kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
8,820,802 | predict=KNN.predict(test_data.drop('RefId',axis=1))<prepare_output> | print(
"Confirmed:
"
f'Logistic\t{RMSLE(train["ConfirmedCases"], train["yhat_logistic_ConfirmedCases"])}
'
f'XGBoost\t{RMSLE(train["ConfirmedCases"], train["yhat_xgb_ConfirmedCases"])}
'
f'Hybrid\t{RMSLE(train["ConfirmedCases"], train["yhat_hybrid_ConfirmedCases"])}
'
f"Fatalities:
"
f'Logistic\t{RMSLE(train["Fatalities"], train["yhat_logistic_Fatalities"])}
'
f'XGBoost\t{RMSLE(train["Fatalities"], train["yhat_xgb_Fatalities"])}
'
f'Hybrid\t{RMSLE(train["Fatalities"], train["yhat_hybrid_Fatalities"])}
'
) | COVID19 Global Forecasting (Week 3) |
8,820,802 | Submission=pd.DataFrame(data=predict,columns=['IsBadBuy'])
Submission.head()<prepare_output> | test = pd.merge(
test,
train[["Country_Region"] +
['ConfirmedCases_p_0', 'ConfirmedCases_p_1', 'ConfirmedCases_p_2']+
['Fatalities_p_0','Fatalities_p_1', 'Fatalities_p_2'] +
["Fatalities_alpha"] +
["ConfirmedCases_alpha"]].groupby(['Country_Region'] ).head(1), on="Country_Region", how="left" ) | COVID19 Global Forecasting (Week 3) |
8,820,802 | Submission['RefId']=test_data['RefId']
Submission.set_index('RefId',inplace=True )<save_to_csv> | predict_logistic(test)
test["yhat_xgb_ConfirmedCases"] = xgb_c_fit.predict(test[x_columns].to_numpy())
test["yhat_xgb_Fatalities"] = xgb_f_fit.predict(test[x_columns].to_numpy())
predict_hybrid(test ) | COVID19 Global Forecasting (Week 3) |
8,820,802 | Submission.head()
Submission.to_csv('Submission.csv' )<compute_test_metric> | submission = test[["ForecastId", "yhat_hybrid_ConfirmedCases", "yhat_hybrid_Fatalities"]].round(2 ).rename(
columns={
"yhat_hybrid_ConfirmedCases": "ConfirmedCases",
"yhat_hybrid_Fatalities": "Fatalities",
}
)
submission["ConfirmedCases"] = np.maximum(0, submission["ConfirmedCases"])
submission["Fatalities"] = np.maximum(0, submission["Fatalities"] ) | COVID19 Global Forecasting (Week 3) |
8,820,802 | def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)) )<load_from_csv> | submission.to_csv("submission.csv", index=False ) | COVID19 Global Forecasting (Week 3) |
8,820,802 | pd.set_option('mode.chained_assignment', None)
test = pd.read_csv(".. /input/covid19-global-forecasting-week-2/test.csv")
train = pd.read_csv(".. /input/covid19-global-forecasting-week-2/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region','Province_State','Date'])
test = test.sort_values(['Country_Region','Province_State','Date'] )<feature_engineering> | submission.to_csv("submission.csv", index=False ) | COVID19 Global Forecasting (Week 3) |
8,826,842 | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
for day in sorted(feature_day,reverse = True):
feature_use = 'Number day from ' + str(day)+ ' case'
idx = X_train[X_train[feature_use] == 0].shape[0]
if(X_train[X_train[feature_use] > 0].shape[0] >= 10):
break
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
model = make_pipeline(PolynomialFeatures(2), BayesianRidge())
model.fit(adjusted_X_train,adjusted_y_train_confirmed)
y_hat_confirmed = model.predict(adjusted_X_pred)
model.fit(adjusted_X_train,adjusted_y_train_fatalities)
y_hat_fatalities = model.predict(adjusted_X_pred)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
pred_data['ConfirmedCases_hat'] = np.concatenate(( np.repeat(0, len(pred_data)- len(y_hat_confirmed)) , y_hat_confirmed), axis = 0)
pred_data['Fatalities_hat'] = np.concatenate(( np.repeat(float(0), len(pred_data)- len(y_hat_fatalities)) , y_hat_fatalities), axis = 0)
pred_data_all = pred_data_all.append(pred_data)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_1 = df_val.copy()<compute_test_metric> | path = '/kaggle/input/covid19-global-forecasting-week-3'
train = pd.read_csv(os.path.join(path, 'train.csv'))
test = pd.read_csv(os.path.join(path, 'test.csv'))
subm = pd.read_csv(os.path.join(path, 'submission.csv')) | COVID19 Global Forecasting (Week 3) |
8,826,842 | RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values )<compute_test_metric> | valid_date = pd.to_datetime('2020-04-10' ) | COVID19 Global Forecasting (Week 3) |
8,826,842 | RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values )<groupby> | train['area'] = train['Country_Region'].astype(str)+ '_' + train['Province_State'].astype(str)
test['area'] = test['Country_Region'].astype(str)+ '_' + test['Province_State'].astype(str)
train['Date'] = pd.to_datetime(train['Date'] ) | COVID19 Global Forecasting (Week 3) |
8,826,842 | df_val[df_val['Country_Region'] == country].groupby(['Date','Country_Region'] ).sum().reset_index()<feature_engineering> | path = '/kaggle/input/start-index-to-fit'
with open(os.path.join(path, 'dict_bst_ind.pickle'), 'rb')as f:
dict_bst_ind = pickle.load(f)
with open(os.path.join(path, 'dict_bst_ind_Fat.pickle'), 'rb')as f:
dict_bst_ind_fat = pickle.load(f)
with open(os.path.join(path, 'pop_dict.pickle'), 'rb')as f:
pop_dict = pickle.load(f ) | COVID19 Global Forecasting (Week 3) |
8,826,842 | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
for day in sorted(feature_day,reverse = True):
feature_use = 'Number day from ' + str(day)+ ' case'
idx = X_train[X_train[feature_use] == 0].shape[0]
if(X_train[X_train[feature_use] > 0].shape[0] >= 20):
break
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = ExponentialSmoothing(adjusted_y_train_confirmed, trend = 'additive' ).fit()
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = ExponentialSmoothing(adjusted_y_train_fatalities, trend = 'additive' ).fit()
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_2 = df_val.copy()<feature_engineering> | def get_train_piece(area, valid_date):
data = train[(train.area == area)&(train.Date < valid_date)].reset_index()
data = data[data['ConfirmedCases'] > 0].reset_index(drop = True)
return data | COVID19 Global Forecasting (Week 3) |
8,826,842 | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
for day in sorted(feature_day,reverse = True):
feature_use = 'Number day from ' + str(day)+ ' case'
idx = X_train[X_train[feature_use] == 0].shape[0]
if(X_train[X_train[feature_use] > 0].shape[0] >= 20):
break
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = SARIMAX(adjusted_y_train_confirmed, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = SARIMAX(adjusted_y_train_fatalities, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_3 = df_val.copy()<compute_test_metric> | pred_df = pd.DataFrame()
for pred_area in tqdm(test.area.unique()):
train_df = get_train_piece(pred_area, valid_date)
len_train = train_df.shape[0]
population = -1
if pred_area in pop_dict:
population = pop_dict[pred_area]
test_df = test[test.area == pred_area].reset_index(drop = True)
len_test = test_df.shape[0]
ans = pd.DataFrame()
ans['ForecastId'] = test_df['ForecastId'].values
if pred_area not in dict_bst_ind:
ans['ConfirmedCases'] = fit_predict(train_df['ConfirmedCases'].values, len_test, 0, population, 'cases')
else:
ans['ConfirmedCases'] = fit_predict(train_df['ConfirmedCases'].values, len_test, dict_bst_ind[pred_area], population, 'cases')
if pred_area not in dict_bst_ind_fat:
ans['Fatalities'] = fit_predict(train_df['Fatalities'].values, len_test, 0, population, 'fat')
else:
ans['Fatalities'] = fit_predict(train_df['Fatalities'].values, len_test, dict_bst_ind_fat[pred_area], population, 'fat')
pred_df = pd.concat([pred_df, ans], axis = 0 ).reset_index(drop = True ) | COVID19 Global Forecasting (Week 3) |
8,826,842 | <save_to_csv><EOS> | pred_df.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,825,650 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<filter> | %matplotlib inline
InteractiveShell.ast_node_interactivity = "all"
pd.set_option('display.max_columns', 99)
pd.set_option('display.max_rows', 99)
| COVID19 Global Forecasting (Week 3) |
8,825,650 | df_worldinfor[df_worldinfor['Country'] == 'Vietnam']<load_from_csv> | plt.rcParams['figure.figsize'] = [16, 10]
plt.rcParams['font.size'] = 14
sns.set_palette(sns.color_palette('tab20', 20))
| COVID19 Global Forecasting (Week 3) |
8,825,650 | submission = pd.read_csv('/kaggle/input/resultscov19week2/submission(2 ).csv')
submission<save_to_csv> | COMP = '.. /input/covid19-global-forecasting-week-3'
DATEFORMAT = '%Y-%m-%d'
def get_comp_data(COMP):
train = pd.read_csv(f'{COMP}/train.csv')
test = pd.read_csv(f'{COMP}/test.csv')
submission = pd.read_csv(f'{COMP}/submission.csv')
print(train.shape, test.shape, submission.shape)
train['Country_Region'] = train['Country_Region'].str.replace(',', '')
test['Country_Region'] = test['Country_Region'].str.replace(',', '')
train['Location'] = train['Country_Region'] + '-' + train['Province_State'].fillna('')
test['Location'] = test['Country_Region'] + '-' + test['Province_State'].fillna('')
train['LogConfirmed'] = to_log(train.ConfirmedCases)
train['LogFatalities'] = to_log(train.Fatalities)
train = train.drop(columns=['Province_State'])
test = test.drop(columns=['Province_State'])
country_codes = pd.read_csv('.. /input/covid19-metadata/country_codes.csv', keep_default_na=False)
train = train.merge(country_codes, on='Country_Region', how='left')
test = test.merge(country_codes, on='Country_Region', how='left')
train['DateTime'] = pd.to_datetime(train['Date'])
test['DateTime'] = pd.to_datetime(test['Date'])
return train, test, submission
def process_each_location(df):
dfs = []
for loc, df in tqdm(df.groupby('Location')) :
df = df.sort_values(by='Date')
df['Fatalities'] = df['Fatalities'].cummax()
df['ConfirmedCases'] = df['ConfirmedCases'].cummax()
df['LogFatalities'] = df['LogFatalities'].cummax()
df['LogConfirmed'] = df['LogConfirmed'].cummax()
df['LogConfirmedNextDay'] = df['LogConfirmed'].shift(-1)
df['ConfirmedNextDay'] = df['ConfirmedCases'].shift(-1)
df['DateNextDay'] = df['Date'].shift(-1)
df['LogFatalitiesNextDay'] = df['LogFatalities'].shift(-1)
df['FatalitiesNextDay'] = df['Fatalities'].shift(-1)
df['LogConfirmedDelta'] = df['LogConfirmedNextDay'] - df['LogConfirmed']
df['ConfirmedDelta'] = df['ConfirmedNextDay'] - df['ConfirmedCases']
df['LogFatalitiesDelta'] = df['LogFatalitiesNextDay'] - df['LogFatalities']
df['FatalitiesDelta'] = df['FatalitiesNextDay'] - df['Fatalities']
dfs.append(df)
return pd.concat(dfs)
def add_days(d, k):
return dt.datetime.strptime(d, DATEFORMAT)+ dt.timedelta(days=k)
def to_log(x):
return np.log(x + 1)
def to_exp(x):
return np.exp(x)- 1
| COVID19 Global Forecasting (Week 3) |
8,825,650 | submission.to_csv('submission.csv', index=False)
<import_modules> | train[train.geo_region.isna() ].Country_Region.unique()
train = train.fillna('
test = test.fillna('
train[train.duplicated(['Date', 'Location'])]
train.count() | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<load_from_csv> | train = train.sort_values(by='Date')
countries_latest_state = train[train['Date'] == TRAIN_END].groupby([
'Country_Region', 'continent', 'geo_region', 'country_iso_code_3'] ).sum() [[
'ConfirmedCases', 'Fatalities']].reset_index()
countries_latest_state['Log10Confirmed'] = np.log10(countries_latest_state.ConfirmedCases + 1)
countries_latest_state['Log10Fatalities'] = np.log10(countries_latest_state.Fatalities + 1)
countries_latest_state = countries_latest_state.sort_values(by='Fatalities', ascending=False)
countries_latest_state.to_csv('countries_latest_state.csv', index=False)
countries_latest_state.shape
countries_latest_state.head() | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<data_type_conversions> | latest_loc = train[train['Date'] == TRAIN_END][['Location', 'ConfirmedCases', 'Fatalities']]
max_loc = train.groupby(['Location'])[['ConfirmedCases', 'Fatalities']].max().reset_index()
check = pd.merge(latest_loc, max_loc, on='Location')
np.mean(check.ConfirmedCases_x == check.ConfirmedCases_y)
np.mean(check.Fatalities_x == check.Fatalities_y)
check[check.Fatalities_x != check.Fatalities_y]
check[check.ConfirmedCases_x != check.ConfirmedCases_y] | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<categorify> | regional_progress = train_clean.groupby(['DateTime', 'continent'] ).sum() [['ConfirmedCases', 'Fatalities']].reset_index()
regional_progress['Log10Confirmed'] = np.log10(regional_progress.ConfirmedCases + 1)
regional_progress['Log10Fatalities'] = np.log10(regional_progress.Fatalities + 1)
regional_progress = regional_progress[regional_progress.continent != ' | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<categorify> | countries_0301 = country_progress[country_progress.Date == '2020-03-01'][[
'Country_Region', 'ConfirmedCases', 'Fatalities']]
countries_0331 = country_progress[country_progress.Date == '2020-03-31'][[
'Country_Region', 'ConfirmedCases', 'Fatalities']]
countries_in_march = pd.merge(countries_0301, countries_0331, on='Country_Region', suffixes=['_0301', '_0331'])
countries_in_march['IncreaseInMarch'] = countries_in_march.ConfirmedCases_0331 /(countries_in_march.ConfirmedCases_0301 + 1)
countries_in_march = countries_in_march[countries_in_march.ConfirmedCases_0331 > 200].sort_values(
by='IncreaseInMarch', ascending=False)
countries_in_march.tail(15 ) | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<create_dataframe> | train_clean['Geo
latest = train_clean[train_clean.Date == TRAIN_END][[
'Geo
daily_confirmed_deltas = train_clean[train_clean.Date >= '2020-03-17'].pivot(
'Geo
daily_confirmed_deltas = latest.merge(daily_confirmed_deltas, on='Geo
daily_confirmed_deltas.shape
daily_confirmed_deltas.head()
daily_confirmed_deltas.to_csv('daily_confirmed_deltas.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<feature_engineering> | deltas = train_clean[np.logical_and(
train_clean.LogConfirmed > 2,
~train_clean.Location.str.startswith('China')
)].dropna().sort_values(by='LogConfirmedDelta', ascending=False)
deltas['start'] = deltas['LogConfirmed'].round(0)
confirmed_deltas = pd.concat([
deltas.groupby('start')[['LogConfirmedDelta']].mean() ,
deltas.groupby('start')[['LogConfirmedDelta']].std() ,
deltas.groupby('start')[['LogConfirmedDelta']].count()
], axis=1)
deltas.mean()
confirmed_deltas.columns = ['avg', 'std', 'cnt']
confirmed_deltas
confirmed_deltas.to_csv('confirmed_deltas.csv' ) | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<count_duplicates> | DECAY = 0.93
DECAY ** 7, DECAY ** 14, DECAY ** 21, DECAY ** 28
confirmed_deltas = train.groupby(['Location', 'Country_Region', 'continent'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.11
confirmed_deltas['DELTA'] = GLOBAL_DELTA
confirmed_deltas.loc[confirmed_deltas.continent=='Africa', 'DELTA'] = 0.14
confirmed_deltas.loc[confirmed_deltas.continent=='Oceania', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Korea South', 'DELTA'] = 0.011
confirmed_deltas.loc[confirmed_deltas.Country_Region=='US', 'DELTA'] = 0.15
confirmed_deltas.loc[confirmed_deltas.Country_Region=='China', 'DELTA'] = 0.01
