kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
3,593,820
test_df = pd.merge(test_df, Tourney_Seeds, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Seed':'Seed1'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df = pd.merge(test_df, Tourney_Seeds, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Seed':'Seed2'}, inplace=True) test_df = test_df.drop('TeamID', axis=1 )<save_to_csv>
def get_coords(imgpnts): return(( imgpnts+1)*48 ).numpy()
Facial Keypoints Detection
3,593,820
test_df = pd.merge(test_df, RegularSeason_Compact_Results_Final, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Score':'ScoreT1'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df = pd.merge(test_df, RegularSeason_Compact_Results_Final, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Score':'ScoreT2'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df test_df.to_csv('test_df_Test.csv', index=False )<data_type_conversions>
test_img = open_image(test_path/'1600.jpg') pred = learn.predict(test_img) test_img.show(y=pred[0] )
Facial Keypoints Detection
3,593,820
test_df['Seed1'] = test_df['Seed1'].str.extract('(\d+)', expand=True) test_df['Seed2'] = test_df['Seed2'].str.extract('(\d+)', expand=True) test_df.Seed1 = pd.to_numeric(test_df.Seed1, errors='coerce') test_df.Seed2 = pd.to_numeric(test_df.Seed2, errors='coerce' )<feature_engineering>
test_img = open_image(test_path/'1600.jpg') pred = learn.predict(test_img) test_img.show(y=ImagePoints(FlowField(test_img.size,torch.from_numpy(get_coords(pred[1])))) )
Facial Keypoints Detection
3,593,820
test_df['Seed_diff'] = test_df['Seed1'] - test_df['Seed2'] test_df['ScoreT_diff'] = test_df['ScoreT1'] - test_df['ScoreT2'] test_df = test_df.drop(['ID', 'Pred', 'Season', 'WTeamID', 'LTeamID'], axis=1) test_df<prepare_x_and_y>
a=list(train_csv.columns.values) a.remove('Image') a.append('ImageId' )
Facial Keypoints Detection
3,593,820
X = tourney_result_Final1.drop('result', axis=1) y = tourney_result_Final1.result<normalization>
test_preds = pd.DataFrame(columns=a )
Facial Keypoints Detection
3,593,820
df = pd.concat([X, test_df], axis=0, sort=False ).reset_index(drop=True) df_log = pd.DataFrame( preprocessing.MinMaxScaler().fit_transform(df), columns=df.columns, index=df.index ) train_log, test_log = df_log.iloc[:len(X),:], df_log.iloc[len(X):,:].reset_index(drop=True )<train_on_grid>
f = IntProgress(min=0, max=test_csv.count() [0]) display(f) for test_index in range(test_csv.count() [0]): timg = open_image(test_path/(str(test_index)+'.jpg')) pred = learn.predict(timg) a=np.abs(flp(get_coords(pred[1] ).reshape(1,-1)[0])) a=np.append(a,test_csv.loc[test_index].ImageId) test_preds.loc[test_index]=a f.value+=1
Facial Keypoints Detection
3,593,820
logreg = LogisticRegression() logreg.fit(train_log, y) coeff_logreg = pd.DataFrame(train_log.columns.delete(0)) coeff_logreg.columns = ['feature'] coeff_logreg["score_logreg"] = pd.Series(logreg.coef_[0]) coeff_logreg.sort_values(by='score_logreg', ascending=False )<predict_on_test>
test_preds.ImageId=test_preds.ImageId.astype('int') test_preds.head()
Facial Keypoints Detection
3,593,820
y_logreg_train = logreg.predict(train_log) y_logreg_pred = logreg.predict_proba(test_log )<train_model>
sub = pd.DataFrame(columns=['RowId','Location']) for index,row in id_lookup.iterrows() : fname = row.FeatureName trow=test_preds.loc[test_preds['ImageId']==row.ImageId] sub.loc[index]=[row.RowId,trow.iloc[0][fname]]
Facial Keypoints Detection
3,593,820
clf = RandomForestClassifier(n_estimators=200,max_depth=50) clf.fit(train_log, y) clf_probs = clf.predict_proba(test_log )<prepare_output>
sub.RowId=sub.RowId.astype('int') sub.head()
Facial Keypoints Detection
3,593,820
<load_from_csv><EOS>
sub.to_csv("sub.csv",index=False )
Facial Keypoints Detection
10,870,991
<SOS> metric: RMSE Kaggle data source: facial-keypoints-detection<save_to_csv>
!unzip.. /input/facial-keypoints-detection/test.zip !unzip.. /input/facial-keypoints-detection/training.zip
Facial Keypoints Detection
10,870,991
submission_df.to_csv('submission_New8.csv', index=False )<set_options>
%matplotlib inline
Facial Keypoints Detection
10,870,991
pd.set_option('max_columns', None) plt.style.use('fivethirtyeight') %matplotlib inline py.init_notebook_mode(connected=True) warnings.filterwarnings('ignore') print("Libraries imported!" )<train_model>
device = torch.device('cuda:0' )
Facial Keypoints Detection
10,870,991
class BaseModel(object): def __init__(self, train_df, test_df, target, features, categoricals=[], n_splits=3, cv_method="KFold", group=None, task="regression", parameter_tuning=False, scaler=None, verbose=True): self.train_df = train_df self.test_df = test_df self.target = target self.features = features self.n_splits = n_splits self.categoricals = categoricals self.cv_method = cv_method self.group = group self.task = task self.parameter_tuning = parameter_tuning self.scaler = scaler self.cv = self.get_cv() self.verbose = verbose self.params = self.get_params() self.y_pred, self.score, self.model, self.oof, self.y_val, self.fi_df = self.fit() def train_model(self, train_set, val_set): raise NotImplementedError def get_params(self): raise NotImplementedError def convert_dataset(self, x_train, y_train, x_val, y_val): raise NotImplementedError def convert_x(self, x): return x def calc_metric(self, y_true, y_pred): if self.task == "classification": return log_loss(y_true, y_pred) elif self.task == "regression": return np.sqrt(mean_squared_error(y_true, y_pred)) def get_cv(self): if self.cv_method == "KFold": cv = KFold(n_splits=self.n_splits, shuffle=True, random_state=42) return cv.split(self.train_df) elif self.cv_method == "StratifiedKFold": cv = StratifiedKFold(n_splits=self.n_splits, shuffle=True, random_state=42) return cv.split(self.train_df, self.train_df[self.target]) elif self.cv_method == "TimeSeriesSplit": cv = TimeSeriesSplit(max_train_size=None, n_splits=self.n_splits) return cv.split(self.train_df) elif self.cv_method == "GroupKFold": cv = GroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42) return cv.split(self.train_df, self.train_df[self.target], self.group) elif self.cv_method == "StratifiedGroupKFold": cv = StratifiedGroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42) return cv.split(self.train_df, self.train_df[self.target], self.group) def fit(self): oof_pred = np.zeros(( self.train_df.shape[0],)) y_vals = np.zeros(( self.train_df.shape[0],)) y_pred = np.zeros(( self.test_df.shape[0],)) if self.group is not None: if self.group in self.features: self.features.remove(self.group) if self.group in self.categoricals: self.categoricals.remove(self.group) fi = np.zeros(( self.n_splits, len(self.features))) if self.scaler is not None: numerical_features = [f for f in self.features if f not in self.categoricals] self.train_df[numerical_features] = self.train_df[numerical_features].fillna(self.train_df[numerical_features].median()) self.test_df[numerical_features] = self.test_df[numerical_features].fillna(self.test_df[numerical_features].median()) self.train_df[self.categoricals] = self.train_df[self.categoricals].fillna(self.train_df[self.categoricals].mode().iloc[0]) self.test_df[self.categoricals] = self.test_df[self.categoricals].fillna(self.test_df[self.categoricals].mode().iloc[0]) if self.scaler == "MinMax": scaler = MinMaxScaler() elif self.scaler == "Standard": scaler = StandardScaler() df = pd.concat([self.train_df[numerical_features], self.test_df[numerical_features]], ignore_index=True) scaler.fit(df[numerical_features]) x_test = self.test_df.copy() x_test[numerical_features] = scaler.transform(x_test[numerical_features]) x_test = [np.absolute(x_test[i])for i in self.categoricals] + [x_test[numerical_features]] else: x_test = self.test_df[self.features] for fold,(train_idx, val_idx)in enumerate(self.cv): x_train, x_val = self.train_df.loc[train_idx, self.features], self.train_df.loc[val_idx, self.features] y_train, y_val = self.train_df.loc[train_idx, self.target], self.train_df.loc[val_idx, self.target] if self.scaler is not None: x_train[numerical_features] = scaler.transform(x_train[numerical_features]) x_val[numerical_features] = scaler.transform(x_val[numerical_features]) x_train = [np.absolute(x_train[i])for i in self.categoricals] + [x_train[numerical_features]] x_val = [np.absolute(x_val[i])for i in self.categoricals] + [x_val[numerical_features]] train_set, val_set = self.convert_dataset(x_train, y_train, x_val, y_val) model, importance = self.train_model(train_set, val_set) fi[fold, :] = importance conv_x_val = self.convert_x(x_val) y_vals[val_idx] = y_val oof_pred[val_idx] = model.predict(conv_x_val ).reshape(oof_pred[val_idx].shape) x_test = self.convert_x(x_test) y_pred += model.predict(x_test ).reshape(y_pred.shape)/ self.n_splits print('Partial score of fold {} is: {}'.format(fold, self.calc_metric(y_val, oof_pred[val_idx]))) fi_df = pd.DataFrame() for n in np.arange(self.n_splits): tmp = pd.DataFrame() tmp["features"] = self.features tmp["importance"] = fi[n, :] tmp["fold"] = n fi_df = pd.concat([fi_df, tmp], ignore_index=True) gfi = fi_df[["features", "importance"]].groupby(["features"] ).mean().reset_index() fi_df = fi_df.merge(gfi, on="features", how="left", suffixes=('', '_mean')) loss_score = self.calc_metric(self.train_df[self.target], oof_pred) if self.verbose: print('Our oof loss score is: ', loss_score) return y_pred, loss_score, model, oof_pred, y_vals, fi_df def plot_feature_importance(self, rank_range=[1, 50]): fig, ax = plt.subplots(1, 1, figsize=(10, 20)) sorted_df = self.fi_df.sort_values(by = "importance_mean", ascending=False ).reset_index().iloc[self.n_splits *(rank_range[0]-1): self.n_splits * rank_range[1]] sns.barplot(data=sorted_df, x ="importance", y ="features", orient='h') ax.set_xlabel("feature importance") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) return sorted_df<train_model>
class FacialKeypoiuntsTrainDataset(Dataset): def __init__(self, data_file, transform=None): self.transform = transform dataset = pd.read_csv(data_file) dataset.fillna(method='ffill', inplace=True) self.images = dataset['Image'] dataset = dataset.drop(['Image'], axis=1) self.positions_name = list(dataset.columns) self.positions = dataset.to_numpy() def __len__(self): return len(self.positions) def __getitem__(self, index): x = self.images[index] x = np.array([float(x)for x in x.split(' ')]) x = x.reshape(( 96, 96)) img = np.stack(( x, x, x), axis=-1)/ 255. y = self.positions[index] sample = {'img': img, 'landmarks': y} if self.transform: sample = self.transform(sample) return sample def show_samples(self, indices, title=None, count=10): plt.figure(figsize=(count*3, 3)) display_indices = indices[:count] if title: plt.suptitle(title) for i, index in enumerate(display_indices): sample = self.__getitem__(index) x, y = sample['img'], sample['landmarks'] x = np.asarray(x) y = np.asarray(y) y = y.reshape(( y.size // 2, 2)) plt.subplot(1, count, i + 1) if self.transform: plt.imshow(np.transpose(x,(1, 2, 0))) else: plt.imshow(x) plt.scatter(y[:, 0], y[:, 1], s=15, marker='.', c='r') plt.grid(False) plt.axis('off' )
