kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
15,039,251 | players_df = pd.read_csv(datadir/'MPlayers.csv')
players_df<load_from_csv> | model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae'] ) | Facial Keypoints Detection |
15,039,251 | team_coaches_df = pd.read_csv(stage1dir/'MTeamCoaches.csv')
print('team_coaches_df', team_coaches_df.shape)
team_coaches_df.iloc[80:85]<load_from_csv> | ckp_filepath = 'trained_models/model'
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(filepath=ckp_filepath,
monitor='val_mae',
mode='auto',
save_best_only=True,
save_weights_only=True)
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(factor=0.9, monitor='val_mae',
mode='auto', cooldown=0, patience=5, verbose=1, min_lr=1e-5 ) | Facial Keypoints Detection |
15,039,251 | conferences_df = pd.read_csv(stage1dir/'Conferences.csv')
team_conferences_df = pd.read_csv(stage1dir/'MTeamConferences.csv' )<filter> | EPOCHS = 300
BATCH_SIZE = 256
history = model.fit(train_images,
train_labels,
validation_data=(valid_images, valid_labels),
batch_size=BATCH_SIZE, epochs=EPOCHS, callbacks=[model_checkpoint, reduce_lr] ) | Facial Keypoints Detection |
15,039,251 | team_conferences_df[team_conferences_df['TeamID'] == 1102]<load_from_csv> | df_test = pd.read_csv('.. /input/facial-keypoints-detection/test.zip')
df_test.head(1 ) | Facial Keypoints Detection |
15,039,251 | conference_tourney_games_df = pd.read_csv(stage1dir/'MConferenceTourneyGames.csv')
conference_tourney_games_df<load_from_csv> | test_images = np.array(df_test['Image'].str.split().tolist() , dtype='int' ).reshape(-1, 96, 96, 1 ) | Facial Keypoints Detection |
15,039,251 | secondary_tourney_teams_df = pd.read_csv(stage1dir/'MSecondaryTourneyTeams.csv')
secondary_tourney_teams_df<load_from_csv> | normalized_test_images = test_images / 255 . | Facial Keypoints Detection |
15,039,251 | secondary_tourney_results_df = pd.read_csv(stage1dir/'MSecondaryTourneyCompactResults.csv')
secondary_tourney_results_df<load_from_csv> | model.load_weights(ckp_filepath)
keypoints_predictions = model.predict(normalized_test_images, batch_size=BATCH_SIZE ) | Facial Keypoints Detection |
15,039,251 |
<load_from_csv> | idx = np.random.choice(16, 16)
show_examples(test_images[idx], keypoints_predictions[idx] ) | Facial Keypoints Detection |
15,039,251 | tourney_slots_df = pd.read_csv(stage1dir/'MNCAATourneySlots.csv')
tourney_seed_round_slots_df = pd.read_csv(stage1dir/'MNCAATourneySeedRoundSlots.csv' )<filter> | lookup = pd.read_csv('.. /input/facial-keypoints-detection/IdLookupTable.csv')
lookup.head() | Facial Keypoints Detection |
15,039,251 | <filter><EOS> | df_test_predictions = pd.DataFrame(keypoints_predictions, columns=target_cols)
df_test_predictions.index += 1
lookup['Location'] = lookup.set_index(['ImageId', 'FeatureName'] ).index.map(df_test_predictions.stack() ).values
timestamp = pd.to_datetime('today' ).floor('15min')
lookup[['RowId', 'Location']].to_csv(f'predictions_{timestamp}.csv', index=False ) | Facial Keypoints Detection |
8,310,191 | <SOS> metric: RMSE Kaggle data source: facial-keypoints-detection<feature_engineering> | %matplotlib inline | Facial Keypoints Detection |
8,310,191 | for key, row in tournament_results2015_df.iterrows() :
if row['WTeamID'] < row['LTeamID']:
id_name = str(row['Season'])+ '_' + str(row['WTeamID'])+ '_' + str(row['LTeamID'])
sample_submission.loc[sample_submission['ID'] == id_name, 'Pred'] = 1.0
else:
id_name = str(row['Season'])+ '_' + str(row['LTeamID'])+ '_' + str(row['WTeamID'])
sample_submission.loc[sample_submission['ID'] == id_name, 'Pred'] = 0.0<save_to_csv> | def load_data(dir_path, filename):
df = pd.read_csv(os.path.join(dir_path, filename))
if filename not in ['IdLookupTable.csv','SampleSubmission.csv']:
df['Image'] = df['Image'].apply(lambda img: np.fromstring(img, sep=' '))
return df | Facial Keypoints Detection |
8,310,191 | sample_submission.to_csv('submission.csv', index=False )<define_variables> | def summary(df, test=False):
dataname = 'test' if test else 'train'
print("Length of %s data %d..
" %(dataname, len(df)))
print("Count values for each variable:
")
print(df.count() , '
')
print("How many variables has missing values ?
")
print(df.isnull().any().value_counts())
print()
print("Pourcentage of missing values for each variable:
")
summary_list =[100 - df[c].count() /len(df)*100 for c in df.columns]
var_list = [var for var in df.columns]
for i in range(len(summary_list)) :
print("{} : {}".format(var_list[i], np.round(summary_list[i]),2))
print() | Facial Keypoints Detection |
8,310,191 | YEAR = 2021
STAGE = 2
NCAAM = True
NCAAW = False<define_variables> | def get_mean_cols(df):
df_mean_cols = df[df.columns[:-1]].mean(axis = 0, skipna = True ).reset_index()
mean_cols = df_mean_cols[0].mean(axis = 0, skipna = True)
return round(mean_cols ) | Facial Keypoints Detection |
8,310,191 | if NCAAM:
DATA_DIR = f'.. /input/ncaam-march-mania-2021/MDataFiles_Stage{STAGE}/'
if NCAAW:
DATA_DIR = f'.. /input/ncaaw-march-mania-2021/WDataFiles_Stage{STAGE}/'<import_modules> | def scale_data(df, test=False, random_state=42):
img = np.vstack(df['Image'].values)/ 255.
