kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
8,864,825
df_test = pd.read_csv('.. /input/walmart-recruiting-store-sales-forecasting/test.csv.zip', sep=',') test = df_test.merge(df_features_stores, how='inner', on=['Store','Date','IsHoliday']) test.head()<data_type_conversions>
train = pd.read_csv('.. /input/covid19-global-forecasting-week-3/train.csv') test = pd.read_csv('.. /input/covid19-global-forecasting-week-3/test.csv') submission = pd.read_csv('.. /input/covid19-global-forecasting-week-3/submission.csv') clean_train = pd.read_csv('.. /input/clean-data/clean_train.csv') clean_test = pd.read_csv('.. /input/clean-data/clean_test.csv' )
COVID19 Global Forecasting (Week 3)
8,864,825
train['Date'] = pd.to_datetime(train['Date']) test['Date'] = pd.to_datetime(test['Date']) train['Week'] = train['Date'].dt.isocalendar().week test['Week'] = test['Date'].dt.isocalendar().week train['Year'] = train['Date'].dt.isocalendar().year test['Year'] = test['Date'].dt.isocalendar().year<data_type_conversions>
tr_p = train[train['Province_State'].notnull() ] tr_p['Country_Province'] = tr_p['Country_Region'] + '_' + tr_p['Province_State'] tr_np = train[train['Province_State'].isnull() ] tr_np['Country_Province'] = tr_np['Country_Region']
COVID19 Global Forecasting (Week 3)
8,864,825
train['Date'] = pd.to_datetime(train['Date']) train['Type'] = train['Type'].apply(lambda x: 3 if x == 'A' else(2 if x == 'B' else 1)) train['IsHoliday'] = train['IsHoliday'].apply(lambda x: 1 if x == True else 0) cols = train.columns.drop(['Date']) train[cols] = train[cols].apply(pd.to_numeric, errors='coerce' )<data_type_conversions>
train1 = pd.concat([tr_np,tr_p]) train1.drop(['Province_State','Country_Region'], axis=1,inplace = True )
COVID19 Global Forecasting (Week 3)
8,864,825
test['Date'] = pd.to_datetime(test['Date']) test['Type'] = test['Type'].apply(lambda x: 3 if x == 'A' else(2 if x == 'B' else 1)) test['IsHoliday'] = test['IsHoliday'].apply(lambda x: 1 if x == True else 0) cols = test.columns.drop(['Date']) test[cols] = test[cols].apply(pd.to_numeric, errors='coerce' )<remove_duplicates>
te_p = test[test['Province_State'].notnull() ] te_p['Country_Province'] = te_p['Country_Region'] + '_' + te_p['Province_State'] te_np = test[test['Province_State'].isnull() ] te_np['Country_Province'] = te_np['Country_Region']
COVID19 Global Forecasting (Week 3)
8,864,825
holiday_train = train[['Date','Week','Year','IsHoliday']] holiday_train = holiday_train.loc[holiday_train['IsHoliday']==True].drop_duplicates() holiday_test = test[['Date','Week','Year','IsHoliday']] holiday_test = holiday_test.loc[holiday_test['IsHoliday']==True].drop_duplicates() holidays = pd.concat([holiday_train, holiday_test]) holidays<categorify>
test1 = pd.concat([te_np,te_p]) test1.drop(['Province_State','Country_Region'], axis=1,inplace = True )
COVID19 Global Forecasting (Week 3)
8,864,825
def holiday_type(x): if(x['IsHoliday']== 1)&(x['Week']==6): return 1 elif(x['IsHoliday']== 1)&(x['Week']==36): return 2 elif(x['IsHoliday']== 1)&(x['Week']==47): return 3 elif(x['IsHoliday']== 1)&(x['Week']==52): return 4 else: return 0<feature_engineering>
train1['Date'] = pd.to_datetime(train1['Date']) test1['Date'] = pd.to_datetime(test1['Date'] )
COVID19 Global Forecasting (Week 3)
8,864,825
train['IsHoliday'] = train.apply(holiday_type, axis=1) train['IsHoliday'].unique()<feature_engineering>
train1['Country_Province'] = train1['Country_Province'].astype('category') test1['Country_Province'] = test1['Country_Province'].astype('category' )
COVID19 Global Forecasting (Week 3)
8,864,825
test['IsHoliday'] = test.apply(holiday_type, axis=1) test['IsHoliday'].unique()<categorify>
cl_tr1 = clean_train[['Country_Region','Province_State','Lat','Long','firstcase','density','medianage','urbanpop','hospibed','lung','avgtemp','avghumidity']]
COVID19 Global Forecasting (Week 3)
8,864,825
train = train.replace('None', np.nan) train = train.replace('NaN', np.nan) train = train.replace('NaT', np.nan) train = train.replace('', np.nan) train_nulls =(train.isnull().sum(axis = 0)/len(train)) *100 train_nulls<categorify>
cl_tr1.drop_duplicates(subset=None, keep='first', inplace=True )
COVID19 Global Forecasting (Week 3)
8,864,825
test = test.replace('None', np.nan) test = test.replace('NaN', np.nan) test = test.replace('NaT', np.nan) test = test.replace('', np.nan) test_nulls =(test.isnull().sum(axis = 0)/len(test)) *100 test_nulls<data_type_conversions>
cl_p = cl_tr1[cl_tr1['Province_State'].notnull() ] cl_p['Country_Province'] = cl_p['Country_Region'] + '_' + cl_p['Province_State'] cl_np = cl_tr1[cl_tr1['Province_State'].isnull() ] cl_np['Country_Province'] = cl_np['Country_Region']
COVID19 Global Forecasting (Week 3)
8,864,825
train = train.fillna(0) test = test.fillna(0) train.isnull().sum()<groupby>
cl_tr = pd.concat([cl_p,cl_np]) cl_tr.drop(['Country_Region','Province_State'], axis = 1, inplace = True )
COVID19 Global Forecasting (Week 3)
8,864,825
weekly_sales = train.groupby(['Year','Week'] ).agg({'Weekly_Sales': ['mean', 'median']}) weekly_sales2010 = train.loc[train['Year']==2010].groupby(['Week'] ).agg({'Weekly_Sales': ['mean', 'median']}) weekly_sales2011 = train.loc[train['Year']==2011].groupby(['Week'] ).agg({'Weekly_Sales': ['mean', 'median']}) weekly_sales2012 = train.loc[train['Year']==2012].groupby(['Week'] ).agg({'Weekly_Sales': ['mean', 'median']} )<create_dataframe>
train_cl = pd.merge(train1,cl_tr) test_cl = pd.merge(test1,cl_tr )
COVID19 Global Forecasting (Week 3)
8,864,825
sample_weight = train['IsHoliday'].apply(lambda x: 1 if x==0 else 5) sample_weight_frame = pd.DataFrame(sample_weight, index=train.index )<compute_test_metric>
train_cl['Country_Province'] = train_cl['Country_Province'].astype('category') test_cl['Country_Province'] = test_cl['Country_Province'].astype('category' )
COVID19 Global Forecasting (Week 3)
8,864,825
def WMAE(y_test, y_pred): y_pred_df = pd.DataFrame(y_pred,index=y_test.index) weights_5 = sample_weight_frame.loc[(y_test.index)].loc[sample_weight_frame.IsHoliday==5].index weights_1 = sample_weight_frame.loc[(y_test.index)].loc[sample_weight_frame.IsHoliday==1].index sum_5 = np.sum(5*(abs(y_test.loc[weights_5].values-y_pred_df.loc[weights_5].values))) sum_1 = np.sum(abs(y_test.loc[weights_1].values-y_pred_df.loc[weights_1].values)) return np.round(( sum_5+sum_1)/(5*len(weights_5)+len(weights_1)) ,2) my_score = make_scorer(WMAE,greater_is_better=False )<drop_column>