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Japan', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Singapore', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Norway', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iceland', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Austria', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Italy', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Spain', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Portugal', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Israel', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iran', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Germany', 'DELTA'] = 0.07
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Russia', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Brazil', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Turkey', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Philippines', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Location=='France-', 'DELTA'] = 0.1
confirmed_deltas.loc[confirmed_deltas.Location=='United Kingdom-', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Location=='Diamond Princess-', 'DELTA'] = 0.00
confirmed_deltas.loc[confirmed_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Location=='San Marino-', 'DELTA'] = 0.03
confirmed_deltas.shape, confirmed_deltas.DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].shape, confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA]
confirmed_deltas.describe() | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<compute_test_metric> | daily_log_confirmed = train_clean.pivot('Location', 'Date', 'LogConfirmed' ).reset_index()
daily_log_confirmed = daily_log_confirmed.sort_values(TRAIN_END, ascending=False)
daily_log_confirmed.to_csv('daily_log_confirmed.csv', index=False)
for i, d in tqdm(enumerate(pd.date_range(add_days(TRAIN_END, 1), add_days(TEST_END, 1)))) :
new_day = str(d ).split(' ')[0]
last_day = dt.datetime.strptime(new_day, DATEFORMAT)- dt.timedelta(days=1)
last_day = last_day.strftime(DATEFORMAT)
for loc in confirmed_deltas.Location.values:
confirmed_delta = confirmed_deltas.loc[confirmed_deltas.Location == loc, 'DELTA'].values[0]
daily_log_confirmed.loc[daily_log_confirmed.Location == loc, new_day] = daily_log_confirmed.loc[daily_log_confirmed.Location == loc, last_day] + \
confirmed_delta * DECAY ** i | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<train_model> | train_clean['Geo
latest = train_clean[train_clean.Date == TRAIN_END][[
'Geo
daily_death_deltas = train_clean[train_clean.Date >= '2020-03-17'].pivot(
'Geo
daily_death_deltas = latest.merge(daily_death_deltas, on='Geo
daily_death_deltas.shape
daily_death_deltas.head()
daily_death_deltas.to_csv('daily_death_deltas.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<train_model> | death_deltas = train.groupby(['Location', 'Country_Region', 'continent'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.11
death_deltas['DELTA'] = GLOBAL_DELTA
death_deltas.loc[death_deltas.Country_Region=='China', 'DELTA'] = 0.005
death_deltas.loc[death_deltas.continent=='Oceania', 'DELTA'] = 0.08
death_deltas.loc[death_deltas.Country_Region=='Korea South', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='Japan', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='Singapore', 'DELTA'] = 0.05
death_deltas.loc[death_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.06
death_deltas.loc[death_deltas.Country_Region=='US', 'DELTA'] = 0.17
death_deltas.loc[death_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Norway', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Iceland', 'DELTA'] = 0.01
death_deltas.loc[death_deltas.Country_Region=='Austria', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Italy', 'DELTA'] = 0.07
death_deltas.loc[death_deltas.Country_Region=='Spain', 'DELTA'] = 0.1
death_deltas.loc[death_deltas.Country_Region=='Portugal', 'DELTA'] = 0.13
death_deltas.loc[death_deltas.Country_Region=='Israel', 'DELTA'] = 0.16
death_deltas.loc[death_deltas.Country_Region=='Iran', 'DELTA'] = 0.06
death_deltas.loc[death_deltas.Country_Region=='Germany', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Russia', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Brazil', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Turkey', 'DELTA'] = 0.22
death_deltas.loc[death_deltas.Country_Region=='Philippines', 'DELTA'] = 0.12
death_deltas.loc[death_deltas.Location=='France-', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Location=='United Kingdom-', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Location=='Diamond Princess-', 'DELTA'] = 0.00
death_deltas.loc[death_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.01
death_deltas.loc[death_deltas.Location=='San Marino-', 'DELTA'] = 0.05
death_deltas.shape
death_deltas.DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].shape
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA]
death_deltas.describe() | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<define_variables> | daily_log_deaths = train_clean.pivot('Location', 'Date', 'LogFatalities' ).reset_index()
daily_log_deaths = daily_log_deaths.sort_values(TRAIN_END, ascending=False)
daily_log_deaths.to_csv('daily_log_deaths.csv', index=False)
for i, d in tqdm(enumerate(pd.date_range(add_days(TRAIN_END, 1), add_days(TEST_END, 1)))) :
new_day = str(d ).split(' ')[0]
last_day = dt.datetime.strptime(new_day, DATEFORMAT)- dt.timedelta(days=1)
last_day = last_day.strftime(DATEFORMAT)
for loc in death_deltas.Location:
death_delta = death_deltas.loc[death_deltas.Location == loc, 'DELTA'].values[0]
daily_log_deaths.loc[daily_log_deaths.Location == loc, new_day] = daily_log_deaths.loc[daily_log_deaths.Location == loc, last_day] + \
death_delta * DECAY ** i | COVID19 Global Forecasting (Week 3) |
8,825,650 |
<compute_test_metric> | confirmed = []
fatalities = []
for id, d, loc in tqdm(test[['ForecastId', 'Date', 'Location']].values):
c = to_exp(daily_log_confirmed.loc[daily_log_confirmed.Location == loc, d].values[0])
f = to_exp(daily_log_deaths.loc[daily_log_deaths.Location == loc, d].values[0])
confirmed.append(c)
fatalities.append(f ) | COVID19 Global Forecasting (Week 3) |
8,825,650 | def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)) )<load_from_csv> | my_submission = test.copy()
my_submission['ConfirmedCases'] = confirmed
my_submission['Fatalities'] = fatalities
my_submission.shape
my_submission.head()
| COVID19 Global Forecasting (Week 3) |
8,825,650 | pd.set_option('mode.chained_assignment', None)
test = pd.read_csv(".. /input/covid19-global-forecasting-week-2/test.csv")
train = pd.read_csv(".. /input/covid19-global-forecasting-week-2/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region','Province_State','Date'])
test = test.sort_values(['Country_Region','Province_State','Date'] )<feature_engineering> | my_submission[[
'ForecastId', 'ConfirmedCases', 'Fatalities'
]].to_csv('submission.csv', index=False)
print(DECAY)
my_submission.head()
my_submission.tail()
my_submission.shape | COVID19 Global Forecasting (Week 3) |
8,825,650 | <compute_test_metric><EOS> | end = dt.datetime.now()
print('Finished', end,(end - start ).seconds, 's' ) | COVID19 Global Forecasting (Week 3) |
8,824,671 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<compute_test_metric> | plotly.offline.init_notebook_mode()
%matplotlib inline
def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)) ) | COVID19 Global Forecasting (Week 3) |
8,824,671 | RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values )<groupby> | warnings.filterwarnings("ignore")
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
| COVID19 Global Forecasting (Week 3) |
8,824,671 | df_val[df_val['Country_Region'] == country].groupby(['Date','Country_Region'] ).sum().reset_index()<feature_engineering> | train = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/train.csv")
test = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/test.csv")
region_metadata = pd.read_csv("/kaggle/input/covid19-forecasting-metadata/region_metadata.csv")
region_date_metadata = pd.read_csv("/kaggle/input/covid19-forecasting-metadata/region_date_metadata.csv" ) | COVID19 Global Forecasting (Week 3) |
8,824,671 | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
for day in sorted(feature_day,reverse = True):
feature_use = 'Number day from ' + str(day)+ ' case'
idx = X_train[X_train[feature_use] == 0].shape[0]
if(X_train[X_train[feature_use] > 0].shape[0] >= 20):
break
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = ExponentialSmoothing(adjusted_y_train_confirmed, trend = 'additive' ).fit()
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = ExponentialSmoothing(adjusted_y_train_fatalities, trend = 'additive' ).fit()
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_2 = df_val.copy()<feature_engineering> | train = train.merge(test[["ForecastId", "Province_State", "Country_Region", "Date"]], on = ["Province_State", "Country_Region", "Date"], how = "left")
display(train.head())
test = test[~test.Date.isin(train.Date.unique())]
display(test.head())
df = pd.concat([train, test], sort = False)
df.head() | COVID19 Global Forecasting (Week 3) |
8,824,671 | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
for day in sorted(feature_day,reverse = True):
feature_use = 'Number day from ' + str(day)+ ' case'
idx = X_train[X_train[feature_use] == 0].shape[0]
if(X_train[X_train[feature_use] > 0].shape[0] >= 20):
break
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = SARIMAX(adjusted_y_train_confirmed, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = SARIMAX(adjusted_y_train_fatalities, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_3 = df_val.copy()<compute_test_metric> | df["geo"] = df.Country_Region.astype(str)+ ": " + df.Province_State.astype(str)
df.loc[df.Province_State.isna() , "geo"] = df[df.Province_State.isna() ].Country_Region
df.ConfirmedCases = df.groupby("geo")["ConfirmedCases"].cummax()
df.Fatalities = df.groupby("geo")["Fatalities"].cummax()
df = df.merge(region_metadata, on = ["Country_Region", "Province_State"])
df = df.merge(region_date_metadata, on = ["Country_Region", "Province_State", "Date"], how = "left")
df.continent = LabelEncoder().fit_transform(df.continent)
df.Date = pd.to_datetime(df.Date, format = "%Y-%m-%d")
df.sort_values(["geo", "Date"], inplace = True)
df.head() | COVID19 Global Forecasting (Week 3) |
8,824,671 | method_list = ['Poly Bayesian Ridge','Exponential Smoothing','SARIMA']
method_val = [df_val_1,df_val_2,df_val_3]
for i in range(0,3):
df_val = method_val[i]
method_score = [method_list[i]] + [RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values)] + [RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values)]
print(method_score )<save_to_csv> | DAYS_SINCE_CASES = [1, 10, 50, 100, 500, 1000, 5000, 10000]
min_date_train = np.min(df[~df.Id.isna() ].Date)
max_date_train = np.max(df[~df.Id.isna() ].Date)
min_date_test = np.min(df[~df.ForecastId.isna() ].Date)
max_date_test = np.max(df[~df.ForecastId.isna() ].Date)
n_dates_test = len(df[~df.ForecastId.isna() ].Date.unique())
print("Train date range:", str(min_date_train), " - ", str(max_date_train))
print("Test date range:", str(min_date_test), " - ", str(max_date_test))
for lag in range(1, 41):
df[f"lag_{lag}_cc"] = df.groupby("geo")["ConfirmedCases"].shift(lag)
df[f"lag_{lag}_ft"] = df.groupby("geo")["Fatalities"].shift(lag)
df[f"lag_{lag}_rc"] = df.groupby("geo")["Recoveries"].shift(lag)
for case in DAYS_SINCE_CASES:
df = df.merge(df[df.ConfirmedCases >= case].groupby("geo")["Date"].min().reset_index().rename(columns = {"Date": f"case_{case}_date"}), on = "geo", how = "left" ) | COVID19 Global Forecasting (Week 3) |
8,824,671 | df_val = df_val_3
submission = df_val[['ForecastId','ConfirmedCases_hat','Fatalities_hat']]
submission.columns = ['ForecastId','ConfirmedCases','Fatalities']
submission.to_csv('submission.csv', index=False)
submission<filter> | def prepare_features(df, gap):
df["perc_1_ac"] =(df[f"lag_{gap}_cc"] - df[f"lag_{gap}_ft"] - df[f"lag_{gap}_rc"])/ df[f"lag_{gap}_cc"]
df["perc_1_cc"] = df[f"lag_{gap}_cc"] / df.population
df["diff_1_cc"] = df[f"lag_{gap}_cc"] - df[f"lag_{gap + 1}_cc"]
df["diff_2_cc"] = df[f"lag_{gap + 1}_cc"] - df[f"lag_{gap + 2}_cc"]
df["diff_3_cc"] = df[f"lag_{gap + 2}_cc"] - df[f"lag_{gap + 3}_cc"]
df["diff_1_ft"] = df[f"lag_{gap}_ft"] - df[f"lag_{gap + 1}_ft"]
df["diff_2_ft"] = df[f"lag_{gap + 1}_ft"] - df[f"lag_{gap + 2}_ft"]
df["diff_3_ft"] = df[f"lag_{gap + 2}_ft"] - df[f"lag_{gap + 3}_ft"]
df["diff_123_cc"] =(df[f"lag_{gap}_cc"] - df[f"lag_{gap + 3}_cc"])/ 3
df["diff_123_ft"] =(df[f"lag_{gap}_ft"] - df[f"lag_{gap + 3}_ft"])/ 3
df["diff_change_1_cc"] = df.diff_1_cc / df.diff_2_cc
df["diff_change_2_cc"] = df.diff_2_cc / df.diff_3_cc
df["diff_change_1_ft"] = df.diff_1_ft / df.diff_2_ft
df["diff_change_2_ft"] = df.diff_2_ft / df.diff_3_ft
df["diff_change_12_cc"] =(df.diff_change_1_cc + df.diff_change_2_cc)/ 2
df["diff_change_12_ft"] =(df.diff_change_1_ft + df.diff_change_2_ft)/ 2
df["change_1_cc"] = df[f"lag_{gap}_cc"] / df[f"lag_{gap + 1}_cc"]
df["change_2_cc"] = df[f"lag_{gap + 1}_cc"] / df[f"lag_{gap + 2}_cc"]
df["change_3_cc"] = df[f"lag_{gap + 2}_cc"] / df[f"lag_{gap + 3}_cc"]
df["change_1_ft"] = df[f"lag_{gap}_ft"] / df[f"lag_{gap + 1}_ft"]
df["change_2_ft"] = df[f"lag_{gap + 1}_ft"] / df[f"lag_{gap + 2}_ft"]
df["change_3_ft"] = df[f"lag_{gap + 2}_ft"] / df[f"lag_{gap + 3}_ft"]
df["change_123_cc"] = df[f"lag_{gap}_cc"] / df[f"lag_{gap + 3}_cc"]
df["change_123_ft"] = df[f"lag_{gap}_ft"] / df[f"lag_{gap + 3}_ft"]
for case in DAYS_SINCE_CASES:
df[f"days_since_{case}_case"] =(df[f"case_{case}_date"] - df.Date ).astype("timedelta64[D]")
df.loc[df[f"days_since_{case}_case"] < gap, f"days_since_{case}_case"] = np.nan
df["country_flag"] = df.Province_State.isna().astype(int)
df["density"] = df.population / df.area
df["target_cc"] = np.log1p(df.ConfirmedCases)- np.log1p(df[f"lag_{gap}_cc"])
df["target_ft"] = np.log1p(df.Fatalities)- np.log1p(df[f"lag_{gap}_ft"])
features = [
f"lag_{gap}_cc",
f"lag_{gap}_ft",
f"lag_{gap}_rc",
"perc_1_ac",
"perc_1_cc",
"diff_1_cc",
"diff_2_cc",
"diff_3_cc",
"diff_1_ft",
"diff_2_ft",
"diff_3_ft",
"diff_123_cc",
"diff_123_ft",
"diff_change_1_cc",
"diff_change_2_cc",
"diff_change_1_ft",
"diff_change_2_ft",
"diff_change_12_cc",
"diff_change_12_ft",
"change_1_cc",
"change_2_cc",
"change_3_cc",
"change_1_ft",
"change_2_ft",
"change_3_ft",
"change_123_cc",
"change_123_ft",
"days_since_1_case",
"days_since_10_case",
"days_since_50_case",
"days_since_100_case",
"days_since_500_case",
"days_since_1000_case",
"days_since_5000_case",
"days_since_10000_case",
"country_flag",
"lat",
"lon",
"continent",
"population",
"area",
"density",
"target_cc",
"target_ft"
]
return df[features] | COVID19 Global Forecasting (Week 3) |
