(test_log )<train_model> | xout = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []})
for country in countries:
states = X_xTrain.loc[X_xTrain.Country == country, :].State.unique()
for state in states:
X_xTrain_CS = X_xTrain.loc[(X_xTrain.Country == country)&(X_xTrain.State == state), ['State', 'Country', 'Date', 'ConfirmedCases', 'Fatalities']]
y1_xTrain_CS = X_xTrain_CS.loc[:, 'ConfirmedCases']
y2_xTrain_CS = X_xTrain_CS.loc[:, 'Fatalities']
X_xTrain_CS = X_xTrain_CS.loc[:, ['State', 'Country', 'Date']]
X_xTrain_CS.Country = le.fit_transform(X_xTrain_CS.Country)
X_xTrain_CS['State'] = le.fit_transform(X_xTrain_CS['State'])
X_xTest_CS = X_xTest.loc[(X_xTest.Country == country)&(X_xTest.State == state), ['State', 'Country', 'Date', 'ForecastId']]
X_xTest_CS_Id = X_xTest_CS.loc[:, 'ForecastId']
X_xTest_CS = X_xTest_CS.loc[:, ['State', 'Country', 'Date']]
X_xTest_CS.Country = le.fit_transform(X_xTest_CS.Country)
X_xTest_CS['State'] = le.fit_transform(X_xTest_CS['State'])
xmodel1 = XGBRegressor(n_estimators=1000)
xmodel1.fit(X_xTrain_CS, y1_xTrain_CS)
y1_xpred = xmodel1.predict(X_xTest_CS)
xmodel2 = XGBRegressor(n_estimators=1000)
xmodel2.fit(X_xTrain_CS, y2_xTrain_CS)
y2_xpred = xmodel2.predict(X_xTest_CS)
xdata = pd.DataFrame({'ForecastId': X_xTest_CS_Id, 'ConfirmedCases': y1_xpred, 'Fatalities': y2_xpred})
xout = pd.concat([xout, xdata], axis=0)
| COVID19 Global Forecasting (Week 3) |
8,791,119 | clf = RandomForestClassifier(n_estimators=200,max_depth=90,min_samples_leaf=300,min_samples_split=200,max_features=5)
clf.fit(train_log, y)
clf_probs = clf.predict_proba(test_log )<prepare_output> | xout.ForecastId = xout.ForecastId.astype('int')
xout.tail()
xout.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,827,384 | y_pred_df_random = pd.DataFrame(clf_probs)
y_pred_1 = y_pred_df_random.iloc[:,[1]]
y_pred_df_random<import_modules> | sub = pd.read_csv(".. /input/subsub/submission1.csv")
sub.to_csv("submission.csv",index=False ) | COVID19 Global Forecasting (Week 3) |
8,823,854 | from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV<load_from_csv> | input1 = pd.read_csv('/kaggle/input/final1/submit.csv' ) | COVID19 Global Forecasting (Week 3) |
8,823,854 | <save_to_csv><EOS> | input1.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,820,034 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<load_from_csv> | InteractiveShell.ast_node_interactivity = "all"
pd.set_option('display.max_columns', 99)
pd.set_option('display.max_rows', 99)
sns.set_palette(sns.color_palette('tab20', 20))
| COVID19 Global Forecasting (Week 3) |
8,820,034 | tourney_result = pd.read_csv('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneyDetailedResults.csv')
tourney_seed = pd.read_csv('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneySeeds.csv')
season_result = pd.read_csv('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MRegularSeasonDetailedResults.csv')
test_df = pd.read_csv('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv' )<drop_column> | COMP = '.. /input/covid19-global-forecasting-week-3'
DATEFORMAT = '%Y-%m-%d'
def get_comp_data(COMP):
train = pd.read_csv(f'{COMP}/train.csv')
test = pd.read_csv(f'{COMP}/test.csv')
submission = pd.read_csv(f'{COMP}/submission.csv')
print(train.shape, test.shape, submission.shape)
train['Country_Region'] = train['Country_Region'].str.replace(',', '')
test['Country_Region'] = test['Country_Region'].str.replace(',', '')
train['Location'] = train['Country_Region'] + '-' + train['Province_State'].fillna('')
test['Location'] = test['Country_Region'] + '-' + test['Province_State'].fillna('')
train['LogConfirmed'] = to_log(train.ConfirmedCases)
train['LogFatalities'] = to_log(train.Fatalities)
train = train.drop(columns=['Province_State'])
test = test.drop(columns=['Province_State'])
train['DateTime'] = pd.to_datetime(train['Date'])
test['DateTime'] = pd.to_datetime(test['Date'])
return train, test, submission
def process_each_location(df):
dfs = []
for loc, df in tqdm(df.groupby('Location')) :
df = df.sort_values(by='Date')
df['Fatalities'] = df['Fatalities'].cummax()
df['ConfirmedCases'] = df['ConfirmedCases'].cummax()
df['LogFatalities'] = df['LogFatalities'].cummax()
df['LogConfirmed'] = df['LogConfirmed'].cummax()
df['LogConfirmedNextDay'] = df['LogConfirmed'].shift(-1)
df['ConfirmedNextDay'] = df['ConfirmedCases'].shift(-1)
df['DateNextDay'] = df['Date'].shift(-1)
df['LogFatalitiesNextDay'] = df['LogFatalities'].shift(-1)
df['FatalitiesNextDay'] = df['Fatalities'].shift(-1)
df['LogConfirmedDelta'] = df['LogConfirmedNextDay'] - df['LogConfirmed']
df['ConfirmedDelta'] = df['ConfirmedNextDay'] - df['ConfirmedCases']
df['LogFatalitiesDelta'] = df['LogFatalitiesNextDay'] - df['LogFatalities']
df['FatalitiesDelta'] = df['FatalitiesNextDay'] - df['Fatalities']
dfs.append(df)
return pd.concat(dfs)
def add_days(d, k):
return dt.datetime.strptime(d, DATEFORMAT)+ dt.timedelta(days=k)
def to_log(x):
return np.log(x + 1)
def to_exp(x):
return np.exp(x)- 1
| COVID19 Global Forecasting (Week 3) |
8,820,034 | season_win_result = season_result[['Season', 'WTeamID', 'WScore', 'WFGM', 'WFGA', 'WFGM3', 'WFGA3', 'WFTM', 'WFTA', 'WOR', 'WDR',
'WAst', 'WTO', 'WStl', 'WBlk', 'WPF']]
season_lose_result = season_result[['Season', 'LTeamID', 'LScore', 'LFGM', 'LFGA', 'LFGM3', 'LFGA3', 'LFTM', 'LFTA', 'LOR', 'LDR',
'LAst', 'LTO', 'LStl', 'LBlk', 'LPF']]
season_win_result.rename(columns={'WTeamID':'TeamID', 'WScore':'Score', 'WFGM':'FGM', 'WFGA':'FGA', 'WFGM3':'FGM3', 'WFGA3':'FGA3',
'WFTM':'FTM', 'WFTA':'FTA', 'WOR':'OR', 'WDR':'DR', 'WAst':'Ast', 'WTO':'TO', 'WStl':'Stl',
'WBlk':'Blk', 'WPF':'PF'}, inplace=True)
season_lose_result.rename(columns={'LTeamID':'TeamID', 'LScore':'Score', 'LFGM':'FGM', 'LFGA':'FGA', 'LFGM3':'FGM3', 'LFGA3':'FGA3',
'LFTM':'FTM', 'LFTA':'FTA', 'LOR':'OR', 'LDR':'DR', 'LAst':'Ast', 'LTO':'TO', 'LStl':'Stl',
'LBlk':'Blk', 'LPF':'PF'}, inplace=True)
season_result = pd.concat(( season_win_result, season_lose_result)).reset_index(drop=True )<merge> | train = train.sort_values(by='Date')
countries_latest_state = train[train['Date'] == TRAIN_END].groupby(['Country_Region'] ).sum() [['ConfirmedCases',
'Fatalities']].reset_index()
countries_latest_state['Log10Confirmed'] = np.log10(countries_latest_state.ConfirmedCases + 1)
countries_latest_state['Log10Fatalities'] = np.log10(countries_latest_state.Fatalities + 1)
countries_latest_state = countries_latest_state.sort_values(by='Fatalities', ascending=False)
countries_latest_state['DeathConfirmedRatio'] =(countries_latest_state.Fatalities + 1)/(countries_latest_state.ConfirmedCases + 1)
countries_latest_state['DeathConfirmedRatio'] = countries_latest_state['DeathConfirmedRatio'].clip(0, 0.1)
countries_latest_state.shape
countries_latest_state.head() | COVID19 Global Forecasting (Week 3) |
8,820,034 | tourney_result['Score_difference'] = tourney_result['WScore'] - tourney_result['LScore']
tourney_result = tourney_result[['Season', 'WTeamID', 'LTeamID', 'Score_difference']]
tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Seed':'WSeed'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Seed':'LSeed'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result['WSeed'] = tourney_result['WSeed'].apply(lambda x: int(x[1:3]))
tourney_result['LSeed'] = tourney_result['LSeed'].apply(lambda x: int(x[1:3]))
print(tourney_result.info(null_counts=True))<merge> | latest_loc = train[train['Date'] == TRAIN_END][['Location', 'ConfirmedCases', 'Fatalities']]
max_loc = train.groupby(['Location'])[['ConfirmedCases', 'Fatalities']].max().reset_index()
check = pd.merge(latest_loc, max_loc, on='Location')
np.mean(check.ConfirmedCases_x == check.ConfirmedCases_y)
np.mean(check.Fatalities_x == check.Fatalities_y)
check[check.Fatalities_x != check.Fatalities_y]
check[check.ConfirmedCases_x != check.ConfirmedCases_y] | COVID19 Global Forecasting (Week 3) |
8,820,034 | test_df['Season'] = test_df['ID'].map(lambda x: int(x[:4]))
test_df['WTeamID'] = test_df['ID'].map(lambda x: int(x[5:9]))
test_df['LTeamID'] = test_df['ID'].map(lambda x: int(x[10:14]))
test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Seed':'Seed1'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Seed':'Seed2'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1 )<merge> | train_clean['Location'].nunique() | COVID19 Global Forecasting (Week 3) |
8,820,034 | for col in season_result.columns[2:]:
season_result_map_mean = season_result.groupby(['Season', 'TeamID'])[col].mean().reset_index()
tourney_result = pd.merge(tourney_result, season_result_map_mean, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={f'{col}':f'W{col}MeanT'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result = pd.merge(tourney_result, season_result_map_mean, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={f'{col}':f'L{col}MeanT'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
test_df = pd.merge(test_df, season_result_map_mean, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={f'{col}':f'W{col}MeanT'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, season_result_map_mean, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={f'{col}':f'L{col}MeanT'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1 )<drop_column> | country_progress = train_clean.groupby(['Date', 'DateTime', 'Country_Region'] ).sum() [[
'ConfirmedCases', 'Fatalities', 'ConfirmedDelta', 'FatalitiesDelta']].reset_index() | COVID19 Global Forecasting (Week 3) |
8,820,034 | tourney_win_result = tourney_result.drop(['WTeamID', 'LTeamID'], axis=1)
for col in tourney_win_result.columns[2:]:
if col[0] == 'W':
tourney_win_result.rename(columns={f'{col}':f'{col[1:]+"1"}'}, inplace=True)
elif col[0] == 'L':
tourney_win_result.rename(columns={f'{col}':f'{col[1:]+"2"}'}, inplace=True)
tourney_lose_result = tourney_win_result.copy()
for col in tourney_lose_result.columns:
if col[-1] == '1':
col2 = col[:-1] + '2'
tourney_lose_result[col] = tourney_win_result[col2]
tourney_lose_result[col2] = tourney_win_result[col]
tourney_lose_result.columns<feature_engineering> | countries_0301 = country_progress[country_progress.Date == '2020-03-01'][[
'Country_Region', 'ConfirmedCases', 'Fatalities']]
countries_0331 = country_progress[country_progress.Date == '2020-03-31'][[
'Country_Region', 'ConfirmedCases', 'Fatalities']]
countries_in_march = pd.merge(countries_0301, countries_0331, on='Country_Region', suffixes=['_0301', '_0331'])
countries_in_march['IncreaseInMarch'] = countries_in_march.ConfirmedCases_0331 /(countries_in_march.ConfirmedCases_0301 + 1)
countries_in_march = countries_in_march[countries_in_march.ConfirmedCases_0331 > 200].sort_values(
by='IncreaseInMarch', ascending=False)
countries_in_march.tail(15 ) | COVID19 Global Forecasting (Week 3) |
8,820,034 | tourney_win_result['Seed_diff'] = tourney_win_result['Seed1'] - tourney_win_result['Seed2']
tourney_win_result['ScoreMeanT_diff'] = tourney_win_result['ScoreMeanT1'] - tourney_win_result['ScoreMeanT2']
tourney_lose_result['Seed_diff'] = tourney_lose_result['Seed1'] - tourney_lose_result['Seed2']
tourney_lose_result['ScoreMeanT_diff'] = tourney_lose_result['ScoreMeanT1'] - tourney_lose_result['ScoreMeanT2']
tourney_lose_result['Score_difference'] = -tourney_lose_result['Score_difference']
tourney_win_result['result'] = 1
tourney_lose_result['result'] = 0
tourney_result = pd.concat(( tourney_win_result, tourney_lose_result)).reset_index(drop=True )<feature_engineering> | train_clean['Geo
latest = train_clean[train_clean.Date == TRAIN_END][[
'Geo
daily_confirmed_deltas = train_clean[train_clean.Date >= '2020-03-17'].pivot(
'Geo
daily_confirmed_deltas = latest.merge(daily_confirmed_deltas, on='Geo
daily_confirmed_deltas.shape
