kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
2,617,477 | classes = np.unique(train_df["target"])
class_weights = sklearn.utils.class_weight.compute_class_weight(
"balanced", classes=classes, y=train_df["target"]
)
class_weights = {clazz : weight for clazz, weight in zip(classes, class_weights)}<count_duplicates> | iters = 100
batch_size = 1024 | Digit Recognizer |
2,617,477 | train_df.drop_duplicates(subset="text", inplace=True, keep=False)
print("train rows:", len(train_df.index))
print("test rows:", len(test_df.index))<categorify> | lr_decay = ReduceLROnPlateau(monitor="val_acc", factor=0.5, patience=3, verbose=1, min_lr=1e-5 ) | Digit Recognizer |
2,617,477 | class TweetPreProcessor:
def __init__(self):
self.text_processor = TextPreProcessor(
normalize=[
"url",
"email",
"phone",
"user",
"time",
"date",
],
annotate={"repeated", "elongated"},
segmenter="twitter",
spell_correction=True,
corrector="twitter",
unpack_hashtags=False,
unpack_contractions=False,
spell_correct_elong=True,
fix_bad_unicode=True,
tokenizer=Tokenizer(lowercase=True ).tokenize,
dicts=[emoticons, slangdict],
)
def preprocess_tweet(self, tweet):
return " ".join(self.text_processor.pre_process_doc(tweet))
def __call__(self, tweet):
return self.text_processor.pre_process_doc(tweet)
tweet_preprocessor = TweetPreProcessor()<categorify> | early_stopping = EarlyStopping(monitor="val_acc", patience=7, verbose=1 ) | Digit Recognizer |
2,617,477 | for tweet in train_df[100:120]["text"]:
print("original: ", tweet)
print("processed: ", tweet_preprocessor.preprocess_tweet(tweet))
print("" )<categorify> | print("Training model...")
fit_params = {
"batch_size": batch_size,
"epochs": iters,
"verbose": 1,
"callbacks": [lr_decay, early_stopping],
"validation_data":(x_dev, y_dev)
}
history = model.fit(x_train, y_train, **fit_params)
print("Done!" ) | Digit Recognizer |
2,617,477 | train_df["text"] = train_df["text"].apply(tweet_preprocessor.preprocess_tweet)
test_df["text"] = test_df["text"].apply(tweet_preprocessor.preprocess_tweet )<feature_engineering> | loss, acc = model.evaluate(x_dev, y_dev)
print("Validation loss: {:.4f}".format(loss))
print("Validation accuracy: {:.4f}".format(acc)) | Digit Recognizer |
2,617,477 | <split><EOS> | y_pred = model.predict(x_test, batch_size=batch_size)
y_pred = np.argmax(y_pred, axis=1 ).reshape(( -1, 1))
idx = np.reshape(np.arange(1, len(y_pred)+ 1),(len(y_pred), -1))
y_pred = np.hstack(( idx, y_pred))
y_pred = pd.DataFrame(y_pred, columns=['ImageId', 'Label'])
y_pred.to_csv('y_pred.csv', index=False ) | Digit Recognizer |
7,033,760 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<categorify> | %matplotlib inline
%config InlineBackend.figure_format = 'retina'
print(os.listdir("/kaggle/input/digit-recognizer"))
N_FOLDS = 5
BATCH_SIZE = 256 | Digit Recognizer |
7,033,760 | def tokenize_encode(tweets, max_length=None):
return pretrained_bert_tokenizer(
tweets,
add_special_tokens=True,
truncation=True,
padding="max_length",
max_length=max_length,
return_tensors="tf",
)
max_length_tweet = 72
max_length_keyword = 8
train_tweets_encoded = tokenize_encode(x_train["text"].to_list() , max_length_tweet)
validation_tweets_encoded = tokenize_encode(x_val["text"].to_list() , max_length_tweet)
train_keywords_encoded = tokenize_encode(x_train["keyword"].to_list() , max_length_keyword)
validation_keywords_encoded = tokenize_encode(x_val["keyword"].to_list() , max_length_keyword)
train_inputs_encoded = dict(train_tweets_encoded)
train_inputs_encoded["keywords"] = train_keywords_encoded["input_ids"]
validation_inputs_encoded = dict(validation_tweets_encoded)
validation_inputs_encoded["keywords"] = validation_keywords_encoded["input_ids"]
<create_dataframe> | PATH = '/kaggle/input/digit-recognizer/' | Digit Recognizer |
7,033,760 | train_dataset = tf.data.Dataset.from_tensor_slices(
(dict(train_tweets_encoded), y_train)
)
val_dataset = tf.data.Dataset.from_tensor_slices(
(dict(validation_tweets_encoded), y_val)
)
train_multi_input_dataset = tf.data.Dataset.from_tensor_slices(
(train_inputs_encoded, y_train)
)
val_multi_input_dataset = tf.data.Dataset.from_tensor_slices(
(validation_inputs_encoded, y_val)
)
<feature_engineering> | train_on_gpu = torch.cuda.is_available()
if not train_on_gpu:
print('Training on CPU...')