train_cl['firstcase'] = pd.to_datetime(train_cl['firstcase']) test_cl['firstcase'] = pd.to_datetime(test_cl['firstcase'] )
COVID19 Global Forecasting (Week 3)
8,864,825
train_all = train.drop(['Date'],axis=1) train_all<prepare_x_and_y>
train_cl['jan']="2020-01-01" train_cl['jan'] = pd.to_datetime(train_cl['jan']) test_cl['jan']="2020-01-01" test_cl['jan'] = pd.to_datetime(test_cl['jan']) train_cl['days_since_jan1'] = train_cl['Date']-train_cl['jan'] test_cl['days_since_jan1'] = test_cl['Date']-test_cl['jan']
COVID19 Global Forecasting (Week 3)
8,864,825
y_train_all = train_all.loc[:, ['Weekly_Sales']] x_train_all = train_all.drop(['Weekly_Sales'], axis=1 )<split>
for i in range(len(train_cl)) : train_cl['days_since_jan1'][i]=train_cl['days_since_jan1'][i].days for i in range(len(test_cl)) : test_cl['days_since_jan1'][i]=test_cl['days_since_jan1'][i].days
COVID19 Global Forecasting (Week 3)
8,864,825
x_train, x_test, y_train, y_test = train_test_split(x_train_all, y_train_all, test_size=0.2, random_state=0) print(x_train.shape) print(x_test.shape )<define_search_space>
train_cl['days_since_firstcase'] = train_cl['firstcase']-train_cl['Date'] test_cl['days_since_firstcase'] = test_cl['firstcase']-test_cl['Date']
COVID19 Global Forecasting (Week 3)
8,864,825
clf = RandomForestRegressor(random_state=0) pca = PCA() pipe = Pipeline(steps=[('clf', clf)]) param_grid = [ { 'clf':[RandomForestRegressor() ], 'clf__n_estimators': [50,100,150], 'clf__max_depth': [10,20,30] }, { 'clf': [ExtraTreesRegressor() ], 'clf__n_estimators': [50,100,150], 'clf__max_depth': [10,20,30] }, { 'clf': [XGBRegressor() ], 'clf__learning_rate':[0.1,0.05], 'clf__min_samples_split':[5,7,9], 'clf__max_depth':[10,20,30] } ] rscv_all_tree = RandomizedSearchCV(pipe, param_grid, cv = 3, scoring = my_score, n_jobs=-1) model_all_tree = rscv_all_tree.fit(x_train, y_train )<find_best_params>
for i in range(len(train_cl)) : train_cl['days_since_firstcase'][i]=train_cl['days_since_firstcase'][i].days for i in range(len(test_cl)) : test_cl['days_since_firstcase'][i]=test_cl['days_since_firstcase'][i].days
COVID19 Global Forecasting (Week 3)
8,864,825
rscv_all_tree.best_estimator_<predict_on_test>
cols = ['days_since_jan1','days_since_firstcase'] for col in cols: train_cl[col] = train_cl[col].astype('int64') test_cl[col] = test_cl[col].astype('int64' )
COVID19 Global Forecasting (Week 3)
8,864,825
y_pred = rscv_all_tree.best_estimator_.predict(x_test) print('WMAE:', WMAE(y_test, y_pred))<drop_column>
train_clean_cases = train_cl[['Lat', 'Long','density', 'medianage', 'urbanpop', 'hospibed','lung', 'avgtemp', 'avghumidity','days_since_jan1', 'days_since_firstcase']] test_clean_cases = test_cl[['Lat', 'Long','density', 'medianage', 'urbanpop', 'hospibed','lung', 'avgtemp', 'avghumidity','days_since_jan1', 'days_since_firstcase']]
COVID19 Global Forecasting (Week 3)
8,864,825
train_relevant = train.drop(['Date','Temperature','Fuel_Price','MarkDown1','MarkDown2','MarkDown3','MarkDown4','MarkDown5','CPI','Unemployment'],axis=1) train_relevant<prepare_x_and_y>
train_clean_fatal = train_cl[['Lat', 'Long','density', 'medianage', 'urbanpop', 'hospibed','lung', 'avgtemp', 'avghumidity','days_since_jan1', 'days_since_firstcase','ConfirmedCases']] test_clean_fatal = test_cl[['Lat', 'Long','density', 'medianage', 'urbanpop', 'hospibed','lung', 'avgtemp', 'avghumidity','days_since_jan1', 'days_since_firstcase']]
COVID19 Global Forecasting (Week 3)
8,864,825
y_relevant = train_relevant.loc[:, ['Weekly_Sales']] x_relevant = train_relevant.drop(['Weekly_Sales'], axis=1 )<split>
train_y1 = train_cl['ConfirmedCases'] train_y2 = train_cl['Fatalities']
COVID19 Global Forecasting (Week 3)
8,864,825
x_train_relevant, x_test_relevant, y_train_relevant, y_test_relevant = train_test_split(x_relevant, y_relevant, test_size=0.2, random_state=0) print(x_train_relevant.shape) print(x_test_relevant.shape )<set_options>
dt_1=DecisionTreeRegressor(max_depth=30,max_features=8,min_samples_split=2,min_samples_leaf=1) dt_2=DecisionTreeRegressor(max_depth=30,max_features=8,min_samples_split=2,min_samples_leaf=1) dt_1.fit(train_clean_cases,train_y1) dt_2.fit(train_clean_fatal,train_y2 )
COVID19 Global Forecasting (Week 3)
8,864,825
clf = RandomForestRegressor(random_state=0) pca = PCA() pipe = Pipeline(steps=[('clf', clf)]) param_grid = [ { 'clf':[RandomForestRegressor() ], 'clf__n_estimators': [50,100,150], 'clf__max_depth': [10,20,30] }, { 'clf': [ExtraTreesRegressor() ], 'clf__n_estimators': [50,100,150], 'clf__max_depth': [10,20,30] }, { 'clf': [XGBRegressor() ], 'clf__learning_rate':[0.1,0.05], 'clf__min_samples_split':[5,7,9], 'clf__max_depth':[10,20,30] } ] rscv_relevant_tree = RandomizedSearchCV(pipe, param_grid, cv = 3, scoring = my_score, n_jobs=-1) model_relevant_tree = rscv_relevant_tree.fit(x_train_relevant, y_train_relevant )<find_best_params>
dt_train_cases_pred = dt_1.predict(train_clean_cases) dt_train_fatal_pred = dt_2.predict(train_clean_fatal )
COVID19 Global Forecasting (Week 3)
8,864,825
rscv_relevant_tree.best_estimator_<predict_on_test>
dt_mse_train_cases = mean_squared_error(dt_train_cases_pred, train_y1) dt_rmse_train_cases = np.sqrt(dt_mse_train_cases) print("DT Regression MSE on train cases: %.4f" %dt_mse_train_cases) print('DT Regression RMSE on train cases: %.4f' % dt_rmse_train_cases )
COVID19 Global Forecasting (Week 3)
8,864,825
y_pred= rscv_relevant_tree.best_estimator_.predict(x_test_relevant) print('WMAE:', WMAE(y_test_relevant, y_pred))<define_search_space>
dt_mse_train_fatalities = mean_squared_error(dt_train_fatal_pred, train_y2) dt_rmse_train_fatalities = np.sqrt(dt_mse_train_fatalities) print("DT Regression MSE on train fatalities: %.4f" %dt_mse_train_cases) print('DT Regression RMSE on train fatalities: %.4f' % dt_rmse_train_cases )
COVID19 Global Forecasting (Week 3)
8,864,825
clf = RandomForestRegressor(random_state=0) pipe = Pipeline(steps=[('clf', clf)]) param_grid_rf = [ { 'clf':[RandomForestRegressor() ], 'clf__n_estimators': [140,150,160], 'clf__max_depth': [25,30,35], 'clf__max_features': ['auto',5,6] } ] gscv_rf1 = GridSearchCV(pipe, param_grid_rf, cv = 3, scoring = my_score, n_jobs=-1) model_rf1 = gscv_rf1.fit(x_train_relevant, y_train_relevant )<find_best_params>