8,824,671 | df_worldinfor[df_worldinfor['Country'] == 'Vietnam']<compute_test_metric> | def build_predict_lgbm(df_train, df_test, gap):
df_train.dropna(subset = ["target_cc", "target_ft", f"lag_{gap}_cc", f"lag_{gap}_ft"], inplace = True)
target_cc = df_train.target_cc
target_ft = df_train.target_ft
test_lag_cc = df_test[f"lag_{gap}_cc"].values
test_lag_ft = df_test[f"lag_{gap}_ft"].values
df_train.drop(["target_cc", "target_ft"], axis = 1, inplace = True)
df_test.drop(["target_cc", "target_ft"], axis = 1, inplace = True)
categorical_features = ["continent"]
dtrain_cc = lgb.Dataset(df_train, label = target_cc, categorical_feature = categorical_features)
dtrain_ft = lgb.Dataset(df_train, label = target_ft, categorical_feature = categorical_features)
model_cc = lgb.train(LGB_PARAMS, train_set = dtrain_cc, num_boost_round = 200)
model_ft = lgb.train(LGB_PARAMS, train_set = dtrain_ft, num_boost_round = 200)
y_pred_cc = np.expm1(model_cc.predict(df_test, num_boost_round = 200)+ np.log1p(test_lag_cc))
y_pred_ft = np.expm1(model_ft.predict(df_test, num_boost_round = 200)+ np.log1p(test_lag_ft))
return y_pred_cc, y_pred_ft, model_cc, model_ft | COVID19 Global Forecasting (Week 3) |
8,824,671 | def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)) )<load_from_csv> | def predict_mad(df_test, gap, val = False):
df_test["avg_diff_cc"] =(df_test[f"lag_{gap}_cc"] - df_test[f"lag_{gap + 3}_cc"])/ 3
df_test["avg_diff_ft"] =(df_test[f"lag_{gap}_ft"] - df_test[f"lag_{gap + 3}_ft"])/ 3
if val:
y_pred_cc = df_test[f"lag_{gap}_cc"] + gap * df_test.avg_diff_cc -(1 - MAD_FACTOR)* df_test.avg_diff_cc * np.sum([x for x in range(gap)])/ VAL_DAYS
y_pred_ft = df_test[f"lag_{gap}_ft"] + gap * df_test.avg_diff_ft -(1 - MAD_FACTOR)* df_test.avg_diff_ft * np.sum([x for x in range(gap)])/ VAL_DAYS
else:
y_pred_cc = df_test[f"lag_{gap}_cc"] + gap * df_test.avg_diff_cc -(1 - MAD_FACTOR)* df_test.avg_diff_cc * np.sum([x for x in range(gap)])/ n_dates_test
y_pred_ft = df_test[f"lag_{gap}_ft"] + gap * df_test.avg_diff_ft -(1 - MAD_FACTOR)* df_test.avg_diff_ft * np.sum([x for x in range(gap)])/ n_dates_test
return y_pred_cc, y_pred_ft | COVID19 Global Forecasting (Week 3) |
8,824,671 | pd.set_option('mode.chained_assignment', None)
test = pd.read_csv(".. /input/covid19-global-forecasting-week-2/test.csv")
train = pd.read_csv(".. /input/covid19-global-forecasting-week-2/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region','Province_State','Date'])
test = test.sort_values(['Country_Region','Province_State','Date'] )<feature_engineering> | SEED = 23
LGB_PARAMS = {"objective": "regression",
"num_leaves": 5,
"learning_rate": 0.013,
"bagging_fraction": 0.91,
"feature_fraction": 0.81,
"reg_alpha": 0.13,
"reg_lambda": 0.13,
"metric": "rmse",
"seed": SEED
}
VAL_DAYS = 7
MAD_FACTOR = 0.5 | COVID19 Global Forecasting (Week 3) |
8,824,671 | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
for day in sorted(feature_day,reverse = True):
feature_use = 'Number day from ' + str(day)+ ' case'
idx = X_train[X_train[feature_use] == 0].shape[0]
if(X_train[X_train[feature_use] > 0].shape[0] >= 10):
break
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
model = make_pipeline(PolynomialFeatures(2), BayesianRidge())
model.fit(adjusted_X_train,adjusted_y_train_confirmed)
y_hat_confirmed = model.predict(adjusted_X_pred)
model.fit(adjusted_X_train,adjusted_y_train_fatalities)
y_hat_fatalities = model.predict(adjusted_X_pred)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
pred_data['ConfirmedCases_hat'] = np.concatenate(( np.repeat(0, len(pred_data)- len(y_hat_confirmed)) , y_hat_confirmed), axis = 0)
pred_data['Fatalities_hat'] = np.concatenate(( np.repeat(float(0), len(pred_data)- len(y_hat_fatalities)) , y_hat_fatalities), axis = 0)
pred_data_all = pred_data_all.append(pred_data)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left' )<feature_engineering> | df_train = df[~df.Id.isna() ]
df_test_full = df[~df.ForecastId.isna() ] | COVID19 Global Forecasting (Week 3) |
8,824,671 | df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0<compute_test_metric> | df_preds_val = []
df_preds_test = []
for date in df_test_full.Date.unique() :
print("[INFO] Date:", date)
if date in df_train.Date.values:
df_pred_test = df_test_full.loc[df_test_full.Date == date, ["ForecastId", "ConfirmedCases", "Fatalities"]].rename(columns = {"ConfirmedCases": "ConfirmedCases_test", "Fatalities": "Fatalities_test"})
else:
df_test = df_test_full[df_test_full.Date == date]
gap =(pd.Timestamp(date)- max_date_train ).days
if gap <= VAL_DAYS:
val_date = max_date_train - pd.Timedelta(VAL_DAYS, "D")+ pd.Timedelta(gap, "D")
df_build = df_train[df_train.Date < val_date]
df_val = df_train[df_train.Date == val_date]
X_build = prepare_features(df_build, gap)
X_val = prepare_features(df_val, gap)
y_val_cc_lgb, y_val_ft_lgb, _, _ = build_predict_lgbm(X_build, X_val, gap)
y_val_cc_mad, y_val_ft_mad = predict_mad(df_val, gap, val = True)
df_pred_val = pd.DataFrame({"Id": df_val.Id.values,
"ConfirmedCases_val_lgb": y_val_cc_lgb,
"Fatalities_val_lgb": y_val_ft_lgb,
"ConfirmedCases_val_mad": y_val_cc_mad,
"Fatalities_val_mad": y_val_ft_mad,
})
df_preds_val.append(df_pred_val)
X_train = prepare_features(df_train, gap)
X_test = prepare_features(df_test, gap)
y_test_cc_lgb, y_test_ft_lgb, model_cc, model_ft = build_predict_lgbm(X_train, X_test, gap)
y_test_cc_mad, y_test_ft_mad = predict_mad(df_test, gap)
if gap == 1:
model_1_cc = model_cc
model_1_ft = model_ft
features_1 = X_train.columns.values
elif gap == 14:
model_14_cc = model_cc
model_14_ft = model_ft
features_14 = X_train.columns.values
elif gap == 28:
model_28_cc = model_cc
model_28_ft = model_ft
features_28 = X_train.columns.values
df_pred_test = pd.DataFrame({"ForecastId": df_test.ForecastId.values,
"ConfirmedCases_test_lgb": y_test_cc_lgb,
"Fatalities_test_lgb": y_test_ft_lgb,
"ConfirmedCases_test_mad": y_test_cc_mad,
"Fatalities_test_mad": y_test_ft_mad,
})
df_preds_test.append(df_pred_test ) | COVID19 Global Forecasting (Week 3) |
8,824,671 | RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values )<compute_test_metric> | df = df.merge(pd.concat(df_preds_val, sort = False), on = "Id", how = "left")
df = df.merge(pd.concat(df_preds_test, sort = False), on = "ForecastId", how = "left")
rmsle_cc_lgb = np.sqrt(mean_squared_error(np.log1p(df[~df.ConfirmedCases_val_lgb.isna() ].ConfirmedCases), np.log1p(df[~df.ConfirmedCases_val_lgb.isna() ].ConfirmedCases_val_lgb)))
rmsle_ft_lgb = np.sqrt(mean_squared_error(np.log1p(df[~df.Fatalities_val_lgb.isna() ].Fatalities), np.log1p(df[~df.Fatalities_val_lgb.isna() ].Fatalities_val_lgb)))
rmsle_cc_mad = np.sqrt(mean_squared_error(np.log1p(df[~df.ConfirmedCases_val_mad.isna() ].ConfirmedCases), np.log1p(df[~df.ConfirmedCases_val_mad.isna() ].ConfirmedCases_val_mad)))
rmsle_ft_mad = np.sqrt(mean_squared_error(np.log1p(df[~df.Fatalities_val_mad.isna() ].Fatalities), np.log1p(df[~df.Fatalities_val_mad.isna() ].Fatalities_val_mad)))
print("LGB CC RMSLE Val of", VAL_DAYS, "days for CC:", round(rmsle_cc_lgb, 2))
print("LGB FT RMSLE Val of", VAL_DAYS, "days for FT:", round(rmsle_ft_lgb, 2))
print("LGB Overall RMSLE Val of", VAL_DAYS, "days:", round(( rmsle_cc_lgb + rmsle_ft_lgb)/ 2, 2))
print("MAD CC RMSLE Val of", VAL_DAYS, "days for CC:", round(rmsle_cc_mad, 2))
print("MAD FT RMSLE Val of", VAL_DAYS, "days for FT:", round(rmsle_ft_mad, 2))
print("MAD Overall RMSLE Val of", VAL_DAYS, "days:", round(( rmsle_cc_mad + rmsle_ft_mad)/ 2, 2)) | COVID19 Global Forecasting (Week 3) |
8,824,671 | RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values )<save_to_csv> | test = df.loc[~df.ForecastId.isna() , ["ForecastId", "Country_Region", "Province_State", "Date",
"ConfirmedCases_test", "ConfirmedCases_test_lgb", "ConfirmedCases_test_mad",
"Fatalities_test", "Fatalities_test_lgb", "Fatalities_test_mad"]].reset_index()
test["ConfirmedCases"] = 0.3 * test.ConfirmedCases_test_lgb + 0.7 * test.ConfirmedCases_test_mad
test["Fatalities"] = 0.25 * test.Fatalities_test_lgb + 0.75 * test.Fatalities_test_mad
test.loc[test.Country_Region.isin(["China", "US", "Diamond Princess"]), "ConfirmedCases"] = test[test.Country_Region.isin(["China", "US", "Diamond Princess"])].ConfirmedCases_test_mad.values
test.loc[test.Country_Region.isin(["China", "US", "Diamond Princess"]), "Fatalities"] = test[test.Country_Region.isin(["China", "US", "Diamond Princess"])].Fatalities_test_mad.values
test.loc[test.Date.isin(df_train.Date.values), "ConfirmedCases"] = test[test.Date.isin(df_train.Date.values)].ConfirmedCases_test.values
test.loc[test.Date.isin(df_train.Date.values), "Fatalities"] = test[test.Date.isin(df_train.Date.values)].Fatalities_test.values
sub0 = test[["ForecastId", "ConfirmedCases", "Fatalities"]]
sub0.ForecastId = sub0.ForecastId.astype(int)
sub0.head() | COVID19 Global Forecasting (Week 3) |
8,824,671 | submission = df_val[['ForecastId','ConfirmedCases_hat','Fatalities_hat']]
submission.columns = ['ForecastId','ConfirmedCases','Fatalities']
submission.to_csv('submission.csv', index=False )<feature_engineering> | test = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
train = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region','Province_State','Date'])
test = test.sort_values(['Country_Region','Province_State','Date'] ) | COVID19 Global Forecasting (Week 3) |
8,824,671 | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
for day in sorted(feature_day,reverse = True):
feature_use = 'Number day from ' + str(day)+ ' case'
idx = X_train[X_train[feature_use] == 0].shape[0]
if(X_train[X_train[feature_use] > 0].shape[0] >= 20):
break
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = ExponentialSmoothing(adjusted_y_train_confirmed, trend = 'additive' ).fit()
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = ExponentialSmoothing(adjusted_y_train_fatalities, trend = 'additive' ).fit()
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val
<import_modules> | FirstDate = train.groupby('Country_Region' ).min() ['Date'].unique() [0]
train['Last Confirm'] = train['ConfirmedCases'].shift(1)
while train[(train['Last Confirm'] > train['ConfirmedCases'])&(train['Date'] > FirstDate)].shape[0] > 0:
train['Last Confirm'] = train['ConfirmedCases'].shift(1)
train['Last Fatalities'] = train['Fatalities'].shift(1)
train.loc[(train['Last Confirm'] > train['ConfirmedCases'])&(train['Date'] > FirstDate),'ConfirmedCases'] = train.loc[(train['Last Confirm'] > train['ConfirmedCases'])&(train['Date'] > FirstDate),'Last Confirm']
train.loc[(train['Last Fatalities'] > train['Fatalities'])&(train['Date'] > FirstDate),'Fatalities'] = train.loc[(train['Last Fatalities'] > train['Fatalities'])&(train['Date'] > FirstDate),'Last Fatalities']
train['Last Confirm'] = train['ConfirmedCases'].shift(1)
train['Last Fatalities'] = train['Fatalities'].shift(1 ) | COVID19 Global Forecasting (Week 3) |
8,824,671 | def create_time_features(df):
df['date'] = pd.to_datetime(df['Date'] ).values
df['hour'] = df['date'].dt.hour
df['dayofweek'] = df['date'].dt.dayofweek
df['quarter'] = df['date'].dt.quarter
df['month'] = df['date'].dt.month
df['year'] = df['date'].dt.year
df['dayofyear'] = df['date'].dt.dayofyear
df['dayofmonth'] = df['date'].dt.day
df['weekofyear'] = df['date'].dt.weekofyear
return df
def mean_absolute_percentage_error(y_true, y_pred):
y_true, y_pred = np.array(y_true), np.array(y_pred)
return np.mean(np.abs(( y_true - y_pred)/ y_true)) * 10
def wg_func(params):
a = params[0]
r = params[1]
c = params[2]
hcnb = params[3]
incr = [cdata[i] if i == 0 else cdata[i] - cdata[i-1] for i,item in enumerate(cdata)]
ptlt = [(1-(a/(a+item**c)) **r)*(1-hcnb)for item in ts]
ptwt = [ptlt[i] if i == 0 else ptlt[i] - ptlt[i-1] for i,item in enumerate(ptlt)]
return(np.sum([j * np.log(i)for i,j in zip(ptwt,incr)])
+(pop*(1-hcnb)- np.max(cdata)) * np.log(1-np.max(ptlt))
+ np.log(hcnb)*pop*hcnb)*-1
def wg_func2(params):
a = params[0]
r = params[1]
c = params[2]
hcnb =.98
incr = [cdata[i] if i == 0 else cdata[i] - cdata[i-1] for i,item in enumerate(cdata)]
ptlt = [(1-(a/(a+item**c)) **r)*(1-hcnb)for item in ts]
ptwt = [ptlt[i] if i == 0 else ptlt[i] - ptlt[i-1] for i,item in enumerate(ptlt)]
return(np.sum([j * np.log(i)for i,j in zip(ptwt,incr)])
+(pop*(1-hcnb)- np.max(cdata)) * np.log(1-np.max(ptlt))
+ np.log(hcnb)*pop*hcnb)*-1
def constraint1(inputs):
return inputs[0]
cons =({'type': 'ineq', "fun": constraint1})
def calc_distance(lat1, lng1, lat2, lng2):
R = 6373.0
lat1 = radians(lat1)
lng1 = radians(lng1)
lat2 = radians(lat2)
lng2 = radians(lng2)
dlon = lng2 - lng1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1)* cos(lat2)* sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
return R * c
def fill_missing_coords(df):
print(' Filling in missing lat,lng')
df.loc[df.Country_Region=='Zimbabwe', 'Lat'] = 19.0154
df.loc[df.Country_Region=='Zimbabwe', 'Long']= 29.1549
df.loc[(df.Country_Region=='Angola')&(df.Province_State==''), 'Lat'] = -11.2027
df.loc[(df.Country_Region=='Angola')&(df.Province_State==''), 'Long']= 17.8739
df.loc[(df.Country_Region=='Bahamas')&(df.Province_State==''), 'Lat'] = 25.0343
df.loc[(df.Country_Region=='Bahamas')&(df.Province_State==''), 'Long']= -77.3963
df.loc[(df.Country_Region=='Belize')&(df.Province_State==''), 'Lat'] = 17.1899
df.loc[(df.Country_Region=='Belize')&(df.Province_State==''), 'Long']= -88.4976
df.loc[(df.Country_Region=='United Kingdom')&(df.Province_State==''), 'Lat'] = 55.3781
df.loc[(df.Country_Region=='United Kingdom')&(df.Province_State==''), 'Long']= -3.4360
df.loc[(df.Country_Region=='United Kingdom')&(df.Province_State=='Isle of Man'), 'Lat'] = 54.2361
df.loc[(df.Country_Region=='United Kingdom')&(df.Province_State=='Isle of Man'), 'Long']= -4.5481
df.loc[(df.Country_Region=='Cabo Verde')&(df.Province_State==''), 'Lat'] = 16.5388
df.loc[(df.Country_Region=='Cabo Verde')&(df.Province_State==''), 'Long']= -23.0418
df.loc[(df.Country_Region=='United Kingdom')&(df.Province_State=='Bermuda'), 'Lat'] = 32.3078
df.loc[(df.Country_Region=='United Kingdom')&(df.Province_State=='Bermuda'), 'Long']= -64.7505
df.loc[(df.Country_Region=='Chad')&(df.Province_State==''), 'Lat'] = 15.4542
df.loc[(df.Country_Region=='Chad')&(df.Province_State==''), 'Long']= 18.7322
df.loc[(df.Country_Region=='Uganda')&(df.Province_State==''), 'Lat'] = 1.3733
df.loc[(df.Country_Region=='Uganda')&(df.Province_State==''), 'Long']= 32.2903
df.loc[(df.Country_Region=='Denmark')&(df.Province_State=='Greenland'), 'Lat'] = 71.7069
df.loc[(df.Country_Region=='Denmark')&(df.Province_State=='Greenland'), 'Long']= -42.6043
df.loc[(df.Country_Region=='Denmark')&(df.Province_State==''), 'Lat'] = 56.2639
df.loc[(df.Country_Region=='Denmark')&(df.Province_State==''), 'Long']= 9.5018
df.loc[(df.Country_Region=='Timor-Leste')&(df.Province_State==''), 'Lat'] = -8.8742
df.loc[(df.Country_Region=='Timor-Leste')&(df.Province_State==''), 'Long']= 125.7275