img = img.astype(np.float32)
mean_cols = get_mean_cols(df)
if not test:
keypoints = df[df.columns[:-1]].values
keypoints =(keypoints - mean_cols)/ mean_cols
keypoints = keypoints.astype(np.float32)
else:
keypoints = None
return img, keypoints, mean_cols | Facial Keypoints Detection |
8,310,191 | import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold
import lightgbm as lgb
import xgboost as xgb
from xgboost import XGBClassifier
import gc<load_from_csv> | def _random_indices(inputs, ratio, random_state=1234):
np.random.seed(random_state);
actual_batchsize = inputs.shape[0]
size = int(actual_batchsize * ratio)
indices = np.random.choice(actual_batchsize, size, replace=False)
return indices | Facial Keypoints Detection |
8,310,191 | if YEAR == 2020:
tourney_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneyCompactResults.csv')
tourney_seed = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneySeeds.csv')
elif YEAR == 2021:
tourney_result = pd.read_csv(DATA_DIR + 'MNCAATourneyCompactResults.csv')
tourney_seed = pd.read_csv(DATA_DIR + 'MNCAATourneySeeds.csv' )<drop_column> | def rotate(y, inputs, targets, rotate_ratio, angle= None, right_left = 0):
if angle is None:
angle = np.random.randint(10)
if right_left != 0:
angle = 360 - angle
for i in range(inputs.shape[0]):
inputs[i, :, :, 0] = sk.rotate(inputs[i, :, :, 0], angle)
angle = np.radians(angle)
indices = np.arange(targets.shape[0])
R = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
targets = targets.reshape(len(targets), y.shape[1] // 2, 2)
targets[indices] = np.dot(targets[indices], R)
targets = targets.reshape(len(targets), y.shape[1])
return inputs, targets | Facial Keypoints Detection |
8,310,191 | tourney_result = tourney_result.drop(['DayNum', 'WScore', 'LScore', 'WLoc', 'NumOT'], axis=1)
tourney_result<merge> | def flipp(inputs, targets, flip_ratio, flip_indices= None, random_seed=123):
if flip_indices is None:
flip_indices = [(0, 2),(1, 3),(4, 8),(5, 9),(6, 10),(7, 11),
(12, 16),(13, 17),(14, 18),(15, 19),(22, 24),
(23, 25)]
for i in range(inputs.shape[0]):
inputs[i, :, :, :] = inputs[i, :, ::-1, :]
indices = np.arange(inputs.shape[0])
targets[indices, ::2] = targets[indices, ::2] * -1
for a, b in flip_indices:
targets[indices, a], targets[indices, b] = targets[indices, b], targets[indices, a]
return inputs, targets | Facial Keypoints Detection |
8,310,191 | tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Seed':'WSeed'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Seed':'LSeed'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result<categorify> | def shift_image(X,y,prop=0.1):
X = X.reshape(-1,96,96)
y = y.reshape(-1,30)
for i in range(X.shape[0]):
x_ = X[i]
y_ = y[i]
X[i],y[i] = shift_single_image(x_,y_,prop=prop)
return(X,y ) | Facial Keypoints Detection |
8,310,191 | def get_seed(x):
return int(x[1:3])
tourney_result['WSeed'] = tourney_result['WSeed'].map(lambda x: get_seed(x))
tourney_result['LSeed'] = tourney_result['LSeed'].map(lambda x: get_seed(x))
tourney_result<load_from_csv> | def add_noise(inputs, noise_ratio=0.001):
noisy_img = np.zeros(inputs.shape)
for i in range(inputs.shape[0]):
noise = np.random.randn(96,96,1)
noisy_img[i] = inputs[i] + noise_ratio*noise
return noisy_img | Facial Keypoints Detection |
8,310,191 | if YEAR == 2020:
season_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MRegularSeasonCompactResults.csv')
elif YEAR == 2021:
season_result = pd.read_csv(DATA_DIR + 'MRegularSeasonCompactResults.csv' )<concatenate> | def split_train_validation(X, y, size=0.3, random_state = 69):
X_train, X_validation, y_train, y_validation = train_test_split(X, y, test_size=size, random_state=random_state)
print("Splitting data into train {} and validation {}".format(X_train.shape, X_validation.shape))
return X_train, X_validation, y_train, y_validation | Facial Keypoints Detection |
8,310,191 | season_win_result = season_result[['Season', 'WTeamID', 'WScore']]
season_lose_result = season_result[['Season', 'LTeamID', 'LScore']]
season_win_result.rename(columns={'WTeamID':'TeamID', 'WScore':'Score'}, inplace=True)
season_lose_result.rename(columns={'LTeamID':'TeamID', 'LScore':'Score'}, inplace=True)
season_result = pd.concat(( season_win_result, season_lose_result)).reset_index(drop=True)
season_result<groupby> | train_data = load_data(dir_path, 'training.zip')
test_data = load_data(dir_path, 'test.zip')
idlookup = load_data(dir_path, 'IdLookupTable.csv')
sample_submission = load_data(dir_path,'SampleSubmission.csv' ) | Facial Keypoints Detection |
8,310,191 | season_score = season_result.groupby(['Season', 'TeamID'])['Score'].sum().reset_index()
season_score<merge> | summary(test_data, test=True ) | Facial Keypoints Detection |
8,310,191 | tourney_result = pd.merge(tourney_result, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Score':'WScoreT'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result = pd.merge(tourney_result, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Score':'LScoreT'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result<drop_column> | train_data_copy = train_data.copy()
test_data_copy = test_data.copy() | Facial Keypoints Detection |
8,310,191 | tourney_win_result = tourney_result.drop(['Season', 'WTeamID', 'LTeamID'], axis=1)
tourney_win_result.rename(columns={'WSeed':'Seed1', 'LSeed':'Seed2', 'WScoreT':'ScoreT1', 'LScoreT':'ScoreT2'}, inplace=True)
tourney_win_result<prepare_output> | print("Missing values for the train set where simply NaNs were dropped:
")
print(train_dropna.isnull().any().value_counts())
print()
print("Missing values for the train set where NaNs filled using the forward technique:
")
print(train_fill_nan.isnull().any().value_counts())
| Facial Keypoints Detection |
8,310,191 | tourney_lose_result = tourney_win_result.copy()
tourney_lose_result['Seed1'] = tourney_win_result['Seed2']
tourney_lose_result['Seed2'] = tourney_win_result['Seed1']
tourney_lose_result['ScoreT1'] = tourney_win_result['ScoreT2']
tourney_lose_result['ScoreT2'] = tourney_win_result['ScoreT1']
tourney_lose_result<feature_engineering> | X_train_dropna, y_train_dropna, mean_cols = scale_data(train_dropna)
X_test_dropna, y_test_dropna, _ = scale_data(train_dropna, test=True)
X_train_fill_nan, y_train_fill_nan, mean_cols = scale_data(train_fill_nan)
X_test_fill_nan, y_test_fill_nan, _ = scale_data(train_fill_nan, test=True ) | Facial Keypoints Detection |
8,310,191 | tourney_win_result['Seed_diff'] = tourney_win_result['Seed1'] - tourney_win_result['Seed2']
tourney_win_result['ScoreT_diff'] = tourney_win_result['ScoreT1'] - tourney_win_result['ScoreT2']
tourney_lose_result['Seed_diff'] = tourney_lose_result['Seed1'] - tourney_lose_result['Seed2']
tourney_lose_result['ScoreT_diff'] = tourney_lose_result['ScoreT1'] - tourney_lose_result['ScoreT2']<concatenate> | flip_ratio = 0.8
rotate_ratio = 0.8
contrast_ratio = 1.2
random_seed = 342
angle = 9
use_flip_transf = True
use_rotation_transf = False
use_brightness_transf = False | Facial Keypoints Detection |
8,310,191 | tourney_win_result['result'] = 1
tourney_lose_result['result'] = 0
tourney_result = pd.concat(( tourney_win_result, tourney_lose_result)).reset_index(drop=True)
tourney_result<load_from_csv> | aug_x_train = X_train_dropna.copy()
aug_y_train = y_train_dropna.copy() | Facial Keypoints Detection |
8,310,191 | if YEAR == 2020:
test_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv')
elif YEAR == 2021:
