kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
3,401,239 | <SOS> metric: MacroFScore Kaggle data source: iwildcam-2019-fgvc6<data_type_conversions> | import os
import json
import numpy as np
import pandas as pd
import keras
from keras import layers
from keras.applications import DenseNet121
from keras.callbacks import Callback, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.models import Sequential
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score | iWildCam 2019 - FGVC6 |
3,401,239 | ans_dict = dict(zip(submids, subm_preds.astype(str)) )<prepare_output> | x_train = np.load('.. /input/reducing-image-sizes-to-32x32/X_train.npy')
x_test = np.load('.. /input/reducing-image-sizes-to-32x32/X_test.npy')
y_train = np.load('.. /input/reducing-image-sizes-to-32x32/y_train.npy')
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples' ) | iWildCam 2019 - FGVC6 |
3,401,239 | df_to_process =(
pd.DataFrame
.from_dict(ans_dict, orient='index', columns=['Category'])
.reset_index()
.rename({'index':'Id'}, axis=1)
)
df_to_process['Id'] = df_to_process['Id'].map(lambda x: str(x)[:-4])
df_to_process.head()<categorify> | x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255.
x_test /= 255 . | iWildCam 2019 - FGVC6 |
3,401,239 | def process_one_id(id_classes_str):
if id_classes_str:
return REVERSE_CLASSMAP[int(id_classes_str)]
else:
return id_classes_str<feature_engineering> | class Metrics(Callback):
def on_train_begin(self, logs={}):
self.val_f1s = []
self.val_recalls = []
self.val_precisions = []
def on_epoch_end(self, epoch, logs={}):
X_val, y_val = self.validation_data[:2]
y_pred = self.model.predict(X_val)
y_pred_cat = keras.utils.to_categorical(
y_pred.argmax(axis=1),
num_classes=14
)
_val_f1 = f1_score(y_val, y_pred_cat, average='macro')
_val_recall = recall_score(y_val, y_pred_cat, average='macro')
_val_precision = precision_score(y_val, y_pred_cat, average='macro')
self.val_f1s.append(_val_f1)
self.val_recalls.append(_val_recall)
self.val_precisions.append(_val_precision)
print(( f"val_f1: {_val_f1:.4f}"
f" — val_precision: {_val_precision:.4f}"
f" — val_recall: {_val_recall:.4f}"))
return
f1_metrics = Metrics() | iWildCam 2019 - FGVC6 |
3,401,239 | df_to_process['Category'] = df_to_process['Category'].apply(process_one_id)
df_to_process.head()<save_to_csv> | densenet = DenseNet121(
weights='.. /input/densenet-keras/DenseNet-BC-121-32-no-top.h5',
include_top=False,
input_shape=(32,32,3)
) | iWildCam 2019 - FGVC6 |
3,401,239 | df_to_process.to_csv('submission.csv', index=False )<set_options> | model = Sequential()
model.add(densenet)
model.add(layers.GlobalAveragePooling2D())
model.add(layers.Dense(14, activation='softmax')) | iWildCam 2019 - FGVC6 |
3,401,239 | %load_ext Cython<init_hyperparams> | model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
)
checkpoint = ModelCheckpoint(
'model.h5',
monitor='val_acc',
verbose=1,
save_best_only=True,
save_weights_only=False,
mode='auto'
)
history = model.fit(
x=x_train,
y=y_train,
batch_size=64,
epochs=7,
callbacks=[checkpoint, f1_metrics],
validation_split=0.1
) | iWildCam 2019 - FGVC6 |
3,401,239 | %%cython
c
@cython.cdivision(True)
@cython.boundscheck(False)
@cython.nonecheck(False)
@cython.wraparound(False)
cdef int calc_neighs(unsigned char[:, :] field, int i, int j, int n, int k):
cdef:
int neighs = 0;
int i_min = i - 1;
int i_pl = i + 1;
int j_min = j - 1;
int j_pl = j + 1;
neighs = 0
if i_min >= 0:
if j_min >= 0:
neighs += field[i_min, j_min]
neighs += field[i_min, j]
if j_pl < k:
neighs += field[i_min, j_pl]
if j_min >= 0:
neighs += field[i, j_min]
if j_pl < k:
neighs += field[i, j_pl]
if i_pl < n:
if j_min >= 0:
neighs += field[i_pl, j_min]
neighs += field[i_pl, j]
if j_pl < k:
neighs += field[i_pl, j_pl]
return neighs
@cython.cdivision(True)
@cython.boundscheck(False)
@cython.nonecheck(False)
@cython.wraparound(False)
cpdef make_move(unsigned char[:, :] field, int moves):
cdef:
int _, i, j, neighs;
int n, k;
int switch = 0;
unsigned char[:, :] cur_field;
unsigned char[:, :] next_field;
cur_field = np.copy(field)
next_field = np.zeros_like(field, 'uint8')
n = field.shape[0]
k = field.shape[1]
for _ in range(moves):
if switch == 0:
for i in range(n):
for j in range(k):
neighs = calc_neighs(cur_field, i, j, n, k)
if cur_field[i, j] and neighs == 2:
next_field[i, j] = 1
elif neighs == 3:
next_field[i, j] = 1
else:
next_field[i, j] = 0
else:
for i in range(n):
for j in range(k):
neighs = calc_neighs(next_field, i, j, n, k)
if next_field[i, j] and neighs == 2:
cur_field[i, j] = 1
elif neighs == 3:
cur_field[i, j] = 1
else:
cur_field[i, j] = 0
switch =(switch + 1)% 2
return np.array(next_field if switch else cur_field )<categorify> | model.load_weights('model.h5')
y_test = model.predict(x_test)
submission_df = pd.read_csv('.. /input/iwildcam-2019-fgvc6/sample_submission.csv')
submission_df['Predicted'] = y_test.argmax(axis=1)
print(submission_df.shape)
submission_df.head() | iWildCam 2019 - FGVC6 |
3,401,239 | <choose_model_class><EOS> | submission_df.to_csv('submission.csv',index=False ) | iWildCam 2019 - FGVC6 |
3,399,907 | <SOS> metric: MacroFScore Kaggle data source: iwildcam-2019-fgvc6<train_model> | import os
import json
import numpy as np
import pandas as pd
import keras
from keras.callbacks import Callback
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score
from sklearn.model_selection import train_test_split | iWildCam 2019 - FGVC6 |
3,399,907 | models = []
for delta in range(1, 6):
model = create_model(n_hidden_convs=6, n_hidden_filters=256)
es = EarlyStopping(monitor='loss', patience=9, min_delta=0.001)
model.fit_generator(data_generator(delta=delta, ravel=False), steps_per_epoch=500, epochs=50, verbose=1, callbacks=[es])
models.append(model )<load_from_csv> | x_train = np.load('.. /input/reducing-image-sizes-to-32x32/X_train.npy')
x_test = np.load('.. /input/reducing-image-sizes-to-32x32/X_test.npy')
y_train = np.load('.. /input/reducing-image-sizes-to-32x32/y_train.npy')
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples' ) | iWildCam 2019 - FGVC6 |
3,399,907 | train_df = pd.read_csv('.. /input/train.csv', index_col=0)
test_df = pd.read_csv('.. /input/test.csv', index_col=0 )<create_dataframe> | x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255.