daily_confirmed_deltas.head() | COVID19 Global Forecasting (Week 3) |
8,820,034 | for col in test_df.columns[2:]:
if col[0] == 'W':
test_df.rename(columns={f'{col}':f'{col[1:]+"1"}'}, inplace=True)
elif col[0] == 'L':
test_df.rename(columns={f'{col}':f'{col[1:]+"2"}'}, inplace=True)
test_df['Seed1'] = test_df['Seed1'].apply(lambda x: int(x[1:3]))
test_df['Seed2'] = test_df['Seed2'].apply(lambda x: int(x[1:3]))
test_df['Seed_diff'] = test_df['Seed1'] - test_df['Seed2']
test_df['ScoreMeanT_diff'] = test_df['ScoreMeanT1'] - test_df['ScoreMeanT2']
test_df = test_df.drop(['ID', 'Pred', 'Season'], axis=1 )<init_hyperparams> | deltas = train_clean[np.logical_and(
train_clean.LogConfirmed > 2,
~train_clean.Location.str.startswith('China')
)].dropna().sort_values(by='LogConfirmedDelta', ascending=False)
deltas['start'] = deltas['LogConfirmed'].round(0)
confirmed_deltas = pd.concat([
deltas.groupby('start')[['LogConfirmedDelta']].mean() ,
deltas.groupby('start')[['LogConfirmedDelta']].std() ,
deltas.groupby('start')[['LogConfirmedDelta']].count()
], axis=1)
deltas.mean()
confirmed_deltas.columns = ['avg', 'std', 'cnt']
confirmed_deltas
confirmed_deltas.to_csv('confirmed_deltas.csv' ) | COVID19 Global Forecasting (Week 3) |
8,820,034 | features = [x for x in tourney_result.columns if x not in ['result', 'Score_difference', 'Season']]
params = {'num_leaves': 400,
'min_child_weight': 0.034,
'feature_fraction': 0.379,
'bagging_fraction': 0.418,
'min_data_in_leaf': 106,
'max_depth': -1,
'learning_rate': 0.0068,
"boosting_type": "gbdt",
"bagging_seed": 11,
'reg_alpha': 0.3899,
'reg_lambda': 0.648,
'random_state': 47,
}
step_size = 20
steps = 250
boosting_rounds = [step_size*(x+1)for x in range(steps)]
def run_boost_round_test(boosting_rounds, step_size):
training_scores, oof_scores, holdback_scores = [], [], []
model = NCAA_model(params, tourney_result, test_df, use_holdback=[2019], regression=False, verbose=False)
print(f'Training for {step_size*steps} rounds.')
for rounds in range(step_size,boosting_rounds+1,step_size):
print(f'{"*"*50}')
print(f'Rounds: {rounds}')
if model.use_holdback:
tr_score, oof_score, hb_score = model.train(features, n_splits=10, n_boost_round=step_size, early_stopping_rounds=None)
else:
tr_score, oof_score = model.train(features, n_splits=10, n_boost_round=step_size, early_stopping_rounds=None)
clips, clip_s = model.fit_clipper(verbose=True)
spline, spline_s = model.fit_spline_model(verbose=True)
training_scores.append([tr_score, model.postprocess_preds(clips, use_data = 'train'),
model.postprocess_preds(spline, use_data = 'train', method='spline')])
oof_scores.append([oof_score, model.postprocess_preds(clips, use_data = 'oof'),
model.postprocess_preds(spline, use_data = 'oof', method='spline')])
holdback_scores.append([hb_score, model.postprocess_preds(clips, use_data = 'hb'),
model.postprocess_preds(spline, use_data = 'hb', method='spline')])
return training_scores, oof_scores, holdback_scores, model, clips, spline
training_scores, oof_scores, holdback_scores, model, clips, spline = run_boost_round_test(boosting_rounds[-1], step_size )<save_to_csv> | DECAY = 0.93
DECAY ** 7, DECAY ** 14, DECAY ** 21, DECAY ** 28
confirmed_deltas = train.groupby(['Location', 'Country_Region'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.11
confirmed_deltas['DELTA'] = GLOBAL_DELTA
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Korea South', 'DELTA'] = 0.011
confirmed_deltas.loc[confirmed_deltas.Country_Region=='US', 'DELTA'] = 0.15
confirmed_deltas.loc[confirmed_deltas.Country_Region=='China', 'DELTA'] = 0.00
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Japan', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Singapore', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Norway', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iceland', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Austria', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Italy', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Spain', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Portugal', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Israel', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iran', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Germany', 'DELTA'] = 0.07
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Russia', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Brazil', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Turkey', 'DELTA'] = 0.16
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Philippines', 'DELTA'] = 0.16
confirmed_deltas.loc[confirmed_deltas.Location=='France-', 'DELTA'] = 0.1
confirmed_deltas.loc[confirmed_deltas.Location=='United Kingdom-', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Location=='Diamond Princess-', 'DELTA'] = 0.00
confirmed_deltas.loc[confirmed_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Location=='San Marino-', 'DELTA'] = 0.03
confirmed_deltas.shape, confirmed_deltas.DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].shape, confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA]
confirmed_deltas.describe() | COVID19 Global Forecasting (Week 3) |
8,820,034 | y_preds = model.postprocess_preds(spline, method='spline')
submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv')
submission_df['Pred'] = y_preds
submission_df.to_csv('submission.csv', index=False)
submission_df.describe()<set_options> | confirmed_prediciton = pd.melt(daily_log_confirmed[:25], id_vars='Location')
confirmed_prediciton['ConfirmedCases'] = to_exp(confirmed_prediciton['value'] ) | COVID19 Global Forecasting (Week 3) |
8,820,034 | pd.set_option('max_columns', None)
plt.style.use('fivethirtyeight')
%matplotlib inline
py.init_notebook_mode(connected=True)
warnings.filterwarnings('ignore')
print("Libraries imported!" )<train_model> | train_clean['Geo
latest = train_clean[train_clean.Date == TRAIN_END][[
'Geo
daily_death_deltas = train_clean[train_clean.Date >= '2020-03-17'].pivot(
'Geo
daily_death_deltas = latest.merge(daily_death_deltas, on='Geo
daily_death_deltas.shape
daily_death_deltas.head() | COVID19 Global Forecasting (Week 3) |
8,820,034 | class BaseModel(object):
def __init__(self, train_df, test_df, target, features, categoricals=[],
n_splits=3, cv_method="KFold", group=None, task="regression",
parameter_tuning=False, scaler=None, verbose=True):
self.train_df = train_df
self.test_df = test_df
self.target = target
self.features = features
self.n_splits = n_splits
self.categoricals = categoricals
self.cv_method = cv_method
self.group = group
self.task = task
self.parameter_tuning = parameter_tuning
self.scaler = scaler
self.cv = self.get_cv()
self.verbose = verbose
self.params = self.get_params()
self.y_pred, self.score, self.model, self.oof, self.y_val, self.fi_df = self.fit()
def train_model(self, train_set, val_set):
raise NotImplementedError
def get_params(self):
raise NotImplementedError
def convert_dataset(self, x_train, y_train, x_val, y_val):
raise NotImplementedError
def convert_x(self, x):
return x
def calc_metric(self, y_true, y_pred):
if self.task == "classification":
return log_loss(y_true, y_pred)
elif self.task == "regression":
return np.sqrt(mean_squared_error(y_true, y_pred))
def get_cv(self):
if self.cv_method == "KFold":
cv = KFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df)
elif self.cv_method == "StratifiedKFold":
cv = StratifiedKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target])
elif self.cv_method == "TimeSeriesSplit":
cv = TimeSeriesSplit(max_train_size=None, n_splits=self.n_splits)
return cv.split(self.train_df)
elif self.cv_method == "GroupKFold":
cv = GroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target], self.group)
elif self.cv_method == "StratifiedGroupKFold":
cv = StratifiedGroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target], self.group)
def fit(self):
oof_pred = np.zeros(( self.train_df.shape[0],))
y_vals = np.zeros(( self.train_df.shape[0],))
y_pred = np.zeros(( self.test_df.shape[0],))
if self.group is not None:
if self.group in self.features:
self.features.remove(self.group)
if self.group in self.categoricals:
self.categoricals.remove(self.group)
fi = np.zeros(( self.n_splits, len(self.features)))
if self.scaler is not None:
numerical_features = [f for f in self.features if f not in self.categoricals]
self.train_df[numerical_features] = self.train_df[numerical_features].fillna(self.train_df[numerical_features].median())
self.test_df[numerical_features] = self.test_df[numerical_features].fillna(self.test_df[numerical_features].median())
self.train_df[self.categoricals] = self.train_df[self.categoricals].fillna(self.train_df[self.categoricals].mode().iloc[0])
self.test_df[self.categoricals] = self.test_df[self.categoricals].fillna(self.test_df[self.categoricals].mode().iloc[0])
if self.scaler == "MinMax":
scaler = MinMaxScaler()
elif self.scaler == "Standard":
scaler = StandardScaler()
df = pd.concat([self.train_df[numerical_features], self.test_df[numerical_features]], ignore_index=True)
scaler.fit(df[numerical_features])
x_test = self.test_df.copy()
x_test[numerical_features] = scaler.transform(x_test[numerical_features])
x_test = [np.absolute(x_test[i])for i in self.categoricals] + [x_test[numerical_features]]
else:
x_test = self.test_df[self.features]
for fold,(train_idx, val_idx)in enumerate(self.cv):
x_train, x_val = self.train_df.loc[train_idx, self.features], self.train_df.loc[val_idx, self.features]
y_train, y_val = self.train_df.loc[train_idx, self.target], self.train_df.loc[val_idx, self.target]
if self.scaler is not None:
x_train[numerical_features] = scaler.transform(x_train[numerical_features])
x_val[numerical_features] = scaler.transform(x_val[numerical_features])
x_train = [np.absolute(x_train[i])for i in self.categoricals] + [x_train[numerical_features]]
x_val = [np.absolute(x_val[i])for i in self.categoricals] + [x_val[numerical_features]]
train_set, val_set = self.convert_dataset(x_train, y_train, x_val, y_val)
model, importance = self.train_model(train_set, val_set)
fi[fold, :] = importance
conv_x_val = self.convert_x(x_val)
y_vals[val_idx] = y_val
oof_pred[val_idx] = model.predict(conv_x_val ).reshape(oof_pred[val_idx].shape)
x_test = self.convert_x(x_test)
y_pred += model.predict(x_test ).reshape(y_pred.shape)/ self.n_splits
print('Partial score of fold {} is: {}'.format(fold, self.calc_metric(y_val, oof_pred[val_idx])))
fi_df = pd.DataFrame()
for n in np.arange(self.n_splits):
tmp = pd.DataFrame()
tmp["features"] = self.features
tmp["importance"] = fi[n, :]
tmp["fold"] = n
fi_df = pd.concat([fi_df, tmp], ignore_index=True)
gfi = fi_df[["features", "importance"]].groupby(["features"] ).mean().reset_index()
fi_df = fi_df.merge(gfi, on="features", how="left", suffixes=('', '_mean'))
loss_score = self.calc_metric(self.train_df[self.target], oof_pred)
if self.verbose:
print('Our oof loss score is: ', loss_score)
return y_pred, loss_score, model, oof_pred, y_vals, fi_df
def plot_feature_importance(self, rank_range=[1, 50]):
fig, ax = plt.subplots(1, 1, figsize=(10, 20))
sorted_df = self.fi_df.sort_values(by = "importance_mean", ascending=False ).reset_index().iloc[self.n_splits *(rank_range[0]-1): self.n_splits * rank_range[1]]
sns.barplot(data=sorted_df, x ="importance", y ="features", orient='h')
ax.set_xlabel("feature importance")
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
return sorted_df<train_model> | death_deltas = train.groupby(['Location', 'Country_Region'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.11
death_deltas['DELTA'] = GLOBAL_DELTA
death_deltas.loc[death_deltas.Country_Region=='China', 'DELTA'] = 0.000
