kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
8,811,204 | sub.ConfirmedCases = sub.ConfirmedCases.astype(int)
sub.Fatalities = sub.Fatalities.astype(int)
sub.ForecastId = sub.ForecastId.astype(int )<save_to_csv> | df = pd.DataFrame()
def create_time_feat(data):
df['date']= data['date']
df['hour']=df['date'].dt.hour
df['weekofyear']=df['date'].dt.weekofyear
df['quarter'] =df['date'].dt.quarter
df['month'] = df['date'].dt.month
df['dayofyear']=df['date'].dt.dayofyear
x=df[['hour','weekofyear','quarter','month','dayofyear']]
return x
cr_tr = create_time_feat(train)
cr_te = create_time_feat(test ) | COVID19 Global Forecasting (Week 3) |
8,811,204 | sub.to_csv('submission.csv', index=False )<save_to_csv> | train_df = pd.concat([train,cr_tr], axis=1)
test_df = pd.concat([test, cr_te], axis =1)
test_df.dropna(inplace=True ) | COVID19 Global Forecasting (Week 3) |
8,811,204 | sub.to_csv('submission.csv', index=False )<load_from_csv> | le=LabelEncoder()
train_df['cp_le']=le.fit_transform(train_df['cp'])
test_df['cp_le']=le.transform(test_df['cp'])
train_df.drop(['cp'], axis=1, inplace=True)
test_df.drop(['cp'], axis=1, inplace=True ) | COVID19 Global Forecasting (Week 3) |
8,811,204 | df_train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-2/train.csv')
df_test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-2/test.csv')
sample_submission = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-2/submission.csv' )<define_variables> | def create_date_feat(data, cf, ft):
for d in data['date'].drop_duplicates() :
for i in data['cp_le'].drop_duplicates() :
org_mask =(data['date']==d)&(data['cp_le']==i)
for lag in range(1,15):
mask_loc =(data['date']==(d-pd.Timedelta(days=lag)))&(data['cp_le']==i)
try:
data.loc[org_mask, 'cf_' + str(lag)]=data.loc[mask_loc, cf].values
data.loc[org_mask, 'ft_' + str(lag)]=data.loc[mask_loc, ft].values
except:
data.loc[org_mask, 'cf_' + str(lag)]=0.0
data.loc[org_mask, 'ft_' + str(lag)]=0.0
create_date_feat(train_df,'confirmedcases','fatalities' ) | COVID19 Global Forecasting (Week 3) |
8,811,204 | df_train_original = df_train
df_test_original = df_test<define_variables> | def rmsle(pred,true):
assert pred.shape[0]==true.shape[0]
return K.sqrt(K.mean(K.square(K.log(pred+1)- K.log(true+1))))
es = EarlyStopping(monitor='val_loss', min_delta = 0, verbose=0, patience=10, mode='auto')
mc_cf = ModelCheckpoint('model_cf.h5', monitor='val_loss', verbose=0, save_best_only=True)
mc_ft = ModelCheckpoint('model_ft.h5', monitor='val_loss', verbose=0, save_best_only=True)
def lstm_model(hidden_nodes, second_dim, third_dim):
model = Sequential([LSTM(hidden_nodes, input_shape=(second_dim, third_dim), activation='relu'),
Dense(64, activation='relu'),
Dense(32, activation='relu'),
Dense(1, activation='relu')])
model.compile(loss=rmsle, optimizer = 'adam')
return model
model_cf = lstm_model(10, tr_x_cf.shape[1], tr_x_cf.shape[2])
model_ft = lstm_model(10, tr_x_ft.shape[1], tr_x_ft.shape[2])
history_cf = model_cf.fit(tr_x_cf, tr_y_cf, epochs=200, batch_size=512, validation_data=(val_x_cf,val_y_cf), callbacks=[es,mc_cf])
history_ft = model_ft.fit(tr_x_ft, tr_y_ft, epochs=200, batch_size=512, validation_data=(val_x_ft,val_y_ft), callbacks=[es,mc_ft] ) | COVID19 Global Forecasting (Week 3) |
8,811,204 | df_train = df_train_original.replace(np.nan, '', regex=True)
df_test = df_test_original.replace(np.nan, '', regex=True )<feature_engineering> | feat = ['confirmedcases','fatalities','cf_1', 'ft_1', 'cf_2', 'ft_2', 'cf_3', 'ft_3',
'cf_4', 'ft_4', 'cf_5', 'ft_5', 'cf_6', 'ft_6', 'cf_7', 'ft_7', 'cf_8', 'ft_8',
'cf_9', 'ft_9', 'cf_10', 'ft_10', 'cf_11', 'ft_11', 'cf_12', 'ft_12', 'cf_13', 'ft_13',
'cf_14', 'ft_14']
c_feat = ['cp_le', 'weekofyear','quarter','month','dayofyear','cf_1', 'cf_2', 'cf_3',
'cf_4', 'cf_5', 'cf_6', 'cf_7', 'cf_8', 'cf_9','cf_10', 'cf_11', 'cf_12',
'cf_13', 'cf_14']
f_feat = ['cp_le', 'weekofyear','quarter','month','dayofyear','ft_1', 'ft_2', 'ft_3',
'ft_4', 'ft_5', 'ft_6', 'ft_7', 'ft_8', 'ft_9','ft_10', 'ft_11', 'ft_12',
'ft_13', 'ft_14']
tot_feat = ['cp_le', 'weekofyear','quarter','month','dayofyear','cf_1', 'ft_1', 'cf_2', 'ft_2', 'cf_3', 'ft_3',
'cf_4', 'ft_4', 'cf_5', 'ft_5', 'cf_6', 'ft_6', 'cf_7', 'ft_7', 'cf_8', 'ft_8',
'cf_9', 'ft_9', 'cf_10', 'ft_10', 'cf_11', 'ft_11', 'cf_12', 'ft_12', 'cf_13', 'ft_13',
'cf_14', 'ft_14']
test_new = test_df.copy().join(pd.DataFrame(columns=feat))
test_mask =(test_df['date'] <= train_df['date'].max())
train_mask =(train_df['date'] >= test_df['date'].min())
test_new.loc[test_mask,feat] = train_df.loc[train_mask, feat].values
future_df = pd.date_range(start = train_df['date'].max() +pd.Timedelta(days=1),end=test_df['date'].max() , freq='1D')
def create_add_trend_pred(data, cf, ft):
for d in future_df:
for i in data['cp_le'].drop_duplicates() :
org_mask =(data['date']==d)&(data['cp_le']==i)
for lag in range(1,15):
mask_loc =(data['date']==(d-pd.Timedelta(days=lag)))&(data['cp_le']==i)
try:
data.loc[org_mask, 'cf_' + str(lag)]=data.loc[mask_loc,cf].values
data.loc[org_mask, 'ft_' + str(lag)]=data.loc[mask_loc,ft].values
except:
data.loc[org_mask, 'cf_' + str(lag)]=0.0
data.loc[org_mask, 'ft_' + str(lag)]=0.0
test_x = data.loc[org_mask,tot_feat]
test_x_cf = test_x[c_feat]
test_x_cf = test_x_cf.to_numpy().reshape(1,-1)
test_x_cf_reshape = test_x_cf.reshape(test_x_cf.shape[0],1,test_x_cf.shape[1])
test_x_ft = test_x[f_feat]
test_x_ft = test_x_ft.to_numpy().reshape(1,-1)
test_x_ft_reshape = test_x_ft.reshape(test_x_ft.shape[0],1,test_x_ft.shape[1])
data.loc[org_mask, cf] = model_cf.predict(test_x_cf_reshape)
data.loc[org_mask, ft] = model_ft.predict(test_x_ft_reshape)
create_add_trend_pred(test_new, 'confirmedcases', 'fatalities' ) | COVID19 Global Forecasting (Week 3) |
8,811,204 | <filter><EOS> | sub_pred = pd.DataFrame({'ForecastId': test_id, 'ConfirmedCases':test_new['confirmedcases'],'Fatalities':test_new['fatalities']})
sub_pred.to_csv('submission.csv', index=False ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | <SOS> metric: MCRMSLE Kaggle data source: covid19-global-forecasting-week-3<groupby> | import os
from typing import Dict, List, Tuple
from joblib import Parallel, delayed
import pandas as pd
import numpy as np
from scipy.optimize.minpack import curve_fit
from scipy.optimize import least_squares
from xgboost import XGBRegressor | COVID19 Global Forecasting (Week 3) |
8,797,635 | groups_train = df_train.groupby(['Country_Region', 'Province_State'])
print(len(groups_train))<groupby> | def load_kaggle_csv(dataset: str, datadir: str)-> pd.DataFrame:
df = pd.read_csv(
f"{os.path.join(datadir,dataset)}.csv", parse_dates=["Date"]
)
df['country'] = df["Country_Region"]
if "Province_State" in df:
df["Country_Region"] = np.where(
df["Province_State"].isnull() ,
df["Country_Region"],
df["Country_Region"] + "_" + df["Province_State"],
)
df.drop(columns="Province_State", inplace=True)
if "ConfirmedCases" in df:
df["ConfirmedCases"] = df.groupby("Country_Region")[
"ConfirmedCases"
].cummax()
if "Fatalities" in df:
df["Fatalities"] = df.groupby("Country_Region")["Fatalities"].cummax()
if not "DayOfYear" in df:
df["DayOfYear"] = df["Date"].dt.dayofyear
df["Date"] = df["Date"].dt.date
return df
def RMSLE(actual: np.ndarray, prediction: np.ndarray)-> float:
return np.sqrt(
np.mean(
np.power(np.log1p(np.maximum(0, prediction)) - np.log1p(actual), 2)
)
) | COVID19 Global Forecasting (Week 3) |
8,797,635 |
<sort_values> | train = load_kaggle_csv(
"train", "/kaggle/input/covid19-global-forecasting-week-3")
country_health_indicators =(
pd.read_csv("/kaggle/input/country-health-indicators/country_health_indicators_v3.csv")).rename(
columns={'Country_Region': 'country'})
train = pd.merge(train, country_health_indicators, on="country", how="left" ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | min_date_sorted = min_date.sort_values()<define_variables> | test = load_kaggle_csv(
"test", "/kaggle/input/covid19-global-forecasting-week-3")
test = pd.merge(test, country_health_indicators, on="country", how="left" ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | for x,y in zip(min_date_sorted.index, min_date_sorted):
print(x,y )<filter> | def logistic(x: np.ndarray, x0: float, L: float, k: float)-> np.ndarray:
return L /(1 + np.exp(-k *(x - x0)))
def fit_single_logistic(x: np.ndarray, y: np.ndarray, maxfev: float)-> Tuple:
p0 = [np.median(x), y[-1], 0.1]
pn0 = p0 *(np.random.random(len(p0)) + [0.5, 1.0, 0.5])
try:
params, pcov = curve_fit(
logistic,
x,
y,
p0=pn0,
maxfev=maxfev,
sigma=np.maximum(1, np.sqrt(y)) *(0.1 + 0.9 * np.random.random()),
bounds=([0, y[-1], 0.01], [200, 1e6, 1.5]),
)
pcov = pcov[np.triu_indices_from(pcov)]
except(RuntimeError, ValueError):
params = p0
pcov = np.zeros(len(p0)*(len(p0)- 1))
y_hat = logistic(x, *params)
rmsle = RMSLE(y_hat, y)
return(params, pcov, rmsle, y_hat)
def fit_logistic(
df: pd.DataFrame,
n_jobs: int = 8,
n_samples: int = 80,
maxfev: int = 8000,
x_col: str = "DayOfYear",
y_cols: List[str] = ["ConfirmedCases", "Fatalities"],
)-> pd.DataFrame:
def fit_one(df: pd.DataFrame, y_col: str)-> Dict:
best_rmsle = None
best_params = None
x = df[x_col].to_numpy()
y = df[y_col].to_numpy()
for(params, cov, rmsle, y_hat)in Parallel(n_jobs=n_jobs )(
delayed(fit_single_logistic )(x, y, maxfev=maxfev)
for i in range(n_samples)
):
if rmsle >=(best_rmsle or rmsle):
best_rmsle = rmsle
best_params = params
result = {f"{y_col}_rmsle": best_rmsle}
result.update({f"{y_col}_p_{i}": p for i, p in enumerate(best_params)})
return result
result = {}
for y_col in y_cols:
result.update(fit_one(df, y_col))
return pd.DataFrame([result])
def predict_logistic(
df: pd.DataFrame,
x_col: str = "DayOfYear",
y_cols: List[str] = ["ConfirmedCases", "Fatalities"],
):
def predict_one(col):
df[f"yhat_logistic_{col}"] = logistic(
df[x_col].to_numpy() ,
df[f"{col}_p_0"].to_numpy() ,
df[f"{col}_p_1"].to_numpy() ,
df[f"{col}_p_2"].to_numpy() ,
)
for y_col in y_cols:
predict_one(y_col ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | list(df_train[df_train['Country_Region'] == 'China']['Province_State'] )<filter> | train = pd.merge(
train, train.groupby(
["Country_Region"], observed=True, sort=False
).apply(lambda x: fit_logistic(x, n_jobs=8, n_samples=16, maxfev=16000)).reset_index() , on=["Country_Region"], how="left")