dt_test_cases_pred = dt_1.predict(test_clean_cases) dt_test_cases_pred = np.where(dt_test_cases_pred<0,0,np.rint(dt_test_cases_pred))
COVID19 Global Forecasting (Week 3)
8,864,825
gscv_rf1.best_estimator_<predict_on_test>
test_clean_fatal['ConfirmedCases']= dt_test_cases_pred
COVID19 Global Forecasting (Week 3)
8,864,825
y_pred_rf = gscv_rf1.best_estimator_.predict(x_test_relevant) print('WMAE:', WMAE(y_test_relevant, y_pred_rf))<drop_column>
dt_test_fatal_pred = dt_2.predict(test_clean_fatal )
COVID19 Global Forecasting (Week 3)
8,864,825
date = test['Date'] test = test.drop(['Date'], axis=1 )<predict_on_test>
submission['ForecastId'] = test_cl['ForecastId'] submission['ConfirmedCases'] = dt_test_cases_pred submission['Fatalities'] = dt_test_fatal_pred
COVID19 Global Forecasting (Week 3)
8,864,825
test_relevant = test.drop(['Temperature','Fuel_Price','MarkDown1','MarkDown2','MarkDown3','MarkDown4','MarkDown5','CPI', 'Unemployment'],axis=1) test_relevant = test_relevant.sort_values(['Store', 'Dept'], ascending=[True, True]) y_pred_rf = gscv_rf1.best_estimator_.predict(test_relevant )<sort_values>
submission.to_csv('submission.csv',index=False )
COVID19 Global Forecasting (Week 3)
8,808,306
test_relevant['Date'] = date test_relevant = test_relevant.sort_values(['Store', 'Dept'], ascending=[True, True]) test_relevant['Weekly_Sales'] = y_pred_rf test_relevant<load_from_csv>
def RMSLE(pred,actual): return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)) )
COVID19 Global Forecasting (Week 3)
8,808,306
sampleSubmission = pd.read_csv('.. /input/walmart-recruiting-store-sales-forecasting/sampleSubmission.csv.zip', sep=',' )<save_to_csv>
pd.set_option('mode.chained_assignment', None) test = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv") train = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv") train['Province_State'].fillna('', inplace=True) test['Province_State'].fillna('', inplace=True) train['Date'] = pd.to_datetime(train['Date']) test['Date'] = pd.to_datetime(test['Date']) train = train.sort_values(['Country_Region','Province_State','Date']) test = test.sort_values(['Country_Region','Province_State','Date'] )
COVID19 Global Forecasting (Week 3)
8,808,306
sampleSubmission['Weekly_Sales'] = y_pred_rf sampleSubmission.to_csv('submission.csv',index=False) sampleSubmission<set_options>
feature_day = [1,20,50,100,200,500,1000,2000,5000,10000] def CreateInput(data): feature = [] for day in feature_day: data.loc[:,'Number day from ' + str(day)+ ' case'] = 0 if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0): fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max() else: fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min() for i in range(0, len(data)) : if(data['Date'].iloc[i] > fromday): day_denta = data['Date'].iloc[i] - fromday data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days feature = feature + ['Number day from ' + str(day)+ ' case'] return data[feature] pred_data_all = pd.DataFrame() for country in train['Country_Region'].unique() : for province in train[(train['Country_Region'] == country)]['Province_State'].unique() : df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)] df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)] X_train = CreateInput(df_train) y_train_confirmed = df_train['ConfirmedCases'].ravel() y_train_fatalities = df_train['Fatalities'].ravel() X_pred = CreateInput(df_test) for day in sorted(feature_day,reverse = True): feature_use = 'Number day from ' + str(day)+ ' case' idx = X_train[X_train[feature_use] == 0].shape[0] if(X_train[X_train[feature_use] > 0].shape[0] >= 50): break adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1) adjusted_y_train_confirmed = y_train_confirmed[idx:] adjusted_y_train_fatalities = y_train_fatalities[idx:] idx = X_pred[X_pred[feature_use] == 0].shape[0] adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1) pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)] max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max() min_test_date = pred_data['Date'].min() model = ExponentialSmoothing(adjusted_y_train_confirmed, trend = 'additive' ).fit() y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0) model = ExponentialSmoothing(adjusted_y_train_fatalities, trend = 'additive' ).fit() y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0) pred_data['ConfirmedCases_hat'] = y_hat_confirmed pred_data['Fatalities_hat'] = y_hat_fatalities pred_data_all = pred_data_all.append(pred_data) df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left') df_val
COVID19 Global Forecasting (Week 3)
8,808,306
%matplotlib inline <load_from_csv>
country = "Ukraine" df_country = df_val[df_val['Country_Region'] == country].groupby(['Date','Country_Region'] ).sum().reset_index() df_country
COVID19 Global Forecasting (Week 3)
8,808,306
<count_values><EOS>
submission = df_val[['ForecastId','ConfirmedCases_hat','Fatalities_hat']] submission.columns = ['ForecastId','ConfirmedCases','Fatalities'] submission.to_csv('submission.csv', index=False )
COVID19 Global Forecasting (Week 3)
8,803,205
<SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<feature_engineering>
import pandas as pd import datetime import lightgbm as lgb import numpy as np from sklearn import preprocessing
COVID19 Global Forecasting (Week 3)
8,803,205
df_train['boilerplate'].replace(to_replace=r'"title":', value="",inplace=True,regex=True) df_train['boilerplate'].replace(to_replace=r'"url":',value="",inplace=True,regex=True) df_train['boilerplate'].replace(to_replace=r'{|}',value="",inplace=True,regex=True) df_train['boilerplate']=df_train['boilerplate'].str.lower() df_test['boilerplate'].replace(to_replace=r'"title":', value="",inplace=True,regex=True) df_test['boilerplate'].replace(to_replace=r'"url":',value="",inplace=True,regex=True) df_test['boilerplate'].replace(to_replace=r'{|}',value="",inplace=True,regex=True) df_test['boilerplate']=df_test['boilerplate'].str.lower()<load_pretrained>
train = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv") test = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv") sub = pd.read_csv(".. /input/covid19-global-forecasting-week-3/submission.csv" )
COVID19 Global Forecasting (Week 3)
8,803,205
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased' )<prepare_x_and_y>
train = train.append(test[test['Date']>'2020-04-07'] )