else:
print('Training on GPU...' ) | Digit Recognizer |
7,033,760 | tfidf_vectorizer = sklearn.feature_extraction.text.TfidfVectorizer(
tokenizer=tweet_preprocessor, min_df=1, ngram_range=(1, 1), norm="l2"
)
train_vectors = tfidf_vectorizer.fit_transform(raw_documents=x_train["text"] ).toarray()
validation_vectors = tfidf_vectorizer.transform(x_val["text"] ).toarray()<train_model> | class DatasetMNIST(torch.utils.data.Dataset):
def __init__(self, data, augmentations=None):
self.data = data
self.augmentations = augmentations
def __len__(self):
return len(self.data)
def __getitem__(self, index):
item = self.data.iloc[index]
image = item[1:].values.astype(np.uint8 ).reshape(( 28, 28, 1))
label = item[0]
if self.augmentations is not None:
augmented = self.augmentations(image=image)
return augmented['image'], label
else:
return image, label | Digit Recognizer |
7,033,760 | logisticRegressionClf = LogisticRegression(n_jobs=-1, C=2.78)
logisticRegressionClf.fit(train_vectors, y_train)
def print_metrics_sk(clf, x_train, y_train, x_val, y_val):
print(f"Train Accuracy: {clf.score(x_train, y_train):.2%}")
print(f"Validation Accuracy: {clf.score(x_val, y_val):.2%}")
print("")
print(f"f1 score: {sklearn.metrics.f1_score(y_val, clf.predict(x_val)) :.2%}")
print_metrics_sk(logisticRegressionClf, train_vectors, y_train, validation_vectors, y_val )<find_best_model_class> | dataset = pd.read_csv(f'{PATH}train.csv')
dataset.head(1 ) | Digit Recognizer |
7,033,760 | feature_extractor = get_pretrained_bert_model()
model_outputs = feature_extractor.predict(
train_dataset.batch(32)
)
train_sentence_vectors = model_outputs.last_hidden_state[:, 0, :]
train_word_vectors = model_outputs.last_hidden_state[:, 1:, :]
model_outputs = feature_extractor.predict(
val_dataset.batch(32)
)
validation_sentence_vectors = model_outputs.last_hidden_state[:, 0, :]
validation_word_vectors = model_outputs.last_hidden_state[:, 1:, :]<train_model> | def custom_folds(dataset,n_folds=N_FOLDS):
train_valid_id = []
start = 0
size = len(dataset)
split = size // n_folds
valid_size = split
for i in range(n_folds):
train_data = dataset.drop(dataset.index[start:split] ).index.values
valid_data = dataset.loc[start:split-1].index.values
train_valid_id.append(( train_data,valid_data))
start += valid_size
split += valid_size
return train_valid_id | Digit Recognizer |
7,033,760 | logisticRegressionClf = LogisticRegression(n_jobs=-1, class_weight=class_weights)
logisticRegressionClf.fit(train_sentence_vectors, y_train)
print_metrics_sk(
logisticRegressionClf,
train_sentence_vectors,
y_train,
validation_sentence_vectors,
y_val,
)<train_on_grid> | train_valid = custom_folds(dataset=dataset ) | Digit Recognizer |
7,033,760 | def create_gru_model() -> keras.Model:
model = keras.Sequential()
model.add(keras.layers.InputLayer(input_shape=train_word_vectors.shape[1:]))
model.add(GRU(32, return_sequences=True))
model.add(GlobalMaxPooling1D())
model.add(Dense(1, activation="sigmoid"))
model.compile(
optimizer=keras.optimizers.Adam() ,
loss="binary_crossentropy",
metrics=keras.metrics.BinaryAccuracy(name="accuracy"),
)
return model
model = create_gru_model()
history = model.fit(
train_word_vectors,
y_train,
validation_data=(validation_word_vectors, y_val),
class_weight=class_weights,
epochs=20,
verbose=0,
callbacks=[
EarlyStopping(
monitor="val_accuracy",
min_delta=0.001,
patience=5,
restore_best_weights=True,
)
],
)
print_metrics(model, train_word_vectors, y_train, validation_word_vectors, y_val )<choose_model_class> | transform_train = A.Compose([
A.ShiftScaleRotate(shift_limit=0.1, scale_limit=0.1, rotate_limit=10),
A.Normalize(mean=(0.485,), std=(0.229,)) ,
ToTensor() ,
])
transform_valid = A.Compose([
A.Normalize(mean=(0.485,), std=(0.229,)) ,
ToTensor() ,
] ) | Digit Recognizer |
7,033,760 | def create_multi_input_model() -> keras.Model:
keyword_ids = keras.Input(( 8,), name="keywords")
keyword_features = Embedding(input_dim=feature_extractor.config.vocab_size, output_dim=16, input_length=8, mask_zero=True )(keyword_ids)
keyword_features = Flatten()(keyword_features)
keyword_features = Dense(1 )(keyword_features)
tweet_classification_vectors = keras.Input(( train_sentence_vectors.shape[1],), name="tweets")
tweet_features = Dense(1, activation='relu' )(tweet_classification_vectors)
combined_features = concatenate([keyword_features, tweet_features])
combined_prediction = Dense(1, activation="sigmoid" )(combined_features)
model = keras.Model(inputs = [keyword_ids, tweet_classification_vectors], outputs=combined_prediction)
model.compile(
optimizer=keras.optimizers.Adam() ,
loss="binary_crossentropy",
metrics=keras.metrics.BinaryAccuracy(name="accuracy"),
)
return model
model = create_multi_input_model()
train_inputs = {"keywords" : train_keywords_encoded["input_ids"], "tweets" : train_sentence_vectors}
validation_inputs = {"keywords" : validation_keywords_encoded["input_ids"], "tweets" : validation_sentence_vectors}
history = model.fit(
train_inputs,
y_train,
validation_data=(validation_inputs, y_val),
class_weight=class_weights,
epochs=20,
verbose=0,
callbacks=[
EarlyStopping(
monitor="val_accuracy",
min_delta=0.001,
patience=5,
restore_best_weights=True,
)
],
)
print_metrics(model, train_inputs, y_train, validation_inputs, y_val )<choose_model_class> | train_data = DatasetMNIST(dataset, augmentations=transform_train)
valid_data = DatasetMNIST(dataset, augmentations=transform_valid)
train_valid_loaders = []
for i in train_valid:
train_idx, valid_idx = i
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=BATCH_SIZE, sampler=train_sampler)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=BATCH_SIZE, sampler=valid_sampler)
train_valid_loaders.append(( train_loader,valid_loader)) | Digit Recognizer |
7,033,760 | def create_multi_input_rnn_model() -> keras.Model:
keyword_ids = keras.Input(( 8,), name="keywords")
keyword_features = Embedding(input_dim=feature_extractor.config.vocab_size, output_dim=16, input_length=8, mask_zero=True )(keyword_ids)
keyword_features = Flatten()(keyword_features)
keyword_features = Dense(1 )(keyword_features)
tweet_token_embeddings = Input(train_word_vectors.shape[1:], name="tweets")
tweet_features = GRU(32, return_sequences=True )(tweet_token_embeddings)
tweet_features = GlobalMaxPooling1D()(tweet_features)
tweet_features = Dense(1, activation='relu' )(tweet_features)
combined_features = concatenate([keyword_features, tweet_features])