death_deltas.loc[death_deltas.Country_Region=='Korea South', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='Japan', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='Singapore', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='US', 'DELTA'] = 0.17
death_deltas.loc[death_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Norway', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Iceland', 'DELTA'] = 0.01
death_deltas.loc[death_deltas.Country_Region=='Austria', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Italy', 'DELTA'] = 0.07
death_deltas.loc[death_deltas.Country_Region=='Spain', 'DELTA'] = 0.1
death_deltas.loc[death_deltas.Country_Region=='Portugal', 'DELTA'] = 0.13
death_deltas.loc[death_deltas.Country_Region=='Israel', 'DELTA'] = 0.16
death_deltas.loc[death_deltas.Country_Region=='Iran', 'DELTA'] = 0.06
death_deltas.loc[death_deltas.Country_Region=='Germany', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.10
death_deltas.loc[death_deltas.Country_Region=='Russia', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Brazil', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Turkey', 'DELTA'] = 0.22
death_deltas.loc[death_deltas.Country_Region=='Philippines', 'DELTA'] = 0.12
death_deltas.loc[death_deltas.Location=='France-', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Location=='United Kingdom-', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Location=='Diamond Princess-', 'DELTA'] = 0.00
death_deltas.loc[death_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.01
death_deltas.loc[death_deltas.Location=='San Marino-', 'DELTA'] = 0.05
death_deltas.shape
death_deltas.DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].shape
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA]
death_deltas.describe() | COVID19 Global Forecasting (Week 3) |
8,820,034 | class LgbModel(BaseModel):
def train_model(self, train_set, val_set):
verbosity = 100 if self.verbose else 0
model = lgb.train(self.params, train_set, num_boost_round = 5000, valid_sets=[train_set, val_set], verbose_eval=verbosity)
fi = model.feature_importance(importance_type="gain")
return model, fi
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = lgb.Dataset(x_train, y_train, categorical_feature=self.categoricals)
val_set = lgb.Dataset(x_val, y_val, categorical_feature=self.categoricals)
return train_set, val_set
def get_params(self):
params = {
'num_leaves': 127,
'min_data_in_leaf': 50,
'max_depth': -1,
'learning_rate': 0.005,
"boosting_type": "gbdt",
"bagging_seed": 11,
"verbosity": -1,
'random_state': 42,
}
if self.task == "regression":
params["objective"] = "regression"
params["metric"] = "rmse"
elif self.task == "classification":
params["objective"] = "binary"
params["metric"] = "binary_logloss"
if self.parameter_tuning == True:
def objective(trial):
train_x, test_x, train_y, test_y = train_test_split(self.train_df[self.features],
self.train_df[self.target],
test_size=0.3, random_state=42)
dtrain = lgb.Dataset(train_x, train_y, categorical_feature=self.categoricals)
dtest = lgb.Dataset(test_x, test_y, categorical_feature=self.categoricals)
hyperparams = {'num_leaves': trial.suggest_int('num_leaves', 24, 1024),
'boosting_type': 'gbdt',
'objective': params["objective"],
'metric': params["metric"],
'max_depth': trial.suggest_int('max_depth', 4, 16),
'min_child_weight': trial.suggest_int('min_child_weight', 1, 20),
'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
'lambda_l1': trial.suggest_loguniform('lambda_l1', 1e-8, 10.0),
'lambda_l2': trial.suggest_loguniform('lambda_l2', 1e-8, 10.0),
'early_stopping_rounds': 100
}
model = lgb.train(hyperparams, dtrain, valid_sets=dtest, verbose_eval=500)
pred = model.predict(test_x)
if self.task == "classification":
return log_loss(test_y, pred)
elif self.task == "regression":
return np.sqrt(mean_squared_error(test_y, pred))
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50)
print('Number of finished trials: {}'.format(len(study.trials)))
print('Best trial:')
trial = study.best_trial
print(' Value: {}'.format(trial.value))
print(' Params: ')
for key, value in trial.params.items() :
print(' {}: {}'.format(key, value))
params = trial.params
params["learning_rate"] = 0.001
plot_optimization_history(study)
return params<train_model> | confirmed_prediciton = pd.melt(daily_log_deaths[:25], id_vars='Location')
confirmed_prediciton['Fatalities'] = to_exp(confirmed_prediciton['value'])
confirmed_prediciton.shape | COVID19 Global Forecasting (Week 3) |
8,820,034 | class CatbModel(BaseModel):
def train_model(self, train_set, val_set):
verbosity = 100 if self.verbose else 0
if self.task == "regression":
model = CatBoostRegressor(**self.params)
elif self.task == "classification":
model = CatBoostClassifier(**self.params)
model.fit(train_set['X'], train_set['y'], eval_set=(val_set['X'], val_set['y']),
verbose=verbosity, cat_features=self.categoricals)
return model, model.get_feature_importance()
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = {'X': x_train, 'y': y_train}
val_set = {'X': x_val, 'y': y_val}
return train_set, val_set
def get_params(self):
params = { 'task_type': "CPU",
'learning_rate': 0.01,
'iterations': 1000,
'random_seed': 42,
'use_best_model': True
}
if self.task == "regression":
params["loss_function"] = "RMSE"
elif self.task == "classification":
params["loss_function"] = "Logloss"
return params<normalization> | confirmed = []
fatalities = []
for id, d, loc in tqdm(test[['ForecastId', 'Date', 'Location']].values):
c = to_exp(daily_log_confirmed.loc[daily_log_confirmed.Location == loc, d].values[0])
f = to_exp(daily_log_deaths.loc[daily_log_deaths.Location == loc, d].values[0])
confirmed.append(c)
fatalities.append(f ) | COVID19 Global Forecasting (Week 3) |
8,820,034 | class Mish(Layer):
def __init__(self, **kwargs):
super(Mish, self ).__init__(**kwargs)
def build(self, input_shape):
super(Mish, self ).build(input_shape)
def call(self, x):
return x * K.tanh(K.softplus(x))
def compute_output_shape(self, input_shape):
return input_shape
class LayerNormalization(keras.layers.Layer):
def __init__(self,
center=True,
scale=True,
epsilon=None,
gamma_initializer='ones',
beta_initializer='zeros',
gamma_regularizer=None,
beta_regularizer=None,
gamma_constraint=None,
beta_constraint=None,
**kwargs):
super(LayerNormalization, self ).__init__(**kwargs)
self.supports_masking = True
self.center = center
self.scale = scale
if epsilon is None:
epsilon = K.epsilon() * K.epsilon()
self.epsilon = epsilon
self.gamma_initializer = keras.initializers.get(gamma_initializer)
self.beta_initializer = keras.initializers.get(beta_initializer)
self.gamma_regularizer = keras.regularizers.get(gamma_regularizer)
self.beta_regularizer = keras.regularizers.get(beta_regularizer)
self.gamma_constraint = keras.constraints.get(gamma_constraint)
self.beta_constraint = keras.constraints.get(beta_constraint)
self.gamma, self.beta = None, None
def get_config(self):
config = {
'center': self.center,
'scale': self.scale,
'epsilon': self.epsilon,
'gamma_initializer': keras.initializers.serialize(self.gamma_initializer),
'beta_initializer': keras.initializers.serialize(self.beta_initializer),
'gamma_regularizer': keras.regularizers.serialize(self.gamma_regularizer),
'beta_regularizer': keras.regularizers.serialize(self.beta_regularizer),
'gamma_constraint': keras.constraints.serialize(self.gamma_constraint),
'beta_constraint': keras.constraints.serialize(self.beta_constraint),
}
base_config = super(LayerNormalization, self ).get_config()
return dict(list(base_config.items())+ list(config.items()))
def compute_output_shape(self, input_shape):
return input_shape
def compute_mask(self, inputs, input_mask=None):
return input_mask
def build(self, input_shape):
shape = input_shape[-1:]
if self.scale:
self.gamma = self.add_weight(
shape=shape,
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint,
name='gamma',
)
if self.center:
self.beta = self.add_weight(
shape=shape,
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint,
name='beta',
)
super(LayerNormalization, self ).build(input_shape)
def call(self, inputs, training=None):
mean = K.mean(inputs, axis=-1, keepdims=True)
variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True)
std = K.sqrt(variance + self.epsilon)
outputs =(inputs - mean)/ std
if self.scale:
outputs *= self.gamma
if self.center:
outputs += self.beta
return outputs<train_model> | my_submission = test.copy()
my_submission['ConfirmedCases'] = confirmed
my_submission['Fatalities'] = fatalities
my_submission.shape
my_submission.head()
| COVID19 Global Forecasting (Week 3) |
8,820,034 | class NeuralNetworkModel(BaseModel):
def train_model(self, train_set, val_set):
inputs = []
embeddings = []
embedding_out_dim = self.params['embedding_out_dim']
n_neuron = self.params['hidden_units']
for i in self.categoricals:
input_ = Input(shape=(1,))
embedding = Embedding(int(np.absolute(self.train_df[i] ).max() + 1), embedding_out_dim, input_length=1 )(input_)
embedding = Reshape(target_shape=(embedding_out_dim,))(embedding)
inputs.append(input_)
embeddings.append(embedding)
input_numeric = Input(shape=(len(self.features)- len(self.categoricals),))
embedding_numeric = Dense(n_neuron )(input_numeric)
embedding_numeric = Mish()(embedding_numeric)
inputs.append(input_numeric)
embeddings.append(embedding_numeric)
x = Concatenate()(embeddings)
for i in np.arange(self.params['hidden_layers'] - 1):
x = Dense(n_neuron //(2 *(i+1)) )(x)
x = Mish()(x)
x = Dropout(self.params['hidden_dropout'] )(x)
x = LayerNormalization()(x)
if self.task == "regression":
out = Dense(1, activation="linear", name = "out" )(x)
loss = "mse"
elif self.task == "classification":
out = Dense(1, activation='sigmoid', name = 'out' )(x)
loss = "binary_crossentropy"
model = Model(inputs=inputs, outputs=out)
model.compile(loss=loss, optimizer=Adam(lr=1e-04, beta_1=0.9, beta_2=0.999, decay=1e-04))
er = EarlyStopping(patience=10, min_delta=1e-4, restore_best_weights=True, monitor='val_loss')
ReduceLR = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=7, verbose=1, epsilon=1e-4, mode='min')
model.fit(train_set['X'], train_set['y'], callbacks=[er, ReduceLR],
epochs=self.params['epochs'], batch_size=self.params['batch_size'],
validation_data=[val_set['X'], val_set['y']])
fi = np.zeros(len(self.features))
return model, fi
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = {'X': x_train, 'y': y_train}
val_set = {'X': x_val, 'y': y_val}
return train_set, val_set
def get_params(self):
params = {
'input_dropout': 0.0,
'hidden_layers': 2,
'hidden_units': 64,
'embedding_out_dim': 4,
'hidden_activation': 'relu',
'hidden_dropout': 0.02,
'batch_norm': 'before_act',
'optimizer': {'type': 'adam', 'lr': 0.001},
'batch_size': 256,
'epochs': 80
}
return params<load_from_csv> | my_submission.Location.nunique() | COVID19 Global Forecasting (Week 3) |
8,820,034 | data_dict = {}
for i in glob.glob('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/*'):
name = i.split('/')[-1].split('.')[0]
if name != 'MTeamSpellings':
data_dict[name] = pd.read_csv(i)
else:
data_dict[name] = pd.read_csv(i, encoding='cp1252' )<feature_engineering> | my_submission[['ConfirmedCases','Fatalities']]= my_submission[['ConfirmedCases','Fatalities']].round(1 ) | COVID19 Global Forecasting (Week 3) |
8,820,034 | <load_from_csv><EOS> | my_submission[[
'ForecastId', 'ConfirmedCases', 'Fatalities'
]].to_csv('submission.csv', index=False)
print(DECAY)
my_submission.head()
my_submission.tail()
my_submission.shape | COVID19 Global Forecasting (Week 3) |
8,816,812 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<feature_engineering> | for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
print('--------------------------------------')
print('Train data looks like...')