COVID19 Global Forecasting (Week 3)
8,803,205
SEQ_length=512 Xids=np.zeros(( df_train.shape[0],SEQ_length)) Xmask=np.zeros(( df_train.shape[0],SEQ_length)) y=np.zeros(( df_train.shape[0],1)) Xids_test=np.zeros(( df_test.shape[0],SEQ_length)) Xmask_test=np.zeros(( df_test.shape[0],SEQ_length)) Xids<categorify>
train['Date'] = pd.to_datetime(train['Date'], format='%Y-%m-%d' )
COVID19 Global Forecasting (Week 3)
8,803,205
for i,sequence in enumerate(df_train['boilerplate']): tokens=tokenizer.encode_plus(sequence,max_length=SEQ_length,padding='max_length',add_special_tokens=True, truncation=True,return_token_type_ids=False,return_attention_mask=True, return_tensors='tf') Xids[i,:],Xmask[i,:],y[i,0]=tokens['input_ids'],tokens['attention_mask'],df_train.loc[i,'label'] for i,sequence in enumerate(df_test['boilerplate']): tokens=tokenizer.encode_plus(sequence,max_length=SEQ_length,padding='max_length',add_special_tokens=True, truncation=True,return_token_type_ids=False,return_attention_mask=True, return_tensors='tf') Xids_test[i,:],Xmask_test[i,:]=tokens['input_ids'],tokens['attention_mask']<set_options>
train['day_dist'] = train['Date']-train['Date'].min()
COVID19 Global Forecasting (Week 3)
8,803,205
tf.config.get_visible_devices()<categorify>
train['day_dist'] = train['day_dist'].dt.days
COVID19 Global Forecasting (Week 3)
8,803,205
dataset=tf.data.Dataset.from_tensor_slices(( Xids,Xmask,y)) def map_func(input_ids,mask,labels): return {'input_ids':input_ids,'attention_mask':mask},labels dataset=dataset.map(map_func) dataset=dataset.shuffle(100000 ).batch(32 ).prefetch(1000) DS_size=len(list(dataset)) train=dataset.take(round(DS_size*0.85)) val=dataset.skip(round(DS_size*0.85))<categorify>
cat_cols = train.dtypes[train.dtypes=='object'].keys() cat_cols
COVID19 Global Forecasting (Week 3)
8,803,205
dataset_test=tf.data.Dataset.from_tensor_slices(( Xids_test,Xmask_test)) def map_func(input_ids,mask): return {'input_ids':input_ids,'attention_mask':mask} dataset_test=dataset_test.map(map_func) dataset_test=dataset_test.batch(32 ).prefetch(1000 )<choose_model_class>
for cat_col in cat_cols: train[cat_col].fillna('no_value', inplace = True )
COVID19 Global Forecasting (Week 3)
8,803,205
distil_bert = 'distilbert-base-uncased' config = DistilBertConfig(dropout=0.2, attention_dropout=0.2) config.output_hidden_states = False transformer_model = TFDistilBertModel.from_pretrained(distil_bert, config = config) input_ids_in = tf.keras.layers.Input(shape=(SEQ_length,), name='input_ids', dtype='int32') input_masks_in = tf.keras.layers.Input(shape=(SEQ_length,), name='attention_mask', dtype='int32') embedding_layer = transformer_model(input_ids_in, attention_mask=input_masks_in)[0] X = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(50, return_sequences=True, dropout=0.1, recurrent_dropout=0.1))(embedding_layer) X = tf.keras.layers.GlobalMaxPool1D()(X) X = tf.keras.layers.Dense(50, activation='relu' )(X) X = tf.keras.layers.Dropout(0.2 )(X) X = tf.keras.layers.Dense(1, activation='sigmoid' )(X) model = tf.keras.Model(inputs=[input_ids_in, input_masks_in], outputs = X) for layer in model.layers[:3]: layer.trainable = False<choose_model_class>
train['place'] = train['Province_State']+'_'+train['Country_Region']
COVID19 Global Forecasting (Week 3)
8,803,205
model.compile(loss=tf.keras.losses.BinaryCrossentropy() , optimizer='adam',metrics=[tf.keras.metrics.AUC() ,tf.keras.metrics.Precision() ,tf.keras.metrics.Recall() ] )<train_model>
cat_cols = train.dtypes[train.dtypes=='object'].keys() cat_cols
COVID19 Global Forecasting (Week 3)
8,803,205
history=model.fit(train,validation_data=val,epochs=3 )<save_to_csv>
for cat_col in ['place']: le = preprocessing.LabelEncoder() le.fit(train[cat_col]) train[cat_col]=le.transform(train[cat_col] )
COVID19 Global Forecasting (Week 3)
8,803,205
predictions=model.predict(dataset_test) df_test['label']=predictions df_test.to_csv('submission.csv',columns=['urlid','label'],index=False )<categorify>
drop_cols = ['Id','ForecastId', 'ConfirmedCases','Date', 'Fatalities', 'day_dist', 'Province_State', 'Country_Region']
COVID19 Global Forecasting (Week 3)
8,803,205
input_x=tf.data.Dataset.from_tensor_slices(( Xids,Xmask,y)) def map_func(input_ids,mask,labels): return {'input_ids':input_ids,'attention_mask':mask} input_x=input_x.map(map_func) input_x=input_x.shuffle(100000 ).batch(32 ).prefetch(1000) y_true = y<predict_on_test>
val = train[(train['Date']>='2020-03-20')&(train['Id'].isnull() ==False)]
COVID19 Global Forecasting (Week 3)
8,803,205
y_pred=model.predict(dataset) y_pred<prepare_output>
y_ft = train["Fatalities"] y_val_ft = val["Fatalities"] y_cc = train["ConfirmedCases"] y_val_cc = val["ConfirmedCases"]
COVID19 Global Forecasting (Week 3)
8,803,205
y_pred = np.round(y_pred) y_pred<compute_test_metric>
def rmsle(y_true, y_pred): return np.sqrt(np.mean(np.power(np.log1p(y_pred)- np.log1p(y_true), 2)) )
COVID19 Global Forecasting (Week 3)
8,803,205
print(metrics.classification_report(y_true, y_pred))<import_modules>
def mape(y_true, y_pred): return np.mean(np.abs(y_pred -y_true)*100/(y_true+1))
COVID19 Global Forecasting (Week 3)
8,803,205
import os from pathlib import Path import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import cross_validate, GridSearchCV from sklearn.pipeline import make_pipeline from sklearn.ensemble import RandomForestClassifier, VotingClassifier from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score<define_variables>
dates = dates[dates>'2020-04-07']
COVID19 Global Forecasting (Week 3)
8,803,205
FILEDIR = Path('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament' )<load_from_csv>
params = { "objective": "regression", "boosting": 'gbdt', "num_leaves": 1280, "learning_rate": 0.05, "feature_fraction": 0.9, "reg_lambda": 2, "metric": "rmse", 'min_data_in_leaf':20 }
COVID19 Global Forecasting (Week 3)
8,803,205
sub = pd.read_csv(FILEDIR / 'MSampleSubmissionStage1_2020.csv', usecols=['ID']) id_splited = sub['ID'].str.split('_', expand=True ).astype(int ).rename(columns={0: 'Season', 1: 'Team1', 2: 'Team2'}) sub = pd.concat([sub, id_splited], axis=1 ).set_index(['Season', 'Team1', 'Team2'] ).sort_index()<count_duplicates>
train[train['Date']==date]
COVID19 Global Forecasting (Week 3)
8,803,205
