kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
8,819,836 | submit_confirmed=[]
submit_fatal=[]
for i in df1:
data = i.ConfirmedCases.astype('int32' ).tolist()
try:
model = SARIMAX(data, order=(1,1,0), seasonal_order=(1,1,0,12),measurement_error=True)
model_fit = model.fit(disp=False)
predicted = model_fit.predict(len(data), len(data)+34)
new=np.concatenate(( np.array(data),np.array([int(num)for num in predicted])) ,axis=0)
submit_confirmed.extend(list(new[-43:]))
except:
submit_confirmed.extend(list(data[-10:-1]))
for j in range(34):
submit_confirmed.append(data[-1]*2)
data = i.Fatalities.astype('int32' ).tolist()
try:
model = SARIMAX(data, order=(1,1,0), seasonal_order=(1,1,0,12),measurement_error=True)
model_fit = model.fit(disp=False)
predicted = model_fit.predict(len(data), len(data)+34)
new=np.concatenate(( np.array(data),np.array([int(num)for num in predicted])) ,axis=0)
submit_fatal.extend(list(new[-43:]))
except:
submit_fatal.extend(list(data[-10:-1]))
for j in range(34):
submit_fatal.append(data[-1]*2)
<data_type_conversions> | def change_countryprovince(df):
df['Country_Region'] = df['Country/Region']
df['Province_State'] = df['Province/State']
df = df.drop(['Country/Region', 'Province/State'], axis=1)
return df | COVID19 Global Forecasting (Week 3) |
8,819,836 | df_submit=pd.concat([pd.Series(np.arange(1,1+len(submit_confirmed))),pd.Series(submit_confirmed),pd.Series(submit_fatal)],axis=1)
df_submit=df_submit.fillna(method='pad' ).astype(int )<merge> | confirmed = change_countryprovince(confirmed)
deaths = change_countryprovince(deaths)
recovered = change_countryprovince(recovered)
csse_data = pd.DataFrame(confirmed.set_index(['Province_State','Country_Region'] ).drop(['Lat','Long'],axis=1 ).stack() ).reset_index()
csse_data.columns = ['Province_State', 'Country_Region', 'Date', 'ConfirmedCases']
csse_data['Fatalities'] = deaths.set_index(['Province_State','Country_Region'] ).drop(['Lat','Long'],axis=1 ).stack().tolist()
csse_data['Date'] = pd.to_datetime(csse_data['Date'])
csse_data.head()
| COVID19 Global Forecasting (Week 3) |
8,819,836 | df_submit.rename(columns={0: 'ForecastId', 1: 'ConfirmedCases',2: 'Fatalities',}, inplace=True)
complete_test= pd.merge(test, df_submit, how="left", on="ForecastId" )<save_to_csv> | len(csse_data['Province_State'].unique() ) | COVID19 Global Forecasting (Week 3) |
8,819,836 | df_submit.to_csv('submission.csv',header=['ForecastId','ConfirmedCases','Fatalities'],index=False)
complete_test.to_csv('complete_test.csv',index=False)
<import_modules> | len(dftrain['Province_State'].unique() ) | COVID19 Global Forecasting (Week 3) |
8,819,836 | plotly.offline.init_notebook_mode()
%matplotlib inline
def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)) )<load_from_csv> | dftrain = dftrain.join(confirmed[['Country_Region', 'Province_State', 'Lat', 'Long']].set_index(['Province_State', 'Country_Region']), on=['Province_State', 'Country_Region'] ) | COVID19 Global Forecasting (Week 3) |
8,819,836 | pd.set_option('mode.chained_assignment', None)
test = pd.read_csv(".. /input/covid19-global-forecasting-week-2/test.csv")
train = pd.read_csv(".. /input/covid19-global-forecasting-week-2/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region','Province_State','Date'])
test = test.sort_values(['Country_Region','Province_State','Date'] )<categorify> | dftrain['Dayofyear'] = dftrain['Date'].dt.dayofyear
dftest['Dayofyear'] = dftest['Date'].dt.dayofyear | COVID19 Global Forecasting (Week 3) |
8,819,836 | train[['ConfirmedCases', 'Fatalities']] = train.groupby(['Country_Region', 'Province_State'])[['ConfirmedCases', 'Fatalities']].transform('cummax')
<feature_engineering> | def transpose_df(df):
df = df.drop(['Lat','Long'],axis=1 ).groupby('Country_Region' ).sum().T
df.index = pd.to_datetime(df.index)
return df | COVID19 Global Forecasting (Week 3) |
8,819,836 | feature_day = [1,2,5,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
with tqdm(total=len(train['Country_Region'].unique())) as pbar:
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
feature_use = X_pred.columns[0]
for i in range(X_pred.shape[1] - 1,0,-1):
if(X_pred.iloc[0,i] > 0):
feature_use = X_pred.columns[i]
break
idx = X_train[X_train[feature_use] == 0].shape[0]
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
adjusted_X_pred = X_pred[feature_use].values.reshape(-1, 1)
model = make_pipeline(PolynomialFeatures(2), BayesianRidge())
model.fit(adjusted_X_train,adjusted_y_train_confirmed)
y_hat_confirmed = model.predict(adjusted_X_pred)
model.fit(adjusted_X_train,adjusted_y_train_fatalities)
y_hat_fatalities = model.predict(adjusted_X_pred)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
pbar.update(1)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_1 = df_val.copy()<compute_test_metric> | confirmedT = transpose_df(confirmed)
deathsT = transpose_df(deaths)
recoveredT = transpose_df(recovered)
mortalityT = deathsT/confirmedT | COVID19 Global Forecasting (Week 3) |
8,819,836 | RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values )<compute_test_metric> | def add_day(df):
df['Date'] = df.index
df['Dayofyear'] = df['Date'].dt.dayofyear
return df | COVID19 Global Forecasting (Week 3) |
8,819,836 | RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values )<groupby> | confirmedT, deathsT, recoveredT, mortalityT = add_day(confirmedT), add_day(deathsT), add_day(recoveredT), add_day(mortalityT ) | COVID19 Global Forecasting (Week 3) |
8,819,836 | country = "Vietnam"
df_val = df_val_1
df_val[df_val['Country_Region'] == country].groupby(['Date','Country_Region'] ).sum().reset_index()<save_model> | allcountries_ordered = confirmed.set_index(['Country_Region'] ).iloc[:,-2].sort_values(ascending=False ).index.tolist() | COVID19 Global Forecasting (Week 3) |
8,819,836 | animator.save('confirm_animation.gif', writer='imagemagick', fps=2)
display(Image(url='confirm_animation.gif'))<feature_engineering> | confirmed.set_index(['Country_Region'] ).iloc[:,-2].sort_values(ascending=False ).to_csv('confirmed_countries.csv' ) | COVID19 Global Forecasting (Week 3) |
8,819,836 | feature_day = [1,2,5,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
with tqdm(total=len(train['Country_Region'].unique())) as pbar:
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
with warnings.catch_warnings() :
warnings.filterwarnings("ignore")
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
feature_use = X_pred.columns[0]
for i in range(X_pred.shape[1] - 1,0,-1):
if(X_pred.iloc[0,i] > 0):
feature_use = X_pred.columns[i]
break
idx = X_train[X_train[feature_use] == 0].shape[0]
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = ExponentialSmoothing(adjusted_y_train_confirmed, trend = 'additive' ).fit()
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = ExponentialSmoothing(adjusted_y_train_fatalities, trend = 'additive' ).fit()
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
pbar.update(1)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_2 = df_val.copy()<feature_engineering> | def df_day1(df, confirmed):
df_day1 = pd.DataFrame({'Days since 100 cases' : np.arange(1000)} ).set_index('Days since 100 cases')
countries_df = df.columns.tolist() [:-2]
countries_conf = confirmed.columns.tolist() [:-2]
for ic, country in enumerate(countries_df):
for ic2, country2 in enumerate(countries_conf):
if country == country2:
dfsub = df[confirmed[country] > 100.][country]
df_day1[country] = np.nan
df_day1.loc[:len(dfsub)-1,country] =(dfsub ).tolist()
df_day1 = df_day1.dropna(how='all')
return df_day1 | COVID19 Global Forecasting (Week 3) |
8,819,836 | feature_day = [1,2,5,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
with tqdm(total=len(train['Country_Region'].unique())) as pbar:
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
with warnings.catch_warnings() :
warnings.filterwarnings("ignore")
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
feature_use = X_pred.columns[0]
for i in range(X_pred.shape[1] - 1,0,-1):
if(X_pred.iloc[0,i] > 0):
feature_use = X_pred.columns[i]
break
idx = X_train[X_train[feature_use] == 0].shape[0]
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
idx = X_pred[X_pred[feature_use] == 0].shape[0]
adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max()
min_test_date = pred_data['Date'].min()
model = SARIMAX(adjusted_y_train_confirmed, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values
y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0)
model = SARIMAX(adjusted_y_train_fatalities, order=(1,1,0),
measurement_error=True ).fit(disp=False)
y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0])
