kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
8,824,396 | train_data['Nationality'].value_counts()<count_values> | def eval1(y, p):
val_len = y.shape[1] - TRAIN_N
return np.sqrt(mean_squared_error(y[:, TRAIN_N:TRAIN_N+val_len].flatten() , p[:, TRAIN_N:TRAIN_N+val_len].flatten()))
def run_c(params, X, test_size=50):
gr_base = []
gr_base_factor = []
x_min = np.ma.MaskedArray(X, X<1)
x_min = x_min.argmin(axis=1)
for i in range(X.shape[0]):
temp = X[i,:]
threshold = np.log(1+params['min cases for growth rate'])
num_days = params['last N days']
if(temp > threshold ).sum() > num_days:
d = np.diff(temp[temp > threshold])[-num_days:]
w = np.arange(len(d)) +1
w = w**5
w = w / np.sum(w)
gr_base.append(np.clip(np.average(d, weights=w), 0, params['growth rate max']))
d2 = np.diff(d)
w = np.arange(len(d2)) +1
w = w**10
w = w / np.sum(w)
gr_base_factor.append(np.clip(np.average(d2, weights=w), -0.5, params["growth rate factor max"]))
else:
gr_base.append(params['growth rate default'])
gr_base_factor.append(params['growth rate factor'])
gr_base = np.array(gr_base)
gr_base_factor = np.array(gr_base_factor)
preds = X.copy()
for i in range(test_size):
delta = np.clip(preds[:, -1], np.log(2), None)+ gr_base *(1 + params['growth rate factor']*(1 + params['growth rate factor factor'])**(i)) **(np.log1p(i))
preds = np.hstack(( preds, delta.reshape(-1,1)))
return preds
params = {
"min cases for growth rate": 0,
"last N days": 15,
"growth rate default": 0.2,
"growth rate max": 0.3,
"growth rate factor max": -0.1,
"growth rate factor": -0.3,
"growth rate factor factor": 0.01,
}
x = train_p_c
preds_c = run_c(params, np.log(1+x.values)[:,:TRAIN_N])
| COVID19 Global Forecasting (Week 3) |
8,824,396 | test_data['Nationality'].value_counts()<data_type_conversions> | for i in range(N_AREAS):
if 'China' in AREAS[i] and preds_c[i, TRAIN_N-1] < np.log(31):
preds_c[i, TRAIN_N:] = preds_c[i, TRAIN_N-1]
| COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data['Nationality'].fillna(value = 'Nationality_Unknown', inplace = True)
test_data['Nationality'].fillna(value = 'Nationality_Unknown', inplace = True )<count_values> | def lin_w(sz):
res = np.linspace(0, 1, sz+1, endpoint=False)[1:]
return np.append(res, np.append([1], res[::-1]))
def run_f(params, X_c, X_f, X_f_r, test_size=50):
X_f_r = np.array(np.ma.mean(np.ma.masked_outside(X_f_r, 0.03, 0.5)[:,:], axis=1))
X_f_r = np.clip(X_f_r, params['fatality_rate_lower'], params['fatality_rate_upper'])
X_c = np.clip(np.exp(X_c)-1, 0, None)
preds = X_f.copy()
train_size = X_f.shape[1] - 1
for i in range(test_size):
t_lag = train_size+i-params['length']
t_wsize = 5
d = np.diff(X_c, axis=1)[:, t_lag-t_wsize:t_lag+1+t_wsize]
delta = np.average(d, axis=1)
delta = params['absolute growth'] + delta * X_f_r
preds = np.hstack(( preds, preds[:, -1].reshape(-1,1)+ delta.reshape(-1,1)))
return preds
params = {
"length": 7,
"absolute growth": 0.02,
"fatality_rate_lower": 0.02,
"fatality_rate_upper": 0.3,
}
preds_f_1 = run_f(params, preds_c, X_f, f_rate.values[:,:TRAIN_N])
preds_f_1 = np.log(1+preds_f_1 ) | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data['Size'].value_counts()<count_values> | class ZDatasetF(Dataset):
def __init__(self, X_c, X_f=None, hist_len=10):
self.X_c = X_c
self.X_f = X_f
self.hist_len = hist_len
self.is_test = X_f is None
def __len__(self):
return self.X_c.shape[1]
def __getitem__(self, idx):
if self.is_test:
return {'x_c':self.X_c[:, idx-self.hist_len:idx]}
else:
return {'x_c':self.X_c[:, idx-self.hist_len:idx],
'x_f':self.X_f[:, idx-1],
'y':np.log(1+self.X_f[:, idx])}
class PrLayer2(nn.Module):
def __init__(self, in_features1, in_features2):
super(PrLayer2, self ).__init__()
self.weight0 = Parameter(torch.Tensor(1, 1, in_features2))
self.weight1 = Parameter(torch.Tensor(1, in_features1, in_features2))
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight0, a=math.sqrt(5))
init.kaiming_uniform_(self.weight1, a=math.sqrt(5))
def forward(self, input):
return input * torch.sigmoid(self.weight0 + self.weight1)
class ZModelF(nn.Module):
def __init__(self, hist_len):
super(ZModelF, self ).__init__()
self.l_conv = PrLayer2(len(X_c),hist_len-1)
def forward(self, x_c, x_f):
x = x_c[:,:,1:] - x_c[:,:,:-1]
res = torch.sum(self.l_conv(x), 2)
return {'preds': torch.log(1 + x_f + res)}
class DummySampler(torch.utils.data.sampler.Sampler):
def __init__(self, idx):
self.idx = idx
def __iter__(self):
return iter(self.idx)
def __len__(self):
return len(self.idx)
def _smooth_l1_loss(target):
t = torch.abs(target)
t = torch.where(t < 1, 0.5 * t ** 2, t - 0.5)
return torch.mean(t)
n_epochs = 5000
lr = 0.18
bag_size = 4
device = 'cpu'
hist_len = 14
loss_func = torch.nn.MSELoss()
reg_loss_func = _smooth_l1_loss
reg_factor = 0.035
train_dataset = ZDatasetF(np.exp(X_c)-1, X_f, hist_len=hist_len)
test_dataset = ZDatasetF(np.exp(preds_c)-1, hist_len=hist_len)
trn_idx = np.arange(hist_len+1, len(train_dataset))
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(trn_idx)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=len(trn_idx), sampler=train_sampler, num_workers=0, pin_memory=True)
test_idx = np.arange(TRAIN_N, len(test_dataset))
test_sampler = DummySampler(test_idx)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, sampler=test_sampler, num_workers=0, pin_memory=True)
gradient_accumulation = 1
preds_f = 0
for m_i in range(bag_size):
model_f = ZModelF(hist_len=hist_len ).to(device)
optimizer_f = torch.optim.Adam(model_f.parameters() , lr=lr)
model_f.train()
start_time = time.time()
for epoch in range(n_epochs):
s = time.time()
avg_train_loss = 0
optimizer_f.zero_grad()
for idx, data in enumerate(train_loader):
X1 = data['x_c'].to(device ).float()
X2 = data['x_f'].to(device ).float()
y = data['y'].to(device ).float()
preds = model_f(X1, X2)['preds'].float()
cond = X2 > np.log(10)
preds = preds[cond]
y = y[cond]
loss = loss_func(preds, y)
loss += reg_factor * reg_loss_func(model_f.l_conv.weight1)
avg_train_loss += loss / len(train_loader)
loss.backward()
if(idx+1)% gradient_accumulation == 0 or idx == len(train_loader)- 1:
optimizer_f.step()
optimizer_f.zero_grad()
if epoch % 1000 == 0:
model_f.eval()
preds_f_delta = train_p_f.values[:,:TRAIN_N]
for idx, data in enumerate(test_loader):
X1 = data['x_c'].to(device ).float()
temp = model_f(X1, torch.Tensor(preds_f_delta[:,-1] ).unsqueeze(0)) ['preds']
temp = np.exp(temp.detach().cpu().numpy().reshape(-1,1)) - 1
preds_f_delta = np.hstack(( preds_f_delta, temp))
preds_f_delta = np.log(1 + preds_f_delta)
model_f.train()
model_f.eval()
preds_f_delta = train_p_f.values[:,:TRAIN_N]
for idx, data in enumerate(test_loader):
X1 = data['x_c'].to(device ).float()
temp = model_f(X1, torch.Tensor(preds_f_delta[:,-1] ).unsqueeze(0)) ['preds']
temp = np.exp(temp.detach().cpu().numpy().reshape(-1,1)) - 1
preds_f_delta = np.hstack(( preds_f_delta, temp))
preds_f += preds_f_delta / bag_size
preds_f_2 = np.log(1 + preds_f)
print("Done")
| COVID19 Global Forecasting (Week 3) |
8,824,396 | test_data['Size'].value_counts()<data_type_conversions> | preds_f = np.mean([preds_f_1, preds_f_2], axis=0 ) | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data['Size'].fillna(value = 'Size_Unknown', inplace = True)
test_data['Size'].fillna(value = 'Size_Unknown', inplace = True )<count_values> | if False:
val_len = train_p_c.values.shape[1] - TRAIN_N
for i in range(val_len):
d = i + TRAIN_N
m1 = np.sqrt(mean_squared_error(np.log(1 + train_p_c_raw.values[:, d]), preds_c[:, d]))
m2 = np.sqrt(mean_squared_error(np.log(1 + train_p_f_raw.values[:, d]), preds_f[:, d]))
print(f"{d}: {(m1 + m2)/2:8.5f} [{m1:8.5f} {m2:8.5f}]")
print()
m1 = np.sqrt(mean_squared_error(np.log(1 + train_p_c_raw.values[:, TRAIN_N:TRAIN_N+val_len] ).flatten() , preds_c[:, TRAIN_N:TRAIN_N+val_len].flatten()))
m2 = np.sqrt(mean_squared_error(np.log(1 + train_p_f_raw.values[:, TRAIN_N:TRAIN_N+val_len] ).flatten() , preds_f[:, TRAIN_N:TRAIN_N+val_len].flatten()))
print(f"{(m1 + m2)/2:8.5f} [{m1:8.5f} {m2:8.5f}]" ) | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data['TopThreeAmericanName'].value_counts()<count_values> | def get_cpmp_sub(save_oof=False, save_public_test=False):
train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/train.csv')
train['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
train['day'] = train.Date.dt.dayofyear
train['geo'] = ['_'.join(x)for x in zip(train['Country_Region'], train['Province_State'])]
train
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv')
test['Province_State'].fillna('', inplace=True)
test['Date'] = pd.to_datetime(test['Date'])
test['day'] = test.Date.dt.dayofyear
test['geo'] = ['_'.join(x)for x in zip(test['Country_Region'], test['Province_State'])]
test
day_min = train['day'].min()
train['day'] -= day_min
test['day'] -= day_min
train = train[train.day < TRAIN_N]
min_test_val_day = test.day.min()
max_test_val_day = train.day.max()
max_test_day = test.day.max()
num_days = max_test_day + 1
min_test_val_day, max_test_val_day, num_days
train['ForecastId'] = -1
test['Id'] = -1
test['ConfirmedCases'] = 0
test['Fatalities'] = 0
debug = False
data = pd.concat([train,
test[test.day > max_test_val_day][train.columns]
] ).reset_index(drop=True)
if debug:
data = data[data['geo'] >= 'France_'].reset_index(drop=True)
gc.collect()
dates = data[data['geo'] == 'France_'].Date.values
if 0:
gr = data.groupby('geo')
data['ConfirmedCases'] = gr.ConfirmedCases.transform('cummax')
data['Fatalities'] = gr.Fatalities.transform('cummax')
geo_data = data.pivot(index='geo', columns='day', values='ForecastId')
num_geo = geo_data.shape[0]
geo_data
geo_id = {}
for i,g in enumerate(geo_data.index):
geo_id[g] = i
ConfirmedCases = data.pivot(index='geo', columns='day', values='ConfirmedCases')
Fatalities = data.pivot(index='geo', columns='day', values='Fatalities')
if debug:
cases = ConfirmedCases.values
deaths = Fatalities.values
else:
cases = np.log1p(ConfirmedCases.values)
deaths = np.log1p(Fatalities.values)
def get_dataset(start_pred, num_train, lag_period):
days = np.arange(start_pred - num_train + 1, start_pred + 1)
lag_cases = np.vstack([cases[:, d - lag_period : d] for d in days])
lag_deaths = np.vstack([deaths[:, d - lag_period : d] for d in days])
target_cases = np.vstack([cases[:, d : d + 1] for d in days])
target_deaths = np.vstack([deaths[:, d : d + 1] for d in days])
geo_ids = np.vstack([geo_ids_base for d in days])
country_ids = np.vstack([country_ids_base for d in days])
return lag_cases, lag_deaths, target_cases, target_deaths, geo_ids, country_ids, days
def update_valid_dataset(data, pred_death, pred_case):
lag_cases, lag_deaths, target_cases, target_deaths, geo_ids, country_ids, days = data
day = days[-1] + 1
new_lag_cases = np.hstack([lag_cases[:, 1:], pred_case])
new_lag_deaths = np.hstack([lag_deaths[:, 1:], pred_death])
new_target_cases = cases[:, day:day+1]
new_target_deaths = deaths[:, day:day+1]
new_geo_ids = geo_ids
new_country_ids = country_ids
new_days = 1 + days
return new_lag_cases, new_lag_deaths, new_target_cases, new_target_deaths, new_geo_ids, new_country_ids, new_days
def fit_eval(lr_death, lr_case, data, start_lag_death, end_lag_death, num_lag_case, fit, score):
lag_cases, lag_deaths, target_cases, target_deaths, geo_ids, country_ids, days = data
X_death = np.hstack([lag_cases[:, -start_lag_death:-end_lag_death], country_ids])
X_death = np.hstack([lag_deaths[:, -num_lag_case:], country_ids])
X_death = np.hstack([lag_cases[:, -start_lag_death:-end_lag_death], lag_deaths[:, -num_lag_case:], country_ids])
y_death = target_deaths
y_death_prev = lag_deaths[:, -1:]
if fit:
if 0:
keep =(y_death > 0 ).ravel()
X_death = X_death[keep]
y_death = y_death[keep]
y_death_prev = y_death_prev[keep]
lr_death.fit(X_death, y_death)
y_pred_death = lr_death.predict(X_death)
y_pred_death = np.maximum(y_pred_death, y_death_prev)
X_case = np.hstack([lag_cases[:, -num_lag_case:], geo_ids])
X_case = lag_cases[:, -num_lag_case:]
y_case = target_cases
y_case_prev = lag_cases[:, -1:]
if fit:
lr_case.fit(X_case, y_case)
y_pred_case = lr_case.predict(X_case)
y_pred_case = np.maximum(y_pred_case, y_case_prev)
if score:
death_score = val_score(y_death, y_pred_death)
case_score = val_score(y_case, y_pred_case)
else:
death_score = 0
case_score = 0
return death_score, case_score, y_pred_death, y_pred_case
def train_model(train, valid, start_lag_death, end_lag_death, num_lag_case, num_val, score=True):
alpha = 3
lr_death = Ridge(alpha=alpha, fit_intercept=False)
lr_case = Ridge(alpha=alpha, fit_intercept=True)
(train_death_score, train_case_score, train_pred_death, train_pred_case,
)= fit_eval(lr_death, lr_case, train, start_lag_death, end_lag_death, num_lag_case, fit=True, score=score)
death_scores = []
case_scores = []
death_pred = []
case_pred = []
for i in range(num_val):
(valid_death_score, valid_case_score, valid_pred_death, valid_pred_case,
)= fit_eval(lr_death, lr_case, valid, start_lag_death, end_lag_death, num_lag_case, fit=False, score=score)
death_scores.append(valid_death_score)
case_scores.append(valid_case_score)
death_pred.append(valid_pred_death)
case_pred.append(valid_pred_case)
if 0:
print('val death: %0.3f' % valid_death_score,
'val case: %0.3f' % valid_case_score,
'val : %0.3f' % np.mean([valid_death_score, valid_case_score]),
flush=True)
valid = update_valid_dataset(valid, valid_pred_death, valid_pred_case)
if score:
death_scores = np.sqrt(np.mean([s**2 for s in death_scores]))
case_scores = np.sqrt(np.mean([s**2 for s in case_scores]))
if 0:
print('train death: %0.3f' % train_death_score,
'train case: %0.3f' % train_case_score,
'val death: %0.3f' % death_scores,
'val case: %0.3f' % case_scores,
'val : %0.3f' %(( death_scores + case_scores)/ 2),
flush=True)
else:
print('%0.4f' % case_scores,
', %0.4f' % death_scores,
'= %0.4f' %(( death_scores + case_scores)/ 2),
flush=True)
death_pred = np.hstack(death_pred)
case_pred = np.hstack(case_pred)
return death_scores, case_scores, death_pred, case_pred
countries = [g.split('_')[0] for g in geo_data.index]
countries = pd.factorize(countries)[0]
country_ids_base = countries.reshape(( -1, 1))
ohe = OneHotEncoder(sparse=False)
country_ids_base = 0.2 * ohe.fit_transform(country_ids_base)
country_ids_base.shape
geo_ids_base = np.arange(num_geo ).reshape(( -1, 1))
ohe = OneHotEncoder(sparse=False)
geo_ids_base = 0.1 * ohe.fit_transform(geo_ids_base)
geo_ids_base.shape
def val_score(true, pred):
pred = np.log1p(np.round(np.expm1(pred)- 0.2))
return np.sqrt(mean_squared_error(true.ravel() , pred.ravel()))
def val_score(true, pred):
return np.sqrt(mean_squared_error(true.ravel() , pred.ravel()))
start_lag_death, end_lag_death = 14, 6,
num_train = 5
num_lag_case = 14
lag_period = max(start_lag_death, num_lag_case)
def get_oof(start_val_delta=0):
start_val = min_test_val_day + start_val_delta
last_train = start_val - 1
num_val = max_test_val_day - start_val + 1
print(dates[start_val], start_val, num_val)
train_data = get_dataset(last_train, num_train, lag_period)
valid_data = get_dataset(start_val, 1, lag_period)
_, _, val_death_preds, val_case_preds = train_model(train_data, valid_data,
start_lag_death, end_lag_death, num_lag_case, num_val)
pred_deaths = Fatalities.iloc[:, start_val:start_val+num_val].copy()
pred_deaths.iloc[:, :] = np.expm1(val_death_preds)
pred_deaths = pred_deaths.stack().reset_index()
pred_deaths.columns = ['geo', 'day', 'Fatalities']
pred_deaths
pred_cases = ConfirmedCases.iloc[:, start_val:start_val+num_val].copy()
pred_cases.iloc[:, :] = np.expm1(val_case_preds)
pred_cases = pred_cases.stack().reset_index()
pred_cases.columns = ['geo', 'day', 'ConfirmedCases']
pred_cases
sub = train[['Date', 'Id', 'geo', 'day']]
sub = sub.merge(pred_cases, how='left', on=['geo', 'day'])
sub = sub.merge(pred_deaths, how='left', on=['geo', 'day'])
sub = sub[sub.day >= start_val]
sub = sub[['Id', 'ConfirmedCases', 'Fatalities']].copy()
return sub
if save_oof:
for start_val_delta, date in zip(range(3, -8, -3),
['2020-03-22', '2020-03-19', '2020-03-16', '2020-03-13']):
print(date, end=' ')
oof = get_oof(start_val_delta)
oof.to_csv('.. /submissions/cpmp-%s.csv' % date, index=None)
def get_sub(start_val_delta=0):
start_val = min_test_val_day + start_val_delta
last_train = start_val - 1
num_val = max_test_val_day - start_val + 1
print(dates[last_train], start_val, num_val)
num_lag_case = 14
train_data = get_dataset(last_train, num_train, lag_period)
valid_data = get_dataset(start_val, 1, lag_period)
_, _, val_death_preds, val_case_preds = train_model(train_data, valid_data,
start_lag_death, end_lag_death, num_lag_case, num_val)
pred_deaths = Fatalities.iloc[:, start_val:start_val+num_val].copy()
pred_deaths.iloc[:, :] = np.expm1(val_death_preds)
pred_deaths = pred_deaths.stack().reset_index()
pred_deaths.columns = ['geo', 'day', 'Fatalities']
pred_deaths
pred_cases = ConfirmedCases.iloc[:, start_val:start_val+num_val].copy()
pred_cases.iloc[:, :] = np.expm1(val_case_preds)
pred_cases = pred_cases.stack().reset_index()
pred_cases.columns = ['geo', 'day', 'ConfirmedCases']
pred_cases