test_df = pd.read_csv(DATA_DIR + f'MSampleSubmissionStage{STAGE}.csv' )<feature_engineering> | if use_flip_transf:
flipped_img, flipped_kepoints = flipp(aug_x_train, aug_y_train, flip_ratio, None, random_seed)
print("Shape of flipped images {} and keypoints {}".format(flipped_img.shape, flipped_kepoints.shape)) | Facial Keypoints Detection |
8,310,191 | test_df['Season'] = test_df['ID'].map(lambda x: int(x[:4]))
test_df['WTeamID'] = test_df['ID'].map(lambda x: int(x[5:9]))
test_df['LTeamID'] = test_df['ID'].map(lambda x: int(x[10:14]))
test_df<merge> | aug_x_train = X_train_dropna.copy()
aug_y_train = y_train_dropna.copy()
use_rotation_transf = True
if use_rotation_transf:
rotated_img_l, rotated_keypoints_l = rotate(y_train_dropna, aug_x_train, aug_y_train, rotate_ratio, 9, 0 ) | Facial Keypoints Detection |
8,310,191 | test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Seed':'Seed1'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Seed':'Seed2'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Score':'ScoreT1'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Score':'ScoreT2'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df<feature_engineering> | aug_x_train = X_train_dropna.copy()
aug_y_train = y_train_dropna.copy()
if use_rotation_transf:
rotated_img_r, rotated_keypoints_r = rotate(y_train_dropna, aug_x_train, aug_y_train, rotate_ratio, 9, 1)
print("Shape of rotated images {} and keypoints {}".format(rotated_img_r.shape, rotated_keypoints_r.shape)) | Facial Keypoints Detection |
8,310,191 | test_df['Seed1'] = test_df['Seed1'].map(lambda x: get_seed(x))
test_df['Seed2'] = test_df['Seed2'].map(lambda x: get_seed(x))
test_df['Seed_diff'] = test_df['Seed1'] - test_df['Seed2']
test_df['ScoreT_diff'] = test_df['ScoreT1'] - test_df['ScoreT2']
test_df = test_df.drop(['ID', 'Pred', 'Season', 'WTeamID', 'LTeamID'], axis=1)
test_df<prepare_x_and_y> | aug_x_train = X_train_dropna.copy()
aug_y_train = y_train_dropna.copy()
use_brightness_transf = True
if use_brightness_transf:
inc_brightness_images = brightness(aug_x_train)
print("Shape of brightned images {} ".format(inc_brightness_images.shape)) | Facial Keypoints Detection |
8,310,191 | X = tourney_result.drop('result', axis=1)
y = tourney_result.result<init_hyperparams> | aug_x_train = X_train_dropna.copy()
aug_y_train = y_train_dropna.copy() | Facial Keypoints Detection |
8,310,191 | params_lgb = {'num_leaves': 127,
'min_data_in_leaf': 10,
'objective': 'binary',
'max_depth': -1,
'learning_rate': 0.01,
"boosting_type": "gbdt",
"bagging_seed": 11,
"metric": 'logloss',
"verbosity": 0
}
params_xgb = {'colsample_bytree': 0.8,
'learning_rate': 0.0003,
'max_depth': 31,
'subsample': 1,
'objective':'binary:logistic',
'eval_metric':'logloss',
'min_child_weight':3,
'gamma':0.25,
'n_estimators':5000,
'verbosity':0
}<split> | shifted_img, shifted_keypoints = shift_image(aug_x_train, aug_y_train, prop=0.1)
shifted_img = shifted_img[:,:,:,np.newaxis]
print("Shape of shifted images {} ".format(shifted_img.shape)) | Facial Keypoints Detection |
8,310,191 | NFOLDS = 5
folds = KFold(n_splits=NFOLDS)
columns = X.columns
splits = folds.split(X, y)
y_preds_lgb = np.zeros(test_df.shape[0])
y_oof_lgb = np.zeros(X.shape[0])
for fold_n,(train_index, valid_index)in enumerate(splits):
X_train, X_valid = X[columns].iloc[train_index], X[columns].iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
dtrain = lgb.Dataset(X_train, label=y_train)
dvalid = lgb.Dataset(X_valid, label=y_valid)
clf = lgb.train(params_lgb, dtrain, 10000, valid_sets = [dtrain, dvalid], verbose_eval=200)
y_pred_valid = clf.predict(X_valid)
y_oof_lgb[valid_index] = y_pred_valid
y_preds_lgb += clf.predict(test_df)/ NFOLDS
del X_train, X_valid, y_train, y_valid
gc.collect()<split> | aug_x_train = X_train_dropna.copy()
noisy_img = add_noise(aug_x_train)
print("Shape of noisy images {} ".format(noisy_img.shape)) | Facial Keypoints Detection |
8,310,191 | NFOLDS = 10
folds = KFold(n_splits=NFOLDS)
columns = X.columns
splits = folds.split(X, y)
y_preds_xgb = np.zeros(test_df.shape[0])
y_oof_xgb = np.zeros(X.shape[0])
for fold_n,(train_index, valid_index)in enumerate(splits):
X_train, X_valid = X[columns].iloc[train_index], X[columns].iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
train_set = xgb.DMatrix(X_train, y_train)
val_set = xgb.DMatrix(X_valid, y_valid)
test_set = xgb.DMatrix(test_df)
clf = xgb.train(params_xgb, train_set,num_boost_round=5000, evals=[(train_set, 'train'),(val_set, 'val')], early_stopping_rounds=100, verbose_eval=100)
y_preds_xgb += clf.predict(test_set)/ NFOLDS
del X_train, X_valid, y_train, y_valid
gc.collect()<load_from_csv> | aug_x_train_ffill = X_train_fill_nan.copy().reshape(( -1, 96,96,1))
aug_y_train_ffill = y_train_fill_nan.copy()
aug_x_train = X_train_dropna.copy().reshape(( -1, 96,96,1))
aug_y_train = y_train_dropna.copy()
aug_x_train = np.concatenate(( aug_x_train, flipped_img, rotated_img_r, rotated_img_l, inc_brightness_images, shifted_img, noisy_img))
aug_y_train = np.concatenate(( aug_y_train, flipped_kepoints, rotated_keypoints_r, rotated_keypoints_l, aug_y_train, shifted_keypoints, aug_y_train))
print("Number of images in the new train dataset using data augmentation :{} {} ".format(aug_x_train.shape, aug_y_train.shape)) | Facial Keypoints Detection |
8,310,191 | if YEAR == 2020:
submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv')
elif YEAR == 2021:
submission_df = pd.read_csv(DATA_DIR + f'MSampleSubmissionStage{STAGE}.csv')
submission_df['Pred'] = 0.9*y_preds_lgb + 0.1*y_preds_xgb
submission_df<save_to_csv> | x_train_dna, x_validation_dna, y_train_dna, y_validation_dna = split_train_validation(X_train_dropna, y_train_dropna)
x_train_ffill, x_validation_ffill, y_train_ffill, y_validation_ffill = split_train_validation(X_train_fill_nan, y_train_fill_nan)
x_train_da, x_validation_da, y_train_da, y_validation_da = split_train_validation(aug_x_train, aug_y_train, 0.1 ) | Facial Keypoints Detection |
8,310,191 | submission_df.to_csv('submission.csv', index=False )<import_modules> | Facial Keypoints Detection |
|
8,310,191 | import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.model_selection import GridSearchCV<load_from_csv> | model_06_01 = Sequential()
model_06_01.add(Convolution2D(filters=64, kernel_size=(3,3), padding='same', input_shape=(96,96,1)))
model_06_01.add(Activation('relu'))
model_06_01.add(Dropout(0.1))
model_06_01.add(SeparableConv2D(filters=256, kernel_size=(3,3), padding='same', use_bias=False))
model_06_01.add(Activation('relu'))
model_06_01.add(MaxPooling2D(pool_size=(2, 2)))
model_06_01.add(Dropout(0.1))
model_06_01.add(SeparableConv2D(filters=256, kernel_size=(3,3), padding='same', use_bias=False))
model_06_01.add(Activation('relu'))
model_06_01.add(BatchNormalization())
model_06_01.add(MaxPooling2D(pool_size=(2, 2)))
model_06_01.add(Dropout(0.25))
model_06_01.add(SeparableConv2D(filters=256, kernel_size=(3,3), padding='same', use_bias=False))
model_06_01.add(Activation('relu'))
model_06_01.add(MaxPooling2D(pool_size=(2, 2)))
model_06_01.add(Dropout(0.25))
model_06_01.add(Flatten())
model_06_01.add(Dense(512,activation='relu'))
model_06_01.add(Dropout(0.5))
model_06_01.add(Dense(30))
model_06_01.summary()
model_06_01.compile(optimizer = 'adam',loss = 'mean_squared_error', metrics=['mae', 'acc'] ) | Facial Keypoints Detection |
8,310,191 | tourney_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneyCompactResults.csv')