predict_logistic(train ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | df_train[(df_train['Country_Region'] == 'Pakistan')]<filter> | def apply_xgb_model(train, x_columns, y_column, xgb_params):
X = train[x_columns].to_numpy()
y = train[y_column].to_numpy()
xgb_fit = XGBRegressor(**xgb_params ).fit(X, y)
y_hat = xgb_fit.predict(X)
train[f"yhat_xgb_{y_column}"] = y_hat
return RMSLE(y, y_hat), xgb_fit | COVID19 Global Forecasting (Week 3) |
8,797,635 | df_train[(df_train['Country_Region'] == 'US')&(df_train['Province_State'] == 'Washington')]<define_variables> | xgb_params = dict(
gamma=0.2,
learning_rate=0.15,
n_estimators=100,
max_depth=11,
min_child_weight=1,
nthread=8,
objective="reg:squarederror")
x_columns = [
'DayOfYear', 'cases_growth', 'death_growth',
'Cardiovascular diseases(%)', 'Cancers(%)',
'Diabetes, blood, & endocrine diseases(%)', 'Respiratory diseases(%)',
'Liver disease(%)', 'Diarrhea & common infectious diseases(%)',
'Musculoskeletal disorders(%)', 'HIV/AIDS and tuberculosis(%)',
'Malaria & neglected tropical diseases(%)',
'Nutritional deficiencies(%)', 'pneumonia-death-rates',
'Share of deaths from smoking(%)', 'alcoholic_beverages',
'animal_fats', 'animal_products', 'aquatic_products,_other',
'cereals_-_excluding_beer', 'eggs', 'fish,_seafood',
'fruits_-_excluding_wine', 'meat', 'milk_-_excluding_butter',
'miscellaneous', 'offals', 'oilcrops', 'pulses', 'spices',
'starchy_roots', 'stimulants', 'sugar_&_sweeteners', 'treenuts',
'vegetable_oils', 'vegetables', 'vegetal_products',
'hospital_beds_per10k', 'hospital_density', 'nbr_surgeons',
'nbr_obstetricians', 'nbr_anaesthesiologists', 'medical_doctors_per10k',
'bcg_coverage', 'bcg_year_delta', 'population',
'median age', 'population growth rate', 'birth rate', 'death rate',
'net migration rate', 'maternal mortality rate',
'infant mortality rate', 'life expectancy at birth',
'total fertility rate', 'obesity - adult prevalence rate',
'school_shutdown_1case', 'school_shutdown_10case',
'school_shutdown_50case', 'school_shutdown_1death', 'FF_DayOfYear',
'case1_DayOfYear', 'case10_DayOfYear', 'case50_DayOfYear', 'yhat_logistic_ConfirmedCases',
'yhat_logistic_Fatalities']
xgb_c_rmsle, xgb_c_fit = apply_xgb_model(
train, x_columns, "ConfirmedCases", xgb_params)
xgb_f_rmsle, xgb_f_fit = apply_xgb_model(
train, x_columns, "Fatalities", xgb_params ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | index = 0
for x,y in zip(min_date_sorted.index, min_date_sorted):
print(index, x, y)
index = index + 1<import_modules> | def interpolate(alpha, x0, x1):
return x0 * alpha + x1 *(1 - alpha)
def RMSLE_interpolate(alpha, y, x0, x1):
return RMSLE(y, interpolate(alpha, x0, x1))
def fit_hybrid(
train: pd.DataFrame, y_cols: List[str] = ["ConfirmedCases", "Fatalities"]
)-> pd.DataFrame:
def fit_one(y_col: str):
opt = least_squares(
fun=RMSLE_interpolate,
args=(
train[y_col],
train[f"yhat_logistic_{y_col}"],
train[f"yhat_xgb_{y_col}"],
),
x0=(0.5,),
bounds=(( 0.0),(1.0,)) ,
)
return {f"{y_col}_alpha": opt.x[0], f"{y_col}_cost": opt.cost}
result = {}
for y_col in y_cols:
result.update(fit_one(y_col))
return pd.DataFrame([result])
def predict_hybrid(
df: pd.DataFrame,
x_col: str = "DayOfYear",
y_cols: List[str] = ["ConfirmedCases", "Fatalities"],
):
def predict_one(col):
df[f"yhat_hybrid_{col}"] = interpolate(
df[f"{y_col}_alpha"].to_numpy() ,
df[f"yhat_logistic_{y_col}"].to_numpy() ,
df[f"yhat_xgb_{y_col}"].to_numpy() ,
)
for y_col in y_cols:
predict_one(y_col ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | import matplotlib.pyplot as plt<define_variables> | train = pd.merge(
train,
train.groupby(["Country_Region"], observed=True, sort=False)
.apply(lambda x: fit_hybrid(x))
.reset_index() ,
on=["Country_Region"],
how="left",
) | COVID19 Global Forecasting (Week 3) |
8,797,635 | index = 34<filter> | predict_hybrid(train ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | record = df_train[(df_train['Country_Region'] == min_date_sorted.index[index][0])&(df_train['Province_State'] == min_date_sorted.index[index][1])]<train_model> | print(
"Confirmed:
"
f'Logistic\t{RMSLE(train["ConfirmedCases"], train["yhat_logistic_ConfirmedCases"])}
'
f'XGBoost\t{RMSLE(train["ConfirmedCases"], train["yhat_xgb_ConfirmedCases"])}
'
f'Hybrid\t{RMSLE(train["ConfirmedCases"], train["yhat_hybrid_ConfirmedCases"])}
'
f"Fatalities:
"
f'Logistic\t{RMSLE(train["Fatalities"], train["yhat_logistic_Fatalities"])}
'
f'XGBoost\t{RMSLE(train["Fatalities"], train["yhat_xgb_Fatalities"])}
'
f'Hybrid\t{RMSLE(train["Fatalities"], train["yhat_hybrid_Fatalities"])}
'
) | COVID19 Global Forecasting (Week 3) |
8,797,635 | x = np.linspace(0, 10, num = 40)
y = 3.45 * np.sin(1.334 * x)+ np.random.normal(size = 40)
def test(x, a, b):
return a * np.sin(b * x)
param, param_cov = curve_fit(test, x, y )<feature_engineering> | test = pd.merge(
test,
train[["Country_Region"] +
['ConfirmedCases_p_0', 'ConfirmedCases_p_1', 'ConfirmedCases_p_2']+
['Fatalities_p_0','Fatalities_p_1', 'Fatalities_p_2'] +
["Fatalities_alpha"] +
["ConfirmedCases_alpha"]].groupby(['Country_Region'] ).head(1), on="Country_Region", how="left" ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | record = df_train[(df_train['Country_Region'] == min_date_sorted.index[index][0])&(df_train['Province_State'] == min_date_sorted.index[index][1])]
record = record[record['ConfirmedCases'] > 0]
base_date_object = datetime.strptime('2020-01-22', "%Y-%m-%d" ).date()
record['days'] = [(datetime.strptime(date, "%Y-%m-%d" ).date() - base_date_object ).days + 1 for date in record['Date']]
<prepare_x_and_y> | predict_logistic(test)
test["yhat_xgb_ConfirmedCases"] = xgb_c_fit.predict(test[x_columns].to_numpy())
test["yhat_xgb_Fatalities"] = xgb_f_fit.predict(test[x_columns].to_numpy())
predict_hybrid(test ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | record2 = record[record['Fatalities'] > 0]
x = record['days'].values
x2 = record2['days'].values
y1 = record['ConfirmedCases'].values
y2 = record2['Fatalities'].values<normalization> | submission = test[["ForecastId", "yhat_hybrid_ConfirmedCases", "yhat_hybrid_Fatalities"]].round().astype(int ).rename(
columns={
"yhat_hybrid_ConfirmedCases": "ConfirmedCases",
"yhat_hybrid_Fatalities": "Fatalities",
}
)
submission["ConfirmedCases"] = np.maximum(0, submission["ConfirmedCases"])
submission["Fatalities"] = np.maximum(0, submission["Fatalities"] ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | def gaussian(x, amp, cen, wid):
return amp * exp(-(x-cen)**2 / wid)
def test(x, a, b, c):
return a*1/(1+exp(-b*(x-c)))
def test_linear(x, a, b, c, d, e, f):
return a*1/(1+exp(-b*(x-c)))+ d*log(1+exp(x-e)) - f
def custom(x, a, b , c, d, e, f, g):
return a*1/(1+exp(-(x-b)/c)) *(d*1/(1+exp(-(x-e)/f)) + g )<feature_engineering> | submission.to_csv("submission.csv", index=False ) | COVID19 Global Forecasting (Week 3) |
8,797,635 | y_max_ = y1[-1]
y1_prime = np.diff(y1)
y1_prime2 = np.diff(y1_prime)
if len(y1)>0 and len(y1_prime)> 0 and len(y1_prime2)> 0:
max_slope_index = len(y1_prime)- 1 - list(y1_prime)[::-1].index(max(y1_prime))
max_slope_range =(max_slope_index+1)/len(y1_prime)
y_max_ = y1[-1]
if max_slope_range < 0.75:
if y1_prime[max_slope_index] > 0 and max_slope_range < 0.75 and(((y1_prime[max_slope_index] - max(y1_prime[-2:])) /y1_prime[max_slope_index])< 0.5):
y_max_ = y1[-1]
pass
else:
y_max_ = y1[max_slope_index + 1]
pass
else:
y_max_ = y1[-1]<find_best_params> | submission.to_csv("submission.csv", index=False ) | COVID19 Global Forecasting (Week 3) |
8,805,462 | param<categorify> | warnings.filterwarnings("ignore" ) | COVID19 Global Forecasting (Week 3) |
8,805,462 | y1_pred = test(x,param[0], param[1], param[2])
base_x = range(61,100,1)
y1_pred_test = test(base_x, param[0], param[1], param[2])
<feature_engineering> | df_train=pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
df_test=pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
df_sub=pd.read_csv(".. /input/covid19-global-forecasting-week-3/submission.csv" ) | COVID19 Global Forecasting (Week 3) |
8,805,462 | ( x2[-1] - x2[0])/2 + x2[0]<compute_test_metric> |
print(df_train.shape)
print(df_test.shape)
print(df_sub.shape ) | COVID19 Global Forecasting (Week 3) |
8,805,462 | y2_pred = test(x2,param2[0], param2[1], param2[2] )<prepare_x_and_y> | print(f"Unique Countries: {len(df_train.Country_Region.unique())}")
train_dates=list(df_train.Date.unique())
print(f"Period : {len(df_train.Date.unique())} days")
print(f"From : {df_train.Date.min() } To : {df_train.Date.max() }" ) | COVID19 Global Forecasting (Week 3) |
8,805,462 | base_x = range(61,100,1)
print(len(base_x))
base_y1 = test(base_x,param[0], param[1], param[2])
base_y2 = test(base_x,param2[0], param2[1], param2[2] )<define_variables> | print(f"Unique Regions: {df_train.shape[0]/75}")
df_train.Country_Region.value_counts() | COVID19 Global Forecasting (Week 3) |
8,805,462 | day_index_pred = 0
diff1_list = []
diff2_list = []
for day in base_x:
if day in x:
day_index = np.where(x == day)
diff1 = y1[day_index] - base_y1[day_index_pred]
diff1_list.append(diff1)
if day in x2:
day_index = np.where(x2 == day)
diff2 = y2[day_index] - base_y2[day_index_pred]
diff2_list.append(diff2)
day_index_pred = day_index_pred + 1
diff1_mean = np.max(diff1_list)
diff2_mean = np.max(diff2_list)
if np.isnan(diff1_mean):
pass
else:
base_y1_mod = list(np.array(base_y1)+ diff1_mean)
if np.isnan(diff2_mean):
pass
else:
base_y2_mod = list(np.array(base_y2)+ diff2_mean)
base_y1_pred = [int(n)for n in base_y1_mod]
base_y2_pred = [int(m)for m in base_y2_mod]<groupby> | print(f"Number of rows without Country_Region : {df_train.Country_Region.isna().sum() }")
df_train["UniqueRegion"]=df_train.Country_Region
df_train.UniqueRegion[df_train.Province_State.isna() ==False]=df_train.Province_State+" , "+df_train.Country_Region
df_train[df_train.Province_State.isna() ==False] | COVID19 Global Forecasting (Week 3) |
8,805,462 | test_groups = df_test.groupby(['Country_Region', 'Province_State'] )<feature_engineering> | df_train.drop(labels=["Id","Province_State","Country_Region"], axis=1, inplace=True)
df_train | COVID19 Global Forecasting (Week 3) |
8,805,462 | index = 0