trainData = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
print(trainData.head(5))
print('Test data looks like...')
testData = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
print(testData.head(5)) | COVID19 Global Forecasting (Week 3) |
8,816,812 | test = test.drop(['Pred'], axis=1)
test['Season'] = test['ID'].apply(lambda x: int(x.split('_')[0]))
test['WTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[1]))
test['LTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[2]))
test.head()<merge> | def kaggle(dfTrain, dfTest):
pd.set_option('display.max_columns', None)
dfTest['DateNew'] = pd.to_datetime(dfTest['Date'])
dfTest = dfTest.drop(['Date'], axis=1)
dfTest = dfTest.rename(columns={"DateNew": "Date"})
dfTest['Year'] = dfTest['Date'].dt.year
dfTest['Month'] = dfTest['Date'].dt.month
dfTest['Day'] = dfTest['Date'].dt.day
dfTest = dfTest.drop(['Date'], axis=1)
dfTest = dfTest.fillna('DummyProvince')
dfTrain['DateNew'] = pd.to_datetime(dfTrain['Date'])
dfTrain = dfTrain.drop(['Date'], axis=1)
dfTrain = dfTrain.rename(columns={"DateNew": "Date"})
dfTrain['Year'] = dfTrain['Date'].dt.year
dfTrain['Month'] = dfTrain['Date'].dt.month
dfTrain['Day'] = dfTrain['Date'].dt.day
dfTrain = dfTrain.drop(['Date'], axis=1)
dfTrain = dfTrain.fillna('DummyProvince')
result = pd.merge(dfTest, dfTrain, how='left', on=['Country_Region', 'Province_State', 'Year', 'Month', 'Day'])
result = result.fillna(-1)
print('Are the Kaggle submission files same? ', np.shape(dfTrain), np.shape(dfTest), np.shape(result))
return result
def ErrorCalc(mdl, ref, tag):
relError = np.abs(mdl - ref)/ np.abs(ref+1)
MeanErrorV = np.mean(relError)
print(tag + ': Mean Rel Error in %: ', MeanErrorV * 100)
return MeanErrorV
def AdjustingErrorsOutliers(tempPred, tempPrev):
tempPred = np.round(tempPred)
for i in range(len(tempPred)) :
if tempPred[i] < tempPrev[i] :
tempPred[i] = tempPrev[i]
return tempPred
def TrainMdl(trainIpData, trainOpData):
testSize = 0.1
print('Training starts...')
randomState = None
X_train, X_test, y_train, y_test = train_test_split(trainIpData, trainOpData, test_size=testSize, random_state=randomState)
TrainIP1 = X_train[['day1_I', 'day2_I', 'day3_I', 'day4_I', 'day5_I',
'diff1_I', 'diff2_I', 'diff3_I', 'diff4_I']]
TrainOP1 = X_train['gammaFunI']
TestIP1 = X_test[['day1_I', 'day2_I', 'day3_I', 'day4_I', 'day5_I',
'diff1_I', 'diff2_I', 'diff3_I', 'diff4_I']]
treeDepth = 10
mdl1 = DecisionTreeRegressor(max_depth=treeDepth)
param_grid = {
'n_estimators': [100, 250, 500],
'learning_rate': [0.1, 0.01, 0.001]
}
regrMdl1 = AdaBoostRegressor(base_estimator=mdl1)
clf1 = RandomizedSearchCV(estimator = regrMdl1, param_distributions = param_grid,
n_iter = 100, cv = 3, verbose=0, random_state=42, n_jobs = -1)
clf1.fit(TrainIP1, TrainOP1)
y_predictedTrain = clf1.predict(TrainIP1)
y_predictedTrain = AdjustingErrorsOutliers(y_predictedTrain * TrainIP1['day5_I'].to_numpy() , TrainIP1['day5_I'].to_numpy())
ErrorCalc(y_predictedTrain, X_train['dayPredictInf'].to_numpy() , 'Train Data-set model-1(infection rate)')
y_predictedTest = clf1.predict(TestIP1)
y_predictedTest = AdjustingErrorsOutliers(y_predictedTest * TestIP1['day5_I'].to_numpy() , TestIP1['day5_I'].to_numpy())
ErrorCalc(y_predictedTest, X_test['dayPredictInf'].to_numpy() , 'Test Data-set model-1(infection rate)')
TrainIP2 = X_train[['day1_I', 'day2_I', 'day3_I', 'day4_I', 'day5_I',
'diff1_I', 'diff2_I', 'diff3_I', 'diff4_I',
'day1_F', 'day2_F', 'day3_F', 'day4_F', 'day5_F',
'diff1_F', 'diff2_F', 'diff3_F', 'diff4_F']]
TrainOP2 = X_train['gammaFunF']
TestIP2 = X_test[['day1_I', 'day2_I', 'day3_I', 'day4_I', 'day5_I',
'diff1_I', 'diff2_I', 'diff3_I', 'diff4_I',
'day1_F', 'day2_F', 'day3_F', 'day4_F', 'day5_F',
'diff1_F', 'diff2_F', 'diff3_F', 'diff4_F']]
treeDepth = 10
mdl2 = DecisionTreeRegressor(max_depth=treeDepth)
param_grid = {
'n_estimators': [100, 250, 500],
'learning_rate': [0.1, 0.01, 0.001]
}
regrMdl2 = AdaBoostRegressor(base_estimator=mdl2)
clf2 = RandomizedSearchCV(estimator=regrMdl2, param_distributions=param_grid,
n_iter=100, cv=3, verbose=0, random_state=42, n_jobs=-1)
clf2.fit(TrainIP2, TrainOP2)
y_predictedTrain = clf2.predict(TrainIP2)* TrainIP2['day5_F'].to_numpy()
y_predictedTrain = AdjustingErrorsOutliers(y_predictedTrain, TrainIP2['day5_F'].to_numpy())
ErrorCalc(y_predictedTrain, y_train.to_numpy() , 'Train Data-set model-2')
y_predictedTest = clf2.predict(TestIP2)* TestIP2['day5_F'].to_numpy()
y_predictedTest = AdjustingErrorsOutliers(y_predictedTest, TestIP2['day5_F'].to_numpy())
ErrorCalc(y_predictedTest, y_test.to_numpy() , 'Test Data-set model-2')
dfValidation_Inf = pd.read_csv(".. /input/week3-covid19-traindata/Validation_Infected.csv" ).reset_index(drop=True)
dfValidation_Fat = pd.read_csv(".. /input/week3-covid19-traindata/Validation_Fatality.csv" ).reset_index(drop=True)
selRow = 0
startIdx = 12
[rVal, cVal] = np.shape(dfValidation_Inf)
lengthZ = cVal-1
lengthZ = 12 * lengthZ
arrP = np.zeros(( 2 * lengthZ,))
arrA = np.zeros(( 2 * lengthZ,))
count = 0
error = 0
errorLen = 0
Threshold_I = 0
Threshold_F = 0
print('Validating...')
while(selRow < rVal):
iDetect = startIdx
iArray = 0
while(iDetect < 17):
if iDetect == startIdx :
day5_I = dfValidation_Inf.iloc[selRow, iDetect]
day4_I = dfValidation_Inf.iloc[selRow, iDetect - 1]
day3_I = dfValidation_Inf.iloc[selRow, iDetect - 2]
day2_I = dfValidation_Inf.iloc[selRow, iDetect - 3]
day1_I = dfValidation_Inf.iloc[selRow, iDetect - 4]
if day5_I < Threshold_I:
day5_I = Threshold_I
day5_F = dfValidation_Fat.iloc[selRow, iDetect]
day4_F = dfValidation_Fat.iloc[selRow, iDetect - 1]
day3_F = dfValidation_Fat.iloc[selRow, iDetect - 2]
day2_F = dfValidation_Fat.iloc[selRow, iDetect - 3]
day1_F = dfValidation_Fat.iloc[selRow, iDetect - 4]
if day5_F < Threshold_F:
day5_F = Threshold_F
else:
day1_I = day2_I
day2_I = day3_I
day3_I = day4_I
day4_I = day5_I
day5_I = predictedInfected
day1_F = day2_F
day2_F = day3_F
day3_F = day4_F
day4_F = day5_F
day5_F = predictedFatality
diff1_I = day5_I - day4_I
diff2_I = day4_I - day3_I
diff3_I = day3_I - day2_I
diff4_I = day2_I - day1_I
diff1_F = day5_F - day4_F
diff2_F = day4_F - day3_F
diff3_F = day3_F - day2_F
diff4_F = day2_F - day1_F
data1 = {'day1_I': [day1_I], 'day2_I': [day2_I], 'day3_I': [day3_I], 'day4_I': [day4_I], 'day5_I': [day5_I],
'diff1_I': [diff1_I], 'diff2_I': [diff2_I], 'diff3_I': [diff3_I], 'diff4_I': [diff4_I]}
dfPredict1 = pd.DataFrame(data1)
predictedInfected = clf1.predict(dfPredict1[['day1_I', 'day2_I', 'day3_I', 'day4_I', 'day5_I',
'diff1_I', 'diff2_I', 'diff3_I', 'diff4_I']])* day5_I
if predictedInfected < day5_I:
predictedInfected = day5_I
actVal = dfValidation_Inf.iloc[selRow, iDetect + 1]
arrP[iArray] = predictedInfected
arrA[iArray] = actVal
iArray = iArray + 1
data2 = {'day1_I': [day1_I], 'day2_I': [day2_I], 'day3_I': [day3_I], 'day4_I': [day4_I], 'day5_I': [day5_I],
'diff1_I': [diff1_I], 'diff2_I': [diff2_I], 'diff3_I': [diff3_I], 'diff4_I': [diff4_I],
'day1_F': [day1_F], 'day2_F': [day2_F], 'day3_F': [day3_F], 'day4_F': [day4_F], 'day5_F': [day5_F],
'diff1_F': [diff1_F], 'diff2_F': [diff2_F], 'diff3_F': [diff3_F], 'diff4_F': [diff4_F]}
dfPredict2 = pd.DataFrame(data2)
predictedFatality = clf2.predict(dfPredict2[['day1_I', 'day2_I', 'day3_I', 'day4_I', 'day5_I',
'diff1_I', 'diff2_I', 'diff3_I', 'diff4_I',
'day1_F', 'day2_F', 'day3_F', 'day4_F', 'day5_F',
'diff1_F', 'diff2_F', 'diff3_F', 'diff4_F']])* day5_F
if predictedFatality < day5_F:
predictedFatality = day5_F
actVal = dfValidation_Fat.iloc[selRow, iDetect + 1]
arrP[iArray] = predictedFatality
arrA[iArray] = actVal
iDetect = iDetect + 1
iArray = iArray + 1
error = error + sum(np.square(np.log(arrP[0:iArray-1] + 1)- np.log(arrA[0:iArray-1] + 1)))
errorLen = errorLen + iArray
selRow = selRow + 1
count = count + 1
error = float(error)/ errorLen
print('Validation error: ', error)
print('Making Kaggle Submission file...')
dfTrain = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
dfTest = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
df = kaggle(dfTrain, dfTest)
print('Prediction starts for Kaggle submission...')