tourney_seed = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneySeeds.csv' )<drop_column> | callbacks = [
EarlyStopping(monitor='val_loss', patience=15, mode='min',restore_best_weights=True, verbose=1),
ModelCheckpoint(filepath = 'best_model_06_01.hdf5', monitor='val_mae', verbose=1, save_best_only=True, mode='min')
]
hist_06_01 = model_06_01.fit(x_train_da, y_train_da,
epochs= 80, batch_size=128,
validation_data=(x_validation_da, y_validation_da),
callbacks=callbacks,
verbose=1 ) | Facial Keypoints Detection |
8,310,191 | tourney_result = tourney_result.drop(['DayNum', 'WScore', 'LScore', 'WLoc', 'NumOT'], axis=1)
tourney_result<merge> | Facial Keypoints Detection |
|
8,310,191 | tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Seed':'WSeed'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Seed':'LSeed'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result<categorify> | Facial Keypoints Detection |
|
8,310,191 | def get_seed(x):
return int(x[1:3])
tourney_result['WSeed'] = tourney_result['WSeed'].map(lambda x: get_seed(x))
tourney_result['LSeed'] = tourney_result['LSeed'].map(lambda x: get_seed(x))
tourney_result<load_from_csv> | test_,_, _ = scale_data(test_data_copy, True)
test_img = reshape_data(test_ ) | Facial Keypoints Detection |
8,310,191 | season_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MRegularSeasonCompactResults.csv' )<concatenate> | best_model = load_model('best_model_06_01.hdf5')
pred = best_model.predict(test_img ) | Facial Keypoints Detection |
8,310,191 | season_win_result = season_result[['Season', 'WTeamID', 'WScore']]
season_lose_result = season_result[['Season', 'LTeamID', 'LScore']]
season_win_result.rename(columns={'WTeamID':'TeamID', 'WScore':'Score'}, inplace=True)
season_lose_result.rename(columns={'LTeamID':'TeamID', 'LScore':'Score'}, inplace=True)
season_result = pd.concat(( season_win_result, season_lose_result)).reset_index(drop=True)
season_result<groupby> | feature_name = list(idlookup['FeatureName'])
image_id = list(idlookup['ImageId']-1)
row_id = list(idlookup['RowId'])
feature_list = []
for feature in feature_name:
feature_list.append(feature_name.index(feature))
predictions = []
for x,y in zip(image_id, feature_list):
predictions.append(pred[x][y])
row_id = pd.Series(row_id, name = 'RowId')
locations = pd.Series(predictions, name = 'Location')
locations = locations*mean_cols +mean_cols
submission_result = pd.concat([row_id,locations],axis = 1)
submission_result.to_csv('best_perf_15_1600.csv',index = False ) | Facial Keypoints Detection |
3,331,229 | season_score = season_result.groupby(['Season', 'TeamID'])['Score'].sum().reset_index()
season_score<merge> | train = pd.read_csv('.. /input/training/training.csv' ) | Facial Keypoints Detection |
3,331,229 | tourney_result = pd.merge(tourney_result, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Score':'WScoreT'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result = pd.merge(tourney_result, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Score':'LScoreT'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result<drop_column> | print('size of traning data {}'.format(len(train)))
print('Missing vlaue col ')
print(train.isnull().any().value_counts())
train.isnull().sum().sort_values(ascending=False ) | Facial Keypoints Detection |
3,331,229 | tourney_win_result = tourney_result.drop(['Season', 'WTeamID', 'LTeamID'], axis=1)
tourney_win_result.rename(columns={'WSeed':'Seed1', 'LSeed':'Seed2', 'WScoreT':'ScoreT1', 'LScoreT':'ScoreT2'}, inplace=True)
tourney_win_result<prepare_output> | train.fillna(method='ffill',inplace=True)
train.isnull().any().value_counts() | Facial Keypoints Detection |
3,331,229 | tourney_lose_result = tourney_win_result.copy()
tourney_lose_result['Seed1'] = tourney_win_result['Seed2']
tourney_lose_result['Seed2'] = tourney_win_result['Seed1']
tourney_lose_result['ScoreT1'] = tourney_win_result['ScoreT2']
tourney_lose_result['ScoreT2'] = tourney_win_result['ScoreT1']
tourney_lose_result<feature_engineering> | image_list=[]
for i in train['Image']:
i=i.split(' ')
image_list.append(i)
len(image_list)
| Facial Keypoints Detection |
3,331,229 | tourney_win_result['Seed_diff'] = tourney_win_result['Seed1'] - tourney_win_result['Seed2']
tourney_win_result['ScoreT_diff'] = tourney_win_result['ScoreT1'] - tourney_win_result['ScoreT2']
tourney_lose_result['Seed_diff'] = tourney_lose_result['Seed1'] - tourney_lose_result['Seed2']
tourney_lose_result['ScoreT_diff'] = tourney_lose_result['ScoreT1'] - tourney_lose_result['ScoreT2']<concatenate> | image_list = np.array(object=image_list,dtype=float ) | Facial Keypoints Detection |
3,331,229 | tourney_win_result['result'] = 1
tourney_lose_result['result'] = 0
tourney_result = pd.concat(( tourney_win_result, tourney_lose_result)).reset_index(drop=True)
tourney_result<load_from_csv> | y_train=train.drop(labels='Image',axis=1)
y_train.shape | Facial Keypoints Detection |
3,331,229 | test_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv' )<feature_engineering> | X_train=X_train/255
X_train[1] | Facial Keypoints Detection |
3,331,229 | test_df['Season'] = test_df['ID'].map(lambda x: int(x[:4]))
test_df['WTeamID'] = test_df['ID'].map(lambda x: int(x[5:9]))
test_df['LTeamID'] = test_df['ID'].map(lambda x: int(x[10:14]))
test_df<merge> | model= tf.keras.models.Sequential(
layers=[
tf.keras.layers.Conv2D(filters=32,kernel_size=(3,3),activation=tf.nn.relu,input_shape=(96,96,1)) ,
tf.keras.layers.MaxPool2D(2,2),
tf.keras.layers.Conv2D(filters=32,kernel_size=(3,3),activation=tf.nn.relu,input_shape=(96,96,1)) ,
tf.keras.layers.MaxPool2D(2,2),
tf.keras.layers.Conv2D(filters=64,kernel_size=(3,3),activation=tf.nn.relu,input_shape=(96,96,1)) ,
tf.keras.layers.MaxPool2D(2,2),
tf.keras.layers.Flatten() ,
tf.keras.layers.Dense(units=526,activation='relu'),
tf.keras.layers.Dense(units=526,activation='relu'),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Dense(units=30,activation='relu')
]
) | Facial Keypoints Detection |
3,331,229 | test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Seed':'Seed1'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Seed':'Seed2'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Score':'ScoreT1'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Score':'ScoreT2'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df<feature_engineering> | model.compile(optimizer='adam',
loss='mse',
metrics=['acc'] ) | Facial Keypoints Detection |
3,331,229 | test_df['Seed1'] = test_df['Seed1'].map(lambda x: get_seed(x))
test_df['Seed2'] = test_df['Seed2'].map(lambda x: get_seed(x))
test_df['Seed_diff'] = test_df['Seed1'] - test_df['Seed2']
test_df['ScoreT_diff'] = test_df['ScoreT1'] - test_df['ScoreT2']
test_df = test_df.drop(['ID', 'Pred', 'Season', 'WTeamID', 'LTeamID'], axis=1)
test_df<prepare_x_and_y> | hist=model.fit(x=X_train,y=y_train,batch_size=128,epochs=200,verbose=2,validation_split=0.2)
hist | Facial Keypoints Detection |
3,331,229 | X = tourney_result.drop('result', axis=1)
y = tourney_result.result<init_hyperparams> | from sklearn.metrics import r2_score
| Facial Keypoints Detection |
3,331,229 | params = {'num_leaves': 400,
'min_child_weight': 0.034,
'feature_fraction': 0.379,
'bagging_fraction': 0.418,
'min_data_in_leaf': 106,
'objective': 'binary',
'max_depth': 50,
'learning_rate': 0.0068,
"boosting_type": "gbdt",
"bagging_seed": 11,
"metric": 'logloss',
"verbosity": -1,
'reg_alpha': 0.3899,
'reg_lambda': 0.648,
'random_state': 47,
}<prepare_x_and_y> | y_pred =model.predict(X_train)