x_test /= 255 . | iWildCam 2019 - FGVC6 |
3,399,907 | submit_df = pd.DataFrame(index=test_df.index, columns=['start.' + str(_)for _ in range(1, 401)] )<categorify> | class Metrics(Callback):
def on_train_begin(self, logs={}):
self.val_f1s = []
self.val_recalls = []
self.val_precisions = []
def on_epoch_end(self, epoch, logs={}):
X_val, y_val = self.validation_data[:2]
y_pred = self.model.predict(X_val)
y_pred_cat = keras.utils.to_categorical(
y_pred.argmax(axis=1),
num_classes=num_classes
)
_val_f1 = f1_score(y_val, y_pred_cat, average='macro')
_val_recall = recall_score(y_val, y_pred_cat, average='macro')
_val_precision = precision_score(y_val, y_pred_cat, average='macro')
self.val_f1s.append(_val_f1)
self.val_recalls.append(_val_recall)
self.val_precisions.append(_val_precision)
print(( f"val_f1: {_val_f1:.4f}"
f" — val_precision: {_val_precision:.4f}"
f" — val_recall: {_val_recall:.4f}"))
return | iWildCam 2019 - FGVC6 |
3,399,907 | for delta in range(1, 6):
mod = models[delta-1]
delta_df = test_df[test_df.delta == delta].iloc[:, 1:].values.reshape(-1, 20, 20, 1)
submit_df[test_df.delta == delta] = mod.predict(delta_df ).reshape(-1, 400 ).round(0 ).astype('uint8' )<save_to_csv> | batch_size = 64
num_classes = 14
epochs = 30
val_split = 0.1
save_dir = os.path.join(os.getcwd() , 'models')
model_name = 'keras_cnn_model.h5' | iWildCam 2019 - FGVC6 |
3,399,907 | submit_df.to_csv('cnns_40.csv' )<import_modules> | model = Sequential()
model.add(Conv2D(32,(3, 3), padding='same',
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32,(3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64,(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64,(3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax')) | iWildCam 2019 - FGVC6 |
3,399,907 | import os
import sys
import operator
import numpy as np
import pandas as pd
from scipy import sparse
import xgboost as xgb
from sklearn import model_selection, preprocessing, ensemble
from sklearn.metrics import log_loss
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
<train_model> | f1_metrics = Metrics()
model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
)
hist = model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
callbacks=[f1_metrics],
validation_split=val_split,
shuffle=True
) | iWildCam 2019 - FGVC6 |
3,399,907 | def runXGB(train_X, train_y, test_X, test_y=None, feature_names=None, seed_val=0, num_rounds=1000):
param = {}
param['objective'] = 'multi:softprob'
param['eta'] = 0.1
param['max_depth'] = 6
param['silent'] = 1
param['num_class'] = 3
param['eval_metric'] = "mlogloss"
param['min_child_weight'] = 1
param['subsample'] = 0.7
param['colsample_bytree'] = 0.7
param['seed'] = seed_val
num_rounds = num_rounds
plst = list(param.items())
xgtrain = xgb.DMatrix(train_X, label=train_y)
if test_y is not None:
xgtest = xgb.DMatrix(test_X, label=test_y)
watchlist = [(xgtrain,'train'),(xgtest, 'test')]
model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds=20)
else:
xgtest = xgb.DMatrix(test_X)
model = xgb.train(plst, xgtrain, num_rounds)
pred_test_y = model.predict(xgtest)
return pred_test_y, model
<load_from_disk> | if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path ) | iWildCam 2019 - FGVC6 |
3,399,907 | data_path = ".. /input/"
train_file = data_path + "train.json"
test_file = data_path + "test.json"
train_df = pd.read_json(train_file)
test_df = pd.read_json(test_file)
print(train_df.shape)
print(test_df.shape)
<define_variables> | y_test = model.predict(x_test)
submission_df = pd.read_csv('.. /input/iwildcam-2019-fgvc6/sample_submission.csv')
submission_df['Predicted'] = y_test.argmax(axis=1)
print(submission_df.shape)
submission_df.head() | iWildCam 2019 - FGVC6 |
3,399,907 | <feature_engineering><EOS> | submission_df.to_csv('submission.csv',index=False)
history_df.to_csv('history.csv', index=False)
with open('history.json', 'w')as f:
json.dump(hist.history, f ) | iWildCam 2019 - FGVC6 |
4,570,315 | <SOS> metric: MacroFScore Kaggle data source: iwildcam-2019-fgvc6<categorify> | %reload_ext autoreload
%autoreload 2
%matplotlib inline | iWildCam 2019 - FGVC6 |
4,570,315 | categorical = ["display_address", "manager_id", "building_id", "street_address"]
for f in categorical:
if train_df[f].dtype=='object':
lbl = preprocessing.LabelEncoder()
lbl.fit(list(train_df[f].values)+ list(test_df[f].values))
train_df[f] = lbl.transform(list(train_df[f].values))
test_df[f] = lbl.transform(list(test_df[f].values))
features_to_use.append(f)
<feature_engineering> | from fastai import *
from fastai.vision import *
import pandas as pd
from fastai.utils.mem import * | iWildCam 2019 - FGVC6 |
4,570,315 | train_df['features'] = train_df["features"].apply(lambda x: " ".join(["_".join(i.split(" ")) for i in x]))
test_df['features'] = test_df["features"].apply(lambda x: " ".join(["_".join(i.split(" ")) for i in x]))
print(train_df["features"].head())
tfidf = CountVectorizer(stop_words='english', max_features=200)
tr_sparse = tfidf.fit_transform(train_df["features"])
te_sparse = tfidf.transform(test_df["features"])
<prepare_x_and_y> | path = Path('/kaggle/input/iwildcam-2019-fgvc6')
debug =1
if debug:
train_pct=0.04
else:
train_pct=0.5 | iWildCam 2019 - FGVC6 |
4,570,315 | train_X = sparse.hstack([train_df[features_to_use], tr_sparse] ).tocsr()
test_X = sparse.hstack([test_df[features_to_use], te_sparse] ).tocsr()
target_num_map = {'high':0, 'medium':1, 'low':2}
train_y = np.array(train_df['interest_level'].apply(lambda x: target_num_map[x]))
print(train_X.shape, test_X.shape)
<compute_train_metric> | train_df = pd.read_csv(path/'train.csv')
train_df = pd.concat([train_df['id'],train_df['category_id']],axis=1,keys=['id','category_id'])
train_df.head() | iWildCam 2019 - FGVC6 |
4,570,315 | cv_scores = []
kf = model_selection.KFold(n_splits=7, shuffle=True, random_state=2016)
for dev_index, val_index in kf.split(range(train_X.shape[0])) :
dev_X, val_X = train_X[dev_index,:], train_X[val_index,:]
dev_y, val_y = train_y[dev_index], train_y[val_index]
preds, model = runXGB(dev_X, dev_y, val_X, val_y)
cv_scores.append(log_loss(val_y, preds))
print(cv_scores)
break
<save_to_csv> | test_df = pd.read_csv(path/'test.csv')
test_df = pd.DataFrame(test_df['id'])
test_df['predicted'] = 0
test_df.head()
| iWildCam 2019 - FGVC6 |
4,570,315 | preds, model = runXGB(train_X, train_y, test_X, num_rounds=400)
out_df = pd.DataFrame(preds)
out_df.columns = ["high", "medium", "low"]
out_df["listing_id"] = test_df.listing_id.values
out_df.to_csv("xgb_starter2.csv", index=False)
<set_options> | free = gpu_mem_get_free_no_cache()
if free > 8200: bs=64
else: bs=32
print(f"using bs={bs}, have {free}MB of GPU RAM free")
tfms = get_transforms(max_rotate=20, max_zoom=1.3, max_lighting=0.4, max_warp=0.4,
p_affine=1., p_lighting=1.)