[rr, cc] = np.shape(df)
for iP in range(rr):
if df.loc[iP, 'ConfirmedCases'] == -1 :
day5_I = df.loc[iP-1, 'ConfirmedCases']
day4_I = df.loc[iP-2, 'ConfirmedCases']
day3_I = df.loc[iP-3, 'ConfirmedCases']
day2_I = df.loc[iP-4, 'ConfirmedCases']
day1_I = df.loc[iP-5, 'ConfirmedCases']
day5_F = df.loc[iP - 1, 'Fatalities']
day4_F = df.loc[iP - 2, 'Fatalities']
day3_F = df.loc[iP - 3, 'Fatalities']
day2_F = df.loc[iP - 4, 'Fatalities']
day1_F = df.loc[iP - 5, 'Fatalities']
diff1_I = day5_I - day4_I
diff2_I = day4_I - day3_I
diff3_I = day3_I - day2_I
diff4_I = day2_I - day1_I
diff1_F = day5_F - day4_F
diff2_F = day4_F - day3_F
diff3_F = day3_F - day2_F
diff4_F = day2_F - day1_F
data1 = {'day1_I': [day1_I], 'day2_I': [day2_I], 'day3_I': [day3_I], 'day4_I': [day4_I], 'day5_I': [day5_I],
'diff1_I': [diff1_I], 'diff2_I': [diff2_I], 'diff3_I': [diff3_I], 'diff4_I': [diff4_I]}
dfPredict1 = pd.DataFrame(data1)
predictedInfected = clf1.predict(dfPredict1[['day1_I', 'day2_I', 'day3_I', 'day4_I', 'day5_I',
'diff1_I', 'diff2_I', 'diff3_I', 'diff4_I']])* day5_I
if predictedInfected < day5_I:
predictedInfected = day5_I
df.loc[iP, 'ConfirmedCases'] = np.round(predictedInfected)
data2 = {'day1_I': [day1_I], 'day2_I': [day2_I], 'day3_I': [day3_I], 'day4_I': [day4_I], 'day5_I': [day5_I],
'diff1_I': [diff1_I], 'diff2_I': [diff2_I], 'diff3_I': [diff3_I], 'diff4_I': [diff4_I],
'day1_F': [day1_F], 'day2_F': [day2_F], 'day3_F': [day3_F], 'day4_F': [day4_F], 'day5_F': [day5_F],
'diff1_F': [diff1_F], 'diff2_F': [diff2_F], 'diff3_F': [diff3_F], 'diff4_F': [diff4_F]}
dfPredict2 = pd.DataFrame(data2)
predictedFatality = clf2.predict(dfPredict2[['day1_I', 'day2_I', 'day3_I', 'day4_I', 'day5_I',
'diff1_I', 'diff2_I', 'diff3_I', 'diff4_I',
'day1_F', 'day2_F', 'day3_F', 'day4_F', 'day5_F',
'diff1_F', 'diff2_F', 'diff3_F', 'diff4_F']])* day5_F
if predictedFatality < day5_F:
predictedFatality = day5_F
df.loc[iP, 'Fatalities'] = np.round(predictedFatality)
return df
df = pd.read_csv(".. /input/week3-covid19-traindata/TrainTest.csv")
trainIpData = df[['day1_I', 'day2_I', 'day3_I', 'day4_I', 'day5_I',
'diff1_I', 'diff2_I', 'diff3_I', 'diff4_I',
'day1_F', 'day2_F', 'day3_F', 'day4_F', 'day5_F',
'diff1_F', 'diff2_F', 'diff3_F', 'diff4_F', 'gammaFunF', 'gammaFunI', 'dayPredictInf']]
trainOpData = df['dayPredictFat']
predictions_dF = TrainMdl(trainIpData, trainOpData)
predictions_dF[['ForecastId', 'ConfirmedCases', 'Fatalities']].to_csv('submission.csv', index=False)
print(predictions_dF[['ForecastId', 'ConfirmedCases', 'Fatalities']].head(5))
print(predictions_dF[['ForecastId', 'ConfirmedCases', 'Fatalities']].tail(5))
print('Done!' ) | COVID19 Global Forecasting (Week 3) |
8,815,496 | gameCities = pd.merge(data_dict['MGameCities'], data_dict['Cities'], how='left', on=['CityID'])
cols_to_use = gameCities.columns.difference(train.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
train = train.merge(gameCities[cols_to_use].drop_duplicates(subset=["Season", "WTeamID", "LTeamID"]),
how="left", on=["Season", "WTeamID", "LTeamID"])
train.head()
cols_to_use = data_dict["MSeasons"].columns.difference(train.columns ).tolist() + ["Season"]
train = train.merge(data_dict["MSeasons"][cols_to_use].drop_duplicates(subset=["Season"]),
how="left", on=["Season"])
train.head()
cols_to_use = data_dict["MTeams"].columns.difference(train.columns ).tolist()
train = train.merge(data_dict["MTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["WTeamID"], right_on=["TeamID"])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict["MTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head()<merge> | pd.set_option('mode.chained_assignment', None)
test = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
train = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region','Province_State','Date'])
test = test.sort_values(['Country_Region','Province_State','Date'])
train[['ConfirmedCases', 'Fatalities']] = train.groupby(['Country_Region', 'Province_State'])[['ConfirmedCases', 'Fatalities']].transform('cummax' ) | COVID19 Global Forecasting (Week 3) |
8,815,496 | cols_to_use = data_dict["MTeamCoaches"].columns.difference(train.columns ).tolist() + ["Season"]
train = train.merge(data_dict["MTeamCoaches"][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how="left", left_on=["Season","WTeamID"], right_on=["Season","TeamID"])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict["MTeamCoaches"][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how="left", left_on=["Season","LTeamID"], right_on=["Season","TeamID"], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head()
<merge> | def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)))
feature_day = [1,20,50,100,200,500,1000,5000,10000,15000,20000,50000,100000,200000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
| COVID19 Global Forecasting (Week 3) |
8,815,496 | cols_to_use = data_dict['MNCAATourneySeeds'].columns.difference(train.columns ).tolist() + ['Season']
train = train.merge(data_dict['MNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict['MNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head()<merge> | !pip install pmdarima | COVID19 Global Forecasting (Week 3) |
8,815,496 | cols_to_use = gameCities.columns.difference(test.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
test = test.merge(gameCities[cols_to_use].drop_duplicates(subset=["Season", "WTeamID", "LTeamID"]),
how="left", on=["Season", "WTeamID", "LTeamID"])
del gameCities
gc.collect()
test.head()
cols_to_use = data_dict["MSeasons"].columns.difference(test.columns ).tolist() + ["Season"]
test = test.merge(data_dict["MSeasons"][cols_to_use].drop_duplicates(subset=["Season"]),
how="left", on=["Season"])
test.head()
cols_to_use = data_dict["MTeams"].columns.difference(test.columns ).tolist()
test = test.merge(data_dict["MTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["WTeamID"], right_on=["TeamID"])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict["MTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
test.head()
cols_to_use = data_dict["MTeamCoaches"].columns.difference(test.columns ).tolist() + ["Season"]
test = test.merge(data_dict["MTeamCoaches"][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how="left", left_on=["Season","WTeamID"], right_on=["Season","TeamID"])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict["MTeamCoaches"][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how="left", left_on=["Season","LTeamID"], right_on=["Season","TeamID"], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
cols_to_use = data_dict['MNCAATourneySeeds'].columns.difference(test.columns ).tolist() + ['Season']
test = test.merge(data_dict['MNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict['MNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
print(test.shape)
test.head()<drop_column> | df_val = df_val_2
submission = df_val[['ForecastId','ConfirmedCases_hat','Fatalities_hat']]
submission.columns = ['ForecastId','ConfirmedCases','Fatalities']
submission = submission.round({'ConfirmedCases': 0, 'Fatalities': 0})
submission.to_csv('submission.csv', index=False)
submission | COVID19 Global Forecasting (Week 3) |
8,879,365 | not_exist_in_test = [c for c in train.columns.values.tolist() if c not in test.columns.values.tolist() ]
print(not_exist_in_test)
train = train.drop(not_exist_in_test, axis=1)
train.head()<groupby> | from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
from sklearn.preprocessing import LabelBinarizer,LabelEncoder,StandardScaler,MinMaxScaler | COVID19 Global Forecasting (Week 3) |
8,879,365 | team_win_score = regularSeason.groupby(['Season', 'WTeamID'] ).agg({'WScore':['sum', 'count', 'var']} ).reset_index()
team_win_score.columns = [' '.join(col ).strip() for col in team_win_score.columns.values]
team_loss_score = regularSeason.groupby(['Season', 'LTeamID'] ).agg({'LScore':['sum', 'count', 'var']} ).reset_index()
team_loss_score.columns = [' '.join(col ).strip() for col in team_loss_score.columns.values]
del regularSeason
gc.collect()<merge> | train_df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
test_df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
submission_df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/submission.csv" ) | COVID19 Global Forecasting (Week 3) |
8,879,365 | train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
train.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
train.head()<merge> | lb = LabelEncoder()
train_df['Country_Region'] = lb.fit_transform(train_df['Country_Region'])
test_df['Country_Region'] = lb.transform(test_df['Country_Region'])
lb1 = LabelEncoder()
train_df['Province_State'] = lb.fit_transform(train_df['Province_State'])
test_df['Province_State'] = lb.transform(test_df['Province_State'] ) | COVID19 Global Forecasting (Week 3) |
8,879,365 | test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
test.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
test.head()<feature_engineering> | def split_date(date):
date = date.split('-')
date[0] = int(date[0])
if(date[1][0] == '0'):
date[1] = int(date[1][1])
else:
date[1] = int(date[1])
if(date[2][0] == '0'):
date[2] = int(date[2][1])
else:
date[2] = int(date[2])
return date
train_df.Date = train_df.Date.apply(split_date)
test_df.Date = test_df.Date.apply(split_date ) | COVID19 Global Forecasting (Week 3) |
8,879,365 | def preprocess(df):
df['x_score'] = df['WScore sum_x'] + df['LScore sum_y']
df['y_score'] = df['WScore sum_y'] + df['LScore sum_x']
df['x_count'] = df['WScore count_x'] + df['LScore count_y']
df['y_count'] = df['WScore count_y'] + df['WScore count_x']
df['x_var'] = df['WScore var_x'] + df['LScore var_x']
df['y_var'] = df['WScore var_y'] + df['LScore var_y']
return df
train = preprocess(train)
test = preprocess(test )<drop_column> | year = []
month = []
day = []
for i in train_df.Date:
year.append(i[0])
month.append(i[1])
day.append(i[2])
train_df['Year'] = year
train_df['Month'] = month
train_df['Day'] = day
del train_df['Date'] | COVID19 Global Forecasting (Week 3) |
8,879,365 | train_win = train.copy()
train_los = train.copy()
train_win = train_win[['Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L', 'CoachName_W', 'CoachName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_los = train_los[['Seed_L', 'Seed_W', 'TeamName_L', 'TeamName_W', 'CoachName_L', 'CoachName_W',
'y_score', 'x_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_win.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2', 'CoachName_1', 'CoachName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
train_los.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2', 'CoachName_1', 'CoachName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
test = test[['ID', 'Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L', 'CoachName_W', 'CoachName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
test.columns = ['ID', 'Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2', 'CoachName_1', 'CoachName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']<feature_engineering> | year = []
month = []
day = []
for i in test_df.Date:
year.append(i[0])
month.append(i[1])
day.append(i[2])
test_df['Year'] = year
test_df['Month'] = month
test_df['Day'] = day
del test_df['Date']
del train_df['Id']
del test_df['ForecastId']
| COVID19 Global Forecasting (Week 3) |
8,879,365 | def feature_engineering(df):
df['Seed_diff'] = df['Seed_1'] - df['Seed_2']
df['Score_diff'] = df['Score_1'] - df['Score_2']
df['Count_diff'] = df['Count_1'] - df['Count_2']
df['Var_diff'] = df['Var_1'] - df['Var_2']