sub = test[['Date', 'ForecastId', 'geo', 'day']]
sub = sub.merge(pred_cases, how='left', on=['geo', 'day'])
sub = sub.merge(pred_deaths, how='left', on=['geo', 'day'])
sub = sub.fillna(0)
sub = sub[['ForecastId', 'ConfirmedCases', 'Fatalities']]
return sub
return sub
known_test = train[['geo', 'day', 'ConfirmedCases', 'Fatalities']
].merge(test[['geo', 'day', 'ForecastId']], how='left', on=['geo', 'day'])
known_test = known_test[['ForecastId', 'ConfirmedCases', 'Fatalities']][known_test.ForecastId.notnull() ].copy()
known_test
unknow_test = test[test.day > max_test_val_day]
unknow_test
def get_final_sub() :
start_val = max_test_val_day + 1
last_train = start_val - 1
num_val = max_test_day - start_val + 1
print(dates[last_train], start_val, num_val)
num_lag_case = num_val + 3
train_data = get_dataset(last_train, num_train, lag_period)
valid_data = get_dataset(start_val, 1, lag_period)
(_, _, val_death_preds, val_case_preds
)= train_model(train_data, valid_data, start_lag_death, end_lag_death, num_lag_case, num_val, score=False)
pred_deaths = Fatalities.iloc[:, start_val:start_val+num_val].copy()
pred_deaths.iloc[:, :] = np.expm1(val_death_preds)
pred_deaths = pred_deaths.stack().reset_index()
pred_deaths.columns = ['geo', 'day', 'Fatalities']
pred_deaths
pred_cases = ConfirmedCases.iloc[:, start_val:start_val+num_val].copy()
pred_cases.iloc[:, :] = np.expm1(val_case_preds)
pred_cases = pred_cases.stack().reset_index()
pred_cases.columns = ['geo', 'day', 'ConfirmedCases']
pred_cases
print(unknow_test.shape, pred_deaths.shape, pred_cases.shape)
sub = unknow_test[['Date', 'ForecastId', 'geo', 'day']]
sub = sub.merge(pred_cases, how='left', on=['geo', 'day'])
sub = sub.merge(pred_deaths, how='left', on=['geo', 'day'])
sub = sub[['ForecastId', 'ConfirmedCases', 'Fatalities']]
sub = pd.concat([known_test, sub])
return sub
if save_public_test:
sub = get_sub()
else:
sub = get_final_sub()
return sub | COVID19 Global Forecasting (Week 3) |
8,824,396 | test_data['TopThreeAmericanName'].value_counts()<data_type_conversions> | if False:
val_len = train_p_c.values.shape[1] - TRAIN_N
m1s = []
m2s = []
for i in range(val_len):
d = i + TRAIN_N
m1 = np.sqrt(mean_squared_error(np.log(1 + train_p_c_raw.values[:, d]), preds_c_cpmp[:, d-START_PUBLIC]))
m2 = np.sqrt(mean_squared_error(np.log(1 + train_p_f_raw.values[:, d]), preds_f_cpmp[:, d-START_PUBLIC]))
print(f"{d}: {(m1 + m2)/2:8.5f} [{m1:8.5f} {m2:8.5f}]")
m1s += [m1]
m2s += [m2]
print()
m1 = np.sqrt(mean_squared_error(np.log(1 + train_p_c_raw.values[:, TRAIN_N:TRAIN_N+val_len] ).flatten() , preds_c_cpmp[:, TRAIN_N-START_PUBLIC:TRAIN_N-START_PUBLIC+val_len].flatten()))
m2 = np.sqrt(mean_squared_error(np.log(1 + train_p_f_raw.values[:, TRAIN_N:TRAIN_N+val_len] ).flatten() , preds_f_cpmp[:, TRAIN_N-START_PUBLIC:TRAIN_N-START_PUBLIC+val_len].flatten()))
print(f"{(m1 + m2)/2:8.5f} [{m1:8.5f} {m2:8.5f}]")
| COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data['TopThreeAmericanName'].fillna(value = 'TopThreeAmericanName_Unknown', inplace = True)
test_data['TopThreeAmericanName'].fillna(value = 'TopThreeAmericanName_Unknown', inplace = True )<count_values> | COMP = '.. /input/covid19-global-forecasting-week-3'
DATEFORMAT = '%Y-%m-%d'
def get_comp_data(COMP):
train = pd.read_csv(f'{COMP}/train.csv')
test = pd.read_csv(f'{COMP}/test.csv')
submission = pd.read_csv(f'{COMP}/submission.csv')
print(train.shape, test.shape, submission.shape)
train['Country_Region'] = train['Country_Region'].str.replace(',', '' ).fillna('N/A')
test['Country_Region'] = test['Country_Region'].str.replace(',', '' ).fillna('N/A')
train['Location'] = train['Country_Region'].fillna('')+ '-' + train['Province_State'].fillna('N/A')
test['Location'] = test['Country_Region'].fillna('')+ '-' + test['Province_State'].fillna('N/A')
train['LogConfirmed'] = to_log(train.ConfirmedCases)
train['LogFatalities'] = to_log(train.Fatalities)
train = train.drop(columns=['Province_State'])
test = test.drop(columns=['Province_State'])
country_codes = pd.read_csv('.. /input/covid19-metadata/country_codes.csv', keep_default_na=False)
train = train.merge(country_codes, on='Country_Region', how='left')
test = test.merge(country_codes, on='Country_Region', how='left')
train['continent'] = train['continent'].fillna('')
test['continent'] = test['continent'].fillna('')
train['DateTime'] = pd.to_datetime(train['Date'])
test['DateTime'] = pd.to_datetime(test['Date'])
return train, test, submission
def process_each_location(df):
dfs = []
for loc, df in tqdm(df.groupby('Location')) :
df = df.sort_values(by='Date')
df['Fatalities'] = df['Fatalities'].cummax()
df['ConfirmedCases'] = df['ConfirmedCases'].cummax()
df['LogFatalities'] = df['LogFatalities'].cummax()
df['LogConfirmed'] = df['LogConfirmed'].cummax()
df['LogConfirmedNextDay'] = df['LogConfirmed'].shift(-1)
df['ConfirmedNextDay'] = df['ConfirmedCases'].shift(-1)
df['DateNextDay'] = df['Date'].shift(-1)
df['LogFatalitiesNextDay'] = df['LogFatalities'].shift(-1)
df['FatalitiesNextDay'] = df['Fatalities'].shift(-1)
df['LogConfirmedDelta'] = df['LogConfirmedNextDay'] - df['LogConfirmed']
df['ConfirmedDelta'] = df['ConfirmedNextDay'] - df['ConfirmedCases']
df['LogFatalitiesDelta'] = df['LogFatalitiesNextDay'] - df['LogFatalities']
df['FatalitiesDelta'] = df['FatalitiesNextDay'] - df['Fatalities']
dfs.append(df)
return pd.concat(dfs)
def add_days(d, k):
return dt.datetime.strptime(d, DATEFORMAT)+ dt.timedelta(days=k)
def to_log(x):
return np.log(x + 1)
def to_exp(x):
return np.exp(x)- 1
def get_beluga_sub() :
train, test, submission = get_comp_data(COMP)
train.shape, test.shape, submission.shape
TRAIN_START = train.Date.min()
TEST_START = test.Date.min()
TRAIN_END = train.Date.max()
TEST_END = test.Date.max()
TRAIN_START, TRAIN_END, TEST_START, TEST_END
train_clean = process_each_location(train)
train_clean['Geo
DECAY = 0.93
DECAY ** 7, DECAY ** 14, DECAY ** 21, DECAY ** 28
confirmed_deltas = train.groupby(['Location', 'Country_Region', 'continent'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.11
confirmed_deltas['DELTA'] = GLOBAL_DELTA
confirmed_deltas.loc[confirmed_deltas.continent=='Africa', 'DELTA'] = 0.14
confirmed_deltas.loc[confirmed_deltas.continent=='Oceania', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Korea South', 'DELTA'] = 0.011
confirmed_deltas.loc[confirmed_deltas.Country_Region=='US', 'DELTA'] = 0.15
confirmed_deltas.loc[confirmed_deltas.Country_Region=='China', 'DELTA'] = 0.01
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Japan', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Singapore', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Norway', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iceland', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Austria', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Italy', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Spain', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Portugal', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Israel', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iran', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Germany', 'DELTA'] = 0.07
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Russia', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Brazil', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Turkey', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Philippines', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Location=='France-N/A', 'DELTA'] = 0.1
confirmed_deltas.loc[confirmed_deltas.Location=='United Kingdom-N/A', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Location=='Diamond Princess-N/A', 'DELTA'] = 0.00
confirmed_deltas.loc[confirmed_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Location=='San Marino-N/A', 'DELTA'] = 0.03
confirmed_deltas.shape, confirmed_deltas.DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].shape, confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA]
confirmed_deltas.describe()
daily_log_confirmed = train_clean.pivot('Location', 'Date', 'LogConfirmed' ).reset_index()
daily_log_confirmed = daily_log_confirmed.sort_values(TRAIN_END, ascending=False)
for i, d in tqdm(enumerate(pd.date_range(add_days(TRAIN_END, 1), add_days(TEST_END, 1)))) :
new_day = str(d ).split(' ')[0]
last_day = dt.datetime.strptime(new_day, DATEFORMAT)- dt.timedelta(days=1)
last_day = last_day.strftime(DATEFORMAT)
for loc in confirmed_deltas.Location.values:
confirmed_delta = confirmed_deltas.loc[confirmed_deltas.Location == loc, 'DELTA'].values[0]
daily_log_confirmed.loc[daily_log_confirmed.Location == loc, new_day] = daily_log_confirmed.loc[daily_log_confirmed.Location == loc, last_day] + \
confirmed_delta * DECAY ** i
confirmed_prediciton = pd.melt(daily_log_confirmed, id_vars='Location')
confirmed_prediciton['ConfirmedCases'] = to_exp(confirmed_prediciton['value'])
confirmed_prediciton_cases = confirmed_prediciton.copy()
latest = train_clean[train_clean.Date == TRAIN_END][[
'Geo
daily_death_deltas = train_clean[train_clean.Date >= '2020-03-17'].pivot(
'Geo
daily_death_deltas = latest.merge(daily_death_deltas, on='Geo
death_deltas = train.groupby(['Location', 'Country_Region', 'continent'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.11
death_deltas['DELTA'] = GLOBAL_DELTA
death_deltas.loc[death_deltas.Country_Region=='China', 'DELTA'] = 0.005
death_deltas.loc[death_deltas.continent=='Oceania', 'DELTA'] = 0.08
death_deltas.loc[death_deltas.Country_Region=='Korea South', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='Japan', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='Singapore', 'DELTA'] = 0.05
death_deltas.loc[death_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.06
death_deltas.loc[death_deltas.Country_Region=='US', 'DELTA'] = 0.17
death_deltas.loc[death_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Norway', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Iceland', 'DELTA'] = 0.01
death_deltas.loc[death_deltas.Country_Region=='Austria', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Italy', 'DELTA'] = 0.07
death_deltas.loc[death_deltas.Country_Region=='Spain', 'DELTA'] = 0.1
death_deltas.loc[death_deltas.Country_Region=='Portugal', 'DELTA'] = 0.13
death_deltas.loc[death_deltas.Country_Region=='Israel', 'DELTA'] = 0.16
death_deltas.loc[death_deltas.Country_Region=='Iran', 'DELTA'] = 0.06
death_deltas.loc[death_deltas.Country_Region=='Germany', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Russia', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Brazil', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Turkey', 'DELTA'] = 0.22
death_deltas.loc[death_deltas.Country_Region=='Philippines', 'DELTA'] = 0.12
death_deltas.loc[death_deltas.Location=='France-N/A', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Location=='United Kingdom-N/A', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Location=='Diamond Princess-N/A', 'DELTA'] = 0.00
death_deltas.loc[death_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.01
death_deltas.loc[death_deltas.Location=='San Marino-N/A', 'DELTA'] = 0.05
death_deltas.shape
death_deltas.DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].shape
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA]
death_deltas.describe()
daily_log_deaths = train_clean.pivot('Location', 'Date', 'LogFatalities' ).reset_index()
daily_log_deaths = daily_log_deaths.sort_values(TRAIN_END, ascending=False)
for i, d in tqdm(enumerate(pd.date_range(add_days(TRAIN_END, 1), add_days(TEST_END, 1)))) :
new_day = str(d ).split(' ')[0]
last_day = dt.datetime.strptime(new_day, DATEFORMAT)- dt.timedelta(days=1)
last_day = last_day.strftime(DATEFORMAT)
for loc in death_deltas.Location:
death_delta = death_deltas.loc[death_deltas.Location == loc, 'DELTA'].values[0]
daily_log_deaths.loc[daily_log_deaths.Location == loc, new_day] = daily_log_deaths.loc[daily_log_deaths.Location == loc, last_day] + \
death_delta * DECAY ** i
confirmed_prediciton = pd.melt(daily_log_deaths, id_vars='Location')
confirmed_prediciton['Fatalities'] = to_exp(confirmed_prediciton['value'])
confirmed_prediciton_fatalities = confirmed_prediciton.copy()
return confirmed_prediciton_cases, confirmed_prediciton_fatalities
preds_beluga_cases, preds_beluga_fatalities = get_beluga_sub() | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data['PRIMEUNIT'].value_counts()<count_values> | locs = p_f_beluga.index.values | COVID19 Global Forecasting (Week 3) |
8,824,396 | test_data['PRIMEUNIT'].value_counts()<data_type_conversions> | warnings.filterwarnings('ignore' ) | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data['PRIMEUNIT'].fillna(value = 'PRIMEUNIT_Unknown', inplace = True)
test_data['PRIMEUNIT'].fillna(value = 'PRIMEUNIT_Unknown', inplace = True )<count_values> | FIRST_TEST = test_orig['Date'].apply(lambda x: x.dayofyear ).min() | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data['AUCGUART'].value_counts()<count_values> | COVID19 Global Forecasting (Week 3) |
|
8,824,396 | test_data['AUCGUART'].value_counts()<data_type_conversions> | def do_aggregation(df, col, mean_range):
df_new = copy.deepcopy(df)
col_new = '{}_({}-{})'.format(col, mean_range[0], mean_range[1])
df_new[col_new] = 0
tmp = df_new[col].rolling(mean_range[1]-mean_range[0]+1 ).mean()
df_new[col_new][mean_range[0]:] = tmp[:-(mean_range[0])]
df_new[col_new][pd.isna(df_new[col_new])] = 0
return df_new[[col_new]].reset_index(drop=True)
def do_aggregations(df):
df = pd.concat([df, do_aggregation(df, 'cases/day', [1,1] ).reset_index(drop=True)], axis=1)
df = pd.concat([df, do_aggregation(df, 'cases/day', [1,7] ).reset_index(drop=True)], axis=1)
df = pd.concat([df, do_aggregation(df, 'cases/day', [8,14] ).reset_index(drop=True)], axis=1)
df = pd.concat([df, do_aggregation(df, 'cases/day', [15,21] ).reset_index(drop=True)], axis=1)
df = pd.concat([df, do_aggregation(df, 'fatal/day', [1,1] ).reset_index(drop=True)], axis=1)
df = pd.concat([df, do_aggregation(df, 'fatal/day', [1,7] ).reset_index(drop=True)], axis=1)
df = pd.concat([df, do_aggregation(df, 'fatal/day', [8,14] ).reset_index(drop=True)], axis=1)
df = pd.concat([df, do_aggregation(df, 'fatal/day', [15,21] ).reset_index(drop=True)], axis=1)
for threshold in [1, 10, 100]:
days_under_threshold =(df['ConfirmedCases']<threshold ).sum()
tmp = df['day'].values - 22 - days_under_threshold
tmp[tmp<=0] = 0
df['days_since_{}cases'.format(threshold)] = tmp
for threshold in [1, 10, 100]:
days_under_threshold =(df['Fatalities']<threshold ).sum()
tmp = df['day'].values - 22 - days_under_threshold
tmp[tmp<=0] = 0
df['days_since_{}fatal'.format(threshold)] = tmp
if df['place_id'][0]=='China/Hubei':
df['days_since_1cases'] += 35
df['days_since_10cases'] += 35-13
df['days_since_100cases'] += 4
df['days_since_1fatal'] += 13
return df | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data['AUCGUART'].fillna(value = 'AUCGUART_Unknown', inplace = True)
test_data['AUCGUART'].fillna(value = 'AUCGUART_Unknown', inplace = True )<drop_column> | def feature_engineering_oscii() :
def fix_area(x):
try:
x_new = x['Country_Region'] + "/" + x['Province_State']
except:
x_new = x['Country_Region']
return x_new
def fix_area2(x):
try:
x_new = x['Country/Region'] + "/" + x['Province/State']
except:
x_new = x['Country/Region']
return x_new
def encode_label(df, col, freq_limit=0):
df[col][pd.isna(df[col])] = 'nan'
tmp = df[col].value_counts()
cols = tmp.index.values
freq = tmp.values
num_cols =(freq>=freq_limit ).sum()
print("col: {}, num_cat: {}, num_reduced: {}".format(col, len(cols), num_cols))
col_new = '{}_le'.format(col)
df_new = pd.DataFrame(np.ones(len(df), np.int16)*(num_cols-1), columns=[col_new])
for i, item in enumerate(cols[:num_cols]):
df_new[col_new][df[col]==item] = i
return df_new
def get_df_le(df, col_index, col_cat):
df_new = df[[col_index]]
for col in col_cat:
df_tmp = encode_label(df, col)
df_new = pd.concat([df_new, df_tmp], axis=1)
return df_new
def to_float(x):
x_new = 0
try:
x_new = float(x.replace(",", ""))
except:
x_new = np.nan
return x_new
df_train = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
df_test = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
df_traintest = pd.concat([df_train, df_test])
print('process_date')
df_traintest['Date'] = pd.to_datetime(df_traintest['Date'])
df_traintest['day'] = df_traintest['Date'].apply(lambda x: x.dayofyear ).astype(np.int16)
day_min = df_traintest['day'].min()
df_traintest['days'] = df_traintest['day'] - day_min
df_traintest.loc[df_traintest['Province_State'].isnull() , 'Province_State'] = 'N/A'
df_traintest['place_id'] = df_traintest['Country_Region'] + '_' + df_traintest['Province_State']
print('add lat and long')
df_latlong = pd.read_csv(".. /input/smokingstats/df_Latlong.csv")
df_latlong.loc[df_latlong['Province/State'].isnull() , 'Province_State'] = 'N/A'
df_latlong['place_id'] = df_latlong['Country/Region'] + '_' + df_latlong['Province/State']
df_latlong = df_latlong[df_latlong['place_id'].duplicated() ==False]