for key_,_ in zip(min_date_sorted.index, min_date_sorted):
record = df_train[(df_train['Country_Region'] == key_[0])&(df_train['Province_State'] == key_[1])]
record['days'] = [(datetime.strptime(date, "%Y-%m-%d" ).date() - base_date_object ).days + 1 for date in record['Date']]
x = record['days']
y1 = record['ConfirmedCases']
y2 = record['Fatalities']
y1_prime = np.diff(y1)
stage0 = False
stage1 = False
stage2 = False
stage3 = False
count1 = 0
count2 = 0
for start in range(len(y1_prime)-3):
if sum(y1_prime[start:start+3])<=12:
count1 = count1 + 1
count2 = 0
else:
count2 = count2 + 1
count1 = 0
if not stage0 and count2 == 0 and count1 > 2:
stage0 = True
count1 = 0
if not stage1 and count1 == 0 and count2 > 5:
stage0 = True
stage1 = True
count2 = 0
if stage1 and count2 == 0 and count1 > 3:
stage2 = True
count1 = 0
if stage2 and count1 == 0 and count2 > 2:
stage3 = True
count2 = 0
if stage3:
print(index, key_)
print(y1_prime)
plt.plot(x, y1, label = "Confirmed Cases")
plt.xlabel('Date')
plt.ylabel('Label')
plt.title(str(key_[0])+ " " + str(key_[1])+ ' - Confirmed Cases')
plt.show()
index = index + 1<define_variables> | only_train_dates=set(train_dates)-set(test_dates)
print("Only train dates : ",len(only_train_dates))
intersection_dates=set(test_dates)&set(train_dates)
print("Intersection dates : ",len(intersection_dates))
only_test_dates=set(test_dates)-set(train_dates)
print("Only Test dates : ",len(only_test_dates)) | COVID19 Global Forecasting (Week 3) |
8,805,462 | total_confirmed = 0
total_fatalities = 0
rate = []
max_y1 = []
max_y2 = []
details = []
for index, start_date in zip(min_date_sorted.index, min_date_sorted):
print(index, start_date)
record = df_train[(df_train['Country_Region'] == index[0])&(df_train['Province_State'] == index[1])]
if len(record[record['ConfirmedCases'] > 0])!= 0:
record = record[record['ConfirmedCases'] > 0]
record2 = record
if len(record[record['Fatalities'] > 0])!= 0:
record2 = record[record['Fatalities'] > 0]
y1 = record['ConfirmedCases'].values
y2 = record2['Fatalities'].values
b = -1
bad_index = 0
mod_count = 0
y1_copy = list(y1)
for a in y1:
if a < b:
y1[bad_index] = b
mod_count = mod_count + 1
else:
b = a
bad_index = bad_index + 1
b = -1
bad_index = 0
mod_count = 0
y2_copy = list(y2)
for a in y2:
if a < b:
y2[bad_index] = b
mod_count = mod_count + 1
else:
b = a
bad_index = bad_index + 1
y1_prime = np.diff(y1)
y1_prime2 = np.diff(y1_prime)
y_max_ = y1[-1]*2 + 1500
if len(y1)>0 and len(y1_prime)> 0 and len(y1_prime2)> 0:
max_slope_index = len(y1_prime)- 1 - list(y1_prime)[::-1].index(max(y1_prime))
max_slope_range =(max_slope_index+1)/len(y1_prime)
if max_slope_range < 0.75:
if y1_prime[max_slope_index] > 0 and max_slope_range < 0.5 and(((y1_prime[max_slope_index] - max(y1_prime[-2:])) /y1_prime[max_slope_index])< 0.5):
y_max_ = y1[-1]*2 + 1500
pass
else:
y_max_ = y1[max_slope_index + 1]*2 + 1500
pass
else:
y_max_ = y1[-1]*2 + 1500
ratio = 0
if y2[-1] > 0:
ratio = y1[-1]/y2[-1]
else:
ratio = y1[-1]
max_y1.append(y1[-1])
max_y2.append(y2[-1])
rate.append(ratio)
details.append(" ".join([str(x)for x in [y1[-1], " ------- ", y2[-1], " ---- ", ratio, " --------------- ", record['Date'].values[-1], " ---- ", index, "----", list(min_date_sorted.index ).index(index)]]))
total_confirmed = total_confirmed + y1[-1]
total_fatalities = total_fatalities + y2[-1]
print(total_confirmed/total_fatalities )<define_variables> | df_test_temp=pd.DataFrame()
df_test_temp["Date"]=df_test.Date
df_test_temp["ConfirmedCases"]=0.0
df_test_temp["Fatalities"]=0.0
df_test_temp["UniqueRegion"]=df_test.UniqueRegion
df_test_temp["Delta"]=1.0
| COVID19 Global Forecasting (Week 3) |
8,805,462 | for a1, a2, b, c in zip(max_y1, max_y2, rate, details):
print(c )<categorify> | %%time
final_df=pd.DataFrame(columns=["Date","ConfirmedCases","Fatalities","UniqueRegion"])
for region in df_train.UniqueRegion.unique() :
df_temp=df_train[df_train.UniqueRegion==region].reset_index()
df_temp["Delta"]=1.0
size_train=df_temp.shape[0]
for i in range(1,df_temp.shape[0]):
if(df_temp.ConfirmedCases[i-1]>0):
df_temp.Delta[i]=df_temp.ConfirmedCases[i]/df_temp.ConfirmedCases[i-1]
n=5
delta_avg=df_temp.tail(n ).Delta.mean()
delta_list=df_temp.tail(n ).Delta
death_rate=df_temp.tail(1 ).Fatalities.sum() /df_temp.tail(1 ).ConfirmedCases.sum()
df_test_app=df_test_temp[df_test_temp.UniqueRegion==region]
df_test_app=df_test_app[df_test_app.Date>df_temp.Date.max() ]
X=np.arange(1,n+1 ).reshape(-1,1)
Y=delta_list
model=LinearRegression()
model.fit(X,Y)
df_temp=pd.concat([df_temp,df_test_app])
df_temp=df_temp.reset_index()
for i in range(size_train, df_temp.shape[0]):
n=n+1
df_temp.Delta[i]=max(1,model.predict(np.array([n] ).reshape(-1,1)) [0])
df_temp.ConfirmedCases[i]=round(df_temp.ConfirmedCases[i-1]*df_temp.Delta[i],0)
df_temp.Fatalities[i]=round(death_rate*df_temp.ConfirmedCases[i],0)
size_test=df_temp.shape[0]-df_test_temp[df_test_temp.UniqueRegion==region].shape[0]
df_temp=df_temp.iloc[size_test:,:]
df_temp=df_temp[["Date","ConfirmedCases","Fatalities","UniqueRegion"]]
final_df=pd.concat([final_df,df_temp], ignore_index=True)
final_df.shape | COVID19 Global Forecasting (Week 3) |
8,805,462 | for a1, a2, b, c in zip(max_y1, max_y2, rate, details):
if(a1 < 100 and a2 < 4 and b < avg):
print(c)
pass
else:
pass<create_dataframe> | df_sub.Fatalities=final_df.Fatalities
df_sub.ConfirmedCases=final_df.ConfirmedCases
df_sub.to_csv("submission.csv", index=None ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | df = pd.DataFrame(columns = ['ForecastId','ConfirmedCases','Fatalities'])
df_hr = pd.DataFrame(columns = ['ForecastId', 'Country_Region', 'Province_State', 'Days', 'ConfirmedCases','Fatalities','Date'])
<define_variables> | data= pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/train.csv")
test = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/test.csv" ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | public_start_date = '2020-03-19'
public_end_date = '2020-04-01'
count = 0
for index, start_date in zip(min_date_sorted.index, min_date_sorted):
print(list(min_date_sorted.index ).index(index), index, start_date)
record = df_train[(df_train['Country_Region'] == index[0])&(df_train['Province_State'] == index[1])]
if len(record[record['ConfirmedCases'] > 0])== 0:
pass
else:
record = record[record['ConfirmedCases'] > 0]
base_date_object = datetime.strptime(start_date, "%Y-%m-%d" ).date()
public_start_date_object = datetime.strptime(public_start_date, "%Y-%m-%d" ).date()
public_end_date_object = datetime.strptime(public_end_date, "%Y-%m-%d" ).date()
record['days'] = [(datetime.strptime(date, "%Y-%m-%d" ).date() - base_date_object ).days + 1 for date in record['Date']]
public_start_day =(public_start_date_object - base_date_object ).days + 1
public_end_day =(public_end_date_object - base_date_object ).days + 1
if len(record[record['days'] < public_start_day])> 0:
record = record[record['days'] < public_start_day]
record2 = record
if len(record[record['Fatalities'] > 0])!= 0:
record2 = record[record['Fatalities'] > 0]
x = record['days'].values
x2 = record2['days'].values
y1 = record['ConfirmedCases'].values
y2 = record2['Fatalities'].values
b = -1
bad_index = 0
mod_count = 0
for a in y1:
if a < b:
y1[bad_index] = b
mod_count = mod_count + 1
else:
b = a
bad_index = bad_index + 1
if mod_count > 0:
print("*****************")
print(list(min_date_sorted.index ).index(index), index)
print(mod_count)
print(y1)
print("*****************")
b = -1
bad_index = 0
mod_count = 0
for a in y2:
if a < b:
y2[bad_index] = b
mod_count = mod_count + 1
else:
b = a
bad_index = bad_index + 1
if mod_count > 0:
print("*****************")
print(list(min_date_sorted.index ).index(index), index)
print(mod_count)
print(y2)
print("*****************")
if len(y1)> 0:
y_max_ = y1[-1]
y1_prime = np.diff(y1)
y1_prime2 = np.diff(y1_prime)
if len(y1)>0 and len(y1_prime)> 0 and len(y1_prime2)> 0:
max_slope_index = len(y1_prime)- 1 - list(y1_prime)[::-1].index(max(y1_prime))
max_slope_range =(max_slope_index+1)/len(y1_prime)
y_max_ = y1[-1]
if max_slope_range < 0.75:
if y1_prime[max_slope_index] > 0 and max_slope_range < 0.75 and(((y1_prime[max_slope_index] - max(y1_prime[-2:])) /y1_prime[max_slope_index])< 0.5):
y_max_ = y1[-1]
pass
else:
y_max_ = y1[max_slope_index + 1]
pass
else:
y_max_ = y1[-1]
else:
y_max_ = 0
stage0 = False
stage1 = False
stage2 = False
stage3 = False
count1 = 0
count2 = 0
for start in range(len(y1_prime)-3):
if sum(y1_prime[start:start+3])<=12:
count1 = count1 + 1
count2 = 0
else:
count2 = count2 + 1
count1 = 0
if not stage0 and count2 == 0 and count1 > 2:
stage0 = True
count1 = 0
if not stage1 and count1 == 0 and count2 > 5:
stage0 = True
stage1 = True
count2 = 0
if stage1 and count2 == 0 and count1 > 3:
stage2 = True
count1 = 0
if stage2 and count1 == 0 and count2 > 2:
stage3 = True
count2 = 0
if stage3:
param, param_cov = curve_fit(custom, np.array(x), np.array(y1), maxfev = 100000, bounds=([1, 0, 1, 1, 30, 1, 1], [2, 60, 8, 200, 90, 8, 1400]))
y1_pred = custom(x, param[0], param[1], param[2], param[3], param[4], param[5], param[6])
elif index[0] == 'Korea, South':
param, param_cov = curve_fit(test_linear, np.array(x), np.array(y1), [y_max_, 0.5,(x[-1] - x[0])/2 + x[0], 50, 45, 0], maxfev = 100000, bounds=([y_max_/2, 0.1, 0, 1, 30, -100],[y_max_*5 + 1500, 1, 150, 100, 100, 1000]))
y1_pred = test_linear(x, param[0], param[1], param[2], param[3], param[4], param[5])
elif index[0] in ['US', 'Spain', 'Germany', 'France', 'Iran', 'United Kingdom']:
param, param_cov = curve_fit(test, np.array(x), np.array(y1), [y_max_*7, 0.5,(x[-1] - x[0])/2 + x[0]], maxfev = 100000, bounds=([y_max_*5, 0.1, 0],[y_max_*10 + 1500, 1, 150]))
y1_pred = test(x, param[0], param[1], param[2])
elif index[0] == 'China':
param, param_cov = curve_fit(test, np.array(x), np.array(y1), [y_max_, 0.5,(x[-1] - x[0])/2 + x[0]], maxfev = 100000, bounds=([y_max_/2, 0.1, 0],[y_max_*5 + 1500, 1, 150]))
y1_pred = test(x, param[0], param[1], param[2])
else:
param, param_cov = curve_fit(test, np.array(x), np.array(y1), [y_max_*5, 0.5,(x[-1] - x[0])/2 + x[0]], maxfev = 100000, bounds=([y_max_*4, 0.1, 0],[y_max_*8 + 1500, 1, 150]))
y1_pred = test(x, param[0], param[1], param[2])