y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values
y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0)
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
pbar.update(1)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_3 = df_val.copy()<compute_test_metric> | confirmed_day1 = df_day1(confirmedT, confirmedT)
deaths_day1 = df_day1(deathsT, confirmedT)
recovered_day1 = df_day1(recoveredT, confirmedT)
mortality_day1 = df_day1(mortalityT, confirmedT)
confirmednorm_day1 = confirmed_day1/confirmed_day1.loc[0,:]
maxday = confirmed_day1.shape[0] | COVID19 Global Forecasting (Week 3) |
8,819,836 | method_list = ['Poly Bayesian Ridge','Exponential Smoothing','SARIMA']
method_val = [df_val_1,df_val_2,df_val_3]
for i in range(0,3):
df_val = method_val[i]
method_score = [method_list[i]] + [RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values)] + [RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values)]
print(method_score )<save_to_csv> | date_day1 = confirmedT.copy()
for column in date_day1:
date_day1[column] = confirmedT.index.tolist()
date_day1 = df_day1(date_day1, confirmedT ) | COVID19 Global Forecasting (Week 3) |
8,819,836 | df_val = df_val_3
df_val['ConfirmedCases_hat'] =(df_val_1['ConfirmedCases_hat'] + df_val_2['ConfirmedCases_hat'] + df_val_3['ConfirmedCases_hat'])/3
df_val['Fatalities_hat'] =(df_val_1['Fatalities_hat'] + df_val_2['Fatalities_hat'] + df_val_3['Fatalities_hat'])/3
submission = df_val[['ForecastId','ConfirmedCases_hat','Fatalities_hat']]
submission.columns = ['ForecastId','ConfirmedCases','Fatalities']
submission = submission.round({'ConfirmedCases': 0, 'Fatalities': 0})
submission.to_csv('submission.csv', index=False)
submission<filter> | def logistic_curve(x, k, x_0, ymax):
return ymax /(1 + np.exp(-k*(x-x_0)) ) | COVID19 Global Forecasting (Week 3) |
8,819,836 | df_worldinfor[df_worldinfor['Country'] == 'Vietnam']<import_modules> | def logistic_curve2(x, k1, k2, x_0, ymax):
return ymax /(1 + np.exp(-k1*(x-x_0)) + np.exp(-k2*(x-x_0)) ) | COVID19 Global Forecasting (Week 3) |
8,819,836 | print("Read in libraries")
<load_from_csv> | list_countries = dftrain[dftrain['Date'] == '2020-01-22']['Country_Region'].tolist()
list_states = dftrain[dftrain['Date'] == '2020-01-22']['Province_State'].tolist()
datenow = datetime.now() | COVID19 Global Forecasting (Week 3) |
8,819,836 | train = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-2/train.csv")
test = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-2/test.csv")
sub = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-2/submission.csv")
print("read in files")
test.head()<concatenate> | list_date_pand = [] ; list_maxcases = []; list_maxfat = []
for country, state in list(zip(list_countries, list_states)) :
df2 = dftrain.loc[(dftrain['Country_Region'] == country)&(dftrain['Province_State'] == state)].fillna('None')
maxcases, maxfat = df2['ConfirmedCases'].max() , df2['Fatalities'].max()
date_pand2 = []
date_pand = df2[df2['ConfirmedCases'] > 100.]['Date'].tolist()
try:
list_date_pand.append(pd.to_datetime(date_pand[0]))
except:
list_date_pand.append(pd.to_datetime(datenow))
list_maxcases.append(maxcases); list_maxfat.append(maxfat)
dfstartpand = pd.DataFrame(np.array([list_countries, list_states, list_date_pand, list_maxcases, list_maxfat] ).T,
columns=['Country_Region', 'Province_State', 'Start_Pandemic', 'ConfirmedCases', 'Fatalities'])
dfstartpand['Start_Pandemic'] = dfstartpand['Start_Pandemic'].dt.date | COVID19 Global Forecasting (Week 3) |
8,819,836 | train = train.append(test[test['Date']>'2020-03-31'] )<feature_engineering> | dfstartpand_ordered = dfstartpand.sort_values(by=['Start_Pandemic', 'ConfirmedCases', 'Fatalities'], ascending=[True, False, False])
country_state_ordered = list(zip(dfstartpand_ordered['Country_Region'].tolist() , dfstartpand_ordered['Province_State']))
datetrain = dftrain['Date'].unique()
datetest = dftest['Date'].unique() | COVID19 Global Forecasting (Week 3) |
8,819,836 | train['Date'] = pd.to_datetime(train['Date'], format='%Y-%m-%d')
train['day_dist'] = train['Date']-train['Date'].min()
train['day_dist'] = train['day_dist'].dt.days
print(train['Date'].max())
print(test['Date'].min())
print(test['Date'].max())
cat_cols = train.dtypes[train.dtypes=='object'].keys()
cat_cols
for cat_col in cat_cols:
train[cat_col].fillna('no_value', inplace = True)
train['place'] = train['Province_State']+'_'+train['Country_Region']
<categorify> | dftest['ConfirmedCases_logreg'] = 0.0 ; dftrain['ConfirmedCases_logreg'] = 0.0
dftest['Fatalities_logreg'] = 0.0 ; dftrain['Fatalities_logreg'] = 0.0
p0 = 1
for country, state in country_state_ordered:
masktrain =(dftrain['Country_Region'] == country)&(dftrain['Province_State'] == state)
masktrain2 =(dftrain['Country_Region'] == country)&(dftrain['Province_State'] == state)& \
(dftrain['Date'] <= '2020-04-07')&(dftrain['Date'] >= starttest)
masktest =(dftest['Country_Region'] == country)&(dftest['Province_State'] == state)
masktest2 =(dftest['Country_Region'] == country)&(dftest['Province_State'] == state)& \
(dftest['Date'] <= '2020-04-07')
df2plot = dftrain[masktrain].set_index('Date')
X = np.arange(len(df2plot))
X_test =(np.timedelta64(datetest[0]-datetrain[0], 'D')).astype(float)+np.arange(0,len(datetest))
try:
y = df2plot['ConfirmedCases']
p0_cases = [1/(len(X)/2.) , X[-1], y.max() ]
popt, pcov = curve_fit(logistic_curve, X, y, p0=p0_cases,bounds=([0,0,0],np.inf), maxfev=1000)
k_cases, x_0_cases, ymax_cases = popt
cases_train_fc = pd.Series(logistic_curve(X, k_cases, x_0_cases, ymax_cases),index=df2plot.index)
cases_test_fc = pd.Series(logistic_curve(X_test, k_cases, x_0_cases, ymax_cases),index=datetest)
dftest.loc[masktest,'ConfirmedCases_logreg'] = cases_test_fc.tolist()
dftrain.loc[masktrain,'ConfirmedCases_logreg'] = cases_train_fc.tolist()
except:
print(country+' '+state+' Unable to fit the confirmed cases')
dftest.loc[masktest,'ConfirmedCases_logreg'] = dftrain.loc[masktrain,'ConfirmedCases'].iloc[-1]
dftrain.loc[masktrain,'ConfirmedCases_logreg'] = dftrain.loc[masktrain,'ConfirmedCases']
try:
y = df2plot['Fatalities']
p0_deaths = [1/(len(X)/2.) , X[-1], y.max() ]
popt, pcov = curve_fit(logistic_curve, X, y, p0=p0_deaths,bounds=([0,0,0],np.inf), maxfev=1000)
k_deaths, x_0_deaths, ymax_deaths = popt
deaths_train_fc = pd.Series(logistic_curve(X, k_deaths, x_0_deaths, ymax_deaths),index=datetrain)
deaths_test_fc = pd.Series(logistic_curve(X_test, k_deaths, x_0_deaths, ymax_deaths),index=datetest)
dftest.loc[masktest,'Fatalities_logreg'] = deaths_test_fc.tolist()
dftrain.loc[masktrain,'Fatalities_logreg'] = deaths_train_fc.tolist()
except:
print(country+' '+state+' Unable to fit the fatalities')
dftest.loc[masktest,'Fatalities_logreg'] = dftrain.loc[masktrain,'Fatalities'].iloc[-1]
dftrain.loc[masktrain,'Fatalities_logreg'] = dftrain.loc[masktrain,'Fatalities']
dftest.loc[masktest2,'ConfirmedCases_logreg'] = dftrain.loc[masktrain2,'ConfirmedCases'].tolist()
dftest.loc[masktest2,'Fatalities_logreg'] = dftrain.loc[masktrain2,'Fatalities'].tolist() | COVID19 Global Forecasting (Week 3) |
8,819,836 | cat_cols = train.dtypes[train.dtypes=='object'].keys()
cat_cols
for cat_col in ['place']:
le = preprocessing.LabelEncoder()
le.fit(train[cat_col])
train[cat_col]=le.transform(train[cat_col])
train.keys()
drop_cols = ['Id', 'ConfirmedCases','Date', 'ForecastId','Fatalities','day_dist', 'Province_State', 'Country_Region']<filter> | dfsubm['ConfirmedCases'] = dftest['ConfirmedCases_logreg']
dfsubm['Fatalities'] = dftest['Fatalities_logreg'] | COVID19 Global Forecasting (Week 3) |
8,819,836 | val = train[(train['Date']>='2020-03-19')&(train['Id'].isnull() ==False)]
val<prepare_x_and_y> | dfsubm.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,775,443 | y_ft = train["Fatalities"]
y_val_ft = val["Fatalities"]
y_cc = train["ConfirmedCases"]
y_val_cc = val["ConfirmedCases"]
<compute_test_metric> | train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/train.csv', parse_dates=['Date'])
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv',parse_dates=['Date'])
submission = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/submission.csv' ) | COVID19 Global Forecasting (Week 3) |
8,775,443 | def rmsle(y_true, y_pred):
return np.sqrt(np.mean(np.power(np.log1p(y_pred)- np.log1p(y_true), 2)))
def mape(y_true, y_pred):
return np.mean(np.abs(y_pred -y_true)*100/(y_true+1))
<init_hyperparams> | train.shape
| COVID19 Global Forecasting (Week 3) |
8,775,443 | params = {
"objective": "regression",
"boosting": 'gbdt',
"num_leaves": 1280,
"learning_rate": 0.05,