df_traintest = pd.merge(df_traintest, df_latlong[['place_id', 'Lat', 'Long']], on='place_id', how='left')
places = np.sort(df_traintest['place_id'].unique())
print('calc cases, fatalities per day')
df_traintest2 = copy.deepcopy(df_traintest)
df_traintest2['cases/day'] = 0
df_traintest2['fatal/day'] = 0
tmp_list = np.zeros(len(df_traintest2))
for place in places:
tmp = df_traintest2['ConfirmedCases'][df_traintest2['place_id']==place].values
tmp[1:] -= tmp[:-1]
df_traintest2['cases/day'][df_traintest2['place_id']==place] = tmp
tmp = df_traintest2['Fatalities'][df_traintest2['place_id']==place].values
tmp[1:] -= tmp[:-1]
df_traintest2['fatal/day'][df_traintest2['place_id']==place] = tmp
print('do agregation')
df_traintest3 = []
for place in places[:]:
df_tmp = df_traintest2[df_traintest2['place_id']==place].reset_index(drop=True)
df_tmp = do_aggregations(df_tmp)
df_traintest3.append(df_tmp)
df_traintest3 = pd.concat(df_traintest3 ).reset_index(drop=True)
print('add smoking')
df_smoking = pd.read_csv(".. /input/smokingstats/share-of-adults-who-smoke.csv")
df_smoking_recent = df_smoking.sort_values('Year', ascending=False ).reset_index(drop=True)
df_smoking_recent = df_smoking_recent[df_smoking_recent['Entity'].duplicated() ==False]
df_smoking_recent['Country_Region'] = df_smoking_recent['Entity']
df_smoking_recent['SmokingRate'] = df_smoking_recent['Smoking prevalence, total(ages 15+ )(% of adults)']
df_traintest4 = pd.merge(df_traintest3, df_smoking_recent[['Country_Region', 'SmokingRate']], on='Country_Region', how='left')
SmokingRate = df_smoking_recent['SmokingRate'][df_smoking_recent['Entity']=='World'].values[0]
df_traintest4['SmokingRate'][pd.isna(df_traintest4['SmokingRate'])] = SmokingRate
print('add data from World Economic Outlook Database')
df_weo = pd.read_csv(".. /input/smokingstats/WEO.csv")
subs = df_weo['Subject Descriptor'].unique() [:-1]
df_weo_agg = df_weo[['Country']][df_weo['Country'].duplicated() ==False].reset_index(drop=True)
for sub in subs[:]:
df_tmp = df_weo[['Country', '2019']][df_weo['Subject Descriptor']==sub].reset_index(drop=True)
df_tmp = df_tmp[df_tmp['Country'].duplicated() ==False].reset_index(drop=True)
df_tmp.columns = ['Country', sub]
df_weo_agg = df_weo_agg.merge(df_tmp, on='Country', how='left')
df_weo_agg.columns = ["".join(c if c.isalnum() else "_" for c in str(x)) for x in df_weo_agg.columns]
df_weo_agg.columns
df_weo_agg['Country_Region'] = df_weo_agg['Country']
df_traintest5 = pd.merge(df_traintest4, df_weo_agg, on='Country_Region', how='left')
print('add Life expectancy')
df_life = pd.read_csv(".. /input/smokingstats/Life expectancy at birth.csv")
tmp = df_life.iloc[:,1].values.tolist()
df_life = df_life[['Country', '2018']]
def func(x):
x_new = 0
try:
x_new = float(x.replace(",", ""))
except:
x_new = np.nan
return x_new
df_life['2018'] = df_life['2018'].apply(lambda x: func(x))
df_life = df_life[['Country', '2018']]
df_life.columns = ['Country_Region', 'LifeExpectancy']
df_traintest6 = pd.merge(df_traintest5, df_life, on='Country_Region', how='left')
print("add additional info from countryinfo dataset")
df_country = pd.read_csv(".. /input/countryinfo/covid19countryinfo.csv")
df_country['Country_Region'] = df_country['country']
df_country = df_country[df_country['country'].duplicated() ==False]
df_traintest7 = pd.merge(df_traintest6,
df_country.drop(['tests', 'testpop', 'country'], axis=1),
on=['Country_Region',], how='left')
df_traintest7['id'] = np.arange(len(df_traintest7))
df_le = get_df_le(df_traintest7, 'id', ['Country_Region', 'Province_State'])
df_traintest8 = pd.merge(df_traintest7, df_le, on='id', how='left')
print('covert object type to float')
cols = [
'Gross_domestic_product__constant_prices',
'Gross_domestic_product__current_prices',
'Gross_domestic_product__deflator',
'Gross_domestic_product_per_capita__constant_prices',
'Gross_domestic_product_per_capita__current_prices',
'Output_gap_in_percent_of_potential_GDP',
'Gross_domestic_product_based_on_purchasing_power_parity__PPP__valuation_of_country_GDP',
'Gross_domestic_product_based_on_purchasing_power_parity__PPP__per_capita_GDP',
'Gross_domestic_product_based_on_purchasing_power_parity__PPP__share_of_world_total',
'Implied_PPP_conversion_rate', 'Total_investment',
'Gross_national_savings', 'Inflation__average_consumer_prices',
'Inflation__end_of_period_consumer_prices',
'Six_month_London_interbank_offered_rate__LIBOR_',
'Volume_of_imports_of_goods_and_services',
'Volume_of_Imports_of_goods',
'Volume_of_exports_of_goods_and_services',
'Volume_of_exports_of_goods', 'Unemployment_rate', 'Employment', 'Population',
'General_government_revenue', 'General_government_total_expenditure',
'General_government_net_lending_borrowing', 'General_government_structural_balance',
'General_government_primary_net_lending_borrowing', 'General_government_net_debt',
'General_government_gross_debt', 'Gross_domestic_product_corresponding_to_fiscal_year__current_prices',
'Current_account_balance', 'pop'
]
df_traintest8['cases/day'] = df_traintest8['cases/day'].astype(np.float)
df_traintest8['fatal/day'] = df_traintest8['fatal/day'].astype(np.float)
for col in cols:
df_traintest8[col] = df_traintest8[col].apply(lambda x: to_float(x))
return df_traintest8 | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data.drop(['MMRAcquisitionAuctionAveragePrice','MMRAcquisitionAuctionCleanPrice',
'MMRAcquisitionRetailAveragePrice','MMRAcquisitonRetailCleanPrice',
'MMRCurrentAuctionAveragePrice','MMRCurrentAuctionCleanPrice',
'MMRCurrentRetailAveragePrice','MMRCurrentRetailCleanPrice'],
inplace=True,axis=1)
test_data.drop(['MMRAcquisitionAuctionAveragePrice','MMRAcquisitionAuctionCleanPrice',
'MMRAcquisitionRetailAveragePrice','MMRAcquisitonRetailCleanPrice',
'MMRCurrentAuctionAveragePrice','MMRCurrentAuctionCleanPrice',
'MMRCurrentRetailAveragePrice','MMRCurrentRetailCleanPrice'],
inplace=True,axis=1 )<count_values> | def calc_score(y_true, y_pred):
y_true[y_true<0] = 0
score = mean_squared_error(np.log(y_true.clip(0, 1e10)+1), np.log(y_pred[:]+1)) **0.5
return score | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data['PurchDate'].value_counts()<drop_column> | SEED = 42
params = {'num_leaves': 8,
'min_data_in_leaf': 5,
'objective': 'regression',
'max_depth': 8,
'learning_rate': 0.02,
'boosting': 'gbdt',
'bagging_freq': 5,
'bagging_fraction': 0.8,
'feature_fraction': 0.8201,
'bagging_seed': SEED,
'reg_alpha': 1,
'reg_lambda': 4.9847051755586085,
'random_state': SEED,
'metric': 'mse',
'verbosity': 100,
'min_gain_to_split': 0.02,
'min_child_weight': 5,
'num_threads': 6,
} | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data.drop('PurchDate', axis = 1, inplace = True)
test_data.drop('PurchDate', axis = 1, inplace = True )<drop_column> | col_target = 'fatal/day'
col_var = [
'Lat', 'Long',
'cases/day_(1-1)',
'cases/day_(1-7)',
'fatal/day_(1-7)',
'fatal/day_(8-14)',
'fatal/day_(15-21)',
'SmokingRate',
'density',
]
col_cat = []
df_train = df_traintest[(pd.isna(df_traintest['ForecastId'])) &(df_traintest['days']<TRAIN_N)]
df_valid = df_traintest[(pd.isna(df_traintest['ForecastId'])) &(df_traintest['days']<TRAIN_N)]
X_train = df_train[col_var]
X_valid = df_valid[col_var]
y_train = np.log(df_train[col_target].values.clip(0, 1e10)+1)
y_valid = np.log(df_valid[col_target].values.clip(0, 1e10)+1)
train_data = lgb.Dataset(X_train, label=y_train, categorical_feature=col_cat)
valid_data = lgb.Dataset(X_valid, label=y_valid, categorical_feature=col_cat)
num_round = 340
model = lgb.train(params, train_data, num_round, valid_sets=[train_data, valid_data],
verbose_eval=100,
early_stopping_rounds=150,)
best_itr = model.best_iteration | COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data.drop(['RefId', 'IsBadBuy'], axis = 1 ).dtypes != 'object'<drop_column> | col_target2 = 'cases/day'
col_var2 = [
'Lat', 'Long',
'days_since_10cases',
'cases/day_(1-1)',
'cases/day_(1-7)',
'cases/day_(8-14)',
'cases/day_(15-21)',
] | COVID19 Global Forecasting (Week 3) |
8,824,396 | not_categorical=train_data.drop(['RefId','IsBadBuy'],axis=1 ).columns[train_data.drop(['RefId','IsBadBuy'],axis=1 ).dtypes!='object']<feature_engineering> | df_train = df_traintest[(pd.isna(df_traintest['ForecastId'])) &(df_traintest['days']<TRAIN_N)]
df_valid = df_traintest[(pd.isna(df_traintest['ForecastId'])) &(df_traintest['days']<TRAIN_N)]
X_train = df_train[col_var2]
X_valid = df_valid[col_var2]
y_train = np.log(df_train[col_target2].values.clip(0, 1e10)+1)
y_valid = np.log(df_valid[col_target2].values.clip(0, 1e10)+1)
train_data = lgb.Dataset(X_train, label=y_train, categorical_feature=col_cat)
valid_data = lgb.Dataset(X_valid, label=y_valid, categorical_feature=col_cat)
model2 = lgb.train(params, train_data, num_round, valid_sets=[train_data, valid_data],
verbose_eval=100,
early_stopping_rounds=150,)
best_itr2 = model2.best_iteration | COVID19 Global Forecasting (Week 3) |
8,824,396 | for i in not_categorical:
maximum=np.max(train_data[i])
train_data[i]=train_data[i]/maximum
maximum_test=np.max(test_data[i])
test_data[i]=test_data[i]/maximum_test<drop_column> | places = AREAS.copy() | COVID19 Global Forecasting (Week 3) |
8,824,396 | categorical=train_data.drop(['RefId','IsBadBuy'],axis=1 ).columns[train_data.drop(['RefId','IsBadBuy'],axis=1 ).dtypes=='object']<filter> | df_tmp = df_traintest[(( df_traintest['days']<TRAIN_N)&(pd.isna(df_traintest['ForecastId'])))|(( TRAIN_N<=df_traintest['days'])&(pd.isna(df_traintest['ForecastId'])==False)) ].reset_index(drop=True)
df_tmp = df_tmp.drop([
'cases/day_(1-1)', 'cases/day_(1-7)', 'cases/day_(8-14)', 'cases/day_(15-21)',
'fatal/day_(1-1)', 'fatal/day_(1-7)', 'fatal/day_(8-14)', 'fatal/day_(15-21)',
'days_since_1cases', 'days_since_10cases', 'days_since_100cases',
'days_since_1fatal', 'days_since_10fatal', 'days_since_100fatal',
], axis=1)
df_traintest9 = []
for i, place in tqdm(enumerate(places[:])) :
df_tmp2 = df_tmp[df_tmp['place_id']==place].reset_index(drop=True)
df_tmp2 = do_aggregations(df_tmp2)
df_traintest9.append(df_tmp2)
df_traintest9 = pd.concat(df_traintest9 ).reset_index(drop=True)
| COVID19 Global Forecasting (Week 3) |
8,824,396 | train_data[categorical[0]]<categorify> | df_preds = []
for i, place in tqdm(enumerate(places[:])) :
df_interest = copy.deepcopy(df_traintest9[df_traintest9['place_id']==place].reset_index(drop=True))
df_interest['cases/day'][(pd.isna(df_interest['ForecastId'])) ==False] = -1
df_interest['fatal/day'][(pd.isna(df_interest['ForecastId'])) ==False] = -1
len_known =(df_interest['days']<TRAIN_N ).sum()
len_unknown = 30
for j in range(len_unknown):
X_valid = df_interest[col_var].iloc[j+len_known]
X_valid2 = df_interest[col_var2].iloc[j+len_known]
pred_f = model.predict(X_valid)
pred_c = model2.predict(X_valid2)
pred_c =(np.exp(pred_c)-1 ).clip(0, 1e10)
pred_f =(np.exp(pred_f)-1 ).clip(0, 1e10)
df_interest['fatal/day'][j+len_known] = pred_f
df_interest['cases/day'][j+len_known] = pred_c
df_interest['Fatalities'][j+len_known] = df_interest['Fatalities'][j+len_known-1] + pred_f
df_interest['ConfirmedCases'][j+len_known] = df_interest['ConfirmedCases'][j+len_known-1] + pred_c
df_interest = df_interest.drop([
'cases/day_(1-1)', 'cases/day_(1-7)', 'cases/day_(8-14)', 'cases/day_(15-21)',
'fatal/day_(1-1)', 'fatal/day_(1-7)', 'fatal/day_(8-14)', 'fatal/day_(15-21)',
'days_since_1cases', 'days_since_10cases', 'days_since_100cases',
'days_since_1fatal', 'days_since_10fatal', 'days_since_100fatal',
], axis=1)
df_interest = do_aggregations(df_interest)
if(i+1)%10==0:
print("{:3d}/{} {}, len known: {}, len unknown: {}".format(i+1, len(places), place, len_known, len_unknown), df_interest.shape)
df_interest['fatal_pred'] = np.cumsum(df_interest['fatal/day'].values)
df_interest['cases_pred'] = np.cumsum(df_interest['cases/day'].values)
df_preds.append(df_interest)
df_preds = pd.concat(df_preds ) | COVID19 Global Forecasting (Week 3) |
8,824,396 | pd.get_dummies(train_data[categorical[0]] )<categorify> | preds_f_oscii = np.log1p(p_f_oscii.values[:].copy())
preds_c_oscii = np.log1p(p_c_oscii.values[:].copy())
preds_f_oscii.shape, preds_c_oscii.shape | COVID19 Global Forecasting (Week 3) |
8,824,396 | for i in categorical:
dummies=pd.get_dummies(train_data[i])
dummies.columns=str(i)+'_'+dummies.columns
train_data=pd.concat([train_data,dummies],axis=1)
train_data.drop(i,inplace=True,axis=1)
dummies=pd.get_dummies(test_data[i])
dummies.columns=str(i)+'_'+dummies.columns
test_data=pd.concat([test_data,dummies],axis=1)
test_data.drop(i,inplace=True,axis=1 )<feature_engineering> | if False:
val_len = train_p_c.values.shape[1] - TRAIN_N
m1s = []
m2s = []
for i in range(val_len):
d = i + TRAIN_N
m1 = np.sqrt(mean_squared_error(np.log(1 + train_p_c_raw.values[:, d]), preds_c_oscii[:, d-START_PUBLIC]))
m2 = np.sqrt(mean_squared_error(np.log(1 + train_p_f_raw.values[:, d]), preds_f_oscii[:, d-START_PUBLIC]))
print(f"{d}: {(m1 + m2)/2:8.5f} [{m1:8.5f} {m2:8.5f}]")
m1s += [m1]
m2s += [m2]
print()
m1 = np.sqrt(mean_squared_error(np.log(1 + train_p_c_raw.values[:, TRAIN_N:TRAIN_N+val_len] ).flatten() , preds_c_oscii[:, TRAIN_N-START_PUBLIC:TRAIN_N-START_PUBLIC+val_len].flatten()))
m2 = np.sqrt(mean_squared_error(np.log(1 + train_p_f_raw.values[:, TRAIN_N:TRAIN_N+val_len] ).flatten() , preds_f_oscii[:, TRAIN_N-START_PUBLIC:TRAIN_N-START_PUBLIC+val_len].flatten()))
print(f"{(m1 + m2)/2:8.5f} [{m1:8.5f} {m2:8.5f}]" ) | COVID19 Global Forecasting (Week 3) |
8,824,396 | for i in train_data.drop('IsBadBuy',axis=1 ).columns:
if i not in test_data.columns:
test_data[i]=np.zeros(len(test_data))<feature_engineering> | preds_c_blend = np.log1p(np.average([np.expm1(preds_c_oscii[:,64:107]),np.expm1(preds_c_cpmp[:]),np.expm1(p_c_beluga[:,64:107]),np.expm1(preds_c[:,64:107])],axis=0, weights=[8,1,1,8]))
preds_f_blend = np.log1p(np.average([np.expm1(preds_f_oscii[:,64:107]),np.expm1(preds_f_cpmp[:]),np.expm1(p_f_beluga[:,64:107]),np.expm1(preds_f[:,64:107])],axis=0, weights=[8,1,1,8])) | COVID19 Global Forecasting (Week 3) |
8,824,396 | for i in test_data.columns:
if i not in train_data.columns:
train_data[i]=np.zeros(len(train_data))<drop_column> | val_len = 13
m1s = []
m2s = []
for i in range(val_len):
d = i + 64
m1 = np.sqrt(mean_squared_error(np.log(1 + train_p_c_raw.values[:, d]), preds_c_blend[:, i]))
m2 = np.sqrt(mean_squared_error(np.log(1 + train_p_f_raw.values[:, d]), preds_f_blend[:, i]))
print(f"{d}: {(m1 + m2)/2:8.5f} [{m1:8.5f} {m2:8.5f}]")
m1s += [m1]
m2s += [m2]
print()
m1 = np.sqrt(mean_squared_error(np.log(1 + train_p_c_raw.values[:, 64:64+val_len] ).flatten() , preds_c_blend[:, :val_len].flatten()))
m2 = np.sqrt(mean_squared_error(np.log(1 + train_p_f_raw.values[:, 64:64+val_len] ).flatten() , preds_f_blend[:, :val_len].flatten()))
print(f"PUBLIC LB {(m1 + m2)/2:8.5f} [{m1:8.5f} {m2:8.5f}]" ) | COVID19 Global Forecasting (Week 3) |
8,824,396 | test_data = test_data[train_data.drop("IsBadBuy",axis=1 ).columns]<prepare_x_and_y> | EU_COUNTRIES = ['Austria', 'Italy', 'Belgium', 'Latvia', 'Bulgaria', 'Lithuania', 'Croatia', 'Luxembourg', 'Cyprus', 'Malta', 'Czechia',
'Netherlands', 'Denmark', 'Poland', 'Estonia', 'Portugal', 'Finland', 'Romania', 'France', 'Slovakia', 'Germany', 'Slovenia',
'Greece', 'Spain', 'Hungary', 'Sweden', 'Ireland']
EUROPE_OTHER = ['Albania', 'Andorra', 'Bosnia and Herzegovina', 'Liechtenstein', 'Monaco', 'Montenegro', 'North Macedonia',
'Norway', 'San Marino', 'Serbia', 'Switzerland', 'Turkey', 'United Kingdom']
AFRICA = ['Algeria', 'Burkina Faso', 'Cameroon', 'Congo(Kinshasa)', "Cote d'Ivoire", 'Egypt', 'Ghana', 'Kenya', 'Madagascar',
'Morocco', 'Nigeria', 'Rwanda', 'Senegal', 'South Africa', 'Togo', 'Tunisia', 'Uganda', 'Zambia']
NORTH_AMERICA = ['US', 'Canada', 'Mexico']
SOUTH_AMERICA = ['Argentina', 'Bolivia', 'Brazil', 'Chile', 'Colombia', 'Ecuador', 'Paraguay', 'Peru', 'Uruguay', 'Venezuela']
MIDDLE_EAST = ['Afghanistan', 'Bahrain', 'Iran', 'Iraq', 'Israel', 'Jordan', 'Kuwait', 'Lebanon', 'Oman', 'Qatar', 'Saudi Arabia', 'United Arab Emirates']
ASIA = ['Bangladesh', 'Brunei', 'Cambodia', 'India', 'Indonesia', 'Japan', 'Kazakhstan', 'Korea, South', 'Kyrgyzstan', 'Malaysia',
'Pakistan', 'Singapore', 'Sri Lanka', 'Taiwan*', 'Thailand', 'Uzbekistan', 'Vietnam'] | COVID19 Global Forecasting (Week 3) |
8,824,396 | X=train_data.drop(['RefId','IsBadBuy'],axis=1)
y=train_data['IsBadBuy']<split> | non_china_mask = np.array(['China' not in a for a in AREAS] ).astype(bool)
non_china_mask.shape
| COVID19 Global Forecasting (Week 3) |
8,824,396 | X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=42 )<import_modules> | preds_c2 = preds_c.copy()
preds_f2 = preds_f.copy()
preds_c2[non_china_mask,64:107] = preds_c_blend[non_china_mask]
preds_f2[non_china_mask,64:107] = preds_f_blend[non_china_mask] | COVID19 Global Forecasting (Week 3) |
8,824,396 | from sklearn.neighbors import KNeighborsClassifier<import_modules> | temp = pd.DataFrame(np.clip(np.exp(preds_c2)- 1, 0, None))
temp['Area'] = AREAS
temp = temp.melt(id_vars='Area', var_name='days', value_name="ConfirmedCases")