param2, param_cov2 = curve_fit(test, np.array(x2), np.array(y2), [y2[-1]/2, 0.5,(x2[-1] - x2[0])/2 + x2[0] - 3], maxfev = 100000, bounds=([y2[-1]/2, 0.1, 0],[y2[-1]*5 + 1, 0.8, 150]))
y2_pred = test(x2,param2[0], param2[1], param2[2])
group = test_groups.get_group(index)
group['days'] = [(datetime.strptime(date, "%Y-%m-%d" ).date() - base_date_object ).days + 1 for date in group['Date'].values]
group = group[group['days'] <= public_end_day]
ids = group['ForecastId'].values
days = [(datetime.strptime(date, "%Y-%m-%d" ).date() - base_date_object ).days + 1 for date in group['Date'].values]
prev_days = range(public_start_day - 6, public_start_day - 1, 1)
if stage3:
test_y1_pred_raw = custom(days, param[0], param[1], param[2], param[3], param[4], param[5], param[6])
prev_y1_pred_raw = custom(prev_days, param[0], param[1], param[2], param[3], param[4], param[5], param[6])
elif index[0] == 'Korea, South':
test_y1_pred_raw = test_linear(days, param[0], param[1], param[2], param[3], param[4], param[5])
prev_y1_pred_raw = test_linear(prev_days, param[0], param[1], param[2], param[3], param[4], param[5])
elif index[0] in ['US', 'Spain', 'Germany', 'France', 'Iran', 'United Kingdom']:
test_y1_pred_raw = test(days, param[0], param[1], param[2])
prev_y1_pred_raw = test(prev_days, param[0], param[1], param[2])
else:
test_y1_pred_raw = test(days, param[0], param[1], param[2])
prev_y1_pred_raw = test(prev_days, param[0], param[1], param[2])
test_y2_pred_raw = test(days, param2[0], param2[1], param2[2])
prev_y2_pred_raw = test(prev_days, param2[0], param2[1], param2[2])
day_index_pred = 0
diff1_list = []
diff2_list = []
for day in prev_days:
if day in x:
day_index = np.where(x == day)
diff1 = y1[day_index] - prev_y1_pred_raw[day_index_pred]
diff1_list.append(diff1)
if day in x2:
day_index = np.where(x2 == day)
diff2 = y2[day_index] - prev_y2_pred_raw[day_index_pred]
diff2_list.append(diff2)
day_index_pred = day_index_pred + 1
if len(diff1_list)> 0:
diff1_mean = np.max(diff1_list)
else:
diff1_mean = 0
if len(diff2_list)> 0:
diff2_mean = np.max(diff2_list)
else:
diff2_mean = 0
if np.isnan(diff1_mean):
pass
else:
test_y1_pred_raw = list(np.array(test_y1_pred_raw)+ diff1_mean)
if np.isnan(diff2_mean):
pass
else:
test_y2_pred_raw = list(np.array(test_y2_pred_raw)+ diff2_mean)
test_y1_pred = test_y1_pred_raw
test_y2_pred = test_y2_pred_raw
ratio = 0
if y2[-1] > 0:
ratio = y1[-1]/y2[-1]
else:
ratio = y1[-1]
train_day_index = days.index(public_start_day)- 1
if(y1[-1] < 100 and y2[-1] < 4 and ratio < avg):
for pred_index in range(len(test_y2_pred)) :
if pred_index > train_day_index:
if test_y2_pred[pred_index] < test_y1_pred[pred_index]/avg:
test_y2_pred[pred_index] = test_y1_pred[pred_index]/avg
else:
for pred_index in range(len(test_y2_pred)) :
if pred_index > train_day_index:
if test_y2_pred[pred_index] < test_y1_pred[pred_index]/ratio:
test_y2_pred[pred_index] = test_y1_pred[pred_index]/ratio
test_y1_pred = [int(n)for n in test_y1_pred]
test_y2_pred = [int(m)for m in test_y2_pred]
local_df_hr = pd.DataFrame(ids, columns=['ForecastId'])
print()
local_df_hr.insert(1, 'Country_Region', [index[0]]*len(days))
local_df_hr.insert(2, 'Province_State', [index[1]]*len(days))
local_df_hr.insert(3, 'Days', days)
local_df_hr.insert(4, 'ConfirmedCases', test_y1_pred)
local_df_hr.insert(5, 'Fatalities', test_y2_pred)
local_df_hr.insert(6, 'Date', group['Date'].values)
local_df = pd.DataFrame(ids, columns=['ForecastId'])
local_df.insert(1, 'ConfirmedCases', test_y1_pred)
local_df.insert(2, 'Fatalities', test_y2_pred)
df = df.append(local_df)
df_hr = df_hr.append(local_df_hr)
count = count + 1
<define_variables> | data['Province_State']=data['Province_State'].fillna('')
test['Province_State']=test['Province_State'].fillna('' ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | private_start_date = '2020-04-02'
private_end_date = '2020-04-30'
count = 0
for index, start_date in zip(min_date_sorted.index, min_date_sorted):
print(list(min_date_sorted.index ).index(index), index, start_date)
record = df_train[(df_train['Country_Region'] == index[0])&(df_train['Province_State'] == index[1])]
if len(record[record['ConfirmedCases'] > 0])== 0:
pass
else:
record = record[record['ConfirmedCases'] > 0]
base_date_object = datetime.strptime(start_date, "%Y-%m-%d" ).date()
private_start_date_object = datetime.strptime(private_start_date, "%Y-%m-%d" ).date()
private_end_date_object = datetime.strptime(private_end_date, "%Y-%m-%d" ).date()
record['days'] = [(datetime.strptime(date, "%Y-%m-%d" ).date() - base_date_object ).days + 1 for date in record['Date']]
private_start_day =(private_start_date_object - base_date_object ).days + 1
private_end_day =(private_end_date_object - base_date_object ).days + 1
if len(record[record['days'] < private_start_day])> 0:
record = record[record['days'] < private_start_day]
record2 = record
if len(record[record['Fatalities'] > 0])!= 0:
record2 = record[record['Fatalities'] > 0]
x = record['days'].values
x2 = record2['days'].values
y1 = record['ConfirmedCases'].values
y2 = record2['Fatalities'].values
b = -1
bad_index = 0
mod_count = 0
for a in y1:
if a < b:
y1[bad_index] = b
mod_count = mod_count + 1
else:
b = a
bad_index = bad_index + 1
if mod_count > 0:
print("*****************")
print(list(min_date_sorted.index ).index(index), index)
print(mod_count)
print(y1)
print("*****************")
b = -1
bad_index = 0
mod_count = 0
for a in y2:
if a < b:
y2[bad_index] = b
mod_count = mod_count + 1
else:
b = a
bad_index = bad_index + 1
if mod_count > 0:
print("*****************")
print(list(min_date_sorted.index ).index(index), index)
print(mod_count)
print(y2)
print("*****************")
y_max_ = y1[-1]
y1_prime = np.diff(y1)
y1_prime2 = np.diff(y1_prime)
if len(y1)>0 and len(y1_prime)> 0 and len(y1_prime2)> 0:
max_slope_index = len(y1_prime)- 1 - list(y1_prime)[::-1].index(max(y1_prime))
max_slope_range =(max_slope_index+1)/len(y1_prime)
y_max_ = y1[-1]
if max_slope_range < 0.75:
if y1_prime[max_slope_index] > 0 and max_slope_range < 0.75 and(((y1_prime[max_slope_index] - max(y1_prime[-2:])) /y1_prime[max_slope_index])< 0.5):
y_max_ = y1[-1]
pass
else:
y_max_ = y1[max_slope_index + 1]
pass
else:
y_max_ = y1[-1]
stage0 = False
stage1 = False
stage2 = False
stage3 = False
count1 = 0
count2 = 0
for start in range(len(y1_prime)-3):
if sum(y1_prime[start:start+3])<=12:
count1 = count1 + 1
count2 = 0
else:
count2 = count2 + 1
count1 = 0
if not stage0 and count2 == 0 and count1 > 2:
stage0 = True
count1 = 0
if not stage1 and count1 == 0 and count2 > 5:
stage0 = True
stage1 = True
count2 = 0
if stage1 and count2 == 0 and count1 > 3:
stage2 = True
count1 = 0
if stage2 and count1 == 0 and count2 > 2:
stage3 = True
count2 = 0
if stage3:
param, param_cov = curve_fit(custom, np.array(x), np.array(y1), maxfev = 100000, bounds=([1, 0, 1, 1, 30, 1, 1], [2, 60, 8, 200, 90, 8, 1400]))
y1_pred = custom(x, param[0], param[1], param[2], param[3], param[4], param[5], param[6])
elif index[0] == 'Korea, South':
param, param_cov = curve_fit(test_linear, np.array(x), np.array(y1), [y_max_, 0.5,(x[-1] - x[0])/2 + x[0], 50, 45, 0], maxfev = 100000, bounds=([y_max_/2, 0.1, 0, 1, 30, -100],[y_max_*5 + 1500, 1, 150, 100, 100, 1000]))
y1_pred = test_linear(x, param[0], param[1], param[2], param[3], param[4], param[5])
elif index[0] in ['US', 'Spain', 'Germany', 'France', 'Iran', 'United Kingdom']:
param, param_cov = curve_fit(test, np.array(x), np.array(y1), [y_max_*6, 0.5,(x[-1] - x[0])/2 + x[0]], maxfev = 100000, bounds=([y_max_*5, 0.1, 0],[y_max_*10 + 1500, 1, 150]))
y1_pred = test(x, param[0], param[1], param[2])
elif index[0] == 'China':
param, param_cov = curve_fit(test, np.array(x), np.array(y1), [y_max_, 0.5,(x[-1] - x[0])/2 + x[0]], maxfev = 100000, bounds=([y_max_/2, 0.1, 0],[y_max_*5 + 1500, 1, 150]))
y1_pred = test(x, param[0], param[1], param[2])
elif index[0] in ['Italy', 'Switzerland']:
param, param_cov = curve_fit(test, np.array(x), np.array(y1), [y_max_*3, 0.5,(x[-1] - x[0])/2 + x[0]], maxfev = 100000, bounds=([y_max_*2, 0.1, 0],[y_max_*5 + 1500, 1, 150]))
y1_pred = test(x, param[0], param[1], param[2])
else:
param, param_cov = curve_fit(test, np.array(x), np.array(y1), [y_max_*4, 0.5,(x[-1] - x[0])/2 + x[0]], maxfev = 100000, bounds=([y_max_*3, 0.1, 0],[y_max_*8 + 1500, 1, 150]))
y1_pred = test(x, param[0], param[1], param[2])
param2, param_cov2 = curve_fit(test, np.array(x2), np.array(y2), [y2[-1]/2, 0.5,(x2[-1] - x2[0])/2 + x2[0] - 3], maxfev = 100000, bounds=([y2[-1]/2, 0.1, 0],[y2[-1]*5 + 1, 0.8, 150]))
y2_pred = test(x2,param2[0], param2[1], param2[2])
group = test_groups.get_group(index)
group['days'] = [(datetime.strptime(date, "%Y-%m-%d" ).date() - base_date_object ).days + 1 for date in group['Date'].values]
group = group[group['days'] >= private_start_day]
ids = group['ForecastId'].values
days = [(datetime.strptime(date, "%Y-%m-%d" ).date() - base_date_object ).days + 1 for date in group['Date'].values]
prev_days = range(private_start_day - 6, private_start_day - 1, 1)
if stage3:
test_y1_pred_raw = custom(days, param[0], param[1], param[2], param[3], param[4], param[5], param[6])
prev_y1_pred_raw = custom(prev_days, param[0], param[1], param[2], param[3], param[4], param[5], param[6])
elif index[0] == 'Korea, South':
test_y1_pred_raw = test_linear(days, param[0], param[1], param[2], param[3], param[4], param[5])
prev_y1_pred_raw = test_linear(prev_days, param[0], param[1], param[2], param[3], param[4], param[5])
elif index[0] in ['US', 'Spain', 'Germany', 'France', 'Iran', 'United Kingdom']:
test_y1_pred_raw = test(days, param[0], param[1], param[2])
prev_y1_pred_raw = test(prev_days, param[0], param[1], param[2])
else:
test_y1_pred_raw = test(days, param[0], param[1], param[2])
prev_y1_pred_raw = test(prev_days, param[0], param[1], param[2])
test_y2_pred_raw = test(days, param2[0], param2[1], param2[2])
prev_y2_pred_raw = test(prev_days, param2[0], param2[1], param2[2])
day_index_pred = 0
diff1_list = []
diff2_list = []
for day in prev_days:
if day in x:
day_index = np.where(x == day)
diff1 = y1[day_index] - prev_y1_pred_raw[day_index_pred]
diff1_list.append(diff1)
if day in x2:
day_index = np.where(x2 == day)
diff2 = y2[day_index] - prev_y2_pred_raw[day_index_pred]
diff2_list.append(diff2)
day_index_pred = day_index_pred + 1