tourney_teams = {} tourney_teams_all = set() for season in sub.index.get_level_values('Season' ).drop_duplicates() : tourney_teams[season] = set() tourney_teams[season].update(sub.loc[season].index.get_level_values('Team1')) tourney_teams[season].update(sub.loc[season].index.get_level_values('Team2')) tourney_teams_all.update(tourney_teams[season]) {k: len(v)for k, v in tourney_teams.items() }<load_from_csv>
test[test['Country_Region']=='Italy']
COVID19 Global Forecasting (Week 3)
8,803,205
conferences = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MTeamConferences.csv') conferences = pd.concat( [conferences.query('Season == @season and TeamID in @teams')for season, teams in tourney_teams.items() ]) conferences = conferences.set_index(['Season', 'TeamID'] ).sort_index()<load_from_csv>
test[(test['Country_Region']=='China')&(test['Province_State']=='Zhejiang')]
COVID19 Global Forecasting (Week 3)
8,803,205
coaches = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MTeamCoaches.csv') coaches = pd.concat( [coaches.query('Season == @season and TeamID in @team')for season, team in tourney_teams.items() ]) coaches = coaches[coaches['LastDayNum'] == 154].set_index(['Season', 'TeamID'] ).sort_index() [['CoachName']]<load_from_csv>
test[test['Country_Region']=='Italy']
COVID19 Global Forecasting (Week 3)
8,803,205
teams = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MTeams.csv', usecols=['TeamID', 'FirstD1Season']) teams['FirstD1Season'] = 2020 - teams['FirstD1Season'] teams = pd.concat( [teams.query('TeamID in @team' ).assign(Season=season)for season, team in tourney_teams.items() ]) teams = teams.set_index(['Season', 'TeamID'] ).sort_index()<load_from_csv>
train_sub = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv" )
COVID19 Global Forecasting (Week 3)
8,803,205
seeds = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MNCAATourneySeeds.csv') seeds = pd.concat( [seeds.query('Season == @season and TeamID in @teams')for season, teams in tourney_teams.items() ]) seeds = seeds.set_index(['Season', 'TeamID'] ).sort_index() seeds['Region'] = seeds['Seed'].str[0] seeds['Number'] = seeds['Seed'].str[1:3].astype(int) del seeds['Seed']<load_from_csv>
test = pd.merge(test,train_sub[['Province_State','Country_Region', 'Date','ConfirmedCases', 'Fatalities']], on=['Province_State','Country_Region', 'Date'], how='left' )
COVID19 Global Forecasting (Week 3)
8,803,205
regular = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MRegularSeasonDetailedResults.csv') regular = regular.drop(columns=['DayNum', 'LTeamID']) regular = pd.concat( [regular.query('Season == @season and WTeamID in @teams')for season, teams in tourney_teams.items() ]) regular = regular.groupby(['Season', 'WTeamID'] ).sum() regular = regular.rename_axis(index=['Season', 'TeamID'] )<concatenate>
test.loc[test['ConfirmedCases_x'].isnull() ==True]
COVID19 Global Forecasting (Week 3)
8,803,205
ctcsr = pd.concat([coaches, teams, conferences, seeds, regular], axis=1 )<load_from_csv>
test.loc[test['ConfirmedCases_x'].isnull() ==True, 'ConfirmedCases_x'] =test.loc[test['ConfirmedCases_x'].isnull() ==True, 'ConfirmedCases_y']
COVID19 Global Forecasting (Week 3)
8,803,205
result = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MNCAATourneyCompactResults.csv') result = result[result['Season'] >= 2015].set_index(['Season', 'WTeamID', 'LTeamID'] )<concatenate>
test.loc[test['Fatalities_x'].isnull() ==True, 'Fatalities_x'] = test.loc[test['Fatalities_x'].isnull() ==True, 'Fatalities_y']
COVID19 Global Forecasting (Week 3)
8,803,205
merged_teams = pd.concat( [ctcsr.loc[[(season, wteam),(season, lteam)], :] for season, wteam, lteam, in result.index]) team1 = merged_teams.iloc[::2, :].reset_index('TeamID') team2 = merged_teams.iloc[1::2, :].reset_index('TeamID') merged_teams = pd.concat([ pd.concat([team1.add_suffix('1'), team2.add_suffix('2')], axis=1 ).assign(Res=1), pd.concat([team2.add_suffix('1'), team1.add_suffix('2')], axis=1 ).assign(Res=0), ] ).reset_index().set_index(['Season', 'TeamID1', 'TeamID2'] ).sort_index()<categorify>
last_amount = test.loc[(test['Country_Region']=='Italy')&(test['Date']=='2020-04-07'),'ConfirmedCases_x'] last_fat = test.loc[(test['Country_Region']=='Italy')&(test['Date']=='2020-04-07'),'Fatalities_x']
COVID19 Global Forecasting (Week 3)
8,803,205
x_columns = merged_teams.columns[merged_teams.columns != 'Res'] X = merged_teams[x_columns] for column in X.select_dtypes(include='number'): X[column] = MinMaxScaler().fit_transform(X[column].to_numpy().reshape(-1,1)) X = pd.get_dummies(X, columns=x_columns[X.dtypes == 'object'] )<prepare_x_and_y>
i = 0 k = 30
COVID19 Global Forecasting (Week 3)
8,803,205
y = merged_teams['Res']<define_search_space>
test.loc[(test['Country_Region']=='Italy')]
COVID19 Global Forecasting (Week 3)
8,803,205
clfs = {} clfs['SVC'] = { 'instance': SVC(probability=True), 'params': [ {'kernel': ['linear'], 'C': [0.01, 0.05, 0.1, 0.5, 1]}, {'kernel': ['rbf'], 'C': [1, 10, 50, 100, 250], 'gamma': [0.1, 0.2, 0.3]} ] } clfs['RandomForestClassifier'] = { 'instance': RandomForestClassifier(n_jobs=-1), 'params': { 'n_estimators': [25, 50, 100], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 25, 50, None] } } clfs['LogisticRegression'] = { 'instance': LogisticRegression(max_iter=500, n_jobs=-1), 'params': [ {'penalty': ['l2'], 'C': [0.1, 0.5, 1, 5, 10]}, {'penalty': ['l1'], 'solver': ['liblinear', 'saga'], 'C': [0.1, 0.5, 1, 5, 10]}, {'penalty': ['elasticnet'], 'C': [0.1, 0.5, 1, 5, 10], 'l1_ratio': [0.1, 0.3, 0.5, 0.7, 0.9]} ] }<train_on_grid>
for date in dates: k = k-1 i = i+1 test.loc[(test['Country_Region']=='Italy')&(test['Date']==date), 'ConfirmedCases_x']=last_amount.values[0] + i*(5000-(100*i)) test.loc[(test['Country_Region']=='Italy')&(test['Date']==date), 'Fatalities_x'] = last_fat.values[0]+i*(800-(10*i))
COVID19 Global Forecasting (Week 3)
8,803,205
for clf_name, clf in clfs.items() : print('<{}>'.format(clf_name)) print(' training...'.format(clf_name)) gs = GridSearchCV(clf['instance'], param_grid=clf['params'], cv=5, n_jobs=-1) gs.fit(X, y) clfs[clf_name]['best_estimator'] = gs.best_estimator_ print(' best_score: {:.3f}'.format(gs.best_score_)) print(' best_params: {}'.format(gs.best_params_))<train_on_grid>
test.loc[(test['Country_Region']=='Spain')]
COVID19 Global Forecasting (Week 3)
8,803,205