test = test_orig.merge(temp, how='left', left_on=['Area', 'days'], right_on=['Area', 'days'])
temp = pd.DataFrame(np.clip(np.exp(preds_f2)- 1, 0, None))
temp['Area'] = AREAS
temp = temp.melt(id_vars='Area', var_name='days', value_name="Fatalities")
test = test.merge(temp, how='left', left_on=['Area', 'days'], right_on=['Area', 'days'])
test.head() | COVID19 Global Forecasting (Week 3) |
8,824,396 | from sklearn.neighbors import KNeighborsClassifier<import_modules> | test.to_csv("submission.csv", index=False, columns=["ForecastId", "ConfirmedCases", "Fatalities"] ) | COVID19 Global Forecasting (Week 3) |
8,824,396 | from sklearn.neighbors import KNeighborsClassifier<train_model> | test.days.nunique() | COVID19 Global Forecasting (Week 3) |
8,824,396 | KNN = KNeighborsClassifier(n_neighbors = 11, n_jobs = -1)
KNN.fit(X_train,y_train )<compute_test_metric> | for i, rec in test.groupby('Area' ).last().sort_values("ConfirmedCases", ascending=False ).iterrows() :
print(f"{rec['ConfirmedCases']:10.1f} {rec['Fatalities']:10.1f} {rec['Country_Region']}, {rec['Province_State']}")
| COVID19 Global Forecasting (Week 3) |
8,822,284 | KNN.score(X_test,y_test )<predict_on_test> | import pandas as pd
from pathlib import Path
from pandas_profiling import ProfileReport
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import LabelEncoder
import datetime
from sklearn.model_selection import GridSearchCV
from sklearn import preprocessing
from sklearn.model_selection import cross_val_score | COVID19 Global Forecasting (Week 3) |
8,822,284 | predict=KNN.predict(test_data.drop('RefId',axis=1))<prepare_output> | base_dir='/kaggle/input/covid19-global-forecasting-week-3/'
train_file='train.csv'
test_file='test.csv'
submit_file='submission.csv' | COVID19 Global Forecasting (Week 3) |
8,822,284 | Submission=pd.DataFrame(data=predict,columns=['IsBadBuy'])
Submission.head()<prepare_output> | train_df = pd.read_csv(base_dir+'train.csv')
test_df = pd.read_csv(base_dir+'test.csv')
submission = pd.read_csv(base_dir+'submission.csv' ) | COVID19 Global Forecasting (Week 3) |
8,822,284 | Submission['RefId']=test_data['RefId']
Submission.set_index('RefId',inplace=True )<save_to_csv> | train=train_df.copy()
test= test_df.copy() | COVID19 Global Forecasting (Week 3) |
8,822,284 | Submission.head()
Submission.to_csv('Submission.csv' )<load_from_csv> | train['Province_State'][train.Province_State.isna() ] = train['Country_Region'][train.Province_State.isna() ]
test['Province_State'][test.Province_State.isna() ] = test['Country_Region'][test.Province_State.isna() ] | COVID19 Global Forecasting (Week 3) |
8,822,284 | train_data=pd.read_csv('/kaggle/input/DontGetKicked/training.csv')
train_data.head()<load_from_csv> | def decomposedate(df):
df['Date'] = pd.to_datetime(df['Date'],infer_datetime_format=True)
df['Day_of_Week']=df['Date'].dt.dayofweek
df['Month'] = df['Date'].dt.month
df['Day'] = df['Date'].dt.day
df['Day_of_Year'] = df['Date'].dt.dayofyear
df['Week_of_Year'] = df['Date'].dt.weekofyear
df['Quarter'] = df['Date'].dt.quarter
df.drop('Date',1,inplace=True)
return df | COVID19 Global Forecasting (Week 3) |
8,822,284 | test_data=pd.read_csv('/kaggle/input/DontGetKicked/test.csv')
test_data.head()<count_missing_values> | train=decomposedate(train)
test=decomposedate(test ) | COVID19 Global Forecasting (Week 3) |
8,822,284 | train_data.isnull().sum()<count_missing_values> | submission=pd.DataFrame(columns=submission.columns ) | COVID19 Global Forecasting (Week 3) |
8,822,284 | test_data.isnull().sum()<count_values> | l1=LabelEncoder()
l2=LabelEncoder() | COVID19 Global Forecasting (Week 3) |
8,822,284 | train_data['IsBadBuy'].value_counts()<count_values> | train['Country_Region']=l1.fit_transform(train['Country_Region'])
train['Province_State']=l2.fit_transform(train['Province_State'] ) | COVID19 Global Forecasting (Week 3) |
8,822,284 | train_data['Model'].value_counts()<drop_column> | test['Country_Region']=l1.fit_transform(test['Country_Region'])
test['Province_State']=l2.fit_transform(test['Province_State'] ) | COVID19 Global Forecasting (Week 3) |
8,822,284 | train_data.drop('Model',axis=1,inplace=True)
test_data.drop("Model",axis=1,inplace=True )<count_values> | y1=train[['ConfirmedCases']]
y2=train[['Fatalities']]
test_id=test['ForecastId'].values.tolist() | COVID19 Global Forecasting (Week 3) |
8,822,284 | train_data['Trim'].value_counts()<drop_column> | train.pop('Id')
test.pop('ForecastId' ) | COVID19 Global Forecasting (Week 3) |
8,822,284 | train_data.drop('Trim',inplace=True,axis=1)
test_data.drop('Trim',inplace=True,axis=1 )<count_values> | features_cols=['Province_State','Country_Region','Day_of_Week','Month','Day','Day_of_Year','Week_of_Year','Quarter'] | COVID19 Global Forecasting (Week 3) |
8,822,284 | train_data['SubModel'].value_counts()<drop_column> | train_x=train[features_cols]
test_x = test[features_cols] | COVID19 Global Forecasting (Week 3) |
8,822,284 | train_data.drop('SubModel',inplace=True,axis=1)
test_data.drop('SubModel',inplace=True,axis=1 )<count_values> | model_1=DecisionTreeClassifier()
model_2=DecisionTreeClassifier()
model_1.fit(train_x,y1)
model_2.fit(train_x,y2 ) | COVID19 Global Forecasting (Week 3) |
8,822,284 | train_data['Color'].value_counts()<count_values> | test_y1=model_1.predict(test_x)
test_y2=model_2.predict(test_x)
submission=pd.DataFrame(columns=submission.columns)
submission['ForecastId']=test_id
submission['ConfirmedCases']=test_y1
submission['Fatalities']=test_y2 | COVID19 Global Forecasting (Week 3) |
8,822,284 | test_data['Color'].value_counts()<data_type_conversions> | submission.to_csv('submission.csv',index=False ) | COVID19 Global Forecasting (Week 3) |
8,761,948 | train_data['Color'].fillna(value='Color_Unknown',inplace=True)
test_data['Color'].fillna(value='Color_Unknown',inplace=True )<count_missing_values> | df_train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/train.csv')
df_test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv')
df_sub = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv' ) | COVID19 Global Forecasting (Week 3) |
8,761,948 | print("Number of null values in Color column "+str(train_data['Color'].isnull().sum()))
print("Number of null values in Color column "+str(test_data['Color'].isnull().sum()))<count_values> | df_train['Date'] = pd.to_datetime(df_train['Date'], infer_datetime_format=True)
df_test['Date'] = pd.to_datetime(df_test['Date'], infer_datetime_format=True)
df_train.loc[:, 'Date'] = df_train.Date.dt.strftime("%m%d")
df_train["Date"] = df_train["Date"].astype(int)
df_test.loc[:, 'Date'] = df_test.Date.dt.strftime("%m%d")
df_test["Date"] = df_test["Date"].astype(int ) | COVID19 Global Forecasting (Week 3) |
8,761,948 | train_data['Transmission'].value_counts()<count_values> | df_train['ConfirmedCases'] = df_train['ConfirmedCases'].apply(int)
df_train['Fatalities'] = df_train['Fatalities'].apply(int ) | COVID19 Global Forecasting (Week 3) |
8,761,948 | test_data['Transmission'].value_counts()<filter> | df_train['Province_State'] = df_train['Province_State'].fillna('unknown')
df_test['Province_State'] = df_test['Province_State'].fillna('unknown' ) | COVID19 Global Forecasting (Week 3) |
8,761,948 | train_data[train_data['Transmission']=='Manual']<rename_columns> | import xgboost as xgb
from xgboost import XGBRegressor | COVID19 Global Forecasting (Week 3) |
8,761,948 | train_data['Transmission'].replace("Manual","MANUAL",inplace=True )<count_values> | features = ['Date']
submission = pd.DataFrame(columns=['ForecastId', 'ConfirmedCases', 'Fatalities'])
for i in tqdm(df_train.Country_Region.unique()):
c_train = df_train[df_train['Country_Region'] == i]
c_test = df_test[df_test['Country_Region'] == i]
for j in c_train.Province_State.unique() :
p_train = c_train[c_train['Province_State'] == j]
p_test = c_test[c_test['Province_State'] == j]
x_train = p_train[features]
y_train_cc = p_train['ConfirmedCases']
y_train_ft = p_train['Fatalities']
model = xgb.XGBRegressor(n_estimators=1000)
model.fit(x_train, y_train_cc)
y_pred_cc = model.predict(p_test[features])
model.fit(x_train, y_train_ft)
y_pred_ft = model.predict(p_test[features])
p_test['ConfirmedCases'] = y_pred_cc
p_test['Fatalities'] = y_pred_ft
submission = pd.concat([submission, p_test[['ForecastId', 'ConfirmedCases', 'Fatalities']]], axis=0 ) | COVID19 Global Forecasting (Week 3) |
8,761,948 | train_data['Transmission'].value_counts()<data_type_conversions> | submission.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,761,948 | train_data['Transmission'].fillna(value="Transmission_unk",inplace=True)
test_data['Transmission'].fillna(value="Transmission_unk",inplace=True )<count_values> | submission.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,807,084 | train_data['WheelTypeID'].value_counts()<drop_column> | %matplotlib inline
def sigmoid_sqrt_func(x, a, b, c, d, e):
return c + d /(1.0 + np.exp(-a*x+b)) + e*x**0.5
def sigmoid_linear_func(x, a, b, c, d, e):
return c + d /(1.0 + np.exp(-a*x+b)) + e*0.1*x
def sigmoid_quad_func(x, a, b, c, d, e, f):
return c + d /(1.0 + np.exp(-a*x+b)) + e*0.1*x + f*0.001*x*x
def sigmoid_func(x, a, b, c, d):
return c + d /(1.0 + np.exp(-a*x+b))
def exp_func(x, a, b, c, d):
return c + d * np.exp(a*x+b)
def func_fitting(y, func=sigmoid_func, x_scale=50.0, y_scale=10000.0, start_pred=8, AN=0, MAXN=60, PN=15, b=5):
x = range(len(y))
x_real = np.array(x)/x_scale
y_real = np.array(y)/y_scale
x_train = x_real
y_train = y_real
def next_day_pred(AN, BN):
x_train = x_real[AN:BN]
y_train = y_real[AN:BN]
popt, pcov = curve_fit(func, x_train, y_train,
method='trf',
maxfev=20000,
p0=(1, 0, 0, 1),
bounds=[(-b, -np.inf, -np.inf, -b),(b, np.inf, np.inf, b)],
)
x_pred = np.array(range(MAXN)) /x_scale
y_pred = func(x_pred, *popt)
return x_pred, y_pred
NP = start_pred
y_pred = [np.nan]*NP
y_pred_list = []
for BN in range(NP, len(y_real)) :
x_pred, y_pred_ = next_day_pred(BN-PN, BN)
y_pred.append(y_pred_[BN])
y_pred_list.append(y_pred_)
for BN in range(len(y_real), len(y_pred_)) :
y_pred.append(y_pred_[BN])
y_pred = np.array(y_pred)
y_pred_list = np.array(y_pred_list)
y_pred_std = np.std(y_pred_list[-2:], axis=0)
return x_real*x_scale, y_real*y_scale, x_train*x_scale, y_train*y_scale, \
x_pred*x_scale, y_pred*y_scale, y_pred_std*y_scale
def draw_figure(start_date, title, x_real, y_real, x_train, y_train, x_pred, y_pred, y_pred_std):
def to_date(idx):
idx = np.round(idx)
return datetime.datetime.strptime(start_date, '%m/%d/%Y' ).date() + datetime.timedelta(days=idx)
fig, ax1 = plt.subplots(figsize=[14, 7])
plot1 = ax1.plot(list(map(to_date, x_real)) , y_real, 'gs',label='original')
plot2 = ax1.plot(list(map(to_date, x_pred)) , y_pred, 'r',label='predict')
plot3 = ax1.fill_between(list(map(to_date, x_pred)) ,
np.maximum(0,(y_pred-y_pred_std)) ,
(y_pred+y_pred_std),
alpha=0.2, edgecolor='
plot0 = ax1.plot(list(map(to_date, x_train)) , y_train, 'y.',label='history')
ax2=ax1.twinx()
ax2.plot(list(map(to_date, x_real)) [1:],(y_real[1:]-y_real[:-1]), '-s',label='original add')
ax2.plot(list(map(to_date, x_pred)) [1:],(y_pred[1:]-y_pred[:-1]), '-',label='pred add')
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m-%d'))
plt.gca().xaxis.set_major_locator(mdates.DayLocator())
plt.gcf().autofmt_xdate()
plt.xlabel('x')
plt.ylabel('y')
fig.legend(loc=2)
plt.title(title)
plt.savefig('{}.pdf'.format(title))
plt.show()
date = list(map(to_date, x_pred))
pred = y_pred
real = y_real
for i in range(len(pred)) :
if i < len(real):
print('{}\t{:.0f}\t{:.0f}\t{:.3f}'.format(date[i], real[i], pred[i], np.abs(pred[i]-real[i])/real[i]*100))
else:
print('{}\t-\t{:.0f}'.format(date[i], pred[i]))
return pred | COVID19 Global Forecasting (Week 3) |
8,807,084 | train_data.drop('WheelTypeID',inplace=True,axis=1)
test_data.drop('WheelTypeID',inplace=True,axis=1 )<count_values> | train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/train.csv')
test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv')
pred_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/submission.csv')
train_data = train_data.fillna(value='NULL')
test_data = test_data.fillna(value='NULL' ) | COVID19 Global Forecasting (Week 3) |
8,807,084 | train_data['WheelType'].value_counts()<count_values> | train_date_list = train_data.iloc[:, 3].unique()
print(len(train_date_list))
print(train_date_list)
test_date_list = test_data.iloc[:, 3].unique()
print(len(test_date_list))
print(test_date_list)
len(train_data.groupby(['Province_State', 'Country_Region']))
len(test_data.groupby(['Province_State', 'Country_Region'])) | COVID19 Global Forecasting (Week 3) |
8,807,084 | test_data['WheelType'].value_counts()<data_type_conversions> | start_date = '01/22/2020'
start_pred = 74
start_submit = 64
len_pred = 30
test_date_list = test_data.iloc[:, 3].unique()
test_data_filled = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv')
test_data_filled = test_data_filled.fillna(value='NULL')
test_data_filled['ConfirmedCases'] = pred_data['ConfirmedCases']
test_data_filled['Fatalities'] = pred_data['Fatalities']
for idx,(k, v)in enumerate(train_data.groupby(['Province_State', 'Country_Region'])) :
print(idx, k, end=' ')
b_cc, b_f = 5, 3
if k[1] == 'China':
b_cc = 1
b_f = 1
if k[0] == 'Hong Kong':
b_cc = 3
elif k[1] == 'Italy':
b_cc = 10
b_f = 3
elif k[1] == 'US':
b_cc = 5
b_f = 3
elif k[1] == 'Spain':
b_cc = 4
b_f = 3
hist_num = v.loc[:,'ConfirmedCases'].tolist()
ret = func_fitting(hist_num, y_scale=max(1000, np.max(hist_num)) , b=b_cc,
start_pred=start_pred, PN=10, MAXN=len(hist_num)+len_pred)
ret = list(ret)
real_cc = np.round(np.array(ret[1]))
pred_cc = np.round(np.array(ret[5]))
for i in range(len(real_cc)) :
pred_cc[i] = real_cc[i]
pred_cc = pred_cc[start_submit:]
print(pred_cc)
hist_num = v.loc[:,'Fatalities'].tolist()
ret = func_fitting(hist_num, y_scale=max(1000, np.max(hist_num)) , b=b_f,
start_pred=start_pred, PN=10, MAXN=len(hist_num)+len_pred)
ret = list(ret)
real_f = np.round(np.array(ret[1]))
pred_f = np.round(np.array(ret[5]))
for i in range(len(real_f)) :
pred_f[i] = real_f[i]
pred_f = pred_f[start_submit:]
print(pred_f)
for i in range(14, len(pred_cc)) :
if pred_f[i] < 20 and pred_cc[i] > 200 and k[1] != 'China':
pred_f[i] = pred_cc[i] * 0.01 * np.log10(pred_cc[i])
print(pred_f)
print(pred_cc[-1], pred_f[-1])
for i in range(len(pred_cc)) :
index =(test_data_filled['Province_State'] == k[0])& \
(test_data_filled['Country_Region'] == k[1])& \
(test_data_filled['Date'] == test_date_list[i])
test_data_filled.loc[index, 'ConfirmedCases'] = pred_cc[i]
test_data_filled.loc[index, 'Fatalities'] = pred_f[i] | COVID19 Global Forecasting (Week 3) |
8,807,084 | train_data['WheelType'].fillna(value='WheelType_unk',inplace=True)
test_data['WheelType'].fillna(value='WheelType_unk',inplace=True )<count_values> | submission = test_data_filled.loc[:,['ForecastId', 'ConfirmedCases', 'Fatalities']] | COVID19 Global Forecasting (Week 3) |
8,807,084 | <count_values><EOS> | submission.to_csv("submission.csv", index=False)
submission.head(500 ) | COVID19 Global Forecasting (Week 3) |
8,824,741 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<count_values> | pd.options.display.max_rows = 500
pd.options.display.max_columns = 500
%matplotlib inline
def rmse(yt, yp):
return np.sqrt(np.mean(( yt-yp)**2))
class CovidModel:
def __init__(self):
pass
def predict_first_day(self, date):
return None
def predict_next_day(self, yesterday_pred_df):
return None
class CovidModelAhmet(CovidModel):
def preprocess(self, df, meta_df):
df["Date"] = pd.to_datetime(df['Date'])
df = df.merge(meta_df, on=self.loc_group, how="left")
df["lat"] =(df["lat"] // 30 ).astype(np.float32 ).fillna(0)
df["lon"] =(df["lon"] // 60 ).astype(np.float32 ).fillna(0)
df["population"] = np.log1p(df["population"] ).fillna(-1)
df["area"] = np.log1p(df["area"] ).fillna(-1)
for col in self.loc_group:
df[col].fillna("", inplace=True)
df['day'] = df.Date.dt.dayofyear
df['geo'] = ['_'.join(x)for x in zip(df['Country_Region'], df['Province_State'])]
return df
def get_model(self):
def nn_block(input_layer, size, dropout_rate, activation):
out_layer = KL.Dense(size, activation=None )(input_layer)
out_layer = KL.Activation(activation )(out_layer)
out_layer = KL.Dropout(dropout_rate )(out_layer)
return out_layer
ts_inp = KL.Input(shape=(len(self.ts_features),))
global_inp = KL.Input(shape=(len(self.global_features),))
inp = KL.concatenate([global_inp, ts_inp])
hidden_layer = nn_block(inp, 64, 0.0, "relu")
gate_layer = nn_block(hidden_layer, 32, 0.0, "sigmoid")
hidden_layer = nn_block(hidden_layer, 32, 0.0, "relu")
hidden_layer = KL.multiply([hidden_layer, gate_layer])
out = KL.Dense(len(self.TARGETS), activation="linear" )(hidden_layer)
model = tf.keras.models.Model(inputs=[global_inp, ts_inp], outputs=out)
return model
def get_input(self, df):
return [df[self.global_features], df[self.ts_features]]
def train_models(self, df, num_models=20, save=False):
def custom_loss(y_true, y_pred):
return K.sum(K.sqrt(K.sum(K.square(y_true - y_pred), axis=0, keepdims=True)))/len(self.TARGETS)
models = []
for i in range(num_models):