if len(diff1_list)> 0:
diff1_mean = np.max(diff1_list)
else:
diff1_mean = 0
if len(diff2_list)> 0:
diff2_mean = np.max(diff2_list)
else:
diff2_mean = 0
if np.isnan(diff1_mean):
pass
else:
test_y1_pred_raw = list(np.array(test_y1_pred_raw)+ diff1_mean)
if np.isnan(diff2_mean):
pass
else:
test_y2_pred_raw = list(np.array(test_y2_pred_raw)+ diff2_mean)
test_y1_pred = test_y1_pred_raw
test_y2_pred = test_y2_pred_raw
ratio = 0
if y2[-1] > 0:
ratio = y1[-1]/y2[-1]
else:
ratio = y1[-1]
train_day_index = days.index(private_start_day)- 1
if(y1[-1] < 100 and y2[-1] < 4 and ratio < avg):
for pred_index in range(len(test_y2_pred)) :
if pred_index > train_day_index:
if test_y2_pred[pred_index] < test_y1_pred[pred_index]/avg:
test_y2_pred[pred_index] = test_y1_pred[pred_index]/avg
else:
for pred_index in range(len(test_y2_pred)) :
if pred_index > train_day_index:
if test_y2_pred[pred_index] < test_y1_pred[pred_index]/ratio:
test_y2_pred[pred_index] = test_y1_pred[pred_index]/ratio
test_y1_pred = [int(n)for n in test_y1_pred]
test_y2_pred = [int(m)for m in test_y2_pred]
local_df_hr = pd.DataFrame(ids, columns=['ForecastId'])
local_df_hr.insert(1, 'Country_Region', [index[0]]*len(days))
local_df_hr.insert(2, 'Province_State', [index[1]]*len(days))
local_df_hr.insert(3, 'Days', days)
local_df_hr.insert(4, 'ConfirmedCases', test_y1_pred)
local_df_hr.insert(5, 'Fatalities', test_y2_pred)
local_df_hr.insert(6, 'Date', group['Date'].values)
local_df = pd.DataFrame(ids, columns=['ForecastId'])
local_df.insert(1, 'ConfirmedCases', test_y1_pred)
local_df.insert(2, 'Fatalities', test_y2_pred)
df = df.append(local_df)
df_hr = df_hr.append(local_df_hr)
count = count + 1
<sort_values> | import matplotlib.pyplot as plt | COVID19 Global Forecasting (Week 3) |
8,733,262 | df = df.sort_values(by=['ForecastId'], ascending=True)
df_hr = df_hr.sort_values(by=['ForecastId'], ascending=True )<save_to_csv> | datetime_str = '01/22/20 00:00:00'
datetime_object = datetime.strptime(datetime_str, '%m/%d/%y %H:%M:%S')
data['days']=pd.to_datetime(data['Date'] ).sub(datetime_object)/np.timedelta64(1, 'D')
test['days']=pd.to_datetime(test['Date'] ).sub(datetime_object)/np.timedelta64(1, 'D' ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | df.to_csv('submission.csv', index=False)
df_hr.to_csv('hr_submission.csv', index=False )<import_modules> | data.loc[(data['Province_State']=='')&(data['Country_Region']=='India'),:].sort_values(by="Date" ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt<define_variables> | data.to_csv("train_1.csv")
test.to_csv("test_1.csv")
| COVID19 Global Forecasting (Week 3) |
8,733,262 | EMPTY_VAL = "EMPTY_VAL"
NAN_VAL = "NaN"
def get_state(state, country):
if state == EMPTY_VAL: return country
if state == NAN_VAL: return country
return state<compute_test_metric> | from statsmodels.tsa.arima_model import ARIMA
| COVID19 Global Forecasting (Week 3) |
8,733,262 | def calc_score(y_true, y_pred):
y_true[y_true<0] = 0
score = metrics.mean_squared_error(np.log(y_true.clip(0, 1e10)+1), np.log(y_pred[:]+1)) **0.5
return score<load_from_csv> | data['Date']=pd.to_datetime(data['Date'])
test['Date']=pd.to_datetime(test['Date'] ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | PATH_WEEK2='/kaggle/input/covid19-global-forecasting-week-2'
df_train = pd.read_csv(f'{PATH_WEEK2}/train.csv')
df_test = pd.read_csv(f'{PATH_WEEK2}/test.csv')
df_train.rename(columns={'Country_Region':'Country'}, inplace=True)
df_test.rename(columns={'Country_Region':'Country'}, inplace=True)
df_train.rename(columns={'Province_State':'State'}, inplace=True)
df_test.rename(columns={'Province_State':'State'}, inplace=True)
df_train['Date'] = pd.to_datetime(df_train['Date'], infer_datetime_format=True)
df_test['Date'] = pd.to_datetime(df_test['Date'], infer_datetime_format=True)
y1_Train = df_train.iloc[:, -2]
y2_Train = df_train.iloc[:, -1]
<data_type_conversions> | pd.DataFrame(data.loc[data['Country_Region']=='Afghanistan',['ConfirmedCases']] ).reset_index(drop=True ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | X_Train = df_train.copy()
X_Train['State'].fillna(EMPTY_VAL, inplace=True)
X_Train['State'] = X_Train.loc[:, ['State', 'Country']].apply(lambda x : get_state(x['State'], x['Country']), axis=1)
X_Train.loc[:, 'Date'] = X_Train.Date.dt.strftime("%m%d")
X_Train["Date"] = X_Train["Date"].astype(int)
X_Train.head()<data_type_conversions> | data.isna().sum(axis=0 ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | X_Pred = df_test.copy()
X_Pred['State'].fillna(EMPTY_VAL, inplace=True)
X_Pred['State'] = X_Pred.loc[:, ['State', 'Country']].apply(lambda x : get_state(x['State'], x['Country']), axis=1)
X_Pred.loc[:, 'Date'] = X_Pred.Date.dt.strftime("%m%d")
X_Pred["Date"] = X_Pred["Date"].astype(int)
X_Pred.head()<categorify> | data['ConfirmedCases'][data['Country_Region']==''][51:] | COVID19 Global Forecasting (Week 3) |
8,733,262 | le = preprocessing.LabelEncoder()
X_Train.Country = le.fit_transform(X_Train.Country)
X_Train['State'] = le.fit_transform(X_Train['State'])
X_Train.head()<categorify> | data['ConfirmedCases'][data['Country_Region']=='India'].value_counts() | COVID19 Global Forecasting (Week 3) |
8,733,262 | X_Pred.Country = le.fit_transform(X_Pred.Country)
X_Pred['State'] = le.fit_transform(X_Pred['State'])
X_Pred.head()<create_dataframe> | pd.DataFrame(data.loc[data['Country_Region']=='India',['ConfirmedCases']] ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | filterwarnings('ignore')
le = preprocessing.LabelEncoder()
n_estimators = 5000
n_poly_degree = 5
countries = X_Train.Country.unique()
df_out_xgb = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []})
df_out_lgb = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []})
df_out_ply = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []})
for country in countries:
states = X_Train.loc[X_Train.Country == country, :].State.unique()
for state in states:
X_Train_CS = X_Train.loc[(X_Train.Country == country)&(X_Train.State == state), ['State', 'Country', 'Date', 'ConfirmedCases', 'Fatalities']]
y_Train_CS_Cases = X_Train_CS.loc[:, 'ConfirmedCases']
y_Train_CS_Fatal = X_Train_CS.loc[:, 'Fatalities']
X_Train_CS = X_Train_CS.loc[:, ['State', 'Country', 'Date']]
X_Train_CS.Country = le.fit_transform(X_Train_CS.Country)
X_Train_CS['State'] = le.fit_transform(X_Train_CS['State'])
X_Pred_CS = X_Pred.loc[(X_Pred.Country == country)&(X_Pred.State == state), ['State', 'Country', 'Date', 'ForecastId']]
X_Pred_CS_Id = X_Pred_CS.loc[:, 'ForecastId']
X_Pred_CS = X_Pred_CS.loc[:, ['State', 'Country', 'Date']]
X_Pred_CS.Country = le.fit_transform(X_Pred_CS.Country)
X_Pred_CS['State'] = le.fit_transform(X_Pred_CS['State'])
model_xgb_cases = XGBRegressor(n_estimators = n_estimators)
model_xgb_cases.fit(X_Train_CS, y_Train_CS_Cases)
y_xgb_cases_pred = model_xgb_cases.predict(X_Pred_CS)
model_xgb_fatal = XGBRegressor(n_estimators = n_estimators)
model_xgb_fatal.fit(X_Train_CS, y_Train_CS_Fatal)
y_xgb_fatal_pred = model_xgb_fatal.predict(X_Pred_CS)
model_lgb_cases = XGBRegressor(n_estimators = n_estimators)
model_lgb_cases.fit(X_Train_CS, y_Train_CS_Cases)
y_lgb_cases_pred = model_lgb_cases.predict(X_Pred_CS)
model_lgb_fatal = XGBRegressor(n_estimators = n_estimators)
model_lgb_fatal.fit(X_Train_CS, y_Train_CS_Fatal)
y_lgb_fatal_pred = model_lgb_fatal.predict(X_Pred_CS)
pl_cases_pred = np.poly1d(np.polyfit(X_Train_CS.Date, y_Train_CS_Cases, n_poly_degree))
y_ply_cases_pred = pl_cases_pred(X_Pred_CS.Date)
pl_fatal_pred = np.poly1d(np.polyfit(X_Train_CS.Date, y_Train_CS_Fatal, n_poly_degree))
y_ply_fatal_pred = pl_fatal_pred(X_Pred_CS.Date)
df_xgb = pd.DataFrame({'ForecastId': X_Pred_CS_Id, 'ConfirmedCases': y_xgb_cases_pred, 'Fatalities': y_xgb_fatal_pred})
df_lgb = pd.DataFrame({'ForecastId': X_Pred_CS_Id, 'ConfirmedCases': y_lgb_cases_pred, 'Fatalities': y_lgb_fatal_pred})
df_ply = pd.DataFrame({'ForecastId': X_Pred_CS_Id, 'ConfirmedCases': y_ply_cases_pred, 'Fatalities': y_ply_fatal_pred})
df_out_xgb = pd.concat([df_out_xgb, df_xgb], axis=0)
df_out_lgb = pd.concat([df_out_lgb, df_lgb], axis=0)
df_out_ply = pd.concat([df_out_ply, df_ply], axis=0)
<data_type_conversions> | datetime_str = '03/22/20 00:00:00'
datetime_object = datetime.strptime(datetime_str, '%m/%d/%y %H:%M:%S' ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | df_out_xgb.ForecastId = df_out_xgb.ForecastId.astype('int')
df_out_lgb.ForecastId = df_out_lgb.ForecastId.astype('int')
df_out_ply.ForecastId = df_out_ply.ForecastId.astype('int' )<create_dataframe> | from datetime import timedelta | COVID19 Global Forecasting (Week 3) |
8,733,262 | df_out = df_out_ply.copy()<feature_engineering> | import math | COVID19 Global Forecasting (Week 3) |
8,733,262 | df_out['ConfirmedCases'] =(1/4)*(df_out_xgb['ConfirmedCases'] + df_out_lgb['ConfirmedCases'])+(1/2)* df_out_ply['ConfirmedCases']
df_out['Fatalities'] =(1/4)*(df_out_xgb['Fatalities'] + df_out_lgb['Fatalities'])+(1/2)* df_out_ply['Fatalities']<data_type_conversions> | def rmsle(y, y_pred):
assert len(y)== len(y_pred)
terms_to_sum = [(math.log(y_pred[i] + 1)- math.log(y[i] + 1)) ** 2.0 for i,pred in enumerate(y_pred)]
return(sum(terms_to_sum)*(1.0/len(y)))** 0.5 | COVID19 Global Forecasting (Week 3) |
8,733,262 | df_out['ConfirmedCases'] = df_out['ConfirmedCases'].round().astype(int)
df_out['Fatalities'] = df_out['Fatalities'].round().astype(int )<save_to_csv> | def evaluate_arima_model(X,forecast_days, arima_order):
X=[x for x in X]
train_size = int(len(X)* 0.8)
train, test1 = X[0:train_size], X[train_size:]
history=train
model = ARIMA(history, order=arima_order)
model_fit = model.fit(disp=0)
predictions = list()
predictions =model_fit.forecast(steps=len(test1)) [0]
model = ARIMA(X, order=arima_order)
model_fit = model.fit(disp=0)
if np.isnan(model_fit.forecast(steps=forecast_days)[0] ).sum() >0:
return float('inf')
error = rmsle(test1, predictions)
return error | COVID19 Global Forecasting (Week 3) |
8,733,262 | df_out.to_csv('submission.csv', index=False )<import_modules> | def evaluate_models(dataset,forcast_days, p_values, d_values, q_values):
best_score, best_cfg = float("inf"),(0,0,0)
for p in p_values:
for d in d_values:
for q in q_values:
order =(p,d,q)
try:
mse = evaluate_arima_model(dataset,forcast_days, order)