| iWildCam 2019 - FGVC6 |
4,570,315 | %matplotlib inline
<define_variables> | data = get_data(224, bs, 'zeros' ) | iWildCam 2019 - FGVC6 |
4,570,315 | horizontal_flip = False
rotation_augmentation = True
brightness_augmentation = True
shift_augmentation = True
random_noise_augmentation = True
include_unclean_data = True
sample_image_index = 20
rotation_angles = [12]
pixel_shifts = [12]
NUM_EPOCHS = 80
BATCH_SIZE = 64<load_pretrained> | gc.collect()
wd=1e-1
learn = cnn_learner(data, models.resnet34, metrics=error_rate, bn_final=True, wd=wd)
learn.model_dir= '/kaggle/working/' | iWildCam 2019 - FGVC6 |
4,570,315 | print("Contents of input/facial-keypoints-detection directory: ")
!ls.. /input/facial-keypoints-detection/
print("
Extracting.zip dataset files to working directory...")
!unzip -u.. /input/facial-keypoints-detection/test.zip
!unzip -u.. /input/facial-keypoints-detection/training.zip
print("
Current working directory:")
!pwd
print("
Contents of working directory:")
!ls<load_from_csv> | data = get_data(352,bs)
learn.data = data
| iWildCam 2019 - FGVC6 |
4,570,315 | %%time
train_file = 'training.csv'
test_file = 'test.csv'
idlookup_file = '.. /input/facial-keypoints-detection/IdLookupTable.csv'
train_data = pd.read_csv(train_file)
test_data = pd.read_csv(test_file)
idlookup_data = pd.read_csv(idlookup_file )<count_values> | learn.fit_one_cycle(2, max_lr=slice(1e-6,1e-4))
learn.save('352' ) | iWildCam 2019 - FGVC6 |
4,570,315 | print("Length of train data: {}".format(len(train_data)))
print("Number of Images with missing pixel values: {}".format(len(train_data)- int(train_data.Image.apply(lambda x: len(x.split())).value_counts().values)) )<count_missing_values> | lr = 1e-3
learn.fit_one_cycle(8, slice(lr/100, lr)) | iWildCam 2019 - FGVC6 |
4,570,315 | train_data.isnull().sum()<categorify> | learn.save('stage-2-sz32' ) | iWildCam 2019 - FGVC6 |
4,570,315 | %%time
def load_images(image_data):
images = []
for idx, sample in image_data.iterrows() :
image = np.array(sample['Image'].split(' '), dtype=int)
image = np.reshape(image,(96,96,1))
images.append(image)
images = np.array(images)/255.
return images
def load_keypoints(keypoint_data):
keypoint_data = keypoint_data.drop('Image',axis = 1)
keypoint_features = []
for idx, sample_keypoints in keypoint_data.iterrows() :
keypoint_features.append(sample_keypoints)
keypoint_features = np.array(keypoint_features, dtype = 'float')
return keypoint_features
clean_train_images = load_images(clean_train_data)
print("Shape of clean_train_images: {}".format(np.shape(clean_train_images)))
clean_train_keypoints = load_keypoints(clean_train_data)
print("Shape of clean_train_keypoints: {}".format(np.shape(clean_train_keypoints)))
test_images = load_images(test_data)
print("Shape of test_images: {}".format(np.shape(test_images)))
train_images = clean_train_images
train_keypoints = clean_train_keypoints
fig, axis = plt.subplots()
plot_sample(clean_train_images[sample_image_index], clean_train_keypoints[sample_image_index], axis, "Sample image & keypoints")
if include_unclean_data:
unclean_train_images = load_images(unclean_train_data)
print("Shape of unclean_train_images: {}".format(np.shape(unclean_train_images)))
unclean_train_keypoints = load_keypoints(unclean_train_data)
print("Shape of unclean_train_keypoints: {}
".format(np.shape(unclean_train_keypoints)))
train_images = np.concatenate(( train_images, unclean_train_images))
train_keypoints = np.concatenate(( train_keypoints, unclean_train_keypoints))<concatenate> | interp = ClassificationInterpretation.from_learner(learn)
losses,idxs = interp.top_losses()
len(data.valid_ds)==len(losses)==len(idxs ) | iWildCam 2019 - FGVC6 |
4,570,315 | def left_right_flip(images, keypoints):
flipped_keypoints = []
flipped_images = np.flip(images, axis=2)
for idx, sample_keypoints in enumerate(keypoints):
flipped_keypoints.append([96.-coor if idx%2==0 else coor for idx,coor in enumerate(sample_keypoints)])
return flipped_images, flipped_keypoints
if horizontal_flip:
flipped_train_images, flipped_train_keypoints = left_right_flip(clean_train_images, clean_train_keypoints)
print("Shape of flipped_train_images: {}".format(np.shape(flipped_train_images)))
print("Shape of flipped_train_keypoints: {}".format(np.shape(flipped_train_keypoints)))
train_images = np.concatenate(( train_images, flipped_train_images))
train_keypoints = np.concatenate(( train_keypoints, flipped_train_keypoints))
fig, axis = plt.subplots()
plot_sample(flipped_train_images[sample_image_index], flipped_train_keypoints[sample_image_index], axis, "Horizontally Flipped" )<normalization> | test_preds = learn.get_preds(DatasetType.Test)
test_df['predicted'] = test_preds[0].argmax(dim=1 ) | iWildCam 2019 - FGVC6 |
4,570,315 | <categorify><EOS> | csv_path ='/kaggle/working/submission.csv'
test_df.to_csv(csv_path, index=False ) | iWildCam 2019 - FGVC6 |
3,480,019 | <SOS> metric: MacroFScore Kaggle data source: iwildcam-2019-fgvc6<choose_model_class> | import os
import json
import numpy as np
import pandas as pd
import keras
from keras import layers
from keras.applications import DenseNet121
from keras.callbacks import Callback, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.models import Sequential
from keras.utils.vis_utils import plot_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score | iWildCam 2019 - FGVC6 |
3,480,019 | model = Sequential()
model.add(Convolution2D(32,(3,3), padding='same', use_bias=False, input_shape=(96,96,1)))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(32,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(64,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(64,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(96,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(96,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(128,(3,3),padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(128,(3,3),padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(256,(3,3),padding='same',use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(256,(3,3),padding='same',use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(512,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(512,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(512,activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(30))
model.summary()<train_model> | x_train = np.load('.. /input/reducing-image-sizes-to-32x32/X_train.npy')
x_test = np.load('.. /input/reducing-image-sizes-to-32x32/X_test.npy')
y_train = np.load('.. /input/reducing-image-sizes-to-32x32/y_train.npy')
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255.