vote = VotingClassifier( estimators=[(clf_name, clf['best_estimator'])for clf_name, clf in clfs.items() ], voting='soft', n_jobs=-1 ) vote.fit(X, y) vote.estimators_<compute_test_metric>
last_amount = test.loc[(test['Country_Region']=='Spain')&(test['Date']=='2020-04-07'),'ConfirmedCases_x'] last_fat = test.loc[(test['Country_Region']=='Spain')&(test['Date']=='2020-04-07'),'Fatalities_x'] i = 0 k = 30 for date in dates: k = k-1 i = i+1 test.loc[(test['Country_Region']=='Spain')&(test['Date']==date), 'ConfirmedCases_x']=last_amount.values[0] + i*(5000-(100*i)) test.loc[(test['Country_Region']=='Spain')&(test['Date']==date), 'Fatalities_x'] = last_fat.values[0]+i*(800-(10*i))
COVID19 Global Forecasting (Week 3)
8,803,205
for clf_name, clf in clfs.items() : score = accuracy_score(y, clf['best_estimator'].predict(X)) print(clf_name, score) print('Vote', accuracy_score(y, vote.predict(X)) )<predict_on_test>
last_amount = test.loc[(test['Country_Region']=='China')&(test['Province_State']!='Hubei')&(test['Date']=='2020-04-07'),'ConfirmedCases_x'] last_fat = test.loc[(test['Country_Region']=='China')&(test['Province_State']!='Hubei')&(test['Date']=='2020-04-07'),'Fatalities_x']
COVID19 Global Forecasting (Week 3)
8,803,205
predict_proba = pd.DataFrame( {clf_name: clf['best_estimator'].predict_proba(X)[:, 1] for clf_name, clf in clfs.items() }, index=X.index) predict_proba['Vote'] = vote.predict_proba(X)[:, 1] _ = predict_proba.plot(kind='hist', bins=50, grid=True, alpha=0.5, figsize=(16,8))<save_to_csv>
i = 0 k = 30 for date in dates: k = k-1 i = i+1 test.loc[(test['Country_Region']=='China')&(test['Province_State']!='Hubei')&(test['Date']==date), 'Fatalities_x']= last_fat.values test.loc[(test['Country_Region']=='China')&(test['Province_State']!='Hubei')&(test['Date']==date), 'ConfirmedCases_x']= last_amount.values + i
COVID19 Global Forecasting (Week 3)
8,803,205
columns = predict_proba.columns for column in columns: sub[column] = 0.5 mask = [idx for idx in sub.index if idx in X.index] sub.loc[mask, columns] = predict_proba.loc[mask, columns] for column in columns: sub[['ID', column]].rename(columns={column: 'pred'} ).to_csv('predict_proba-{}.csv'.format(column), index=False )<save_to_csv>
last_amount = test.loc[(test['Country_Region']=='China')&(test['Province_State']=='Hubei')&(test['Date']=='2020-04-07'),'ConfirmedCases_x'] last_fat = test.loc[(test['Country_Region']=='China')&(test['Province_State']=='Hubei')&(test['Date']=='2020-04-07'),'Fatalities_x']
COVID19 Global Forecasting (Week 3)
8,803,205
predict = pd.DataFrame( {clf_name: clf['best_estimator'].predict(X)for clf_name, clf in clfs.items() }, index=X.index) predict['Vote'] = vote.predict(X) columns = predict.columns for column in columns: sub[column] = 0.5 mask = [idx for idx in sub.index if idx in X.index] sub.loc[mask, columns] = predict.loc[mask, columns] for column in columns: sub[['ID', column]].rename(columns={column: 'pred'} ).to_csv('predict-{}.csv'.format(column), index=False )<load_from_csv>
k=30 i=0 for date in dates: k = k-1 i = i+1 test.loc[(test['Country_Region']=='China')&(test['Province_State']=='Hubei')&(test['Date']==date),'ConfirmedCases_x']= last_amount.values[0] test.loc[(test['Country_Region']=='China')&(test['Province_State']=='Hubei')&(test['Date']==date),'Fatalities_x']= last_fat.values[0] + i
COVID19 Global Forecasting (Week 3)
8,803,205
target_name = 'predict_proba-RandomForestClassifier.csv' new_name = 'final-submission.csv' shutil.copy(target_name, new_name )<import_modules>
sub = test[['ForecastId','ConfirmedCases_x','Fatalities_x']]
COVID19 Global Forecasting (Week 3)
8,803,205
import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt from sklearn.utils import shuffle from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold import lightgbm as lgb import xgboost as xgb from xgboost import XGBClassifier import gc import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.model_selection import RandomizedSearchCV from sklearn.ensemble import RandomForestRegressor<load_from_csv>
sub.columns=['ForecastId','ConfirmedCases','Fatalities']
COVID19 Global Forecasting (Week 3)
8,803,205
Tourney_Compact_Results = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneyCompactResults.csv') Tourney_Seeds = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneySeeds.csv' )<load_from_csv>
sub.loc[sub['ConfirmedCases']<0,'ConfirmedCases']=0
COVID19 Global Forecasting (Week 3)
8,803,205
RegularSeason_Compact_Results = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MRegularSeasonCompactResults.csv') MSeasons = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MSeasons.csv') MTeams=pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MTeams.csv' )<merge>
sub.loc[sub['Fatalities']<0, 'Fatalities']=0
COVID19 Global Forecasting (Week 3)
8,803,205
Tourney_Results_Compact=pd.merge(Tourney_Compact_Results, Tourney_Seeds, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') Tourney_Results_Compact.rename(columns={'Seed':'WinningSeed'},inplace=True) Tourney_Results_Compact=Tourney_Results_Compact.drop(['TeamID'],axis=1) Tourney_Results_Compact = pd.merge(Tourney_Results_Compact, Tourney_Seeds, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') Tourney_Results_Compact.rename(columns={'Seed':'LoosingSeed'}, inplace=True) Tourney_Results_Compact=Tourney_Results_Compact.drop(['TeamID','NumOT','WLoc'],axis=1) Tourney_Results_Compact<drop_column>
sub.to_csv('submission.csv',index=False )
COVID19 Global Forecasting (Week 3)
8,757,927
Tourney_Results_Compact=Tourney_Results_Compact.drop(['WScore','LScore'],axis=1) Tourney_Results_Compact.head()<data_type_conversions>
X_train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/train.csv') X_test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv') X_train.rename(columns={'Country_Region':'Country'}, inplace=True) X_test.rename(columns={'Country_Region':'Country'}, inplace=True) X_train.rename(columns={'Province_State':'State'}, inplace=True) X_test.rename(columns={'Province_State':'State'}, inplace=True) X_train.Date = pd.to_datetime(X_train.Date, infer_datetime_format=True) X_test.Date = pd.to_datetime(X_test.Date, infer_datetime_format=True) EMPTY_VAL = "EMPTY_VAL" def fillState(state, country): if state == EMPTY_VAL: return country return state
COVID19 Global Forecasting (Week 3)
8,757,927