df.loc[(df.Country_Region=='Syria')&(df.Province_State==''), 'Lat'] = 34.8021
df.loc[(df.Country_Region=='Syria')&(df.Province_State==''), 'Long']= 38.9968
df.loc[(df.Country_Region=='Saint Kitts and Nevis')&(df.Province_State==''), 'Lat'] = 17.3578
df.loc[(df.Country_Region=='Saint Kitts and Nevis')&(df.Province_State==''), 'Long']= -62.7830
df.loc[(df.Country_Region=='Papua New Guinea')&(df.Province_State==''), 'Lat'] = -6.3150
df.loc[(df.Country_Region=='Papua New Guinea')&(df.Province_State==''), 'Long']= 143.9555
df.loc[(df.Country_Region=='Niger')&(df.Province_State==''), 'Lat'] = 17.6078
df.loc[(df.Country_Region=='Niger')&(df.Province_State==''), 'Long']= 8.0817
df.loc[(df.Country_Region=='El Salvador')&(df.Province_State==''), 'Lat'] = 13.7942
df.loc[(df.Country_Region=='El Salvador')&(df.Province_State==''), 'Long']= -88.8965
df.loc[(df.Country_Region=='Gambia')&(df.Province_State==''), 'Lat'] = 13.4432
df.loc[(df.Country_Region=='Gambia')&(df.Province_State==''), 'Long']= -15.3101
df.loc[(df.Country_Region=='Libya')&(df.Province_State==''), 'Lat'] = 26.3351
df.loc[(df.Country_Region=='Libya')&(df.Province_State==''), 'Long']= 17.2283
df.loc[(df.Country_Region=='Mali')&(df.Province_State==''), 'Lat'] = 17.5707
df.loc[(df.Country_Region=='Mali')&(df.Province_State==''), 'Long']= -3.9962
df.loc[(df.Country_Region=='Grenada')&(df.Province_State==''), 'Lat'] = 12.1165
df.loc[(df.Country_Region=='Grenada')&(df.Province_State==''), 'Long']= -61.6790
df.loc[(df.Country_Region=='Laos')&(df.Province_State==''), 'Lat'] = 19.8563
df.loc[(df.Country_Region=='Laos')&(df.Province_State==''), 'Long']= 102.4955
df.loc[(df.Country_Region=='Madagascar')&(df.Province_State==''), 'Lat'] = -18.7669
df.loc[(df.Country_Region=='Madagascar')&(df.Province_State==''), 'Long']= 46.8691
df.loc[(df.Country_Region=='Guinea-Bissau')&(df.Province_State==''), 'Lat'] = 11.8037
df.loc[(df.Country_Region=='Guinea-Bissau')&(df.Province_State==''), 'Long']= -15.1804
df.loc[(df.Country_Region=='Fiji')&(df.Province_State==''), 'Lat'] = -17.7134
df.loc[(df.Country_Region=='Fiji')&(df.Province_State==''), 'Long']= 178.0650
df.loc[(df.Country_Region=='Nicaragua')&(df.Province_State==''), 'Lat'] = 12.8654
df.loc[(df.Country_Region=='Nicaragua')&(df.Province_State==''), 'Long']= -85.2072
df.loc[(df.Country_Region=='Eritrea')&(df.Province_State==''), 'Lat'] = 15.1794
df.loc[(df.Country_Region=='Eritrea')&(df.Province_State==''), 'Long']= 39.7823
df.loc[(df.Country_Region=='Haiti')&(df.Province_State==''), 'Lat'] = 18.9712
df.loc[(df.Country_Region=='Haiti')&(df.Province_State==''), 'Long']= -72.2852
df.loc[(df.Country_Region=='Dominica')&(df.Province_State==''), 'Lat'] = 15.4150
df.loc[(df.Country_Region=='Dominica')&(df.Province_State==''), 'Long']= -61.3710
df.loc[(df.Country_Region=='Mozambique')&(df.Province_State==''), 'Lat'] = -18.6657
df.loc[(df.Country_Region=='Mozambique')&(df.Province_State==''), 'Long']= 35.5296
df.loc[(df.Country_Region=='Netherlands')&(df.Province_State==''), 'Lat'] = 52.1326
df.loc[(df.Country_Region=='Netherlands')&(df.Province_State==''), 'Long']= 5.2913
df.loc[(df.Country_Region=='Netherlands')&(df.Province_State=='Sint Maarten'), 'Lat'] = 18.0425
df.loc[(df.Country_Region=='Netherlands')&(df.Province_State=='Sint Maarten'), 'Long']= -63.0548
df.loc[(df.Country_Region=='France')&(df.Province_State==''), 'Lat'] = 46.2276
df.loc[(df.Country_Region=='France')&(df.Province_State==''), 'Long']= 2.2137
df.loc[(df.Country_Region=='France')&(df.Province_State=='New Caledonia'), 'Lat'] = -20.9043
df.loc[(df.Country_Region=='France')&(df.Province_State=='New Caledonia'), 'Long']= 165.6180
df.loc[(df.Country_Region=='France')&(df.Province_State=='Martinique'), 'Lat'] = 14.6415
df.loc[(df.Country_Region=='France')&(df.Province_State=='Martinique'), 'Long']= -61.0242
print('done', datetime.now())
<load_from_csv> | from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.arima_model import ARIMA | COVID19 Global Forecasting (Week 3) |
8,824,671 | PATH = '/kaggle/input/covid19-global-forecasting-week-2/'
train = pd.read_csv(PATH + 'train.csv')
test = pd.read_csv(PATH + 'test.csv')
df_geo = pd.read_csv('.. /input/df-geo/df_geo2.csv')
df_geo.Province_State.fillna('', inplace=True)
dfp = pd.read_csv('/kaggle/input/population3/' + 'population.csv')
dfp.columns = ['Province_State', 'Country_Region', 'pop']
print(train.shape, dfp.shape)
print('Cleaning Data')
train.loc[train['Province_State'].isnull() , 'Province_State'] = ''
test.loc[test['Province_State'].isnull() , 'Province_State'] = ''
dfp.loc[dfp['Province_State'].isnull() , 'Province_State'] = ''
print('Joining Data')
print(train.shape, test.shape)
n = train.shape[0]
train = pd.merge(train, dfp, on=['Country_Region','Province_State'], how='left')
assert train.shape[0] == n
n = test.shape[0]
test = pd.merge(test, dfp, on=['Country_Region','Province_State'], how='left')
assert test.shape[0] == n
test.reset_index(drop=True, inplace=True)
train.reset_index(drop=True, inplace=True)
n = train.shape[0]
train = pd.merge(train, df_geo, on=['Country_Region','Province_State'], how='left')
assert train.shape[0] == n
n = test.shape[0]
test = pd.merge(test, df_geo, on=['Country_Region','Province_State'], how='left')
assert test.shape[0] == n
test.reset_index(drop=True, inplace=True)
train.reset_index(drop=True, inplace=True)
train.loc[train['pop'].isnull() ,'pop'] = 0
test.loc[test['pop'].isnull() ,'pop'] = 0
print('
Number of countries with missing Lat/Lng: ',
train[train.Lat.isnull() ]['Country_Region'].value_counts().shape[0])
fill_missing_coords(train)
fill_missing_coords(test)
print('
Number of countries with missing Lat/Lng after fixing: ',
train[train.Lat.isnull() ]['Country_Region'].value_counts().shape[0])
print(train.shape, test.shape)
print('
Enriching Data')
mo = train['Date'].apply(lambda x: x[5:7])
da = train['Date'].apply(lambda x: x[8:10])
train['day_from_jan_first'] =(da.apply(int)
+ 31*(mo=='02')
+ 60*(mo=='03')
+ 91*(mo=='04')
)
mo = test['Date'].apply(lambda x: x[5:7])
da = test['Date'].apply(lambda x: x[8:10])
test['day_from_jan_first'] =(da.apply(int)
+ 31*(mo=='02')
+ 60*(mo=='03')
+ 91*(mo=='04')
)
create_time_features(train)
create_time_features(test)
print('done', datetime.now() )<categorify> | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
with tqdm(total=len(train['Country_Region'].unique())) as pbar:
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
with warnings.catch_warnings() :
warnings.filterwarnings("ignore")
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
feature_use = X_pred.columns[0]
for i in range(X_pred.shape[1] - 1,0,-1):
if(X_pred.iloc[0,i] > 0):
feature_use = X_pred.columns[i]
break
idx = X_train[X_train[feature_use] == 0].shape[0]
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = SARIMAX(adjusted_y_train_confirmed, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = SARIMAX(adjusted_y_train_fatalities, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
pbar.update(1)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_3 = df_val.copy() | COVID19 Global Forecasting (Week 3) |
8,824,671 | country1 = 'Luxembourg'
lat1 = df_geo[df_geo.Country_Region==country1]['Lat'].item()
lng1 = df_geo[df_geo.Country_Region==country1]['Long'].item()
country2 = 'Singapore'
lat2 = df_geo[df_geo.Country_Region==country2]['Lat'].item()
lng2 = df_geo[df_geo.Country_Region==country2]['Long'].item()
print('
Distance between ' + country1, country2, calc_distance(lat1, lng1, lat2, lng2))
print('This should be 10,436km')
print(' Label Encoding the geographic features...')
df1 = train[['Country_Region','Province_State','Lat','Long']].copy()
df2 = test[['Country_Region','Province_State','Lat','Long']].copy()
geo = pd.concat([df1,df2], axis=0)
geo = geo.groupby(['Country_Region','Province_State'])[['Lat','Long']].max().reset_index()
le_country = LabelEncoder().fit(geo.Country_Region)
le_state = LabelEncoder().fit(geo.Province_State)
train['country'] = le_country.transform(train.Country_Region)
train['state'] = le_state.transform(train.Province_State)
test['country'] = le_country.transform(test.Country_Region)
test['state'] = le_state.transform(test.Province_State)
print('done', train.shape)
train['wg'] = 0
train['wga'] = 0
train['wgr'] = 0
train['wgc'] = 0
train['wghcnb'] = 0
test['wg'] = 0
test['wga'] = 0
test['wgr'] = 0
test['wgc'] = 0
test['wghcnb'] = 0
test['SARIMAX'] = 0
test['ARIMA'] = 0
countries = ['Afghanistan']
for country in train.Country_Region.unique() :
bool1 = train.Country_Region == country
print(country)
for state in train[bool1].Province_State.unique() :
bool2 = bool1 &(train.Province_State == state)&(train.ConfirmedCases>0)
pop = np.max(train[bool2]['pop'])
data = train[ bool2 ].copy().reset_index()
data['ts'] = data.index+1
dfj = data.iloc[0]['day_from_jan_first']
cdata = data['ConfirmedCases'].values
ts = data['ts'].values
boolt =(test.Country_Region==country)&(test.Province_State== state)
datat = test[boolt].copy().reset_index()
datat['ts'] = datat.day_from_jan_first - dfj
datat.loc[datat.ts<=0,'ts'] = 1
x0 = [1343, 5.440110881178935, 2.188935325131958, 0.9897823619555628]
sol = minimize(wg_func, x0, constraints = cons)
a,r,c,hcnb = sol.x[0], sol.x[1], sol.x[2], sol.x[3]
if np.isnan(sol.x[0]):
train.loc[bool2, 'wg'] = np.NaN
train.loc[bool2,'wga'] = np.NaN
train.loc[bool2,'wgr'] = np.NaN
train.loc[bool2,'wgc'] = np.NaN
train.loc[bool2,'wghcnb'] = np.NaN
test.loc[boolt, 'wg'] = np.NaN
test.loc[boolt,'wga'] = np.NaN
test.loc[boolt,'wgr'] = np.NaN
test.loc[boolt,'wgc'] = np.NaN
test.loc[boolt,'wghcnb'] = np.NaN
else:
datat['wg'] = datat.ts.apply(lambda x:(1-(a/(a+x**c)) **r)*pop*(1-hcnb)).values
data['wg'] = data.ts.apply(lambda x:(1-(a/(a+x**c)) **r)*pop*(1-hcnb)).values
train.loc[bool2, 'wg'] = data['wg'].values
train.loc[bool2,'wga'] = a
train.loc[bool2,'wgr'] = r
train.loc[bool2,'wgc'] = c
train.loc[bool2,'wghcnb'] = hcnb
test.loc[boolt, 'wg'] = datat.wg.values
test.loc[boolt,'wga'] = a
test.loc[boolt,'wgr'] = r
test.loc[boolt,'wgc'] = c
test.loc[boolt,'wghcnb'] = hcnb
incr = [cdata[i] if i == 0 else cdata[i] - cdata[i-1] for i,item in enumerate(cdata)]
cc = np.max(data[data.day_from_jan_first <=np.min(datat.day_from_jan_first)]['ConfirmedCases'])
try:
model_arima = ARIMA(incr, order=(1,1,0)).fit()
preds = [item if item >=0 else 0 for item in model_arima.predict(datat.ts[0].item() , datat.ts[-1:].item())]
cum_sum = cc
preds_cc = []
for item in preds:
cum_sum = cum_sum + item
preds_cc.append(cum_sum)
test.loc[boolt, 'ARIMA'] = pd.Series(preds_cc ).values
except:
test.loc[boolt, 'ARIMA']= np.NaN
try:
model_SARIMAX = SARIMAX(incr, order=(1,1,0), seasonal_order=(1,1,0,12),enforce_stationarity=False ).fit()
preds = [item if item >=0 else 0 for item in model_SARIMAX.predict(datat.ts[0].item() , datat.ts[-1:].item())]
cum_sum = cc
preds_cc = []
for item in preds:
cum_sum = cum_sum + item
preds_cc.append(cum_sum)
test.loc[boolt, 'SARIMAX']= pd.Series(preds_cc ).values
except:
test.loc[boolt, 'SARIMAX']= np.NaN
print('done', datetime.now() )<feature_engineering> | sub1 = df_val_3
submission = sub1[['ForecastId','ConfirmedCases_hat','Fatalities_hat']]
submission.columns = ['ForecastId','ConfirmedCases','Fatalities'] | COVID19 Global Forecasting (Week 3) |
8,824,671 | train.loc[train.wg<0,'wg'] = 0
test.loc[test.wg<0,'wg'] = 0
train.loc[train.wg.isnull() ,'wg'] = 0
test.loc[test.wg.isnull() ,'wg'] = 0
train.loc[np.isinf(train.wg),'wg'] = 0
test.loc[np.isinf(test.wg),'wg'] = 0
print('done', datetime.now() )<feature_engineering> | TARGETS = ["ConfirmedCases", "Fatalities"]
sub_df = sub0.copy()
for t in TARGETS:
sub_df[t] = np.expm1(np.log1p(submission[t].values)*0.4 + np.log1p(sub0[t].values)*0.6)
sub_df.to_csv("submission.csv", index=False ) | COVID19 Global Forecasting (Week 3) |
8,824,671 | <feature_engineering><EOS> | sub0.isna().sum() | COVID19 Global Forecasting (Week 3) |
8,824,956 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<feature_engineering> | path = '.. /input/covid19-global-forecasting-week-3/'
train = pd.read_csv(path + 'train.csv')
test = pd.read_csv(path + 'test.csv')
sub = pd.read_csv(path + 'submission.csv')
train['Date'] = train['Date'].apply(lambda x:(datetime.datetime.strptime(x, '%Y-%m-%d')))
test['Date'] = test['Date'].apply(lambda x:(datetime.datetime.strptime(x, '%Y-%m-%d')))
train['days'] =(train['Date'].dt.date - train['Date'].dt.date.min() ).dt.days
test['days'] =(test['Date'].dt.date - train['Date'].dt.date.min() ).dt.days
train.loc[train['Province_State'].isnull() , 'Province_State'] = 'N/A'
test.loc[test['Province_State'].isnull() , 'Province_State'] = 'N/A'
train['Area'] = train['Country_Region'] + '_' + train['Province_State']
test['Area'] = test['Country_Region'] + '_' + test['Province_State']
print(train['Date'].max())
print(test['Date'].min())
print(train['days'].max())
N_AREAS = train['Area'].nunique()
AREAS = np.sort(train['Area'].unique())
TRAIN_N = 77
print(train[train['days'] < TRAIN_N]['Date'].max())
print(train[train['days'] >= TRAIN_N]['Date'].min())
print(train[train['days'] >= TRAIN_N]['Date'].max())
train.head()
test_orig = test.copy() | COVID19 Global Forecasting (Week 3) |
8,824,956 | train.loc[train.wg2<0,'wg2'] = 0
test.loc[test.wg2<0,'wg2'] = 0
train.loc[train.wg2.isnull() ,'wg2'] = 0
test.loc[test.wg2.isnull() ,'wg2'] = 0
train.loc[np.isinf(train.wg2),'wg2'] = 0
test.loc[ np.isinf(test.wg2),'wg2'] = 0
train.loc[train.wg3<0,'wg3'] = 0
test.loc[test.wg3<0,'wg3'] = 0
train.loc[train.wg3.isnull() ,'wg3'] = 0
test.loc[test.wg3.isnull() ,'wg3'] = 0
train.loc[np.isinf(train.wg3),'wg3'] = 0
test.loc[ np.isinf(test.wg3),'wg3'] = 0
print('done', datetime.now() )<compute_train_metric> | train_p_c_raw = train.pivot(index='Area', columns='days', values='ConfirmedCases' ).sort_index()
train_p_f_raw = train.pivot(index='Area', columns='days', values='Fatalities' ).sort_index()
train_p_c = np.maximum.accumulate(train_p_c_raw, axis=1)
train_p_f = np.maximum.accumulate(train_p_f_raw, axis=1)
f_rate =(train_p_f / train_p_c ).fillna(0)
X_c = np.log(1+train_p_c.values)[:,:TRAIN_N]
X_f = train_p_f.values[:,:TRAIN_N]
| COVID19 Global Forecasting (Week 3) |
8,824,956 | print(mean_squared_log_error(train.ConfirmedCases, train.wg))
print(mean_squared_log_error(train.ConfirmedCases, train.wg2))
print(mean_squared_log_error(train.ConfirmedCases, train.wg3))
<compute_test_metric> | def eval1(y, p):
val_len = y.shape[1] - TRAIN_N
return np.sqrt(mean_squared_error(y[:, TRAIN_N:TRAIN_N+val_len].flatten() , p[:, TRAIN_N:TRAIN_N+val_len].flatten()))
def run_c(params, X, test_size=50):
gr_base = []
gr_base_factor = []
x_min = np.ma.MaskedArray(X, X<1)
x_min = x_min.argmin(axis=1)
for i in range(X.shape[0]):
temp = X[i,:]
threshold = np.log(1+params['min cases for growth rate'])
num_days = params['last N days']