x_test /= 255 . | iWildCam 2019 - FGVC6 |
3,480,019 | %%time
if os.path.exists('.. /input/data-augmentation-for-facial-keypoint-detection/best_model.hdf5'):
model = load_model('.. /input/data-augmentation-for-facial-keypoint-detection/best_model.hdf5')
checkpointer = ModelCheckpoint(filepath = 'best_model.hdf5', monitor='val_mae', verbose=1, save_best_only=True, mode='min')
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae', 'acc'])
history = model.fit(train_images, train_keypoints, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, validation_split=0.05, callbacks=[checkpointer] )<train_model> | class Metrics(Callback):
def on_train_begin(self, logs={}):
self.val_f1s = []
self.val_recalls = []
self.val_precisions = []
def on_epoch_end(self, epoch, logs={}):
X_val, y_val = self.validation_data[:2]
y_pred = self.model.predict(X_val)
y_pred_cat = keras.utils.to_categorical(
y_pred.argmax(axis=1),
num_classes=14
)
_val_f1 = f1_score(y_val, y_pred_cat, average='macro')
_val_recall = recall_score(y_val, y_pred_cat, average='macro')
_val_precision = precision_score(y_val, y_pred_cat, average='macro')
self.val_f1s.append(_val_f1)
self.val_recalls.append(_val_recall)
self.val_precisions.append(_val_precision)
print(( f"val_f1: {_val_f1:.4f}"
f" — val_precision: {_val_precision:.4f}"
f" — val_recall: {_val_recall:.4f}"))
return
f1_metrics = Metrics() | iWildCam 2019 - FGVC6 |
3,480,019 | %%time
checkpointer = ModelCheckpoint(filepath = 'best_model.hdf5', monitor='mae', verbose=1, save_best_only=True, mode='min')
model.fit(train_images, train_keypoints, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, callbacks=[checkpointer] )<predict_on_test> | densenet = DenseNet121(
weights='.. /input/densenet-keras/DenseNet-BC-121-32-no-top.h5',
include_top=False,
input_shape=(32,32,3)
)
model = Sequential()
model.add(densenet)
model.add(layers.GlobalAveragePooling2D())
model.add(Dropout(0.5))
model.add(layers.Dense(14, activation='softmax'))
plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)
model.summary() | iWildCam 2019 - FGVC6 |
3,480,019 | %%time
model = load_model('best_model.hdf5')
test_preds = model.predict(test_images )<save_to_csv> | checkpoint = ModelCheckpoint(
'model.h5',
monitor='val_acc',
verbose=1,
save_best_only=True,
save_weights_only=False,
mode='auto'
) | iWildCam 2019 - FGVC6 |
3,480,019 | feature_names = list(idlookup_data['FeatureName'])
image_ids = list(idlookup_data['ImageId']-1)
row_ids = list(idlookup_data['RowId'])
feature_list = []
for feature in feature_names:
feature_list.append(feature_names.index(feature))
predictions = []
for x,y in zip(image_ids, feature_list):
predictions.append(test_preds[x][y])
row_ids = pd.Series(row_ids, name = 'RowId')
locations = pd.Series(predictions, name = 'Location')
locations = locations.clip(0.0,96.0)
submission_result = pd.concat([row_ids,locations],axis = 1)
submission_result.to_csv('submission.csv',index = False )<import_modules> | model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
history = model.fit(
x=x_train,
y=y_train,
batch_size=256,
epochs=30,
callbacks=[checkpoint, f1_metrics],
validation_split=0.2
) | iWildCam 2019 - FGVC6 |
3,480,019 | <load_from_csv><EOS> | model.load_weights('model.h5')
y_test = model.predict(x_test)
submission_df = pd.read_csv('.. /input/iwildcam-2019-fgvc6/sample_submission.csv')
submission_df['Predicted'] = y_test.argmax(axis=1)
print(submission_df.shape)
submission_df.head()
submission_df.to_csv('submission.csv',index=False ) | iWildCam 2019 - FGVC6 |
3,391,563 | <SOS> metric: MacroFScore Kaggle data source: iwildcam-2019-fgvc6<load_from_csv> | warnings.filterwarnings('ignore' ) | iWildCam 2019 - FGVC6 |
3,391,563 | samplesubmission = pd.read_csv("/kaggle/input/SampleSubmission.csv")
samplesubmission.head()<load_from_csv> | %%time
train_df = pd.read_csv(os.path.join(PATH, 'train.csv'))
test_df = pd.read_csv(os.path.join(PATH, 'test.csv')) | iWildCam 2019 - FGVC6 |
3,391,563 | train = pd.read_csv("/kaggle/input/training/training.csv")
train.head().T<count_missing_values> | x_train = np.load('.. /input/reducing-image-sizes-to-32x32/X_train.npy')
x_test = np.load('.. /input/reducing-image-sizes-to-32x32/X_test.npy')
y_train = np.load('.. /input/reducing-image-sizes-to-32x32/y_train.npy' ) | iWildCam 2019 - FGVC6 |
3,391,563 | train.isnull().sum()<count_missing_values> | classes_wild = {0: 'empty', 1: 'deer', 2: 'moose', 3: 'squirrel', 4: 'rodent', 5: 'small_mammal', \
6: 'elk', 7: 'pronghorn_antelope', 8: 'rabbit', 9: 'bighorn_sheep', 10: 'fox', 11: 'coyote', \
12: 'black_bear', 13: 'raccoon', 14: 'skunk', 15: 'wolf', 16: 'bobcat', 17: 'cat',\
18: 'dog', 19: 'opossum', 20: 'bison', 21: 'mountain_goat', 22: 'mountain_lion'} | iWildCam 2019 - FGVC6 |
3,391,563 | train.isnull().sum()<correct_missing_values> | train_df['classes_wild'] = train_df['category_id'].apply(lambda cw: classes_wild[cw] ) | iWildCam 2019 - FGVC6 |
3,391,563 | train.fillna(method = 'ffill',inplace = True )<prepare_x_and_y> | train_image_files = list(os.listdir(os.path.join(PATH,'train_images')))
test_image_files = list(os.listdir(os.path.join(PATH,'test_images')))
print("Number of image files: train:{} test:{}".format(len(train_image_files), len(test_image_files)) ) | iWildCam 2019 - FGVC6 |
3,391,563 | X = train.Image.values
del train['Image']
Y = train.values<concatenate> | %%time
train_file_names = list(train_df['file_name'])
print("Matching train image names: {}".format(len(set(train_file_names ).intersection(train_image_files)))) | iWildCam 2019 - FGVC6 |
3,391,563 | x = []
for i in tqdm(X):
q = [int(j)for j in i.split() ]
x.append(q)
len(x )<split> | %%time
test_file_names = list(test_df['file_name'])
print("Matching test image names: {}".format(len(set(test_file_names ).intersection(test_image_files)))) | iWildCam 2019 - FGVC6 |
3,391,563 | x_train,x_test,y_train,y_test = tts(x,Y,random_state = 69,test_size = 0.1 )<import_modules> | cnt_classes_images = train_df.classes_wild.nunique()
print("There are {} classes of images".format(cnt_classes_images))
pd.DataFrame(train_df.classes_wild.value_counts() ).transpose() | iWildCam 2019 - FGVC6 |
3,391,563 | from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.layers import Activation, Convolution2D, MaxPooling2D, BatchNormalization, Flatten, Dense, Dropout, Conv2D,MaxPool2D, ZeroPadding2D<choose_model_class> | try:
train_df['date_time'] = pd.to_datetime(train_df['date_captured'], errors='coerce')
train_df["year"] = train_df['date_time'].dt.year
train_df["month"] = train_df['date_time'].dt.month
train_df["day"] = train_df['date_time'].dt.day
train_df["hour"] = train_df['date_time'].dt.hour
train_df["minute"] = train_df['date_time'].dt.minute
except Exception as ex:
print("Exception:".format(ex)) | iWildCam 2019 - FGVC6 |
3,391,563 | model = Sequential()
model.add(Convolution2D(32,(3,3), padding='same', use_bias=False, input_shape=(96,96,1)))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(32,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(64,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(64,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(96,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(96,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(128,(3,3),padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(128,(3,3),padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(256,(3,3),padding='same',use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(256,(3,3),padding='same',use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(512,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(512,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(512,activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(30))
model.summary()<compute_test_metric> | IMAGE_PATH = os.path.join(PATH,'train_images/')
draw_category_images('classes_wild' ) | iWildCam 2019 - FGVC6 |
3,391,563 |
<train_model> | x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255.