model = self.get_model()
model.compile(loss=custom_loss, optimizer=Nadam(lr=1e-4))
hist = model.fit(self.get_input(df), df[self.TARGETS],
batch_size=2048, epochs=200, verbose=0, shuffle=True)
if save:
model.save_weights("model{}.h5".format(i))
models.append(model)
return models
def predict_one(self, df):
pred = np.zeros(( df.shape[0], 2))
for model in self.models:
pred += model.predict(self.get_input(df)) /len(self.models)
pred = np.maximum(pred, df[self.prev_targets].values)
pred[:, 0] = np.log1p(np.expm1(pred[:, 0])+ 0.1)
pred[:, 1] = np.log1p(np.expm1(pred[:, 1])+ 0.01)
return np.clip(pred, None, 15)
def __init__(self):
df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
sub_df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
meta_df = pd.read_csv(".. /input/covid19-forecasting-metadata/region_metadata.csv")
self.loc_group = ["Province_State", "Country_Region"]
df = self.preprocess(df, meta_df)
sub_df = self.preprocess(sub_df, meta_df)
df = df.merge(sub_df[["ForecastId", "Date", "geo"]], how="left", on=["Date", "geo"])
df = df.append(sub_df[sub_df["Date"] > df["Date"].max() ], sort=False)
df["day"] = df["day"] - df["day"].min()
self.TARGETS = ["ConfirmedCases", "Fatalities"]
self.prev_targets = ['prev_ConfirmedCases_1', 'prev_Fatalities_1']
for col in self.TARGETS:
df[col] = np.log1p(df[col])
self.NUM_SHIFT = 7
self.global_features = ["lat", "lon", "population", "area"]
self.ts_features = []
for s in range(1, self.NUM_SHIFT+1):
for col in self.TARGETS:
df["prev_{}_{}".format(col, s)] = df.groupby(self.loc_group)[col].shift(s)
self.ts_features.append("prev_{}_{}".format(col, s))
self.df = df[df["Date"] >= df["Date"].min() + timedelta(days=self.NUM_SHIFT)].copy()
def predict_first_day(self, day):
self.models = self.train_models(self.df[self.df["day"] < day])
temp_df = self.df.loc[self.df["day"] == day].copy()
y_pred = self.predict_one(temp_df)
self.y_prevs = [None]*self.NUM_SHIFT
for i in range(1, self.NUM_SHIFT):
self.y_prevs[i] = temp_df[['prev_ConfirmedCases_{}'.format(i), 'prev_Fatalities_{}'.format(i)]].values
temp_df[self.TARGETS] = y_pred
self.day = day
return temp_df[["geo", "day"] + self.TARGETS]
def predict_next_day(self, yesterday_pred_df):
self.day = self.day + 1
temp_df = self.df.loc[self.df["day"] == self.day].copy()
yesterday_pred_df = temp_df[["geo"]].merge(yesterday_pred_df[["geo"] + self.TARGETS], on="geo", how="left")
temp_df[self.prev_targets] = yesterday_pred_df[self.TARGETS].values
for i in range(2, self.NUM_SHIFT+1):
temp_df[['prev_ConfirmedCases_{}'.format(i), 'prev_Fatalities_{}'.format(i)]] = self.y_prevs[i-1]
y_pred, self.y_prevs = self.predict_one(temp_df), [None, temp_df[self.prev_targets].values] + self.y_prevs[1:-1]
temp_df[self.TARGETS] = y_pred
return temp_df[["geo", "day"] + self.TARGETS]
| COVID19 Global Forecasting (Week 3) |
8,824,741 | test_data['Nationality'].value_counts()<data_type_conversions> | class CovidModelCPMP(CovidModel):
def __init__(self):
train = pd.read_csv('.. /input/covid19-global-forecasting-week-3/train.csv')
train['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
train['day'] = train.Date.dt.dayofyear
train['geo'] = ['_'.join(x)for x in zip(train['Country_Region'], train['Province_State'])]
test = pd.read_csv('.. /input/covid19-global-forecasting-week-3/test.csv')
test['Province_State'].fillna('', inplace=True)
test['Date'] = pd.to_datetime(test['Date'])
test['day'] = test.Date.dt.dayofyear
test['geo'] = ['_'.join(x)for x in zip(test['Country_Region'], test['Province_State'])]
day_min = train['day'].min()
train['day'] -= day_min
test['day'] -= day_min
self.min_test_val_day = test.day.min()
self.max_test_val_day = train.day.max()
self.max_test_day = test.day.max()
train['ForecastId'] = -1
test['Id'] = -1
test['ConfirmedCases'] = 0
test['Fatalities'] = 0
data = pd.concat([train,
test[test.day > self.max_test_val_day][train.columns]
] ).reset_index(drop=True)
self.data = data
self.train = train
self.test = test
self.dates = data[data['geo'] == 'France_'].Date.values
region_meta = pd.read_csv('.. /input/covid19-forecasting-metadata/region_metadata.csv')
region_meta['Province_State'].fillna('', inplace=True)
region_meta['geo'] = ['_'.join(x)for x in zip(region_meta['Country_Region'], region_meta['Province_State'],)]
population = data[['geo']].merge(region_meta, how='left', on='geo' ).fillna(0)
population = population.groupby('geo')[['population']].first()
population['population'] = np.log1p(population['population'])
self.population = population[['population']].values
continents = region_meta['continent']
continents = pd.factorize(continents)[0]
continents_ids_base = continents.reshape(( -1, 1))
ohe = OneHotEncoder(sparse=False)
self.continents_ids_base = ohe.fit_transform(continents_ids_base)
self.geo_data = data.pivot(index='geo', columns='day', values='ForecastId')
self.num_geo = self.geo_data.shape[0]
self.ConfirmedCases = data.pivot(index='geo', columns='day', values='ConfirmedCases')
self.Fatalities = data.pivot(index='geo', columns='day', values='Fatalities')
self.cases = np.log1p(self.ConfirmedCases.values)
self.deaths = np.log1p(self.Fatalities.values)
self.case_threshold = 30
self.c_case = 10
self.t_case = 100
self.c_death = 10
self.t_death = 5
time_cases = self.c_case *(self.cases >= np.log1p(self.t_case))
time_cases = np.cumsum(time_cases, axis=1)
self.time_cases = 1 * np.log1p(time_cases)
time_deaths = self.c_death *(self.deaths >= np.log1p(self.t_death))
time_deaths = np.cumsum(time_deaths, axis=1)
self.time_deaths = 1 *np.log1p(time_deaths)
countries = [g.split('_')[0] for g in self.geo_data.index]
countries = pd.factorize(countries)[0]
country_ids_base = countries.reshape(( -1, 1))
ohe = OneHotEncoder(sparse=False)
self.country_ids_base = 0.2 * ohe.fit_transform(country_ids_base)
self.start_lag_death = 13
self.end_lag_death = 5
self.num_train = 5
self.num_lag_case = 14
self.lag_period = max(self.start_lag_death, self.num_lag_case)
self.df = train[['geo', 'day', 'ConfirmedCases', 'Fatalities']].copy()
self.df.ConfirmedCases = np.log1p(self.df.ConfirmedCases)
self.df.Fatalities = np.log1p(self.df.Fatalities)
def get_country_ids(self):
countries = [g.split('_')[0] for g in self.geo_data.index]
countries = pd.factorize(countries)[0]
countries[self.cases[:, :self.last_train+1].max(axis=1)< np.log1p(self.case_threshold)] = -1
countries = pd.factorize(countries)[0]
country_ids_base = countries.reshape(( -1, 1))
ohe = OneHotEncoder(sparse=False)
country_ids_base = 0.2 * ohe.fit_transform(country_ids_base)
return country_ids_base
def val_score(self, true, pred):
return np.sqrt(mean_squared_error(true.ravel() , pred.ravel()))
def get_dataset(self, start_pred, num_train):
days = np.arange(start_pred - num_train + 1, start_pred + 1)
lag_cases = np.vstack([self.cases[:, d - self.lag_period : d] for d in days])
lag_deaths = np.vstack([self.deaths[:, d - self.lag_period : d] for d in days])
target_cases = np.vstack([self.cases[:, d : d + 1] for d in days])
target_deaths = np.vstack([self.deaths[:, d : d + 1] for d in days])
continents_ids = np.vstack([self.continents_ids_base for d in days])
country_ids = np.vstack([self.country_ids_base for d in days])
population = np.vstack([self.population for d in days])
time_case = np.vstack([self.time_cases[:, d - 1: d ] for d in days])
time_death = np.vstack([self.time_deaths[:, d - 1 : d ] for d in days])
return(lag_cases, lag_deaths, target_cases, target_deaths,
continents_ids, country_ids, population, time_case, time_death, days)
def update_time(self, time_death, time_case, pred_death, pred_case):
new_time_death = np.expm1(time_death)+ self.c_death *(pred_death >= np.log1p(self.t_death))
new_time_death = 1 *np.log1p(new_time_death)
new_time_case = np.expm1(time_case)+ self.c_case *(pred_case >= np.log1p(self.t_case))
new_time_case = 1 *np.log1p(new_time_case)
return new_time_death, new_time_case
def update_valid_dataset(self, dataset, pred_death, pred_case, pred_day):
(lag_cases, lag_deaths, target_cases, target_deaths,
continents_ids, country_ids, population, time_case, time_death, days)= dataset
if pred_day != days[-1]:
print('error', pred_day, days[-1])
return None
day = days[-1] + 1
new_lag_cases = np.hstack([lag_cases[:, 1:], pred_case])
new_lag_deaths = np.hstack([lag_deaths[:, 1:], pred_death])
new_target_cases = self.cases[:, day:day+1]
new_target_deaths = self.deaths[:, day:day+1]
new_continents_ids = continents_ids
new_country_ids = country_ids
new_population = population
new_time_death, new_time_case = self.update_time(time_death, time_case, pred_death, pred_case)
new_days = 1 + days
return(new_lag_cases, new_lag_deaths, new_target_cases, new_target_deaths,
new_continents_ids, new_country_ids, new_population,
new_time_case, new_time_death, new_days)
def fit_eval(self, dataset, fit):
(lag_cases, lag_deaths, target_cases, target_deaths,
continents_ids, country_ids, population,
time_case, time_death, days)= dataset
X_death = np.hstack([lag_cases[:, -self.start_lag_death:-self.end_lag_death],
lag_deaths[:, -self.num_lag_case:],
country_ids,
continents_ids,
population,
time_case,
time_death,
])
y_death = target_deaths
y_death_prev = lag_deaths[:, -1:]
if fit:
self.lr_death.fit(X_death, y_death)
y_pred_death = self.lr_death.predict(X_death)
y_pred_death = np.maximum(y_pred_death, y_death_prev)
X_case = np.hstack([lag_cases[:, -self.num_lag_case:],
country_ids,
continents_ids,
population,
time_case,
])
y_case = target_cases
y_case_prev = lag_cases[:, -1:]
if fit:
self.lr_case.fit(X_case, y_case)
y_pred_case = self.lr_case.predict(X_case)
y_pred_case = np.maximum(y_pred_case, y_case_prev)
return y_pred_death, y_pred_case
def get_pred_df(self, val_death_preds, val_case_preds,):
pred_deaths = self.Fatalities.iloc[:, self.start_val:self.start_val+self.num_val].copy()
pred_deaths.iloc[:, :] = val_death_preds
pred_deaths = pred_deaths.stack().reset_index()
pred_deaths.columns = ['geo', 'day', 'Fatalities']
pred_deaths
pred_cases = self.ConfirmedCases.iloc[:, self.start_val:self.start_val+self.num_val].copy()
pred_cases.iloc[:, :] = val_case_preds
pred_cases = pred_cases.stack().reset_index()
pred_cases.columns = ['geo', 'day', 'ConfirmedCases']
pred_cases
sub = self.data[['geo', 'day']]
sub = sub[sub.day == self.start_val]
sub = sub.merge(pred_cases, how='left', on=['geo', 'day'])
sub = sub.merge(pred_deaths, how='left', on=['geo', 'day'])
sub = sub[(sub.day >= self.start_val)&(sub.day <= self.end_val)]
return sub
def predict_first_day(self, day):
self.start_val = day
self.end_val = day + 1
self.num_val = self.end_val - self.start_val + 1
score = True
self.last_train = self.start_val - 1
print(self.dates[self.last_train], self.start_val, self.num_val)
self.country_ids_base = self.get_country_ids()
train_data = self.get_dataset(self.last_train, self.num_train)
alpha = 3
self.lr_death = Ridge(alpha=alpha, fit_intercept=True)
self.lr_case = Ridge(alpha=alpha, fit_intercept=True)
_ = self.fit_eval(train_data, fit=True)
self.valid_data = self.get_dataset(self.start_val, 1)
val_death_preds, val_case_preds = self.fit_eval(self.valid_data, fit=False)
df = self.get_pred_df(val_death_preds, val_case_preds)
return df
def predict_next_day(self, yesterday_pred_df):
yesterday_pred_df = yesterday_pred_df.sort_values(by='geo' ).reset_index(drop=True)
if yesterday_pred_df.day.nunique() != 1:
print('error', yesterday_pred_df.day.unique())
return None
pred_death = yesterday_pred_df[['Fatalities']].values
pred_case = yesterday_pred_df[['ConfirmedCases']].values
pred_day = yesterday_pred_df.day.unique() [0]
new_valid_data = self.update_valid_dataset(self.valid_data,
pred_death, pred_case, pred_day)
if len(new_valid_data)> 0:
self.valid_data = new_valid_data
self.start_val = pred_day + 1
self.end_val = pred_day + 2
val_death_preds, val_case_preds = self.fit_eval(self.valid_data, fit=False)
df = self.get_pred_df(val_death_preds, val_case_preds)
return df | COVID19 Global Forecasting (Week 3) |
8,824,741 | train_data['Nationality'].fillna(value='Nationality_unk',inplace=True)
test_data['Nationality'].fillna(value='Nationality_unk',inplace=True )<count_values> | class CovidModelGIBA(CovidModel):
def __init__(self, lag=1, seed=1):
self.lag = lag
self.seed = seed
print('Lag:', lag, 'Seed:', seed)
train = pd.read_csv('.. /input/covid19-global-forecasting-week-3/train.csv')
train['Date'] = pd.to_datetime(train['Date'])
self.maxdate = str(train['Date'].max())[:10]
self.testdate = str(train['Date'].max() + pd.Timedelta(days=1)) [:10]
print('Last Date in Train:',self.maxdate, 'Test first Date:',self.testdate)
train['Province_State'].fillna('', inplace=True)
train['day'] = train.Date.dt.dayofyear
self.day_min = train['day'].min()
train['day'] -= self.day_min
train['geo'] = ['_'.join(x)for x in zip(train['Country_Region'], train['Province_State'])]
test = pd.read_csv('.. /input/covid19-global-forecasting-week-3/test.csv')
test['Date'] = pd.to_datetime(test['Date'])
test['Province_State'].fillna('', inplace=True)
test['day'] = test.Date.dt.dayofyear
test['day'] -= self.day_min
test['geo'] = ['_'.join(x)for x in zip(test['Country_Region'], test['Province_State'])]
test['Id'] = -1
test['ConfirmedCases'] = 0
test['Fatalities'] = 0
self.trainmaxday = train['day'].max()
self.testday1 = train['day'].max() + 1
self.testdayN = test['day'].max()
publictest = test.loc[ test.Date > train.Date.max() ].copy()
train = pd.concat(( train, publictest), sort=False)
train.sort_values(['Country_Region','Province_State','Date'], inplace=True)
train = train.reset_index(drop=True)
train['ForecastId'] = pd.merge(train, test, on=['Country_Region','Province_State','Date'], how='left')['ForecastId_y'].values
train['cid'] = train['Country_Region'] + '_' + train['Province_State']
train['log0'] = np.log1p(train['ConfirmedCases'])
train['log1'] = np.log1p(train['Fatalities'])
train = train.loc[(train.log0 > 0)|(train.ForecastId.notnull())|(train.Date >= '2020-03-17')].copy()
train = train.reset_index(drop=True)
train['days_since_1case'] = train.groupby('cid')['Id'].cumcount()
dt = pd.read_csv('.. /input/covid19-lockdown-dates-by-country/countryLockdowndates.csv')
dt.columns = ['Country_Region','Province_State','Date','Type','Reference']
dt = dt.loc[ dt.Date == dt.Date ]
dt['Province_State'] = dt['Province_State'].fillna('')
dt['Date'] = pd.to_datetime(dt['Date'])
dt['Date'] = dt['Date'] + pd.Timedelta(days=8)
dt['Type'] = pd.factorize(dt['Type'])[0]
dt['cid'] = dt['Country_Region'] + '_' + dt['Province_State']
del dt['Reference'], dt['Country_Region'], dt['Province_State']
train = pd.merge(train, dt, on=['cid','Date'], how='left')
train['Type'] = train.groupby('cid')['Type'].fillna(method='ffill')
train['target0'] = np.log1p(train['ConfirmedCases'])
train['target1'] = np.log1p(train['Fatalities'])
self.train = train.copy()
def create_features(self, df, valid_day):
df['lag0_1'] = df.groupby('cid')['target0'].shift(self.lag)
df['lag1_1'] = df.groupby('cid')['target1'].shift(self.lag)
df['lag0_1'] = df.groupby('cid')['lag0_1'].fillna(method='bfill')
df['lag1_1'] = df.groupby('cid')['lag1_1'].fillna(method='bfill')
df['m0'] = df.groupby('cid')['lag0_1'].rolling(2 ).mean().values
df['m1'] = df.groupby('cid')['lag0_1'].rolling(3 ).mean().values
df['m2'] = df.groupby('cid')['lag0_1'].rolling(4 ).mean().values
df['m3'] = df.groupby('cid')['lag0_1'].rolling(5 ).mean().values
df['m4'] = df.groupby('cid')['lag0_1'].rolling(7 ).mean().values
df['m5'] = df.groupby('cid')['lag0_1'].rolling(10 ).mean().values
df['m6'] = df.groupby('cid')['lag0_1'].rolling(12 ).mean().values
df['m7'] = df.groupby('cid')['lag0_1'].rolling(16 ).mean().values
df['m8'] = df.groupby('cid')['lag0_1'].rolling(20 ).mean().values
df['n0'] = df.groupby('cid')['lag1_1'].rolling(2 ).mean().values
df['n1'] = df.groupby('cid')['lag1_1'].rolling(3 ).mean().values
df['n2'] = df.groupby('cid')['lag1_1'].rolling(4 ).mean().values
df['n3'] = df.groupby('cid')['lag1_1'].rolling(5 ).mean().values
df['n4'] = df.groupby('cid')['lag1_1'].rolling(7 ).mean().values
df['n5'] = df.groupby('cid')['lag1_1'].rolling(10 ).mean().values
df['n6'] = df.groupby('cid')['lag1_1'].rolling(12 ).mean().values
df['n7'] = df.groupby('cid')['lag1_1'].rolling(16 ).mean().values
df['n8'] = df.groupby('cid')['lag1_1'].rolling(20 ).mean().values
df['m0'] = df.groupby('cid')['m0'].fillna(method='bfill')
df['m1'] = df.groupby('cid')['m1'].fillna(method='bfill')
df['m2'] = df.groupby('cid')['m2'].fillna(method='bfill')
df['m3'] = df.groupby('cid')['m3'].fillna(method='bfill')
df['m4'] = df.groupby('cid')['m4'].fillna(method='bfill')
df['m5'] = df.groupby('cid')['m5'].fillna(method='bfill')
df['m6'] = df.groupby('cid')['m6'].fillna(method='bfill')
df['m7'] = df.groupby('cid')['m7'].fillna(method='bfill')
df['m8'] = df.groupby('cid')['m8'].fillna(method='bfill')
df['n0'] = df.groupby('cid')['n0'].fillna(method='bfill')
df['n1'] = df.groupby('cid')['n1'].fillna(method='bfill')
df['n2'] = df.groupby('cid')['n2'].fillna(method='bfill')
df['n3'] = df.groupby('cid')['n3'].fillna(method='bfill')
df['n4'] = df.groupby('cid')['n4'].fillna(method='bfill')