"feature_fraction": 0.9,
"reg_lambda": 2,
"metric": "rmse",
'min_data_in_leaf':20
}
<drop_column> | train.columns = train.columns.str.lower()
test.columns = test.columns.str.lower() | COVID19 Global Forecasting (Week 3) |
8,775,443 | dates = dates[dates>'2020-03-31']
dates<count_missing_values> | train.fillna(' ',inplace=True)
test.fillna(' ', inplace=True)
train_id = train.pop('id')
test_id = test.pop('forecastid')
train['cp'] = train['country_region'] + train['province_state']
test['cp'] = test['country_region'] + test['province_state']
train.drop(['province_state','country_region'], axis=1, inplace=True)
test.drop(['province_state','country_region'], axis =1, inplace=True ) | COVID19 Global Forecasting (Week 3) |
8,775,443 | train.isnull().sum()<count_missing_values> | train.cp.nunique() , test.cp.nunique() | COVID19 Global Forecasting (Week 3) |
8,775,443 | train.isnull().sum()<filter> | df = pd.DataFrame()
def create_time_feat(data):
df['date']= data['date']
df['hour']=df['date'].dt.hour
df['weekofyear']=df['date'].dt.weekofyear
df['quarter'] =df['date'].dt.quarter
df['month'] = df['date'].dt.month
df['dayofyear']=df['date'].dt.dayofyear
x=df[['hour','weekofyear','quarter','month','dayofyear']]
return x
cr_tr = create_time_feat(train)
cr_te = create_time_feat(test ) | COVID19 Global Forecasting (Week 3) |
8,775,443 | test[test['Country_Region']=='Italy']<filter> | train_df = pd.concat([train,cr_tr], axis=1)
test_df = pd.concat([test, cr_te], axis =1)
train_df.shape, test_df.shape, train_df.cp.nunique() , test_df.cp.nunique() , test.shape | COVID19 Global Forecasting (Week 3) |
8,775,443 | test[test['Country_Region']=='Italy']<load_from_csv> | test_df.dropna(inplace=True ) | COVID19 Global Forecasting (Week 3) |
8,775,443 | train_sub = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-2/train.csv" )<feature_engineering> | le=LabelEncoder()
train_df['cp_le']=le.fit_transform(train_df['cp'])
test_df['cp_le']=le.transform(test_df['cp'])
train_df.drop(['cp'], axis=1, inplace=True)
test_df.drop(['cp'], axis=1, inplace=True ) | COVID19 Global Forecasting (Week 3) |
8,775,443 |
<merge> | COVID19 Global Forecasting (Week 3) |
|
8,775,443 | test = pd.merge(test,train_sub[['Province_State','Country_Region','Date','ConfirmedCases','Fatalities']], on=['Province_State','Country_Region','Date'], how='left' )<filter> | COVID19 Global Forecasting (Week 3) |
|
8,775,443 | test.loc[test['ConfirmedCases_x'].isnull() ==True]<feature_engineering> | def create_date_feat(data, cf, ft):
for d in data['date'].drop_duplicates() :
for i in data['cp_le'].drop_duplicates() :
org_mask =(data['date']==d)&(data['cp_le']==i)
for lag in range(1,15):
mask_loc =(data['date']==(d-pd.Timedelta(days=lag)))&(data['cp_le']==i)
try:
data.loc[org_mask, 'cf_' + str(lag)]=data.loc[mask_loc, cf].values
data.loc[org_mask, 'ft_' + str(lag)]=data.loc[mask_loc, ft].values
except:
data.loc[org_mask, 'cf_' + str(lag)]=0.0
data.loc[org_mask, 'ft_' + str(lag)]=0.0
create_date_feat(train_df,'confirmedcases','fatalities' ) | COVID19 Global Forecasting (Week 3) |
8,775,443 | test.loc[test['ConfirmedCases_x'].isnull() ==True, 'ConfirmedCases_x'] = test.loc[test['ConfirmedCases_x'].isnull() ==True, 'ConfirmedCases_y']<feature_engineering> | cf_feat = ['cp_le', 'weekofyear','quarter','month','dayofyear','cf_1', 'cf_2', 'cf_3',
'cf_4', 'cf_5', 'cf_6', 'cf_7', 'cf_8', 'cf_9','cf_10', 'cf_11', 'cf_12',
'cf_13', 'cf_14']
ft_feat = ['cp_le', 'weekofyear','quarter','month','dayofyear','ft_1', 'ft_2', 'ft_3',
'ft_4', 'ft_5', 'ft_6', 'ft_7', 'ft_8', 'ft_9','ft_10', 'ft_11', 'ft_12',
'ft_13', 'ft_14']
train_x_cf = train_df[cf_feat]
print(train_x_cf.shape)
train_x_ft = train_df[ft_feat]
print(train_x_ft.shape)
train_x_cf_reshape = train_x_cf.values.reshape(train_x_cf.shape[0],1,train_x_cf.shape[1])
train_x_ft_reshape = train_x_ft.values.reshape(train_x_ft.shape[0],1,train_x_ft.shape[1])
train_y_cf = train_df['confirmedcases']
train_y_ft = train_df['fatalities']
train_y_cf_reshape = train_y_cf.values.reshape(-1,1)
train_y_ft_reshape = train_y_ft.values.reshape(-1,1)
tr_x_cf, val_x_cf, tr_y_cf, val_y_cf = train_test_split(train_x_cf_reshape, train_y_cf_reshape, test_size=0.2, random_state=0)
tr_x_ft, val_x_ft, tr_y_ft, val_y_ft = train_test_split(train_x_ft_reshape, train_y_ft_reshape, test_size=0.2, random_state=0)
| COVID19 Global Forecasting (Week 3) |
8,775,443 | test.loc[test['Fatalities_x'].isnull() ==True, 'Fatalities_x'] = test.loc[test['Fatalities_x'].isnull() ==True, 'Fatalities_y']<feature_engineering> | def rmsle(pred,true):
assert pred.shape[0]==true.shape[0]
return K.sqrt(K.mean(K.square(K.log(pred+1)- K.log(true+1))))
es = EarlyStopping(monitor='val_loss', min_delta = 0, verbose=0, patience=10, mode='auto')
mc_cf = ModelCheckpoint('model_cf.h5', monitor='val_loss', verbose=0, save_best_only=True)
mc_ft = ModelCheckpoint('model_ft.h5', monitor='val_loss', verbose=0, save_best_only=True)
def lstm_model(hidden_nodes, second_dim, third_dim):
model = Sequential([LSTM(hidden_nodes, input_shape=(second_dim, third_dim), activation='relu'),
Dense(64, activation='relu'),
Dense(32, activation='relu'),
Dense(1, activation='relu')])
model.compile(loss=rmsle, optimizer = 'adam')
return model
model_cf = lstm_model(10, tr_x_cf.shape[1], tr_x_cf.shape[2])
model_ft = lstm_model(10, tr_x_ft.shape[1], tr_x_ft.shape[2])
history_cf = model_cf.fit(tr_x_cf, tr_y_cf, epochs=200, batch_size=512, validation_data=(val_x_cf,val_y_cf), callbacks=[es,mc_cf])
history_ft = model_ft.fit(tr_x_ft, tr_y_ft, epochs=200, batch_size=512, validation_data=(val_x_ft,val_y_ft), callbacks=[es,mc_ft] ) | COVID19 Global Forecasting (Week 3) |
8,775,443 |
<prepare_output> | feat = ['confirmedcases','fatalities','cf_1', 'ft_1', 'cf_2', 'ft_2', 'cf_3', 'ft_3',
'cf_4', 'ft_4', 'cf_5', 'ft_5', 'cf_6', 'ft_6', 'cf_7', 'ft_7', 'cf_8', 'ft_8',
'cf_9', 'ft_9', 'cf_10', 'ft_10', 'cf_11', 'ft_11', 'cf_12', 'ft_12', 'cf_13', 'ft_13',
'cf_14', 'ft_14']
c_feat = ['cp_le', 'weekofyear','quarter','month','dayofyear','cf_1', 'cf_2', 'cf_3',
'cf_4', 'cf_5', 'cf_6', 'cf_7', 'cf_8', 'cf_9','cf_10', 'cf_11', 'cf_12',
'cf_13', 'cf_14']
f_feat = ['cp_le', 'weekofyear','quarter','month','dayofyear','ft_1', 'ft_2', 'ft_3',
'ft_4', 'ft_5', 'ft_6', 'ft_7', 'ft_8', 'ft_9','ft_10', 'ft_11', 'ft_12',
'ft_13', 'ft_14']
tot_feat = ['cp_le', 'weekofyear','quarter','month','dayofyear','cf_1', 'ft_1', 'cf_2', 'ft_2', 'cf_3', 'ft_3',
'cf_4', 'ft_4', 'cf_5', 'ft_5', 'cf_6', 'ft_6', 'cf_7', 'ft_7', 'cf_8', 'ft_8',
'cf_9', 'ft_9', 'cf_10', 'ft_10', 'cf_11', 'ft_11', 'cf_12', 'ft_12', 'cf_13', 'ft_13',
'cf_14', 'ft_14']
test_new = test_df.copy().join(pd.DataFrame(columns=feat))
test_mask =(test_df['date'] <= train_df['date'].max())
train_mask =(train_df['date'] >= test_df['date'].min())
test_new.loc[test_mask,feat] = train_df.loc[train_mask, feat].values
future_df = pd.date_range(start = train_df['date'].max() +pd.Timedelta(days=1),end=test_df['date'].max() , freq='1D')
def create_add_trend_pred(data, cf, ft):
for d in future_df:
for i in data['cp_le'].drop_duplicates() :
org_mask =(data['date']==d)&(data['cp_le']==i)
for lag in range(1,15):
mask_loc =(data['date']==(d-pd.Timedelta(days=lag)))&(data['cp_le']==i)
try:
data.loc[org_mask, 'cf_' + str(lag)]=data.loc[mask_loc,cf].values
data.loc[org_mask, 'ft_' + str(lag)]=data.loc[mask_loc,ft].values
except:
data.loc[org_mask, 'cf_' + str(lag)]=0.0
data.loc[org_mask, 'ft_' + str(lag)]=0.0
test_x = data.loc[org_mask,tot_feat]
test_x_cf = test_x[c_feat]
test_x_cf = test_x_cf.to_numpy().reshape(1,-1)
test_x_cf_reshape = test_x_cf.reshape(test_x_cf.shape[0],1,test_x_cf.shape[1])
test_x_ft = test_x[f_feat]
test_x_ft = test_x_ft.to_numpy().reshape(1,-1)
test_x_ft_reshape = test_x_ft.reshape(test_x_ft.shape[0],1,test_x_ft.shape[1])
data.loc[org_mask, cf] = model_cf.predict(test_x_cf_reshape)
data.loc[org_mask, ft] = model_ft.predict(test_x_ft_reshape)
create_add_trend_pred(test_new, 'confirmedcases', 'fatalities' ) | COVID19 Global Forecasting (Week 3) |
8,775,443 | sub = test[['ForecastId', 'ConfirmedCases_x','Fatalities_x']]<rename_columns> | sub_pred = pd.DataFrame({'ForecastId': test_id, 'ConfirmedCases':test_new['confirmedcases'],'Fatalities':test_new['fatalities']})
sub_pred.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | sub.columns = ['ForecastId', 'ConfirmedCases', 'Fatalities']<feature_engineering> | plt.style.use('ggplot')
font = {'family' : 'meiryo'}