x_test /= 255 . | iWildCam 2019 - FGVC6 |
3,391,563 | model.compile(optimizer = 'adam',loss = 'mean_squared_error', metrics = ['mae','acc'])
model.fit(x_train,y_train,batch_size=256, epochs=50,validation_data=(x_test,y_test))<train_model> | class Metrics(Callback):
def on_train_begin(self, logs={}):
self.val_f1s = []
self.val_recalls = []
self.val_precisions = []
def on_epoch_end(self, epoch, logs={}):
X_val, y_val = self.validation_data[:2]
y_pred = self.model.predict(X_val)
y_pred_cat = keras.utils.to_categorical(
y_pred.argmax(axis=1),
num_classes=14
)
_val_f1 = f1_score(y_val, y_pred_cat, average='macro')
_val_recall = recall_score(y_val, y_pred_cat, average='macro')
_val_precision = precision_score(y_val, y_pred_cat, average='macro')
self.val_f1s.append(_val_f1)
self.val_recalls.append(_val_recall)
self.val_precisions.append(_val_precision)
print(( f"val_f1: {_val_f1:.4f}"
f" — val_precision: {_val_precision:.4f}"
f" — val_recall: {_val_recall:.4f}"))
return
f1_metrics = Metrics() | iWildCam 2019 - FGVC6 |
3,391,563 | model.compile(optimizer = 'adam',loss = 'mean_squared_error', metrics = ['mae'])
model.fit(x,Y,batch_size=64, epochs=100)
model.fit(x,Y,batch_size=128, epochs=50)
model.fit(x,Y,batch_size=256, epochs=50 )<load_from_csv> | model_densenet = DenseNet121(
weights='.. /input/densenet-keras/DenseNet-BC-121-32-no-top.h5',
include_top=False,
input_shape=(32,32,3)
) | iWildCam 2019 - FGVC6 |
3,391,563 | test = pd.read_csv("/kaggle/input/test/test.csv")
test.head()<count_missing_values> | model = Sequential()
model.add(model_densenet)
model.add(layers.GlobalAveragePooling2D())
model.add(layers.Dense(cnt_classes_images, activation='softmax')) | iWildCam 2019 - FGVC6 |
3,391,563 | test.isnull().sum()<count_missing_values> | model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
) | iWildCam 2019 - FGVC6 |
3,391,563 | test.isnull().sum()<split> | checkpoint = ModelCheckpoint(
'model.h5',
monitor='val_acc',
verbose=1,
save_best_only=True,
save_weights_only=False,
mode='auto'
) | iWildCam 2019 - FGVC6 |
3,391,563 | test = test.Image.values
x_t = []
for i in tqdm(test):
q = [int(j)for j in i.split() ]
x_t.append(q)
x_t = np.array(x_t)
x_t = x_t.reshape(-1, 96,96,1)
x_t = x_t/255.0
x_t.shape<predict_on_test> | BATCH_SIZE = 64
EPOCHS = 35
VALID_SPLIT = 0.1
history = model.fit(
x=x_train,
y=y_train,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
callbacks=[checkpoint, f1_metrics],
validation_split=VALID_SPLIT
) | iWildCam 2019 - FGVC6 |
3,391,563 | pred = model.predict(x_t)
pred.shape<define_variables> | model.load_weights('model.h5')
y_test = model.predict(x_test ) | iWildCam 2019 - FGVC6 |
3,391,563 | lookid_list = list(lookid_data['FeatureName'])
imageID = list(lookid_data['ImageId']-1)
pre_list = list(pred )<define_variables> | submission_df = pd.read_csv(os.path.join(PATH,'sample_submission.csv'))
submission_df['Predicted'] = y_test.argmax(axis=1)
print(submission_df.shape)
submission_df.head(3 ) | iWildCam 2019 - FGVC6 |
3,391,563 | <define_variables><EOS> | submission_df.to_csv("submission.csv", index=False ) | iWildCam 2019 - FGVC6 |
10,768,563 | model2.save('my_model2.h5')
model2 = load_model('my_model2.h5' )<define_variables> | Facial Keypoints Detection |
|
10,768,563 | class FlippedImageDataGenerator(ImageDataGenerator):
flip_indices = [
(0, 2),(1, 3),
(4, 8),(5, 9),(6, 10),(7, 11),
(12, 16),(13, 17),(14, 18),(15, 19),
(22, 24),(23, 25),
]
def next(self):
X_batch, y_batch = super(FlippedImageDataGenerator, self ).next()
batch_size = X_batch.shape[0]
indices = np.random.choice(batch_size, batch_size/2, replace=False)
X_batch[indices] = X_batch[indices, :, :, ::-1]
if y_batch is not None:
y_batch[indices, ::2] = y_batch[indices, ::2] * -1
for a, b in self.flip_indices:
y_batch[indices, a], y_batch[indices, b] =(
y_batch[indices, b], y_batch[indices, a]
)
return X_batch, y_batch<split> | !ls.. /input/facial-keypoints-detection/
print("
Extracting.zip dataset files to working directory...")