combined_prediction = Dense(1, activation="sigmoid" )(combined_features)
model = keras.Model(inputs = [keyword_ids, tweet_token_embeddings], outputs=combined_prediction)
model.compile(
optimizer=keras.optimizers.Adam() ,
loss="binary_crossentropy",
metrics=keras.metrics.BinaryAccuracy(name="accuracy"),
)
return model
model = create_multi_input_rnn_model()
train_inputs = {"keywords" : train_keywords_encoded["input_ids"], "tweets" : train_word_vectors}
validation_inputs = {"keywords" : validation_keywords_encoded["input_ids"], "tweets" : validation_word_vectors}
history = model.fit(
train_inputs,
y_train,
validation_data=(validation_inputs, y_val),
class_weight=class_weights,
epochs=20,
verbose=0,
callbacks=[
EarlyStopping(
monitor="val_accuracy",
min_delta=0.001,
patience=5,
restore_best_weights=True,
)
],
)
print_metrics(model, train_inputs, y_train, validation_inputs, y_val )<choose_model_class> | class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 32, kernel_size=3)
self.bn2 = nn.BatchNorm2d(32)
self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2, padding=2)
self.bn3 = nn.BatchNorm2d(32)
self.conv4 = nn.Conv2d(32, 64, kernel_size=3)
self.bn4 = nn.BatchNorm2d(64)
self.conv5 = nn.Conv2d(64, 64, kernel_size=3)
self.bn5 = nn.BatchNorm2d(64)
self.conv6 = nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=2)
self.bn6 = nn.BatchNorm2d(64)
self.conv7 = nn.Conv2d(64, 128, kernel_size=4)
self.bn7 = nn.BatchNorm2d(128)
self.lin1 = nn.Linear(128,10)
def forward(self, xb):
x = xb.view(-1, 1, 28, 28)
x = self.bn1(F.relu(self.conv1(x)))
x = self.bn2(F.relu(self.conv2(x)))
x = self.bn3(F.relu(self.conv3(x)))
x = F.dropout2d(x, 0.25)
x = self.bn4(F.relu(self.conv4(x)))
x = self.bn5(F.relu(self.conv5(x)))
x = self.bn6(F.relu(self.conv6(x)))
x = F.dropout2d(x, 0.25)
x = self.bn7(F.relu(self.conv7(x)))
x = torch.flatten(x, start_dim=1)
x = F.dropout2d(x, 0.25)
x = self.lin1(x)
x = F.softmax(x, dim=1)
return x
model = Net()
print(model)
if train_on_gpu:
model.cuda() | Digit Recognizer |
7,033,760 | def create_candidate_model_with_fx(hp: kerastuner.HyperParameters)-> keras.Model:
keyword_ids = keras.Input(( 8,), name="keywords")
keyword_features = Embedding(input_dim=feature_extractor.config.vocab_size, output_dim=16, input_length=8, mask_zero=True )(keyword_ids)
keyword_features = Flatten()(keyword_features)
keyword_features = Dense(hp.Choice("keyword_units", values=[1, 8, 16, 32], default=1))(keyword_features)
tweet_token_embeddings = Input(train_word_vectors.shape[1:], name="tweets")
tweet_features = GRU(hp.Choice("GRU_units", values=[8, 16, 32, 64, 128], default=32), return_sequences=True )(tweet_token_embeddings)
tweet_features = Dropout(hp.Float("GRU_dropout", min_value=0.0, max_value=0.5, step=0.1))(tweet_features)
tweet_features = GlobalMaxPooling1D()(tweet_features)
for i in range(hp.Int("num_layers", min_value=0, max_value=3, step=1)) :
tweet_features = Dense(hp.Choice("layer_" + str(i)+ "_units", values=[2, 8, 16, 32, 64, 128, 256]), activation="relu" )(tweet_features)
tweet_features = Dropout(hp.Float("layer_" + str(i)+ "_dropout", min_value=0.0, max_value=0.5, step=0.1))(tweet_features)
combined_features = concatenate([keyword_features, tweet_features])
combined_prediction = Dense(1, activation="sigmoid" )(combined_features)
model = keras.Model(inputs = [keyword_ids, tweet_token_embeddings], outputs=combined_prediction)
model.compile(
optimizer=keras.optimizers.Adam() ,
loss="binary_crossentropy",
metrics=keras.metrics.BinaryAccuracy(name="accuracy"),
)
return model
train_inputs = {"keywords" : train_keywords_encoded["input_ids"], "tweets" : train_word_vectors}
validation_inputs = {"keywords" : validation_keywords_encoded["input_ids"], "tweets" : validation_word_vectors}
<define_variables> | class DatasetSubmissionMNIST(torch.utils.data.Dataset):
def __init__(self, file_path, augmentations=None):
self.data = pd.read_csv(file_path)
self.augmentations = augmentations
def __len__(self):
return len(self.data)
def __getitem__(self, index):
image = self.data.iloc[index].values.astype(np.uint8 ).reshape(( 28, 28, 1))
if self.augmentations is not None:
augmented = self.augmentations(image=image)
return augmented['image']
return image | Digit Recognizer |
7,033,760 | MAX_EPOCHS = 10
FACTOR = 3
ITERATIONS = 3
print(f"Number of models in each bracket: {math.ceil(1 + math.log(MAX_EPOCHS, FACTOR)) }")
print(f"Number of epochs over all trials: {round(ITERATIONS *(MAX_EPOCHS *(math.log(MAX_EPOCHS, FACTOR)** 2)))}" )<train_on_grid> | transform_test = A.Compose([
A.Normalize(mean=(0.485,), std=(0.229,)) ,
ToTensor() ,
])
submissionset = DatasetSubmissionMNIST(f'{PATH}test.csv', augmentations=transform_test)
submissionloader = torch.utils.data.DataLoader(submissionset, batch_size=BATCH_SIZE, shuffle=False ) | Digit Recognizer |
7,033,760 | tuner = kerastuner.Hyperband(
create_candidate_model_with_fx,
max_epochs=MAX_EPOCHS,
hyperband_iterations=ITERATIONS,
factor=FACTOR,
objective="val_accuracy",
directory="hyperparam-search",
project_name="architecture-hyperband",
)
tuner.search(
train_inputs,
y_train,
validation_data=(validation_inputs, y_val),
class_weight=class_weights,
epochs=10,
verbose=1,
callbacks=[
EarlyStopping(
monitor="val_accuracy",
min_delta=0.001,
patience=3,
restore_best_weights=True,
)
],
)
<train_model> | def every_predict(model,submissionloader=submissionloader):
all_batchs = []
with torch.no_grad() :
model.eval()
for images in submissionloader:
if train_on_gpu:
images = images.cuda()
ps = model(images)
all_batchs.append(ps.to('cpu' ).detach().numpy())
return all_batchs | Digit Recognizer |
7,033,760 | best_model = tuner.get_best_models() [0]
print("")
best_arch_hp = tuner.get_best_hyperparameters() [0]
pprint.pprint(best_arch_hp.values, indent=4)
print("")
print_metrics(best_model, train_inputs, y_train, validation_inputs, y_val )<choose_model_class> | five_predict = []
all_train_losses, all_valid_losses = [], []
FOLD = 1
for i in train_valid_loaders:
model = Net()
if train_on_gpu:
model.cuda()
train_loader, valid_loader = i
LEARNING_RATE = 0.01
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters() ,lr=LEARNING_RATE)
epochs = 120
valid_loss_min = np.Inf
train_losses, valid_losses = [], []
history_accuracy = []
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,factor=0.7,patience=2)
model.train()
for e in range(1, epochs+1):
running_loss = 0
for images, labels in train_loader:
if train_on_gpu:
images, labels = images.cuda() , labels.cuda()
optimizer.zero_grad()
ps = model(images)
loss = criterion(ps, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
else:
valid_loss = 0
accuracy = 0
with torch.no_grad() :
model.eval()
for images, labels in valid_loader:
if train_on_gpu:
images, labels = images.cuda() , labels.cuda()
ps = model(images)
_, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
valid_loss += criterion(ps, labels)
accuracy += torch.mean(equals.type(torch.FloatTensor))
model.train()
train_losses.append(running_loss/len(train_loader))
valid_losses.append(valid_loss/len(valid_loader))
history_accuracy.append(accuracy/len(valid_loader))
network_learned = valid_loss < valid_loss_min
if e == 1 or e % 5 == 0 or network_learned:
print(f"Epoch: {e}/{epochs}.. ",
f"Training Loss: {running_loss/len(train_loader):.4f}.. ",
f"Validation Loss: {valid_loss/len(valid_loader):.4f}.. ",
f"Valid Accuracy: {accuracy/len(valid_loader):.4f}")
if network_learned:
valid_loss_min = valid_loss
torch.save(model.state_dict() , f'best_model_fold{FOLD}.pt')
print('Detected network improvement, saving current model')
scheduler.step(running_loss)
all_train_losses.append(train_losses)
all_valid_losses.append(valid_losses)
model.load_state_dict(torch.load(f'best_model_fold{FOLD}.pt'))
model.eval()
five_predict.append(every_predict(model))
model.train()
FOLD +=1
| Digit Recognizer |
7,033,760 | <choose_model_class><EOS> | flat_list = []
for sublist in five_predict:
for item in sublist:
for i in item:
flat_list.append(i)
final = []
for i in range(0,28000):
numbers = [i+a*28000 for a in range(N_FOLDS)]
final.append(sum(flat_list[C] for C in numbers))
subm = np.argmax(( final),axis=1)
sample_subm = pd.read_csv(f'{PATH}sample_submission.csv')
sample_subm['Label'] = subm
sample_subm.to_csv('submission.csv',index=False ) | Digit Recognizer |
3,821,285 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class> | WORKERS = 2
CHANNEL = 3
warnings.filterwarnings("ignore")
SIZE = 128
NUM_CLASSES = 10
%config InlineBackend.figure_format = 'retina'
%matplotlib inline | Digit Recognizer |
3,821,285 | def create_model_candidate() -> keras.Model:
pretrained_bert_model = get_pretrained_bert_model()
keyword_ids = keras.Input(( 8,), name="keywords")
keyword_features = Embedding(input_dim=pretrained_bert_model.config.vocab_size, output_dim=16, input_length=8, mask_zero=True )(keyword_ids)
keyword_features = Flatten()(keyword_features)
keyword_features = Dense(best_arch_hp.get("keyword_units"))(keyword_features)
input_ids = Input(shape=(max_length_tweet,), dtype="int32", name="input_ids")
attention_mask = Input(shape=(max_length_tweet,), dtype="int32", name="attention_mask")
bert_outputs = pretrained_bert_model(input_ids, attention_mask)
bert_token_embeddings = bert_outputs.last_hidden_state[:, 1:, :]
tweet_features = GRU(best_arch_hp.get("GRU_units"), return_sequences=True )(bert_token_embeddings)
tweet_features = Dropout(best_arch_hp.get("GRU_dropout"))(tweet_features)
tweet_features = GlobalMaxPooling1D()(tweet_features)
for i in range(best_arch_hp.get("num_layers")) :
tweet_features = Dense(best_arch_hp.get("layer_" + str(i)+ "_units"), activation="relu" )(tweet_features)
tweet_features = Dropout(best_arch_hp.get("layer_" + str(i)+ "_dropout"))(tweet_features)
combined_features = concatenate([keyword_features, tweet_features])
combined_prediction = Dense(1, activation="sigmoid" )(combined_features)
model = keras.Model(inputs = [keyword_ids, input_ids, attention_mask], outputs=combined_prediction)
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=5e-5),
loss="binary_crossentropy",
metrics=keras.metrics.BinaryAccuracy(name="accuracy"),
)
return model
<train_model> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
test = pd.read_csv('.. /input/digit-recognizer/test.csv' ) | Digit Recognizer |
3,821,285 | model = create_model_candidate()
history = model.fit(
train_multi_input_dataset.batch(32),
validation_data=val_multi_input_dataset.batch(32),
epochs=6,
class_weight=class_weights,
callbacks=[
keras.callbacks.EarlyStopping(
monitor="val_accuracy", restore_best_weights=True
)
],
)
best_epoch = len(history.history["val_accuracy"])- 1
print_metrics(
model, train_inputs_encoded, y_train, validation_inputs_encoded, y_val
)<categorify> | x = x / 255.0
test = test / 255.0 | Digit Recognizer |
3,821,285 | test_tweets_encoded = tokenize_encode(test_df["text"].to_list() , max_length_tweet)
test_inputs_encoded = dict(test_tweets_encoded)
test_dataset = tf.data.Dataset.from_tensor_slices(test_inputs_encoded)
test_keywords_encoded = tokenize_encode(test_df["keyword"].to_list() , max_length_keyword)
test_inputs_encoded["keywords"] = test_keywords_encoded["input_ids"]
test_multi_input_dataset = tf.data.Dataset.from_tensor_slices(test_inputs_encoded )<train_model> | y = to_categorical(y, num_classes = 10 ) | Digit Recognizer |
3,821,285 | full_train_dataset = train_multi_input_dataset.concatenate(val_multi_input_dataset)
model = create_model_candidate()
model.fit(
full_train_dataset.batch(32),
epochs=best_epoch,
class_weight=class_weights,
)<save_to_csv> | x_train, x_valid, y_train, y_valid = train_test_split(x, y, test_size = 0.1, random_state=2, stratify = y, shuffle = True ) | Digit Recognizer |
3,821,285 | preds = np.squeeze(model.predict(test_multi_input_dataset.batch(32)))
preds =(preds >= 0.5 ).astype(int)
pd.DataFrame({"id": test_df.id, "target": preds} ).to_csv("submission.csv", index=False )<import_modules> | BatchNormalization, Input, Conv2D, GlobalAveragePooling2D)
| Digit Recognizer |
3,821,285 | import numpy as np
import pandas as pd
import os
<import_modules> | model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax")) | Digit Recognizer |
3,821,285 | import re
import seaborn as sns
import matplotlib.pyplot as plt
from collections import defaultdict, Counter
from sklearn.feature_extraction.text import CountVectorizer
import nltk
from nltk.corpus import stopwords
from wordcloud import WordCloud
from nltk.tokenize import word_tokenize<set_options> | optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0 ) | Digit Recognizer |
3,821,285 | nltk.download('stopwords', quiet=True)
stopwords = stopwords.words('english')
sns.set(style="white", font_scale=1.2)
plt.rcParams["figure.figsize"] = [10,8]
pd.set_option.display_max_columns = 0
pd.set_option.display_max_rows = 0<load_from_csv> | EarlyStopping, ReduceLROnPlateau)