if mse < best_score:
best_score, best_cfg = mse, order
except:
continue
print('Best ARIMA%s MSE=%.3f' %(best_cfg, best_score))
return best_cfg, best_score | COVID19 Global Forecasting (Week 3) |
8,733,262 | import numpy as np
import pandas as pd
import lightgbm as lgb
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit<load_from_csv> | warnings.filterwarnings('ignore' ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | train = pd.read_csv('.. /input/covid19-global-forecasting-week-2/train.csv')
test = pd.read_csv('.. /input/covid19-global-forecasting-week-2/test.csv')
world_population = pd.read_csv('.. /input/population-by-country-2020/population_by_country_2020.csv' )<merge> | test['ConfirmedCases']=0
test['Fatalities']=0 | COVID19 Global Forecasting (Week 3) |
8,733,262 | world_population = world_population[['Country(or dependency)', 'Population(2020)']]
world_population.columns = ['Country(or dependency)', 'Population']
world_population.loc[world_population['Country(or dependency)']=='United States', 'Country(or dependency)'] = 'US'
train = train.merge(world_population, left_on='Country_Region', right_on='Country(or dependency)', how='left')
test = test.merge(world_population, left_on='Country_Region', right_on='Country(or dependency)', how='left' )<feature_engineering> | sliced_data=data.loc[(data['Province_State']=='')&(data['Country_Region']=='India'),:] | COVID19 Global Forecasting (Week 3) |
8,733,262 | train['State_Country'] = [s + '_' + c if s == s else c for s,c in train[['Province_State', 'Country_Region']].values ]
test['State_Country'] = [s + '_' + c if s == s else c for s,c in test[['Province_State', 'Country_Region']].values ]<feature_engineering> | from pandas import read_csv
from pandas import datetime
from matplotlib import pyplot
from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
from math import sqrt
from time import time
from sklearn.metrics import mean_squared_error | COVID19 Global Forecasting (Week 3) |
8,733,262 | train.loc[(train['Date']=='2020-03-24')&(train['State_Country']=='France'),'ConfirmedCases'] = 22654
train.loc[(train['Date']=='2020-03-24')&(train['State_Country']=='France'),'Fatalities'] = 1000<groupby> | country='India'
state=''
sliced_data=data.loc[(data['Province_State']==state)&(data['Country_Region']==country),:]
test_sliced=test.loc[(test['Province_State']==state)&(test['Country_Region']==country),:]
print(sliced_data)
sliced_data=sliced_data.drop_duplicates()
sliced_data=sliced_data.reset_index(drop=True)
sliced_data=sliced_data.sort_values(by='Date')
if sliced_data.loc[sliced_data['ConfirmedCases']>0,:].shape[0]>0:
sliced_data=sliced_data.loc[sliced_data['ConfirmedCases']>0,:]
sliced_data=sliced_data.reset_index(drop=True)
max_date_train=sliced_data['Date'].max()
max_date_test=test_sliced['Date'].max()
forcast_days=int(( max_date_test-max_date_train)/np.timedelta64(1, 'D'))
history=sliced_data['ConfirmedCases'].to_list()
print('history')
print(history)
if len(history)==1:
history.append(history[0])
best_cfg,best_score=evaluate_models(history,forcast_days,range(10),range(7),range(7))
preds=[]
model = ARIMA(history, order=best_cfg)
model_fit = model.fit(disp=0)
preds=model_fit.forecast(steps=forcast_days)[0]
preds=[round(p)if p>0 else 0 for p in preds]
dates=[max_date_train+timedelta(days=day+1)for day in range(forcast_days)]
predictions=pd.DataFrame()
predictions['Date']=dates
predictions['ConfirmedCases']=preds
test_sliced=test_sliced.merge(sliced_data[['Date','ConfirmedCases']], on='Date',how='left')
test_sliced['ConfirmedCases']=test_sliced['ConfirmedCases_y']
del test_sliced['ConfirmedCases_y']
del test_sliced['ConfirmedCases_x']
test_sliced=test_sliced.merge(predictions, on='Date',how='left')
test_sliced['ConfirmedCases_x'][test_sliced['ConfirmedCases_x'].isna() ]=test_sliced['ConfirmedCases_y'][test_sliced['ConfirmedCases_x'].isna() ]
test_sliced['ConfirmedCases']=test_sliced['ConfirmedCases_x']
del test_sliced['ConfirmedCases_y']
del test_sliced['ConfirmedCases_x']
sliced_data_bck=sliced_data.copy()
if sliced_data.loc[sliced_data['Fatalities']>0,:].shape[0]>0:
sliced_data=sliced_data.loc[sliced_data['Fatalities']>0,:]
sliced_data=sliced_data.reset_index(drop=True)
max_date_train=sliced_data['Date'].max()
max_date_test=test_sliced['Date'].max()
forcast_days=int(( max_date_test-max_date_train)/np.timedelta64(1, 'D'))
history=sliced_data['Fatalities'].to_list()
if len(history)==1:
history.append(history[0])
best_cfg,best_score=evaluate_models(history,forcast_days,range(5),range(5),range(5))
preds=[]
model=None
model = ARIMA(history, order=best_cfg)
model_fit = model.fit(disp=0)
preds=model_fit.forecast(steps=forcast_days)[0]
preds=[round(p)if p>0 else 0 for p in preds]
dates=[max_date_train+timedelta(days=day+1)for day in range(forcast_days)]
predictions_f=pd.DataFrame()
predictions_f['Date']=dates
predictions_f['Fatalities']=preds
test_sliced=test_sliced.merge(sliced_data_bck[['Date','Fatalities']], on='Date',how='left')
test_sliced['Fatalities']=test_sliced['Fatalities_y']
del test_sliced['Fatalities_y']
del test_sliced['Fatalities_x']
test_sliced=test_sliced.merge(predictions_f, on='Date',how='left')
test_sliced['Fatalities_x'][test_sliced['Fatalities_x'].isna() ]=test_sliced['Fatalities_y'][test_sliced['Fatalities_x'].isna() ]
test_sliced['Fatalities']=test_sliced['Fatalities_x']
del test_sliced['Fatalities_y']
del test_sliced['Fatalities_x']
test=test.merge(test_sliced,on='ForecastId',how='left')
test['ConfirmedCases_x'][test['ConfirmedCases_y'].notna() ]=test['ConfirmedCases_y'][test['ConfirmedCases_y'].notna() ]
test['Fatalities_x'][test['Fatalities_y'].notna() ]=test['Fatalities_y'][test['Fatalities_y'].notna() ]
new_cols=[]
for col in test.columns:
if col[-2:]=='_y':
del test[col]
elif col[-2:]=='_x':
new_cols.append(col[:-2])
else:
new_cols.append(col)
test.columns=new_cols
test.loc[(test['Province_State']==state)&(test['Country_Region']==country),:].head()
plt.plot('Date', 'ConfirmedCases', data=sliced_data, color='blue', linewidth=2)
plt.plot('Date','ConfirmedCases',data=test_sliced,color='orange',linewidth=2)
plt.plot('Date', 'Fatalities', data=sliced_data, color='purple', linewidth=2)
plt.plot('Date','Fatalities',data=test_sliced,color='red',linewidth=2)
plt.show() | COVID19 Global Forecasting (Week 3) |
8,733,262 | for metric in ['ConfirmedCases', 'Fatalities']:
dict_values = train.groupby('State_Country')[metric].apply(np.array ).to_dict()
for country in dict_values:
if sum(np.diff(dict_values[country])< 0):
print(country, metric)
new_val = [dict_values[country][-1]]
for val_1, val_2 in zip(dict_values[country][1:][::-1], dict_values[country][:-1][::-1]):
if val_2 <= new_val[-1]:
new_val += [val_2]
else:
new_val += [new_val[-1]]
new_val = np.array(new_val[::-1])
train.loc[train.State_Country == country, metric] = new_val<feature_engineering> | test.loc[(test['Province_State']==state)&(test['Country_Region']==country),['Country_Region','Date','ConfirmedCases','Fatalities']] | COVID19 Global Forecasting (Week 3) |
8,733,262 | train['max_case'] = train['State_Country'].map(train.groupby('State_Country' ).ConfirmedCases.max())
train['pct_c'] = train.ConfirmedCases.pct_change()<predict_on_test> | test['ConfirmedCases']=0
test['Fatalities']=0 | COVID19 Global Forecasting (Week 3) |
8,733,262 | def predict_cc(data, country, len_predict, metrics, len_intersection):
country_data = data[data['State_Country']==country]
if country_data[metrics].values.max() > 1000:
start_people = 2
else:
start_people = 0
country_data = country_data.iloc[dict_case_date[country][start_people]:, :]
x_data = range(len(country_data.index))
y_data = country_data[metrics].values
if len(x_data)<= 1:
y_min = 0
y_max = 100
y_val = np.arange(len(x_data), len(x_data)+ len_predict)
return [-1, -1, -1], log_curve(y_val, 0.3, 30, 100)
else:
add_max =(1 + country_data.pct_c.values[-3:].mean())**(1 / 2)
if y_data.max() > 10000:
add_min =(1 + country_data.pct_c.values[-3:].mean())**(1 / 5)
elif y_data.max() > 1000:
add_min =(1 + country_data.pct_c.values[-3:].mean())**(1 / 3)
else:
add_min =(1 + country_data.pct_c.values[-3:].mean())**(1 / 2)
add_max =(1 + country_data.pct_c.values[-3:].mean())**(1)
day_left = max(10, 50 - len(x_data))
y_min = y_data[-1] *(add_min ** day_left)
if y_min > country_data['Population'].values[0] * 0.05:
y_min = country_data['Population'].values[0] * 0.05
y_max = y_data[-1] *(add_max ** day_left + 30)
if y_max > country_data['Population'].values[0] * 0.15:
y_max = country_data['Population'].values[0] * 0.15
if add_min == add_max or add_max != add_max:
y_min = y_data[-1]
y_max = max(100, y_data[-1] *(1.3 ** 30))
if y_max > 100000 and y_data[-1] < 10000:
y_max = y_data[-1] * 10
y_min = y_data[-1]
popt, pcov = curve_fit(log_curve, x_data, y_data, bounds=([0.1, 10, y_min ],[0.35, 50, y_max]),
p0=[0.2,30,(y_min + y_max)/ 2], maxfev=10000)
y_val = np.arange(len(x_data)- len_intersection, len(x_data)+ len_predict - len_intersection)
return popt, log_curve(y_val, popt[0], popt[1], popt[2])
def log_curve(x, k, x_0, ymax):
return ymax /(1 + np.exp(-k*(x-x_0)) )<groupby> | for country in countries:
for state in countries[country]:
print('Country : '+country,'State : '+state)
sliced_data=data.loc[(data['Province_State']==state)&(data['Country_Region']==country),:]
test_sliced=test.loc[(test['Province_State']==state)&(test['Country_Region']==country),:]
sliced_data=sliced_data.drop_duplicates()
sliced_data=sliced_data.reset_index(drop=True)
sliced_data=sliced_data.sort_values(by='Date')
if sliced_data.loc[sliced_data['ConfirmedCases']>0,:].shape[0]>0:
sliced_data=sliced_data.loc[sliced_data['ConfirmedCases']>0,:]
sliced_data=sliced_data.reset_index(drop=True)
max_date_train=sliced_data['Date'].max()
max_date_test=test_sliced['Date'].max()
forcast_days=int(( max_date_test-max_date_train)/np.timedelta64(1, 'D'))
history=sliced_data['ConfirmedCases'].to_list()
if len(history)==1:
history.append(history[0])
best_cfg,best_score=evaluate_models(history,forcast_days,range(5),range(5),range(5))
preds=[]
model = ARIMA(history, order=best_cfg)
model_fit = model.fit(disp=0)
preds=model_fit.forecast(steps=forcast_days)[0]
preds=[round(p)if p>0 else 0 for p in preds]