Facial Keypoints Detection
10,870,991
class LgbModel(BaseModel): def train_model(self, train_set, val_set): verbosity = 100 if self.verbose else 0 model = lgb.train(self.params, train_set, num_boost_round = 5000, valid_sets=[train_set, val_set], verbose_eval=verbosity) fi = model.feature_importance(importance_type="gain") return model, fi def convert_dataset(self, x_train, y_train, x_val, y_val): train_set = lgb.Dataset(x_train, y_train, categorical_feature=self.categoricals) val_set = lgb.Dataset(x_val, y_val, categorical_feature=self.categoricals) return train_set, val_set def get_params(self): params = { 'num_leaves': 127, 'min_data_in_leaf': 50, 'max_depth': -1, 'learning_rate': 0.005, "boosting_type": "gbdt", "bagging_seed": 11, "verbosity": -1, 'random_state': 42, } if self.task == "regression": params["objective"] = "regression" params["metric"] = "rmse" elif self.task == "classification": params["objective"] = "binary" params["metric"] = "binary_logloss" if self.parameter_tuning == True: def objective(trial): train_x, test_x, train_y, test_y = train_test_split(self.train_df[self.features], self.train_df[self.target], test_size=0.3, random_state=42) dtrain = lgb.Dataset(train_x, train_y, categorical_feature=self.categoricals) dtest = lgb.Dataset(test_x, test_y, categorical_feature=self.categoricals) hyperparams = {'num_leaves': trial.suggest_int('num_leaves', 24, 1024), 'boosting_type': 'gbdt', 'objective': params["objective"], 'metric': params["metric"], 'max_depth': trial.suggest_int('max_depth', 4, 16), 'min_child_weight': trial.suggest_int('min_child_weight', 1, 20), 'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0), 'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0), 'bagging_freq': trial.suggest_int('bagging_freq', 1, 7), 'min_child_samples': trial.suggest_int('min_child_samples', 5, 100), 'lambda_l1': trial.suggest_loguniform('lambda_l1', 1e-8, 10.0), 'lambda_l2': trial.suggest_loguniform('lambda_l2', 1e-8, 10.0), 'early_stopping_rounds': 100 } model = lgb.train(hyperparams, dtrain, valid_sets=dtest, verbose_eval=500) pred = model.predict(test_x) if self.task == "classification": return log_loss(test_y, pred) elif self.task == "regression": return np.sqrt(mean_squared_error(test_y, pred)) study = optuna.create_study(direction='minimize') study.optimize(objective, n_trials=50) print('Number of finished trials: {}'.format(len(study.trials))) print('Best trial:') trial = study.best_trial print(' Value: {}'.format(trial.value)) print(' Params: ') for key, value in trial.params.items() : print(' {}: {}'.format(key, value)) params = trial.params params["learning_rate"] = 0.001 plot_optimization_history(study) return params<train_model>
class FacialKeypoiuntsTestDataset(Dataset): def __init__(self, data_file): self.dataset = pd.read_csv(data_file) def __len__(self): return len(self.dataset) def __getitem__(self, index): data_sr = self.dataset.iloc[index] img_id = int(data_sr['ImageId']) x = data_sr['Image'] x = np.array([float(x)for x in x.split(' ')]) x = x.reshape(( 96, 96)) img = np.stack(( x, x, x), axis=-1)/ 255. img = np.transpose(img,(2, 0, 1)).copy() img_t = torch.from_numpy(img ).type(torch.FloatTensor) return img_t, img_id def show_samples(self, indices, title=None, count=10): plt.figure(figsize=(count*3, 3)) display_indices = indices[:count] if title: plt.suptitle(title) for i, index in enumerate(display_indices): x, y = self.__getitem__(index) x = np.asarray(x) plt.subplot(1, count, i + 1) plt.imshow(np.transpose(x,(1, 2, 0))) plt.title(f'Image Id {y}') plt.grid(False) plt.axis('off' )
Facial Keypoints Detection
10,870,991
class CatbModel(BaseModel): def train_model(self, train_set, val_set): verbosity = 100 if self.verbose else 0 if self.task == "regression": model = CatBoostRegressor(**self.params) elif self.task == "classification": model = CatBoostClassifier(**self.params) model.fit(train_set['X'], train_set['y'], eval_set=(val_set['X'], val_set['y']), verbose=verbosity, cat_features=self.categoricals) return model, model.get_feature_importance() def convert_dataset(self, x_train, y_train, x_val, y_val): train_set = {'X': x_train, 'y': y_train} val_set = {'X': x_val, 'y': y_val} return train_set, val_set def get_params(self): params = { 'task_type': "CPU", 'learning_rate': 0.01, 'iterations': 1000, 'random_seed': 42, 'use_best_model': True } if self.task == "regression": params["loss_function"] = "RMSE" elif self.task == "classification": params["loss_function"] = "Logloss" return params<normalization>
train_dataset = FacialKeypoiuntsTrainDataset('./training.csv') test_dataset = FacialKeypoiuntsTestDataset('./test.csv') train_plot_indices = np.random.choice(len(train_dataset), 10) test_plot_indices = np.random.choice(len(test_dataset), 10) train_dataset.show_samples( train_plot_indices, title='Samples from Facial Keypoints Train Dataset', count=7) test_dataset.show_samples( test_plot_indices, title='Samples from Facial Keypoints Test Dataset', count=7 )
Facial Keypoints Detection
10,870,991
class Mish(Layer): def __init__(self, **kwargs): super(Mish, self ).__init__(**kwargs) def build(self, input_shape): super(Mish, self ).build(input_shape) def call(self, x): return x * K.tanh(K.softplus(x)) def compute_output_shape(self, input_shape): return input_shape class LayerNormalization(keras.layers.Layer): def __init__(self, center=True, scale=True, epsilon=None, gamma_initializer='ones', beta_initializer='zeros', gamma_regularizer=None, beta_regularizer=None, gamma_constraint=None, beta_constraint=None, **kwargs): super(LayerNormalization, self ).__init__(**kwargs) self.supports_masking = True self.center = center self.scale = scale if epsilon is None: epsilon = K.epsilon() * K.epsilon() self.epsilon = epsilon self.gamma_initializer = keras.initializers.get(gamma_initializer) self.beta_initializer = keras.initializers.get(beta_initializer) self.gamma_regularizer = keras.regularizers.get(gamma_regularizer) self.beta_regularizer = keras.regularizers.get(beta_regularizer) self.gamma_constraint = keras.constraints.get(gamma_constraint) self.beta_constraint = keras.constraints.get(beta_constraint) self.gamma, self.beta = None, None def get_config(self): config = { 'center': self.center, 'scale': self.scale, 'epsilon': self.epsilon, 'gamma_initializer': keras.initializers.serialize(self.gamma_initializer), 'beta_initializer': keras.initializers.serialize(self.beta_initializer), 'gamma_regularizer': keras.regularizers.serialize(self.gamma_regularizer), 'beta_regularizer': keras.regularizers.serialize(self.beta_regularizer), 'gamma_constraint': keras.constraints.serialize(self.gamma_constraint), 'beta_constraint': keras.constraints.serialize(self.beta_constraint), } base_config = super(LayerNormalization, self ).get_config() return dict(list(base_config.items())+ list(config.items())) def compute_output_shape(self, input_shape): return input_shape def compute_mask(self, inputs, input_mask=None): return input_mask def build(self, input_shape): shape = input_shape[-1:] if self.scale: self.gamma = self.add_weight( shape=shape, initializer=self.gamma_initializer, regularizer=self.gamma_regularizer, constraint=self.gamma_constraint, name='gamma', ) if self.center: self.beta = self.add_weight( shape=shape, initializer=self.beta_initializer, regularizer=self.beta_regularizer, constraint=self.beta_constraint, name='beta', ) super(LayerNormalization, self ).build(input_shape) def call(self, inputs, training=None): mean = K.mean(inputs, axis=-1, keepdims=True) variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True) std = K.sqrt(variance + self.epsilon) outputs =(inputs - mean)/ std if self.scale: outputs *= self.gamma if self.center: outputs += self.beta return outputs<train_model>
batch_size = 32 data_size = len(train_dataset) validation_fraction =.2 val_split_size = int(np.floor(validation_fraction * data_size)) indeces = list(range(data_size)) np.random.shuffle(indeces) val_indeces, train_indeces = indeces[:val_split_size], indeces[val_split_size:] test_indeces = list(range(len(test_dataset))) print(f'train size = {len(train_indeces)}, validation size = {len(val_indeces)}') print(f'test size = {len(test_indeces)}') train_sampler = SubsetRandomSampler(train_indeces) val_sampler = SubsetRandomSampler(val_indeces) test_sampler = SubsetRandomSampler(test_indeces) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler) val_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, sampler=val_sampler) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, sampler=test_sampler )
Facial Keypoints Detection
10,870,991
class NeuralNetworkModel(BaseModel): def train_model(self, train_set, val_set): inputs = [] embeddings = [] embedding_out_dim = self.params['embedding_out_dim'] n_neuron = self.params['hidden_units'] for i in self.categoricals: input_ = Input(shape=(1,)) embedding = Embedding(int(np.absolute(self.train_df[i] ).max() + 1), embedding_out_dim, input_length=1 )(input_) embedding = Reshape(target_shape=(embedding_out_dim,))(embedding) inputs.append(input_) embeddings.append(embedding) input_numeric = Input(shape=(len(self.features)- len(self.categoricals),)) embedding_numeric = Dense(n_neuron )(input_numeric) embedding_numeric = Mish()(embedding_numeric) inputs.append(input_numeric) embeddings.append(embedding_numeric) x = Concatenate()(embeddings) for i in np.arange(self.params['hidden_layers'] - 1): x = Dense(n_neuron //(2 *(i+1)) )(x) x = Mish()(x) x = Dropout(self.params['hidden_dropout'] )(x) x = LayerNormalization()(x) if self.task == "regression": out = Dense(1, activation="linear", name = "out" )(x) loss = "mse" elif self.task == "classification": out = Dense(1, activation='sigmoid', name = 'out' )(x) loss = "binary_crossentropy" model = Model(inputs=inputs, outputs=out) model.compile(loss=loss, optimizer=Adam(lr=1e-04, beta_1=0.9, beta_2=0.999, decay=1e-04)) er = EarlyStopping(patience=10, min_delta=1e-4, restore_best_weights=True, monitor='val_loss') ReduceLR = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=7, verbose=1, epsilon=1e-4, mode='min') model.fit(train_set['X'], train_set['y'], callbacks=[er, ReduceLR], epochs=self.params['epochs'], batch_size=self.params['batch_size'], validation_data=[val_set['X'], val_set['y']]) fi = np.zeros(len(self.features)) return model, fi def convert_dataset(self, x_train, y_train, x_val, y_val): train_set = {'X': x_train, 'y': y_train} val_set = {'X': x_val, 'y': y_val} return train_set, val_set def get_params(self): params = { 'input_dropout': 0.0, 'hidden_layers': 2, 'hidden_units': 128, 'embedding_out_dim': 4, 'hidden_activation': 'relu', 'hidden_dropout': 0.05, 'batch_norm': 'before_act', 'optimizer': {'type': 'adam', 'lr': 0.001}, 'batch_size': 128, 'epochs': 80 } return params<load_from_csv>
nn_model = models.resnet18(pretrained=True) nn_model.fc = nn.Linear(nn_model.fc.in_features, 30) nn_model = nn_model.type(torch.FloatTensor) nn_model = nn_model.to(device) *old_params, new_params = nn_model.parameters()
Facial Keypoints Detection
10,870,991