epochs = 80; batch_size = 1024
checkpoint = ModelCheckpoint('.. /working/Resnet50-visible.h5', monitor='val_loss', verbose=1,
save_best_only=True, mode='min', save_weights_only = True)
reduceLROnPlat = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=4,
verbose=1, mode='min', epsilon=0.0001)
early = EarlyStopping(monitor="val_loss",
mode="min",
patience=9)
callbacks_list = [checkpoint, reduceLROnPlat, early] | Digit Recognizer |
3,821,285 | train = pd.read_csv(".. /input/nlp-getting-started/train.csv")
test = pd.read_csv(".. /input/nlp-getting-started/test.csv" )<feature_engineering> | model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
3,821,285 | null_counts = pd.DataFrame({"Num_Null": train.isnull().sum() })
null_counts["Pct_Null"] = null_counts["Num_Null"] / train.count() * 100
null_counts<count_values> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(x_train ) | Digit Recognizer |
3,821,285 | len(train["keyword"].value_counts() )<count_values> | batch_size = 1024
epochs = 80
history = model.fit_generator(datagen.flow(x_train,y_train, batch_size=batch_size),
epochs = epochs, validation_data =(x_valid,y_valid),
verbose = 1, steps_per_epoch=x_train.shape[0] // batch_size
, callbacks=callbacks_list ) | Digit Recognizer |
3,821,285 | disaster_keywords = train.loc[train["target"] == 1]["keyword"].value_counts()
nondisaster_keywords = train.loc[train["target"] == 0]["keyword"].value_counts()
<feature_engineering> | model.load_weights('.. /working/Resnet50-visible.h5')
results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
3,821,285 | <sort_values><EOS> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("submission.csv",index=False ) | Digit Recognizer |
7,405,218 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<count_values> | import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from keras.preprocessing.image import ImageDataGenerator | Digit Recognizer |
7,405,218 | len(train["location"].value_counts() )<remove_duplicates> | np.random.seed(1)
X_raw = pd.read_csv(".. /input/digit-recognizer/train.csv")
X_test_raw = pd.read_csv(".. /input/digit-recognizer/test.csv")
y = X_raw["label"]
X = X_raw.drop(labels = ["label"],axis = 1)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.25, random_state=0)
WIDTH=28
HEIGHT=28
NUM_CLASSES=10
X_train = X_train.values
y_train = y_train.values
X_valid = X_valid.values
y_valid = y_valid.values
y_train_oh = to_categorical(y_train, num_classes = NUM_CLASSES)
y_valid_oh = to_categorical(y_valid, num_classes = NUM_CLASSES)
X_test = X_test_raw.values | Digit Recognizer |
7,405,218 | def create_corpus(target):
corpus = []
for w in train.loc[train["target"] == target]["text"].str.split() :
for i in w:
corpus.append(i)
return corpus
def create_corpus_dict(target):
corpus = create_corpus(target)
stop_dict = defaultdict(int)
for word in corpus:
if word in stopwords:
stop_dict[word] += 1
return sorted(stop_dict.items() , key=lambda x:x[1], reverse=True )<count_duplicates> | def scaleData(X):
n_max = X_train.max()
X = X/n_max
return X
def reshape_channel(X):
return np.expand_dims(X.reshape(-1,HEIGHT,WIDTH),-1)
def preprocessData(X):
X = scaleData(X)
X = reshape_channel(X)
return X | Digit Recognizer |
7,405,218 | corpus_disaster, corpus_non_disaster = create_corpus(1), create_corpus(0)
counter_disaster, counter_non_disaster = Counter(corpus_disaster), Counter(corpus_non_disaster)
x_disaster, y_disaster, x_non_disaster, y_non_disaster = [], [], [], []
counter = 0
for word, count in counter_disaster.most_common() [0:100]:
if(word not in stopwords and counter < 15):
counter += 1
x_disaster.append(word)
y_disaster.append(count)
counter = 0
for word, count in counter_non_disaster.most_common() [0:100]:
if(word not in stopwords and counter < 15):
counter += 1
x_non_disaster.append(word)
y_non_disaster.append(count)
fig, ax = plt.subplots(1,2, figsize=(20,8))
sns.barplot(x=y_disaster, y=x_disaster, orient='h', palette="Reds_d", ax=ax[0])
sns.barplot(x=y_non_disaster, y=x_non_disaster, orient='h', palette="Blues_d", ax=ax[1])
ax[0].set_title("Top 15 Non-Stopwords - Disaster Tweets")
ax[0].set_xlabel("Word Frequency")
ax[1].set_title("Top 15 Non-Stopwords - Non-Disaster Tweets")
ax[1].set_xlabel("Word Frequency")
plt.tight_layout()
plt.show()<feature_engineering> | optimizer = Adam(learning_rate=0.0001, beta_1=0.9, beta_2=0.9999, amsgrad=True)
model = Sequential()
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'same',activation ='relu',use_bias=True,input_shape =(HEIGHT,WIDTH,1)))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'same',activation ='relu',use_bias=True))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'same',activation ='relu',use_bias=True))
model.add(MaxPool2D(pool_size=(3,3), strides=(3,3)))
model.add(Dropout(0.2))
model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'same',activation ='relu',use_bias=True))
model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'same',activation ='relu',use_bias=True))
model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'same',activation ='relu',use_bias=True))
model.add(MaxPool2D(pool_size=(5,5), strides=(5,5)))
model.add(Flatten())
model.add(Dropout(0.2))
model.add(Dense(64, activation = "relu"))
model.add(Dense(64, activation = "relu"))
model.add(Dense(NUM_CLASSES, activation = "softmax"))
model.compile(optimizer ='adam', loss = "categorical_crossentropy", metrics=["accuracy"])
model.summary() | Digit Recognizer |
7,405,218 | def bigrams(target):
corpus = train[train["target"] == target]["text"]
count_vec = CountVectorizer(ngram_range=(2, 2)).fit(corpus)
bag_of_words = count_vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx])for word, idx in count_vec.vocabulary_.items() ]
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
return words_freq<feature_engineering> | datagen = ImageDataGenerator(
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
)
it_train = datagen.flow(preprocessData(X_train), y_train_oh)
it_valid = datagen.flow(preprocessData(X_valid), y_valid_oh ) | Digit Recognizer |
7,405,218 | def remove_pattern(input_txt, pattern):
r = re.findall(pattern, input_txt)
for i in r:
input_txt = re.sub(i, '', input_txt)
return input_txt<feature_engineering> | hist = model.fit_generator(it_train,validation_data=it_valid,callbacks=[lrate],epochs=n_epoch)
| Digit Recognizer |
7,405,218 | <feature_engineering><EOS> | y_pred = model.predict(preprocessData(X_test))