if(temp > threshold ).sum() > num_days:
d = np.diff(temp[temp > threshold])[-num_days:]
w = np.arange(len(d)) +1
w = w**5
w = w / np.sum(w)
gr_base.append(np.clip(np.average(d, weights=w), 0, params['growth rate max']))
d2 = np.diff(d)
w = np.arange(len(d2)) +1
w = w**10
w = w / np.sum(w)
gr_base_factor.append(np.clip(np.average(d2, weights=w), -0.5, params["growth rate factor max"]))
else:
gr_base.append(params['growth rate default'])
gr_base_factor.append(params['growth rate factor'])
gr_base = np.array(gr_base)
gr_base_factor = np.array(gr_base_factor)
preds = X.copy()
for i in range(test_size):
delta = np.clip(preds[:, -1], np.log(2), None)+ gr_base *(1 + params['growth rate factor']*(1 + params['growth rate factor factor'])**(i)) **(np.log1p(i))
preds = np.hstack(( preds, delta.reshape(-1,1)))
return preds
params = {
"min cases for growth rate": 0,
"last N days": 15,
"growth rate default": 0.10,
"growth rate max": 0.2,
"growth rate factor max": -0.1,
"growth rate factor": -0.3,
"growth rate factor factor": 0.01,
}
x = train_p_c
preds_c = run_c(params, np.log(1+x.values)[:,:TRAIN_N])
| COVID19 Global Forecasting (Week 3) |
8,824,956 | for country in train.Country_Region.unique() :
bool1 = train.Country_Region == country
for state in train[bool1].Province_State.unique() :
bool2 = bool1 &(train.Province_State == state)
data = train[ bool2 ].copy().reset_index()
wg1 = np.round(mean_squared_log_error(data.ConfirmedCases, data.wg),2)
wg2 = np.round(mean_squared_log_error(data.ConfirmedCases, data.wg2),2)
wg3 = np.round(mean_squared_log_error(data.ConfirmedCases, data.wg3),2)
boolt =(test.Country_Region==country)&(test.Province_State== state)
datat = test[boolt].copy().reset_index()
if wg1<wg2 and wg1<wg3:
data['best'] = data.wg
datat['best'] = datat.wg
elif wg2<wg1 and wg2 < wg3:
data['best'] = data.wg2
datat['best'] = datat.wg2
else:
data['best'] = data.wg3
datat['best'] = datat.wg3
train.loc[bool2, 'wg'] = data['best'].values
test.loc[boolt, 'wg'] = datat['best'].values
print('done', datetime.now() )<compute_test_metric> | for i in range(N_AREAS):
if 'China' in AREAS[i] and preds_c[i, TRAIN_N-1] < np.log(31):
preds_c[i, TRAIN_N:] = preds_c[i, TRAIN_N-1]
| COVID19 Global Forecasting (Week 3) |
8,824,956 | print(mean_squared_log_error(train.ConfirmedCases, train.wg))
train.drop('wg2', inplace=True, axis=1)
train.drop('wg3', inplace=True, axis=1)
test.drop('wg2', inplace=True, axis=1)
test.drop('wg3', inplace=True, axis=1)
print('done', datetime.now() )<feature_engineering> | def lin_w(sz):
res = np.linspace(0, 1, sz+1, endpoint=False)[1:]
return np.append(res, np.append([1], res[::-1]))
def run_f(params, X_c, X_f, X_f_r, test_size=50):
X_f_r = np.array(np.ma.mean(np.ma.masked_outside(X_f_r, 0.03, 0.5)[:,:], axis=1))
X_f_r = np.clip(X_f_r, params['fatality_rate_lower'], params['fatality_rate_upper'])
X_c = np.clip(np.exp(X_c)-1, 0, None)
preds = X_f.copy()
train_size = X_f.shape[1] - 1
for i in range(test_size):
t_lag = train_size+i-params['length']
t_wsize = 5
d = np.diff(X_c, axis=1)[:, t_lag-t_wsize:t_lag+1+t_wsize]
delta = np.average(d, axis=1)
delta = params['absolute growth'] + delta * X_f_r
preds = np.hstack(( preds, preds[:, -1].reshape(-1,1)+ delta.reshape(-1,1)))
return preds
params = {
"length": 7,
"absolute growth": 0.02,
"fatality_rate_lower": 0.02,
"fatality_rate_upper": 0.3,
}
preds_f_1 = run_f(params, preds_c, X_f, f_rate.values[:,:TRAIN_N])
preds_f_1 = np.log(1+preds_f_1 ) | COVID19 Global Forecasting (Week 3) |
8,824,956 | train_data = train.copy()
train_df = train_data
train_df['area'] = [str(i)+str(' - ')+str(j)for i,j in zip(train_data['Country_Region'], train_data['Province_State'])]
train_df['Date'] = pd.to_datetime(train_df['Date'])
full_data = train_df
today = full_data['Date'].max() +timedelta(days=1)
def get_country_data(train_df, area, metric):
country_data = train_df[train_df['area']==area]
country_data = country_data.drop(['Id','Province_State', 'Country_Region', 'Lat','Long'], axis=1)
country_data = pd.pivot_table(country_data, values=['ConfirmedCases','Fatalities'], index=['Date'], aggfunc=np.sum)
country_data = country_data[country_data[metric]!=0]
return country_data
area_info = pd.DataFrame(columns=['area', 'cases_start_date', 'deaths_start_date', 'init_ConfirmedCases', 'init_Fatalities'])
for i in range(len(train_df['area'].unique())) :
area = train_df['area'].unique() [i]
area_cases_data = get_country_data(train_df, area, 'ConfirmedCases')
area_deaths_data = get_country_data(train_df, area, 'Fatalities')
cases_start_date = area_cases_data.index.min()
deaths_start_date = area_deaths_data.index.min()
if len(area_cases_data)> 0:
confirmed_cases = max(area_cases_data['ConfirmedCases'])
else:
confirmed_cases = 0
if len(area_deaths_data)> 0:
fatalities = max(area_deaths_data['Fatalities'])
else:
fatalities = 0
area_info.loc[i] = [area, cases_start_date, deaths_start_date, confirmed_cases, fatalities]
area_info = area_info.fillna(pd.to_datetime(today))
area_info['init_cases_day_no'] = pd.to_datetime(today)-area_info['cases_start_date']
area_info['init_cases_day_no'] = area_info['init_cases_day_no'].dt.days.fillna(0 ).astype(int)
area_info['init_deaths_day_no'] = pd.to_datetime(today)-area_info['deaths_start_date']
area_info['init_deaths_day_no'] = area_info['init_deaths_day_no'].dt.days.fillna(0 ).astype(int)
area_info.head()
def log_curve(x, k, x_0, ymax):
return ymax /(1 + np.exp(-k*(x-x_0)))
def log_fit(train_df, area, metric):
area_data = get_country_data(train_df, area, metric)
x_data = range(len(area_data.index))
y_data = area_data[metric]
if len(y_data)< 5:
estimated_k = -1
estimated_x_0 = -1
ymax = -1
elif max(y_data)== 0:
estimated_k = -1
estimated_x_0 = -1
ymax = -1
else:
try:
popt, pcov = curve_fit(log_curve, x_data, y_data, bounds=([0,0,0],np.inf), p0=[0.3,100,10000], maxfev=1000000)
estimated_k, estimated_x_0, ymax = popt
except RuntimeError:
print(area)
print("Error - curve_fit failed")
estimated_k = -1
estimated_x_0 = -1
ymax = -1
estimated_parameters = pd.DataFrame(np.array([[area, estimated_k, estimated_x_0, ymax]]), columns=['area', 'k', 'x_0', 'ymax'])
return estimated_parameters
def get_parameters(metric):
parameters = pd.DataFrame(columns=['area', 'k', 'x_0', 'ymax'], dtype=np.float)
for area in train_df['area'].unique() :
estimated_parameters = log_fit(train_df, area, metric)
parameters = parameters.append(estimated_parameters)
parameters['k'] = pd.to_numeric(parameters['k'], downcast="float")
parameters['x_0'] = pd.to_numeric(parameters['x_0'], downcast="float")
parameters['ymax'] = pd.to_numeric(parameters['ymax'], downcast="float")
parameters = parameters.replace({'k': {-1: parameters[parameters['ymax']>0].median() [0]},
'x_0': {-1: parameters[parameters['ymax']>0].median() [1]},
'ymax': {-1: parameters[parameters['ymax']>0].median() [2]}})
return parameters
cases_parameters = get_parameters('ConfirmedCases')
cases_parameters.head(20)
deaths_parameters = get_parameters('Fatalities')
deaths_parameters.head(20)
fit_df = area_info.merge(cases_parameters, on='area', how='left')
fit_df = fit_df.rename(columns={"k": "cases_k", "x_0": "cases_x_0", "ymax": "cases_ymax"})
fit_df = fit_df.merge(deaths_parameters, on='area', how='left')
fit_df = fit_df.rename(columns={"k": "deaths_k", "x_0": "deaths_x_0", "ymax": "deaths_ymax"})
fit_df['init_ConfirmedCases_fit'] = log_curve(fit_df['init_cases_day_no'], fit_df['cases_k'], fit_df['cases_x_0'], fit_df['cases_ymax'])
fit_df['init_Fatalities_fit'] = log_curve(fit_df['init_deaths_day_no'], fit_df['deaths_k'], fit_df['deaths_x_0'], fit_df['deaths_ymax'])
fit_df['ConfirmedCases_error'] = fit_df['init_ConfirmedCases']-fit_df['init_ConfirmedCases_fit']
fit_df['Fatalities_error'] = fit_df['init_Fatalities']-fit_df['init_Fatalities_fit']
fit_df.head()
test_data = test.copy()
test_df = test_data
test_df['area'] = [str(i)+str(' - ')+str(j)for i,j in zip(test_data['Country_Region'], test_data['Province_State'])]
test_df = test_df.merge(fit_df, on='area', how='left')
test_df['Date'] = pd.to_datetime(test_df['Date'])
test_df['cases_start_date'] = pd.to_datetime(test_df['cases_start_date'])
test_df['deaths_start_date'] = pd.to_datetime(test_df['deaths_start_date'])
test_df['cases_day_no'] = test_df['Date']-test_df['cases_start_date']
test_df['cases_day_no'] = test_df['cases_day_no'].dt.days.fillna(0 ).astype(int)
test_df['deaths_day_no'] = test_df['Date']-test_df['deaths_start_date']
test_df['deaths_day_no'] = test_df['deaths_day_no'].dt.days.fillna(0 ).astype(int)
test_df['ConfirmedCases_fit'] = log_curve(test_df['cases_day_no'], test_df['cases_k'], test_df['cases_x_0'], test_df['cases_ymax'])
test_df['Fatalities_fit'] = log_curve(test_df['deaths_day_no'], test_df['deaths_k'], test_df['deaths_x_0'], test_df['deaths_ymax'])
test_df['ConfirmedCases_pred'] = round(test_df['ConfirmedCases_fit']+test_df['ConfirmedCases_error'])
test_df['Fatalities_pred'] = round(test_df['Fatalities_fit']+test_df['Fatalities_error'])
test_df.head()
train_df = train.copy()
train_df['area'] = [str(i)+str(' - ')+str(j)for i,j in zip(train_df['Country_Region'], train_df['Province_State'])]
train_df = train_df.merge(fit_df, on='area', how='left')
train_df['Date'] = pd.to_datetime(train_df['Date'])
train_df['cases_start_date'] = pd.to_datetime(train_df['cases_start_date'])
train_df['deaths_start_date'] = pd.to_datetime(train_df['deaths_start_date'])
train_df['cases_day_no'] = train_df['Date']-train_df['cases_start_date']
train_df['cases_day_no'] = train_df['cases_day_no'].dt.days.fillna(0 ).astype(int)
train_df['deaths_day_no'] = train_df['Date']-train_df['deaths_start_date']
train_df['deaths_day_no'] = train_df['deaths_day_no'].dt.days.fillna(0 ).astype(int)
train_df['ConfirmedCases_fit'] = log_curve(train_df['cases_day_no'], train_df['cases_k'], train_df['cases_x_0'], train_df['cases_ymax'])
train_df['Fatalities_fit'] = log_curve(train_df['deaths_day_no'], train_df['deaths_k'], train_df['deaths_x_0'], train_df['deaths_ymax'])
train_df['ConfirmedCases_pred'] = round(train_df['ConfirmedCases_fit']+train_df['ConfirmedCases_error'])
train_df['Fatalities_pred'] = round(train_df['Fatalities_fit']+train_df['Fatalities_error'])
train_df.head()
print('done', datetime.now() )<train_model> | class ZDatasetF(Dataset):
def __init__(self, X_c, X_f=None, hist_len=10):
self.X_c = X_c
self.X_f = X_f
self.hist_len = hist_len
self.is_test = X_f is None
def __len__(self):
return self.X_c.shape[1]
def __getitem__(self, idx):
if self.is_test:
return {'x_c':self.X_c[:, idx-self.hist_len:idx]}
else:
return {'x_c':self.X_c[:, idx-self.hist_len:idx],
'x_f':self.X_f[:, idx-1],
'y':np.log(1+self.X_f[:, idx])}
class PrLayer2(nn.Module):
def __init__(self, in_features1, in_features2):
super(PrLayer2, self ).__init__()
self.weight0 = Parameter(torch.Tensor(1, 1, in_features2))
self.weight1 = Parameter(torch.Tensor(1, in_features1, in_features2))
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight0, a=math.sqrt(5))
init.kaiming_uniform_(self.weight1, a=math.sqrt(5))
def forward(self, input):
return input * torch.sigmoid(self.weight0 + self.weight1)
class ZModelF(nn.Module):
def __init__(self, hist_len):
super(ZModelF, self ).__init__()
self.l_conv = PrLayer2(len(X_c),hist_len-1)
def forward(self, x_c, x_f):
x = x_c[:,:,1:] - x_c[:,:,:-1]
res = torch.sum(self.l_conv(x), 2)
return {'preds': torch.log(1 + x_f + res)}
class DummySampler(torch.utils.data.sampler.Sampler):
def __init__(self, idx):
self.idx = idx
def __iter__(self):
return iter(self.idx)
def __len__(self):
return len(self.idx)
def _smooth_l1_loss(target):
t = torch.abs(target)
t = torch.where(t < 1, 0.5 * t ** 2, t - 0.5)
return torch.mean(t)
n_epochs = 5000
lr = 0.18
bag_size = 4
device = 'cpu'
hist_len = 14
loss_func = torch.nn.MSELoss()
reg_loss_func = _smooth_l1_loss
reg_factor = 0.035
train_dataset = ZDatasetF(np.exp(X_c)-1, X_f, hist_len=hist_len)
test_dataset = ZDatasetF(np.exp(preds_c)-1, hist_len=hist_len)
trn_idx = np.arange(hist_len+1, len(train_dataset))
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(trn_idx)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=len(trn_idx), sampler=train_sampler, num_workers=0, pin_memory=True)
test_idx = np.arange(TRAIN_N, len(test_dataset))
test_sampler = DummySampler(test_idx)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, sampler=test_sampler, num_workers=0, pin_memory=True)
gradient_accumulation = 1
preds_f = 0
for m_i in range(bag_size):
model_f = ZModelF(hist_len=hist_len ).to(device)
optimizer_f = torch.optim.Adam(model_f.parameters() , lr=lr)
model_f.train()
start_time = time.time()
for epoch in range(n_epochs):
s = time.time()
avg_train_loss = 0
optimizer_f.zero_grad()
for idx, data in enumerate(train_loader):
X1 = data['x_c'].to(device ).float()
X2 = data['x_f'].to(device ).float()
y = data['y'].to(device ).float()
preds = model_f(X1, X2)['preds'].float()
cond = X2 > np.log(10)
preds = preds[cond]
y = y[cond]
loss = loss_func(preds, y)
loss += reg_factor * reg_loss_func(model_f.l_conv.weight1)
avg_train_loss += loss / len(train_loader)
loss.backward()
if(idx+1)% gradient_accumulation == 0 or idx == len(train_loader)- 1:
optimizer_f.step()
optimizer_f.zero_grad()
if False:
model_f.eval()
preds_f_delta = train_p_f.values[:,:TRAIN_N]
for idx, data in enumerate(test_loader):
X1 = data['x_c'].to(device ).float()
temp = model_f(X1, torch.Tensor(preds_f_delta[:,-1] ).unsqueeze(0)) ['preds']
temp = np.exp(temp.detach().cpu().numpy().reshape(-1,1)) - 1
preds_f_delta = np.hstack(( preds_f_delta, temp))
preds_f_delta = np.log(1 + preds_f_delta)
val_len = train_p_c.values.shape[1] - TRAIN_N
m2 = np.sqrt(mean_squared_error(np.log(1 + train_p_f_raw.values[:, TRAIN_N:TRAIN_N+val_len] ).flatten() , \
preds_f_delta[:, TRAIN_N:TRAIN_N+val_len].flatten()))
print(f"{epoch:2} train_loss {avg_train_loss:<8.4f} val_loss {m2:8.5f} {time.time() -s:<2.2f}")
model_f.train()
model_f.eval()
preds_f_delta = train_p_f.values[:,:TRAIN_N]
for idx, data in enumerate(test_loader):
X1 = data['x_c'].to(device ).float()
temp = model_f(X1, torch.Tensor(preds_f_delta[:,-1] ).unsqueeze(0)) ['preds']
temp = np.exp(temp.detach().cpu().numpy().reshape(-1,1)) - 1
preds_f_delta = np.hstack(( preds_f_delta, temp))
preds_f += preds_f_delta / bag_size
preds_f_2 = np.log(1 + preds_f)
print("Done")
| COVID19 Global Forecasting (Week 3) |
8,824,956 | train['y_hat_log' ] = test_df.ConfirmedCases_fit
test['y_hat_log' ] = test_df.ConfirmedCases_pred<drop_column> | preds_f = np.average([preds_f_1, preds_f_2], axis=0, weights=[1,2] ) | COVID19 Global Forecasting (Week 3) |
8,824,956 | dropcols = ['Date', 'date', 'ConfirmedCases', 'Id', 'ForecastId', 'Fatalities']
dropcols = dropcols + ['Country_Region','Province_State']
dropcols = dropcols + ['eg', 'egr', 'mae_eg', 'wga', 'wgr', 'wgc','wghcnb', 'mae_wg', 'SARIMAX', 'ARIMA',
'cc_es',]
print('
Modeling...')