data_dict = {} for i in glob.glob('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WDataFiles_Stage1/*'): name = i.split('/')[-1].split('.')[0] if name != 'WTeamSpellings': data_dict[name] = pd.read_csv(i) else: data_dict[name] = pd.read_csv(i, encoding='cp1252' )<feature_engineering>
def train_model(model, train_loader, val_loader, loss, optimizer, scheduler, num_epoch, plot_epoch): loss_history = [] train_rmse_history = [] val_rmse_history = [] best_model = None best_val_rmse = None indices = np.random.choice(batch_size, 10) for epoch in range(num_epoch): print(f'Epoch {epoch + 1:2d} / {num_epoch:2d}', end=' ') model.train() average_loss = 0 average_rmse = 0 for i_step, sample in enumerate(train_loader): x, y = sample['img'], sample['landmarks'] x_gpu = x.to(device) y_gpu = y.to(device) prediction = model(x_gpu) loss_value = loss(prediction, y_gpu) optimizer.zero_grad() loss_value.backward() optimizer.step() average_loss += loss_value.item() rmse = mean_squared_error( y, prediction.cpu().detach().numpy() , squared=False) average_rmse += rmse average_loss = average_loss / i_step train_rmse = average_rmse / i_step val_rmse = compute_rmse(model, val_loader) loss_history.append(average_loss) train_rmse_history.append(train_rmse) val_rmse_history.append(val_rmse) print(f'Loss = {average_loss:.4f}, Train RMSE = {train_rmse:.4f}, Val RMSE = {val_rmse:.4f}') if best_val_rmse is None: best_val_rmse = val_rmse best_model = copy.deepcopy(model) if val_rmse < best_val_rmse: best_val_rmse = val_rmse best_model = copy.deepcopy(model) scheduler.step() if(( epoch + 1)% plot_epoch)== 0: plot_results(model, val_loader, indices, title=f'Examples for epoch {epoch + 1}') print(f' Best val RMSE = {best_val_rmse:.4f}') return loss_history, train_rmse_history, val_rmse_history, best_val_rmse, best_model def compute_rmse(model, val_loader): average_rmse = 0 model.eval() for i_step, sample in enumerate(val_loader): x, y = sample['img'], sample['landmarks'] x_gpu = x.to(device) with torch.no_grad() : prediction = model(x_gpu) rmse = mean_squared_error( y, prediction.cpu().detach().numpy() , squared=False) average_rmse += rmse val_rmse = float(average_rmse)/ i_step return val_rmse def plot_results(model, val_loader, indices, title=None, count=10): plt.figure(figsize=(count*3, 3)) display_indices = indices[:count] if title: plt.suptitle(title) model.eval() for i_step, samples in enumerate(val_loader): x_gpu, _ = samples['img'], samples['landmarks'] x_gpu = x_gpu.to(device) with torch.no_grad() : prediction = model(x_gpu) ys = prediction.cpu().detach().numpy() xs = x_gpu.cpu().detach().numpy() for i, index in enumerate(display_indices): x = xs[index] y = ys[index] y = y.reshape(( y.size // 2, 2)) plt.subplot(1, count, i + 1) if x.shape[0] == 3: plt.imshow(np.transpose(x,(1, 2, 0))) else: plt.imshow(x) plt.scatter(y[:, 0], y[:, 1], s=15, marker='.', c='r') plt.grid(False) plt.axis('off') plt.show() break
Facial Keypoints Detection
10,870,991
data_dict['WNCAATourneySeeds']['Seed'] = data_dict['WNCAATourneySeeds']['Seed'].apply(lambda x: int(x[1:3])) data_dict[fname].head()<load_from_csv>
loss = nn.MSELoss().to(device) optimizer = optim.Adam([ {'params': old_params, 'lr': 0.0001}, {'params': new_params} ], lr=0.001, weight_decay=0.01) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=1.) (loss_history, train_rmse_history, val_rmse_history, best_val_rmse, best_model)= train_model(nn_model, train_loader, val_loader, loss, optimizer, scheduler, num_epoch=50, plot_epoch=3 )
Facial Keypoints Detection
10,870,991
test = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv') print(test.shape) test.head()<feature_engineering>
def test_dataset_prediction(test_loader, submissions_data_file, lookup_table_data_file, positions_name, model): submission = pd.read_csv(submissions_data_file) lookup_table = pd.read_csv(lookup_table_data_file) model.eval() for i_step,(x, img_id)in enumerate(test_loader): x_gpu = x.to(device) with torch.no_grad() : prediction = model(x_gpu) prediction = np.asarray(prediction.cpu()) for b_id in range(prediction.shape[0]): for p_id in range(len(positions_name)) : p_name = positions_name[p_id] location = prediction[b_id, p_id] row_id = lookup_table.loc[( (lookup_table['FeatureName'] == p_name)& (lookup_table['ImageId'] == img_id[b_id].item()) )]['RowId'].to_numpy() if row_id.size == 1: submission['Location'][int(row_id[0])- 1] = location return submission
Facial Keypoints Detection
10,870,991
test = test.drop(['Pred'], axis=1) test['Season'] = test['ID'].apply(lambda x: int(x.split('_')[0])) test['WTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[1])) test['LTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[2])) test.head()<merge>
test_submissions = test_dataset_prediction( test_loader, '.. /input/facial-keypoints-detection/SampleSubmission.csv', '.. /input/facial-keypoints-detection/IdLookupTable.csv', train_dataset.positions_name, best_model) test_submissions.to_csv('./submission.csv', index=False )
Facial Keypoints Detection
4,893,231
<merge><EOS>
class Data_Clean(object): def __init__(self, trainPath, testPath): self.train = pd.read_csv(trainPath) self.test = pd.read_csv(testPath) self.data_assemble = [] self.column = self.train.columns.drop('Image') def seperate_data(self): for column_name in self.train.columns.drop('Image'): data = self.train[[column_name, 'Image']].dropna() self.data_assemble.append([data[column_name], data['Image']]) self.test = self.test['Image'] def reshape_image(self): for data in self.data_assemble: data[1] = data[1].apply(lambda im: np.fromstring(im, sep=' ', dtype=float)) values = data[1].values / 255.0 values = np.vstack(values ).reshape(-1, 96, 96, 1) data[1] = values self.test = self.test.apply(lambda img: np.fromstring(img, sep=' ', dtype=float)) self.test = self.test.values / 255.0 self.test = np.vstack(self.test ).reshape(-1, 96, 96, 1) def run(self): self.seperate_data() self.reshape_image() return self.data_assemble, self.test, self.column class CNN(object): def __init__(self, train, test, columns_list): self.train = train self.test = test self.columns_list = columns_list def define_CNN(self): model = Sequential() model.add(Convolution2D(filters=32, kernel_size=(3, 3), padding='same', use_bias=False, input_shape=(96, 96, 1))) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(filters=32, kernel_size=(3, 3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Convolution2D(filters=64, kernel_size=(3, 3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(filters=64, kernel_size=(3, 3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Convolution2D(filters=96, kernel_size=(3, 3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(filters=96, kernel_size=(3, 3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Convolution2D(filters=128, kernel_size=(3, 3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(filters=128, kernel_size=(3, 3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Convolution2D(filters=256, kernel_size=(3, 3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(filters=256, kernel_size=(3, 3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Convolution2D(filters=512, kernel_size=(3, 3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(filters=512, kernel_size=(3, 3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(1)) self.model = model def Adam(self, epochs, batchSize, xtrain, xvalidation, ytrain, yvalidation): self.model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae']) self.model.fit(xtrain, ytrain, batch_size=batchSize, epochs=epochs, validation_data=(xvalidation, yvalidation), verbose=0) def show_a_result(self, ypred, ytest): plt.imshow(ytest.reshape(96, 96)) ypred = copy.deepcopy(ypred) xy = np.split(ypred, 30) predx, predy = [], [] for i in range(0, 30, 2): predx.append(xy[i]) predy.append(xy[i+1]) plt.plot(predx, predy, 'o', color='red') plt.show() def make_output(self, ypred): pred = ypred dataPath = '.. /input/IdLookupTable.csv' lookid_data = pd.read_csv(dataPath) lookid_list = list(lookid_data['FeatureName']) imageID = list(lookid_data['ImageId'] - 1) rowid = lookid_data['RowId'] rowid = list(rowid) feature = [] for f in lookid_list: feature.append(f) preded = [] for x, y in zip(imageID, feature): preded.append(pred[y].loc[x]) rowid = pd.Series(rowid, name='RowId') loc = pd.Series(preded, name='Location') submission = pd.concat([rowid, loc], axis=1) submission.to_csv('Utkarsh.csv', index=False) def run(self): ypred = pd.DataFrame(index = [i for i in range(1783)] ,columns=self.columns_list) for index, data in enumerate(self.train): label = data[0] columns_name = self.columns_list[index] train = data[1] xtrain, xvalidation, ytrain, yvalidation = train_test_split(train, label, test_size=0.1, random_state=9) self.define_CNN() print(columns_name, ' training started:') self.Adam(epochs=100, batchSize=128, xtrain=xtrain, xvalidation=xvalidation, ytrain=ytrain, yvalidation=yvalidation) ypred[columns_name] = self.model.predict(self.test) self.make_output(ypred) self.show_a_result(ypred.loc[159], self.test[159]) if __name__ == '__main__': trainPath = '.. /input/training/training.csv' testPath = '.. /input/test/test.csv' data_clean = Data_Clean(trainPath, testPath) train, test, columns_list = data_clean.run() cnn = CNN(train, test, columns_list) cnn.run()
Facial Keypoints Detection
11,193,217
<SOS> metric: RMSE Kaggle data source: facial-keypoints-detection<merge>
import numpy as np import pandas as pd import matplotlib.pyplot as plt import albumentations as A from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Input, Dense, Flatten from tensorflow.keras.layers import Convolution2D, MaxPool2D, Dropout, BatchNormalization, Dropout, LeakyReLU from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from tensorflow.keras.optimizers import Adam from tensorflow.keras.applications import ResNet50 from tensorflow.python.keras.utils.data_utils import Sequence
Facial Keypoints Detection
11,193,217
cols_to_use = gameCities.columns.difference(test.columns ).tolist() + ["Season", "WTeamID", "LTeamID"] test = test.merge(gameCities[cols_to_use].drop_duplicates(subset=["Season", "WTeamID", "LTeamID"]), how="left", on=["Season", "WTeamID", "LTeamID"]) del gameCities gc.collect() test.head() cols_to_use = data_dict["WSeasons"].columns.difference(test.columns ).tolist() + ["Season"] test = test.merge(data_dict["WSeasons"][cols_to_use].drop_duplicates(subset=["Season"]), how="left", on=["Season"]) test.head() cols_to_use = data_dict["WTeams"].columns.difference(test.columns ).tolist() test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]), how="left", left_on=["WTeamID"], right_on=["TeamID"]) test.drop(['TeamID'], axis=1, inplace=True) test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]), how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L')) test.drop(['TeamID'], axis=1, inplace=True) test.head() cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(test.columns ).tolist() + ['Season'] test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]), how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID']) test.drop(['TeamID'], axis=1, inplace=True) test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]), how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L')) test.drop(['TeamID'], axis=1, inplace=True) print(test.shape) test.head()<drop_column>