df['Mean_score1'] = df['Score_1'] / df['Count_1']
df['Mean_score2'] = df['Score_2'] / df['Count_2']
df['Mean_score_diff'] = df['Mean_score1'] - df['Mean_score2']
df['FanoFactor_1'] = df['Var_1'] / df['Mean_score1']
df['FanoFactor_2'] = df['Var_2'] / df['Mean_score2']
return df
train_win = feature_engineering(train_win)
train_los = feature_engineering(train_los)
test = feature_engineering(test )<concatenate> | train_df['ConfirmedCases'] = train_df['ConfirmedCases'].apply(int)
train_df['Fatalities'] = train_df['Fatalities'].apply(int)
cases = train_df.ConfirmedCases
fatalities = train_df.Fatalities
del train_df['ConfirmedCases']
del train_df['Fatalities'] | COVID19 Global Forecasting (Week 3) |
8,879,365 | data = pd.concat(( train_win, train_los)).reset_index(drop=True)
print(data.shape)
data.head()<categorify> | scaler = MinMaxScaler()
x_train = scaler.fit_transform(train_df.values)
x_test = scaler.transform(test_df.values ) | COVID19 Global Forecasting (Week 3) |
8,879,365 | categoricals = ["CoachName_1", "CoachName_2", "TeamName_1", "TeamName_2"]
for c in categoricals:
le = LabelEncoder()
data[c] = data[c].fillna("NaN")
data[c] = le.fit_transform(data[c])
test[c] = le.transform(test[c])
data.head()<drop_column> | rf = XGBRegressor(n_estimators = 1500 , random_state = 0 , max_depth = 15)
rf.fit(x_train,cases)
cases_pred = rf.predict(x_test)
cases_pred = np.around(cases_pred,decimals = 0)
cases_pred
x_train_cas = []
for i in range(len(x_train)) :
x = list(x_train[i])
x.append(cases[i])
x_train_cas.append(x)
x_train_cas = np.array(x_train_cas ) | COVID19 Global Forecasting (Week 3) |
8,879,365 | target = 'result'
features = data.columns.values.tolist()
features.remove(target )<train_on_grid> | rf = XGBRegressor(n_estimators = 1500 , random_state = 0 , max_depth = 15)
rf.fit(x_train_cas,fatalities)
x_test_cas = []
for i in range(len(x_test)) :
x = list(x_test[i])
x.append(cases_pred[i])
x_test_cas.append(x)
x_test_cas = np.array(x_test_cas)
fatalities_pred = rf.predict(x_test_cas)
fatalities_pred = np.around(fatalities_pred,decimals = 0)
fatalities_pred | COVID19 Global Forecasting (Week 3) |
8,879,365 | nn = NeuralNetworkModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler="MinMax", verbose=True )<train_model> | submission_df['ConfirmedCases'] = cases_pred
submission_df['Fatalities'] = fatalities_pred | COVID19 Global Forecasting (Week 3) |
8,879,365 | lgbm = LgbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True )<train_model> | submission_df.to_csv("submission.csv" , index = False ) | COVID19 Global Forecasting (Week 3) |
8,864,857 | catb = CatbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True )<load_from_csv> | import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from datetime import datetime
from sklearn import preprocessing
from xgboost import XGBRegressor
from sklearn.tree import DecisionTreeRegressor
from lightgbm import LGBMRegressor
from catboost import CatBoostRegressor
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor | COVID19 Global Forecasting (Week 3) |
8,864,857 | submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv')
submission_df['Pred'] = test_preds
submission_df.head()<save_to_csv> | path = '/kaggle/input/covid19-global-forecasting-week-3/'
train = pd.read_csv(path+'train.csv')
test = pd.read_csv(path+'test.csv' ) | COVID19 Global Forecasting (Week 3) |
8,864,857 | submission_df.to_csv('submission.csv', index=False )<set_options> | train.isnull().sum() | COVID19 Global Forecasting (Week 3) |
8,864,857 | %reload_ext autoreload
%autoreload 2
%matplotlib inline<import_modules> | test.isnull().sum() | COVID19 Global Forecasting (Week 3) |
8,864,857 | from fastai import *
from fastai.vision import *
import pandas as pd
from fastai.utils.mem import *<define_variables> | %matplotlib inline
| COVID19 Global Forecasting (Week 3) |
8,864,857 | path = Path('/kaggle/input/iwildcam-2019-fgvc6')
debug =1
if debug:
train_pct=0.04
else:
train_pct=0.5<load_from_csv> | train["Date"] = train["Date"].apply(lambda x: x.replace("-",""))
train["Date"] = train["Date"].astype(int)
test["Date"] = test["Date"].apply(lambda x: x.replace("-",""))
test["Date"] = test["Date"].astype(int ) | COVID19 Global Forecasting (Week 3) |
8,864,857 | train_df = pd.read_csv(path/'train.csv')
train_df = pd.concat([train_df['id'],train_df['category_id']],axis=1,keys=['id','category_id'])
train_df.head()<load_from_csv> | EMPTY_VAL = "EMPTY_VAL"
def fillState(state, country):
if state == EMPTY_VAL: return country
return state | COVID19 Global Forecasting (Week 3) |
8,864,857 | test_df = pd.read_csv(path/'test.csv')
test_df = pd.DataFrame(test_df['id'])
test_df['predicted'] = 0
test_df.head()
<init_hyperparams> | train['Province_State'].fillna(EMPTY_VAL, inplace=True)
train['Province_State'] = train.loc[:, ['Province_State', 'Country_Region']].apply(lambda x : fillState(x['Province_State'], x['Country_Region']), axis=1)
test['Province_State'].fillna(EMPTY_VAL, inplace=True)
test['Province_State'] = test.loc[:, ['Province_State', 'Country_Region']].apply(lambda x : fillState(x['Province_State'], x['Country_Region']), axis=1 ) | COVID19 Global Forecasting (Week 3) |
8,864,857 | free = gpu_mem_get_free_no_cache()
if free > 8200: bs=64
else: bs=32
print(f"using bs={bs}, have {free}MB of GPU RAM free")
tfms = get_transforms(max_rotate=20, max_zoom=1.3, max_lighting=0.4, max_warp=0.4,
p_affine=1., p_lighting=1.)
<create_dataframe> | le = LabelEncoder()
train['Country_Region'] = le.fit_transform(train['Country_Region'])
train['Province_State'] = le.fit_transform(train['Province_State'])
test['Country_Region'] = le.fit_transform(test['Country_Region'])
test['Province_State'] = le.fit_transform(test['Province_State'] ) | COVID19 Global Forecasting (Week 3) |
8,864,857 | data = get_data(224, bs, 'zeros' )<choose_model_class> | def build_model_1() :
model = RandomForestRegressor(n_estimators = 100, random_state = 0)
return model
def build_model_2() :
model = XGBRegressor(n_estimators=1000)
return model
def build_model_3() :
model = DecisionTreeRegressor(random_state=1)
return model
def build_model_4() :
model = LogisticRegression()
return model
def build_model_5() :
model = LinearRegression()
return model
def build_model_6() :
model = LGBMRegressor(random_state=5)
return model
def build_model_7() :
model = LGBMRegressor(iterations=2)
return model | COVID19 Global Forecasting (Week 3) |
8,864,857 | gc.collect()
wd=1e-1
learn = cnn_learner(data, models.resnet34, metrics=error_rate, bn_final=True, wd=wd)
learn.model_dir= '/kaggle/working/'<prepare_output> | out = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []} ) | COVID19 Global Forecasting (Week 3) |
8,864,857 | data = get_data(352,bs)
learn.data = data
<train_model> | for country in range(len(countries)) :
country_train = train.loc[train['Country_Region'] == countries[country]]
country_test = test.loc[test['Country_Region'] == countries[country]]
print("Current Country: ", countries[country])
xtrain = country_train[['Country_Region', 'Province_State', 'Date']].to_numpy()
y1train = country_train[['ConfirmedCases']].to_numpy()
y2train = country_train[['Fatalities']].to_numpy()
xtest = country_test[['Country_Region', 'Province_State', 'Date']].to_numpy()
y1train = y1train.reshape(-1)
y2train = y2train.reshape(-1)
model1 = build_model_2()
model1.fit(xtrain, y1train)
res_cnf_cls = model1.predict(xtest)
model2 = build_model_2()
model2.fit(xtrain, y2train)
res_fac = model2.predict(xtest)
country_test_Id = country_test.loc[:, 'ForecastId']
country_test_Id = country_test_Id.astype(int)
ans = pd.DataFrame({'ForecastId': country_test_Id, 'ConfirmedCases': res_cnf_cls, 'Fatalities': res_fac})
out = pd.concat([out, ans], axis=0)
| COVID19 Global Forecasting (Week 3) |
8,864,857 | learn.fit_one_cycle(2, max_lr=slice(1e-6,1e-4))
learn.save('352' )<train_model> | out["ForecastId"] = out["ForecastId"].astype(int ) | COVID19 Global Forecasting (Week 3) |
8,864,857 | <save_model><EOS> | out.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,826,297 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<find_best_params> | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from itertools import cycle, islice
import seaborn as sb
import matplotlib.dates as dates
import datetime as dt
from sklearn import preprocessing
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
import plotly.graph_objects as go
import plotly_express as px
from sklearn.preprocessing import OrdinalEncoder | COVID19 Global Forecasting (Week 3) |
8,826,297 | interp = ClassificationInterpretation.from_learner(learn)
losses,idxs = interp.top_losses()
len(data.valid_ds)==len(losses)==len(idxs )<predict_on_test> | train = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/train.csv")
test = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/test.csv")
train.head() | COVID19 Global Forecasting (Week 3) |
8,826,297 | test_preds = learn.get_preds(DatasetType.Test)
test_df['predicted'] = test_preds[0].argmax(dim=1 )<save_to_csv> | train['Date'] = pd.to_datetime(train['Date'], format = '%Y-%m-%d')
test['Date'] = pd.to_datetime(test['Date'], format = '%Y-%m-%d' ) | COVID19 Global Forecasting (Week 3) |
8,826,297 | csv_path ='/kaggle/working/submission.csv'
test_df.to_csv(csv_path, index=False )<set_options> | def create_features(df):
df['day'] = df['Date'].dt.day
df['month'] = df['Date'].dt.month
df['dayofweek'] = df['Date'].dt.dayofweek
df['dayofyear'] = df['Date'].dt.dayofyear
df['quarter'] = df['Date'].dt.quarter
df['weekofyear'] = df['Date'].dt.weekofyear
return df | COVID19 Global Forecasting (Week 3) |
8,826,297 | %matplotlib inline
<load_from_csv> | def categoricalToInteger(df):
df.Province_State.fillna('NaN', inplace=True)
oe = OrdinalEncoder()
df[['Province_State','Country_Region']] = oe.fit_transform(df.loc[:,['Province_State','Country_Region']])
return df | COVID19 Global Forecasting (Week 3) |
8,826,297 | dr = pd.read_csv(".. /input/RegularSeasonDetailedResults.csv")
<prepare_output> | columns = ['day','month','dayofweek','dayofyear','quarter','weekofyear','Province_State', 'Country_Region','ConfirmedCases','Fatalities']
df_train = df_train[columns] | COVID19 Global Forecasting (Week 3) |
8,826,297 | simple_df_1 = pd.DataFrame()
simple_df_1[["team1", "team2"]] =dr[["Wteam", "Lteam"]].copy()
simple_df_1["pred"] = 1
simple_df_2 = pd.DataFrame()
simple_df_2[["team1", "team2"]] =dr[["Lteam", "Wteam"]]
simple_df_2["pred"] = 0
simple_df = pd.concat(( simple_df_1, simple_df_2), axis=0)
simple_df.head()
<count_unique_values> | df_test = categoricalToInteger(test)
df_test = create_features(test)
columns = ['day','month','dayofweek','dayofyear','quarter','weekofyear','Province_State', 'Country_Region'] | COVID19 Global Forecasting (Week 3) |
8,826,297 | n = simple_df.team1.nunique()
n
<feature_engineering> | submission = []
for country in df_train.Country_Region.unique() :
df_train1 = df_train[df_train["Country_Region"]==country]
for state in df_train1.Province_State.unique() :
df_train2 = df_train1[df_train1["Province_State"]==state]
train = df_train2.values
X_train, y_train = train[:,:-2], train[:,-2:]
model1 = XGBRegressor(n_estimators=1100)
model1.fit(X_train, y_train[:,0])
model2 = XGBRegressor(n_estimators=1100)
model2.fit(X_train, y_train[:,1])
df_test1 = df_test[(df_test["Country_Region"]==country)&(df_test["Province_State"] == state)]
ForecastId = df_test1.ForecastId.values
df_test2 = df_test1[columns]
y_pred1 = np.round(model1.predict(df_test2.values),5)
y_pred2 = np.round(model2.predict(df_test2.values),5)
for i in range(len(y_pred1)) :