dates=[max_date_train+timedelta(days=day+1)for day in range(forcast_days)]
predictions=pd.DataFrame()
predictions['Date']=dates
predictions['ConfirmedCases']=preds
test_sliced=test_sliced.merge(sliced_data[['Date','ConfirmedCases']], on='Date',how='left')
test_sliced['ConfirmedCases']=test_sliced['ConfirmedCases_y']
del test_sliced['ConfirmedCases_y']
del test_sliced['ConfirmedCases_x']
test_sliced=test_sliced.merge(predictions, on='Date',how='left')
test_sliced['ConfirmedCases_x'][test_sliced['ConfirmedCases_x'].isna() ]=test_sliced['ConfirmedCases_y'][test_sliced['ConfirmedCases_x'].isna() ]
test_sliced['ConfirmedCases']=test_sliced['ConfirmedCases_x']
del test_sliced['ConfirmedCases_y']
del test_sliced['ConfirmedCases_x']
sliced_data_bck=sliced_data.copy()
if sliced_data.loc[sliced_data['Fatalities']>0,:].shape[0]>0:
sliced_data=sliced_data.loc[sliced_data['Fatalities']>0,:]
sliced_data=sliced_data.reset_index(drop=True)
max_date_train=sliced_data['Date'].max()
max_date_test=test_sliced['Date'].max()
forcast_days=int(( max_date_test-max_date_train)/np.timedelta64(1, 'D'))
history=sliced_data['Fatalities'].to_list()
if len(history)==1:
history.append(history[0])
best_cfg,best_score=evaluate_models(history,forcast_days,range(5),range(5),range(5))
preds=[]
model=None
model = ARIMA(history, order=best_cfg)
model_fit = model.fit(disp=0)
preds=model_fit.forecast(steps=forcast_days)[0]
preds=[round(p)if p>0 else 0 for p in preds]
dates=[max_date_train+timedelta(days=day+1)for day in range(forcast_days)]
predictions_f=pd.DataFrame()
predictions_f['Date']=dates
predictions_f['Fatalities']=preds
test_sliced=test_sliced.merge(sliced_data_bck[['Date','Fatalities']], on='Date',how='left')
test_sliced['Fatalities']=test_sliced['Fatalities_y']
del test_sliced['Fatalities_y']
del test_sliced['Fatalities_x']
test_sliced=test_sliced.merge(predictions_f, on='Date',how='left')
test_sliced['Fatalities_x'][test_sliced['Fatalities_x'].isna() ]=test_sliced['Fatalities_y'][test_sliced['Fatalities_x'].isna() ]
test_sliced['Fatalities']=test_sliced['Fatalities_x']
del test_sliced['Fatalities_y']
del test_sliced['Fatalities_x']
test=test.merge(test_sliced,on='ForecastId',how='left')
test['ConfirmedCases_x'][test['ConfirmedCases_y'].notna() ]=test['ConfirmedCases_y'][test['ConfirmedCases_y'].notna() ]
test['Fatalities_x'][test['Fatalities_y'].notna() ]=test['Fatalities_y'][test['Fatalities_y'].notna() ]
new_cols=[]
for col in test.columns:
if col[-2:]=='_y':
del test[col]
elif col[-2:]=='_x':
new_cols.append(col[:-2])
else:
new_cols.append(col)
test.columns=new_cols
print(test.loc[(test['Province_State']==state)&(test['Country_Region']==country),:].head())
plt.plot('Date', 'ConfirmedCases', data=sliced_data, color='blue', linewidth=2)
plt.plot('Date','ConfirmedCases',data=test_sliced,color='orange',linewidth=2)
plt.plot('Date', 'Fatalities', data=sliced_data, color='purple', linewidth=2)
plt.plot('Date','Fatalities',data=test_sliced,color='red',linewidth=2)
plt.show() | COVID19 Global Forecasting (Week 3) |
8,733,262 | metrics = 'ConfirmedCases'
dict_values = train.groupby('State_Country')[metrics].apply(np.array ).to_dict()
dict_case_date = {}
for country in dict_values:
dict_case_date[country] = []
for case in [1, 10, 100, 250, 500, 1000, 2500, 5000]:
try:
dict_case_date[country] += [np.where(dict_values[country] >= case)[0][0]]
except:
dict_case_date[country] += [-1]
dict_case_date[country] = np.array(dict_case_date[country])
dict_predict = {}
data_train = train.copy()
data_val = test.copy()
len_predict = data_val[data_val.State_Country == country].shape[0]
len_intersection = len(set(data_train.Date.unique())& set(data_val.Date.unique()))
for country in train.State_Country.unique() :
popt, pred_values = predict_cc(data_train, country, len_predict, metrics, len_intersection)
dict_predict[country] = pred_values<feature_engineering> | test.to_csv("test_2.csv" ) | COVID19 Global Forecasting (Week 3) |
8,733,262 | <find_best_params><EOS> | sumb=pd.read_csv('/kaggle/input/covid19-global-forecasting-week-3/submission.csv')
output=pd.DataFrame()
output['ForecastId']=test['ForecastId'].astype(int)
output['ConfirmedCases']=test['ConfirmedCases'].astype(int)
output['Fatalities']=test['Fatalities'].astype(int)
output.to_csv('submission.csv',index=False)
| COVID19 Global Forecasting (Week 3) |
3,775,898 | <SOS> metric: MacroFScore Kaggle data source: iwildcam-2019-fgvc6<prepare_output> | import os
from glob import glob
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
| iWildCam 2019 - FGVC6 |
3,775,898 | predicted_class_indices=np.argmax(predict,axis=1 )<load_pretrained> | train_df = pd.read_csv('.. /input/train.csv')
test_df = pd.read_csv('.. /input/test.csv')
sub = pd.read_csv('.. /input/sample_submission.csv')
train_dir = '.. /input/train_images'
test_dir = '.. /input/test_images' | iWildCam 2019 - FGVC6 |
3,775,898 | with open('.. /input/iwildcam2020-classes-dict/cid_invert_dict.pkl', mode='rb')as fin:
cid_invert_dict=pickle.load(fin )<categorify> | print('Total images for train {0}'.format(len(os.listdir(train_dir))))
print('Total images for test {0}'.format(len(os.listdir(test_dir)))) | iWildCam 2019 - FGVC6 |
3,775,898 | def transform(x):
return cid_invert_dict[str(x)]<save_to_csv> | classes_wild = {0: 'empty', 1: 'deer', 2: 'moose', 3: 'squirrel', 4: 'rodent', 5: 'small_mammal', \
6: 'elk', 7: 'pronghorn_antelope', 8: 'rabbit', 9: 'bighorn_sheep', 10: 'fox', 11: 'coyote', \
12: 'black_bear', 13: 'raccoon', 14: 'skunk', 15: 'wolf', 16: 'bobcat', 17: 'cat',\
18: 'dog', 19: 'opossum', 20: 'bison', 21: 'mountain_goat', 22: 'mountain_lion'}
train_df['classes_wild'] = train_df['category_id'].apply(lambda cw: classes_wild[cw] ) | iWildCam 2019 - FGVC6 |
3,775,898 | sam_sub_df["Category"] = predicted_class_indices
sam_sub_df["Category"]=sam_sub_df["Category"].apply(transform)
sam_sub_df = sam_sub_df.loc[:,["Id", "Category"]]
sam_sub_df.to_csv("submission.csv",index=False)
sam_sub_df.head()<set_options> | train_df['classes_wild'].value_counts() | iWildCam 2019 - FGVC6 |
3,775,898 | ImageFile.LOAD_TRUNCATED_IMAGES = True
%matplotlib inline<define_search_model> | import torch
import torch.nn as nn
import torchvision
from torchvision.transforms import transforms
from torch.utils.data import Dataset, DataLoader
from torchvision import models
from sklearn.model_selection import train_test_split | iWildCam 2019 - FGVC6 |
3,775,898 | def kaggle_commit_logger(str_to_log, need_print = True):
if need_print:
print(str_to_log)
os.system('echo ' + str_to_log )<load_from_disk> | train_df = train_df[['file_name','category_id']]
train_df.head()
| iWildCam 2019 - FGVC6 |
3,775,898 | with open(r'/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_train_annotations.json')as json_file:
train_data = json.load(json_file )<prepare_output> | category = train_df['category_id'].unique()
encoder = dict([(v, k)for v, k in zip(category, range(len(category)))])
decoder = dict([(v, k)for k, v in encoder.items() ])
print(pd.DataFrame({
'Before encoding': list(encoder.keys()),
'After encoding': list(encoder.values())} ).to_string(index=False))
def encoding(labels):
return encoder[int(labels)] | iWildCam 2019 - FGVC6 |
3,775,898 | df_train = pd.DataFrame({'id': [item['id'] for item in train_data['annotations']],
'category_id': [item['category_id'] for item in train_data['annotations']],
'image_id': [item['image_id'] for item in train_data['annotations']],
'file_name': [item['file_name'] for item in train_data['images']]})
df_train.head()<create_dataframe> | train_df['category_id'] = train_df['category_id'].apply(encoding)
train_df['category_id'].value_counts() | iWildCam 2019 - FGVC6 |
3,775,898 | df_image = pd.DataFrame.from_records(train_data['images'])
indices = []
for _id in df_image[df_image['location'] == 537]['id'].values:
indices.append(df_train[ df_train['image_id'] == _id ].index)
for the_index in indices:
df_train = df_train.drop(df_train.index[the_index] )<load_pretrained> | class WildDataset(Dataset):
def __init__(self, df, img_dir, transforms=None):
self.df = df
self.img_dir = img_dir
self.transforms = transforms
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
img_name = os.path.join(self.img_dir,
self.df.iloc[idx, 0])
image = cv2.imread(img_name)
label = self.df.iloc[idx, 1]
if self.transforms is not None:
image = self.transforms(image)
return image, label | iWildCam 2019 - FGVC6 |
3,775,898 | %%time
indices = []
for i in df_train['file_name']:
try:
Image.open('/kaggle/input/iwildcam-2020-fgvc7/train/' + i)
except:
print(i)
df_train.drop(df_train.loc[df_train['file_name']==i].index, inplace=True )<load_from_disk> | train, val = train_test_split(train_df, stratify=train_df.category_id, test_size=0.1)
len(train), len(val ) | iWildCam 2019 - FGVC6 |
3,775,898 | with open(r'/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_test_information.json')as f:
test_data = json.load(f )<prepare_output> | aug = transforms.Compose([transforms.ToPILImage() ,
transforms.Resize(( 32, 32)) ,
transforms.ToTensor() ,
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
| iWildCam 2019 - FGVC6 |
3,775,898 | df_test = pd.DataFrame.from_records(test_data['images'])
df_test.head()<define_variables> | dataset_train = WildDataset(df=train,
img_dir=train_dir,
transforms=aug)
dataset_valid = WildDataset(df=val,
img_dir=train_dir,
transforms=aug)
train_loader = DataLoader(dataset=dataset_train, batch_size=24, shuffle=True)
val_loader = DataLoader(dataset_valid, batch_size=24, shuffle=False, num_workers=0 ) | iWildCam 2019 - FGVC6 |
3,775,898 | batch_size = 64
IMG_SIZE = 64
N_EPOCHS = 1
ID_COLNAME = 'file_name'
ANSWER_COLNAME = 'category_id'
TRAIN_IMGS_DIR = r'.. /input/iwildcam-2020-fgvc7/train/'
TEST_IMGS_DIR = r'.. /input/iwildcam-2020-fgvc7/test/'<split> | num_epochs = 2
num_classes = 14
learning_rate = 0.02
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) | iWildCam 2019 - FGVC6 |
3,775,898 | train_df, test_df = train_test_split(df_train[[ID_COLNAME, ANSWER_COLNAME]],
test_size = 0.15,
shuffle = True
)<define_variables> | def conv3x3(in_channels, out_channels, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=stride, padding=1, bias=False)
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self ).__init__()