SEED = 1 np.random.seed(SEED) tf.random.set_seed(SEED) random.seed(SEED) if SEED is not None: os.environ['PYTHONHASHSEED'] = str(SEED )
Facial Keypoints Detection
11,193,217
not_exist_in_test = [c for c in train.columns.values.tolist() if c not in test.columns.values.tolist() ] print(not_exist_in_test) train = train.drop(not_exist_in_test, axis=1) train.head()<groupby>
!mkdir data/ !unzip -q /kaggle/input/facial-keypoints-detection/training.zip -d data/train !unzip -q /kaggle/input/facial-keypoints-detection/test.zip -d data/test
Facial Keypoints Detection
11,193,217
team_win_score = regularSeason.groupby(['Season', 'WTeamID'] ).agg({'WScore':['sum', 'count', 'var']} ).reset_index() team_win_score.columns = [' '.join(col ).strip() for col in team_win_score.columns.values] team_loss_score = regularSeason.groupby(['Season', 'LTeamID'] ).agg({'LScore':['sum', 'count', 'var']} ).reset_index() team_loss_score.columns = [' '.join(col ).strip() for col in team_loss_score.columns.values] del regularSeason gc.collect()<merge>
def format_dataset(dataframe): X = np.array([ format_image(x)for x in dataframe['Image'] ]) if len(dataframe.columns)> 2: y = dataframe.drop('Image', axis=1 ).values return X, y return X def format_image(img_row): img = img_row.split(' ') img = np.array(img, dtype=np.float32) img = img.reshape(( 96,96,1)) img = img / 255. return img def format_keypoints(keypoint): return(keypoint - 48.) / 48. def unformat_keypoints(keypoint): return keypoint*48 + 48 def show_sample(img, keypoints, axis=None, color='b'): if axis is None: fig, axis = plt.subplots() axis.scatter(keypoints[0::2], keypoints[1::2], s=10, c=color) axis.imshow(img.squeeze() , cmap='gray') def show_random_samples(X, y, n_rows=2, n_cols=5): fig = plt.figure(figsize=(2*n_cols, 2*n_rows), dpi=100) for i, idx in enumerate(np.random.randint(0, len(y), n_rows*n_cols)) : axis = fig.add_subplot(n_rows, n_cols, i+1, xticks=[], yticks=[]) show_sample(X[idx], y[idx], axis=axis) axis.set_title(f'Sample
Facial Keypoints Detection
11,193,217
train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID']) train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID']) train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID']) train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID']) train.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True) train.head()<merge>
train_dir = 'data/train/training.csv' test_dir = 'data/test/test.csv' train_data = pd.read_csv(train_dir) test_data = pd.read_csv(test_dir )
Facial Keypoints Detection
11,193,217
test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID']) test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID']) test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID']) test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID']) test.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True) test.head()<feature_engineering>
print(f'Train sample: {len(train_data)}') print('Pourcentage of missing values:') train_data.isna().mean().round(4)* 100
Facial Keypoints Detection
11,193,217
def preprocess(df): df['x_score'] = df['WScore sum_x'] + df['LScore sum_y'] df['y_score'] = df['WScore sum_y'] + df['LScore sum_x'] df['x_count'] = df['WScore count_x'] + df['LScore count_y'] df['y_count'] = df['WScore count_y'] + df['WScore count_x'] df['x_var'] = df['WScore var_x'] + df['LScore count_y'] df['y_var'] = df['WScore var_y'] + df['WScore var_x'] return df train = preprocess(train) test = preprocess(test )<drop_column>
X_train, y_train = format_dataset(train_data) X_test = format_dataset(test_data) print(X_train.shape, y_train.shape, X_test.shape )
Facial Keypoints Detection
11,193,217
train_win = train.copy() train_los = train.copy() train_win = train_win[['Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L', 'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']] train_los = train_los[['Seed_L', 'Seed_W', 'TeamName_L', 'TeamName_W', 'y_score', 'x_score', 'x_count', 'y_count', 'x_var', 'y_var']] train_win.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2'] train_los.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2'] test = test[['ID', 'Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L', 'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']] test.columns = ['ID', 'Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']<feature_engineering>
show_random_samples(X_train, y_train )
Facial Keypoints Detection
11,193,217
def feature_engineering(df): df['Seed_diff'] = df['Seed_1'] - df['Seed_2'] df['Score_diff'] = df['Score_1'] - df['Score_2'] df['Count_diff'] = df['Count_1'] - df['Count_2'] df['Var_diff'] = df['Var_1'] - df['Var_2'] df['Mean_score1'] = df['Score_1'] / df['Count_1'] df['Mean_score2'] = df['Score_2'] / df['Count_2'] df['Mean_score_diff'] = df['Mean_score1'] - df['Mean_score2'] df['FanoFactor_1'] = df['Var_1'] / df['Mean_score1'] df['FanoFactor_2'] = df['Var_2'] / df['Mean_score2'] return df train_win = feature_engineering(train_win) train_los = feature_engineering(train_los) test = feature_engineering(test )<concatenate>
def create_small_dense_network() : model = Sequential() model.add(Input(shape=(96, 96, 1))) model.add(Flatten()) model.add(Dense(units=100, activation='relu')) model.add(Dense(units=30, activation=None)) return model
Facial Keypoints Detection
11,193,217
data = pd.concat(( train_win, train_los)).reset_index(drop=True) print(data.shape) data.head()<categorify>
model1 = create_small_dense_network() es = EarlyStopping(monitor='val_loss', patience=10) mc = ModelCheckpoint('best_model1.h5', monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=True) model1.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae']) hist1 = model1.fit(X_train, y_train, epochs=500, batch_size=256, verbose=0, validation_split=0.2, callbacks=[es, mc] )
Facial Keypoints Detection
11,193,217
categoricals = ["TeamName_1", "TeamName_2"] for c in categoricals: le = LabelEncoder() data[c] = data[c].fillna("NaN") data[c] = le.fit_transform(data[c]) test[c] = le.transform(test[c]) data.head()<drop_column>
model1.load_weights('best_model1.h5') show_random_preds(model1, X_test )
Facial Keypoints Detection
11,193,217
target = 'result' features = data.columns.values.tolist() features.remove(target )<train_on_grid>
def create_convnet(n_outputs=30): model = Sequential() model.add(Convolution2D(32,(5,5), padding='same', input_shape=(96,96,1))) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(32,(5,5), padding='same')) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Convolution2D(64,(3,3), padding='same')) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(64,(3,3), padding='same')) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Convolution2D(96,(3,3), padding='same')) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(96,(3,3), padding='same')) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Convolution2D(128,(3,3),padding='same')) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(128,(3,3),padding='same')) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Convolution2D(256,(3,3),padding='same')) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(256,(3,3),padding='same')) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Convolution2D(512,(3,3), padding='same')) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Convolution2D(512,(3,3), padding='same')) model.add(LeakyReLU(alpha=0.1)) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(n_outputs)) return model
Facial Keypoints Detection
11,193,217
nn = NeuralNetworkModel(data, test, target, features, categoricals=categoricals, n_splits=10, cv_method="StratifiedKFold", group=None, task="classification", scaler="MinMax", verbose=True )<train_model>
model2 = create_convnet() es = EarlyStopping(monitor='val_loss', patience=10) mc = ModelCheckpoint('best_model2.h5', monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=True) model2.compile(optimizer=Adam() , loss='mean_squared_error', metrics=['mae']) hist2 = model2.fit(X_train, y_train, epochs=50, batch_size=128, verbose=0, validation_split=0.10, callbacks=[es, mc] )
Facial Keypoints Detection
11,193,217
lgbm = LgbModel(data, test, target, features, categoricals=categoricals, n_splits=10, cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True )<create_dataframe>
model2.load_weights('best_model2.h5') show_random_preds(model2, X_test )
Facial Keypoints Detection
11,193,217
catb = CatbModel(data, test, target, features, categoricals=categoricals, n_splits=10, cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True )<load_from_csv>
class DataLoader(Sequence): def __init__(self, X, y, batch_size, augmentations=None, as_rgb=False): self.X, self.y = X, y self.batch_size = batch_size self.augment = augmentations self.shuffle = True self.as_rgb = as_rgb self.on_epoch_end() def __len__(self): return int(np.ceil(len(self.X)/ float(self.batch_size))) def __getitem__(self, idx): indexes = self.indexes[idx*self.batch_size:(idx+1)*self.batch_size] batch_X = self.X[indexes,...] batch_y = self.y[indexes, :] if self.as_rgb: batch_X = np.tile(batch_X, reps=(1,1,1,3)) if self.augment is not None: keypoints = np.array([ tuple(zip(point[::2], point[1::2])) for point in batch_y ]) transformed = [ self.augment(image=x, keypoints=y)for x,y in zip(batch_X, keypoints)] batch_X = np.stack([ z['image'] for z in transformed ], axis=0) batch_y = np.stack([ np.array(z['keypoints'] ).flatten(order='C')for z in transformed ], axis=0) return batch_X, batch_y def on_epoch_end(self): self.indexes = np.arange(len(self.X)) if self.shuffle == True: np.random.shuffle(self.indexes )
Facial Keypoints Detection
11,193,217
submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv') submission_df['Pred'] = 0.7 * lgbm.y_pred + 0.2 * catb.y_pred + 0.1 * nn.y_pred submission_df<save_to_csv>
X_train2, X_valid, y_train2, y_valid = train_test_split(X_train, y_train, test_size=0.10, shuffle=True) transform = A.Compose([ A.ShiftScaleRotate(rotate_limit=30, p=0.5), A.RandomBrightnessContrast(p=0.5), A.GaussianBlur(p=0.5), A.GaussNoise(var_limit=(1e-5, 1e-3), p=0.5), ], keypoint_params=A.KeypointParams(format='xy', remove_invisible=False)) train_loader = DataLoader(X_train2, y_train2, batch_size=128, augmentations=transform) print(X_train2.shape, y_train2.shape) print(X_valid.shape, y_valid.shape) x_batch, y_batch = train_loader[1] show_random_samples(x_batch.squeeze() , y_batch )
Facial Keypoints Detection
11,193,217
submission_df.to_csv('submission.csv', index=False )<set_options>
es = EarlyStopping(monitor='val_loss', patience=20) mc = ModelCheckpoint('best_model3.h5', monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=True) model3 = create_convnet() model3.compile(optimizer=Adam() , loss='mean_squared_error', metrics=['mae']) hist3 = model3.fit(train_loader, steps_per_epoch=len(train_loader), validation_data=(X_valid, y_valid), epochs=500, verbose=0, callbacks=[es, mc] )