plt.rc('font', **font ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | sub.loc[sub['ConfirmedCases']<0, 'ConfirmedCases'] = 0<feature_engineering> | train_df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv" ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | sub.loc[sub['Fatalities']<0, 'Fatalities'] = 0<drop_column> | train_df = train_df[train_df["Date"] < "2020-03-27"]
train_df = train_df.fillna("No State" ) | COVID19 Global Forecasting (Week 3) |
8,800,787 |
<load_from_csv> | test_rate = 0.05
maxlen = 13
train_date_count = len(set(train_df["Date"]))
X, Y = [],[]
scaler = StandardScaler()
train_df["ConfirmedCases_std"] = scaler.fit_transform(train_df["ConfirmedCases"].values.reshape(len(train_df["ConfirmedCases"].values),1))
confirmedCase_std_min = train_df["ConfirmedCases_std"].min()
train_df["ConfirmedCases_std"] = train_df["ConfirmedCases_std"] + abs(confirmedCase_std_min)
for state,country in train_df.groupby(["Province_State","Country_Region"] ).sum().index:
df = train_df[(train_df["Country_Region"] == country)&(train_df["Province_State"] == state)]
if df["ConfirmedCases"].sum() != 0:
for i in range(len(df)- maxlen):
X.append(df[['ConfirmedCases_std']].iloc[i:(i+maxlen)].values)
Y.append(df[['ConfirmedCases_std']].iloc[i+maxlen].values)
X=np.array(X)
Y=np.array(Y)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_rate, shuffle = True ,random_state = 0 ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | print("Read in libraries")
print("read in train file")
df=pd.read_csv("/kaggle/input/covid19-global-forecasting-week-2/train.csv",
usecols=['Province_State','Country_Region','Date','ConfirmedCases','Fatalities'])
print("fill blanks and add region for counting")
df.fillna(' ',inplace=True)
df['Lat']=df['Province_State']+df['Country_Region']
df.drop('Province_State',axis=1,inplace=True)
df.drop('Country_Region',axis=1,inplace=True)
countries_list=df.Lat.unique()
df1=[]
for i in countries_list:
df1.append(df[df['Lat']==i])
print("we have "+ str(len(df1)) +" regions in our dataset")
test=pd.read_csv("/kaggle/input/covid19-global-forecasting-week-2/test.csv")
submit_confirmed=[]
submit_fatal=[]
for i in df1:
data = i.ConfirmedCases.astype('int32' ).tolist()
try:
model = SARIMAX(data, order=(1,1,0), seasonal_order=(1,1,0,12),measurement_error=True)
model_fit = model.fit(disp=False)
predicted = model_fit.predict(len(data), len(data)+34)
new=np.concatenate(( np.array(data),np.array([int(num)for num in predicted])) ,axis=0)
submit_confirmed.extend(list(new[-43:]))
except:
submit_confirmed.extend(list(data[-10:-1]))
for j in range(34):
submit_confirmed.append(data[-1]*2)
data = i.Fatalities.astype('int32' ).tolist()
try:
model = SARIMAX(data, order=(1,1,0), seasonal_order=(1,1,0,12),measurement_error=True)
model_fit = model.fit(disp=False)
predicted = model_fit.predict(len(data), len(data)+34)
new=np.concatenate(( np.array(data),np.array([int(num)for num in predicted])) ,axis=0)
submit_fatal.extend(list(new[-43:]))
except:
submit_fatal.extend(list(data[-10:-1]))
for j in range(34):
submit_fatal.append(data[-1]*2)
df_submit=pd.concat([pd.Series(np.arange(1,1+len(submit_confirmed))),pd.Series(submit_confirmed),pd.Series(submit_fatal)],axis=1)
df_submit=df_submit.fillna(method='pad' ).astype(int)
df_submit.head()
df_submit.rename(columns={0: 'ForecastId', 1: 'ConfirmedCases',2: 'Fatalities',}, inplace=True )<data_type_conversions> | def huber_loss(y_true, y_pred, clip_delta=1.0):
error = y_true - y_pred
cond = tf.keras.backend.abs(error)< clip_delta
squared_loss = 0.5 * tf.keras.backend.square(error)
linear_loss = clip_delta *(tf.keras.backend.abs(error)- 0.5 * clip_delta)
return tf.where(cond, squared_loss, linear_loss)
def huber_loss_mean(y_true, y_pred, clip_delta=1.0):
return tf.keras.backend.mean(huber_loss(y_true, y_pred, clip_delta))
def rmsle(y, y_pred):
assert len(y)== len(y_pred)
terms_to_sum = [(math.log(y_pred[i] + 1)- math.log(y[i] + 1)) ** 2.0 for i,pred in enumerate(y_pred)]
return(sum(terms_to_sum)*(1.0/len(y)))** 0.5 | COVID19 Global Forecasting (Week 3) |
8,800,787 | sub.rename(columns={'ForecastId': 'ForecastId1', "ConfirmedCases": 'Confirmed_lgbt',"Fatalities": 'Fatalities_lgbt',}, inplace=True)
df_submit.rename(columns={'ForecastId': 'ForecastId2', "ConfirmedCases": 'Confirmed_arima',"Fatalities": 'Fatalities_arima',}, inplace=True)
df_submit.shape
df_combine = pd.concat([sub, df_submit], axis=1, join='inner')
cols = ['Confirmed_lgbt','Confirmed_arima']
df_combine['ConfirmedCases'] = df_combine[cols].astype(float ).mean(axis=1)
cols = ['Fatalities_lgbt','Fatalities_arima']
df_combine['Fatalities'] = df_combine[cols].astype(float ).mean(axis=1)
del df_combine['ForecastId2']
del df_combine['Confirmed_lgbt']
del df_combine['Fatalities_lgbt']
del df_combine['Confirmed_arima']
del df_combine['Fatalities_arima']
df_combine.head()
df_combine.rename(columns={'ForecastId1': 'ForecastId', "ConfirmedCases": 'ConfirmedCases',"Fatalities": 'Fatalities',}, inplace=True)
df_combine.to_csv('submission.csv',index=False)
test=pd.read_csv("/kaggle/input/covid19-global-forecasting-week-2/test.csv")
complete_test= pd.merge(test, df_combine, how="left", on="ForecastId")
complete_test.to_csv('complete_test.csv',index=False)
<set_options> | epochs_num = 10
n_hidden = 200
n_in = 1
model = Sequential()
model.add(GRU(n_hidden,
batch_input_shape=(None, maxlen, n_in),
kernel_initializer='random_uniform',
return_sequences=False))
model.add(Dense(n_in, kernel_initializer='random_uniform'))
model.add(Activation("linear"))
opt = Adagrad(lr=0.01, epsilon=1e-08, decay=1e-4)
model.compile(loss = huber_loss_mean, optimizer=opt ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | warnings.filterwarnings("ignore")
<load_from_csv> | early_stopping = EarlyStopping(monitor='loss', patience=5, verbose=1)
hist = model.fit(X_train, Y_train, batch_size=10, epochs=epochs_num,
callbacks=[early_stopping],shuffle=False ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | datapath = '.. /input/covid19-global-forecasting-week-2/'
train = pd.read_csv(datapath+'train.csv',)
test = pd.read_csv(datapath+'test.csv' )<data_type_conversions> | predicted_std = model.predict(X_test)
result_std= pd.DataFrame(predicted_std)
result_std.columns = ['predict']
result_std['actual'] = Y_test | COVID19 Global Forecasting (Week 3) |
8,800,787 | train['Date'] = train['Date'].astype('datetime64[ns]')
test['Date'] = test['Date'].astype('datetime64[ns]')
print("Train Date type: ", train['Date'].dtype)
print("Test Date type: ",test['Date'].dtype )<rename_columns> | predicted = scaler.inverse_transform(predicted_std - abs(confirmedCase_std_min))
Y_test = scaler.inverse_transform(Y_test - abs(confirmedCase_std_min)) | COVID19 Global Forecasting (Week 3) |
8,800,787 | train.columns = ['id','state','country','date','ConfirmedCases','Fatalities']
test.columns = ['ForecastId', 'state','country','date']<feature_engineering> | np.sqrt(mean_squared_log_error(predicted, Y_test)) | COVID19 Global Forecasting (Week 3) |
8,800,787 | train['place'] = train['state'].fillna('')+ '_' + train['country']
test['place'] = test['state'].fillna('')+ '_' + test['country']<count_unique_values> | result= pd.DataFrame(predicted)
result.columns = ['predict']
result['actual'] = Y_test
result.plot(figsize=(25,6))
plt.show() | COVID19 Global Forecasting (Week 3) |
8,800,787 | print('How many places?: ', 'Train: ', len(train['place'].unique()),
'Test: ', len(test['place'].unique()))
print('Unique place similar as test?: ',(train['place'].unique() == test['place'].unique() ).sum() )<drop_column> | test_df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
test_df | COVID19 Global Forecasting (Week 3) |
8,800,787 | china_cases = train[train['place'].str.contains('China')][['date',
'ConfirmedCases',
'Fatalities']].reset_index(drop=True)
restworld_cases = train[-train['place'].str.contains('China')][['date',
'ConfirmedCases',
'Fatalities']].reset_index(drop=True )<drop_column> | submission_c = pd.read_csv(".. /input/covid19-global-forecasting-week-3/submission.csv" ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | us_cases = train[train['place'].str.contains('US')][['date','place',
'ConfirmedCases',
'Fatalities']].reset_index(drop=True )<compute_test_metric> | temp =(datetime.datetime.strptime("2020-03-25", '%Y-%m-%d')- datetime.timedelta(days=maxlen)).strftime('%Y-%m-%d')
test_df = train_df[train_df["Date"] > temp] | COVID19 Global Forecasting (Week 3) |
8,800,787 | def RMSLE(predicted, actual):
return np.sqrt(np.mean(np.power(( np.log(predicted+1)-np.log(actual+1)) ,2)) )<feature_engineering> | check_df = pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv" ).query("Date>'2020-03-25'and Date<='2020-04-07'")