df['n5'] = df.groupby('cid')['n5'].fillna(method='bfill')
df['n6'] = df.groupby('cid')['n6'].fillna(method='bfill')
df['n7'] = df.groupby('cid')['n7'].fillna(method='bfill')
df['n8'] = df.groupby('cid')['n8'].fillna(method='bfill')
df['flag_China'] = 1*(df['Country_Region'] == 'China')
df['flag_US'] = 1*(df['Country_Region'] == 'US')
df['flag_Kosovo_'] = 1*(df['cid'] == 'Kosovo_')
df['flag_Korea'] = 1*(df['cid'] == 'Korea, South_')
df['flag_Nepal_'] = 1*(df['cid'] == 'Nepal_')
df['flag_Holy See_'] = 1*(df['cid'] == 'Holy See_')
df['flag_Suriname_'] = 1*(df['cid'] == 'Suriname_')
df['flag_Ghana_'] = 1*(df['cid'] == 'Ghana_')
df['flag_Togo_'] = 1*(df['cid'] == 'Togo_')
df['flag_Malaysia_'] = 1*(df['cid'] == 'Malaysia_')
df['flag_US_Rhode'] = 1*(df['cid'] == 'US_Rhode Island')
df['flag_Bolivia_'] = 1*(df['cid'] == 'Bolivia_')
df['flag_China_Tib'] = 1*(df['cid'] == 'China_Tibet')
df['flag_Bahrain_'] = 1*(df['cid'] == 'Bahrain_')
df['flag_Honduras_'] = 1*(df['cid'] == 'Honduras_')
df['flag_Bangladesh']= 1*(df['cid'] == 'Bangladesh_')
df['flag_Paraguay_'] = 1*(df['cid'] == 'Paraguay_')
tr = df.loc[ df.day < valid_day ].copy()
vl = df.loc[ df.day == valid_day ].copy()
tr = tr.loc[ tr.lag0_1 > 0 ].copy()
maptarget0 = tr.groupby('cid')['target0'].agg(log0_max='max' ).reset_index()
maptarget1 = tr.groupby('cid')['target1'].agg(log1_max='max' ).reset_index()
vl['log0_max'] = pd.merge(vl, maptarget0, on='cid' , how='left')['log0_max'].values
vl['log1_max'] = pd.merge(vl, maptarget1, on='cid' , how='left')['log1_max'].values
vl['log0_max'] = vl['log0_max'].fillna(0)
vl['log1_max'] = vl['log1_max'].fillna(0)
return tr, vl
def train_models(self, valid_day = 10):
train = self.train.copy()
train.loc[(train.cid=='China_Guizhou')&(train.Date=='2020-03-17'), 'target0' ] = np.log1p(146)
train.loc[(train.cid=='Guyana_')&(train.Date>='2020-03-22')&(train.Date<='2020-03-30'), 'target0' ] = np.log1p(12)
train.loc[(train.cid=='US_Virgin Islands')&(train.Date>='2020-03-29')&(train.Date<='2020-03-29'), 'target0' ] = np.log1p(24)
train.loc[(train.cid=='US_Virgin Islands')&(train.Date>='2020-03-30')&(train.Date<='2020-03-30'), 'target0' ] = np.log1p(27)
train.loc[(train.cid=='Iceland_')&(train.Date>='2020-03-15')&(train.Date<='2020-03-15'), 'target1' ] = np.log1p(0)
train.loc[(train.cid=='Kazakhstan_')&(train.Date>='2020-03-20')&(train.Date<='2020-03-20'), 'target1' ] = np.log1p(0)
train.loc[(train.cid=='Serbia_')&(train.Date>='2020-03-26')&(train.Date<='2020-03-26'), 'target1' ] = np.log1p(5)
train.loc[(train.cid=='Serbia_')&(train.Date>='2020-03-27')&(train.Date<='2020-03-27'), 'target1' ] = np.log1p(6)
train.loc[(train.cid=='Slovakia_')&(train.Date>='2020-03-22')&(train.Date<='2020-03-31'), 'target1' ] = np.log1p(1)
train.loc[(train.cid=='US_Hawaii')&(train.Date>='2020-03-25')&(train.Date<='2020-03-31'), 'target1' ] = np.log1p(1)
param = {
'subsample': 0.9850,
'colsample_bytree': 0.850,
'max_depth': 6,
'gamma': 0.000,
'learning_rate': 0.010,
'min_child_weight': 5.00,
'reg_alpha': 0.000,
'reg_lambda': 0.400,
'silent':1,
'objective':'reg:squarederror',
'nthread': 12,
'seed': self.seed
}
tr, vl = self.create_features(train.copy() , valid_day)
features = [f for f in tr.columns if f not in [
'Id','ConfirmedCases','Fatalities','log0','log1','target0','target1','ypred0','ypred1','Province_State','Country_Region','Date','ForecastId','cid','geo','day',
'GDP_region','TRUE POPULATION','pct_in_largest_city',' TFR ',' Avg_age ','latitude','longitude','abs_latitude','temperature', 'humidity',
'Personality_pdi','Personality_idv','Personality_mas','Personality_uai','Personality_ltowvs','Personality_assertive','personality_perform','personality_agreeableness',
'murder','High_rises','max_high_rises','AIR_CITIES','AIR_AVG','continent_gdp_pc','continent_happiness','continent_generosity','continent_corruption','continent_Life_expectancy'
] ]
self.features = features
nrounds0 = 630
nrounds1 = 630
dtrain = xgb.DMatrix(tr[features], tr['target0'])
param['seed'] = self.seed
self.model0 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
param['seed'] = self.seed+1
self.model1 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
dtrain = xgb.DMatrix(tr[features], tr['target1'])
param['seed'] = self.seed
self.model2 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
param['seed'] = self.seed+1
self.model3 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
self.vl = vl
return 1
def predict_first_day(self, day):
self.day = day
self.train_models(day)
dvalid = xgb.DMatrix(self.vl[self.features])
ypred0 =(self.model0.predict(dvalid)+ self.model1.predict(dvalid)) / 2
ypred1 =(self.model2.predict(dvalid)+ self.model3.predict(dvalid)) / 2
self.vl['ypred0'] = ypred0
self.vl['ypred1'] = ypred1
self.vl.loc[ self.vl.ypred0<self.vl.log0_max, 'ypred0'] = self.vl.loc[ self.vl.ypred0<self.vl.log0_max, 'log0_max']
self.vl.loc[ self.vl.ypred1<self.vl.log1_max, 'ypred1'] = self.vl.loc[ self.vl.ypred1<self.vl.log1_max, 'log1_max']
VALID = self.vl[["geo", "day", 'ypred0', 'ypred1']].copy()
VALID.columns = ["geo", "day", 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True)
def predict_next_day(self, yesterday):
self.day += 1
feats = ['geo','day']
self.train[ 'ypred0' ] = pd.merge(self.train[feats], yesterday[feats+['ConfirmedCases']], on=feats, how='left')['ConfirmedCases'].values
self.train.loc[ self.train.ypred0.notnull() , 'target0'] = self.train.loc[ self.train.ypred0.notnull() , 'ypred0']
self.train[ 'ypred1' ] = pd.merge(self.train[feats], yesterday[feats+['Fatalities']], on=feats, how='left')['Fatalities'].values
self.train.loc[ self.train.ypred1.notnull() , 'target1'] = self.train.loc[ self.train.ypred1.notnull() , 'ypred1']
del self.train['ypred0'], self.train['ypred1']
tr, vl = self.create_features(self.train.copy() , self.day)
dvalid = xgb.DMatrix(vl[self.features])
ypred0 =(self.model0.predict(dvalid)+ self.model1.predict(dvalid)) /2
ypred1 =(self.model2.predict(dvalid)+ self.model3.predict(dvalid)) /2
vl['ypred0'] = ypred0
vl['ypred1'] = ypred1
vl.loc[ vl.ypred0<vl.log0_max, 'ypred0'] = vl.loc[ vl.ypred0<vl.log0_max, 'log0_max']
vl.loc[ vl.ypred1<vl.log1_max, 'ypred1'] = vl.loc[ vl.ypred1<vl.log1_max, 'log1_max']
self.vl = vl
VALID = vl[["geo", "day", 'ypred0', 'ypred1']].copy()
VALID.columns = ["geo", "day", 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True ) | COVID19 Global Forecasting (Week 3) |
8,824,741 | train_data['Size'].value_counts()<count_values> | TARGETS = ["ConfirmedCases", "Fatalities"]
def rmse(y_true, y_pred):
return np.sqrt(mean_squared_error(y_true, y_pred))
df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
df[TARGETS] = np.log1p(df[TARGETS].values)
sub_df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
def preprocess(df):
for col in ["Country_Region", "Province_State"]:
df[col].fillna("", inplace=True)
df["Date"] = pd.to_datetime(df['Date'])
df['day'] = df.Date.dt.dayofyear
df['geo'] = ['_'.join(x)for x in zip(df['Country_Region'], df['Province_State'])]
return df
df = preprocess(df)
sub_df = preprocess(sub_df)
sub_df["day"] -= df["day"].min()
df["day"] -= df["day"].min() | COVID19 Global Forecasting (Week 3) |
8,824,741 | test_data['Size'].value_counts()<data_type_conversions> | TEST_FIRST = sub_df[sub_df["Date"] > df["Date"].max() ]["Date"].min()
print(TEST_FIRST)
TEST_DAYS =(sub_df["Date"].max() - TEST_FIRST ).days + 1
TEST_FIRST =(TEST_FIRST - df["Date"].min() ).days
print(TEST_FIRST, TEST_DAYS)
def get_blend(pred_dfs, weights, verbose=True):
if verbose:
for n1, n2 in [("cpmp", "giba"),("cpmp", "ahmet"),("giba", "ahmet")]:
for t in TARGETS:
print(n1, n2, t, np.round(rmse(pred_dfs[n1][t], pred_dfs[n2][t]), 4))
blend_df = pred_dfs["cpmp"].copy()
blend_df[TARGETS] = 0
for name, pred_df in pred_dfs.items() :
blend_df[TARGETS] += weights[name]*pred_df[TARGETS].values
return blend_df
cov_models = {"ahmet": CovidModelAhmet() , "cpmp": CovidModelCPMP() , 'giba': CovidModelGIBA() }
weights = {"ahmet": 0.35, "cpmp": 0.30, "giba": 0.35}
pred_dfs = {name: cm.predict_first_day(TEST_FIRST ).sort_values("geo")for name, cm in cov_models.items() }
blend_df = get_blend(pred_dfs, weights)
eval_df = blend_df.copy()
for d in range(1, TEST_DAYS):
pred_dfs = {name: cm.predict_next_day(blend_df ).sort_values("geo")for name, cm in cov_models.items() }
blend_df = get_blend(pred_dfs, weights)
eval_df = eval_df.append(blend_df)
print(d, eval_df.shape, flush=True ) | COVID19 Global Forecasting (Week 3) |
8,824,741 | train_data['Size'].fillna(value='Size_unk',inplace=True)
test_data['Size'].fillna(value="Size_unk",inplace=True )<count_values> | print(sub_df.shape)
sub_df = sub_df.merge(df.append(eval_df, sort=False), on=["geo", "day"], how="left")
print(sub_df.shape)
print(sub_df[TARGETS].isnull().mean() ) | COVID19 Global Forecasting (Week 3) |
8,824,741 | <count_values><EOS> | sub_df[TARGETS] = np.expm1(sub_df[TARGETS].values)
sub_df.to_csv("submission.csv", index=False, columns=["ForecastId"] + TARGETS)
sub_df.head() | COVID19 Global Forecasting (Week 3) |
8,827,057 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<data_type_conversions> | pd.options.display.max_rows = 500
pd.options.display.max_columns = 500
%matplotlib inline
def rmse(yt, yp):
return np.sqrt(np.mean(( yt-yp)**2))
class CovidModel:
def __init__(self):
pass
def predict_first_day(self, date):
return None
def predict_next_day(self, yesterday_pred_df):
return None
class CovidModelAhmet(CovidModel):
def preprocess(self, df, meta_df):
df["Date"] = pd.to_datetime(df['Date'])
df = df.merge(meta_df, on=self.loc_group, how="left")
df["lat"] =(df["lat"] // 30 ).astype(np.float32 ).fillna(0)
df["lon"] =(df["lon"] // 60 ).astype(np.float32 ).fillna(0)
df["population"] = np.log1p(df["population"] ).fillna(-1)
df["area"] = np.log1p(df["area"] ).fillna(-1)
for col in self.loc_group:
df[col].fillna("", inplace=True)
df['day'] = df.Date.dt.dayofyear
df['geo'] = ['_'.join(x)for x in zip(df['Country_Region'], df['Province_State'])]
return df
def get_model(self):
def nn_block(input_layer, size, dropout_rate, activation):
out_layer = KL.Dense(size, activation=None )(input_layer)
out_layer = KL.Activation(activation )(out_layer)
out_layer = KL.Dropout(dropout_rate )(out_layer)
return out_layer
ts_inp = KL.Input(shape=(len(self.ts_features),))
global_inp = KL.Input(shape=(len(self.global_features),))
inp = KL.concatenate([global_inp, ts_inp])
hidden_layer = nn_block(inp, 64, 0.0, "relu")
gate_layer = nn_block(hidden_layer, 32, 0.0, "sigmoid")
hidden_layer = nn_block(hidden_layer, 32, 0.0, "relu")
hidden_layer = KL.multiply([hidden_layer, gate_layer])
out = KL.Dense(len(self.TARGETS), activation="linear" )(hidden_layer)
model = tf.keras.models.Model(inputs=[global_inp, ts_inp], outputs=out)
return model
def get_input(self, df):
return [df[self.global_features], df[self.ts_features]]
def train_models(self, df, num_models=20, save=False):
def custom_loss(y_true, y_pred):
return K.sum(K.sqrt(K.sum(K.square(y_true - y_pred), axis=0, keepdims=True)))/len(self.TARGETS)
models = []
for i in range(num_models):
model = self.get_model()
model.compile(loss=custom_loss, optimizer=Nadam(lr=1e-4))
hist = model.fit(self.get_input(df), df[self.TARGETS],
batch_size=2048, epochs=200, verbose=0, shuffle=True)
if save:
model.save_weights("model{}.h5".format(i))
models.append(model)
return models
def predict_one(self, df):
pred = np.zeros(( df.shape[0], 2))
for model in self.models:
pred += model.predict(self.get_input(df)) /len(self.models)
pred = np.maximum(pred, df[self.prev_targets].values)
pred[:, 0] = np.log1p(np.expm1(pred[:, 0])+ 0.1)
pred[:, 1] = np.log1p(np.expm1(pred[:, 1])+ 0.01)
return np.clip(pred, None, 15)
def __init__(self):
df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
sub_df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
meta_df = pd.read_csv(".. /input/covid19-forecasting-metadata/region_metadata.csv")
self.loc_group = ["Province_State", "Country_Region"]
df = self.preprocess(df, meta_df)
sub_df = self.preprocess(sub_df, meta_df)
df = df.merge(sub_df[["ForecastId", "Date", "geo"]], how="left", on=["Date", "geo"])
df = df.append(sub_df[sub_df["Date"] > df["Date"].max() ], sort=False)
df["day"] = df["day"] - df["day"].min()
self.TARGETS = ["ConfirmedCases", "Fatalities"]
self.prev_targets = ['prev_ConfirmedCases_1', 'prev_Fatalities_1']
for col in self.TARGETS:
df[col] = np.log1p(df[col])
self.NUM_SHIFT = 7
self.global_features = ["lat", "lon", "population", "area"]
self.ts_features = []
for s in range(1, self.NUM_SHIFT+1):
for col in self.TARGETS:
df["prev_{}_{}".format(col, s)] = df.groupby(self.loc_group)[col].shift(s)
self.ts_features.append("prev_{}_{}".format(col, s))
self.df = df[df["Date"] >= df["Date"].min() + timedelta(days=self.NUM_SHIFT)].copy()
def predict_first_day(self, day):
self.models = self.train_models(self.df[self.df["day"] < day])
temp_df = self.df.loc[self.df["day"] == day].copy()
y_pred = self.predict_one(temp_df)
self.y_prevs = [None]*self.NUM_SHIFT
for i in range(1, self.NUM_SHIFT):
self.y_prevs[i] = temp_df[['prev_ConfirmedCases_{}'.format(i), 'prev_Fatalities_{}'.format(i)]].values
temp_df[self.TARGETS] = y_pred
self.day = day
return temp_df[["geo", "day"] + self.TARGETS]
def predict_next_day(self, yesterday_pred_df):
self.day = self.day + 1
temp_df = self.df.loc[self.df["day"] == self.day].copy()
yesterday_pred_df = temp_df[["geo"]].merge(yesterday_pred_df[["geo"] + self.TARGETS], on="geo", how="left")
temp_df[self.prev_targets] = yesterday_pred_df[self.TARGETS].values
for i in range(2, self.NUM_SHIFT+1):
temp_df[['prev_ConfirmedCases_{}'.format(i), 'prev_Fatalities_{}'.format(i)]] = self.y_prevs[i-1]
y_pred, self.y_prevs = self.predict_one(temp_df), [None, temp_df[self.prev_targets].values] + self.y_prevs[1:-1]
temp_df[self.TARGETS] = y_pred
return temp_df[["geo", "day"] + self.TARGETS]
| COVID19 Global Forecasting (Week 3) |
8,827,057 | train_data['TopThreeAmericanName'].fillna(value='Top_unk',inplace=True)
test_data['TopThreeAmericanName'].fillna(value='Top_unk',inplace=True )<count_values> | class CovidModelCPMP(CovidModel):
def __init__(self):
train = pd.read_csv('.. /input/covid19-global-forecasting-week-3/train.csv')
train['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
train['day'] = train.Date.dt.dayofyear
train['geo'] = ['_'.join(x)for x in zip(train['Country_Region'], train['Province_State'])]
test = pd.read_csv('.. /input/covid19-global-forecasting-week-3/test.csv')
test['Province_State'].fillna('', inplace=True)
test['Date'] = pd.to_datetime(test['Date'])
test['day'] = test.Date.dt.dayofyear
test['geo'] = ['_'.join(x)for x in zip(test['Country_Region'], test['Province_State'])]
day_min = train['day'].min()
train['day'] -= day_min
test['day'] -= day_min
self.min_test_val_day = test.day.min()
self.max_test_val_day = train.day.max()
self.max_test_day = test.day.max()
train['ForecastId'] = -1
test['Id'] = -1
test['ConfirmedCases'] = 0
test['Fatalities'] = 0
data = pd.concat([train,
test[test.day > self.max_test_val_day][train.columns]
] ).reset_index(drop=True)
self.data = data
self.train = train
self.test = test
self.dates = data[data['geo'] == 'France_'].Date.values
region_meta = pd.read_csv('.. /input/covid19-forecasting-metadata/region_metadata.csv')
region_meta['Province_State'].fillna('', inplace=True)
region_meta['geo'] = ['_'.join(x)for x in zip(region_meta['Country_Region'], region_meta['Province_State'],)]
population = data[['geo']].merge(region_meta, how='left', on='geo' ).fillna(0)
population = population.groupby('geo')[['population']].first()
population['population'] = np.log1p(population['population'])
self.population = population[['population']].values
continents = region_meta['continent']
continents = pd.factorize(continents)[0]
continents_ids_base = continents.reshape(( -1, 1))
ohe = OneHotEncoder(sparse=False)
self.continents_ids_base = ohe.fit_transform(continents_ids_base)
self.geo_data = data.pivot(index='geo', columns='day', values='ForecastId')
self.num_geo = self.geo_data.shape[0]
self.ConfirmedCases = data.pivot(index='geo', columns='day', values='ConfirmedCases')
self.Fatalities = data.pivot(index='geo', columns='day', values='Fatalities')
self.cases = np.log1p(self.ConfirmedCases.values)
self.deaths = np.log1p(self.Fatalities.values)
self.case_threshold = 30
self.c_case = 10
self.t_case = 100
self.c_death = 10
self.t_death = 5
time_cases = self.c_case *(self.cases >= np.log1p(self.t_case))
time_cases = np.cumsum(time_cases, axis=1)
self.time_cases = 1 * np.log1p(time_cases)
time_deaths = self.c_death *(self.deaths >= np.log1p(self.t_death))
time_deaths = np.cumsum(time_deaths, axis=1)
self.time_deaths = 1 *np.log1p(time_deaths)
countries = [g.split('_')[0] for g in self.geo_data.index]
countries = pd.factorize(countries)[0]
country_ids_base = countries.reshape(( -1, 1))
ohe = OneHotEncoder(sparse=False)
self.country_ids_base = 0.2 * ohe.fit_transform(country_ids_base)
self.start_lag_death = 13
self.end_lag_death = 5
self.num_train = 5
self.num_lag_case = 14