Facial Keypoints Detection
11,193,217
pd.set_option('max_columns', None) plt.style.use('fivethirtyeight') %matplotlib inline py.init_notebook_mode(connected=True) warnings.filterwarnings('ignore') print("Libraries imported!" )<train_model>
model3.load_weights('best_model3.h5') show_random_preds(model3, X_test )
Facial Keypoints Detection
11,193,217
class BaseModel(object): def __init__(self, train_df, test_df, target, features, categoricals=[], n_splits=3, cv_method="KFold", group=None, task="regression", parameter_tuning=False, scaler=None, verbose=True): self.train_df = train_df self.test_df = test_df self.target = target self.features = features self.n_splits = n_splits self.categoricals = categoricals self.cv_method = cv_method self.group = group self.task = task self.parameter_tuning = parameter_tuning self.scaler = scaler self.cv = self.get_cv() self.verbose = verbose self.params = self.get_params() self.y_pred, self.score, self.model, self.oof, self.y_val, self.fi_df = self.fit() def train_model(self, train_set, val_set): raise NotImplementedError def get_params(self): raise NotImplementedError def convert_dataset(self, x_train, y_train, x_val, y_val): raise NotImplementedError def convert_x(self, x): return x def calc_metric(self, y_true, y_pred): if self.task == "classification": return log_loss(y_true, y_pred) elif self.task == "regression": return np.sqrt(mean_squared_error(y_true, y_pred)) def get_cv(self): if self.cv_method == "KFold": cv = KFold(n_splits=self.n_splits, shuffle=True, random_state=42) return cv.split(self.train_df) elif self.cv_method == "StratifiedKFold": cv = StratifiedKFold(n_splits=self.n_splits, shuffle=True, random_state=42) return cv.split(self.train_df, self.train_df[self.target]) elif self.cv_method == "TimeSeriesSplit": cv = TimeSeriesSplit(max_train_size=None, n_splits=self.n_splits) return cv.split(self.train_df) elif self.cv_method == "GroupKFold": cv = GroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42) return cv.split(self.train_df, self.train_df[self.target], self.group) elif self.cv_method == "StratifiedGroupKFold": cv = StratifiedGroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42) return cv.split(self.train_df, self.train_df[self.target], self.group) def fit(self): oof_pred = np.zeros(( self.train_df.shape[0],)) y_vals = np.zeros(( self.train_df.shape[0],)) y_pred = np.zeros(( self.test_df.shape[0],)) if self.group is not None: if self.group in self.features: self.features.remove(self.group) if self.group in self.categoricals: self.categoricals.remove(self.group) fi = np.zeros(( self.n_splits, len(self.features))) if self.scaler is not None: numerical_features = [f for f in self.features if f not in self.categoricals] self.train_df[numerical_features] = self.train_df[numerical_features].fillna(self.train_df[numerical_features].median()) self.test_df[numerical_features] = self.test_df[numerical_features].fillna(self.test_df[numerical_features].median()) self.train_df[self.categoricals] = self.train_df[self.categoricals].fillna(self.train_df[self.categoricals].mode().iloc[0]) self.test_df[self.categoricals] = self.test_df[self.categoricals].fillna(self.test_df[self.categoricals].mode().iloc[0]) if self.scaler == "MinMax": scaler = MinMaxScaler() elif self.scaler == "Standard": scaler = StandardScaler() df = pd.concat([self.train_df[numerical_features], self.test_df[numerical_features]], ignore_index=True) scaler.fit(df[numerical_features]) x_test = self.test_df.copy() x_test[numerical_features] = scaler.transform(x_test[numerical_features]) x_test = [np.absolute(x_test[i])for i in self.categoricals] + [x_test[numerical_features]] else: x_test = self.test_df[self.features] for fold,(train_idx, val_idx)in enumerate(self.cv): x_train, x_val = self.train_df.loc[train_idx, self.features], self.train_df.loc[val_idx, self.features] y_train, y_val = self.train_df.loc[train_idx, self.target], self.train_df.loc[val_idx, self.target] if self.scaler is not None: x_train[numerical_features] = scaler.transform(x_train[numerical_features]) x_val[numerical_features] = scaler.transform(x_val[numerical_features]) x_train = [np.absolute(x_train[i])for i in self.categoricals] + [x_train[numerical_features]] x_val = [np.absolute(x_val[i])for i in self.categoricals] + [x_val[numerical_features]] train_set, val_set = self.convert_dataset(x_train, y_train, x_val, y_val) model, importance = self.train_model(train_set, val_set) fi[fold, :] = importance conv_x_val = self.convert_x(x_val) y_vals[val_idx] = y_val oof_pred[val_idx] = model.predict(conv_x_val ).reshape(oof_pred[val_idx].shape) x_test = self.convert_x(x_test) y_pred += model.predict(x_test ).reshape(y_pred.shape)/ self.n_splits print('Partial score of fold {} is: {}'.format(fold, self.calc_metric(y_val, oof_pred[val_idx]))) fi_df = pd.DataFrame() for n in np.arange(self.n_splits): tmp = pd.DataFrame() tmp["features"] = self.features tmp["importance"] = fi[n, :] tmp["fold"] = n fi_df = pd.concat([fi_df, tmp], ignore_index=True) gfi = fi_df[["features", "importance"]].groupby(["features"] ).mean().reset_index() fi_df = fi_df.merge(gfi, on="features", how="left", suffixes=('', '_mean')) loss_score = self.calc_metric(self.train_df[self.target], oof_pred) if self.verbose: print('Our oof loss score is: ', loss_score) return y_pred, loss_score, model, oof_pred, y_vals, fi_df def plot_feature_importance(self, rank_range=[1, 50]): fig, ax = plt.subplots(1, 1, figsize=(10, 20)) sorted_df = self.fi_df.sort_values(by = "importance_mean", ascending=False ).reset_index().iloc[self.n_splits *(rank_range[0]-1): self.n_splits * rank_range[1]] sns.barplot(data=sorted_df, x ="importance", y ="features", orient='h') ax.set_xlabel("feature importance") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) return sorted_df<train_model>
def create_specialist(n_outputs=30, weights=None, freeze=False): model = create_convnet() if weights is not None: model.load_weights(weights) if freeze: for layers in model.layers[:-10]: layers.trainable = False if n_outputs != 30: model.layers.pop() model.add(Dense(n_outputs)) return model def train_specialist(model, keypoints_range, model_name): train_data = pd.read_csv(train_dir) select_col_idx = list(range(*keypoints_range[model_name])) + [-1] subdata = train_data.iloc[:, select_col_idx] subdata = subdata.dropna() X_train, y_train = format_dataset(subdata) X_train2, X_valid, y_train2, y_valid = train_test_split(X_train, y_train, test_size=0.10, shuffle=True) transform = A.Compose([A.ShiftScaleRotate(rotate_limit=30, p=0.5), A.RandomBrightnessContrast(p=0.5), A.GaussianBlur(p=0.5), A.GaussNoise(var_limit=(1e-5, 1e-3), p=0.5)], keypoint_params=A.KeypointParams(format='xy', remove_invisible=False)) train_loader = DataLoader(X_train2, y_train2, batch_size=128, augmentations=transform) es = EarlyStopping(monitor='val_loss', patience=10) mc = ModelCheckpoint(f'best_model_{model_name}.h5', monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=True) model.compile(optimizer=Adam() , loss='mean_squared_error', metrics=['mae']) hist = model.fit(train_loader, steps_per_epoch=len(train_loader), validation_data=(X_valid, y_valid), epochs=250, verbose=0, callbacks=[es, mc]) model.load_weights(f'best_model_{model_name}.h5') return model, hist class ConcatenateSpecialists: def __init__(self, models): self.models = models def predict(self, X): return np.hstack([ m.predict(X)for m in self.models ])
Facial Keypoints Detection
11,193,217
class LgbModel(BaseModel): def train_model(self, train_set, val_set): verbosity = 100 if self.verbose else 0 model = lgb.train(self.params, train_set, num_boost_round = 5000, valid_sets=[train_set, val_set], verbose_eval=verbosity) fi = model.feature_importance(importance_type="gain") return model, fi def convert_dataset(self, x_train, y_train, x_val, y_val): train_set = lgb.Dataset(x_train, y_train, categorical_feature=self.categoricals) val_set = lgb.Dataset(x_val, y_val, categorical_feature=self.categoricals) return train_set, val_set def get_params(self): params = { 'num_leaves': 127, 'min_data_in_leaf': 50, 'max_depth': -1, 'learning_rate': 0.005, "boosting_type": "gbdt", "bagging_seed": 11, "verbosity": -1, 'random_state': 42, } if self.task == "regression": params["objective"] = "regression" params["metric"] = "rmse" elif self.task == "classification": params["objective"] = "binary" params["metric"] = "binary_logloss" if self.parameter_tuning == True: def objective(trial): train_x, test_x, train_y, test_y = train_test_split(self.train_df[self.features], self.train_df[self.target], test_size=0.3, random_state=42) dtrain = lgb.Dataset(train_x, train_y, categorical_feature=self.categoricals) dtest = lgb.Dataset(test_x, test_y, categorical_feature=self.categoricals) hyperparams = {'num_leaves': trial.suggest_int('num_leaves', 24, 1024), 'boosting_type': 'gbdt', 'objective': params["objective"], 'metric': params["metric"], 'max_depth': trial.suggest_int('max_depth', 4, 16), 'min_child_weight': trial.suggest_int('min_child_weight', 1, 20), 'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0), 'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0), 'bagging_freq': trial.suggest_int('bagging_freq', 1, 7), 'min_child_samples': trial.suggest_int('min_child_samples', 5, 100), 'lambda_l1': trial.suggest_loguniform('lambda_l1', 1e-8, 10.0), 'lambda_l2': trial.suggest_loguniform('lambda_l2', 1e-8, 10.0), 'early_stopping_rounds': 100 } model = lgb.train(hyperparams, dtrain, valid_sets=dtest, verbose_eval=500) pred = model.predict(test_x) if self.task == "classification": return log_loss(test_y, pred) elif self.task == "regression": return np.sqrt(mean_squared_error(test_y, pred)) study = optuna.create_study(direction='minimize') study.optimize(objective, n_trials=50) print('Number of finished trials: {}'.format(len(study.trials))) print('Best trial:') trial = study.best_trial print(' Value: {}'.format(trial.value)) print(' Params: ') for key, value in trial.params.items() : print(' {}: {}'.format(key, value)) params = trial.params params["learning_rate"] = 0.001 plot_optimization_history(study) return params<train_model>
specialist_keypoints = {'eyes_centers':(0,4), 'eyes_corners':(4,12), 'eyebrows':(12,20), 'nose':(20,22), 'mouth':(22,30)} models = {} for region, keypoint_ids in specialist_keypoints.items() : print(f'Training model {region}...') model = create_specialist(n_outputs=keypoint_ids[1]-keypoint_ids[0], weights='best_model3.h5', freeze=False) models[region] = train_specialist(model, specialist_keypoints, region )
Facial Keypoints Detection
11,193,217