check_df["ConfirmedCases_std"] = scaler.transform(check_df["ConfirmedCases"].values.reshape(len(check_df["ConfirmedCases"].values),1)) + abs(confirmedCase_std_min ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | train_sub = train[['id','place','date','ConfirmedCases','Fatalities']]
train_sub['logConfirmedCases'] = np.log(train_sub['ConfirmedCases'])
train_sub = train_sub.set_index('date' )<feature_engineering> | confirmedCases_pred = []
for i in range(0,306*maxlen,maxlen):
temp_array = np.array(test_df["ConfirmedCases_std"][i:i+maxlen])
for j in range(43):
if j<13:
temp_array = np.append(temp_array,np.array(check_df["ConfirmedCases_std"])[int(i*13/maxlen)+j])
elif np.array(test_df["ConfirmedCases"][i:i+maxlen] ).sum() == 0:
temp_array = np.append(temp_array,temp_array[-1])
else:
pred = model.predict(temp_array[-maxlen:].reshape(1,maxlen,1))
pred = np.where(float(pred)< temp_array[-1],temp_array[-1],pred)
temp_array = np.append(temp_array,pred)
confirmedCases_pred.append(temp_array[-43:] ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | list= []
for place in train_sub.place.unique() :
a = train_sub[train_sub['place']==place]
a['z_cases'] =(a['logConfirmedCases']- a['logConfirmedCases'].rolling(window=3 ).mean())/a['logConfirmedCases'].rolling(window=3 ).std()
a['zp_cases']= a['z_cases']- a['z_cases'].shift(3)
a['z_death'] =(a['Fatalities']-a['Fatalities'].rolling(window=3 ).mean())/a['Fatalities'].rolling(window=3 ).std()
a['zp_death']= a['z_death']- a['z_death'].shift(3)
list.append(a)
rolling_df = pd.concat(list )<statistical_test> | submission_c["ConfirmedCases"] = np.abs(scaler.inverse_transform(np.array(confirmedCases_pred ).reshape(306*43)- abs(confirmedCase_std_min)))
submission_c["ConfirmedCases_std"] = np.array(confirmedCases_pred ).reshape(306*43)
submission_c | COVID19 Global Forecasting (Week 3) |
8,800,787 | stationary_data =[]
for place in train_sub.place.unique() :
a= rolling_df[(rolling_df['place']==place)&(rolling_df['logConfirmedCases'] > 0)]['logConfirmedCases'].dropna()
try:
dftest = adfuller(a, autolag='AIC')
if(dftest[1] < 0.001):
stationary_data.append(place)
else:
pass
except:
pass
print(len(stationary_data))<count_unique_values> | submission_c.to_csv('./submission_c.csv')
submission_c.to_csv('.. \output\kaggle\working\submission_c.csv' ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | station_death_data =[]
for place in train_sub.place.unique() :
dftest = adfuller(rolling_df[rolling_df['place']==place]['Fatalities'], autolag='AIC')
if(dftest[1] < 0.001):
station_death_data.append(place)
else:
pass
print(len(station_death_data))<define_variables> | test_rate = 0.05
maxlen = 13
train_date_count = len(set(train_df["Date"]))
X, Y = [],[]
scaler = StandardScaler()
train_df["Fatalities_std"] = scaler.fit_transform(train_df["Fatalities"].values.reshape(len(train_df["Fatalities"].values),1))
fatalities_std_min = train_df["Fatalities_std"].min()
train_df["Fatalities_std"] = train_df["Fatalities_std"] + abs(fatalities_std_min)
ss = StandardScaler()
train_df["ConfirmedCases_std"] = ss.fit_transform(train_df["ConfirmedCases"].values.reshape(len(train_df["ConfirmedCases"].values),1))
confirmedCase_std_min = train_df["ConfirmedCases_std"].min()
train_df["ConfirmedCases_std"] = train_df["ConfirmedCases_std"] + abs(confirmedCase_std_min)
for state,country in train_df.groupby(["Province_State","Country_Region"] ).sum().index:
df = train_df[(train_df["Country_Region"] == country)&(train_df["Province_State"] == state)]
if df["Fatalities"].sum() != 0 or df["ConfirmedCases"].sum() != 0:
for i in range(len(df)- maxlen):
X.append(df[['Fatalities_std','ConfirmedCases_std']].iloc[i:(i+maxlen)].values)
Y.append(df[['Fatalities_std']].iloc[i+maxlen].values)
X=np.array(X)
Y=np.array(Y)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_rate, shuffle = True ,random_state = 0 ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | confirmedc_lag = ['Anhui_China', 'Chongqing_China','Guangdong_China',
'Guizhou_China', 'Hainan_China', 'Hebei_China','Hubei_China',
'Ningxia_China','Shandong_China','Shanxi_China', 'Sichuan_China']<define_variables> | epochs_num = 30
n_hidden = 200
n_in = 2
model = Sequential()
model.add(GRU(n_hidden,
batch_input_shape=(None, maxlen, n_in),
kernel_initializer='random_uniform',
return_sequences=False))
model.add(Dense(1, kernel_initializer='random_uniform'))
model.add(Activation("linear"))
opt = Adagrad(lr=0.01, epsilon=1e-08, decay=1e-4)
model.compile(loss = huber_loss_mean, optimizer=opt ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | fatalities_lag = ['Hubei_China']<drop_column> | early_stopping = EarlyStopping(monitor='loss', patience=5, verbose=1)
hist = model.fit(X_train, Y_train, batch_size=8, epochs=epochs_num,
callbacks=[early_stopping],shuffle=False ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | non_stationary_death_data = [ele for ele in allplaces]
for place in fatalities_lag:
if place in allplaces:
non_stationary_death_data.remove(place)
print(len(non_stationary_death_data))<feature_engineering> | predicted_std = model.predict(X_test)
result_std= pd.DataFrame(predicted_std)
result_std.columns = ['predict']
result_std['actual'] = Y_test | COVID19 Global Forecasting (Week 3) |
8,800,787 | train_sub['logConfirmedCases']= train_sub['logConfirmedCases'].replace(to_replace=-inf,
value=0 )<merge> | predicted = scaler.inverse_transform(predicted_std - abs(fatalities_std_min))
Y_test = scaler.inverse_transform(Y_test - abs(fatalities_std_min)) | COVID19 Global Forecasting (Week 3) |
8,800,787 | poly_data = train[['date','place',
'ConfirmedCases','Fatalities']].merge(test[['date','place']],
how='outer',
on=['date','place'] ).sort_values(['place',
'date'])
print(poly_data.date.min() , test.date.min() , train.date.max() , poly_data.date.max() )<feature_engineering> | X_test_ = scaler.inverse_transform(X_test - abs(fatalities_std_min)) | COVID19 Global Forecasting (Week 3) |
8,800,787 | label = []
for place in poly_data.place.unique() :
labelrange = range(1,len(poly_data[poly_data['place']==place])+1)
label.append([i for i in labelrange])
lab = [item for lab in label for item in lab]
poly_data['label'] = lab
poly_data.head()<create_dataframe> | submission_df = submission_c | COVID19 Global Forecasting (Week 3) |
8,800,787 | XYtrain['intercept']= -1
result=pd.DataFrame()
for place in poly_data.place.unique() :
for degree in [2,3,4,5,6]:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['ConfirmedCases']
model = make_pipeline(PolynomialFeatures(degree), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(features))
rmsle = RMSLE(y_pred, target)
result = result.append(pd.DataFrame({'place':[place],
'degree':[degree],'RMSLE': [rmsle]}))
<count_unique_values> | temp =(datetime.datetime.strptime("2020-03-25", '%Y-%m-%d')- datetime.timedelta(days=maxlen)).strftime('%Y-%m-%d')
test_df = train_df[train_df["Date"] > temp] | COVID19 Global Forecasting (Week 3) |
8,800,787 | best_degree = pd.DataFrame()
for place in result.place.unique() :
a = result[result['place']==place]
best_degree = best_degree.append(a[a['RMSLE'] == a['RMSLE'].min() ])
print(best_degree.groupby('degree')['place'].nunique())
print('Zero polynomial(no fit): ',best_degree[best_degree['RMSLE']<0.00001]['place'].unique() )<count_unique_values> | check_df["Fatalities_std"] = scaler.transform(check_df["Fatalities"].values.reshape(len(check_df["Fatalities"].values),1)) + abs(fatalities_std_min)
check_df | COVID19 Global Forecasting (Week 3) |
8,800,787 | fit_best_degree = best_degree[best_degree['RMSLE']>0.00001]
twodeg_places = fit_best_degree[fit_best_degree['degree']==2]['place'].unique()
threedeg_places = fit_best_degree[fit_best_degree['degree']==3]['place'].unique()
fourdeg_places = fit_best_degree[fit_best_degree['degree']==4]['place'].unique()
fivedeg_places = fit_best_degree[fit_best_degree['degree']==5]['place'].unique()
sdeg_places = fit_best_degree[fit_best_degree['degree']==6]['place'].unique()
nofit_places1 = best_degree[best_degree['RMSLE']<0.00001]['place'].unique()
print(fit_best_degree.nunique())
print(len(twodeg_places), len(threedeg_places),
len(fourdeg_places), len(fivedeg_places), len(sdeg_places), len(nofit_places1))<feature_engineering> | fatalities_pred = []
for i in range(0,306*maxlen,maxlen):
temp_array = np.array(test_df[["Fatalities_std","ConfirmedCases_std"]][i:i+maxlen])
for j in range(43):
if j<13:
temp_array = np.append(temp_array,np.append(np.array(check_df["Fatalities_std"])[int(i*13/maxlen)+j],np.array(check_df["ConfirmedCases_std"])[int(i*13/maxlen)+j] ).reshape(1,2),axis=0)
elif np.array(test_df[["Fatalities","ConfirmedCases"]][i:i+maxlen] ).sum() == 0:
temp_array = np.append(temp_array,np.array(temp_array[-1] ).reshape(1,2),axis=0)
else:
pred = model.predict(temp_array[-maxlen:].reshape(1,maxlen,2))
pred = np.where(pred<temp_array[-1][0],temp_array[-1][0],pred)
temp_array = np.append(temp_array,np.append(pred,submission_df["ConfirmedCases_std"][i/maxlen*43+j] ).reshape(1,2),axis=0)
fatalities_pred.append(temp_array[-43:] ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | XYtest = XYtest.reset_index(drop=True)
XYtest['intercept'] = -1<choose_model_class> | submission_df["Fatalities"] = np.abs(scaler.inverse_transform([i[0] - abs(fatalities_std_min)for i in np.array(fatalities_pred ).reshape(306*43,2)]))
submission_df | COVID19 Global Forecasting (Week 3) |
8,800,787 | poly_predicted_confirmedcases = pd.DataFrame()
for place in twodeg_places:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['ConfirmedCases']
Xtest = XYtest[XYtest['place']==place][['label','intercept']]
model = make_pipeline(PolynomialFeatures(2), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(Xtest))
a = pd.DataFrame(zip(XYtrain[XYtrain['place']==place]['place'],
y_pred),columns=['place','ConfirmedCases'])
poly_predicted_confirmedcases = poly_predicted_confirmedcases.append(a)
for place in threedeg_places:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['ConfirmedCases']
Xtest = XYtest[XYtest['place']==place][['label','intercept']]
model = make_pipeline(PolynomialFeatures(3), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(Xtest))
b = pd.DataFrame(zip(XYtrain[XYtrain['place']==place]['place'],
y_pred.tolist()),columns=['place','ConfirmedCases'])
poly_predicted_confirmedcases = poly_predicted_confirmedcases.append(b)
for place in fourdeg_places:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['ConfirmedCases']
Xtest = XYtest[XYtest['place']==place][['label','intercept']]
model = make_pipeline(PolynomialFeatures(4), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(Xtest))
c = pd.DataFrame(zip(XYtrain[XYtrain['place']==place]['place'],
y_pred.tolist()),columns=['place','ConfirmedCases'])
poly_predicted_confirmedcases = poly_predicted_confirmedcases.append(c)
for place in fivedeg_places:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['ConfirmedCases']
Xtest = XYtest[XYtest['place']==place][['label','intercept']]
model = make_pipeline(PolynomialFeatures(5), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(Xtest))
d = pd.DataFrame(zip(XYtrain[XYtrain['place']==place]['place'],
y_pred.tolist()),columns=['place','ConfirmedCases'])
poly_predicted_confirmedcases = poly_predicted_confirmedcases.append(d)
for place in sdeg_places:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['ConfirmedCases']
Xtest = XYtest[XYtest['place']==place][['label','intercept']]
model = make_pipeline(PolynomialFeatures(6), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(Xtest))
e = pd.DataFrame(zip(XYtrain[XYtrain['place']==place]['place'],
y_pred.tolist()),columns=['place','ConfirmedCases'])
poly_predicted_confirmedcases = poly_predicted_confirmedcases.append(e)
<statistical_test> | submission_df[["ConfirmedCases","Fatalities"]] = submission_df[["ConfirmedCases","Fatalities"]].round().astype(int)
submission_df | COVID19 Global Forecasting (Week 3) |
8,800,787 | fatalities_result=pd.DataFrame()
for place in poly_data.place.unique() :
for degree in [2,3,4,5,6]:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['Fatalities']
model = make_pipeline(PolynomialFeatures(degree), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(features))
rmsle = RMSLE(y_pred, target)
fatalities_result = fatalities_result.append(pd.DataFrame({'place':[place],
'degree':[degree],'RMSLE': [rmsle]}))<count_unique_values> | submission_df = submission_df.drop("ConfirmedCases_std",axis=1 ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | fat_best_degree = pd.DataFrame()
for place in fatalities_result.place.unique() :
a = fatalities_result[fatalities_result['place']==place]
fat_best_degree = fat_best_degree.append(a[a['RMSLE'] == a['RMSLE'].min() ])
print(fat_best_degree.groupby('degree')['place'].nunique())
print('Zero polynomial(no fit): ',
fat_best_degree[fat_best_degree['RMSLE']<0.000001]['place'].unique() )<count_unique_values> | submission_df = submission_df.set_index('ForecastId' ) | COVID19 Global Forecasting (Week 3) |
8,800,787 | fit_best_degree = fat_best_degree[fat_best_degree['RMSLE']>0.000001]
twodeg_places = fit_best_degree[fit_best_degree['degree']==2]['place'].unique()
threedeg_places = fit_best_degree[fit_best_degree['degree']==3]['place'].unique()
fourdeg_places = fit_best_degree[fit_best_degree['degree']==4]['place'].unique()
fivedeg_places = fit_best_degree[fit_best_degree['degree']==5]['place'].unique()
sevdeg_places = fit_best_degree[fit_best_degree['degree']==6]['place'].unique()
nofit_places2 = fat_best_degree[fat_best_degree['RMSLE']<0.000001]['place'].unique()
print(fit_best_degree.nunique())
print(len(twodeg_places), len(threedeg_places),
len(fourdeg_places), len(fivedeg_places), len(sevdeg_places), len(nofit_places2))<choose_model_class> | submission_df.to_csv('submission.csv' ) | COVID19 Global Forecasting (Week 3) |
8,781,854 | poly_predicted_fatalities = pd.DataFrame()
for place in twodeg_places:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['Fatalities']
Xtest = XYtest[XYtest['place']==place][['label','intercept']]
model = make_pipeline(PolynomialFeatures(2), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(Xtest))
a = pd.DataFrame(zip(XYtrain[XYtrain['place']==place]['place'],
y_pred.tolist()),columns=['place','Fatalities'])
poly_predicted_fatalities = poly_predicted_fatalities.append(a)
for place in threedeg_places:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['Fatalities']
Xtest = XYtest[XYtest['place']==place][['label','intercept']]
model = make_pipeline(PolynomialFeatures(3), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(Xtest))
b = pd.DataFrame(zip(XYtrain[XYtrain['place']==place]['place'],
y_pred.tolist()),columns=['place','Fatalities'])
poly_predicted_fatalities = poly_predicted_fatalities.append(b)
for place in fourdeg_places:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['Fatalities']
Xtest = XYtest[XYtest['place']==place][['label','intercept']]
model = make_pipeline(PolynomialFeatures(4), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(Xtest))
c = pd.DataFrame(zip(XYtrain[XYtrain['place']==place]['place'],
y_pred.tolist()),columns=['place','Fatalities'])
poly_predicted_fatalities = poly_predicted_fatalities.append(c)
for place in fivedeg_places:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['Fatalities']
Xtest = XYtest[XYtest['place']==place][['label','intercept']]
model = make_pipeline(PolynomialFeatures(5), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(Xtest))
d = pd.DataFrame(zip(XYtrain[XYtrain['place']==place]['place'],
y_pred.tolist()),columns=['place','Fatalities'])
poly_predicted_fatalities = poly_predicted_fatalities.append(d)
for place in sevdeg_places:
features = XYtrain[XYtrain['place']==place][['label','intercept']]
target = XYtrain[XYtrain['place']==place]['Fatalities']
Xtest = XYtest[XYtest['place']==place][['label','intercept']]
model = make_pipeline(PolynomialFeatures(6), Ridge())
model.fit(np.array(features), target)
y_pred = model.predict(np.array(Xtest))
e = pd.DataFrame(zip(XYtrain[XYtrain['place']==place]['place'],
y_pred.tolist()),columns=['place','Fatalities'])
poly_predicted_fatalities = poly_predicted_fatalities.append(e )<create_dataframe> | train_data = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/train.csv")
test_data = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/test.csv" ) | COVID19 Global Forecasting (Week 3) |
8,781,854 | for place in nofit_places1:
e = poly_data[(poly_data['place']==place)&(poly_data['date']>'2020-03-18')]
f = e['ConfirmedCases'].fillna(method = 'ffill')
g = pd.DataFrame(zip(e['place'], f),columns=['place','ConfirmedCases'])
poly_predicted_confirmedcases = poly_predicted_confirmedcases.append(g)
for place in nofit_places2:
h = poly_data[(poly_data['place']==place)&(poly_data['date']>'2020-03-18')]
i = h['Fatalities'].fillna(method = 'ffill')
j = pd.DataFrame(zip(h['place'], i),columns=['place','Fatalities'])
poly_predicted_fatalities = poly_predicted_fatalities.append(j )<prepare_output> | import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px | COVID19 Global Forecasting (Week 3) |
8,781,854 | poly_predicted_confirmedcases2= pd.DataFrame({'date':XYtest.date,
'place':poly_predicted_confirmedcases['place'].tolist() ,