Tourney_Results_Compact['WinningSeed'] = Tourney_Results_Compact['WinningSeed'].str.extract('(\d+)', expand=True) Tourney_Results_Compact['LoosingSeed'] = Tourney_Results_Compact['LoosingSeed'].str.extract('(\d+)', expand=True) Tourney_Results_Compact.WinningSeed = pd.to_numeric(Tourney_Results_Compact.WinningSeed, errors='coerce') Tourney_Results_Compact.LoosingSeed = pd.to_numeric(Tourney_Results_Compact.LoosingSeed, errors='coerce' )<rename_columns>
X_xTrain = X_train.copy() X_xTrain.State.fillna(EMPTY_VAL, inplace=True) X_xTrain.State = X_xTrain.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1) X_xTrain.loc[:, 'Date'] = X_xTrain.Date.dt.strftime("%m%d") X_xTrain.Date = X_xTrain.Date.astype(int) X_xTest = X_test.copy() X_xTest.State.fillna(EMPTY_VAL, inplace=True) X_xTest.State = X_xTest.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1) X_xTest.loc[:, 'Date'] = X_xTest.Date.dt.strftime("%m%d") X_xTest.Date = X_xTest.Date.astype(int)
COVID19 Global Forecasting (Week 3)
8,757,927
season_winning_team = RegularSeason_Compact_Results[['Season', 'WTeamID', 'WScore']] season_losing_team = RegularSeason_Compact_Results[['Season', 'LTeamID', 'LScore']] season_winning_team.rename(columns={'WTeamID':'TeamID','WScore':'Score'}, inplace=True) season_losing_team.rename(columns={'LTeamID':'TeamID','LScore':'Score'}, inplace=True) RegularSeason_Compact_Results = pd.concat(( season_winning_team, season_losing_team)).reset_index(drop=True) RegularSeason_Compact_Results<groupby>
le = preprocessing.LabelEncoder() X_xTrain.Country = le.fit_transform(X_xTrain.Country) X_xTrain.State = le.fit_transform(X_xTrain.State) X_xTest.Country = le.fit_transform(X_xTest.Country) X_xTest.State = le.fit_transform(X_xTest.State )
COVID19 Global Forecasting (Week 3)
8,757,927
RegularSeason_Compact_Results_Final = RegularSeason_Compact_Results.groupby(['Season', 'TeamID'])['Score'].sum().reset_index() RegularSeason_Compact_Results_Final<merge>
filterwarnings('ignore') le = preprocessing.LabelEncoder() countries = X_xTrain.Country.unique()
COVID19 Global Forecasting (Week 3)
8,757,927
Tourney_Results_Compact = pd.merge(Tourney_Results_Compact, RegularSeason_Compact_Results_Final, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') Tourney_Results_Compact.rename(columns={'Score':'WScoreTotal'}, inplace=True) Tourney_Results_Compact<save_to_csv>
xout = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []}) for country in countries: states = X_xTrain.loc[X_xTrain.Country == country, :].State.unique() for state in states: X_xTrain_CS = X_xTrain.loc[(X_xTrain.Country == country)&(X_xTrain.State == state), ['State', 'Country', 'Date', 'ConfirmedCases', 'Fatalities']] y1_xTrain_CS = X_xTrain_CS.loc[:, 'ConfirmedCases'] y2_xTrain_CS = X_xTrain_CS.loc[:, 'Fatalities'] X_xTrain_CS = X_xTrain_CS.loc[:, ['State', 'Country', 'Date']] X_xTrain_CS.Country = le.fit_transform(X_xTrain_CS.Country) X_xTrain_CS.State = le.fit_transform(X_xTrain_CS.State) X_xTest_CS = X_xTest.loc[(X_xTest.Country == country)&(X_xTest.State == state), ['State', 'Country', 'Date', 'ForecastId']] X_xTest_CS_Id = X_xTest_CS.loc[:, 'ForecastId'] X_xTest_CS = X_xTest_CS.loc[:, ['State', 'Country', 'Date']] X_xTest_CS.Country = le.fit_transform(X_xTest_CS.Country) X_xTest_CS.State = le.fit_transform(X_xTest_CS.State) xmodel1 = DecisionTreeRegressor() xmodel1.fit(X_xTrain_CS, y1_xTrain_CS) y1_xpred = xmodel1.predict(X_xTest_CS) xmodel2 = DecisionTreeRegressor() xmodel2.fit(X_xTrain_CS, y2_xTrain_CS) y2_xpred = xmodel2.predict(X_xTest_CS) xdata = pd.DataFrame({'ForecastId': X_xTest_CS_Id, 'ConfirmedCases': y1_xpred, 'Fatalities': y2_xpred}) xout = pd.concat([xout, xdata], axis=0 )
COVID19 Global Forecasting (Week 3)
8,757,927
<drop_column><EOS>
xout.ForecastId = xout.ForecastId.astype('int') xout.tail() xout.to_csv('submission.csv', index=False )
COVID19 Global Forecasting (Week 3)
8,825,780
<SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<rename_columns>
for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) df_train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/train.csv') df_test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv')
COVID19 Global Forecasting (Week 3)
8,825,780
Tourney_Win_Results.rename(columns={'WinningSeed':'Seed1', 'LoosingSeed':'Seed2', 'WScoreTotal':'ScoreT1', 'LScoreTotal':'ScoreT2'}, inplace=True )<prepare_output>
def fillState(state, country): if state == "NA": return country return state def fixData(input_set): input_set['Province_State'].fillna("NA", inplace=True) input_set['Province_State'] = input_set.loc[:, ['Province_State', 'Country_Region']].apply(lambda x : fillState(x['Province_State'], x['Country_Region']), axis=1) input_set['Date'] = pd.to_datetime(input_set['Date'], infer_datetime_format=True) input_set.loc[:, 'Date'] = input_set.Date.dt.strftime("%m%d") input_set["Date"] = input_set["Date"].astype(int) return input_set
COVID19 Global Forecasting (Week 3)
8,825,780
tourney_lose_result = Tourney_Win_Results.copy() tourney_lose_result['Seed1'] = Tourney_Win_Results['Seed2'] tourney_lose_result['Seed2'] = Tourney_Win_Results['Seed1'] tourney_lose_result['ScoreT1'] = Tourney_Win_Results['ScoreT2'] tourney_lose_result['ScoreT2'] = Tourney_Win_Results['ScoreT1'] tourney_lose_result<feature_engineering>
X_train = df_train X_test = df_test X_train = fixData(X_train) X_test = fixData(X_test) X_train.head()
COVID19 Global Forecasting (Week 3)
8,825,780
Tourney_Win_Results['Seed_diff'] = Tourney_Win_Results['Seed1'] - Tourney_Win_Results['Seed2'] Tourney_Win_Results['ScoreT_diff'] = Tourney_Win_Results['ScoreT1'] - Tourney_Win_Results['ScoreT2'] tourney_lose_result['Seed_diff'] = tourney_lose_result['Seed1'] - tourney_lose_result['Seed2'] tourney_lose_result['ScoreT_diff'] = tourney_lose_result['ScoreT1'] - tourney_lose_result['ScoreT2']<save_to_csv>
COVID19 Global Forecasting (Week 3)
8,825,780
Tourney_Win_Results['result'] = 1 tourney_lose_result['result'] = 0 tourney_result_Final = pd.concat(( Tourney_Win_Results, tourney_lose_result)).reset_index(drop=True) tourney_result_Final.to_csv('Tourneyvalidate.csv', index=False )<drop_column>
label_encoder = preprocessing.LabelEncoder() countries = X_test.Country_Region.unique()
COVID19 Global Forecasting (Week 3)
8,825,780
tourney_result_Final1 = tourney_result_Final[[ 'Seed1', 'Seed2', 'ScoreT1', 'ScoreT2', 'Seed_diff', 'ScoreT_diff', 'result']]<feature_engineering>