features = [f for f in train.columns if f not in dropcols +
['shift4w', 'shift6w', 'dist'
, 'dayofyear','year','quarter','hour','month','dayofmonth','dayofweek','weekofyear', 'Lat', 'Long']]
print(features)
X_train = train[features].copy()
X_test = test[features].copy()
X_train.reset_index(drop=True, inplace=True)
X_test.reset_index(drop=True, inplace=True)
y_train = train["Fatalities"]
y_train_cc = train["ConfirmedCases"]
print('done', datetime.now() )<choose_model_class> | if False:
val_len = train_p_c.values.shape[1] - TRAIN_N
for i in range(val_len):
d = i + TRAIN_N
m1 = np.sqrt(mean_squared_error(np.log(1 + train_p_c_raw.values[:, d]), preds_c[:, d]))
m2 = np.sqrt(mean_squared_error(np.log(1 + train_p_f_raw.values[:, d]), preds_f[:, d]))
print(f"{d}: {(m1 + m2)/2:8.5f} [{m1:8.5f} {m2:8.5f}]")
print()
m1 = np.sqrt(mean_squared_error(np.log(1 + train_p_c_raw.values[:, TRAIN_N:TRAIN_N+val_len] ).flatten() , preds_c[:, TRAIN_N:TRAIN_N+val_len].flatten()))
m2 = np.sqrt(mean_squared_error(np.log(1 + train_p_f_raw.values[:, TRAIN_N:TRAIN_N+val_len] ).flatten() , preds_f[:, TRAIN_N:TRAIN_N+val_len].flatten()))
print(f"{(m1 + m2)/2:8.5f} [{m1:8.5f} {m2:8.5f}]" ) | COVID19 Global Forecasting (Week 3) |
8,824,956 | isTraining = False
params_xgb = {}
params_xgb['n_estimators'] = 1100
params_xgb['max_depth'] = 10
params_xgb['seed'] = 2020
params_xgb['colsample_bylevel'] = 1
params_xgb['colsample_bytree'] = 1
params_xgb['learning_rate'] = 0.3
params_xgb['reg_alpha'] = 0
params_xgb['reg_lambda'] = 1
params_xgb['subsample'] = 1
if isTraining:
X_TRAIN = X_train[features].values
kf = KFold(n_splits = 5, shuffle = True, random_state=2020)
acc = []
for tr_idx, val_idx in kf.split(X_TRAIN, y_train_cc):
X_tr, X_vl = X_TRAIN[tr_idx], X_TRAIN[val_idx, :]
y_tr, y_vl = y_train_cc[tr_idx], y_train_cc[val_idx]
print(X_tr.shape)
model_xgb_cc = xgb.XGBRegressor(**params_xgb)
model_xgb_cc.fit(X_tr, y_tr, verbose=True)
y_hat = model_xgb_cc.predict(X_vl)
print('xgb mae :', mean_absolute_error(y_vl, y_hat))
acc.append(mean_absolute_error(y_vl, y_hat))
print('done', np.mean(acc))
print('done', datetime.now() )<prepare_x_and_y> | EU_COUNTRIES = ['Austria', 'Italy', 'Belgium', 'Latvia', 'Bulgaria', 'Lithuania', 'Croatia', 'Luxembourg', 'Cyprus', 'Malta', 'Czechia',
'Netherlands', 'Denmark', 'Poland', 'Estonia', 'Portugal', 'Finland', 'Romania', 'France', 'Slovakia', 'Germany', 'Slovenia',
'Greece', 'Spain', 'Hungary', 'Sweden', 'Ireland']
EUROPE_OTHER = ['Albania', 'Andorra', 'Bosnia and Herzegovina', 'Liechtenstein', 'Monaco', 'Montenegro', 'North Macedonia',
'Norway', 'San Marino', 'Serbia', 'Switzerland', 'Turkey', 'United Kingdom']
AFRICA = ['Algeria', 'Burkina Faso', 'Cameroon', 'Congo(Kinshasa)', "Cote d'Ivoire", 'Egypt', 'Ghana', 'Kenya', 'Madagascar',
'Morocco', 'Nigeria', 'Rwanda', 'Senegal', 'South Africa', 'Togo', 'Tunisia', 'Uganda', 'Zambia']
NORTH_AMERICA = ['US', 'Canada', 'Mexico']
SOUTH_AMERICA = ['Argentina', 'Bolivia', 'Brazil', 'Chile', 'Colombia', 'Ecuador', 'Paraguay', 'Peru', 'Uruguay', 'Venezuela']
MIDDLE_EAST = ['Afghanistan', 'Bahrain', 'Iran', 'Iraq', 'Israel', 'Jordan', 'Kuwait', 'Lebanon', 'Oman', 'Qatar', 'Saudi Arabia', 'United Arab Emirates']
ASIA = ['Bangladesh', 'Brunei', 'Cambodia', 'India', 'Indonesia', 'Japan', 'Kazakhstan', 'Korea, South', 'Kyrgyzstan', 'Malaysia',
'Pakistan', 'Singapore', 'Sri Lanka', 'Taiwan*', 'Thailand', 'Uzbekistan', 'Vietnam'] | COVID19 Global Forecasting (Week 3) |
8,824,956 | dropcols = ['Date', 'date', 'ConfirmedCases', 'Id', 'ForecastId', 'Fatalities']
dropcols = dropcols + ['Country_Region','Province_State']
dropcols = dropcols + ['eg', 'egr', 'mae_eg', 'wg', 'wga', 'wgr', 'wg_xgb', 'wgc','wghcnb', 'mae_wg', 'SARIMAX', 'ARIMA',
'cc_es',]
print('
Modeling...')
features = [f for f in train.columns if f not in dropcols +
['shift4w', 'shift6w', 'dist'
, 'dayofyear','year','quarter','hour','month','dayofmonth','dayofweek','weekofyear']]
print(features)
X_train = train[features].copy()
X_test = test[features].copy()
X_train.reset_index(drop=True, inplace=True)
X_test.reset_index(drop=True, inplace=True)
X_train.head()
print('done', datetime.now() )<init_hyperparams> | temp = pd.DataFrame(np.clip(np.exp(preds_c)- 1, 0, None))
temp['Area'] = AREAS
temp = temp.melt(id_vars='Area', var_name='days', value_name="ConfirmedCases")
test = test_orig.merge(temp, how='left', left_on=['Area', 'days'], right_on=['Area', 'days'])
temp = pd.DataFrame(np.clip(np.exp(preds_f)- 1, 0, None))
temp['Area'] = AREAS
temp = temp.melt(id_vars='Area', var_name='days', value_name="Fatalities")
test = test.merge(temp, how='left', left_on=['Area', 'days'], right_on=['Area', 'days'])
test.head() | COVID19 Global Forecasting (Week 3) |
8,824,956 | params_xgb = {}
params_xgb['n_estimators'] = 1100
params_xgb['max_depth'] = 10
params_xgb['seed'] = 2020
params_xgb['colsample_bylevel'] = 1
params_xgb['colsample_bytree'] = 1
params_xgb['learning_rate'] = 0.3
params_xgb['reg_alpha'] = 0
params_xgb['reg_lambda'] = 1
params_xgb['subsample'] = 1
isTraining = True
X_train.reset_index(drop=True, inplace=True)
if isTraining:
print('Evaluating model...')
booll = X_train.day_from_jan_first < 86
X_tr, X_vl = X_train[booll][features ], X_train[~booll][features]
y_tr, y_vl = train[booll]['ConfirmedCases'], train[~booll]['ConfirmedCases']
model_xgb_cc = xgb.XGBRegressor(**params_xgb)
model_xgb_cc.fit(X_tr, y_tr, verbose=True)
y_hat = model_xgb_cc.predict(X_vl)
y_hat[y_hat<0] = 0
print('xgb mae :', mean_absolute_error(y_vl, y_hat), mean_squared_log_error(y_vl, y_hat), X_tr.shape, X_vl.shape)
print('done', datetime.now() )<train_model> | test.to_csv("submission.csv", index=False, columns=["ForecastId", "ConfirmedCases", "Fatalities"] ) | COVID19 Global Forecasting (Week 3) |
8,824,956 | y_train = train["Fatalities"]
y_train_cc = train["ConfirmedCases"]
params_xgb = {}
params_xgb['n_estimators'] = 1100
params_xgb['max_depth'] = 10
params_xgb['seed'] = 2020
params_xgb['colsample_bylevel'] = 1
params_xgb['colsample_bytree'] = 1
params_xgb['learning_rate'] = 0.3
params_xgb['reg_alpha'] = 0
params_xgb['reg_lambda'] = 1
params_xgb['subsample'] = 1
model_xgb_cc = xgb.XGBRegressor(**params_xgb ).fit(X_train[features], y_train_cc, verbose=True)
y_hat_xgb_c = model_xgb_cc.predict(X_test[features])
print('done', datetime.now() )<train_model> | test.days.nunique() | COVID19 Global Forecasting (Week 3) |
8,824,956 | params_xgb = {}
params_xgb['n_estimators'] = 1100
params_xgb['max_depth'] = 10
params_xgb['seed'] = 2020
params_xgb['colsample_bylevel'] = 1
params_xgb['colsample_bytree'] = 1
params_xgb['learning_rate'] = 0.300000012
params_xgb['reg_alpha'] = 0
params_xgb['reg_lambda'] = 1
params_xgb['subsample'] = 1
model_xgb_f = xgb.XGBRegressor(**params_xgb ).fit(X_train[features], y_train, verbose=True)
y_hat_xgb_f = model_xgb_f.predict(X_test[features])
print(np.mean(y_hat_xgb_f))
print('done', datetime.now() )<feature_engineering> | for i, rec in test.groupby('Area' ).last().sort_values("ConfirmedCases", ascending=False ).iterrows() :
print(f"{rec['ConfirmedCases']:10.1f} {rec['Fatalities']:10.1f} {rec['Country_Region']}, {rec['Province_State']}")
| COVID19 Global Forecasting (Week 3) |
8,825,111 | test['y_hat_xgb_c'] = y_hat_xgb_c
test['y_hat_xgb_f'] = y_hat_xgb_f
test['y_hat_xgb_c2'] = y_hat_xgb_c2
print('Fixing Negative Predictions:'
, np.sum(test.y_hat_xgb_c < 0)
, np.sum(test.y_hat_xgb_c2 < 0)
, np.sum(test.y_hat_xgb_f< 0)
, np.sum(test.wg< 0)
, np.sum(test.ARIMA< 0)
, np.sum(test.SARIMAX< 0)
, np.sum(test.y_hat_log< 0))
test.loc[test.y_hat_xgb_c < 0, 'y_hat_xgb_c'] = 0
test.loc[test.y_hat_xgb_c2 < 0, 'y_hat_xgb_c2'] = 0
test.loc[test.y_hat_xgb_f < 0, 'y_hat_xgb_f'] = 0
test.loc[test.wg < 0, 'wg'] = 0
test.loc[test.ARIMA < 0, 'ARIMA'] = 0
test.loc[test.SARIMAX < 0, 'SARIMAX'] = 0
test.loc[test.y_hat_log < 0, 'y_hat_log'] = 0
print('done', datetime.now() )<count_missing_values> | plotly.offline.init_notebook_mode()
%matplotlib inline
def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)))
| COVID19 Global Forecasting (Week 3) |
8,825,111 | print('Fixing Inf Predictions:'
, np.sum(test.y_hat_xgb_c.isnull())
, np.sum(test.y_hat_xgb_c2.isnull())
, np.sum(test.y_hat_xgb_f.isnull())
, np.sum(test.wg.isnull())
, np.sum(test.ARIMA.isnull())
, np.sum(test.SARIMAX.isnull())
, np.sum(test.y_hat_log.isnull()))
booll =(test['SARIMAX'].isnull())
test.loc[booll, 'SARIMAX'] = test[booll]['y_hat_log']
booll =(test['ARIMA'].isnull())
test.loc[booll, 'ARIMA'] = test[booll]['y_hat_log']
print('Fixing Inf Predictions:'
, np.sum(test.y_hat_xgb_c.isnull())
, np.sum(test.y_hat_xgb_c2.isnull())
, np.sum(test.y_hat_xgb_f.isnull())
, np.sum(test.wg.isnull())
, np.sum(test.ARIMA.isnull())
, np.sum(test.SARIMAX.isnull())
, np.sum(test.y_hat_log.isnull()))
print('done', datetime.now() )<filter> | pd.set_option('mode.chained_assignment', None)
test = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
train = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region','Province_State','Date'])
test = test.sort_values(['Country_Region','Province_State','Date'] ) | COVID19 Global Forecasting (Week 3) |
8,825,111 | print('Fixing Unrealistic Predictions:',
np.sum(test['pop'] *(700/3100)< test.y_hat_xgb_c),
np.sum(test['pop'] *(700/3100)< test.y_hat_xgb_c2),
np.sum(test['pop'] *(700/3100)< test.y_hat_xgb_f),
np.sum(test['pop'] *(700/3100)< test.wg),
np.sum(test['pop'] *(700/3100)< test.ARIMA),
np.sum(test['pop'] *(700/3100)< test.SARIMAX),
np.sum(test['pop'] *(700/3100)< test.y_hat_log),
)
booll =(test['pop'] *(700/3100)< test.y_hat_xgb_c)
test.loc[booll, 'y_hat_xgb_c'] = test[booll]['pop'] *(700/3100)
booll =(test['pop'] *(700/3100)< test.y_hat_xgb_c2)
test.loc[booll, 'y_hat_xgb_c2'] = test[booll]['pop'] *(700/3100)
booll =(test['pop'] *(700/3100)< test.y_hat_xgb_f)
test.loc[booll, 'y_hat_xgb_f'] = test[booll]['pop'] *(700/3100)
booll =(test['pop'] *(700/3100)< test.wg)
test.loc[booll, 'wg'] = test[booll]['pop'] *(700/3100)
booll =(test['pop'] *(700/3100)< test.ARIMA)
test.loc[booll, 'ARIMA'] = test[booll]['pop'] *(700/3100)
booll =(test['pop'] *(700/3100)< test.SARIMAX)
test.loc[booll, 'SARIMAX'] = test[booll]['pop'] *(700/3100)
booll =(test['pop'] *(700/3100)< test.y_hat_log)
test.loc[booll, 'y_hat_log'] = test[booll]['pop'] *(700/3100)
print('Fixed Unrealistic Predictions:',
np.sum(test['pop'] *(700/3100)< test.y_hat_xgb_c),
np.sum(test['pop'] *(700/3100)< test.y_hat_xgb_f),
np.sum(test['pop'] *(700/3100)< test.wg),
np.sum(test['pop'] *(700/3100)< test.ARIMA),
np.sum(test['pop'] *(700/3100)< test.SARIMAX),
np.sum(test['pop'] *(700/3100)< test.y_hat_log),
)
print('done', datetime.now() )<feature_engineering> | FirstDate = train.groupby('Country_Region' ).min() ['Date'].unique() [0]
train['Last Confirm'] = train['ConfirmedCases'].shift(1)
while train[(train['Last Confirm'] > train['ConfirmedCases'])&(train['Date'] > FirstDate)].shape[0] > 0:
train['Last Confirm'] = train['ConfirmedCases'].shift(1)
train['Last Fatalities'] = train['Fatalities'].shift(1)
train.loc[(train['Last Confirm'] > train['ConfirmedCases'])&(train['Date'] > FirstDate),'ConfirmedCases'] = train.loc[(train['Last Confirm'] > train['ConfirmedCases'])&(train['Date'] > FirstDate),'Last Confirm']
train.loc[(train['Last Fatalities'] > train['Fatalities'])&(train['Date'] > FirstDate),'Fatalities'] = train.loc[(train['Last Fatalities'] > train['Fatalities'])&(train['Date'] > FirstDate),'Last Fatalities']
train['Last Confirm'] = train['ConfirmedCases'].shift(1)
train['Last Fatalities'] = train['Fatalities'].shift(1 ) | COVID19 Global Forecasting (Week 3) |
8,825,111 | test['y_hat_ens'] = test.y_hat_xgb_c *.15 + test.wg *.05 + test.y_hat_log *.30 + test['SARIMAX'] *.03 + test.y_hat_xgb_c2 *.47
test[(test.Province_State=='')&(test.Country_Region=='France')][['Date','y_hat_xgb_c','y_hat_xgb_c2', 'wg','SARIMAX', 'SARIMAX2','y_hat_log', 'y_hat_ens']]<count_missing_values> | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
with tqdm(total=len(train['Country_Region'].unique())) as pbar:
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
feature_use = X_pred.columns[0]
for i in range(X_pred.shape[1] - 1,0,-1):
if(X_pred.iloc[0,i] > 0):
feature_use = X_pred.columns[i]
break
idx = X_train[X_train[feature_use] == 0].shape[0]
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
adjusted_X_pred = X_pred[feature_use].values.reshape(-1, 1)
model = make_pipeline(PolynomialFeatures(2), BayesianRidge())
model.fit(adjusted_X_train,adjusted_y_train_confirmed)
y_hat_confirmed = model.predict(adjusted_X_pred)
model.fit(adjusted_X_train,adjusted_y_train_fatalities)
y_hat_fatalities = model.predict(adjusted_X_pred)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
pbar.update(1)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_1 = df_val.copy()
RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values ) | COVID19 Global Forecasting (Week 3) |
8,825,111 | print('Empty Predictions?', np.sum(test.y_hat_ens.isnull()))
<compute_train_metric> | RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values ) | COVID19 Global Forecasting (Week 3) |
8,825,111 | narf = train[train.day_from_jan_first== 79].copy()
narf = narf.merge(test[test.day_from_jan_first== 79], on=['Country_Region','Province_State','day_from_jan_first'])
narf['err'] = np.abs(( narf.wg_y - narf.ConfirmedCases)/(1+narf.ConfirmedCases))
print(mean_squared_log_error(narf.ConfirmedCases,narf.y_hat_ens))
print('wg', mean_squared_log_error(narf.ConfirmedCases,narf.wg_y))
print('SARIMAX', mean_squared_log_error(narf.ConfirmedCases,narf.SARIMAX))
print('y_hat_log', mean_squared_log_error(narf.ConfirmedCases,narf.y_hat_log_y))
print('y_hat_xgb_c', mean_squared_log_error(narf.ConfirmedCases,narf.y_hat_xgb_c))
narf = narf[narf.err>100].copy()
if narf.shape[0]> 0:
print(mean_squared_log_error(narf.ConfirmedCases,narf.y_hat_ens))
else:
print('no fixes for wg_y')
for index, row in narf.iterrows() :
country = row['Country_Region']
state = row['Province_State']
booll =(test.Country_Region==country)&(test.Province_State==state)
test.loc[booll, 'wg'] =(test[booll].y_hat_log)*.3 +(test[booll].y_hat_xgb_c)*.7
print('done', datetime.now() )<feature_engineering> | val_score = []
for country in df_val['Country_Region'].unique() :
df_val_country = df_val[(df_val['Country_Region'] == country)&(df_val['Fatalities'].isnull() == False)]
val_score.append([country, RMSLE(df_val_country['ConfirmedCases'].values,df_val_country['ConfirmedCases_hat'].values),RMSLE(df_val_country['Fatalities'].values,df_val_country['Fatalities_hat'].values)])
df_val_score = pd.DataFrame(val_score)
df_val_score.columns = ['Country','ConfirmedCases_Scored','Fatalities_Scored']
df_val_score.sort_values('ConfirmedCases_Scored', ascending = False)
| COVID19 Global Forecasting (Week 3) |
8,825,111 | test['y_hat_ens'] = test.y_hat_xgb_c *.15 + test.wg *.05 + test.y_hat_log *.30 + test['SARIMAX'] *.03 + test.y_hat_xgb_c2 *.47
test[(test.Province_State=='')&(test.Country_Region=='France')][['Date','y_hat_xgb_c','y_hat_xgb_c2', 'wg', 'ARIMA','SARIMAX','y_hat_log', 'y_hat_ens']]<compute_train_metric> | country = "India"
df_val = df_val_1