score = r2_score(y_train,y_pred)
score | Facial Keypoints Detection |
3,331,229 | NFOLDS = 50
folds = KFold(n_splits=NFOLDS)
columns = X.columns
splits = folds.split(X, y)
y_preds = np.zeros(test_df.shape[0])
y_oof = np.zeros(X.shape[0])
feature_importances = pd.DataFrame()
feature_importances['feature'] = columns
for fold_n,(train_index, valid_index)in enumerate(splits):
print('Fold:',fold_n+1)
X_train, X_valid = X[columns].iloc[train_index], X[columns].iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
dtrain = lgb.Dataset(X_train, label=y_train)
dvalid = lgb.Dataset(X_valid, label=y_valid)
clf = lgb.train(params, dtrain, 10000, valid_sets = [dtrain, dvalid], verbose_eval=200)
feature_importances[f'fold_{fold_n + 1}'] = clf.feature_importance()
y_pred_valid = clf.predict(X_valid)
y_oof[valid_index] = y_pred_valid
y_preds += clf.predict(test_df)/ NFOLDS
del X_train, X_valid, y_train, y_valid
gc.collect()<load_from_csv> | test = pd.read_csv('.. /input/test/test.csv' ) | Facial Keypoints Detection |
3,331,229 | submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv')
submission_df['Pred'] = y_preds
submission_df<save_to_csv> | y=np.arange(1,501 ) | Facial Keypoints Detection |
3,331,229 | submission_df.to_csv('submission.csv', index=False )<save_to_csv> | image_list=[]
for i in test['Image']:
i=i.split(' ')
image_list.append(i)
len(image_list ) | Facial Keypoints Detection |
3,331,229 | feature_importances['average'] = feature_importances[[f'fold_{fold_n + 1}' for fold_n in range(folds.n_splits)]].mean(axis=1)
feature_importances.to_csv('feature_importances.csv')
plt.figure(figsize=(8, 8))
sns.barplot(data=feature_importances.sort_values(by='average', ascending=False ).head(50), x='average', y='feature');
plt.title('50 TOP feature importance over {} folds average'.format(folds.n_splits)) ;<import_modules> | image_list=np.array(image_list,dtype=float)
images=image_list.reshape(-1,96,96,1)
X_test =images/255.0
| Facial Keypoints Detection |
3,331,229 | import os
import json
import numpy as np
import pandas as pd
import keras
from keras import layers
from keras.applications import DenseNet121
from keras.callbacks import Callback, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.models import Sequential
from keras.utils.vis_utils import plot_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score<data_type_conversions> | predicted_value =model.predict(X_test ) | Facial Keypoints Detection |
3,331,229 | x_train = np.load('.. /input/reducing-image-sizes-to-32x32/X_train.npy')
x_test = np.load('.. /input/reducing-image-sizes-to-32x32/X_test.npy')
y_train = np.load('.. /input/reducing-image-sizes-to-32x32/y_train.npy')
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255.
x_test /= 255 .<compute_train_metric> | pv =pd.DataFrame(data=predicted_value)
img_show(image_list,pv ) | Facial Keypoints Detection |
3,331,229 | class Metrics(Callback):
def on_train_begin(self, logs={}):
self.val_f1s = []
self.val_recalls = []
self.val_precisions = []
def on_epoch_end(self, epoch, logs={}):
X_val, y_val = self.validation_data[:2]
y_pred = self.model.predict(X_val)
y_pred_cat = keras.utils.to_categorical(
y_pred.argmax(axis=1),
num_classes=14
)
_val_f1 = f1_score(y_val, y_pred_cat, average='macro')
_val_recall = recall_score(y_val, y_pred_cat, average='macro')
_val_precision = precision_score(y_val, y_pred_cat, average='macro')
self.val_f1s.append(_val_f1)
self.val_recalls.append(_val_recall)
self.val_precisions.append(_val_precision)
print(( f"val_f1: {_val_f1:.4f}"
f" — val_precision: {_val_precision:.4f}"
f" — val_recall: {_val_recall:.4f}"))
return
f1_metrics = Metrics()<choose_model_class> | pred = model.predict(X_test)
lookid_data = pd.read_csv('.. /input/IdLookupTable.csv')
lookid_list = list(lookid_data['FeatureName'])
imageID = list(lookid_data['ImageId']-1)
pre_list = list(pred)
rowid = lookid_data['RowId']
rowid=list(rowid)
feature = []
for f in list(lookid_data['FeatureName']):
feature.append(lookid_list.index(f))
preded = []
for x,y in zip(imageID,feature):
preded.append(pre_list[x][y])
rowid = pd.Series(rowid,name = 'RowId')
loc = pd.Series(preded,name = 'Location')
submission = pd.concat([rowid,loc],axis = 1)
submission.to_csv('submision.csv',index = False ) | Facial Keypoints Detection |
3,331,229 | <choose_model_class><EOS> | df=pd.read_csv('submision.csv' ) | Facial Keypoints Detection |
7,630,243 | <SOS> metric: RMSE Kaggle data source: facial-keypoints-detection<train_model> | %matplotlib inline
| Facial Keypoints Detection |
7,630,243 | model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
history = model.fit(
x=x_train,
y=y_train,
batch_size=256,
epochs=30,
callbacks=[checkpoint, f1_metrics],
validation_split=0.2
)<save_to_csv> | horizontal_flip = False
rotation_augmentation = True
brightness_augmentation = True
shift_augmentation = True
random_noise_augmentation = True
include_unclean_data = True
sample_image_index = 20
rotation_angles = [12]
pixel_shifts = [12]
NUM_EPOCHS = 80
BATCH_SIZE = 64 | Facial Keypoints Detection |
7,630,243 | model.load_weights('model.h5')
y_test = model.predict(x_test)
submission_df = pd.read_csv('.. /input/iwildcam-2019-fgvc6/sample_submission.csv')
submission_df['Predicted'] = y_test.argmax(axis=1)
print(submission_df.shape)
submission_df.head()
submission_df.to_csv('submission.csv',index=False )<set_options> | print("Contents of input/facial-keypoints-detection directory: ")
!ls.. /input/facial-keypoints-detection/
print("
Extracting.zip dataset files to working directory...")
!unzip -u.. /input/facial-keypoints-detection/test.zip
!unzip -u.. /input/facial-keypoints-detection/training.zip
print("
Current working directory:")
!pwd
print("
Contents of working directory:")
!ls | Facial Keypoints Detection |
7,630,243 | warnings.filterwarnings('ignore' )<load_from_csv> | %%time
train_file = 'training.csv'
test_file = 'test.csv'
idlookup_file = '.. /input/facial-keypoints-detection/IdLookupTable.csv'
train_data = pd.read_csv(train_file)
test_data = pd.read_csv(test_file)
idlookup_data = pd.read_csv(idlookup_file ) | Facial Keypoints Detection |
7,630,243 | %%time
train_df = pd.read_csv(os.path.join(PATH, 'train.csv'))
test_df = pd.read_csv(os.path.join(PATH, 'test.csv'))<prepare_x_and_y> | print("Length of train data: {}".format(len(train_data)))
print("Number of Images with missing pixel values: {}".format(len(train_data)- int(train_data.Image.apply(lambda x: len(x.split())).value_counts().values)) ) | Facial Keypoints Detection |
7,630,243 | x_train = np.load('.. /input/reducing-image-sizes-to-32x32/X_train.npy')
x_test = np.load('.. /input/reducing-image-sizes-to-32x32/X_test.npy')
y_train = np.load('.. /input/reducing-image-sizes-to-32x32/y_train.npy' )<define_variables> | train_data.isnull().sum() | Facial Keypoints Detection |
7,630,243 | classes_wild = {0: 'empty', 1: 'deer', 2: 'moose', 3: 'squirrel', 4: 'rodent', 5: 'small_mammal', \
6: 'elk', 7: 'pronghorn_antelope', 8: 'rabbit', 9: 'bighorn_sheep', 10: 'fox', 11: 'coyote', \
12: 'black_bear', 13: 'raccoon', 14: 'skunk', 15: 'wolf', 16: 'bobcat', 17: 'cat',\
18: 'dog', 19: 'opossum', 20: 'bison', 21: 'mountain_goat', 22: 'mountain_lion'}<feature_engineering> | %%time
def load_images(image_data):
images = []
for idx, sample in image_data.iterrows() :
image = np.array(sample['Image'].split(' '), dtype=int)
image = np.reshape(image,(96,96,1))
images.append(image)
images = np.array(images)/255.