'ConfirmedCases':poly_predicted_confirmedcases['ConfirmedCases'].tolist() })
poly_predicted_confirmedcases2.head()<prepare_output> | train =train_data.drop(["Province_State"] , axis = 1)
test =test_data.drop(["Province_State"] , axis = 1)
| COVID19 Global Forecasting (Week 3) |
8,781,854 | poly_predicted_fatalities2= pd.DataFrame({'date':XYtest.date,
'place':poly_predicted_fatalities['place'].tolist() ,
'Fatalities':poly_predicted_fatalities['Fatalities'].tolist() })
poly_predicted_fatalities2.head()<merge> | train = train[train["ConfirmedCases"] != 0] | COVID19 Global Forecasting (Week 3) |
8,781,854 | poly_compiled = poly_predicted_confirmedcases2.merge(poly_predicted_fatalities2, how='inner', on=['place','date'] )<merge> | df = train.fillna('NA' ).groupby(['Country_Region','Date'])['ConfirmedCases'].sum() \
.groupby(['Country_Region'] ).max().sort_values() \
.groupby(['Country_Region'] ).sum().sort_values(ascending = False)
top10 = pd.DataFrame(df ).head(10 ).reset_index()
top10 | COVID19 Global Forecasting (Week 3) |
8,781,854 | test_poly_compiled= test.merge(poly_compiled, how='inner', on=['place','date'])
test_poly_compiled= test_poly_compiled.set_index('date')
test_poly_compiled<prepare_output> | deaths = train.fillna('NA' ).groupby(['Country_Region','Date'])['Fatalities'].sum() \
.groupby(['Country_Region'] ).max().sort_values() \
.groupby(['Country_Region'] ).sum().sort_values(ascending = False)
deaths10 = pd.DataFrame(deaths ).head(10 ).reset_index()
deaths10 | COVID19 Global Forecasting (Week 3) |
8,781,854 | df_compiled = pd.DataFrame()
for place in test_poly_compiled.place.unique() :
a = test_poly_compiled[test_poly_compiled['place']==place]
ind_max_confirmedcases = np.argmax(a['ConfirmedCases'])
a = a.replace(to_replace=a.loc[(a.index>ind_max_confirmedcases),'ConfirmedCases'].tolist() ,
value=a.loc[ind_max_confirmedcases,'ConfirmedCases'])
ind_max_fatatities = np.argmax(a['Fatalities'])
a = a.replace(to_replace=a.loc[(a.index>ind_max_fatatities),'Fatalities'].tolist() ,
value=a.loc[ind_max_fatatities,'Fatalities'])
df_compiled = df_compiled.append(a)
df_compiled[df_compiled['place']=='_Zimbabwe'].tail()<load_from_csv> | data_by_date = pd.DataFrame(train.groupby(["Country_Region" , "Date"])["ConfirmedCases"].sum())
data_by_date = data_by_date.sort_values("ConfirmedCases" , axis=0 , ascending = True ).reset_index() | COVID19 Global Forecasting (Week 3) |
8,781,854 | submission= pd.read_csv(datapath+'submission.csv' )<merge> | death_by_date = pd.DataFrame(train.groupby(["Country_Region" , "Date"])["Fatalities"].sum())
death_by_date = death_by_date.sort_values("Fatalities" , axis=0 , ascending = False ).reset_index() | COVID19 Global Forecasting (Week 3) |
8,781,854 | sub2 = submission[['ForecastId']].merge(df_compiled[['ForecastId','ConfirmedCases','Fatalities']],
how='left',on='ForecastId' )<feature_engineering> | df = data_by_date.loc[(data_by_date['Country_Region'] == 'US')&(data_by_date.Date >= '2020-03-01')]
df = df.sort_values('ConfirmedCases',ascending = True ) | COVID19 Global Forecasting (Week 3) |
8,781,854 | sub2['ConfirmedCases'] = sub2['ConfirmedCases'].round(1)
sub2['Fatalities'] = sub2['Fatalities'].round(1 ).abs()<save_to_csv> | death_US = death_by_date.loc[(death_by_date['Country_Region'] == 'US')&(death_by_date.Date >= '2020-03-01')]
death_US = death_US.sort_values('Fatalities',ascending = True ) | COVID19 Global Forecasting (Week 3) |
8,781,854 | sub2.to_csv('submission.csv', index=False )<compute_test_metric> | data_china = data_by_date.loc[(data_by_date["Country_Region"] == "China")&(data_by_date["Date"] >= "2020-01-01")] | COVID19 Global Forecasting (Week 3) |
8,781,854 | def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)) )<load_from_csv> | death_china = death_by_date.loc[(death_by_date["Country_Region"] == "China")&(death_by_date["Date"] >= "2020-01-01")]
death_china.sort_values("Fatalities" , ascending = True ) | COVID19 Global Forecasting (Week 3) |
8,781,854 | pd.set_option('mode.chained_assignment', None)
test = pd.read_csv(".. /input/covid19-global-forecasting-week-2/test.csv")
train = pd.read_csv(".. /input/covid19-global-forecasting-week-2/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region','Province_State','Date'])
test = test.sort_values(['Country_Region','Province_State','Date'] )<groupby> | xtrain = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/train.csv')
xtest = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/test.csv')
xsubmission = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/submission.csv' ) | COVID19 Global Forecasting (Week 3) |
8,781,854 | train[['ConfirmedCases', 'Fatalities']] = train.groupby(['Country_Region', 'Province_State'])[['ConfirmedCases', 'Fatalities']].transform('cummax' )<feature_engineering> | xtrain.rename(columns={'Country_Region':'Country'}, inplace=True)
xtest.rename(columns={'Country_Region':'Country'}, inplace=True)
xtrain.rename(columns={'Province_State':'State'}, inplace=True)
xtest.rename(columns={'Province_State':'State'}, inplace=True)
xtrain['Date'] = pd.to_datetime(xtrain['Date'], infer_datetime_format=True)
xtest['Date'] = pd.to_datetime(xtest['Date'], infer_datetime_format=True)
xtrain.info()
xtest.info()
y1_xTrain = xtrain.iloc[:, -2]
y1_xTrain.head()
y2_xTrain = xtrain.iloc[:, -1]
y2_xTrain.head()
EMPTY_VAL = "EMPTY_VAL"
def fillState(state, country):
if state == EMPTY_VAL: return country
return state | COVID19 Global Forecasting (Week 3) |
8,781,854 | feature_day = [1,20,50,100,200,500,1000]
def CreateInput(data):
feature = []
for day in feature_day:
data.loc[:,'Number day from ' + str(day)+ ' case'] = 0
if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0):
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max()
else:
fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min()
for i in range(0, len(data)) :
if(data['Date'].iloc[i] > fromday):
day_denta = data['Date'].iloc[i] - fromday
data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days
feature = feature + ['Number day from ' + str(day)+ ' case']
return data[feature]
pred_data_all = pd.DataFrame()
with tqdm(total=len(train['Country_Region'].unique())) as pbar:
for country in train['Country_Region'].unique() :
for province in train[(train['Country_Region'] == country)]['Province_State'].unique() :
df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]
df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
X_train = CreateInput(df_train)
y_train_confirmed = df_train['ConfirmedCases'].ravel()
y_train_fatalities = df_train['Fatalities'].ravel()
X_pred = CreateInput(df_test)
feature_use = X_pred.columns[0]
for i in range(X_pred.shape[1] - 1,0,-1):
if(X_pred.iloc[0,i] > 0):
feature_use = X_pred.columns[i]
break
idx = X_train[X_train[feature_use] == 0].shape[0]
adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1)
adjusted_y_train_confirmed = y_train_confirmed[idx:]
adjusted_y_train_fatalities = y_train_fatalities[idx:]
adjusted_X_pred = X_pred[feature_use].values.reshape(-1, 1)
model = make_pipeline(PolynomialFeatures(2), BayesianRidge())
model.fit(adjusted_X_train,adjusted_y_train_confirmed)
y_hat_confirmed = model.predict(adjusted_X_pred)
model.fit(adjusted_X_train,adjusted_y_train_fatalities)
y_hat_fatalities = model.predict(adjusted_X_pred)
pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)]
pred_data['ConfirmedCases_hat'] = y_hat_confirmed
pred_data['Fatalities_hat'] = y_hat_fatalities
pred_data_all = pred_data_all.append(pred_data)
pbar.update(1)
df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left')
df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0
df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0
df_val_1 = df_val.copy()<compute_test_metric> | X_xTrain = xtrain.copy() | COVID19 Global Forecasting (Week 3) |
8,781,854 | RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values )<compute_test_metric> | X_xTrain['State'].fillna(EMPTY_VAL, inplace=True)
X_xTrain['State'] = X_xTrain.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1)
X_xTrain.loc[:, 'Date'] = X_xTrain.Date.dt.strftime("%m%d")
X_xTrain["Date"] = X_xTrain["Date"].astype(int)
X_xTrain.head()
X_xTest = xtest.copy()
X_xTest['State'].fillna(EMPTY_VAL, inplace=True)
X_xTest['State'] = X_xTest.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1)
X_xTest.loc[:, 'Date'] = X_xTest.Date.dt.strftime("%m%d")
X_xTest["Date"] = X_xTest["Date"].astype(int)
X_xTest.head() | COVID19 Global Forecasting (Week 3) |
8,781,854 | RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values )<compute_test_metric> | le = preprocessing.LabelEncoder()
X_xTrain.Country = le.fit_transform(X_xTrain.Country)