d = {'ForecastId':ForecastId[i], 'ConfirmedCases':y_pred1[i], 'Fatalities':y_pred2[i]}
submission.append(d ) | COVID19 Global Forecasting (Week 3) |
8,826,297 | <normalization><EOS> | df_submit = pd.DataFrame(submission)
df_submit.to_csv(r'submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<categorify> | warnings.filterwarnings("ignore" ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | def embedding_input(name, n_in, n_out, reg):
inp = Input(shape=(1,), dtype="int64", name=name)
return inp, Embedding(n_in, n_out, input_length=1, W_regularizer=l2(reg))(inp)
def create_bias(inp, n_in):
x = Embedding(n_in, 1, input_length=1 )(inp)
return Flatten()(x)
<categorify> | train = pd.read_csv('.. /input/covid19-global-forecasting-week-3/train.csv')
test = pd.read_csv('.. /input/covid19-global-forecasting-week-3/test.csv' ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | n_factors = 50
team1_in, t1 = embedding_input("team1_in", n, n_factors, 1e-4)
team2_in, t2 = embedding_input("team2_in", n, n_factors, 1e-4)
b1 = create_bias(team1_in, n)
b2 = create_bias(team2_in, n)
<merge> | curr_date = train['Date'].max()
world_cum_confirmed = sum(train[train['Date'] == curr_date].ConfirmedCases)
world_cum_fatal = sum(train[train['Date'] == curr_date].Fatalities)
print('Number of Countires: ', len(train['Country_Region'].unique()))
print('End date in train dset: ', curr_date)
print('Number of confirmed cases: ', world_cum_confirmed)
print('Number of fatal cases: ', world_cum_fatal ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | x = merge([t1, t2], mode="dot")
x = Flatten()(x)
x = merge([x, b1], mode="sum")
x = merge([x, b2], mode="sum")
x = Dense(1, activation="sigmoid" )(x)
model = Model([team1_in, team2_in], x)
model.compile(Adam(0.001), loss="binary_crossentropy")
<train_model> | top_country_c = train[train['Date'] == curr_date].groupby(['Date','Country_Region'] ).sum().sort_values(['ConfirmedCases'], ascending=False)
top_country_c.head(20 ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | history = model.fit([train[:, 0], train[:, 1]], train[:, 2], batch_size=64, nb_epoch=10, verbose=2)
<feature_engineering> | top_country_f = train[train['Date'] == curr_date].groupby(['Date','Country_Region'] ).sum().sort_values(['Fatalities'], ascending=False)
top_country_f.head(20 ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | sub = pd.read_csv(".. /input/SampleSubmission.csv")
sub["team1"] = sub["Id"].apply(lambda x: trans_dict[int(x.split("_")[1])])
sub["team2"] = sub["Id"].apply(lambda x: trans_dict[int(x.split("_")[2])])
sub.head()
<predict_on_test> | train['MortalityRate'] = train['Fatalities'] / train['ConfirmedCases']
train['MortalityRate'] = train['MortalityRate'].fillna(0.0 ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | sub["pred"] = model.predict([sub.team1, sub.team2])
sub = sub[["Id", "pred"]]
sub.head()
<save_to_csv> | top_country_m = train[train['Date'] == curr_date].groupby(['Country_Region'] ).sum().sort_values(['MortalityRate'], ascending=False)
top_country_m.head(10 ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | sub.to_csv("CF.csv", index=False)
<load_from_csv> | for df in [test]:
df['Date'] = pd.to_datetime(df['Date'], infer_datetime_format=True)
df['Date'] = pd.to_datetime(df['Date'], infer_datetime_format=True ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | train_data = pd.read_csv('/kaggle/input/DontGetKicked/training.csv')
train_data.head()<load_from_csv> | missed = "NA"
def State(state, country):
if state == missed: return country
return state | COVID19 Global Forecasting (Week 3) |
8,798,029 | test_data = pd.read_csv('/kaggle/input/DontGetKicked/test.csv')
test_data.head()<count_missing_values> | for df in [train, test]:
df['Province_State'].fillna(missed, inplace=True)
df['Province_State'] = df.loc[:, ['Province_State', 'Country_Region']].apply(lambda x : State(x['Province_State'], x['Country_Region']), axis=1)
df.loc[:, 'Date'] = df.Date.dt.strftime("%m%d")
df["Date"] = df["Date"].astype(int ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | train_data.isnull().sum()<count_missing_values> | label_encoder = preprocessing.LabelEncoder()
for df in [train, test]:
df['Country_Region'] = label_encoder.fit_transform(df['Country_Region'])
df['Province_State'] = label_encoder.fit_transform(df['Province_State'] ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | test_data.isnull().sum()<count_values> | def RF() :
model = RandomForestRegressor(n_estimators = 100)
return model
def XGB() :
model = XGBRegressor(n_estimators=1300)
return model
def LGBM() :
model = LGBMRegressor(iterations=2)
return model | COVID19 Global Forecasting (Week 3) |
8,798,029 | train_data['IsBadBuy'].value_counts()<count_values> | sub = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []})
for country in range(len(unique_countries)) :
current_country_train = train.loc[train['Country_Region'] == unique_countries[country]]
current_country_test = test.loc[test['Country_Region'] == unique_countries[country]]
features = ['Country_Region', 'Province_State', 'Date']
X_train = current_country_train[features].to_numpy()
y1_train = current_country_train[['ConfirmedCases']].to_numpy()
y2_train = current_country_train[['Fatalities']].to_numpy()
X_test = current_country_test[features].to_numpy()
y1_train = y1_train.reshape(-1)
y2_train = y2_train.reshape(-1)
model1 = XGB()
model1.fit(X_train, y1_train)
res_cnf_cls = np.round(model1.predict(X_test))
model2 = XGB()
model2.fit(X_train, y2_train)
res_fac = np.round(model2.predict(X_test))
current_country_test_Id = current_country_test.loc[:, 'ForecastId']
pred = pd.DataFrame({'ForecastId': current_country_test_Id, 'ConfirmedCases': res_cnf_cls, 'Fatalities': res_fac})
sub = pd.concat([sub, pred], axis=0 ) | COVID19 Global Forecasting (Week 3) |
8,798,029 | <drop_column><EOS> | sub.ForecastId = sub.ForecastId.astype('int')
sub.to_csv('submission.csv', index=False)
sub | COVID19 Global Forecasting (Week 3) |
8,825,716 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<count_values> | %matplotlib inline
InteractiveShell.ast_node_interactivity = "all"
pd.set_option('display.max_columns', 99)
pd.set_option('display.max_rows', 99)
| COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data['Trim'].value_counts()<drop_column> | plt.rcParams['figure.figsize'] = [16, 10]
plt.rcParams['font.size'] = 14
sns.set_palette(sns.color_palette('tab20', 20))
| COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data.drop('Trim', axis = 1, inplace = True)
test_data.drop('Trim', axis = 1, inplace = True )<count_values> | COMP = '.. /input/covid19-global-forecasting-week-3'
DATEFORMAT = '%Y-%m-%d'
def get_comp_data(COMP):
train = pd.read_csv(f'{COMP}/train.csv')
test = pd.read_csv(f'{COMP}/test.csv')
submission = pd.read_csv(f'{COMP}/submission.csv')
print(train.shape, test.shape, submission.shape)
train['Country_Region'] = train['Country_Region'].str.replace(',', '')
test['Country_Region'] = test['Country_Region'].str.replace(',', '')
train['Location'] = train['Country_Region'] + '-' + train['Province_State'].fillna('')
test['Location'] = test['Country_Region'] + '-' + test['Province_State'].fillna('')
train['LogConfirmed'] = to_log(train.ConfirmedCases)
train['LogFatalities'] = to_log(train.Fatalities)
train = train.drop(columns=['Province_State'])
test = test.drop(columns=['Province_State'])
country_codes = pd.read_csv('.. /input/covid19-metadata/country_codes.csv', keep_default_na=False)
train = train.merge(country_codes, on='Country_Region', how='left')
test = test.merge(country_codes, on='Country_Region', how='left')
train['DateTime'] = pd.to_datetime(train['Date'])
test['DateTime'] = pd.to_datetime(test['Date'])
return train, test, submission
def process_each_location(df):
dfs = []
for loc, df in tqdm(df.groupby('Location')) :
df = df.sort_values(by='Date')
df['Fatalities'] = df['Fatalities'].cummax()
df['ConfirmedCases'] = df['ConfirmedCases'].cummax()
df['LogFatalities'] = df['LogFatalities'].cummax()
df['LogConfirmed'] = df['LogConfirmed'].cummax()
df['LogConfirmedNextDay'] = df['LogConfirmed'].shift(-1)
df['ConfirmedNextDay'] = df['ConfirmedCases'].shift(-1)
df['DateNextDay'] = df['Date'].shift(-1)
df['LogFatalitiesNextDay'] = df['LogFatalities'].shift(-1)
df['FatalitiesNextDay'] = df['Fatalities'].shift(-1)
df['LogConfirmedDelta'] = df['LogConfirmedNextDay'] - df['LogConfirmed']
df['ConfirmedDelta'] = df['ConfirmedNextDay'] - df['ConfirmedCases']
df['LogFatalitiesDelta'] = df['LogFatalitiesNextDay'] - df['LogFatalities']
df['FatalitiesDelta'] = df['FatalitiesNextDay'] - df['Fatalities']
dfs.append(df)
return pd.concat(dfs)
def add_days(d, k):
return dt.datetime.strptime(d, DATEFORMAT)+ dt.timedelta(days=k)
def to_log(x):
return np.log(x + 1)
def to_exp(x):
return np.exp(x)- 1
| COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data['SubModel'].value_counts()<drop_column> | train[train.geo_region.isna() ].Country_Region.unique()
train = train.fillna('
test = test.fillna('
train[train.duplicated(['Date', 'Location'])]
train.count() | COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data.drop('SubModel', axis = 1, inplace = True)
test_data.drop('SubModel', axis = 1, inplace = True )<count_values> | train = train.sort_values(by='Date')
countries_latest_state = train[train['Date'] == TRAIN_END].groupby([
'Country_Region', 'continent', 'geo_region', 'country_iso_code_3'] ).sum() [[
'ConfirmedCases', 'Fatalities']].reset_index()
countries_latest_state['Log10Confirmed'] = np.log10(countries_latest_state.ConfirmedCases + 1)
countries_latest_state['Log10Fatalities'] = np.log10(countries_latest_state.Fatalities + 1)
countries_latest_state = countries_latest_state.sort_values(by='Fatalities', ascending=False)
countries_latest_state.to_csv('countries_latest_state.csv', index=False)
countries_latest_state.shape
countries_latest_state.head() | COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data['Color'].value_counts()<count_values> | latest_loc = train[train['Date'] == TRAIN_END][['Location', 'ConfirmedCases', 'Fatalities']]
max_loc = train.groupby(['Location'])[['ConfirmedCases', 'Fatalities']].max().reset_index()
check = pd.merge(latest_loc, max_loc, on='Location')
np.mean(check.ConfirmedCases_x == check.ConfirmedCases_y)
np.mean(check.Fatalities_x == check.Fatalities_y)
check[check.Fatalities_x != check.Fatalities_y]
check[check.ConfirmedCases_x != check.ConfirmedCases_y] | COVID19 Global Forecasting (Week 3) |
8,825,716 | test_data['Color'].value_counts()<data_type_conversions> | regional_progress = train_clean.groupby(['DateTime', 'continent'] ).sum() [['ConfirmedCases', 'Fatalities']].reset_index()
regional_progress['Log10Confirmed'] = np.log10(regional_progress.ConfirmedCases + 1)
regional_progress['Log10Fatalities'] = np.log10(regional_progress.Fatalities + 1)
regional_progress = regional_progress[regional_progress.continent != ' | COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data['Color'].fillna(value = 'Color_Unknown', inplace = True)
test_data['Color'].fillna(value = 'Color_Unknown', inplace = True )<count_missing_values> | countries_0301 = country_progress[country_progress.Date == '2020-03-01'][[
'Country_Region', 'ConfirmedCases', 'Fatalities']]
countries_0331 = country_progress[country_progress.Date == '2020-03-31'][[
'Country_Region', 'ConfirmedCases', 'Fatalities']]
countries_in_march = pd.merge(countries_0301, countries_0331, on='Country_Region', suffixes=['_0301', '_0331'])