class CatbModel(BaseModel): def train_model(self, train_set, val_set): verbosity = 100 if self.verbose else 0 if self.task == "regression": model = CatBoostRegressor(**self.params) elif self.task == "classification": model = CatBoostClassifier(**self.params) model.fit(train_set['X'], train_set['y'], eval_set=(val_set['X'], val_set['y']), verbose=verbosity, cat_features=self.categoricals) return model, model.get_feature_importance() def convert_dataset(self, x_train, y_train, x_val, y_val): train_set = {'X': x_train, 'y': y_train} val_set = {'X': x_val, 'y': y_val} return train_set, val_set def get_params(self): params = { 'task_type': "CPU", 'learning_rate': 0.01, 'iterations': 1000, 'random_seed': 42, 'use_best_model': True } if self.task == "regression": params["loss_function"] = "RMSE" elif self.task == "classification": params["loss_function"] = "Logloss" return params<normalization>
model = model3 layer_names = [layer.name for layer in model.layers] intermediate_outputs = [layer.output for layer in model.layers] visualization_model = Model(inputs = model.input, outputs = intermediate_outputs) n = 10 x = X_test[0:2] feature_maps = visualization_model.predict(x) for layer_name, feature_map in zip(layer_names, feature_maps): if len(feature_map.shape)== 4: n_features = feature_map.shape[-1] size = feature_map.shape[ 1] display_grid = np.zeros(( size, size * n)) for i, idx in enumerate(np.random.randint(0, n_features, n)) : x = feature_map[0, :, :, i] x -= x.mean() x /= x.std() x *= 64 x += 128 x = np.clip(x, 0, 255 ).astype('uint8') display_grid[:, i * size :(i + 1)* size] = x scale = 3 plt.figure(figsize=(scale * n, scale)) plt.title(layer_name) plt.grid(False) plt.imshow(display_grid, aspect='auto', cmap='viridis' )
Facial Keypoints Detection
11,193,217
class Mish(Layer): def __init__(self, **kwargs): super(Mish, self ).__init__(**kwargs) def build(self, input_shape): super(Mish, self ).build(input_shape) def call(self, x): return x * K.tanh(K.softplus(x)) def compute_output_shape(self, input_shape): return input_shape class LayerNormalization(keras.layers.Layer): def __init__(self, center=True, scale=True, epsilon=None, gamma_initializer='ones', beta_initializer='zeros', gamma_regularizer=None, beta_regularizer=None, gamma_constraint=None, beta_constraint=None, **kwargs): super(LayerNormalization, self ).__init__(**kwargs) self.supports_masking = True self.center = center self.scale = scale if epsilon is None: epsilon = K.epsilon() * K.epsilon() self.epsilon = epsilon self.gamma_initializer = keras.initializers.get(gamma_initializer) self.beta_initializer = keras.initializers.get(beta_initializer) self.gamma_regularizer = keras.regularizers.get(gamma_regularizer) self.beta_regularizer = keras.regularizers.get(beta_regularizer) self.gamma_constraint = keras.constraints.get(gamma_constraint) self.beta_constraint = keras.constraints.get(beta_constraint) self.gamma, self.beta = None, None def get_config(self): config = { 'center': self.center, 'scale': self.scale, 'epsilon': self.epsilon, 'gamma_initializer': keras.initializers.serialize(self.gamma_initializer), 'beta_initializer': keras.initializers.serialize(self.beta_initializer), 'gamma_regularizer': keras.regularizers.serialize(self.gamma_regularizer), 'beta_regularizer': keras.regularizers.serialize(self.beta_regularizer), 'gamma_constraint': keras.constraints.serialize(self.gamma_constraint), 'beta_constraint': keras.constraints.serialize(self.beta_constraint), } base_config = super(LayerNormalization, self ).get_config() return dict(list(base_config.items())+ list(config.items())) def compute_output_shape(self, input_shape): return input_shape def compute_mask(self, inputs, input_mask=None): return input_mask def build(self, input_shape): shape = input_shape[-1:] if self.scale: self.gamma = self.add_weight( shape=shape, initializer=self.gamma_initializer, regularizer=self.gamma_regularizer, constraint=self.gamma_constraint, name='gamma', ) if self.center: self.beta = self.add_weight( shape=shape, initializer=self.beta_initializer, regularizer=self.beta_regularizer, constraint=self.beta_constraint, name='beta', ) super(LayerNormalization, self ).build(input_shape) def call(self, inputs, training=None): mean = K.mean(inputs, axis=-1, keepdims=True) variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True) std = K.sqrt(variance + self.epsilon) outputs =(inputs - mean)/ std if self.scale: outputs *= self.gamma if self.center: outputs += self.beta return outputs<train_model>
def create_submission_file(model, X_test, save_name='model_preds'): predictions = model.predict(X_test) print(f'Shape: {predictions.shape} - Min: {predictions.min() } - Max: {predictions.max() }') predictions[predictions > 96] = 96 lookid_data = pd.read_csv('/kaggle/input/facial-keypoints-detection/IdLookupTable.csv') image_id = list(lookid_data['ImageId']-1) landmark_names = list(lookid_data['FeatureName']) landmark_ids = [ landmark_names.index(f)for f in landmark_names ] expected_preds = [ predictions[x,y] for x,y in zip(image_id, landmark_ids)] rowid = pd.Series(lookid_data['RowId'], name = 'RowId') loc = pd.Series(expected_preds, name = 'Location') submission = pd.concat([rowid, loc], axis = 1) submission.to_csv(f'{save_name}.csv',index = False) print(f'Successfully created {save_name}.csv !' )
Facial Keypoints Detection
11,193,217
<load_from_csv><EOS>
create_submission_file(model1, X_test, 'model_preds1') create_submission_file(model2, X_test, 'model_preds2') create_submission_file(model3, X_test, 'model_preds3') create_submission_file(model4, X_test, 'model_preds4' )
Facial Keypoints Detection
10,697,594
<SOS> metric: RMSE Kaggle data source: facial-keypoints-detection<feature_engineering>
import numpy as np import pandas as pd import matplotlib.pyplot as plt from IPython.display import clear_output from tqdm import tqdm import os import keras
Facial Keypoints Detection
10,697,594
data_dict['WNCAATourneySeeds']['Seed'] = data_dict['WNCAATourneySeeds']['Seed'].apply(lambda x: int(x[1:3])) data_dict[fname].head()<load_from_csv>
Train_Dir = '/kaggle/input/facial-keypoints-detection/training.zip' Test_Dir = '/kaggle/input/facial-keypoints-detection/test.zip' lookid_dir = '/kaggle/input/facial-keypoints-detection/IdLookupTable.csv' train_data = pd.read_csv(Train_Dir) test_data = pd.read_csv(Test_Dir) lookid_data = pd.read_csv(lookid_dir) os.listdir('.. /input' )
Facial Keypoints Detection
10,697,594
test = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv') print(test.shape) test.head()<feature_engineering>
train_data.isnull().sum()
Facial Keypoints Detection
10,697,594
test = test.drop(['Pred'], axis=1) test['Season'] = test['ID'].apply(lambda x: int(x.split('_')[0])) test['WTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[1])) test['LTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[2])) test.head()<merge>
feature_8 = ['left_eye_center_x','left_eye_center_y','right_eye_center_x','right_eye_center_y','nose_tip_x','nose_tip_y','mouth_center_bottom_lip_x','mouth_center_bottom_lip_y','Image'] train_8 = train_data[feature_8].dropna().reset_index() train_30=train_data.dropna().reset_index()
Facial Keypoints Detection
10,697,594
gameCities = pd.merge(data_dict['WGameCities'], data_dict['Cities'], how='left', on=['CityID']) cols_to_use = gameCities.columns.difference(train.columns ).tolist() + ["Season", "WTeamID", "LTeamID"] train = train.merge(gameCities[cols_to_use], how="left", on=["Season", "WTeamID", "LTeamID"]) train.head() cols_to_use = data_dict["WSeasons"].columns.difference(train.columns ).tolist() + ["Season"] train = train.merge(data_dict["WSeasons"][cols_to_use], how="left", on=["Season"]) train.head() cols_to_use = data_dict["WTeams"].columns.difference(train.columns ).tolist() train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["WTeamID"], right_on=["TeamID"]) train.drop(['TeamID'], axis=1, inplace=True) train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L')) train.drop(['TeamID'], axis=1, inplace=True) print(train.shape) train.head()<merge>
def str_to_int(train1): images = train1.Image.values del train1['Image'] del train1['index'] y=train1.values x = [] for i in tqdm(images): q=[int(j)for j in i.split() ] x.append(q) x=np.array(x) x=x.reshape(-1,96,96,1) x=x/255.0 return([x,y] )
Facial Keypoints Detection
10,697,594
cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(train.columns ).tolist() + ['Season'] train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]), how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID']) train.drop(['TeamID'], axis=1, inplace=True) train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]), how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L')) train.drop(['TeamID'], axis=1, inplace=True) print(train.shape) train.head()<merge>
from keras.models import Sequential from keras.layers import Activation,Convolution2D,MaxPooling2D,BatchNormalization,Flatten,Dense,Dropout,Conv2D,MaxPool2D,ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU
Facial Keypoints Detection
10,697,594
cols_to_use = gameCities.columns.difference(test.columns ).tolist() + ["Season", "WTeamID", "LTeamID"] test = test.merge(gameCities[cols_to_use].drop_duplicates(subset=["Season", "WTeamID", "LTeamID"]), how="left", on=["Season", "WTeamID", "LTeamID"]) del gameCities gc.collect() test.head() cols_to_use = data_dict["WSeasons"].columns.difference(test.columns ).tolist() + ["Season"] test = test.merge(data_dict["WSeasons"][cols_to_use].drop_duplicates(subset=["Season"]), how="left", on=["Season"]) test.head() cols_to_use = data_dict["WTeams"].columns.difference(test.columns ).tolist() test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]), how="left", left_on=["WTeamID"], right_on=["TeamID"]) test.drop(['TeamID'], axis=1, inplace=True) test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]), how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L')) test.drop(['TeamID'], axis=1, inplace=True) test.head() cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(test.columns ).tolist() + ['Season'] test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]), how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID']) test.drop(['TeamID'], axis=1, inplace=True) test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]), how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L')) test.drop(['TeamID'], axis=1, inplace=True) print(test.shape) test.head()<drop_column>
def create_model(out=8): model = Sequential() model.add(Convolution2D(32,(3,3), padding='same', use_bias=False, input_shape=(96,96,1))) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(Convolution2D(32,(3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Convolution2D(64,(3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(Convolution2D(64,(3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Convolution2D(96,(3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(Convolution2D(96,(3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Convolution2D(128,(3,3),padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(Convolution2D(128,(3,3),padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Convolution2D(256,(3,3),padding='same',use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(Convolution2D(256,(3,3),padding='same',use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Convolution2D(512,(3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(Convolution2D(512,(3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(512,activation='relu')) model.add(Dropout(0.1)) model.add(Dense(out)) model.summary() model.compile(optimizer = 'adam' , loss = "mean_squared_error", metrics=["mae"]) return model