self.lag_period = max(self.start_lag_death, self.num_lag_case)
self.df = train[['geo', 'day', 'ConfirmedCases', 'Fatalities']].copy()
self.df.ConfirmedCases = np.log1p(self.df.ConfirmedCases)
self.df.Fatalities = np.log1p(self.df.Fatalities)
def get_country_ids(self):
countries = [g.split('_')[0] for g in self.geo_data.index]
countries = pd.factorize(countries)[0]
countries[self.cases[:, :self.last_train+1].max(axis=1)< np.log1p(self.case_threshold)] = -1
countries = pd.factorize(countries)[0]
country_ids_base = countries.reshape(( -1, 1))
ohe = OneHotEncoder(sparse=False)
country_ids_base = 0.2 * ohe.fit_transform(country_ids_base)
return country_ids_base
def val_score(self, true, pred):
return np.sqrt(mean_squared_error(true.ravel() , pred.ravel()))
def get_dataset(self, start_pred, num_train):
days = np.arange(start_pred - num_train + 1, start_pred + 1)
lag_cases = np.vstack([self.cases[:, d - self.lag_period : d] for d in days])
lag_deaths = np.vstack([self.deaths[:, d - self.lag_period : d] for d in days])
target_cases = np.vstack([self.cases[:, d : d + 1] for d in days])
target_deaths = np.vstack([self.deaths[:, d : d + 1] for d in days])
continents_ids = np.vstack([self.continents_ids_base for d in days])
country_ids = np.vstack([self.country_ids_base for d in days])
population = np.vstack([self.population for d in days])
time_case = np.vstack([self.time_cases[:, d - 1: d ] for d in days])
time_death = np.vstack([self.time_deaths[:, d - 1 : d ] for d in days])
return(lag_cases, lag_deaths, target_cases, target_deaths,
continents_ids, country_ids, population, time_case, time_death, days)
def update_time(self, time_death, time_case, pred_death, pred_case):
new_time_death = np.expm1(time_death)+ self.c_death *(pred_death >= np.log1p(self.t_death))
new_time_death = 1 *np.log1p(new_time_death)
new_time_case = np.expm1(time_case)+ self.c_case *(pred_case >= np.log1p(self.t_case))
new_time_case = 1 *np.log1p(new_time_case)
return new_time_death, new_time_case
def update_valid_dataset(self, dataset, pred_death, pred_case, pred_day):
(lag_cases, lag_deaths, target_cases, target_deaths,
continents_ids, country_ids, population, time_case, time_death, days)= dataset
if pred_day != days[-1]:
print('error', pred_day, days[-1])
return None
day = days[-1] + 1
new_lag_cases = np.hstack([lag_cases[:, 1:], pred_case])
new_lag_deaths = np.hstack([lag_deaths[:, 1:], pred_death])
new_target_cases = self.cases[:, day:day+1]
new_target_deaths = self.deaths[:, day:day+1]
new_continents_ids = continents_ids
new_country_ids = country_ids
new_population = population
new_time_death, new_time_case = self.update_time(time_death, time_case, pred_death, pred_case)
new_days = 1 + days
return(new_lag_cases, new_lag_deaths, new_target_cases, new_target_deaths,
new_continents_ids, new_country_ids, new_population,
new_time_case, new_time_death, new_days)
def fit_eval(self, dataset, fit):
(lag_cases, lag_deaths, target_cases, target_deaths,
continents_ids, country_ids, population,
time_case, time_death, days)= dataset
X_death = np.hstack([lag_cases[:, -self.start_lag_death:-self.end_lag_death],
lag_deaths[:, -self.num_lag_case:],
country_ids,
continents_ids,
population,
time_case,
time_death,
])
y_death = target_deaths
y_death_prev = lag_deaths[:, -1:]
if fit:
self.lr_death.fit(X_death, y_death)
y_pred_death = self.lr_death.predict(X_death)
y_pred_death = np.maximum(y_pred_death, y_death_prev)
X_case = np.hstack([lag_cases[:, -self.num_lag_case:],
country_ids,
continents_ids,
population,
time_case,
])
y_case = target_cases
y_case_prev = lag_cases[:, -1:]
if fit:
self.lr_case.fit(X_case, y_case)
y_pred_case = self.lr_case.predict(X_case)
y_pred_case = np.maximum(y_pred_case, y_case_prev)
return y_pred_death, y_pred_case
def get_pred_df(self, val_death_preds, val_case_preds,):
pred_deaths = self.Fatalities.iloc[:, self.start_val:self.start_val+self.num_val].copy()
pred_deaths.iloc[:, :] = val_death_preds
pred_deaths = pred_deaths.stack().reset_index()
pred_deaths.columns = ['geo', 'day', 'Fatalities']
pred_deaths
pred_cases = self.ConfirmedCases.iloc[:, self.start_val:self.start_val+self.num_val].copy()
pred_cases.iloc[:, :] = val_case_preds
pred_cases = pred_cases.stack().reset_index()
pred_cases.columns = ['geo', 'day', 'ConfirmedCases']
pred_cases
sub = self.data[['geo', 'day']]
sub = sub[sub.day == self.start_val]
sub = sub.merge(pred_cases, how='left', on=['geo', 'day'])
sub = sub.merge(pred_deaths, how='left', on=['geo', 'day'])
sub = sub[(sub.day >= self.start_val)&(sub.day <= self.end_val)]
return sub
def predict_first_day(self, day):
self.start_val = day
self.end_val = day + 1
self.num_val = self.end_val - self.start_val + 1
score = True
self.last_train = self.start_val - 1
print(self.dates[self.last_train], self.start_val, self.num_val)
self.country_ids_base = self.get_country_ids()
train_data = self.get_dataset(self.last_train, self.num_train)
alpha = 3
self.lr_death = Ridge(alpha=alpha, fit_intercept=True)
self.lr_case = Ridge(alpha=alpha, fit_intercept=True)
_ = self.fit_eval(train_data, fit=True)
self.valid_data = self.get_dataset(self.start_val, 1)
val_death_preds, val_case_preds = self.fit_eval(self.valid_data, fit=False)
df = self.get_pred_df(val_death_preds, val_case_preds)
return df
def predict_next_day(self, yesterday_pred_df):
yesterday_pred_df = yesterday_pred_df.sort_values(by='geo' ).reset_index(drop=True)
if yesterday_pred_df.day.nunique() != 1:
print('error', yesterday_pred_df.day.unique())
return None
pred_death = yesterday_pred_df[['Fatalities']].values
pred_case = yesterday_pred_df[['ConfirmedCases']].values
pred_day = yesterday_pred_df.day.unique() [0]
new_valid_data = self.update_valid_dataset(self.valid_data,
pred_death, pred_case, pred_day)
if len(new_valid_data)> 0:
self.valid_data = new_valid_data
self.start_val = pred_day + 1
self.end_val = pred_day + 2
val_death_preds, val_case_preds = self.fit_eval(self.valid_data, fit=False)
df = self.get_pred_df(val_death_preds, val_case_preds)
return df | COVID19 Global Forecasting (Week 3) |
8,827,057 | train_data['PRIMEUNIT'].value_counts()<count_values> | class CovidModel:
def __init__(self):
pass
def predict_first_day(self, date):
return None
def predict_next_day(self, yesterday_pred_df):
return None
class CovidModelGIBA(CovidModel):
def __init__(self, lag=1, seed=1):
self.lag = lag
self.seed = seed
print('Lag:', lag, 'Seed:', seed)
train = pd.read_csv('.. /input/covid19-global-forecasting-week-3/train.csv')
train['Date'] = pd.to_datetime(train['Date'])
self.maxdate = str(train['Date'].max())[:10]
self.testdate = str(train['Date'].max() + pd.Timedelta(days=1)) [:10]
print('Last Date in Train:',self.maxdate, 'Test first Date:',self.testdate)
train['Province_State'].fillna('', inplace=True)
train['day'] = train.Date.dt.dayofyear
self.day_min = train['day'].min()
train['day'] -= self.day_min
train['geo'] = ['_'.join(x)for x in zip(train['Country_Region'], train['Province_State'])]
test = pd.read_csv('.. /input/covid19-global-forecasting-week-3/test.csv')
test['Date'] = pd.to_datetime(test['Date'])
test['Province_State'].fillna('', inplace=True)
test['day'] = test.Date.dt.dayofyear
test['day'] -= self.day_min
test['geo'] = ['_'.join(x)for x in zip(test['Country_Region'], test['Province_State'])]
test['Id'] = -1
test['ConfirmedCases'] = 0
test['Fatalities'] = 0
self.trainmaxday = train['day'].max()
self.testday1 = train['day'].max() + 1
self.testdayN = test['day'].max()
publictest = test.loc[ test.Date > train.Date.max() ].copy()
train = pd.concat(( train, publictest), sort=False)
train.sort_values(['Country_Region','Province_State','Date'], inplace=True)
train = train.reset_index(drop=True)
train['ForecastId'] = pd.merge(train, test, on=['Country_Region','Province_State','Date'], how='left')['ForecastId_y'].values
train['cid'] = train['Country_Region'] + '_' + train['Province_State']
train['log0'] = np.log1p(train['ConfirmedCases'])
train['log1'] = np.log1p(train['Fatalities'])
train = train.loc[(train.log0 > 0)|(train.ForecastId.notnull())|(train.Date >= '2020-03-17')].copy()
train = train.reset_index(drop=True)
train['days_since_1case'] = train.groupby('cid')['Id'].cumcount()
dt = pd.read_csv('.. /input/covid19-lockdown-dates-by-country/countryLockdowndates.csv')
dt.columns = ['Country_Region','Province_State','Date','Type','Reference']
dt = dt.loc[ dt.Date == dt.Date ]
dt['Province_State'] = dt['Province_State'].fillna('')
dt['Date'] = pd.to_datetime(dt['Date'])
dt['Date'] = dt['Date'] + pd.Timedelta(days=8)
dt['Type'] = pd.factorize(dt['Type'])[0]
dt['cid'] = dt['Country_Region'] + '_' + dt['Province_State']
del dt['Reference'], dt['Country_Region'], dt['Province_State']
train = pd.merge(train, dt, on=['cid','Date'], how='left')
train['Type'] = train.groupby('cid')['Type'].fillna(method='ffill')
train['target0'] = np.log1p(train['ConfirmedCases'])
train['target1'] = np.log1p(train['Fatalities'])
self.train = train.copy()
def create_features(self, df, valid_day):
df = df.loc[ df.day>=(valid_day-50)].copy()
df['lag0_1'] = df.groupby('cid')['target0'].shift(self.lag)
df['lag0_1'] = df.groupby('cid')['lag0_1'].fillna(method='bfill')
df['lag0_8'] = df.groupby('cid')['target0'].shift(8)
df['lag0_8'] = df.groupby('cid')['lag0_8'].fillna(method='bfill')
df['lag1_1'] = df.groupby('cid')['target1'].shift(self.lag)
df['lag1_1'] = df.groupby('cid')['lag1_1'].fillna(method='bfill')
df['m0'] = df.groupby('cid')['lag0_1'].rolling(2 ).mean().values
df['m1'] = df.groupby('cid')['lag0_1'].rolling(3 ).mean().values
df['m2'] = df.groupby('cid')['lag0_1'].rolling(4 ).mean().values
df['m3'] = df.groupby('cid')['lag0_1'].rolling(5 ).mean().values
df['m4'] = df.groupby('cid')['lag0_1'].rolling(7 ).mean().values
df['m5'] = df.groupby('cid')['lag0_1'].rolling(10 ).mean().values
df['m6'] = df.groupby('cid')['lag0_1'].rolling(12 ).mean().values
df['m7'] = df.groupby('cid')['lag0_1'].rolling(16 ).mean().values
df['m8'] = df.groupby('cid')['lag0_1'].rolling(20 ).mean().values
df['m9'] = df.groupby('cid')['lag0_1'].rolling(25 ).mean().values
df['n0'] = df.groupby('cid')['lag1_1'].rolling(2 ).mean().values
df['n1'] = df.groupby('cid')['lag1_1'].rolling(3 ).mean().values
df['n2'] = df.groupby('cid')['lag1_1'].rolling(4 ).mean().values
df['n3'] = df.groupby('cid')['lag1_1'].rolling(5 ).mean().values
df['n4'] = df.groupby('cid')['lag1_1'].rolling(7 ).mean().values
df['n5'] = df.groupby('cid')['lag1_1'].rolling(10 ).mean().values
df['n6'] = df.groupby('cid')['lag1_1'].rolling(12 ).mean().values
df['n7'] = df.groupby('cid')['lag1_1'].rolling(16 ).mean().values
df['n8'] = df.groupby('cid')['lag1_1'].rolling(20 ).mean().values
df['m0'] = df.groupby('cid')['m0'].fillna(method='bfill')
df['m1'] = df.groupby('cid')['m1'].fillna(method='bfill')
df['m2'] = df.groupby('cid')['m2'].fillna(method='bfill')
df['m3'] = df.groupby('cid')['m3'].fillna(method='bfill')
df['m4'] = df.groupby('cid')['m4'].fillna(method='bfill')
df['m5'] = df.groupby('cid')['m5'].fillna(method='bfill')
df['m6'] = df.groupby('cid')['m6'].fillna(method='bfill')
df['m7'] = df.groupby('cid')['m7'].fillna(method='bfill')
df['m8'] = df.groupby('cid')['m8'].fillna(method='bfill')
df['m9'] = df.groupby('cid')['m9'].fillna(method='bfill')
df['n0'] = df.groupby('cid')['n0'].fillna(method='bfill')
df['n1'] = df.groupby('cid')['n1'].fillna(method='bfill')
df['n2'] = df.groupby('cid')['n2'].fillna(method='bfill')
df['n3'] = df.groupby('cid')['n3'].fillna(method='bfill')
df['n4'] = df.groupby('cid')['n4'].fillna(method='bfill')
df['n5'] = df.groupby('cid')['n5'].fillna(method='bfill')
df['n6'] = df.groupby('cid')['n6'].fillna(method='bfill')
df['n7'] = df.groupby('cid')['n7'].fillna(method='bfill')
df['n8'] = df.groupby('cid')['n8'].fillna(method='bfill')
df['flag_China'] = 1*(df['Country_Region'] == 'China')
df['flag_US'] = 1*(df['Country_Region'] == 'US')
df['flag_Kosovo_'] = 1*(df['cid'] == 'Kosovo_')
df['flag_Korea'] = 1*(df['cid'] == 'Korea, South_')
df['flag_Nepal_'] = 1*(df['cid'] == 'Nepal_')
df['flag_Holy See_'] = 1*(df['cid'] == 'Holy See_')
df['flag_Suriname_'] = 1*(df['cid'] == 'Suriname_')
df['flag_Ghana_'] = 1*(df['cid'] == 'Ghana_')
df['flag_Togo_'] = 1*(df['cid'] == 'Togo_')
df['flag_Malaysia_'] = 1*(df['cid'] == 'Malaysia_')
df['flag_US_Rhode'] = 1*(df['cid'] == 'US_Rhode Island')
df['flag_Bolivia_'] = 1*(df['cid'] == 'Bolivia_')
df['flag_China_Tib'] = 1*(df['cid'] == 'China_Tibet')
df['flag_Bahrain_'] = 1*(df['cid'] == 'Bahrain_')
df['flag_Honduras_'] = 1*(df['cid'] == 'Honduras_')
df['flag_Bangladesh']= 1*(df['cid'] == 'Bangladesh_')
df['flag_Paraguay_'] = 1*(df['cid'] == 'Paraguay_')
tr = df.loc[ df.day < valid_day ].copy()
vl = df.loc[ df.day == valid_day ].copy()
tr = tr.loc[ tr.lag0_1 > 0 ].copy()
maptarget0 = tr.groupby('cid')['target0'].agg(log0_max='max' ).reset_index()
maptarget1 = tr.groupby('cid')['target1'].agg(log1_max='max' ).reset_index()
vl['log0_max'] = pd.merge(vl, maptarget0, on='cid' , how='left')['log0_max'].values
vl['log1_max'] = pd.merge(vl, maptarget1, on='cid' , how='left')['log1_max'].values
vl['log0_max'] = vl['log0_max'].fillna(0)
vl['log1_max'] = vl['log1_max'].fillna(0)
return tr, vl
def train_models(self, valid_day = 10):
train = self.train.copy()
train.loc[(train.cid=='China_Guizhou')&(train.Date=='2020-03-17'), 'target0' ] = np.log1p(146)
train.loc[(train.cid=='Guyana_')&(train.Date>='2020-03-22')&(train.Date<='2020-03-30'), 'target0' ] = np.log1p(12)
train.loc[(train.cid=='US_Virgin Islands')&(train.Date>='2020-03-29')&(train.Date<='2020-03-29'), 'target0' ] = np.log1p(24)
train.loc[(train.cid=='US_Virgin Islands')&(train.Date>='2020-03-30')&(train.Date<='2020-03-30'), 'target0' ] = np.log1p(27)
train.loc[(train.cid=='Iceland_')&(train.Date>='2020-03-15')&(train.Date<='2020-03-15'), 'target1' ] = np.log1p(0)
train.loc[(train.cid=='Kazakhstan_')&(train.Date>='2020-03-20')&(train.Date<='2020-03-20'), 'target1' ] = np.log1p(0)
train.loc[(train.cid=='Serbia_')&(train.Date>='2020-03-26')&(train.Date<='2020-03-26'), 'target1' ] = np.log1p(5)
train.loc[(train.cid=='Serbia_')&(train.Date>='2020-03-27')&(train.Date<='2020-03-27'), 'target1' ] = np.log1p(6)
train.loc[(train.cid=='Slovakia_')&(train.Date>='2020-03-22')&(train.Date<='2020-03-31'), 'target1' ] = np.log1p(1)
train.loc[(train.cid=='US_Hawaii')&(train.Date>='2020-03-25')&(train.Date<='2020-03-31'), 'target1' ] = np.log1p(1)
param = {
'subsample': 1.000,
'colsample_bytree': 0.85,
'max_depth': 6,
'gamma': 0.000,
'learning_rate': 0.010,
'min_child_weight': 5.00,
'reg_alpha': 0.000,
'reg_lambda': 0.400,
'silent':1,
'objective':'reg:squarederror',
'nthread': 12,
'seed': self.seed
}
tr, vl = self.create_features(train.copy() , valid_day)
features = [f for f in tr.columns if f not in [
'lag0_8',
'Id','ConfirmedCases','Fatalities','log0','log1','target0','target1','ypred0','ypred1','Province_State','Country_Region','Date','ForecastId','cid','geo','day',
'GDP_region','TRUE POPULATION','pct_in_largest_city',' TFR ',' Avg_age ','latitude','longitude','abs_latitude','temperature', 'humidity',
'Personality_pdi','Personality_idv','Personality_mas','Personality_uai','Personality_ltowvs','Personality_assertive','personality_perform','personality_agreeableness',
'murder','High_rises','max_high_rises','AIR_CITIES','AIR_AVG','continent_gdp_pc','continent_happiness','continent_generosity','continent_corruption','continent_Life_expectancy'
] ]
self.features0 = features
features = [f for f in tr.columns if f not in [
'm0','m1','m2','m3',
'Id','ConfirmedCases','Fatalities','log0','log1','target0','target1','ypred0','ypred1','Province_State','Country_Region','Date','ForecastId','cid','geo','day',
'GDP_region','TRUE POPULATION','pct_in_largest_city',' TFR ',' Avg_age ','latitude','longitude','abs_latitude','temperature', 'humidity',
'Personality_pdi','Personality_idv','Personality_mas','Personality_uai','Personality_ltowvs','Personality_assertive','personality_perform','personality_agreeableness',
'murder','High_rises','max_high_rises','AIR_CITIES','AIR_AVG','continent_gdp_pc','continent_happiness','continent_generosity','continent_corruption','continent_Life_expectancy'
] ]
self.features1 = features
nrounds0 = 680
nrounds1 = 630
dtrain = xgb.DMatrix(tr[self.features0], tr['target0'])
param['seed'] = self.seed
self.model0 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
param['seed'] = self.seed+1
self.model1 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
dtrain = xgb.DMatrix(tr[self.features1], tr['target1'])
param['seed'] = self.seed
self.model2 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
param['seed'] = self.seed+1
self.model3 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
self.vl = vl
return 1
def predict_first_day(self, day):
self.day = day
self.train_models(day)
dvalid = xgb.DMatrix(self.vl[self.features0])
ypred0 =(self.model0.predict(dvalid)+ self.model1.predict(dvalid)) / 2
dvalid = xgb.DMatrix(self.vl[self.features1])
ypred1 =(self.model2.predict(dvalid)+ self.model3.predict(dvalid)) / 2
self.vl['ypred0'] = ypred0