!unzip -u.. /input/facial-keypoints-detection/test.zip
!unzip -u.. /input/facial-keypoints-detection/training.zip
print("
Current working directory:")
!pwd
print("
Contents of working directory:")
!ls | Facial Keypoints Detection |
10,768,563 | X, y = load2d()
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42 )<train_on_grid> | %%time
train_csv = 'training.csv'
test_csv = 'test.csv'
idlookup_file = '.. /input/facial-keypoints-detection/IdLookupTable.csv'
train = pd.read_csv(train_csv)
test = pd.read_csv(test_csv)
idlookup_data = pd.read_csv(idlookup_file ) | Facial Keypoints Detection |
10,768,563 | model3 = CNN()
flipgen = FlippedImageDataGenerator()
hist3 = model3.fit_generator(flipgen.flow(X_train, y_train),
samples_per_epoch=X_train.shape[0],
nb_epoch=300,
validation_data=(X_val, y_val))
<load_pretrained> | train.isnull().sum() | Facial Keypoints Detection |
10,768,563 | model3.save('my_model3.h5')
model3 = load_model('my_model3.h5' )<define_variables> | train.isnull().sum() | Facial Keypoints Detection |
10,768,563 | SPECIALIST_SETTINGS = [
dict(
columns=(
'left_eye_center_x', 'left_eye_center_y',
'right_eye_center_x', 'right_eye_center_y',
),
flip_indices=(( 0, 2),(1, 3)) ,
),
dict(
columns=(
'nose_tip_x', 'nose_tip_y',
),
flip_indices=() ,
),
dict(
columns=(
'mouth_left_corner_x', 'mouth_left_corner_y',
'mouth_right_corner_x', 'mouth_right_corner_y',
'mouth_center_top_lip_x', 'mouth_center_top_lip_y',
),
flip_indices=(( 0, 2),(1, 3)) ,
),
dict(
columns=(
'mouth_center_bottom_lip_x',
'mouth_center_bottom_lip_y',
),
flip_indices=() ,
),
dict(
columns=(
'left_eye_inner_corner_x', 'left_eye_inner_corner_y',
'right_eye_inner_corner_x', 'right_eye_inner_corner_y',
'left_eye_outer_corner_x', 'left_eye_outer_corner_y',
'right_eye_outer_corner_x', 'right_eye_outer_corner_y',
),
flip_indices=(( 0, 2),(1, 3),(4, 6),(5, 7)) ,
),
dict(
columns=(
'left_eyebrow_inner_end_x', 'left_eyebrow_inner_end_y',
'right_eyebrow_inner_end_x', 'right_eyebrow_inner_end_y',
'left_eyebrow_outer_end_x', 'left_eyebrow_outer_end_y',
'right_eyebrow_outer_end_x', 'right_eyebrow_outer_end_y',
),
flip_indices=(( 0, 2),(1, 3),(4, 6),(5, 7)) ,
),
]
<train_model> | train.fillna(method = 'ffill',inplace = True ) | Facial Keypoints Detection |
10,768,563 | def fit_specialists(freeze=True,
print_every=10,
epochs=100,
prop=0.1,
name_transfer_model="my_model3.h5"):
specialists = OrderedDict()
for setting in SPECIALIST_SETTINGS:
cols = setting['columns']
flip_indices = setting['flip_indices']
X, y = load2d(cols=cols)
X_train, X_val, y_train, y_val = train_test_split(X, y,
test_size=0.2,
random_state=42)
model4 = load_model(name_transfer_model)
if freeze:
for layer in model.layers:
layer.trainable = False
model4.layers.pop()
model4.outputs = [model4.layers[-1].output]
model4.layers[-1].outbound_nodes = []
model4.add(Dense(len(cols)))
model4.compile(loss='mean_squared_error', optimizer="adam")
flipgen = FlippedImageDataGenerator()
flipgen.flip_indices = setting['flip_indices']
print(X_train.shape)
print(y_train.shape)
print(X_val.shape)
print(y_val.shape)
hist_final = model4.fit_generator(flipgen.flow(X_train, y_train),
samples_per_epoch=X_train.shape[0],
nb_epoch=epochs,
validation_data=(X_val, y_val))
specialists[cols] = model4
return(specialists)
<train_model> | train.isnull().sum() | Facial Keypoints Detection |
10,768,563 | %%time
specialists1 = fit_specialists(freeze=True,
print_every=10,
epochs=100,
name_transfer_model="my_model3.h5" )<predict_on_test> | train.isnull().sum() | Facial Keypoints Detection |
10,768,563 | X_test,_ = load2d(test=True)
y_pred3 = model3.predict(X_test)
landmark_nm = read_csv(os.path.expanduser(FTRAIN)).columns[:-1].values
df_y_pred3 = DataFrame(y_pred3,columns = landmark_nm)
def predict_specialist(specialists1,X_test):
y_pred_s = []
for columns, value in specialists1.items() :
smodel = value
y_pred = smodel.predict(X_test)
y_pred = DataFrame(y_pred,columns=columns)
y_pred_s.append(y_pred)
df_y_pred_s = concat(y_pred_s,axis=1)
return(df_y_pred_s)
df_y_pred_s = predict_specialist(specialists1,X_test)
y_pred_s = df_y_pred_s.values<feature_engineering> | test.isnull().sum() | Facial Keypoints Detection |
10,768,563 | FIdLookup = '.. /input/IdLookupTable.csv'
IdLookup = read_csv(os.path.expanduser(FIdLookup))
def prepare_submission(y_pred4,filename):
ImageId = IdLookup["ImageId"]
FeatureName = IdLookup["FeatureName"]
RowId = IdLookup["RowId"]
submit = []
for rowId,irow,landmark in zip(RowId,ImageId,FeatureName):
submit.append([rowId,y_pred4[landmark].iloc[irow-1]])
submit = DataFrame(submit,columns=["RowId","Location"])
submit["Location"] = submit["Location"]*48 + 48
print(submit.shape)
if filename == "model3":
submit.to_csv("model3.csv",index=False)
else:
submit.to_csv("special.csv",index=False)
prepare_submission(df_y_pred_s,"special")
prepare_submission(df_y_pred3,"model3")
<predict_on_test> | test.isnull().sum() | Facial Keypoints Detection |
10,768,563 |
<create_dataframe> | import tensorflow.keras as keras
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Input,LeakyReLU, Conv2D,Flatten, BatchNormalization, Dense, Dropout, GlobalAveragePooling2D,MaxPool2D
from tensorflow.keras import optimizers
import tensorflow as tf
from keras.utils import np_utils
from keras import applications
from keras.layers import concatenate
import time
from skimage.transform import resize | Facial Keypoints Detection |
10,768,563 | df_y_pred_s = df_y_pred_s[df_y_pred3.columns]
df_compare = {}
df_compare["difference"] =(( df_y_pred_s - df_y_pred3)**2 ).mean(axis=1)
df_compare["RowId"] = range(df_y_pred_s.shape[0])
df_compare = DataFrame(df_compare)
df_compare = df_compare.sort_values("difference",ascending=False )<prepare_x_and_y> | model = Sequential()
model.add(Conv2D(32,(5,5), padding='same', use_bias=True, input_shape=(96,96,1)))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(32,(5,5), padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(32,(5,5), padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Conv2D(64,(5,5), padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(64,(5,5), padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(64,(5,5), padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Conv2D(96,(5,5), padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(96,(5,5), padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(96,(5,5), padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Conv2D(128,(5,5),padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(128,(5,5),padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Conv2D(256,(5,5),padding='same',use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(256,(5,5),padding='same',use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Conv2D(512,(5,5), padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(512,(5,5), padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Flatten())