Facial Keypoints Detection
10,697,594
not_exist_in_test = [c for c in train.columns.values.tolist() if c not in test.columns.values.tolist() ] print(not_exist_in_test) train = train.drop(not_exist_in_test, axis=1) train.head()<groupby>
model_30 = create_model(out=30) model_8 = create_model(out=8 )
Facial Keypoints Detection
10,697,594
team_win_score = regularSeason.groupby(['Season', 'WTeamID'] ).agg({'WScore':['sum', 'count', 'var']} ).reset_index() team_win_score.columns = [' '.join(col ).strip() for col in team_win_score.columns.values] team_loss_score = regularSeason.groupby(['Season', 'LTeamID'] ).agg({'LScore':['sum', 'count', 'var']} ).reset_index() team_loss_score.columns = [' '.join(col ).strip() for col in team_loss_score.columns.values] del regularSeason gc.collect()<merge>
LR_callback = keras.callbacks.ReduceLROnPlateau(monitor='val_loss', patience=4, verbose=10, factor=.4, min_lr=.00001) EarlyStop_callback = keras.callbacks.EarlyStopping(patience=15, restore_best_weights=True )
Facial Keypoints Detection
10,697,594
train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID']) train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID']) train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID']) train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID']) train.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True) train.head()<merge>
history = model_8.fit(X_train_8,Y_train_8,validation_split=.1,batch_size=64,epochs=50,callbacks=[LR_callback,EarlyStop_callback] )
Facial Keypoints Detection
10,697,594
test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID']) test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID']) test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID']) test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID']) test.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True) test.head()<feature_engineering>
history = model_30.fit(X_train_30,Y_train_30,validation_split=.1,batch_size=64,epochs=50,callbacks=[LR_callback,EarlyStop_callback])
Facial Keypoints Detection
10,697,594
def preprocess(df): df['x_score'] = df['WScore sum_x'] + df['LScore sum_y'] df['y_score'] = df['WScore sum_y'] + df['LScore sum_x'] df['x_count'] = df['WScore count_x'] + df['LScore count_y'] df['y_count'] = df['WScore count_y'] + df['WScore count_x'] df['x_var'] = df['WScore var_x'] + df['LScore var_x'] df['y_var'] = df['WScore var_y'] + df['LScore var_y'] return df train = preprocess(train) test = preprocess(test )<drop_column>
y_hat_30 = model_30.predict(x) y_hat_8 = model_8.predict(x) print('Predictions shape', y_hat_30.shape) print('Predictions shape', y_hat_8.shape )
Facial Keypoints Detection
10,697,594
train_win = train.copy() train_los = train.copy() train_win = train_win[['Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L', 'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']] train_los = train_los[['Seed_L', 'Seed_W', 'TeamName_L', 'TeamName_W', 'y_score', 'x_score', 'x_count', 'y_count', 'x_var', 'y_var']] train_win.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2'] train_los.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2'] test = test[['ID', 'Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L', 'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']] test.columns = ['ID', 'Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']<feature_engineering>
feature_8_index=[0,1,2,3,20,21,28,29] for i in range(8): y_hat_30[:,feature_8_index[i]] = y_hat_8[:,i]
Facial Keypoints Detection
10,697,594
def feature_engineering(df): df['Seed_diff'] = df['Seed_1'] - df['Seed_2'] df['Score_diff'] = df['Score_1'] - df['Score_2'] df['Count_diff'] = df['Count_1'] - df['Count_2'] df['Var_diff'] = df['Var_1'] - df['Var_2'] df['Mean_score1'] = df['Score_1'] / df['Count_1'] df['Mean_score2'] = df['Score_2'] / df['Count_2'] df['Mean_score_diff'] = df['Mean_score1'] - df['Mean_score2'] df['FanoFactor_1'] = df['Var_1'] / df['Mean_score1'] df['FanoFactor_2'] = df['Var_2'] / df['Mean_score2'] return df train_win = feature_engineering(train_win) train_los = feature_engineering(train_los) test = feature_engineering(test )<concatenate>
required_features = list(lookid_data['FeatureName']) imageID = list(lookid_data['ImageId']-1) feature_to_num = dict(zip(required_features[0:30], range(30)) )
Facial Keypoints Detection
10,697,594
data = pd.concat(( train_win, train_los)).reset_index(drop=True) print(data.shape) data.head()<categorify>
feature_ind = [] for f in required_features: feature_ind.append(feature_to_num[f] )
Facial Keypoints Detection
10,697,594
categoricals = ["TeamName_1", "TeamName_2"] for c in categoricals: le = LabelEncoder() data[c] = data[c].fillna("NaN") data[c] = le.fit_transform(data[c]) test[c] = le.transform(test[c]) data.head()<drop_column>
required_pred = [] for x,y in zip(imageID,feature_ind): required_pred.append(y_hat_30[x, y] )
Facial Keypoints Detection
10,697,594
target = 'result' features = data.columns.values.tolist() features.remove(target )<train_on_grid>
rowid = lookid_data['RowId'] loc30 = pd.Series(required_pred,name = 'Location') submission = pd.concat([rowid,loc30],axis = 1) submission.to_csv('Predictions.csv',index = False )
Facial Keypoints Detection
4,220,305
nn = NeuralNetworkModel(data, test, target, features, categoricals=categoricals, n_splits=10, cv_method="StratifiedKFold", group=None, task="classification", scaler="MinMax", verbose=True )<train_model>
Train_Dir = '.. /input/training/training.csv' Test_Dir = '.. /input/test/test.csv' lookid_dir = '.. /input/IdLookupTable.csv' train_data = pd.read_csv(Train_Dir) test_data = pd.read_csv(Test_Dir) lookid_data = pd.read_csv(lookid_dir) os.listdir('.. /input') train_data.fillna(method = 'ffill',inplace = True) imag = [] for i in range(0,7049): img = train_data['Image'][i].split(' ') img = ['0' if x == '' else x for x in img] imag.append(img) image_list = np.array(imag,dtype = 'float') X_train = image_list.reshape(-1,96,96) training = train_data.drop('Image',axis = 1) y_train = [] for i in range(0,7049): y = training.iloc[i,:] y_train.append(y) Y_train = np.array(y_train,dtype = 'float' )
Facial Keypoints Detection
4,220,305
lgbm = LgbModel(data, test, target, features, categoricals=categoricals, n_splits=10, cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True )<create_dataframe>
Facial Keypoints Detection
4,220,305
catb = CatbModel(data, test, target, features, categoricals=categoricals, n_splits=10, cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True )<load_from_csv>
def log_test(net,test_iter,ctx): test_l = 0 for X,y in test_iter: X, y = X.as_in_context(ctx), y.as_in_context(ctx) l = loss(net(X),y) test_l = l.mean().asscalar() return test_l def train(net, X_train, Y_train,num_epochs, trainer, batch_size, ctx): train_files,val_files = train_test_split(range(len(X_train)) ,test_size=0.1,shuffle=True) train_data,train_label = nd.array(X_train[train_files]),nd.array(Y_train[train_files]) val_data,val_label = nd.array(X_train[val_files]),nd.array(Y_train[val_files]) train_iter = gdata.DataLoader(gdata.ArrayDataset(train_data,train_label),batch_size,shuffle=True) test_iter = gdata.DataLoader(gdata.ArrayDataset(val_data,val_label),batch_size) train_ls,test_ls=[],[] print('train on:',ctx) for epoch in range(num_epochs): start = time.time() train_sum_l =0 for X,y in train_iter: X, y = X.expand_dims(axis=1 ).as_in_context(ctx), y.as_in_context(ctx) with autograd.record() : l = loss(net(X),y) l.backward() trainer.step(batch_size) train_loss = loss(net(train_data.expand_dims(axis=1 ).as_in_context(ctx)) ,train_label.as_in_context(ctx)).mean().asscalar() train_ls.append(train_loss) print() if val_files: test_ls.append(loss(net(val_data.expand_dims(axis=1 ).as_in_context(ctx)) ,val_label.as_in_context(ctx)).mean().asscalar()) else: test_ls.append(train_loss) print('epoch %d, train loss %.4f, test loss %.3f, time %.1f sec' %(epoch + 1,train_ls[-1], test_ls[-1], time.time() - start)) return train_ls, test_ls
Facial Keypoints Detection
4,220,305
submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv') submission_df['Pred'] = 0.7 * lgbm.y_pred + 0.2 * catb.y_pred + 0.1 * nn.y_pred submission_df<save_to_csv>
ctx=mx.gpu(0) resnet = vision.resnet34_v1(pretrained=False, ctx=mx.cpu() )
Facial Keypoints Detection
4,220,305
submission_df.to_csv('submission.csv', index=False )<import_modules>
fine_net = resnet.features fine_net.add(nn.Dense(30))
Facial Keypoints Detection
4,220,305
import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences import random import os<set_options>
lr, num_epochs = 0.001, 500 batch_size=128 loss = gloss.L2Loss() net = fine_net net.initialize(force_reinit=True,ctx=ctx, init=init.Xavier()) net.collect_params().reset_ctx(ctx) trainer = gluon.Trainer(net.collect_params() ,'adam',{'learning_rate':lr} )
Facial Keypoints Detection
4,220,305
print("TF version: ", tf.__version__) if tf.__version__ < "2.0.0": tf.enable_eager_execution() print("Eager execution enabled.") else: print("Eager execution enabled by default.") if tf.test.gpu_device_name() : print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) else: print("Please install GPU version of TF" )<define_variables>
train_ls,test_ls = train(net, X_train, Y_train,num_epochs, trainer, batch_size, ctx )
Facial Keypoints Detection
4,220,305
def setseed(seed = 0): random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) os.environ['TF_DETERMINISTIC_OPS'] = '1' SEED = 0 setseed(SEED) setseed()<load_from_csv>
Y_test = net(nd.array(X_test ).expand_dims(axis=1 ).as_in_context(ctx)) Y_test[0]
Facial Keypoints Detection
4,220,305
<import_modules><EOS>
lookid_list = list(lookid_data['FeatureName']) imageID = list(lookid_data['ImageId']-1) pre_list = list(Y_test.asnumpy()) rowid = lookid_data['RowId'] rowid=list(rowid) feature = [] for f in list(lookid_data['FeatureName']): feature.append(lookid_list.index(f)) preded = [] for x,y in zip(imageID,feature): preded.append(pre_list[x][y] if pre_list[x][y]<96 else 96) rowid = pd.Series(rowid,name = 'RowId') loc = pd.Series(preded,name = 'Location') submission = pd.concat([rowid,loc],axis = 1) submission.to_csv('resnet18_submission_0616.csv',index = False )
Facial Keypoints Detection
8,233,083
<SOS> metric: RMSE Kaggle data source: facial-keypoints-detection<string_transform>
%matplotlib inline
Facial Keypoints Detection
8,233,083
def clean_sentences(df): reviews = [] for sent in tqdm(df['Phrase']): review_text = re.sub("[^a-zA-Z]"," ", sent) words = word_tokenize(review_text.lower()) lemmatizer = WordNetLemmatizer() lemma_words = [lemmatizer.lemmatize(i)for i in words] reviews.append(lemma_words) return(reviews )<string_transform>
train_zip_path = '/kaggle/input/facial-keypoints-detection/training.zip' test_zip_path = '/kaggle/input/facial-keypoints-detection/test.zip' Id_table_path = '/kaggle/input/facial-keypoints-detection/IdLookupTable.csv' sample_sub_path = '/kaggle/input/facial-keypoints-detection/SampleSubmission.csv' extracted_files_path = '/kaggle/working'