y_pred = np.argmax(y_pred,axis = 1)
showImg(X_test,y_pred,4,4)
submission = pd.DataFrame({'ImageId':range(1,28001),'Label':y_pred})
submission.to_csv('submission.csv',index=False ) | Digit Recognizer |
7,753,580 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering> | import numpy as np
import pandas as pd
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau
from sklearn.metrics import confusion_matrix,accuracy_score
from sklearn.model_selection import train_test_split
import matplotlib
import matplotlib.pyplot as plt | Digit Recognizer |
7,753,580 | train['tweet'] = train['tweet'].apply(lambda x: ' '.join([w for w in x.split() if len(w)>3]))
test['tweet'] = test['tweet'].apply(lambda x: ' '.join([w for w in x.split() if len(w)>3]))
train.head()
<data_type_conversions> | def print_metrics(y_train,y_pred):
conf_mx = confusion_matrix(y_train,y_pred)
print(conf_mx)
print("------------------------------------------")
print(" Accuracy : ", accuracy_score(y_train,y_pred))
print("------------------------------------------")
def shift_image(X, dx, dy,length=28):
X=X.reshape(length,length)
X = np.roll(X, dy, axis=0)
X = np.roll(X, dx, axis=1)
return X.reshape([-1])
def print_image(flat_image,length=28):
plt.imshow(flat_image.reshape(length, length), cmap = matplotlib.cm.binary,interpolation="nearest")
plt.axis("off")
plt.show()
| Digit Recognizer |
7,753,580 | train['tweet'] = train['tweet'].str.lower()
test['tweet'] = test['tweet'].str.lower()<string_transform> | train = pd.read_csv(".. /input/digit-recognizer/train.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv" ).values
y = train["label"].values
X = train.drop(labels = ["label"],axis = 1 ).values
print("Value Counts :")
print(train["label"].value_counts())
del train
X = X / 255.0
test = test / 255.0
print("dim(X)= ",X.shape)
print("dim(y)= ",y.shape)
print("dim(test)= ",test.shape ) | Digit Recognizer |
7,753,580 | set(stopwords.words('english'))
stops = set(stopwords.words('english'))<feature_engineering> | DATA_AUGMENTED_WITH_SHIFT = False | Digit Recognizer |
7,753,580 | train['tokenized_sents'] = train.apply(lambda row: nltk.word_tokenize(row['tweet']), axis=1)
test['tokenized_sents'] = test.apply(lambda row: nltk.word_tokenize(row['tweet']), axis=1)
<drop_column> | if DATA_AUGMENTED_WITH_SHIFT:
X_augmented = [image for image in X]
y_augmented = [label for label in y]
for dx, dy in(( 1,1),(-1,-1),(-1,1),(1,-1)) :
for image, label in zip(X, y):
X_augmented.append(shift_image(image, dx, dy))
y_augmented.append(label)
X_augmented = np.array(X_augmented)
y_augmented = np.array(y_augmented)
print(" X_augmented Dimension : ",X_augmented.shape)
shuffle_idx = np.random.permutation(len(X_augmented))
X_augmented = X_augmented[shuffle_idx]
y_augmented = y_augmented[shuffle_idx]
X_train = X_augmented.reshape(-1,28,28,1)
test = test.reshape(-1,28,28,1)
Y_train = to_categorical(y_augmented, num_classes = 10)
else:
X_train = X.reshape(-1,28,28,1)
test = test.reshape(-1,28,28,1)
Y_train = to_categorical(y, num_classes = 10)
print("dim(X_train)= ",X_train.shape)
print("dim(Y_train)= ",Y_train.shape)
print("dim(test)= ",test.shape ) | Digit Recognizer |
7,753,580 | def remove_stops(row):
my_list = row['tokenized_sents']
meaningful_words = [w for w in my_list if not w in stops]
return(meaningful_words )<drop_column> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size=0.1, random_state=42)
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
7,753,580 | train['clean_tweet'] = train.apply(remove_stops, axis=1)
test['clean_tweet'] = test.apply(remove_stops, axis=1)
train.drop(["tweet","tokenized_sents"], axis = 1, inplace = True)
test.drop(["tweet","tokenized_sents"], axis = 1, inplace = True)
<string_transform> | model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax")) | Digit Recognizer |
7,753,580 | def rejoin_words(row):
my_list = row['clean_tweet']
joined_words =(" ".join(my_list))
return joined_words
train['clean_tweet'] = train.apply(rejoin_words, axis=1)
test['clean_tweet'] = test.apply(rejoin_words, axis=1)
train.head()<import_modules> | optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001)
| Digit Recognizer |
7,753,580 | import gc
import time
import math
import random
import warnings<set_options> | epochs = 30
batch_size = 71
model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
verbose = 1, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction])
| Digit Recognizer |
7,753,580 | warnings.filterwarnings("ignore" )<import_modules> | Y_pred = model.predict(X_val)
Y_pred_classes = np.argmax(Y_pred,axis = 1)
Y_true = np.argmax(Y_val,axis = 1)
print_metrics(Y_true, Y_pred_classes ) | Digit Recognizer |
7,753,580 | import string
import folium
from colorama import Fore, Back, Style, init
<import_modules> | results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("submission.csv",index=False ) | Digit Recognizer |
4,449,954 | import scipy as sp
import networkx as nx
from pandas import Timestamp
from PIL import Image
from IPython.display import SVG
from keras.utils import model_to_dot
import requests
from IPython.display import HTML<set_options> | train = pd.read_csv('.. /input/train.csv')
test = pd.read_csv('.. /input/test.csv' ) | Digit Recognizer |
4,449,954 | tqdm.pandas()<import_modules> | train = pd.read_csv('.. /input/train.csv')
test = pd.read_csv('.. /input/test.csv' ) | Digit Recognizer |
4,449,954 | import plotly.express as px
import plotly.graph_objects as go
import plotly.figure_factory as ff
from plotly.subplots import make_subplots
import transformers
import tensorflow as tf<import_modules> | Y_train = train['label']
X_train = train.drop(labels=['label'],axis=1)
fig, ax = plt.subplots(figsize=(16,8))
sns.countplot(Y_train,ax=ax ) | Digit Recognizer |
4,449,954 | from tensorflow.keras.callbacks import Callback
from sklearn.metrics import accuracy_score, roc_auc_score
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger
<import_modules> | Y_train.value_counts() | Digit Recognizer |
4,449,954 | from tensorflow.keras.models import Model
from kaggle_datasets import KaggleDatasets
from tensorflow.keras.optimizers import Adam
from tokenizers import BertWordPieceTokenizer
from tensorflow.keras.layers import Dense, Input, Dropout, Embedding
from tensorflow.keras.layers import LSTM, GRU, Conv1D, SpatialDropout1D
<import_modules> | X_train = X_train / 255.
test = test / 255.