sub = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []}) sub = [] for country in countries: province_list = X_train.loc[X_train['Country_Region'] == country].Province_State.unique() for province in province_list: X_train2 = X_train.loc[(X_train['Country_Region'] == country)&(X_train['Province_State'] == province),['Date']].astype('int') Y_train21 = X_train.loc[(X_train['Country_Region'] == country)&(X_train['Province_State'] == province),['ConfirmedCases']] Y_train22 = X_train.loc[(X_train['Country_Region'] == country)&(X_train['Province_State'] == province),['Fatalities']] X_test2 = X_test.loc[(X_test['Country_Region'] == country)&(X_test['Province_State'] == province), ['Date']].astype('int') X_forecastId2 = X_test.loc[(X_test['Country_Region'] == country)&(X_test['Province_State'] == province), ['ForecastId']] X_forecastId2 = X_forecastId2.values.tolist() X_forecastId2 = [v[0] for v in X_forecastId2] model2 = XGBRegressor(n_estimators=1020) model2.fit(X_train2, Y_train21) Y_pred2 = model2.predict(X_test2) model3 = XGBRegressor(n_estimators=1020) model3.fit(X_train2, Y_train22) Y_pred3 = model3.predict(X_test2) for j in range(len(Y_pred2)) : dic = { 'ForecastId': X_forecastId2[j], 'ConfirmedCases': Y_pred2[j], 'Fatalities': Y_pred3[j]} sub.append(dic)
COVID19 Global Forecasting (Week 3)
8,825,780
tourney_result_Final1.loc[lambda x:(x['Seed1'].isin([14,15,16])) &(x['Seed2'].isin([1,2,3])) ,'result' ] = 0 <load_from_csv>
submission = pd.DataFrame(sub) submission[['ForecastId','ConfirmedCases','Fatalities']].to_csv(path_or_buf='submission.csv',index=False )
COVID19 Global Forecasting (Week 3)
8,825,780
test_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv' )<feature_engineering>
COVID19 Global Forecasting (Week 3)
8,825,780
test_df['Season'] = test_df['ID'].map(lambda x: int(x[:4])) test_df['WTeamID'] = test_df['ID'].map(lambda x: int(x[5:9])) test_df['LTeamID'] = test_df['ID'].map(lambda x: int(x[10:14])) test_df<merge>
COVID19 Global Forecasting (Week 3)
8,791,119
test_df = pd.merge(test_df, Tourney_Seeds, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Seed':'Seed1'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df = pd.merge(test_df, Tourney_Seeds, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Seed':'Seed2'}, inplace=True) test_df = test_df.drop('TeamID', axis=1 )<save_to_csv>
from pandas_profiling import ProfileReport
COVID19 Global Forecasting (Week 3)
8,791,119
test_df = pd.merge(test_df, RegularSeason_Compact_Results_Final, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Score':'ScoreT1'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df = pd.merge(test_df, RegularSeason_Compact_Results_Final, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Score':'ScoreT2'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df test_df.to_csv('test_df_Test.csv', index=False )<data_type_conversions>
xtrain = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/train.csv') xtest = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv') xsubmission = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/submission.csv' )
COVID19 Global Forecasting (Week 3)
8,791,119
test_df['Seed1'] = test_df['Seed1'].str.extract('(\d+)', expand=True) test_df['Seed2'] = test_df['Seed2'].str.extract('(\d+)', expand=True) test_df.Seed1 = pd.to_numeric(test_df.Seed1, errors='coerce') test_df.Seed2 = pd.to_numeric(test_df.Seed2, errors='coerce' )<feature_engineering>
train_profile = ProfileReport(xtrain, title='Pandas Profiling Report', html={'style':{'full_width':True}}) train_profile
COVID19 Global Forecasting (Week 3)
8,791,119
test_df['Seed_diff'] = test_df['Seed1'] - test_df['Seed2'] test_df['ScoreT_diff'] = test_df['ScoreT1'] - test_df['ScoreT2'] test_df = test_df.drop(['ID', 'Pred', 'Season', 'WTeamID', 'LTeamID'], axis=1) test_df<prepare_x_and_y>
xtrain.rename(columns={'Country_Region':'Country'}, inplace=True) xtest.rename(columns={'Country_Region':'Country'}, inplace=True) xtrain.rename(columns={'Province_State':'State'}, inplace=True) xtest.rename(columns={'Province_State':'State'}, inplace=True) xtrain['Date'] = pd.to_datetime(xtrain['Date'], infer_datetime_format=True) xtest['Date'] = pd.to_datetime(xtest['Date'], infer_datetime_format=True) xtrain.info() xtest.info() y1_xTrain = xtrain.iloc[:, -2] y1_xTrain.head() y2_xTrain = xtrain.iloc[:, -1] y2_xTrain.head() EMPTY_VAL = "EMPTY_VAL" def fillState(state, country): if state == EMPTY_VAL: return country return state
COVID19 Global Forecasting (Week 3)
8,791,119
X = tourney_result_Final1.drop('result', axis=1) y = tourney_result_Final1.result<normalization>
X_xTrain = xtrain.copy() X_xTrain['State'].fillna(EMPTY_VAL, inplace=True) X_xTrain['State'] = X_xTrain.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1) X_xTrain.loc[:, 'Date'] = X_xTrain.Date.dt.strftime("%m%d") X_xTrain["Date"] = X_xTrain["Date"].astype(int) X_xTrain.head() X_xTest = xtest.copy() X_xTest['State'].fillna(EMPTY_VAL, inplace=True) X_xTest['State'] = X_xTest.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1) X_xTest.loc[:, 'Date'] = X_xTest.Date.dt.strftime("%m%d") X_xTest["Date"] = X_xTest["Date"].astype(int) X_xTest.head()
COVID19 Global Forecasting (Week 3)
8,791,119
df = pd.concat([X, test_df], axis=0, sort=False ).reset_index(drop=True) df_log = pd.DataFrame( preprocessing.MinMaxScaler().fit_transform(df), columns=df.columns, index=df.index ) train_log, test_log = df_log.iloc[:len(X),:], df_log.iloc[len(X):,:].reset_index(drop=True )<train_on_grid>
le = preprocessing.LabelEncoder() X_xTrain.Country = le.fit_transform(X_xTrain.Country) X_xTrain['State'] = le.fit_transform(X_xTrain['State']) X_xTrain.head() X_xTest.Country = le.fit_transform(X_xTest.Country) X_xTest['State'] = le.fit_transform(X_xTest['State']) X_xTest.head() xtrain.head() xtrain.loc[xtrain.Country == 'Afghanistan', :] xtest.tail()
COVID19 Global Forecasting (Week 3)
8,791,119
logreg = LogisticRegression() logreg.fit(train_log, y) coeff_logreg = pd.DataFrame(train_log.columns.delete(0)) coeff_logreg.columns = ['feature'] coeff_logreg["score_logreg"] = pd.Series(logreg.coef_[0]) coeff_logreg.sort_values(by='score_logreg', ascending=False )<predict_on_test>
filterwarnings('ignore') le = preprocessing.LabelEncoder() countries = X_xTrain.Country.unique()
COVID19 Global Forecasting (Week 3)