df_val[df_val['Country_Region'] == country].groupby(['Date','Country_Region'] ).sum().reset_index() | COVID19 Global Forecasting (Week 3) |
8,825,111 | narf = train[train.day_from_jan_first== 79].copy()
narf = narf.merge(test[test.day_from_jan_first== 79], on=['Country_Region','Province_State','day_from_jan_first'])
narf['err'] = np.abs(( narf.y_hat_log_y - narf.ConfirmedCases)/(1+narf.ConfirmedCases))
print(mean_squared_log_error(narf.ConfirmedCases,narf.y_hat_ens))
print('wg', mean_squared_log_error(narf.ConfirmedCases,narf.wg_y))
print('SARIMAX', mean_squared_log_error(narf.ConfirmedCases,narf.SARIMAX))
print('y_hat_log', mean_squared_log_error(narf.ConfirmedCases,narf.y_hat_log_y))
print('y_hat_xgb_c', mean_squared_log_error(narf.ConfirmedCases,narf.y_hat_xgb_c))
narf = narf[narf.err>10].copy()
if narf.shape[0]> 0:
print(mean_squared_log_error(narf.ConfirmedCases,narf.y_hat_ens))
else:
print('no fixes for y_hat_log')
for index, row in narf.iterrows() :
country = row['Country_Region']
state = row['Province_State']
booll =(test.Country_Region==country)&(test.Province_State==state)
print('done', datetime.now() )<filter> | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
with tqdm(total=len(train['Country_Region'].unique())) as pbar:
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
with warnings.catch_warnings() :
warnings.filterwarnings("ignore")
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
feature_use = X_pred.columns[0]
for i in range(X_pred.shape[1] - 1,0,-1):
if(X_pred.iloc[0,i] > 0):
feature_use = X_pred.columns[i]
break
idx = X_train[X_train[feature_use] == 0].shape[0]
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = ExponentialSmoothing(adjusted_y_train_confirmed, trend = 'additive' ).fit()
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = ExponentialSmoothing(adjusted_y_train_fatalities, trend = 'additive' ).fit()
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
pbar.update(1)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_2 = df_val.copy()
| COVID19 Global Forecasting (Week 3) |
8,825,111 | test[test.y_hat_ens==1521225]
test[(test.Province_State=='')&(test.Country_Region=='Turkey')][['Date','y_hat_xgb_c', 'wg', 'ARIMA','SARIMAX','y_hat_log', 'y_hat_ens']]<data_type_conversions> | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
with tqdm(total=len(train['Country_Region'].unique())) as pbar:
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
with warnings.catch_warnings() :
warnings.filterwarnings("ignore")
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
feature_use = X_pred.columns[0]
for i in range(X_pred.shape[1] - 1,0,-1):
if(X_pred.iloc[0,i] > 0):
feature_use = X_pred.columns[i]
break
idx = X_train[X_train[feature_use] == 0].shape[0]
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = SARIMAX(adjusted_y_train_confirmed, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = SARIMAX(adjusted_y_train_fatalities, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
pbar.update(1)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_3 = df_val.copy() | COVID19 Global Forecasting (Week 3) |
8,825,111 | test['y_hat_ens'] = test.y_hat_ens.astype(int)
print(np.max(test['y_hat_ens']))
<save_to_csv> | method_list = ['Poly Bayesian Ridge','Exponential Smoothing','SARIMA']
method_val = [df_val_1,df_val_2,df_val_3]
for i in range(0,3):
df_val = method_val[i]
method_score = [method_list[i]] + [RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values)] + [RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values)]
print(method_score ) | COVID19 Global Forecasting (Week 3) |
8,825,111 | submissionOrig = pd.read_csv(".. /input/covid19-global-forecasting-week-2/submission.csv")
submissionOrig["ConfirmedCases"]= pd.Series(test.y_hat_ens)
submissionOrig["Fatalities"] = pd.Series(test.y_hat_xgb_f)
submissionOrig.to_csv('submission.csv',index=False)
submissionOrig.head(25)
print('done', datetime.now() )<import_modules> | df_val = df_val_3
submission = df_val[['ForecastId','ConfirmedCases_hat','Fatalities_hat']]
submission.columns = ['ForecastId','ConfirmedCases','Fatalities']
submission.to_csv('submission.csv', index=False)
submission | COVID19 Global Forecasting (Week 3) |
8,813,914 | import pandas as pd<import_modules> | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.tsa.arima_model as arima
from sklearn.linear_model import LinearRegression
from sklearn import linear_model | COVID19 Global Forecasting (Week 3) |
8,813,914 | import pandas as pd<load_from_csv> | warnings.filterwarnings('ignore')
pd.set_option("display.max_rows", None, "display.max_columns", None ) | COVID19 Global Forecasting (Week 3) |
8,813,914 | sub_expo = pd.read_csv('.. /input/submissions-covid19-public/submission_expo.csv')
sub_expo = sub_expo.rename({'ConfirmedCases': 'ConfirmedCases_expo', 'Fatalities': 'Fatalities_expo'}, axis=1)
sub_gam = pd.read_csv('.. /input/submissions-covid19-public/submission_gam.csv')
sub_gam = sub_gam.rename({'ConfirmedCases': 'ConfirmedCases_gam', 'Fatalities': 'Fatalities_gam'}, axis=1)
sub_power = pd.read_csv('.. /input/submissions-covid19-public/submission_power.csv')
sub_power = sub_power.rename({'ConfirmedCases': 'ConfirmedCases_power', 'Fatalities': 'Fatalities_power'}, axis=1 )<merge> | training_data_original = pd.read_csv('/kaggle/input/inputs2/train.csv')
training_data_original['Date'] = pd.to_datetime(training_data_original['Date'])
training_data = training_data_original[~training_data_original['Country_Region'].isin(['Diamond Princess', 'MS Zaandam'])]
countries = training_data['Country_Region'].unique()
countries_main = ['China', 'US', 'Australia', 'Canada']
states = training_data['Province_State'].unique()
| COVID19 Global Forecasting (Week 3) |
8,813,914 | sub = sub_expo.copy()
sub = sub.merge(sub_gam, on='ForecastId', how='left')
sub = sub.merge(sub_power, on='ForecastId', how='left')
sub.head()<feature_engineering> | training_data[training_data['Country_Region'] == 'Belize'] | COVID19 Global Forecasting (Week 3) |
8,813,914 | sub['ConfirmedCases'] = sub[[c for c in sub.columns if c.startswith('ConfirmedCases_')]].mean(axis=1)
sub['Fatalities'] = sub[[c for c in sub.columns if c.startswith('Fatalities_')]].mean(axis=1)
sub.head()<save_to_csv> | state_metadata = pd.read_excel('/kaggle/input/externaldata2/states.xlsx')
country_metadata = pd.read_excel('/kaggle/input/externaldata2/countries.xlsx' ) | COVID19 Global Forecasting (Week 3) |
8,813,914 | sub[['ForecastId', 'ConfirmedCases', 'Fatalities']].to_csv('submission.csv', index=False )<import_modules> | def data_preparation(training_data, countries, states, country_metadata, state_metadata, n_days_case,
n_days_fatal, min_num_cases = 2):
training_data_trun = training_data[training_data['ConfirmedCases'] >= min_num_cases]
conf_cases_dict = {}
fatal_dict = {}
for country in countries:
if country not in countries_main:
training_data_trun_loc = training_data_trun[(training_data_trun['Country_Region'] == country)&(pd.isnull(training_data_trun.Province_State)) ]
training_data_trun_loc = training_data_trun_loc.groupby(['Date'] ).sum()
training_data_trun_loc = training_data_trun_loc.sort_values(by = 'Date')
if len(training_data_trun_loc['ConfirmedCases'].values)>= n_days_case:
conf_cases_dict[country] = training_data_trun_loc['ConfirmedCases'].values[:n_days_case] / country_metadata[country_metadata['Countries'] == country]['Population'].values[0]
if len(training_data_trun_loc['Fatalities'].values)>= n_days_fatal:
fatal_dict[country] = training_data_trun_loc['Fatalities'].values[:n_days_fatal]
for state in states:
training_data_trun_loc = training_data_trun[training_data_trun['Province_State'] == state]
training_data_trun_loc = training_data_trun_loc.groupby(['Date'] ).sum()
training_data_trun_loc = training_data_trun_loc.sort_values(by = 'Date')
if len(training_data_trun_loc['ConfirmedCases'].values)>= n_days_case:
conf_cases_dict[state] = training_data_trun_loc['ConfirmedCases'].values[:n_days_case] / state_metadata[state_metadata['States'] == state]['Population'].values[0]
if len(training_data_trun_loc['Fatalities'].values)>= n_days_fatal:
fatal_dict[state] = training_data_trun_loc['Fatalities'].values[:n_days_fatal]
return pd.DataFrame(conf_cases_dict), pd.DataFrame(fatal_dict ) | COVID19 Global Forecasting (Week 3) |
8,813,914 | plotly.offline.init_notebook_mode()
%matplotlib inline
def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)) )<load_from_csv> | def fts_training(input_df, rank = 3):
matrix = input_df.values
u, s, v = np.linalg.svd(matrix, full_matrices=False)
scores = np.matmul(u[:, :rank], np.diag(s[:rank]))
pcs = v[:rank, :]
return scores, pcs | COVID19 Global Forecasting (Week 3) |
8,813,914 | pd.set_option('mode.chained_assignment', None)
test = pd.read_csv(".. /input/covid19-global-forecasting-week-2/test.csv")
train = pd.read_csv(".. /input/covid19-global-forecasting-week-2/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region','Province_State','Date'])
test = test.sort_values(['Country_Region','Province_State','Date'] )<categorify> | def forecast_trajectories(training_data, countries, states, country_metadata,
state_metadata, loc = None, n_days_case = 30, n_days_fatal = 10,
forecast_days = 10, min_num_cases = 2, model_type = 'ARIMA',
components_modeling = True, rank = 3):
kf = KalmanFilter(initial_state_mean = np.zeros(rank ).tolist() , n_dim_obs = rank)
conf_cases_df, fatal_df = data_preparation(training_data, countries, states,
country_metadata, state_metadata,
n_days_case = n_days_case,
n_days_fatal = n_days_case,
min_num_cases = min_num_cases)
pred_countries = conf_cases_df.columns.tolist()
pred_countries_fatal = fatal_df.columns.tolist()
conf_cases_exog_df, fatal_exog_df = data_preparation(training_data, countries, states,
country_metadata, state_metadata,
n_days_case = n_days_case + forecast_days,
n_days_fatal = n_days_case + forecast_days,
min_num_cases = min_num_cases)
scores_exog, pcs_exog = fts_training(conf_cases_exog_df, rank = rank)
if len(scores_exog)> 0:
scores_exog = kf.em(scores_exog ).smooth(scores_exog)[0]
scores, pcs = fts_training(conf_cases_df, rank = rank)
forecasted_scores = []
idx = 0
for score in scores.T:
if components_modeling:
exog = scores_exog[:n_days_case, idx] if len(scores_exog)> 0 else None
pred_exog = scores_exog[n_days_case:, idx] if len(scores_exog)> 0 else None
y = score
else:
exog = scores_exog[:n_days_case, :] if len(scores_exog)> 0 else None
pred_exog = scores_exog[n_days_case:, :] if len(scores_exog)> 0 else None
y = conf_cases_df[loc].values
try:
model = arima.ARIMA(endog = y, exog = exog, order =(4, 1, 0)).fit(
seasonal = False,
trace = False,
method = 'css',
solver = 'bfgs',
error_action = 'ignore',
setpwise_fit = True,
warn_convergence = True,
disp = False)
except:
try:
model = arima.ARIMA(endog = y, exog = exog, order =(3, 1, 0)).fit(
seasonal = False,
trace = False,
method = 'css',
solver = 'bfgs',
error_action = 'ignore',
setpwise_fit = True,
warn_convergence = True,
disp = False)
except:
try:
model = arima.ARIMA(endog = y, exog = exog, order =(2, 1, 0)).fit(
seasonal = False,
trace = False,
method = 'css',
solver = 'bfgs',
error_action = 'ignore',
setpwise_fit = True,
warn_convergence = True,
disp = False)
except:
model = arima.ARIMA(endog = y, exog = exog, order =(1, 0, 0)).fit(
seasonal = False,
trace = False,
method = 'css',
solver = 'bfgs',
error_action = 'ignore',
setpwise_fit = True,
warn_convergence = True,
disp = False)
if not components_modeling:
pred_traj = model.forecast(steps = forecast_days,
alpha = 0.001,
exog = pred_exog)[0]
break
else:
forecasted_scores.append(model.forecast(steps = forecast_days,
alpha = 0.001,
exog = pred_exog)[0].tolist())
idx = idx + 1
if components_modeling:
pred_traj = np.matmul(np.array(forecasted_scores ).T, pcs)
pred_traj_df = pd.DataFrame(pred_traj, columns = pred_countries)
for loc in pred_countries:
if loc in country_metadata['Countries'].values.tolist() :
pred_traj_df[loc] = country_metadata[country_metadata['Countries']
== loc]['Population'].values[0] * pred_traj_df[loc]
if loc in state_metadata['States'].values.tolist() :
pred_traj_df[loc] = state_metadata[state_metadata['States']
== loc]['Population'].values[0] * pred_traj_df[loc]
else:
pred_traj_df = pd.DataFrame()
if loc in countries:
pred_traj_df[loc] = country_metadata[country_metadata['Countries']
== loc]['Population'].values[0] * pred_traj
elif loc in states:
pred_traj_df[loc] = state_metadata[state_metadata['States']
== loc]['Population'].values[0] * pred_traj
fatal_scores_exog, fatal_pcs_exog = fts_training(fatal_exog_df, rank = rank)
if len(fatal_pcs_exog)> 0:
fatal_scores_exog = kf.em(fatal_scores_exog ).smooth(fatal_scores_exog)[0]
fatal_scores, fatal_pcs = fts_training(fatal_df, rank = rank)
forecasted_fatal_scores = []
idx = 0
for fatal_score in fatal_scores.T:
if components_modeling:
exog = fatal_scores_exog[:n_days_fatal, idx] if len(fatal_scores_exog)> 0 else None
pred_exog = fatal_scores_exog[n_days_fatal:, idx] if len(fatal_scores_exog)> 0 else None
y = fatal_score
else:
exog = fatal_scores_exog[:n_days_fatal, :] if len(fatal_scores_exog)> 0 else None
pred_exog = fatal_scores_exog[n_days_fatal:, :] if len(fatal_scores_exog)> 0 else None
y = fatal_df[loc].values
try:
model = arima.ARIMA(endog = y, exog = exog, order =(4, 1, 0)).fit(
seasonal = False,
trace = False,
method = 'css',
solver = 'bfgs',
error_action = 'ignore',
setpwise_fit = True,
warn_convergence = True,
disp = False)
except:
try:
model = arima.ARIMA(endog = y, exog = exog, order =(3, 1, 0)).fit(
seasonal = False,
trace = False,
method = 'css',
solver = 'bfgs',
error_action = 'ignore',
setpwise_fit = True,
warn_convergence = True,
disp = False)
except:
try:
model = arima.ARIMA(endog = y, exog = exog, order =(2, 1, 0)).fit(
seasonal = False,
trace = False,
method = 'css',
solver = 'bfgs',
error_action = 'ignore',
setpwise_fit = True,
warn_convergence = True,
disp = False)
except:
model = arima.ARIMA(endog = y, exog = exog, order =(1, 0, 0)).fit(
seasonal = False,
trace = False,
method = 'css',
solver = 'bfgs',
error_action = 'ignore',
setpwise_fit = True,
warn_convergence = True,
disp = False)
if not components_modeling:
fatal_pred_traj = model.forecast(steps = forecast_days,
alpha = 0.001,
exog = pred_exog)[0]
break
else:
forecasted_fatal_scores.append(model.forecast(steps = forecast_days,
alpha = 0.001,
exog = pred_exog)[0].tolist())
idx = idx + 1
if components_modeling:
fatal_pred_traj = np.matmul(np.array(forecasted_fatal_scores ).T, fatal_pcs)
fatal_pred_traj_df = pd.DataFrame(fatal_pred_traj, columns = pred_countries_fatal)
else:
fatal_pred_traj_df = pd.DataFrame()
if loc in countries:
fatal_pred_traj_df[loc] = country_metadata[country_metadata['Countries']
== loc]['Population'].values[0] * fatal_pred_traj
elif loc in states:
fatal_pred_traj_df[loc] = state_metadata[state_metadata['States']
== loc]['Population'].values[0] * fatal_pred_traj
return pred_traj_df, fatal_pred_traj_df | COVID19 Global Forecasting (Week 3) |
8,813,914 | train[['ConfirmedCases', 'Fatalities']] = train.groupby(['Country_Region', 'Province_State'])[['ConfirmedCases', 'Fatalities']].transform('cummax')
<feature_engineering> | pred_traj_df, fatal_pred_traj_df = forecast_trajectories(training_data, countries, states, country_metadata, state_metadata,