self.vl['ypred1'] = ypred1
self.vl.loc[ self.vl.ypred0<self.vl.log0_max, 'ypred0'] = self.vl.loc[ self.vl.ypred0<self.vl.log0_max, 'log0_max']
self.vl.loc[ self.vl.ypred1<self.vl.log1_max, 'ypred1'] = self.vl.loc[ self.vl.ypred1<self.vl.log1_max, 'log1_max']
VALID = self.vl[["geo", "day", 'ypred0', 'ypred1']].copy()
VALID.columns = ["geo", "day", 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True)
def predict_next_day(self, yesterday):
self.day += 1
feats = ['geo','day']
self.train[ 'ypred0' ] = pd.merge(self.train[feats], yesterday[feats+['ConfirmedCases']], on=feats, how='left')['ConfirmedCases'].values
self.train.loc[ self.train.ypred0.notnull() , 'target0'] = self.train.loc[ self.train.ypred0.notnull() , 'ypred0']
self.train[ 'ypred1' ] = pd.merge(self.train[feats], yesterday[feats+['Fatalities']], on=feats, how='left')['Fatalities'].values
self.train.loc[ self.train.ypred1.notnull() , 'target1'] = self.train.loc[ self.train.ypred1.notnull() , 'ypred1']
del self.train['ypred0'], self.train['ypred1']
tr, vl = self.create_features(self.train.copy() , self.day)
dvalid = xgb.DMatrix(vl[self.features0])
ypred0 =(self.model0.predict(dvalid)+ self.model1.predict(dvalid)) /2
dvalid = xgb.DMatrix(vl[self.features1])
ypred1 =(self.model2.predict(dvalid)+ self.model3.predict(dvalid)) /2
vl['ypred0'] = ypred0
vl['ypred1'] = ypred1
vl.loc[ vl.ypred0<vl.log0_max, 'ypred0'] = vl.loc[ vl.ypred0<vl.log0_max, 'log0_max']
vl.loc[ vl.ypred1<vl.log1_max, 'ypred1'] = vl.loc[ vl.ypred1<vl.log1_max, 'log1_max']
self.vl = vl
VALID = vl[["geo", "day", 'ypred0', 'ypred1']].copy()
VALID.columns = ["geo", "day", 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True ) | COVID19 Global Forecasting (Week 3) |
8,827,057 | test_data['PRIMEUNIT'].value_counts()<data_type_conversions> | TARGETS = ["ConfirmedCases", "Fatalities"]
def rmse(y_true, y_pred):
return np.sqrt(mean_squared_error(y_true, y_pred))
df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
df[TARGETS] = np.log1p(df[TARGETS].values)
sub_df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
def preprocess(df):
for col in ["Country_Region", "Province_State"]:
df[col].fillna("", inplace=True)
df["Date"] = pd.to_datetime(df['Date'])
df['day'] = df.Date.dt.dayofyear
df['geo'] = ['_'.join(x)for x in zip(df['Country_Region'], df['Province_State'])]
return df
df = preprocess(df)
sub_df = preprocess(sub_df)
sub_df["day"] -= df["day"].min()
df["day"] -= df["day"].min() | COVID19 Global Forecasting (Week 3) |
8,827,057 | train_data['PRIMEUNIT'].fillna(value="Prime_unk",inplace=True)
test_data['PRIMEUNIT'].fillna(value="Prime_unk",inplace=True )<categorify> | print(sub_df.shape)
sub_df = sub_df.merge(df.append(eval_df, sort=False), on=["geo", "day"], how="left")
print(sub_df.shape)
print(sub_df[TARGETS].isnull().mean() ) | COVID19 Global Forecasting (Week 3) |
8,827,057 | train_data['AUCGUART'].replace("AGREEN","GREEN",inplace=True)
test_data['AUCGUART'].replace("ARED","RED",inplace=True )<data_type_conversions> | flat = [
'China_Anhui',
'China_Beijing',
'China_Chongqing',
'China_Fujian',
'China_Gansu',
'China_Guangdong',
'China_Guangxi',
'China_Guizhou',
'China_Hainan',
'China_Hebei',
'China_Heilongjiang',
'China_Henan',
'China_Hubei',
'China_Hunan',
'China_Jiangsu',
'China_Jiangxi',
'China_Jilin',
'China_Liaoning',
'China_Ningxia',
'China_Qinghai',
'China_Shaanxi',
'China_Shandong',
'China_Shanxi',
'China_Sichuan',
'China_Tibet',
'China_Xinjiang',
'China_Yunnan',
'China_Zhejiang',
'Diamond Princess_',
'Holy See_',
] | COVID19 Global Forecasting (Week 3) |
8,827,057 | train_data['AUCGUART'].fillna(value="AUC_unk",inplace=True)
test_data['AUCGUART'].fillna(value="AUC_unk",inplace=True )<drop_column> | dt = sub_df.loc[ sub_df.Date_x == "2020-04-07" ].copy()
dt = dt.loc[ dt.geo.isin(flat)].copy()
dt = dt[['geo','Date_x','day','ConfirmedCases','Fatalities']].copy()
dt = dt.reset_index(drop=True)
dt | COVID19 Global Forecasting (Week 3) |
8,827,057 | train_data.drop(['MMRAcquisitionAuctionAveragePrice','MMRAcquisitionAuctionCleanPrice',
'MMRAcquisitionRetailAveragePrice','MMRAcquisitonRetailCleanPrice',
'MMRCurrentAuctionAveragePrice','MMRCurrentAuctionCleanPrice',
'MMRCurrentRetailAveragePrice','MMRCurrentRetailCleanPrice'],
inplace=True,axis=1)
test_data.drop(['MMRAcquisitionAuctionAveragePrice','MMRAcquisitionAuctionCleanPrice',
'MMRAcquisitionRetailAveragePrice','MMRAcquisitonRetailCleanPrice',
'MMRCurrentAuctionAveragePrice','MMRCurrentAuctionCleanPrice',
'MMRCurrentRetailAveragePrice','MMRCurrentRetailCleanPrice'],
inplace=True,axis=1 )<drop_column> | sub_df['ow0'] = pd.merge(sub_df, dt, on='geo', how='left')['ConfirmedCases_y'].values
sub_df['ow1'] = pd.merge(sub_df, dt, on='geo', how='left')['Fatalities_y'].values
sub_df.tail(60 ) | COVID19 Global Forecasting (Week 3) |
8,827,057 | train_data.drop('PurchDate',axis=1,inplace=True)
test_data.drop("PurchDate",axis=1,inplace=True )<drop_column> | sub_df.loc[ sub_df.geo.isin(flat)] | COVID19 Global Forecasting (Week 3) |
8,827,057 | train_data.drop(['RefId','IsBadBuy'],axis=1 ).dtypes!='object'<drop_column> | sub_df.loc[ sub_df.ow0.notnull() &(sub_df.Date_x >= '2020-04-08'), 'ConfirmedCases' ] = sub_df.loc[ sub_df.ow0.notnull() &(sub_df.Date_x >= '2020-04-08'), 'ow0' ]
sub_df.loc[ sub_df.ow1.notnull() &(sub_df.Date_x >= '2020-04-08'), 'Fatalities' ] = sub_df.loc[ sub_df.ow1.notnull() &(sub_df.Date_x >= '2020-04-08'), 'ow1' ] | COVID19 Global Forecasting (Week 3) |
8,827,057 | not_categorical=train_data.drop(['RefId','IsBadBuy'],axis=1 ).columns[train_data.drop(['RefId','IsBadBuy'],axis=1 ).dtypes!='object']<feature_engineering> | sub_df.loc[ sub_df.geo.isin(flat)] | COVID19 Global Forecasting (Week 3) |
8,827,057 | for i in not_categorical:
maximum=np.max(train_data[i])
train_data[i]=train_data[i]/maximum
maximum_test=np.max(test_data[i])
test_data[i]=test_data[i]/maximum_test<drop_column> | sub_df[TARGETS] = np.expm1(sub_df[TARGETS].values)
sub_df.to_csv("submission.csv", index=False, columns=["ForecastId"] + TARGETS)
sub_df.head() | COVID19 Global Forecasting (Week 3) |
8,825,239 | categorical=train_data.drop(['RefId','IsBadBuy'],axis=1 ).columns[train_data.drop(['RefId','IsBadBuy'],axis=1 ).dtypes=='object']<filter> | def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)))
pd.set_option('mode.chained_assignment', None)
test = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
train = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region','Province_State','Date'])
test = test.sort_values(['Country_Region','Province_State','Date'] ) | COVID19 Global Forecasting (Week 3) |
8,825,239 | train_data[categorical[0]]<categorify> | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature] | COVID19 Global Forecasting (Week 3) |
8,825,239 | pd.get_dummies(train_data[categorical[0]] )<categorify> | pred_data_all = pd.DataFrame()
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
for day in sorted(feature_day,reverse = True):
feature_use = 'Number day from ' + str(day)+ ' case'
idx = X_train[X_train[feature_use] == 0].shape[0]
if(X_train[X_train[feature_use] > 0].shape[0] >= 20):
break
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = SARIMAX(adjusted_y_train_confirmed, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = SARIMAX(adjusted_y_train_fatalities, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data ) | COVID19 Global Forecasting (Week 3) |
8,825,239 | <feature_engineering><EOS> | df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_3 = df_val.copy()
submission = df_val[['ForecastId','ConfirmedCases_hat','Fatalities_hat']]
submission.columns = ['ForecastId','ConfirmedCases','Fatalities']
submission.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,820,802 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<feature_engineering> | import os
from typing import Dict, List, Tuple
from joblib import Parallel, delayed
import pandas as pd
import numpy as np
from scipy.optimize.minpack import curve_fit
from scipy.optimize import least_squares
from xgboost import XGBRegressor | COVID19 Global Forecasting (Week 3) |
8,820,802 | for i in test_data.columns:
if i not in train_data.columns:
train_data[i]=np.zeros(len(train_data))<drop_column> | def load_kaggle_csv(dataset: str, datadir: str)-> pd.DataFrame:
df = pd.read_csv(
f"{os.path.join(datadir,dataset)}.csv", parse_dates=["Date"]
)
df['country'] = df["Country_Region"]
if "Province_State" in df:
df["Country_Region"] = np.where(
df["Province_State"].isnull() ,
df["Country_Region"],
df["Country_Region"] + "_" + df["Province_State"],
)
df.drop(columns="Province_State", inplace=True)
if "ConfirmedCases" in df:
df["ConfirmedCases"] = df.groupby("Country_Region")[
"ConfirmedCases"
].cummax()
if "Fatalities" in df:
df["Fatalities"] = df.groupby("Country_Region")["Fatalities"].cummax()
if not "DayOfYear" in df:
df["DayOfYear"] = df["Date"].dt.dayofyear
df["Date"] = df["Date"].dt.date
return df
def RMSLE(actual: np.ndarray, prediction: np.ndarray)-> float:
return np.sqrt(
np.mean(
np.power(np.log1p(np.maximum(0, prediction)) - np.log1p(actual), 2)
)
)
def get_extra_features(df):
df['school_closure_status_daily'] = np.where(df['school_closure'] < df['Date'], 1, 0)
df['school_closure_first_fatality'] = np.where(df['school_closure'] < df['first_1Fatalities'], 1, 0)
df['school_closure_first_10cases'] = np.where(df['school_closure'] < df['first_10ConfirmedCases'], 1, 0)
df['case_delta1_10'] =(df['first_10ConfirmedCases'] - df['first_1ConfirmedCases'] ).dt.days
df['case_death_delta1'] =(df['first_1Fatalities'] - df['first_1ConfirmedCases'] ).dt.days
df['case_delta1_100'] =(df['first_100ConfirmedCases'] - df['first_1ConfirmedCases'] ).dt.days
df['days_since'] = df['DayOfYear']-df['case1_DayOfYear']
df['weekday'] = pd.to_datetime(df['Date'] ).dt.weekday
col = df.isnull().mean()
rm_null_col = col[col > 0.2].index.tolist()
return df
def dateparse(x):
try:
return pd.datetime.strptime(x, '%Y-%m-%d')
except:
return pd.NaT
def prepare_lat_long(df):
df["Country_Region"] = np.where(
df["Province/State"].isnull() ,
df["Country/Region"],
df["Country/Region"] + "_" + df["Province/State"],
)
return df[['Country_Region', 'Lat', 'Long']].drop_duplicates() | COVID19 Global Forecasting (Week 3) |
8,820,802 | test_data=test_data[train_data.drop("IsBadBuy",axis=1 ).columns]<prepare_x_and_y> | df_lat = prepare_lat_long(pd.read_csv("/kaggle/input/inputlat-long/lat_long.csv"))
train = load_kaggle_csv("train", "/kaggle/input/covid19-global-forecasting-week-3")
country_health_indicators =(
(pd.read_csv("/kaggle/input/country-health-indicators/country_health_indicators_v3.csv",
parse_dates=['first_1ConfirmedCases', 'first_10ConfirmedCases',
'first_50ConfirmedCases', 'first_100ConfirmedCases',
'first_1Fatalities', 'school_closure'], date_parser=dateparse)).rename(
columns ={'Country_Region':'country'}))
train =(pd.merge(train, country_health_indicators,
on="country",
how="left")).merge(df_lat, on='Country_Region', how='left')
train = get_extra_features(train)
train.head(3 ) | COVID19 Global Forecasting (Week 3) |
8,820,802 | X=train_data.drop(['RefId','IsBadBuy'],axis=1)
y=train_data['IsBadBuy']<split> | test = load_kaggle_csv("test", "/kaggle/input/covid19-global-forecasting-week-3")
test =(pd.merge(
test, country_health_indicators, on="country", how="left")).merge(
df_lat, on ='Country_Region', how='left')
test = get_extra_features(test)
del country_health_indicators | COVID19 Global Forecasting (Week 3) |
8,820,802 | X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=42 )<import_modules> | def logistic(x: np.ndarray, x0: float, L: float, k: float)-> np.ndarray:
return L /(1 + np.exp(-k *(x - x0)))
def fit_single_logistic(x: np.ndarray, y: np.ndarray, maxfev: float)-> Tuple:
p0 = [np.median(x), y[-1], 0.1]
pn0 = p0 *(np.random.random(len(p0)) + [0.5, 1.0, 0.5])
try:
params, pcov = curve_fit(
logistic,
x,
y,
p0=pn0,
maxfev=maxfev,
sigma=np.maximum(1, np.sqrt(y)) *(0.1 + 0.9 * np.random.random()),
bounds=([0, y[-1], 0.01], [200, 1e6, 1.5]),
)
pcov = pcov[np.triu_indices_from(pcov)]
except(RuntimeError, ValueError):
params = p0
pcov = np.zeros(len(p0)*(len(p0)- 1))
y_hat = logistic(x, *params)
rmsle = RMSLE(y_hat, y)
return(params, pcov, rmsle, y_hat)
def fit_logistic(
df: pd.DataFrame,
n_jobs: int = 8,
n_samples: int = 80,
maxfev: int = 8000,
x_col: str = "DayOfYear",
y_cols: List[str] = ["ConfirmedCases", "Fatalities"],
)-> pd.DataFrame:
def fit_one(df: pd.DataFrame, y_col: str)-> Dict:
best_rmsle = None
best_params = None
x = df[x_col].to_numpy()
y = df[y_col].to_numpy()
for(params, cov, rmsle, y_hat)in Parallel(n_jobs=n_jobs )(
delayed(fit_single_logistic )(x, y, maxfev=maxfev)
for i in range(n_samples)
):
if rmsle >=(best_rmsle or rmsle):
best_rmsle = rmsle
best_params = params
result = {f"{y_col}_rmsle": best_rmsle}
result.update({f"{y_col}_p_{i}": p for i, p in enumerate(best_params)})
return result
result = {}
for y_col in y_cols:
result.update(fit_one(df, y_col))
return pd.DataFrame([result])
def predict_logistic(
df: pd.DataFrame,
x_col: str = "DayOfYear",
y_cols: List[str] = ["ConfirmedCases", "Fatalities"],
):
def predict_one(col):
df[f"yhat_logistic_{col}"] = logistic(
df[x_col].to_numpy() ,
df[f"{col}_p_0"].to_numpy() ,
df[f"{col}_p_1"].to_numpy() ,
df[f"{col}_p_2"].to_numpy() ,
)
for y_col in y_cols:
predict_one(y_col ) | COVID19 Global Forecasting (Week 3) |
8,820,802 | from sklearn.neighbors import KNeighborsClassifier<import_modules> | train = pd.merge(
train, train.groupby(
["Country_Region"], observed=True, sort=False
).apply(lambda x: fit_logistic(x, n_jobs=8, n_samples=80, maxfev=16000)).reset_index() ,
on=["Country_Region"], how="left")
predict_logistic(train ) | COVID19 Global Forecasting (Week 3) |
8,820,802 | from sklearn.neighbors import KNeighborsClassifier<import_modules> | def apply_xgb_model(train, x_columns, y_column, xgb_params):
X = train[x_columns].to_numpy()
y = train[y_column].to_numpy()
xgb_fit = XGBRegressor(**xgb_params ).fit(X, y)
y_hat = xgb_fit.predict(X)
train[f"yhat_xgb_{y_column}"] = y_hat
return RMSLE(y, y_hat), xgb_fit | COVID19 Global Forecasting (Week 3) |
8,820,802 | from sklearn.neighbors import KNeighborsClassifier<train_model> | xgb_params_c = dict(
gamma=0.1,
learning_rate=0.35,
n_estimators=221,
max_depth=15,
min_child_weight=1,
nthread=8,
objective="reg:squarederror")
xgb_params_f = dict(
gamma=0.1022,
learning_rate=0.338,
n_estimators=292,
max_depth=14,
min_child_weight=1,
nthread=8,
objective="reg:squarederror")
x_columns = ['DayOfYear',
'Diabetes, blood, & endocrine diseases(%)', 'Respiratory diseases(%)',
'Diarrhea & common infectious diseases(%)',
'Nutritional deficiencies(%)',
'obesity - adult prevalence rate',
'pneumonia-death-rates', 'animal_fats', 'animal_products', 'eggs',
'offals', 'treenuts', 'vegetable_oils', 'nbr_surgeons',
'nbr_anaesthesiologists', 'population',
'school_shutdown_1case',
'school_shutdown_10case', 'school_shutdown_50case',
'school_shutdown_1death', 'case1_DayOfYear', 'case10_DayOfYear',
'case50_DayOfYear',
'school_closure_status_daily', 'case_delta1_10',
'case_death_delta1', 'case_delta1_100', 'days_since','Lat','Long','weekday',
'yhat_logistic_ConfirmedCases', 'yhat_logistic_Fatalities'
]
xgb_c_rmsle, xgb_c_fit = apply_xgb_model(train, x_columns, "ConfirmedCases", xgb_params_c)
xgb_f_rmsle, xgb_f_fit = apply_xgb_model(train, x_columns, "Fatalities", xgb_params_f ) | COVID19 Global Forecasting (Week 3) |
8,820,802 | KNN=KNeighborsClassifier(n_neighbors=11)
KNN.fit(X_train,y_train )<choose_model_class> | def interpolate(alpha, x0, x1):
return x0 * alpha + x1 *(1 - alpha)
def RMSLE_interpolate(alpha, y, x0, x1):
return RMSLE(y, interpolate(alpha, x0, x1))
def fit_hybrid(
train: pd.DataFrame, y_cols: List[str] = ["ConfirmedCases", "Fatalities"]
)-> pd.DataFrame:
def fit_one(y_col: str):
opt = least_squares(
fun=RMSLE_interpolate,
args=(
train[y_col],
train[f"yhat_logistic_{y_col}"],
train[f"yhat_xgb_{y_col}"],
),
x0=(0.5,),
bounds=(( 0.0),(1.0,)) ,
)
return {f"{y_col}_alpha": opt.x[0], f"{y_col}_cost": opt.cost}
result = {}
for y_col in y_cols:
result.update(fit_one(y_col))
return pd.DataFrame([result])
def predict_hybrid(
df: pd.DataFrame,
x_col: str = "DayOfYear",
y_cols: List[str] = ["ConfirmedCases", "Fatalities"],
):
def predict_one(col):
df[f"yhat_hybrid_{col}"] = interpolate(
df[f"{y_col}_alpha"].to_numpy() ,
df[f"yhat_logistic_{y_col}"].to_numpy() ,
df[f"yhat_xgb_{y_col}"].to_numpy() ,
)
for y_col in y_cols:
predict_one(y_col ) | COVID19 Global Forecasting (Week 3) |
8,820,802 | KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=11, p=2,
weights='uniform' )<compute_test_metric> | train = pd.merge(
train,
train.groupby(["Country_Region"], observed=True, sort=False)
.apply(lambda x: fit_hybrid(x))
.reset_index() ,
on=["Country_Region"],
how="left",
)
| COVID19 Global Forecasting (Week 3) |
8,820,802 | KNN.score(X_test,y_test )<predict_on_test> | predict_hybrid(train ) | COVID19 Global Forecasting (Week 3) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.