return images
def load_keypoints(keypoint_data):
keypoint_data = keypoint_data.drop('Image',axis = 1)
keypoint_features = []
for idx, sample_keypoints in keypoint_data.iterrows() :
keypoint_features.append(sample_keypoints)
keypoint_features = np.array(keypoint_features, dtype = 'float')
return keypoint_features
clean_train_images = load_images(clean_train_data)
print("Shape of clean_train_images: {}".format(np.shape(clean_train_images)))
clean_train_keypoints = load_keypoints(clean_train_data)
print("Shape of clean_train_keypoints: {}".format(np.shape(clean_train_keypoints)))
test_images = load_images(test_data)
print("Shape of test_images: {}".format(np.shape(test_images)))
train_images = clean_train_images
train_keypoints = clean_train_keypoints
fig, axis = plt.subplots()
plot_sample(clean_train_images[sample_image_index], clean_train_keypoints[sample_image_index], axis, "Sample image & keypoints")
if include_unclean_data:
unclean_train_images = load_images(unclean_train_data)
print("Shape of unclean_train_images: {}".format(np.shape(unclean_train_images)))
unclean_train_keypoints = load_keypoints(unclean_train_data)
print("Shape of unclean_train_keypoints: {}
".format(np.shape(unclean_train_keypoints)))
train_images = np.concatenate(( train_images, unclean_train_images))
train_keypoints = np.concatenate(( train_keypoints, unclean_train_keypoints)) | Facial Keypoints Detection |
7,630,243 | train_df['classes_wild'] = train_df['category_id'].apply(lambda cw: classes_wild[cw] )<define_variables> | def left_right_flip(images, keypoints):
flipped_keypoints = []
flipped_images = np.flip(images, axis=2)
for idx, sample_keypoints in enumerate(keypoints):
flipped_keypoints.append([96.-coor if idx%2==0 else coor for idx,coor in enumerate(sample_keypoints)])
return flipped_images, flipped_keypoints
if horizontal_flip:
flipped_train_images, flipped_train_keypoints = left_right_flip(clean_train_images, clean_train_keypoints)
print("Shape of flipped_train_images: {}".format(np.shape(flipped_train_images)))
print("Shape of flipped_train_keypoints: {}".format(np.shape(flipped_train_keypoints)))
train_images = np.concatenate(( train_images, flipped_train_images))
train_keypoints = np.concatenate(( train_keypoints, flipped_train_keypoints))
fig, axis = plt.subplots()
plot_sample(flipped_train_images[sample_image_index], flipped_train_keypoints[sample_image_index], axis, "Horizontally Flipped" ) | Facial Keypoints Detection |
7,630,243 | train_image_files = list(os.listdir(os.path.join(PATH,'train_images')))
test_image_files = list(os.listdir(os.path.join(PATH,'test_images')))
print("Number of image files: train:{} test:{}".format(len(train_image_files), len(test_image_files)) )<train_model> | def rotate_augmentation(images, keypoints):
rotated_images = []
rotated_keypoints = []
print("Augmenting for angles(in degrees): ")
for angle in rotation_angles:
for angle in [angle,-angle]:
print(f'{angle}', end=' ')
M = cv2.getRotationMatrix2D(( 48,48), angle, 1.0)
angle_rad = -angle*pi/180.
for image in images:
rotated_image = cv2.warpAffine(image, M,(96,96), flags=cv2.INTER_CUBIC)
rotated_images.append(rotated_image)
for keypoint in keypoints:
rotated_keypoint = keypoint - 48.
for idx in range(0,len(rotated_keypoint),2):
rotated_keypoint[idx] = rotated_keypoint[idx]*cos(angle_rad)-rotated_keypoint[idx+1]*sin(angle_rad)
rotated_keypoint[idx+1] = rotated_keypoint[idx]*sin(angle_rad)+rotated_keypoint[idx+1]*cos(angle_rad)
rotated_keypoint += 48.
rotated_keypoints.append(rotated_keypoint)
return np.reshape(rotated_images,(-1,96,96,1)) , rotated_keypoints
if rotation_augmentation:
rotated_train_images, rotated_train_keypoints = rotate_augmentation(clean_train_images, clean_train_keypoints)
print("
Shape of rotated_train_images: {}".format(np.shape(rotated_train_images)))
print("Shape of rotated_train_keypoints: {}
".format(np.shape(rotated_train_keypoints)))
train_images = np.concatenate(( train_images, rotated_train_images))
train_keypoints = np.concatenate(( train_keypoints, rotated_train_keypoints))
fig, axis = plt.subplots()
plot_sample(rotated_train_images[sample_image_index], rotated_train_keypoints[sample_image_index], axis, "Rotation Augmentation" ) | Facial Keypoints Detection |
7,630,243 | %%time
train_file_names = list(train_df['file_name'])
print("Matching train image names: {}".format(len(set(train_file_names ).intersection(train_image_files))))<train_model> | def alter_brightness(images, keypoints):
altered_brightness_images = []
inc_brightness_images = np.clip(images*1.2, 0.0, 1.0)
dec_brightness_images = np.clip(images*0.6, 0.0, 1.0)
altered_brightness_images.extend(inc_brightness_images)
altered_brightness_images.extend(dec_brightness_images)
return altered_brightness_images, np.concatenate(( keypoints, keypoints))
if brightness_augmentation:
altered_brightness_train_images, altered_brightness_train_keypoints = alter_brightness(clean_train_images, clean_train_keypoints)
print(f"Shape of altered_brightness_train_images: {np.shape(altered_brightness_train_images)}")
print(f"Shape of altered_brightness_train_keypoints: {np.shape(altered_brightness_train_keypoints)}")
train_images = np.concatenate(( train_images, altered_brightness_train_images))
train_keypoints = np.concatenate(( train_keypoints, altered_brightness_train_keypoints))
fig, axis = plt.subplots()
plot_sample(altered_brightness_train_images[sample_image_index], altered_brightness_train_keypoints[sample_image_index], axis, "Increased Brightness")
fig, axis = plt.subplots()
plot_sample(altered_brightness_train_images[len(altered_brightness_train_images)//2+sample_image_index], altered_brightness_train_keypoints[len(altered_brightness_train_images)//2+sample_image_index], axis, "Decreased Brightness" ) | Facial Keypoints Detection |
7,630,243 | %%time
test_file_names = list(test_df['file_name'])
print("Matching test image names: {}".format(len(set(test_file_names ).intersection(test_image_files))))<count_unique_values> | model = Sequential()
model.add(Convolution2D(32,(3,3), padding='same', use_bias=False, input_shape=(96,96,1)))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(32,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(64,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(64,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(96,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(96,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(128,(3,3),padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(128,(3,3),padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(256,(3,3),padding='same',use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(256,(3,3),padding='same',use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Convolution2D(512,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Convolution2D(512,(3,3), padding='same', use_bias=False))
model.add(LeakyReLU(alpha = 0.1))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(512,activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(30))
model.summary() | Facial Keypoints Detection |
7,630,243 | cnt_classes_images = train_df.classes_wild.nunique()
print("There are {} classes of images".format(cnt_classes_images))
pd.DataFrame(train_df.classes_wild.value_counts() ).transpose()<feature_engineering> | %%time
if os.path.exists('.. /input/data-augmentation-for-facial-keypoint-detection/best_model.hdf5'):
model = load_model('.. /input/data-augmentation-for-facial-keypoint-detection/best_model.hdf5')
checkpointer = ModelCheckpoint(filepath = 'best_model.hdf5', monitor='val_mae', verbose=1, save_best_only=True, mode='min')
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae', 'acc'])
history = model.fit(train_images, train_keypoints, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, validation_split=0.05, callbacks=[checkpointer] ) | Facial Keypoints Detection |
7,630,243 | try:
train_df['date_time'] = pd.to_datetime(train_df['date_captured'], errors='coerce')
train_df["year"] = train_df['date_time'].dt.year
train_df["month"] = train_df['date_time'].dt.month
train_df["day"] = train_df['date_time'].dt.day
train_df["hour"] = train_df['date_time'].dt.hour
train_df["minute"] = train_df['date_time'].dt.minute
except Exception as ex:
print("Exception:".format(ex))<define_variables> | %%time
checkpointer = ModelCheckpoint(filepath = 'best_model.hdf5', monitor='mae', verbose=1, save_best_only=True, mode='min')
model.fit(train_images, train_keypoints, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, callbacks=[checkpointer] ) | Facial Keypoints Detection |
7,630,243 | IMAGE_PATH = os.path.join(PATH,'train_images/')
draw_category_images('classes_wild' )<data_type_conversions> | %%time
model = load_model('best_model.hdf5')
test_preds = model.predict(test_images ) | Facial Keypoints Detection |
7,630,243 | x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255.