Facial Keypoints Detection
8,233,083
%%time train_sentences = clean_sentences(train) test_sentences = clean_sentences(test) print(len(train_sentences)) print(len(test_sentences))<string_transform>
with zipfile.ZipFile(train_zip_path, 'r')as zip_ref: zip_ref.extractall(extracted_files_path) with zipfile.ZipFile(test_zip_path, 'r')as zip_ref: zip_ref.extractall(extracted_files_path )
Facial Keypoints Detection
8,233,083
print(train['Phrase'][0]) print(' '.join(train_sentences[0]))<categorify>
train_csv = pd.read_csv(extracted_files_path + '/training.csv') test_csv = pd.read_csv(extracted_files_path + '/test.csv') looktable_csv = pd.read_csv(Id_table_path )
Facial Keypoints Detection
8,233,083
target = train.Sentiment.values y_target = to_categorical(target) num_classes = y_target.shape[1]<import_modules>
feature_8 = ['left_eye_center_x', 'left_eye_center_y', 'right_eye_center_x','right_eye_center_y', 'nose_tip_x', 'nose_tip_y', 'mouth_center_bottom_lip_x', 'mouth_center_bottom_lip_y', 'Image'] train_8_csv = train_csv[feature_8].dropna().reset_index() train_30_csv = train_csv.dropna().reset_index()
Facial Keypoints Detection
8,233,083
from sklearn.model_selection import train_test_split<import_modules>
def str_to_array(pd_series): data_size = len(pd_series) X = np.zeros(shape=(data_size,96,96,1), dtype=np.float32) for i in tqdm(range(data_size)) : img_str = pd_series[i] img_list = img_str.split(' ') img_array = np.array(img_list, dtype=np.float32) img_array = img_array.reshape(96,96,1) X[i] = img_array return X
Facial Keypoints Detection
8,233,083
from sklearn.model_selection import train_test_split<split>
X_train_30 = str_to_array(train_30_csv['Image']) labels_30 = train_30_csv.drop(['index','Image'], axis=1) y_train_30 = labels_30.to_numpy(dtype=np.float32) print('X_train with 30 feature shape: ', X_train_30.shape) print('y_train with 30 feature shape: ', y_train_30.shape )
Facial Keypoints Detection
8,233,083
X_train, X_val, y_train, y_val = train_test_split(train_sentences, y_target, test_size = 0.2, stratify = y_target )<count_unique_values>
X_train_8 = str_to_array(train_8_csv['Image']) labels_8 = train_8_csv.drop(['index','Image'], axis=1) y_train_8 = labels_8.to_numpy(dtype=np.float32) print('X_train with 8 feature shape: ', X_train_8.shape) print('y_train with 8 feature shape: ', y_train_8.shape )
Facial Keypoints Detection
8,233,083
unique_words = set() len_max = 0 for sent in tqdm(X_train): unique_words.update(sent) if(len_max < len(sent)) : len_max = len(sent) print('Number of vocabs: ', len(list(unique_words))) print('Max length of text is: ', len_max )<define_variables>
def create_model(output_n = 30): model = keras.models.Sequential([ keras.layers.InputLayer(input_shape=[96,96,1]), keras.layers.Conv2D(filters=32, kernel_size=[5,5], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Conv2D(filters=32, kernel_size=[5,5], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.MaxPool2D(pool_size=[2,2]), keras.layers.Conv2D(filters=64, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Conv2D(filters=64, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.MaxPool2D(pool_size=[2,2]), keras.layers.Conv2D(filters=128, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Conv2D(filters=128, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.MaxPool2D(pool_size=[2,2]), keras.layers.Conv2D(filters=256, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Conv2D(filters=256, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.MaxPool2D(pool_size=[2,2]), keras.layers.Conv2D(filters=512, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Conv2D(filters=512, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Flatten() , keras.layers.Dense(units=512, activation='relu'), keras.layers.Dropout (.1), keras.layers.Dense(units=output_n), ]) model.compile(optimizer = 'adam' , loss = "mean_squared_error", metrics=["mae"]) return model
Facial Keypoints Detection
8,233,083
vocab_size = len(list(unique_words)) embedding_dim = 300 max_length = len_max trunc_type='post' padding_type='post' oov_tok = "<OOV>"<string_transform>
model_30 = create_model(output_n=30) model_8 = create_model(output_n=8 )
Facial Keypoints Detection
8,233,083
%%time tokenizer = Tokenizer(num_words = vocab_size, ', oov_token = oov_tok, char_level = False) tokenizer.fit_on_texts(list(X_train)) X_train = tokenizer.texts_to_sequences(X_train) X_train = pad_sequences(X_train, maxlen = max_length, padding = padding_type, truncating = trunc_type) X_val = tokenizer.texts_to_sequences(X_val) X_val = pad_sequences(X_val, maxlen = max_length, padding = padding_type, truncating = trunc_type) X_test = tokenizer.texts_to_sequences(test_sentences) X_test = pad_sequences(X_test, maxlen = max_length, padding = padding_type, truncating = trunc_type )<choose_model_class>
LR_callback = keras.callbacks.ReduceLROnPlateau(monitor='val_loss', patience=4, verbose=10, factor=.4, min_lr=.00001) EarlyStop_callback = keras.callbacks.EarlyStopping(patience=15, restore_best_weights=True )
Facial Keypoints Detection
8,233,083
model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length = max_length), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(128, dropout = 0.8, recurrent_dropout=0.8, return_sequences=True)) , tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, dropout = 0.5, recurrent_dropout=0.5, return_sequences=False)) , tf.keras.layers.Dense(128, activation = 'relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(num_classes, activation = 'softmax') ]) model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy']) model.summary()<choose_model_class>
history = model_30.fit(X_train_30, y_train_30, validation_split=.1, batch_size=64, epochs=100, callbacks=[LR_callback,EarlyStop_callback] )
Facial Keypoints Detection
8,233,083
early_stopping = EarlyStopping(min_delta = 0.001, mode = 'max', monitor = 'val_acc', patience = 2) callback = [early_stopping]<train_model>
history = model_8.fit(X_train_8, y_train_8, validation_split=.1, batch_size=64, epochs=100, callbacks=[LR_callback,EarlyStop_callback] )
Facial Keypoints Detection
8,233,083
%%time num_epochs = 5 history = model.fit(X_train, y_train, validation_data =(X_val, y_val), epochs = num_epochs, batch_size = 256, verbose = 1, callbacks = callback )<define_variables>
X_test = str_to_array(test_csv['Image']) print('X_test shape: ', X_test.shape )
Facial Keypoints Detection
8,233,083
test_id = test['PhraseId']<predict_on_test>
y_hat_30 = model_30.predict(X_test) y_hat_8 = model_8.predict(X_test) print('Predictions shape', y_hat_30.shape) print('Predictions shape', y_hat_8.shape )
Facial Keypoints Detection
8,233,083
%%time y_pred = np.argmax(model.predict(X_test), axis=-1 )<save_to_csv>
feature_8_ind = [0, 1, 2, 3, 20, 21, 28, 29] for i in range(8): print('Copy "{}" feature column from y_hat_8 --> y_hat_30'.format(feature_8[i])) y_hat_30[:,feature_8_ind[i]] = y_hat_8[:,i]
Facial Keypoints Detection
8,233,083
submission = pd.DataFrame({'PhraseId': test_id, 'Sentiment': y_pred}) submission.to_csv('movie_review_prediction_5EP_MLBDLSTM_submission.csv', index=False) submission.head()<set_options>
required_features = list(looktable_csv['FeatureName']) imageID = list(looktable_csv['ImageId']-1) feature_to_num = dict(zip(required_features[0:30], range(30)) )
Facial Keypoints Detection
8,233,083
py.init_notebook_mode(connected=True) pd.set_option('max_columns', 50 )<define_variables>
feature_ind = [] for f in required_features: feature_ind.append(feature_to_num[f] )
Facial Keypoints Detection
8,233,083
datadir = Path('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament') stage1dir = datadir/'MDataFiles_Stage1'<load_from_csv>
required_pred = [] for x,y in zip(imageID,feature_ind): required_pred.append(y_hat_30[x, y] )
Facial Keypoints Detection
8,233,083
<load_from_csv><EOS>
rowid = looktable_csv['RowId'] loc30 = pd.Series(required_pred,name = 'Location') submission = pd.concat([rowid,loc30],axis = 1) submission.to_csv('Merged_Predictions.csv',index = False )
Facial Keypoints Detection
15,039,251
<SOS> metric: RMSE Kaggle data source: facial-keypoints-detection<load_from_csv>
mpl.style.use('seaborn-darkgrid' )
Facial Keypoints Detection
15,039,251
tourney_seeds_df = pd.read_csv(stage1dir/'MNCAATourneySeeds.csv') tourney_seeds_df<load_from_csv>
df_train = pd.read_csv('.. /input/facial-keypoints-detection/training.zip') df_train.head(1 )
Facial Keypoints Detection
15,039,251
regular_season_results_df = pd.read_csv(stage1dir/'MRegularSeasonCompactResults.csv') tournament_results_df = pd.read_csv(stage1dir/'MNCAATourneyCompactResults.csv' )<load_from_csv>
feature_col, target_cols = 'Image', list(df_train.drop('Image', axis=1 ).columns )
Facial Keypoints Detection
15,039,251
sample_submission = pd.read_csv(datadir/'MSampleSubmissionStage1_2020.csv') sample_submission<load_from_csv>
IMG_WIDTH = 96 IMG_HEIGHT = 96 IMG_CHANNELS = 1 images = np.array(df_train[feature_col].str.split().tolist() , dtype='float' ).reshape(-1, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS) labels = df_train[target_cols].to_numpy()
Facial Keypoints Detection
15,039,251
regular_season_detailed_results_df = pd.read_csv(stage1dir/'MRegularSeasonDetailedResults.csv') tournament_detailed_results_df = pd.read_csv(stage1dir/'MNCAATourneyDetailedResults.csv' )<load_from_csv>
normalized_images = images / 255 .
Facial Keypoints Detection
15,039,251
cities_df = pd.read_csv(stage1dir/'Cities.csv') mgame_cities_df = pd.read_csv(stage1dir/'MGameCities.csv' )<load_from_csv>
train_images, valid_images, train_labels, valid_labels = train_test_split(normalized_images, labels, test_size=0.1, random_state=7 )
Facial Keypoints Detection
15,039,251
massey_df = pd.read_csv(stage1dir/'MMasseyOrdinals.csv') massey_df<load_from_csv>
Input, Conv2D, MaxPool2D, Dense, BatchNormalization, ReLU, Dropout, Flatten, Dropout, Concatenate, GlobalAvgPool2D ) def inception_module(inputs, f1, f2): x1 = Conv2D(f1, 3, padding='same' )(inputs) x1 = BatchNormalization()(x1) x1 = ReLU()(x1) x2 = Conv2D(f2, 5, padding='same' )(inputs) x2 = BatchNormalization()(x2) x2 = ReLU()(x2) return Concatenate()([x1, x2] )
Facial Keypoints Detection
15,039,251
event2015_df = pd.read_csv(datadir/'MEvents2015.csv') <load_from_csv>
def build_model() : inputs = Input(( 96, 96, 1)) x = inception_module(inputs, 64, 32) x = MaxPool2D()(x) x = inception_module(x, 64, 32) x = MaxPool2D()(x) x = inception_module(x, 128, 32) x = MaxPool2D()(x) x = inception_module(x, 128, 32) x = MaxPool2D()(x) x = inception_module(x, 256, 64) x = MaxPool2D()(x) x = Flatten()(x) x = Dense(1024, kernel_regularizer=L2(l2=0.05))(x) x = BatchNormalization()(x) x = ReLU()(x) x = Dense(512, kernel_regularizer=L2(l2=0.02))(x) x = BatchNormalization()(x) x = ReLU()(x) x = Dense(128, kernel_regularizer=L2(l2=0.01))(x) x = BatchNormalization()(x) x = ReLU()(x) x = Dense(30 )(x) model = tf.keras.Model(inputs, outputs=x) return model model = build_model() model.summary()
Facial Keypoints Detection