X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1 ) | Digit Recognizer |
4,449,954 | from tensorflow.keras import layers
from tensorflow.keras import optimizers
from tensorflow.keras import activations
from tensorflow.keras import constraints
from tensorflow.keras import initializers
from tensorflow.keras import regularizers
import tensorflow.keras.backend as K
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.activations import *
from tensorflow.keras.constraints import *
from tensorflow.keras.initializers import *
from tensorflow.keras.regularizers import *
<import_modules> | Y_train = to_categorical(Y_train,num_classes = 10 ) | Digit Recognizer |
4,449,954 | from sklearn import metrics
from sklearn.utils import shuffle
from gensim.models import Word2Vec
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.feature_extraction.text import TfidfVectorizer,CountVectorizer,HashingVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.tree import DecisionTreeClassifier
<import_modules> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1 ) | Digit Recognizer |
4,449,954 | from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tokenize import word_tokenize
from nltk.tokenize import TweetTokenizer
import nltk
from textblob import TextBlob
from nltk.corpus import wordnet
from nltk.corpus import stopwords
from nltk import WordNetLemmatizer
from nltk.stem import WordNetLemmatizer,PorterStemmer
from wordcloud import WordCloud, STOPWORDS
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from nltk.tokenize import sent_tokenize, word_tokenize
<choose_model_class> | model = Sequential()
model.add(Conv2D(filters = 128, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(Conv2D(filters = 32, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))
model.compile(optimizer=RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0),loss = "categorical_crossentropy",
metrics=["accuracy"])
model.summary() | Digit Recognizer |
4,449,954 | stopword=set(STOPWORDS)
lem = WordNetLemmatizer()
tokenizer=TweetTokenizer()
np.random.seed(0)
random_state = 42<install_modules> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
4,449,954 | !pip install GPUtil
<import_modules> | callbacks_list = [
ModelCheckpoint(filepath='./my_model.h5',monitor='val_loss'),
ReduceLROnPlateau(monitor='val_acc', patience=5, verbose=2, factor=0.5, min_lr=0.00001),
TensorBoard("logs")]
epochs = 20
batch_size =64
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=callbacks_list ) | Digit Recognizer |
4,449,954 | from torch import nn
from transformers import AdamW, BertConfig, BertModel, BertTokenizer
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset, random_split
from transformers import get_linear_schedule_with_warmup
from sklearn.metrics import f1_score, accuracy_score<set_options> | %load_ext tensorboard.notebook
%tensorboard --logdir logs | Digit Recognizer |
4,449,954 | def free_gpu_cache() :
print("Initial GPU Usage")
gpu_usage()
torch.cuda.empty_cache()
cuda.select_device(0)
cuda.close()
cuda.select_device(0)
for obj in gc.get_objects() :
if torch.is_tensor(obj):
del obj
gc.collect()
print("GPU Usage after emptying the cache")
gpu_usage()<import_modules> | results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
4,449,954 | <load_from_csv><EOS> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("predict.csv",index=False ) | Digit Recognizer |
7,407,207 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<set_options> | tf.__version__
| Digit Recognizer |
7,407,207 | if torch.cuda.is_available() :
device = torch.device("cuda")
else:
device = torch.device("cpu")
device<count_duplicates> | train = pd.read_csv(r'/kaggle/input/digit-recognizer/train.csv')
test = pd.read_csv(r'/kaggle/input/digit-recognizer/test.csv')
train.shape, test.shape | Digit Recognizer |
7,407,207 | dupli_sum = train.duplicated().sum()
if(dupli_sum>0):
print(dupli_sum, " duplicates found
removing...")
train = train.loc[False==train.duplicated() , :]
else:
print("no duplicates found")
train<prepare_x_and_y> | X_train = x_train = train.drop(['label'],1)
Y_train = train['label']
x_test = test | Digit Recognizer |
7,407,207 | X_train = train["text"].values
y_train = train["target"].values<load_pretrained> | X_train = X_train.astype('float32')
x_test = x_test.astype('float32')
X_train = X_train/255
x_test - x_test/255 | Digit Recognizer |
7,407,207 | tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
lens = []
for text in X_train:
encoded_dict = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt')
lens.append(encoded_dict['input_ids'].size() [1] )<categorify> | Y_train= tf.keras.utils.to_categorical(Y_train, 10)
Y_train.shape | Digit Recognizer |
7,407,207 | sequence_length = 58
X_train_tokens = []
for text in X_train:
encoded_dict = tokenizer.encode_plus(text,
add_special_tokens=True,
max_length=sequence_length,
padding="max_length",
return_tensors='pt',
truncation=True)
X_train_tokens.append(encoded_dict['input_ids'] )<concatenate> | x_train, val_x, y_train, val_y = train_test_split(X_train, Y_train, test_size=0.20 ) | Digit Recognizer |
7,407,207 | X_train_tokens = torch.cat(X_train_tokens, dim=0)
y_train = torch.tensor(y_train )<train_model> | es = EarlyStopping(monitor='loss', patience=12)
filepath="/kaggle/working/bestmodel.h5"
md = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min' ) | Digit Recognizer |
7,407,207 | print('Original:
', X_train[5])
print('Tokenization:
', X_train_tokens[5] )<split> | datagen = ImageDataGenerator(zoom_range = 0.1,
height_shift_range = 0.1,
width_shift_range = 0.1,
rotation_range = 10 ) | Digit Recognizer |
7,407,207 | batch_size = 32
dataset = TensorDataset(X_train_tokens, y_train.float())
train_size = int(0.80 * len(dataset))
val_size = len(dataset)- train_size
train_set, val_set = random_split(dataset, [train_size, val_size])
train_dataloader = DataLoader(train_set,
sampler=RandomSampler(train_set),
batch_size=batch_size)
validation_dataloader = DataLoader(val_set,
sampler=RandomSampler(val_set),
batch_size=batch_size )<categorify> | epochs = 30
num_classes = 10
batch_size = 30
input_shape =(28, 28, 1)
adam = tf.keras.optimizers.Adam(learning_rate=0.0001, beta_1=0.9, beta_2=0.999, amsgrad=False ) | Digit Recognizer |
7,407,207 | bert = BertModel.from_pretrained("bert-base-uncased")
bert.to(device)
for batch in train_dataloader:
batch_features = batch[0].to(device)
bert_output = bert(input_ids=batch_features)
print("bert output: ", type(bert_output), len(bert_output))
print("first entry: ", type(bert_output[0]), bert_output[0].size())
print("second entry: ", type(bert_output[1]), bert_output[1].size())
break<choose_model_class> | model = Sequential()
model.add(Conv2D(32,(3, 3), padding='same', input_shape=input_shape, activation= tf.nn.relu))
model.add(Conv2D(32,(3, 3), padding='same', activation= tf.nn.relu))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64,(3, 3), padding='same', activation= tf.nn.relu))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024, activation=tf.nn.relu))
model.add(Dropout(0.25))
model.add(Dense(512, activation=tf.nn.relu))