x_test /= 255 .<compute_train_metric> | feature_names = list(idlookup_data['FeatureName'])
image_ids = list(idlookup_data['ImageId']-1)
row_ids = list(idlookup_data['RowId'])
feature_list = []
for feature in feature_names:
feature_list.append(feature_names.index(feature))
predictions = []
for x,y in zip(image_ids, feature_list):
predictions.append(test_preds[x][y])
row_ids = pd.Series(row_ids, name = 'RowId')
locations = pd.Series(predictions, name = 'Location')
locations = locations.clip(0.0,96.0)
submission_result = pd.concat([row_ids,locations],axis = 1)
submission_result.to_csv('submission.csv',index = False ) | Facial Keypoints Detection |
5,157,700 | train_data.isnull().sum()<count_missing_values> | batch_size = 32 | empty |
5,157,700 | test_data.isnull().sum()<count_values> | start = time() | empty |
5,157,700 | train_data['IsBadBuy'].value_counts()<count_values> | def seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
seed_everything() | empty |
5,157,700 | train_data['Model'].value_counts()<drop_column> | class DataGenerator(Dataset):
def __init__(self, directory, transform=None, n_samples=np.inf):
self.directory = directory
self.transform = transform
self.n_samples = n_samples
self.samples = self._load_subfolders_images(directory)
if len(self.samples)== 0:
raise RuntimeError("Found 0 files in subfolders of: {}".format(directory))
def _load_subfolders_images(self, root):
IMG_EXTENSIONS =(
'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')
def is_valid_file(x):
return torchvision.datasets.folder.has_file_allowed_extension(x, IMG_EXTENSIONS)
required_transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize(64),
torchvision.transforms.CenterCrop(64),
])
imgs = []
paths = []
for root, _, fnames in sorted(os.walk(root)) :
for fname in sorted(fnames)[:min(self.n_samples, 999999999999999)]:
path = os.path.join(root, fname)
paths.append(path)
for path in paths:
if is_valid_file(path):
img = dset.folder.default_loader(path)
annotation_basename = os.path.splitext(os.path.basename(path)) [0]
annotation_dirname = next(
dirname for dirname in os.listdir('.. /input/annotation/Annotation/')if
dirname.startswith(annotation_basename.split('_')[0]))
annotation_filename = os.path.join('.. /input/annotation/Annotation/',
annotation_dirname, annotation_basename)
tree = ET.parse(annotation_filename)
root = tree.getroot()
objects = root.findall('object')
for o in objects:
bndbox = o.find('bndbox')
xmin = int(bndbox.find('xmin' ).text)
ymin = int(bndbox.find('ymin' ).text)
xmax = int(bndbox.find('xmax' ).text)
ymax = int(bndbox.find('ymax' ).text)
w = np.min(( xmax - xmin, ymax - ymin))
bbox =(xmin, ymin, xmin+w, ymin+w)
object_img = required_transforms(img.crop(bbox))
imgs.append(object_img)
return imgs
def __getitem__(self, index):
sample = self.samples[index]
if self.transform is not None:
sample = self.transform(sample)
return np.asarray(sample)
def __len__(self):
return len(self.samples)
| empty |
5,157,700 | train_data.drop('Model',axis=1,inplace=True)
test_data.drop("Model",axis=1,inplace=True )<count_values> | %%time
database = '.. /input/all-dogs/all-dogs/'
transform = transforms.Compose([transforms.RandomHorizontalFlip(p=0.3),
transforms.ToTensor() ,
transforms.Normalize(( 0.5, 0.5, 0.5),(0.5, 0.5, 0.5)) ])
train_data = DataGenerator(database, transform=transform,n_samples=25000)
train_loader = torch.utils.data.DataLoader(train_data, shuffle=True,batch_size=batch_size, num_workers = 4)
| empty |
5,157,700 | train_data['Trim'].value_counts()<drop_column> | class PixelwiseNorm(nn.Module):
def __init__(self):
super(PixelwiseNorm, self ).__init__()
def forward(self, x, alpha=1e-8):
y = x.pow(2.).mean(dim=1, keepdim=True ).add(alpha ).sqrt()
y = x / y
return y | empty |
5,157,700 | train_data.drop('Trim',inplace=True,axis=1)
test_data.drop('Trim',inplace=True,axis=1 )<count_values> | class MinibatchStdDev(th.nn.Module):
def __init__(self):
super(MinibatchStdDev, self ).__init__()
def forward(self, x, alpha=1e-8):
batch_size, _, height, width = x.shape
y = x - x.mean(dim=0, keepdim=True)
y = th.sqrt(y.pow(2.).mean(dim=0, keepdim=False)+ alpha)
y = y.mean().view(1, 1, 1, 1)
y = y.repeat(batch_size,1, height, width)
y = th.cat([x, y], 1)
return y
| empty |
5,157,700 | <drop_column><EOS> | class Generator(nn.Module):
def __init__(self, nz, nfeats, nchannels):
super(Generator, self ).__init__()
self.conv1 = spectral_norm(nn.ConvTranspose2d(nz, nfeats * 8, 4, 1, 0, bias=False))
self.conv2 = spectral_norm(nn.ConvTranspose2d(nfeats * 8, nfeats * 8, 4, 2, 1, bias=False))
self.conv3 = spectral_norm(nn.ConvTranspose2d(nfeats * 8, nfeats * 4, 4, 2, 1, bias=False))
self.conv4 = spectral_norm(nn.ConvTranspose2d(nfeats * 4, nfeats * 2, 4, 2, 1, bias=False))
self.conv5 = spectral_norm(nn.ConvTranspose2d(nfeats * 2, nfeats, 4, 2, 1, bias=False))
self.conv6 = spectral_norm(nn.ConvTranspose2d(nfeats, nchannels, 3, 1, 1, bias=False))
self.pixnorm = PixelwiseNorm()
def forward(self, x):
x = F.leaky_relu(self.conv1(x))
x = self.conv2(x)
x = F.leaky_relu(self.pixnorm(x))
x = self.conv3(x)
x = F.leaky_relu(self.pixnorm(x))
x = self.conv4(x)
x = F.leaky_relu(self.pixnorm(x))
x = self.conv5(x)
x = F.leaky_relu(self.pixnorm(x))
x = torch.tanh(self.conv6(x))
return x
class Discriminator(nn.Module):
def __init__(self, nchannels, nfeats):
super(Discriminator, self ).__init__()
self.conv1 = nn.Conv2d(nchannels, nfeats, 4, 2, 1, bias=False)
self.conv2 = spectral_norm(nn.Conv2d(nfeats, nfeats * 2, 4, 2, 1, bias=False))
self.bn2 = nn.BatchNorm2d(nfeats * 2)
self.conv3 = spectral_norm(nn.Conv2d(nfeats * 2, nfeats * 4, 4, 2, 1, bias=False))
self.bn3 = nn.BatchNorm2d(nfeats * 4)
self.conv4 = spectral_norm(nn.Conv2d(nfeats * 4, nfeats * 8, 4, 2, 1, bias=False))
self.bn4 = nn.MaxPool2d(2)
self.batch_discriminator = MinibatchStdDev()
self.pixnorm = PixelwiseNorm()
self.conv5 = spectral_norm(nn.Conv2d(nfeats * 8 +1, 1, 2, 1, 0, bias=False))
def forward(self, x):
x = F.leaky_relu(self.conv1(x), 0.2)
x = F.leaky_relu(self.bn2(self.conv2(x)) , 0.2)
x = F.leaky_relu(self.bn3(self.conv3(x)) , 0.2)
x = F.leaky_relu(self.bn4(self.conv4(x)) , 0.2)
x = self.batch_discriminator(x)
x = torch.sigmoid(self.conv5(x))
return x.view(-1, 1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
lr = 0.0002
lr_d = 0.0002
beta1 = 0.5
epochs = 1600
netG = Generator(100, 32, 3 ).to(device)
netD = Discriminator(3, 48 ).to(device)
criterion = nn.BCELoss()