countries_in_march['IncreaseInMarch'] = countries_in_march.ConfirmedCases_0331 /(countries_in_march.ConfirmedCases_0301 + 1)
countries_in_march = countries_in_march[countries_in_march.ConfirmedCases_0331 > 200].sort_values(
by='IncreaseInMarch', ascending=False)
countries_in_march.tail(15 ) | COVID19 Global Forecasting (Week 3) |
8,825,716 | print('Number of null values in Color column of train data is ' + str(train_data['Color'].isnull().sum()))
print('Number of null values in Color column of test data is ' + str(test_data['Color'].isnull().sum()))<count_values> | train_clean['Geo
latest = train_clean[train_clean.Date == TRAIN_END][[
'Geo
daily_confirmed_deltas = train_clean[train_clean.Date >= '2020-03-17'].pivot(
'Geo
daily_confirmed_deltas = latest.merge(daily_confirmed_deltas, on='Geo
daily_confirmed_deltas.shape
daily_confirmed_deltas.head()
daily_confirmed_deltas.to_csv('daily_confirmed_deltas.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data['Transmission'].value_counts()<count_values> | deltas = train_clean[np.logical_and(
train_clean.LogConfirmed > 2,
~train_clean.Location.str.startswith('China')
)].dropna().sort_values(by='LogConfirmedDelta', ascending=False)
deltas['start'] = deltas['LogConfirmed'].round(0)
confirmed_deltas = pd.concat([
deltas.groupby('start')[['LogConfirmedDelta']].mean() ,
deltas.groupby('start')[['LogConfirmedDelta']].std() ,
deltas.groupby('start')[['LogConfirmedDelta']].count()
], axis=1)
deltas.mean()
confirmed_deltas.columns = ['avg', 'std', 'cnt']
confirmed_deltas
confirmed_deltas.to_csv('confirmed_deltas.csv' ) | COVID19 Global Forecasting (Week 3) |
8,825,716 | test_data['Transmission'].value_counts()<filter> | DECAY = 0.93
DECAY ** 7, DECAY ** 14, DECAY ** 21, DECAY ** 28
confirmed_deltas = train.groupby(['Location', 'Country_Region', 'continent'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.11
confirmed_deltas['DELTA'] = GLOBAL_DELTA
confirmed_deltas.loc[confirmed_deltas.continent=='Africa', 'DELTA'] = 0.14
confirmed_deltas.loc[confirmed_deltas.continent=='Oceania', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Korea South', 'DELTA'] = 0.011
confirmed_deltas.loc[confirmed_deltas.Country_Region=='US', 'DELTA'] = 0.15
confirmed_deltas.loc[confirmed_deltas.Country_Region=='China', 'DELTA'] = 0.01
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Japan', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Singapore', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Norway', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iceland', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Austria', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Italy', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Spain', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Portugal', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Israel', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iran', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Germany', 'DELTA'] = 0.07
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Russia', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Brazil', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Turkey', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Philippines', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Location=='France-', 'DELTA'] = 0.1
confirmed_deltas.loc[confirmed_deltas.Location=='United Kingdom-', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Location=='Diamond Princess-', 'DELTA'] = 0.00
confirmed_deltas.loc[confirmed_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Location=='San Marino-', 'DELTA'] = 0.03
confirmed_deltas.shape, confirmed_deltas.DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].shape, confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA]
confirmed_deltas.describe() | COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data[train_data['Transmission'] == 'Manual']<rename_columns> | daily_log_confirmed = train_clean.pivot('Location', 'Date', 'LogConfirmed' ).reset_index()
daily_log_confirmed = daily_log_confirmed.sort_values(TRAIN_END, ascending=False)
daily_log_confirmed.to_csv('daily_log_confirmed.csv', index=False)
for i, d in tqdm(enumerate(pd.date_range(add_days(TRAIN_END, 1), add_days(TEST_END, 1)))) :
new_day = str(d ).split(' ')[0]
last_day = dt.datetime.strptime(new_day, DATEFORMAT)- dt.timedelta(days=1)
last_day = last_day.strftime(DATEFORMAT)
for loc in confirmed_deltas.Location.values:
confirmed_delta = confirmed_deltas.loc[confirmed_deltas.Location == loc, 'DELTA'].values[0]
daily_log_confirmed.loc[daily_log_confirmed.Location == loc, new_day] = daily_log_confirmed.loc[daily_log_confirmed.Location == loc, last_day] + \
confirmed_delta * DECAY ** i | COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data['Transmission'].replace('Manual', 'MANUAL', inplace = True )<count_values> | train_clean['Geo
latest = train_clean[train_clean.Date == TRAIN_END][[
'Geo
daily_death_deltas = train_clean[train_clean.Date >= '2020-03-17'].pivot(
'Geo
daily_death_deltas = latest.merge(daily_death_deltas, on='Geo
daily_death_deltas.shape
daily_death_deltas.head()
daily_death_deltas.to_csv('daily_death_deltas.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data['Transmission'].value_counts()<data_type_conversions> | death_deltas = train.groupby(['Location', 'Country_Region', 'continent'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.11
death_deltas['DELTA'] = GLOBAL_DELTA
death_deltas.loc[death_deltas.Country_Region=='China', 'DELTA'] = 0.005
death_deltas.loc[death_deltas.continent=='Oceania', 'DELTA'] = 0.08
death_deltas.loc[death_deltas.Country_Region=='Korea South', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='Japan', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='Singapore', 'DELTA'] = 0.05
death_deltas.loc[death_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.06
death_deltas.loc[death_deltas.Country_Region=='US', 'DELTA'] = 0.17
death_deltas.loc[death_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Norway', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Iceland', 'DELTA'] = 0.01
death_deltas.loc[death_deltas.Country_Region=='Austria', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Italy', 'DELTA'] = 0.07
death_deltas.loc[death_deltas.Country_Region=='Spain', 'DELTA'] = 0.1
death_deltas.loc[death_deltas.Country_Region=='Portugal', 'DELTA'] = 0.13
death_deltas.loc[death_deltas.Country_Region=='Israel', 'DELTA'] = 0.16
death_deltas.loc[death_deltas.Country_Region=='Iran', 'DELTA'] = 0.06
death_deltas.loc[death_deltas.Country_Region=='Germany', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Russia', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Brazil', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Turkey', 'DELTA'] = 0.22
death_deltas.loc[death_deltas.Country_Region=='Philippines', 'DELTA'] = 0.12
death_deltas.loc[death_deltas.Location=='France-', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Location=='United Kingdom-', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Location=='Diamond Princess-', 'DELTA'] = 0.00
death_deltas.loc[death_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.01
death_deltas.loc[death_deltas.Location=='San Marino-', 'DELTA'] = 0.05
death_deltas.shape
death_deltas.DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].shape
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA]
death_deltas.describe() | COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data['Transmission'].fillna(value = 'Transmission_Unknown', inplace = True)
test_data['Transmission'].fillna(value = 'Transmission_Unknown', inplace = True )<count_values> | daily_log_deaths = train_clean.pivot('Location', 'Date', 'LogFatalities' ).reset_index()
daily_log_deaths = daily_log_deaths.sort_values(TRAIN_END, ascending=False)
daily_log_deaths.to_csv('daily_log_deaths.csv', index=False)
for i, d in tqdm(enumerate(pd.date_range(add_days(TRAIN_END, 1), add_days(TEST_END, 1)))) :
new_day = str(d ).split(' ')[0]
last_day = dt.datetime.strptime(new_day, DATEFORMAT)- dt.timedelta(days=1)
last_day = last_day.strftime(DATEFORMAT)
for loc in death_deltas.Location:
death_delta = death_deltas.loc[death_deltas.Location == loc, 'DELTA'].values[0]
daily_log_deaths.loc[daily_log_deaths.Location == loc, new_day] = daily_log_deaths.loc[daily_log_deaths.Location == loc, last_day] + \
death_delta * DECAY ** i | COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data['WheelTypeID'].value_counts()<drop_column> | confirmed = []
fatalities = []
for id, d, loc in tqdm(test[['ForecastId', 'Date', 'Location']].values):
c = to_exp(daily_log_confirmed.loc[daily_log_confirmed.Location == loc, d].values[0])
f = to_exp(daily_log_deaths.loc[daily_log_deaths.Location == loc, d].values[0])
confirmed.append(c)
fatalities.append(f ) | COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data.drop('WheelTypeID', axis = 1, inplace = True)
test_data.drop('WheelTypeID', axis = 1, inplace = True )<count_values> | my_submission = test.copy()
my_submission['ConfirmedCases'] = confirmed
my_submission['Fatalities'] = fatalities
my_submission.shape
my_submission.head()
| COVID19 Global Forecasting (Week 3) |
8,825,716 | train_data['WheelType'].value_counts()<count_values> | my_submission[[
'ForecastId', 'ConfirmedCases', 'Fatalities'
]].to_csv('submission.csv', index=False)
print(DECAY)
my_submission.head()
my_submission.tail()
my_submission.shape | COVID19 Global Forecasting (Week 3) |
8,825,716 | <data_type_conversions><EOS> | end = dt.datetime.now()
print('Finished', end,(end - start ).seconds, 's' ) | COVID19 Global Forecasting (Week 3) |
8,824,396 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<count_values> | path = '.. /input/covid19-global-forecasting-week-3/'
train = pd.read_csv(path + 'train.csv')
test = pd.read_csv(path + 'test.csv')
sub = pd.read_csv(path + 'submission.csv')
train['Date'] = train['Date'].apply(lambda x:(datetime.datetime.strptime(x, '%Y-%m-%d')))
test['Date'] = test['Date'].apply(lambda x:(datetime.datetime.strptime(x, '%Y-%m-%d')))
train['days'] =(train['Date'].dt.date - train['Date'].dt.date.min() ).dt.days
test['days'] =(test['Date'].dt.date - train['Date'].dt.date.min() ).dt.days
train.loc[train['Province_State'].isnull() , 'Province_State'] = 'N/A'
test.loc[test['Province_State'].isnull() , 'Province_State'] = 'N/A'
train['Area'] = train['Country_Region'] + '_' + train['Province_State']
test['Area'] = test['Country_Region'] + '_' + test['Province_State']
print('train Date max',train['Date'].max())
print('test Date min',test['Date'].min())
print('train days max', train['days'].max())
N_AREAS = train['Area'].nunique()
AREAS = np.sort(train['Area'].unique())
START_PUBLIC = test['days'].min()
print('public LB start day', START_PUBLIC)
print(' ')
TRAIN_N = 77
print(train[train['days'] < TRAIN_N]['Date'].max())
print(train[train['days'] >= TRAIN_N]['Date'].min())
print(train[train['days'] >= TRAIN_N]['Date'].max())
train.head()
test_orig = test.copy() | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data['WheelType'].value_counts()<count_values> | train_p_c_raw = train.pivot(index='Area', columns='days', values='ConfirmedCases' ).sort_index()
train_p_f_raw = train.pivot(index='Area', columns='days', values='Fatalities' ).sort_index()
train_p_c = np.maximum.accumulate(train_p_c_raw, axis=1)
train_p_f = np.maximum.accumulate(train_p_f_raw, axis=1)
f_rate =(train_p_f / train_p_c ).fillna(0)
X_c = np.log(1+train_p_c.values)[:,:TRAIN_N]
X_f = train_p_f.values[:,:TRAIN_N]
| COVID19 Global Forecasting (Week 3) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.