self.conv1 = conv3x3(in_channels, out_channels, stride)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(out_channels, out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=14):
super(ResNet, self ).__init__()
self.in_channels = 16
self.conv = conv3x3(3, 16)
self.bn = nn.BatchNorm2d(16)
self.relu = nn.LeakyReLU(inplace=True)
self.layer1 = self.make_layer(block, 16, layers[0])
self.layer2 = self.make_layer(block, 32, layers[1], 2)
self.layer3 = self.make_layer(block, 64, layers[2], 2)
self.layer4 = self.make_layer(block, 128, layers[3], 2)
self.avg_pool = nn.AdaptiveAvgPool2d(4)
self.fc = nn.Linear(128, num_classes)
def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if(stride != 1)or(self.in_channels != out_channels):
downsample = nn.Sequential(
conv3x3(self.in_channels, out_channels, stride=stride),
nn.BatchNorm2d(out_channels))
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels
for i in range(1, blocks):
layers.append(block(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv(x)
out = self.bn(out)
out = self.relu(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
def create_resnet_model(output_dim: int = 1)-> nn.Module:
model = ResNet(ResidualBlock, [2, 2, 2, 2])
in_features = model.fc.in_features
model.avg_pool = nn.AdaptiveAvgPool2d(1)
model.fc = nn.Linear(in_features, output_dim)
model = model.to(device)
return model
model = create_resnet_model(output_dim=num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adamax(model.parameters() , lr=learning_rate ) | iWildCam 2019 - FGVC6 |
3,775,898 | NUM_CLASSES = len(CLASSES_TO_USE)
NUM_CLASSES<define_variables> | total_step = len(train_loader)
for epoch in range(num_epochs):
for i,(images, labels)in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if(i+1)% 100 == 0:
print("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
| iWildCam 2019 - FGVC6 |
3,775,898 | CLASSMAP = dict(
[(i, j)for i, j
in zip(CLASSES_TO_USE, range(NUM_CLASSES))
]
)
CLASSMAP<define_variables> | model.eval()
with torch.no_grad() :
correct = 0
total = 0
for images, labels in val_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct +=(predicted == labels ).sum().item()
print('Accuracy of the model on the 19630 test images: {} %'.format(100 * correct / total))
| iWildCam 2019 - FGVC6 |
3,775,898 | REVERSE_CLASSMAP = dict([(v, k)for k, v in CLASSMAP.items() ])
REVERSE_CLASSMAP<choose_model_class> | sub = pd.read_csv('.. /input/sample_submission.csv')
sub['Id'] = sub['Id'] + '.jpg'
sub.head() | iWildCam 2019 - FGVC6 |
3,775,898 | model = models.densenet121(pretrained='imagenet' )<choose_model_class> | dataset_valid = WildDataset(df=sub,
img_dir=test_dir,
transforms=aug)
test_loader = DataLoader(dataset_valid, batch_size=24, shuffle=False ) | iWildCam 2019 - FGVC6 |
3,775,898 | new_head = torch.nn.Linear(model.classifier.in_features, NUM_CLASSES)
model.classifier = new_head<load_from_disk> | model.eval()
preds = []
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
predicted
for i in predicted.detach().cpu().numpy() :
preds.append(i)
| iWildCam 2019 - FGVC6 |
3,775,898 | model.load_state_dict(torch.load('.. /input/iwild2020-torch/model'))<categorify> | sub['Predicted'] = preds
sub['Id'] = sub['Id'].str[:-4]
sub.head()
| iWildCam 2019 - FGVC6 |
3,775,898 | normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_augmentation = transforms.Compose([
transforms.Resize(( IMG_SIZE,IMG_SIZE)) ,
transforms.ToTensor() ,
normalizer,
])
val_augmentation = transforms.Compose([
transforms.Resize(( IMG_SIZE,IMG_SIZE)) ,
transforms.ToTensor() ,
normalizer,
] )<create_dataframe> | def decoding(labels):
return decoder[int(labels)] | iWildCam 2019 - FGVC6 |
3,775,898 | class IMetDataset(Dataset):
def __init__(self,
df,
images_dir,
n_classes = NUM_CLASSES,
id_colname = ID_COLNAME,
answer_colname = ANSWER_COLNAME,
label_dict = CLASSMAP,
transforms = None
):
self.df = df
self.images_dir = images_dir
self.n_classes = n_classes
self.id_colname = id_colname
self.answer_colname = answer_colname
self.label_dict = label_dict
self.transforms = transforms
def __len__(self):
return self.df.shape[0]
def __getitem__(self, idx):
cur_idx_row = self.df.iloc[idx]
img_id = cur_idx_row[self.id_colname]
img_name = img_id
img_path = os.path.join(self.images_dir, img_name)
img = Image.open(img_path)
if self.transforms is not None:
img = self.transforms(img)
if self.answer_colname is not None:
label = torch.zeros(( self.n_classes,), dtype=torch.float32)
label[self.label_dict[cur_idx_row[self.answer_colname]]] = 1.0
return img, label
else:
return img, img_id<create_dataframe> | sub['Predicted'] = sub['Predicted'].apply(decoding)
sub.head()
sub.to_csv('submission.csv', index=False ) | iWildCam 2019 - FGVC6 |
3,775,898 | train_dataset = IMetDataset(train_df, TRAIN_IMGS_DIR, transforms = train_augmentation)
test_dataset = IMetDataset(test_df, TRAIN_IMGS_DIR, transforms = val_augmentation )<load_pretrained> | sub['Predicted'].value_counts() | iWildCam 2019 - FGVC6 |
3,508,271 | BS = 24
train_loader = DataLoader(train_dataset, batch_size=BS, shuffle=True, num_workers=2, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=BS, shuffle=False, num_workers=2, pin_memory=True )<compute_test_metric> | x_train = np.load('.. /input/reducing-image-sizes-to-32x32/X_train.npy')
x_test = np.load('.. /input/reducing-image-sizes-to-32x32/X_test.npy')
y_train = np.load('.. /input/reducing-image-sizes-to-32x32/y_train.npy')
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255.
x_test /= 255 . | iWildCam 2019 - FGVC6 |
3,508,271 | def f1_score(y_true, y_pred, threshold=0.5):
return fbeta_score(y_true, y_pred, 1, threshold)
def fbeta_score(y_true, y_pred, beta, threshold, eps=1e-9):
beta2 = beta**2
y_pred = torch.ge(y_pred.float() , threshold ).float()
y_true = y_true.float()
true_positive =(y_pred * y_true ).sum(dim=1)
precision = true_positive.div(y_pred.sum(dim=1 ).add(eps))
recall = true_positive.div(y_true.sum(dim=1 ).add(eps))
return torch.mean(
(precision*recall ).
div(precision.mul(beta2)+ recall + eps ).
mul(1 + beta2))<train_model> | datagen_train = ImageDataGenerator(
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True)
datagen_train.fit(x_train ) | iWildCam 2019 - FGVC6 |
3,508,271 | def train_one_epoch(model, train_loader, criterion, optimizer, steps_upd_logging = 250):
model.train() ;
total_loss = 0.0
train_tqdm = tqdm_notebook(train_loader)
for step,(features, targets)in enumerate(train_tqdm):
try:
features, targets = cuda(features), cuda(targets)
optimizer.zero_grad()
logits = model(features)
loss = criterion(logits, targets)
loss.backward()
optimizer.step()
total_loss += loss.item()
if(step + 1)% steps_upd_logging == 0:
logstr = f'Train loss on step {step + 1} was {round(total_loss /(step + 1), 5)}'
train_tqdm.set_description(logstr)
kaggle_commit_logger(logstr, need_print=False)
except:
pass
return total_loss /(step + 1 )<choose_model_class> | from keras.applications import DenseNet121
from keras.layers import *
from keras.models import Sequential | iWildCam 2019 - FGVC6 |
3,508,271 | criterion = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters() , lr=0.0005)
sheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5, patience=3 )<train_model> | conv_base = DenseNet121(weights='imagenet',include_top=False,input_shape=(32,32,3)) | iWildCam 2019 - FGVC6 |
3,508,271 | %%time
TRAIN_LOGGING_EACH = 500
train_losses = []
valid_losses = []
valid_f1s = []
best_model_f1 = 0.0
best_model = None
best_model_ep = 0
for epoch in range(1, N_EPOCHS + 1):
ep_logstr = f"Starting {epoch} epoch..."
kaggle_commit_logger(ep_logstr)
tr_loss = train_one_epoch(model, train_loader, criterion, optimizer, TRAIN_LOGGING_EACH)
train_losses.append(tr_loss)
tr_loss_logstr = f'Mean train loss: {round(tr_loss,5)}'
kaggle_commit_logger(tr_loss_logstr)
valid_loss, valid_f1 = validate(model, test_loader, criterion)
valid_losses.append(valid_loss)
valid_f1s.append(valid_f1)
val_loss_logstr = f'Mean valid loss: {round(valid_loss,5)}'
kaggle_commit_logger(val_loss_logstr)
sheduler.step(valid_loss)
if valid_f1 >= best_model_f1:
best_model = model
best_model_f1 = valid_f1
best_model_ep = epoch<save_model> | model = Sequential()
model.add(conv_base)
model.add(GlobalAveragePooling2D())
model.add(Dropout(0.5))
model.add(Dense(14, activation='softmax'))
model.summary() | iWildCam 2019 - FGVC6 |
3,508,271 | torch.save(best_model.state_dict() , 'model' )<find_best_params> | model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'] ) | iWildCam 2019 - FGVC6 |
3,508,271 | bestmodel_logstr = f'Best f1 is {round(best_model_f1, 5)} on epoch {best_model_ep}'
kaggle_commit_logger(bestmodel_logstr )<load_from_csv> | str_ = 'Traning Started'
os.system('echo '+str_ ) | iWildCam 2019 - FGVC6 |
3,508,271 | SAMPLE_SUBMISSION_DF = pd.read_csv(r'.. /input/iwildcam-2020-fgvc7/sample_submission.csv')
SAMPLE_SUBMISSION_DF.head()<feature_engineering> | batch_size = 128
epochs = 25
checkpoint = ModelCheckpoint(
'model.h5',
monitor='val_acc',
verbose=1,
save_best_only=True,
save_weights_only=False,
mode='auto'
)
history = model.fit(
x=x_train,
y=y_train,
batch_size=64,
epochs=10,
callbacks=[checkpoint],
validation_split=0.1
) | iWildCam 2019 - FGVC6 |
3,508,271 | SAMPLE_SUBMISSION_DF.rename(columns={'Id':'file_name','Category':'category_id'}, inplace=True)
SAMPLE_SUBMISSION_DF['file_name'] = SAMPLE_SUBMISSION_DF['file_name'] + '.jpg'
SAMPLE_SUBMISSION_DF.head()<create_dataframe> | model.load_weights('model.h5' ) | iWildCam 2019 - FGVC6 |
3,508,271 | subm_dataset = IMetDataset(SAMPLE_SUBMISSION_DF,
TEST_IMGS_DIR,
transforms = val_augmentation,
answer_colname=None
)<load_pretrained> | pred = model.predict_classes(x_test,verbose=1 ) | iWildCam 2019 - FGVC6 |
3,508,271 | SUMB_BS = 48
subm_dataloader = DataLoader(subm_dataset,
batch_size=SUMB_BS,
shuffle=False,
pin_memory=True )<find_best_params> | sam_sub = pd.read_csv('.. /input/iwildcam-2019-fgvc6/sample_submission.csv')
sam_sub.head() | iWildCam 2019 - FGVC6 |
3,508,271 | <find_best_params><EOS> | output = np.array(np.concatenate(( _id, pred), 1))
output = pd.DataFrame(output,columns = ["Id","Predicted"])
output.to_csv('submission.csv',index = False)
| iWildCam 2019 - FGVC6 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.