optimizerD = optim.Adam(netD.parameters() , lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters() , lr=lr_d, betas=(beta1, 0.999))
lr_schedulerG = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizerG,
T_0=epochs//200, eta_min=0.00005)
lr_schedulerD = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizerD,
T_0=epochs//200, eta_min=0.00005)
nz = 100
fixed_noise = torch.randn(25, nz, 1, 1, device=device)
real_label = 0.7
fake_label = 0.0
batch_size = train_loader.batch_size
step = 0
for epoch in range(epochs):
for ii,(real_images)in tqdm(enumerate(train_loader), total=len(train_loader)) :
end = time()
if(end -start)> 15000 :
break
netD.zero_grad()
real_images = real_images.to(device)
batch_size = real_images.size(0)
labels = torch.full(( batch_size, 1), real_label, device=device)+ np.random.uniform(-0.1, 0.1)
output = netD(real_images)
errD_real = criterion(output, labels)
errD_real.backward()
D_x = output.mean().item()
noise = torch.randn(batch_size, nz, 1, 1, device=device)
fake = netG(noise)
labels.fill_(fake_label)+ np.random.uniform(0, 0.2)
output = netD(fake.detach())
errD_fake = criterion(output, labels)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
if step % 5 != 0:
netG.zero_grad()
labels.fill_(real_label)
output = netD(fake)
errG = criterion(output, labels)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
if step % 5 == 0:
netG.zero_grad()
labels.fill_(fake_label)
output = netD(fake)
errG = criterion(output, labels)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
if step % 500 == 0:
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)) : %.4f / %.4f'
%(epoch + 1, epochs, ii, len(train_loader),
errD.item() , errG.item() , D_x, D_G_z1, D_G_z2))
valid_image = netG(fixed_noise)
step += 1
lr_schedulerG.step(epoch)
lr_schedulerD.step(epoch)
if epoch % 200 == 0:
show_generated_img()
def truncated_normal(size, threshold=1):
values = truncnorm.rvs(-threshold, threshold, size=size)
return values
if not os.path.exists('.. /output_images'):
os.mkdir('.. /output_images')
im_batch_size = 100
n_images=10000
for i_batch in range(0, n_images, im_batch_size):
z = truncated_normal(( im_batch_size, 100, 1, 1), threshold=1)
gen_z = torch.from_numpy(z ).float().to(device)
gen_images = netG(gen_z)
images = gen_images.to("cpu" ).clone().detach()
images = images.numpy().transpose(0, 2, 3, 1)
for i_image in range(gen_images.size(0)) :
save_image(( gen_images[i_image, :, :, :] +1.0)/2.0, os.path.join('.. /output_images', f'image_{i_batch+i_image:05d}.png'))
shutil.make_archive('images', 'zip', '.. /output_images' ) | empty |
10,493,342 | <SOS> metric: auc Kaggle data source: summer-analytics-2020-capstone-project<count_values> | %matplotlib inline
plt.style.use('seaborn-whitegrid')
warnings.filterwarnings('ignore' ) | Summer Analytics 2020 Capstone Project |
10,493,342 | train_data['Color'].value_counts()<count_values> | df=pd.read_csv('.. /input/summeranalytics2020/train.csv')
df.shape | Summer Analytics 2020 Capstone Project |
10,493,342 | test_data['Color'].value_counts()<data_type_conversions> | pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
df.head() | Summer Analytics 2020 Capstone Project |
10,493,342 | train_data['Color'].fillna(value='Color_Unknown',inplace=True)
test_data['Color'].fillna(value='Color_Unknown',inplace=True )<count_missing_values> | test_df=pd.read_csv('.. /input/summeranalytics2020/test.csv')
print(test_df.shape ) | Summer Analytics 2020 Capstone Project |
10,493,342 | print("Number of null values in Color column "+str(train_data['Color'].isnull().sum()))
print("Number of null values in Color column "+str(test_data['Color'].isnull().sum()))<count_values> | pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
test_df.head() | Summer Analytics 2020 Capstone Project |
10,493,342 | train_data['Transmission'].value_counts()<count_values> | df_combine=pd.concat([df,test_df],axis=0, sort = False,ignore_index = True)
df_combine.shape | Summer Analytics 2020 Capstone Project |
10,493,342 | test_data['Transmission'].value_counts()<filter> | ordinal_catg_col = ["Education", "EnvironmentSatisfaction", "JobInvolvement","JobSatisfaction",
"PerformanceRating","StockOptionLevel","CommunicationSkill", "Behaviour" ]
print(ordinal_catg_col ) | Summer Analytics 2020 Capstone Project |
10,493,342 | train_data[train_data['Transmission']=='Manual']<rename_columns> | df_BusinessTravel_one_hot = pd.get_dummies(df_combine['BusinessTravel'], prefix='BusinessTravel')
df_Department_one_hot = pd.get_dummies(df_combine['Department'], prefix='Department')
df_EducationField_one_hot = pd.get_dummies(df_combine['EducationField'], prefix='EducationField')
df_Gender_one_hot = pd.get_dummies(df_combine['Gender'], prefix='Gender',drop_first=True)
df_JobRole_one_hot = pd.get_dummies(df_combine['JobRole'], prefix='JobRole')
df_MaritalStatus_one_hot = pd.get_dummies(df_combine['MaritalStatus'], prefix='MaritalStatus')
df_OverTime_one_hot = pd.get_dummies(df_combine['OverTime'], prefix='OverTime',drop_first=True ) | Summer Analytics 2020 Capstone Project |
10,493,342 | train_data['Transmission'].replace("Manual","MANUAL",inplace=True )<count_values> | df_nominal_catg = pd.concat([df_BusinessTravel_one_hot, df_Department_one_hot, df_EducationField_one_hot,
df_Gender_one_hot, df_JobRole_one_hot, df_MaritalStatus_one_hot,
df_OverTime_one_hot], axis=1)
print(df_nominal_catg.shape)
df_nominal_catg.head() | Summer Analytics 2020 Capstone Project |
10,493,342 | train_data['Transmission'].value_counts()<data_type_conversions> | final_catg_col = nominal_catg_col + ordinal_catg_col + ["Attrition"]
df_numeric = df_combine.drop(final_catg_col , axis=1)
df_numeric.shape | Summer Analytics 2020 Capstone Project |
10,493,342 | train_data['Transmission'].fillna(value="Transmission_unk",inplace=True)
test_data['Transmission'].fillna(value="Transmission_unk",inplace=True )<count_values> | numeric_col = list(df_numeric.columns)
scaler = MinMaxScaler(feature_range=(0, 1))
df_numeric = scaler.fit_transform(df_numeric)
df_numeric = pd.DataFrame(df_numeric, columns= numeric_col ) | Summer Analytics 2020 Capstone Project |
10,493,342 | train_data['WheelTypeID'].value_counts()<drop_column> | df_pre_process = pd.concat([df_numeric, df_ordinal_catg.reset_index(drop=True),
df_nominal_catg.reset_index(drop=True)],axis=1,sort = False)
print(df_pre_process.shape)
df_pre_process.head() | Summer Analytics 2020 Capstone Project |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.