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.1))
model.add(Dense(30))
model.summary() | Facial Keypoints Detection |
10,768,563 | def fit_specialists(freeze=True,
print_every=10,
epochs=100,
prop=0.1,
name_transfer_model="my_model2.h5"):
specialists = OrderedDict()
for setting in SPECIALIST_SETTINGS:
cols = setting['columns']
flip_indices = setting['flip_indices']
X, y = load2d(cols=cols)
X_train, X_val, y_train, y_val = train_test_split(X, y,
test_size=0.2,
random_state=42)
model4 = load_model(name_transfer_model)
if freeze:
for layer in model.layers:
layer.trainable = False
model4.layers.pop()
model4.outputs = [model4.layers[-1].output]
model4.layers[-1].outbound_nodes = []
model4.add(Dense(len(cols)))
model4.compile(loss='mean_squared_error', optimizer="adam")
flipgen = FlippedImageDataGenerator()
flipgen.flip_indices = setting['flip_indices']
print(X_train.shape)
print(y_train.shape)
print(X_val.shape)
print(y_val.shape)
hist_final = model4.fit_generator(flipgen.flow(X_train, y_train),
samples_per_epoch=X_train.shape[0],
nb_epoch=epochs,
validation_data=(X_val, y_val))
specialists[cols] = model4
return(specialists)
<train_model> | Facial Keypoints Detection |
|
10,768,563 | %%time
specialists2 = fit_specialists(freeze=True,
print_every=10,
epochs=100,
name_transfer_model="my_model2.h5" )<predict_on_test> | checkpointer = ModelCheckpoint(filepath = 'best_modelV8.hdf5', monitor='val_mae', verbose=1, save_best_only=True, mode='min')
model.compile(optimizer="adam", loss='mean_squared_error', metrics=['mae', 'acc'])
history = model.fit(train_images, train_keypoints, epochs=500, batch_size=256, validation_split=0.1, callbacks=[checkpointer])
| Facial Keypoints Detection |
10,768,563 | X_test,_ = load2d(test=True)
def predict_specialist(specialists2,X_test):
y_pred_s = []
for columns, value in specialists2.items() :
smodel = value
y_pred = smodel.predict(X_test)
y_pred = DataFrame(y_pred,columns=columns)
y_pred_s.append(y_pred)
df_y_pred_s = concat(y_pred_s,axis=1)
return(df_y_pred_s)
df_y_pred_s = predict_specialist(specialists2,X_test)
y_pred_s = df_y_pred_s.values<predict_on_test> | model.save('best_modelV5x5_V1.hdf5')
| Facial Keypoints Detection |
10,768,563 | y_pred2 = model2.predict(X_test)
landmark_nm = read_csv(os.path.expanduser(FTRAIN)).columns[:-1].values
df_y_pred2 = DataFrame(y_pred2,columns = landmark_nm )<feature_engineering> | %%time
model = load_model('best_modelV5x5_V1.hdf5')
test_preds = model.predict(test_images ) | Facial Keypoints Detection |
10,768,563 | FIdLookup = '.. /input/IdLookupTable.csv'
IdLookup = read_csv(os.path.expanduser(FIdLookup))
def prepare_submission(y_pred2,filename):
ImageId = IdLookup["ImageId"]
FeatureName = IdLookup["FeatureName"]
RowId = IdLookup["RowId"]
submit = []
for rowId,irow,landmark in zip(RowId,ImageId,FeatureName):
submit.append([rowId,y_pred2[landmark].iloc[irow-1]])
submit = DataFrame(submit,columns=["RowId","Location"])
submit["Location"] = submit["Location"]*48 + 48
print(submit.shape)
if filename == "model2":
submit.to_csv("model2.csv",index=False)
else:
submit.to_csv("special_model2.csv",index=False)
prepare_submission(df_y_pred_s,"special_model2")
prepare_submission(df_y_pred2,"model2" )<create_dataframe> | feature_names = list(idlookup_data['FeatureName'])
image_ids = list(idlookup_data['ImageId']-1)
row_ids = list(idlookup_data['RowId'])
feature_list = []
for feature in feature_names:
feature_list.append(feature_names.index(feature))
predictions = []
for x,y in zip(image_ids, feature_list):
predictions.append(test_preds[x][y])
row_ids = pd.Series(row_ids, name = 'RowId')
locations = pd.Series(predictions, name = 'Location')
locations = locations.clip(0.0,96.0)
submission_result = pd.concat([row_ids,locations],axis = 1)
submission_result.to_csv('charlin_version_5X5.csv',index = False ) | Facial Keypoints Detection |
10,768,563 | df_y_pred_s = df_y_pred_s[df_y_pred3.columns]
df_compare = {}
df_compare["difference"] =(( df_y_pred_s - df_y_pred2)**2 ).mean(axis=1)
df_compare["RowId"] = range(df_y_pred_s.shape[0])
df_compare = DataFrame(df_compare)
df_compare = df_compare.sort_values("difference",ascending=False )<prepare_x_and_y> | aug = ImageDataGenerator(
rotation_range=20,
zoom_range=0.15,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.15,
horizontal_flip=True,
fill_mode="nearest" ) | Facial Keypoints Detection |
10,768,563 |
<import_modules> | trainX=np.swapaxes(trainX,0,1)
trainX=np.swapaxes(trainX,1,2)
trainX=np.swapaxes(trainX,2,3)
trainX.shape | Facial Keypoints Detection |
10,768,563 | <load_from_csv><EOS> | testX=np.swapaxes(testX,0,1)
testX=np.swapaxes(testX,1,2)
testX=np.swapaxes(testX,2,3)
testX.shape | Facial Keypoints Detection |
3,593,820 | <SOS> metric: RMSE Kaggle data source: facial-keypoints-detection<load_from_csv> | %reload_ext autoreload
%autoreload 2
%matplotlib inline
rn_seed=1
np.random.seed(rn_seed)
| Facial Keypoints Detection |
3,593,820 | RegularSeason_Compact_Results = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WDataFiles_Stage1/WRegularSeasonCompactResults.csv')
MSeasons = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WDataFiles_Stage1/WSeasons.csv')
MTeams=pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WDataFiles_Stage1/WTeams.csv' )<merge> | train_path = Path('/tmp/train')
test_path = Path('/tmp/test' ) | Facial Keypoints Detection |
3,593,820 | Tourney_Results_Compact=pd.merge(Tourney_Compact_Results, Tourney_Seeds, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
Tourney_Results_Compact.rename(columns={'Seed':'WinningSeed'},inplace=True)
Tourney_Results_Compact=Tourney_Results_Compact.drop(['TeamID'],axis=1)
Tourney_Results_Compact = pd.merge(Tourney_Results_Compact, Tourney_Seeds, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
Tourney_Results_Compact.rename(columns={'Seed':'LoosingSeed'}, inplace=True)