loc = 'New York', n_days_case = 29, n_days_fatal = 29,
forecast_days = 30, rank = 3, min_num_cases = 25,
components_modeling = True ) | COVID19 Global Forecasting (Week 3) |
8,813,914 | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
with tqdm(total=len(train['Country_Region'].unique())) as pbar:
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
feature_use = X_pred.columns[0]
for i in range(X_pred.shape[1] - 1,0,-1):
if(X_pred.iloc[0,i] > 0):
feature_use = X_pred.columns[i]
break
idx = X_train[X_train[feature_use] == 0].shape[0]
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
adjusted_X_pred = X_pred[feature_use].values.reshape(-1, 1)
model = make_pipeline(PolynomialFeatures(2), BayesianRidge())
model.fit(adjusted_X_train,adjusted_y_train_confirmed)
y_hat_confirmed = model.predict(adjusted_X_pred)
model.fit(adjusted_X_train,adjusted_y_train_fatalities)
y_hat_fatalities = model.predict(adjusted_X_pred)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
pbar.update(1)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_1 = df_val.copy()<compute_test_metric> | def generate_prediction(test_data, training_data, countries_main, countries, states, min_num_cases):
for country in countries:
print(country)
if country not in countries_main and country not in excl_list:
test_loc_df = test_data[(test_data['Country_Region'] == country)&(pd.isnull(test_data.Province_State)) ].reset_index()
train_loc_df = training_data[(training_data['Country_Region'] == country)&(pd.isnull(training_data.Province_State)) ].reset_index()
test_start = test_loc_df['Date'][0]
test_end = test_loc_df['Date'][len(test_loc_df)- 1]
train_end = train_loc_df['Date'][len(train_loc_df)- 1]
test_loc_df.loc[(( test_loc_df['Date'] >= test_start)) &(test_loc_df['Date'] <= train_end), 'ConfirmedCases'] = train_loc_df[(train_loc_df['Date'] >= test_start)&(train_loc_df['Date'] <= train_end)]['ConfirmedCases'].values
test_loc_df.loc[(( test_loc_df['Date'] >= test_start)) &(test_loc_df['Date'] <= train_end), 'Fatalities'] = train_loc_df[(train_loc_df['Date'] >= test_start)&(train_loc_df['Date'] <= train_end)]['Fatalities'].values
effective_df = train_loc_df[train_loc_df['ConfirmedCases'] >= min_num_cases]
forecast_days = int(( test_end - train_end ).days)
min_num_cases_temp = min_num_cases
if len(effective_df)> 0:
while min_num_cases_temp > 1:
try:
effective_train_start = train_loc_df[train_loc_df['ConfirmedCases'] >= min_num_cases_temp].reset_index() ['Date'][0]
n_days_case = int(( train_end - effective_train_start ).days)+ 1
pred_df, fatal_pred_df = forecast_trajectories(training_data, countries, states,
country_metadata, state_metadata, loc = country,
n_days_case = n_days_case, n_days_fatal = n_days_case,
forecast_days = forecast_days, min_num_cases = min_num_cases_temp,
rank = 3)
test_loc_df.loc[test_loc_df['Date'] > train_end, 'ConfirmedCases'] = np.maximum.accumulate(pred_df[country].values ).astype(int)
test_data.loc[(test_data['Country_Region'] == country)&(pd.isnull(test_data.Province_State)) , 'ConfirmedCases'] = test_loc_df['ConfirmedCases'].values
test_loc_df.loc[test_loc_df['Date'] > train_end, 'Fatalities'] = np.maximum.accumulate(fatal_pred_df[country].values ).astype(int)
test_data.loc[(test_data['Country_Region'] == country)&(pd.isnull(test_data.Province_State)) , 'Fatalities'] = test_loc_df['Fatalities'].values
break
except:
min_num_cases_temp = math.floor(min_num_cases_temp / 2)
continue
for state in states:
print(state)
if str(state)not in excl_list:
test_loc_df = test_data[(test_data['Province_State'] == state)].reset_index()
train_loc_df = training_data[(training_data['Province_State'] == state)].reset_index()
test_start = test_loc_df['Date'][0]
test_end = test_loc_df['Date'][len(test_loc_df)- 1]
train_end = train_loc_df['Date'][len(train_loc_df)- 1]
test_loc_df.loc[(( test_loc_df['Date'] >= test_start)) &(test_loc_df['Date'] <= train_end), 'ConfirmedCases'] = train_loc_df[(train_loc_df['Date'] >= test_start)&(train_loc_df['Date'] <= train_end)]['ConfirmedCases'].values
test_loc_df.loc[(( test_loc_df['Date'] >= test_start)) &(test_loc_df['Date'] <= train_end), 'Fatalities'] = train_loc_df[(train_loc_df['Date'] >= test_start)&(train_loc_df['Date'] <= train_end)]['Fatalities'].values
effective_df = train_loc_df[train_loc_df['ConfirmedCases'] >= min_num_cases]
forecast_days = int(( test_end - train_end ).days)
min_num_cases_temp = min_num_cases
if len(effective_df)> 0:
while min_num_cases_temp > 1:
try:
effective_train_start = train_loc_df[train_loc_df['ConfirmedCases'] >= min_num_cases_temp].reset_index() ['Date'][0]
n_days_case = int(( train_end - effective_train_start ).days)+ 1
pred_df, fatal_pred_df = forecast_trajectories(training_data, countries, states,
country_metadata, state_metadata, loc = state,
n_days_case = n_days_case, n_days_fatal = n_days_case,
forecast_days = forecast_days, min_num_cases = min_num_cases_temp,
rank = 3)
test_loc_df.loc[test_loc_df['Date'] > train_end, 'ConfirmedCases'] = np.maximum.accumulate(pred_df[state].values ).astype(int)
test_data.loc[test_data['Province_State'] == state, 'ConfirmedCases'] = test_loc_df['ConfirmedCases'].values
test_loc_df.loc[test_loc_df['Date'] > train_end, 'Fatalities'] = np.maximum.accumulate(fatal_pred_df[state].values ).astype(int)
test_data.loc[test_data['Province_State'] == state, 'Fatalities'] = test_loc_df['Fatalities'].values
break
except:
min_num_cases_temp = math.floor(min_num_cases_temp / 2)
continue
return test_data | COVID19 Global Forecasting (Week 3) |
8,813,914 | RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values )<compute_test_metric> | test_data = pd.read_csv('/kaggle/input/inputs2/test.csv')
test_data['Date'] = pd.to_datetime(test_data['Date'] ) | COVID19 Global Forecasting (Week 3) |
8,813,914 | RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values )<groupby> | test_data['ConfirmedCases'] = None
test_data['Fatalities'] = None | COVID19 Global Forecasting (Week 3) |
8,813,914 | country = "Vietnam"
df_val = df_val_1
df_val[df_val['Country_Region'] == country].groupby(['Date','Country_Region'] ).sum().reset_index()<save_model> | excl_list = ['Belize', 'Botswana', 'Diamond Princess', 'MS Zaandam', 'Angola',
'Turks and Caicos Islands', 'Burma', 'Burundi', 'Chad', 'Eritrea',
'Grenada', 'Guinea-Bissau', 'Holy See', 'Kosovo',
'Laos', 'Libya', 'Mali', 'Mozambique', 'Saint Kitts and Nevis', 'Somalia',
'Syria', 'nan', 'Saint Barthelemy', 'Virgin Islands', 'Montserrat',
'Saint Vincent and the Grenadines', 'Sierra Leone', 'Northwest Territories',
'Yukon', 'Anguilla', 'British Virgin Islands', 'Papua New Guinea', 'Bhutan',
'Congo(Brazzaville)', 'Gabon', 'Guinea', 'Guyana', 'Haiti', 'Namibia',
'Saint Lucia', 'Seychelles', 'Curacao', 'Cayman Islands',
'Central African Republic', 'Liberia', 'Mauritania', 'Nepal',
'Nicaragua', 'Sudan'] | COVID19 Global Forecasting (Week 3) |
8,813,914 | animator.save('confirm_animation.gif', writer='imagemagick', fps=2)
display(Image(url='confirm_animation.gif'))<feature_engineering> | predictions = generate_prediction(test_data, training_data, countries_main, countries, states, min_num_cases = 25 ) | COVID19 Global Forecasting (Week 3) |
8,813,914 | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
with tqdm(total=len(train['Country_Region'].unique())) as pbar:
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
with warnings.catch_warnings() :
warnings.filterwarnings("ignore")
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
feature_use = X_pred.columns[0]
for i in range(X_pred.shape[1] - 1,0,-1):
if(X_pred.iloc[0,i] > 0):
feature_use = X_pred.columns[i]
break
idx = X_train[X_train[feature_use] == 0].shape[0]
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = ExponentialSmoothing(adjusted_y_train_confirmed, trend = 'additive' ).fit()
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = ExponentialSmoothing(adjusted_y_train_fatalities, trend = 'additive' ).fit()
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
pbar.update(1)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_2 = df_val.copy()<feature_engineering> | missing_countries = predictions[(predictions.ConfirmedCases.isnull())&(pd.isnull(predictions.Province_State)) ]['Country_Region'].unique().tolist()
missing_states = predictions[(predictions.ConfirmedCases.isnull())&(pd.notnull(predictions.Province_State)) ]['Province_State'].unique().tolist() | COVID19 Global Forecasting (Week 3) |
8,813,914 | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
with tqdm(total=len(train['Country_Region'].unique())) as pbar:
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
with warnings.catch_warnings() :
warnings.filterwarnings("ignore")
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
feature_use = X_pred.columns[0]
for i in range(X_pred.shape[1] - 1,0,-1):
if(X_pred.iloc[0,i] > 0):
feature_use = X_pred.columns[i]
break
idx = X_train[X_train[feature_use] == 0].shape[0]
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = SARIMAX(adjusted_y_train_confirmed, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = SARIMAX(adjusted_y_train_fatalities, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
pbar.update(1)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_3 = df_val.copy()<compute_test_metric> | def fill_excl_pred(predictions, training_data_original, test_data):
for country in missing_countries:
print(country)
pred_loc_df = predictions[predictions['Country_Region'] == country]
train_loc_df = training_data_original[training_data_original['Country_Region'] == country]
series_comf_cases = train_loc_df['ConfirmedCases'].values
series_fatal = train_loc_df['Fatalities'].values
test_start = test_data[test_data['Country_Region'] == country]['Date'].values[0]
series_comf_cases_test = training_data_original[(training_data_original['Country_Region'] == country)&(training_data_original['Date'] >= test_start)]['ConfirmedCases']
series_fatal_test = training_data_original[(training_data_original['Country_Region'] == country)&(training_data_original['Date'] >= test_start)]['Fatalities']
if len(series_comf_cases)> 0:
regressor = LinearRegression()
regressor.fit(np.arange(len(series_comf_cases_test)).reshape(-1, 1), series_comf_cases_test)
comf_cases_pred = regressor.predict(np.arange(13, 43 ).reshape(-1, 1))
regressor.fit(np.arange(len(series_fatal_test)).reshape(-1, 1), series_fatal_test)
fatal_pred = regressor.predict(np.arange(13, 43 ).reshape(-1, 1))
else:
comf_cases_pred = []
fatal_pred = []
conf_cases_loc = np.concatenate(( series_comf_cases_test, comf_cases_pred), axis=0)
fatal_loc = np.concatenate(( series_fatal_test, fatal_pred), axis=0)
predictions.loc[predictions['Country_Region'] == country, 'ConfirmedCases'] = conf_cases_loc.astype(int)
predictions.loc[predictions['Country_Region'] == country, 'Fatalities'] = fatal_loc.astype(int)
for state in missing_states:
print(state)
pred_loc_df = predictions[predictions['Province_State'] == state]
train_loc_df = training_data_original[training_data_original['Province_State'] == state]
series_comf_cases = train_loc_df['ConfirmedCases'].values
series_fatal = train_loc_df['Fatalities'].values
test_start = test_data[test_data['Province_State'] == state]['Date'].values[0]
series_comf_cases_test = training_data_original[(training_data_original['Province_State'] == state)&(training_data_original['Date'] >= test_start)]['ConfirmedCases']
series_fatal_test = training_data[(training_data_original['Province_State'] == state)&(training_data_original['Date'] >= test_start)]['Fatalities']
regressor = LinearRegression()
regressor.fit(np.arange(len(series_comf_cases_test)).reshape(-1, 1), series_comf_cases_test)
comf_cases_pred = regressor.predict(np.arange(13, 43 ).reshape(-1, 1))
regressor.fit(np.arange(len(series_fatal_test)).reshape(-1, 1), series_fatal_test)
fatal_pred = regressor.predict(np.arange(13, 43 ).reshape(-1, 1))
conf_cases_loc = np.concatenate(( series_comf_cases_test, comf_cases_pred), axis=0)
fatal_loc = np.concatenate(( series_fatal_test, fatal_pred), axis=0)
predictions.loc[predictions['Province_State'] == state, 'ConfirmedCases'] = conf_cases_loc.astype(int)
predictions.loc[predictions['Province_State'] == state, 'Fatalities'] = fatal_loc.astype(int)
return predictions | COVID19 Global Forecasting (Week 3) |
8,813,914 | method_list = ['Poly Bayesian Ridge','Exponential Smoothing','SARIMA']
method_val = [df_val_1,df_val_2,df_val_3]
for i in range(0,3):
df_val = method_val[i]
method_score = [method_list[i]] + [RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values)] + [RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values)]
print(method_score )<save_to_csv> | prediction_final = fill_excl_pred(predictions, training_data_original, test_data ) | COVID19 Global Forecasting (Week 3) |
8,813,914 | df_val = df_val_3
submission = df_val[['ForecastId','ConfirmedCases_hat','Fatalities_hat']]
submission.columns = ['ForecastId','ConfirmedCases','Fatalities']
submission = submission.round({'ConfirmedCases': 0, 'Fatalities': 0})
submission.to_csv('submission.csv', index=False)
submission<filter> | prediction_final[prediction_final['Country_Region'] == 'Italy'] | COVID19 Global Forecasting (Week 3) |
8,813,914 | df_worldinfor[df_worldinfor['Country'] == 'Vietnam']<import_modules> | predictions_csv = pd.DataFrame()
predictions_csv['ForecastId'] = prediction_final['ForecastId'].astype(int)
predictions_csv['ConfirmedCases'] = prediction_final['ConfirmedCases'].astype(float)
predictions_csv['Fatalities'] = prediction_final['Fatalities'].astype(float ) | COVID19 Global Forecasting (Week 3) |
8,813,914 | <load_from_csv><EOS> | predictions_csv.to_csv('submission.csv', index = False ) | COVID19 Global Forecasting (Week 3) |
8,819,836 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<drop_column> | warnings.filterwarnings('ignore' ) | COVID19 Global Forecasting (Week 3) |
8,819,836 | print("fill blanks and add region for counting")
df.fillna(' ',inplace=True)
df['Lat']=df['Province_State']+df['Country_Region']
df.drop('Province_State',axis=1,inplace=True)
df.drop('Country_Region',axis=1,inplace=True)
<load_from_csv> | dftrain = pd.read_csv('.. /input/covid19-global-forecasting-week-3/train.csv', parse_dates=['Date'] ).sort_values(by=['Country_Region', 'Date'] ).fillna('None')
dftest = pd.read_csv('.. /input/covid19-global-forecasting-week-3/test.csv', parse_dates=['Date'] ).sort_values(by=['Country_Region', 'Date'] ).fillna('None')
dfsubm = pd.read_csv('.. /input/covid19-global-forecasting-week-3/submission.csv' ) | COVID19 Global Forecasting (Week 3) |
8,819,836 | countries_list=df.Lat.unique()
df1=[]
for i in countries_list:
df1.append(df[df['Lat']==i])
print("we have "+ str(len(df1)) +" regions in our dataset")
test=pd.read_csv("/kaggle/input/covid19-global-forecasting-week-2/test.csv" )<choose_model_class> | confirmed = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' ).sort_values(by='Country/Region')
deaths = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv')
recovered = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv' ) | COVID19 Global Forecasting (Week 3) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.