X_xTrain['State'] = le.fit_transform(X_xTrain['State'])
X_xTrain.head()
X_xTest.Country = le.fit_transform(X_xTest.Country)
X_xTest['State'] = le.fit_transform(X_xTest['State'])
X_xTest.head()
xtrain.head()
xtrain.loc[xtrain.Country == 'Afghanistan', :]
xtest.tail() | COVID19 Global Forecasting (Week 3) |
8,781,854 | method_list = ['Poly Bayesian Ridge','SARIMA']
method_val = [df_val_1,df_val_3]
for i in range(0,2):
df_val = method_val[i]
method_score = [method_list[i]] + [RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values)] + [RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values)]
print(method_score )<save_to_csv> | filterwarnings('ignore')
le = preprocessing.LabelEncoder()
countries = X_xTrain.Country.unique() | COVID19 Global Forecasting (Week 3) |
8,781,854 | df_val = df_val_1
submission = df_val[['ForecastId','ConfirmedCases_hat','Fatalities_hat']]
submission.columns = ['ForecastId','ConfirmedCases','Fatalities']
submission.to_csv('submission.csv', index=False)
submission<set_options> | xout = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []} ) | COVID19 Global Forecasting (Week 3) |
8,781,854 | pd.set_option('display.max_columns',500)
filterwarnings('ignore' )<load_from_csv> | for country in countries:
states = X_xTrain.loc[X_xTrain.Country == country, :].State.unique()
for state in states:
X_xTrain_CS = X_xTrain.loc[(X_xTrain.Country == country)&(X_xTrain.State == state), ['State', 'Country', 'Date', 'ConfirmedCases', 'Fatalities']]
y1_xTrain_CS = X_xTrain_CS.loc[:, 'ConfirmedCases']
y2_xTrain_CS = X_xTrain_CS.loc[:, 'Fatalities']
X_xTrain_CS = X_xTrain_CS.loc[:, ['State', 'Country', 'Date']]
X_xTrain_CS.Country = le.fit_transform(X_xTrain_CS.Country)
X_xTrain_CS['State'] = le.fit_transform(X_xTrain_CS['State'])
X_xTest_CS = X_xTest.loc[(X_xTest.Country == country)&(X_xTest.State == state), ['State', 'Country', 'Date', 'ForecastId']]
X_xTest_CS_Id = X_xTest_CS.loc[:, 'ForecastId']
X_xTest_CS = X_xTest_CS.loc[:, ['State', 'Country', 'Date']]
X_xTest_CS.Country = le.fit_transform(X_xTest_CS.Country)
X_xTest_CS['State'] = le.fit_transform(X_xTest_CS['State'])
xmodel1 = XGBRegressor(n_estimators=1000)
xmodel1.fit(X_xTrain_CS, y1_xTrain_CS)
y1_xpred = xmodel1.predict(X_xTest_CS)
xmodel2 = XGBRegressor(n_estimators=1000)
xmodel2.fit(X_xTrain_CS, y2_xTrain_CS)
y2_xpred = xmodel2.predict(X_xTest_CS)
xdata = pd.DataFrame({'ForecastId': X_xTest_CS_Id, 'ConfirmedCases': y1_xpred, 'Fatalities': y2_xpred})
xout = pd.concat([xout, xdata], axis=0 ) | COVID19 Global Forecasting (Week 3) |
8,781,854 | train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-2/train.csv', parse_dates=['Date'])
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-2/test.csv', parse_dates=['Date'] )<rename_columns> | xout.ForecastId = xout.ForecastId.astype('int')
xout.tail()
xout.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,811,204 | train = train.rename(columns={'Country_Region':'Country','Province_State':'State'})
test = test.rename(columns={'Country_Region':'Country','Province_State':'State'} )<data_type_conversions> | import plotly.graph_objects as go
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm
import time
from datetime import datetime
from pathlib import Path
from sklearn import preprocessing
import keras.backend as K
from keras.models import Sequential
from keras.layers import Dense, LSTM, RNN, Dropout
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras import optimizers
from sklearn.preprocessing import StandardScaler, MinMaxScaler, LabelEncoder
from sklearn.model_selection import train_test_split | COVID19 Global Forecasting (Week 3) |
8,811,204 | train.State = train.State.fillna('Empty')
test.State = test.State.fillna('Empty' )<feature_engineering> | train = pd.read_csv(r'/kaggle/input/covid19-global-forecasting-week-3/train.csv', parse_dates=['Date'])
test = pd.read_csv(r'/kaggle/input/covid19-global-forecasting-week-3/test.csv',parse_dates=['Date'])
submission = pd.read_csv(r'/kaggle/input/covid19-global-forecasting-week-3/submission.csv')
train.tail() | COVID19 Global Forecasting (Week 3) |
8,811,204 | train['day'] = train['Date'].dt.day
train['month'] = train['Date'].dt.month
train['dayofweek'] = train['Date'].dt.dayofweek
train['dayofyear'] = train['Date'].dt.dayofyear
train['quarter'] = train['Date'].dt.quarter
train['weekofyear'] = train['Date'].dt.weekofyear
test['day'] = test['Date'].dt.day
test['month'] = test['Date'].dt.month
test['dayofweek'] = test['Date'].dt.dayofweek
test['dayofyear'] = test['Date'].dt.dayofyear
test['quarter'] = test['Date'].dt.quarter
test['weekofyear'] = test['Date'].dt.weekofyear<import_modules> | mask = train['Date'].max()
world_cum_confirmed = sum(train[train['Date'] == mask].ConfirmedCases)
world_cum_fatal = sum(train[train['Date'] == mask].Fatalities)
print('Number of Countires are: ', len(train['Country_Region'].unique()))
print('Training dataset ends at: ', mask)
print('Number of cumulative confirmed cases worldwide are: ', world_cum_confirmed)
print('Number of cumulative fatal cases worldwide are: ', world_cum_fatal ) | COVID19 Global Forecasting (Week 3) |
8,811,204 | from xgboost.sklearn import XGBRegressor<choose_model_class> | cum_per_country = train[train['Date'] == mask].groupby(['Date','Country_Region'] ).sum().sort_values(['ConfirmedCases'], ascending=False)
cum_per_country[:10] | COVID19 Global Forecasting (Week 3) |
8,811,204 | model = XGBRegressor(n_estimators=1000 )<prepare_x_and_y> | date = train['Date'].unique()
cc_us = train[train['Country_Region'] == 'US'].groupby(['Date'] ).sum().ConfirmedCases
ft_us = train[train['Country_Region'] == 'US'].groupby(['Date'] ).sum().Fatalities
cc_ity = train[train['Country_Region'] == 'Italy'].groupby(['Date'] ).sum().ConfirmedCases
ft_ity = train[train['Country_Region'] == 'Italy'].groupby(['Date'] ).sum().Fatalities
cc_spn = train[train['Country_Region'] == 'Spain'].groupby(['Date'] ).sum().ConfirmedCases
ft_spn = train[train['Country_Region'] == 'Spain'].groupby(['Date'] ).sum().Fatalities
cc_gmn = train[train['Country_Region'] == 'Germany'].groupby(['Date'] ).sum().ConfirmedCases
ft_gmn = train[train['Country_Region'] == 'Germany'].groupby(['Date'] ).sum().Fatalities
cc_frc = train[train['Country_Region'] == 'France'].groupby(['Date'] ).sum().ConfirmedCases
ft_frc = train[train['Country_Region'] == 'France'].groupby(['Date'] ).sum().Fatalities
fig = go.Figure()
fig.add_trace(go.Scatter(x=date, y=cc_us, name='US'))
fig.add_trace(go.Scatter(x=date, y=cc_ity, name='Italy'))
fig.add_trace(go.Scatter(x=date, y=cc_spn, name='Spain'))
fig.add_trace(go.Scatter(x=date, y=cc_gmn, name='Germany'))
fig.add_trace(go.Scatter(x=date, y=cc_frc, name='France'))
fig.update_layout(title="Plot of Cumulative Cases for Top 5 countires(except China)",
xaxis_title="Date",
yaxis_title="Cases")
fig.update_xaxes(nticks=30)
fig.show() | COVID19 Global Forecasting (Week 3) |
8,811,204 | countries = train.Country.unique().tolist()
results_df = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []})
for c in countries:
states = train.loc[train.Country == c,:].State.unique().tolist()
for state in states:
X_train = train.loc[(train.Country == c)&(train.State == state), :]
y1 = X_train[['ConfirmedCases']]
y2 = X_train[['Fatalities']]
X_train = X_train.drop(['Id','ConfirmedCases','Fatalities','State','Country','Date'], axis=1)
X_test = test.loc[(test.Country == c)&(test.State == state), :]
results_temp = X_test[['ForecastId']]
X_test = X_test.drop(['ForecastId','State','Country','Date'], axis=1)
model_confirmed = model.fit(X_train, y1)
prediction_confirmed = model_confirmed.predict(X_test)
model_fatalities = model.fit(X_train, y2)
prediction_fatalities = model_fatalities.predict(X_test)
results_temp['ConfirmedCases'] = prediction_confirmed
results_temp['Fatalities'] = prediction_fatalities
results_df = pd.concat([results_df, results_temp], axis=0)
<prepare_output> | train.columns = train.columns.str.lower()
test.columns = test.columns.str.lower() | COVID19 Global Forecasting (Week 3) |
8,811,204 | sub = results_df.copy()<data_type_conversions> | train.fillna(' ',inplace=True)
test.fillna(' ', inplace=True)
train_id = train.pop('id')
test_id = test.pop('forecastid')
train['cp'] = train['country_region'] + train['province_state']
test['cp'] = test['country_region'] + test['province_state']
train.drop(['province_state','country_region'], axis=1, inplace=True)
test.drop(['province_state','country_region'], axis =1, inplace=True ) | COVID19 Global Forecasting (Week 3) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.