Tourney_Results_Compact=Tourney_Results_Compact.drop(['TeamID','NumOT','WLoc'],axis=1)
Tourney_Results_Compact<drop_column> | root = Path('.. /input' ) | Facial Keypoints Detection |
3,593,820 | Tourney_Results_Compact=Tourney_Results_Compact.drop(['WScore','LScore'],axis=1)
Tourney_Results_Compact.head()<data_type_conversions> | id_lookup = pd.read_csv(root/'IdLookupTable.csv')
train_csv = pd.read_csv(root/'training/training.csv')
test_csv = pd.read_csv(root/'test/test.csv' ) | Facial Keypoints Detection |
3,593,820 | Tourney_Results_Compact['WinningSeed'] = Tourney_Results_Compact['WinningSeed'].str.extract('(\d+)', expand=True)
Tourney_Results_Compact['LoosingSeed'] = Tourney_Results_Compact['LoosingSeed'].str.extract('(\d+)', expand=True)
Tourney_Results_Compact.WinningSeed = pd.to_numeric(Tourney_Results_Compact.WinningSeed, errors='coerce')
Tourney_Results_Compact.LoosingSeed = pd.to_numeric(Tourney_Results_Compact.LoosingSeed, errors='coerce' )<rename_columns> | for c in train_csv.columns:
if(train_csv[c].dtype!='object'):
train_csv[c]=train_csv[c].fillna(train_csv[c].median() ) | Facial Keypoints Detection |
3,593,820 | season_winning_team = RegularSeason_Compact_Results[['Season', 'WTeamID', 'WScore']]
season_losing_team = RegularSeason_Compact_Results[['Season', 'LTeamID', 'LScore']]
season_winning_team.rename(columns={'WTeamID':'TeamID','WScore':'Score'}, inplace=True)
season_losing_team.rename(columns={'LTeamID':'TeamID','LScore':'Score'}, inplace=True)
RegularSeason_Compact_Results = pd.concat(( season_winning_team, season_losing_team)).reset_index(drop=True)
RegularSeason_Compact_Results<groupby> | def save_str_img(strimg,w,h,flpath):
px=255-np.array(strimg.split() ,dtype=int)
if(len(px)==w*h and len(px)%w==0 and len(px)%h==0):
cpx = list(px.reshape(w,h))
img = Image(Tensor([cpx,cpx,cpx]))
img.save(flpath)
return img
else:
raise Exception("Invalid height and width" ) | Facial Keypoints Detection |
3,593,820 | RegularSeason_Compact_Results_Final = RegularSeason_Compact_Results.groupby(['Season', 'TeamID'])['Score'].sum().reset_index()
RegularSeason_Compact_Results_Final<merge> | for index, train_row in train_csv.iterrows() :
save_str_img(train_row.Image,96,96,train_path/(str(index)+'.jpg')) | Facial Keypoints Detection |
3,593,820 | Tourney_Results_Compact = pd.merge(Tourney_Results_Compact, RegularSeason_Compact_Results_Final, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
Tourney_Results_Compact.rename(columns={'Score':'WScoreTotal'}, inplace=True)
Tourney_Results_Compact<save_to_csv> | for index, test_row in test_csv.iterrows() :
save_str_img(test_row.Image,96,96,test_path/(str(index)+'.jpg')) | Facial Keypoints Detection |
3,593,820 | Tourney_Results_Compact = Tourney_Results_Compact.drop('TeamID', axis=1)
Tourney_Results_Compact = pd.merge(Tourney_Results_Compact, RegularSeason_Compact_Results_Final, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
Tourney_Results_Compact.rename(columns={'Score':'LScoreTotal'}, inplace=True)
Tourney_Results_Compact = Tourney_Results_Compact.drop('TeamID', axis=1)
Tourney_Results_Compact=Tourney_Results_Compact[Tourney_Results_Compact['Season'] < 2016]
Tourney_Results_Compact<drop_column> | def get_locs(flname):
index = int(flname.name[:-4])
plist=[]
coords=list(train_csv.loc[index])
for i in range(len(coords)//2):
plist.append([coords[i*2+1],coords[i*2]])
return tensor(plist)
| Facial Keypoints Detection |
3,593,820 | Tourney_Win_Results=Tourney_Results_Compact.drop(['Season','WTeamID','LTeamID','DayNum'],axis=1)
Tourney_Win_Results<rename_columns> | data.show_batch(3,figsize=(6,6)) | Facial Keypoints Detection |
3,593,820 | Tourney_Win_Results.rename(columns={'WinningSeed':'Seed1', 'LoosingSeed':'Seed2', 'WScoreTotal':'ScoreT1', 'LScoreTotal':'ScoreT2'}, inplace=True )<prepare_output> | def mloss(y_true, y_pred):
y_true=y_true.view(-1,15,2)
y_true[:,:,0]=y_true[:,:,0].clone() -y_pred[:,:,0]
y_true[:,:,1]=y_true[:,:,1].clone() -y_pred[:,:,1]
y_true[:,:,0]=y_true[:,:,0].clone() **2
y_true[:,:,1]=y_true[:,:,1].clone() **2
return y_true.sum(dim=2 ).sum(dim=1 ).sum() | Facial Keypoints Detection |
3,593,820 | tourney_lose_result = Tourney_Win_Results.copy()
tourney_lose_result['Seed1'] = Tourney_Win_Results['Seed2']
tourney_lose_result['Seed2'] = Tourney_Win_Results['Seed1']
tourney_lose_result['ScoreT1'] = Tourney_Win_Results['ScoreT2']
tourney_lose_result['ScoreT2'] = Tourney_Win_Results['ScoreT1']
tourney_lose_result<feature_engineering> | learn = cnn_learner(data,models.resnet152,loss_func=mloss ) | Facial Keypoints Detection |
3,593,820 | Tourney_Win_Results['Seed_diff'] = Tourney_Win_Results['Seed1'] - Tourney_Win_Results['Seed2']
Tourney_Win_Results['ScoreT_diff'] = Tourney_Win_Results['ScoreT1'] - Tourney_Win_Results['ScoreT2']
tourney_lose_result['Seed_diff'] = tourney_lose_result['Seed1'] - tourney_lose_result['Seed2']
tourney_lose_result['ScoreT_diff'] = tourney_lose_result['ScoreT1'] - tourney_lose_result['ScoreT2']<save_to_csv> | learn.fit_one_cycle(10 ) | Facial Keypoints Detection |
3,593,820 | Tourney_Win_Results['result'] = 1
tourney_lose_result['result'] = 0
tourney_result_Final = pd.concat(( Tourney_Win_Results, tourney_lose_result)).reset_index(drop=True)
tourney_result_Final.to_csv('Tourneyvalidate.csv', index=False )<drop_column> | learn.save('s1' ) | Facial Keypoints Detection |
3,593,820 | tourney_result_Final1 = tourney_result_Final[[
'Seed1', 'Seed2', 'ScoreT1', 'ScoreT2', 'Seed_diff', 'ScoreT_diff', 'result']]<feature_engineering> | learn.load('s1'); | Facial Keypoints Detection |
3,593,820 | tourney_result_Final1.loc[lambda x:(x['Seed1'].isin([14,15,16])) &(x['Seed2'].isin([1,2,3])) ,'result'
] = 0
<load_from_csv> | learn.lr_find() | Facial Keypoints Detection |
3,593,820 | test_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv' )<feature_engineering> | learn.fit_one_cycle(30,5e-5 ) | Facial Keypoints Detection |
3,593,820 | test_df['Season'] = test_df['ID'].map(lambda x: int(x[:4]))
test_df['WTeamID'] = test_df['ID'].map(lambda x: int(x[5:9]))
test_df['LTeamID'] = test_df['ID'].map(lambda x: int(x[10:14]))
test_df<merge> | def flp(npa):
for i in range(npa.shape[0]):
if(i%2==1):
tmp=npa[i]
npa[i]=npa[i-1]
npa[i-1]=tmp
return npa | Facial Keypoints Detection |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.