model.add(Dropout(0.25))
model.add(Dense(256, activation=tf.nn.relu))
model.add(Dropout(0.5))
model.add(Dense(10, activation= tf.nn.softmax))
model.compile(optimizer= adam, loss= tf.keras.losses.categorical_crossentropy, metrics=["accuracy"])
model.summary()
| Digit Recognizer |
7,407,207 | class BertClassifier(nn.Module):
def __init__(self):
super(BertClassifier, self ).__init__()
self.bert = BertModel.from_pretrained('bert-base-uncased')
self.linear = nn.Linear(768, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, tokens):
bert_output = self.bert(input_ids=tokens)
linear_output = self.linear(bert_output[1])
proba = self.sigmoid(linear_output)
return proba<compute_test_metric> | History = model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size),
epochs = epochs,
validation_data =(val_x, val_y),
callbacks = [es,md],
shuffle= True
)
| Digit Recognizer |
7,407,207 | def eval(y_batch, probas):
preds_batch_np = np.round(probas.cpu().detach().numpy())
y_batch_np = y_batch.cpu().detach().numpy()
acc = accuracy_score(y_true=y_batch_np, y_pred=preds_batch_np)
f1 = f1_score(y_true=y_batch_np, y_pred=preds_batch_np, average='weighted')
return acc, f1
<train_model> | model1 = load_model("/kaggle/working/bestmodel.h5" ) | Digit Recognizer |
7,407,207 | def train(model, optimizer, scheduler, epochs, name):
history = []
best_f1 = 0
model.train()
for epoch in range(epochs):
print("=== Epoch: ", epoch+1, " / ", epochs, " ===")
acc_total = 0
f1_total = 0
for it, batch in enumerate(train_dataloader):
x_batch, y_batch = [batch[0].to(device), batch[1].to(device)]
probas = torch.flatten(model(tokens=x_batch))
acc_f1_batch = eval(y_batch, probas)
acc_total, f1_total = acc_total + acc_f1_batch[0], f1_total + acc_f1_batch[1]
model.zero_grad()
loss_func = nn.BCELoss()
batch_loss = loss_func(probas, y_batch)
batch_loss.backward()
optimizer.step()
scheduler.step()
acc_total = acc_total/len(train_dataloader)
f1_total = f1_total/len(train_dataloader)
print("accuracy: ", acc_total, "
f1: ", f1_total)
acc_val_total = 0
f1_val_total = 0
for batch in validation_dataloader:
x_batch, y_batch = [batch[0].to(device), batch[1].to(device)]
with torch.no_grad() :
probas = torch.flatten(model(tokens=x_batch))
acc_f1_val_batch = eval(y_batch, probas)
acc_val_total, f1_val_total = acc_val_total + acc_f1_val_batch[0], f1_val_total + acc_f1_val_batch[1]
acc_val_total = acc_val_total/len(validation_dataloader)
f1_val_total = f1_val_total/len(validation_dataloader)
print("validation accuracy: ", acc_val_total, "
validation f1: ", f1_val_total, "
")
if(f1_val_total>best_f1):
torch.save(model, name+".pt")
best_f1 = f1_val_total
history.append({"acc":acc_total, "f1":f1_total, "acc_val":acc_val_total, "f1_val":f1_val_total})
return [torch.load(name+".pt"), history]<normalization> | pred = model1.predict(x_test)
pred_class = model1.predict_classes(x_test ) | Digit Recognizer |
7,407,207 | <train_model><EOS> | submissions=pd.DataFrame({"ImageId": list(range(1,len(pred_class)+1)) ,
"Label": pred_class})
submissions.to_csv("submissions.csv", index=False, header=True)
submissions | Digit Recognizer |
967,865 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<create_dataframe> | %matplotlib inline
np.random.seed(2)
sns.set(style='white', context='notebook', palette='deep' ) | Digit Recognizer |
967,865 | history_df = pd.DataFrame(history)
history_df<load_from_csv> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" ) | Digit Recognizer |
967,865 | X_test = pd.read_csv(".. /input/nlp-getting-started/test.csv")["text"]
X_test_tokens = []
for text in X_test:
encoded_dict = tokenizer.encode_plus(text,
add_special_tokens=True,
max_length=sequence_length,
padding="max_length",
return_tensors='pt',
truncation=True)
X_test_tokens.append(encoded_dict['input_ids'])
X_test_tokens = torch.cat(X_test_tokens, dim=0)
test_set = TensorDataset(X_test_tokens)
test_dataloader = DataLoader(test_set,
sampler=SequentialSampler(test_set),
batch_size=batch_size )<load_from_csv> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" ) | Digit Recognizer |
967,865 | X_test = pd.read_csv(".. /input/nlp-getting-started/test.csv")["text"]
X_test_tokens = []
for text in X_test:
encoded_dict = tokenizer.encode_plus(text,
add_special_tokens=True,
max_length=sequence_length,
padding="max_length",
return_tensors='pt',
truncation=True)
X_test_tokens.append(encoded_dict['input_ids'])
X_test_tokens = torch.cat(X_test_tokens, dim=0)
test_set = TensorDataset(X_test_tokens)
test_dataloader = DataLoader(test_set,
sampler=SequentialSampler(test_set),
batch_size=batch_size )<categorify> | X_train = X_train / 255.0
test = test / 255.0 | Digit Recognizer |
967,865 | all_preds = []
for batch in test_dataloader:
x_batch = batch[0].to(device)
with torch.no_grad() :
probas = baseline_bert_clf(tokens=x_batch)
preds = np.round(probas.cpu().detach().numpy() ).astype(int ).flatten()
all_preds.extend(preds )<save_to_csv> | X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1 ) | Digit Recognizer |
967,865 | challenge_pred = pd.concat([pd.read_csv(".. /input/nlp-getting-started/sample_submission.csv")["id"], pd.Series(all_preds)], axis=1)
challenge_pred.columns = ['id', 'target']
challenge_pred.to_csv("submission.csv", index=False )<import_modules> | Y_train = to_categorical(Y_train, num_classes = 10 ) | Digit Recognizer |
967,865 | import numpy as np
import pandas as pd
from fastai.text.all import *
import re<load_from_csv> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=2 ) | Digit Recognizer |
967,865 | dir_path = "/kaggle/input/nlp-getting-started/"
train_df = pd.read_csv(dir_path + "train.csv")
test_df = pd.read_csv(dir_path + "test.csv" )<drop_column> | model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', kernel_initializer='he_normal',
activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', kernel_initializer='he_normal',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.2))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', kernel_initializer='he_normal',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', kernel_initializer='he_normal',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.2))
model.add(Conv2D(128,(3, 3), activation='relu',padding='same',kernel_initializer='he_normal'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Dense(10, activation = "softmax")) | Digit Recognizer |
967,865 | train_df = train_df.drop(columns=["id", "keyword", "location"] )<count_values> | optimizer = Adam(lr=0.003 ) | Digit Recognizer |
967,865 | train_df["target"].value_counts()<feature_engineering> | model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
967,865 | def remove_URL(text):
url = re.compile(r'https?://\S+|www\.\S+')
return url.sub(r'',text)
train_df["text"] = train_df["text"].apply(remove_URL)
test_df["text"] = test_df["text"].apply(remove_URL )<feature_engineering> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.000001 ) | Digit Recognizer |
967,865 | def remove_html(text):
html=re.compile(r'<.*?>')
return html.sub(r'',text)
train_df["text"] = train_df["text"].apply(remove_html)
test_df["text"] = test_df["text"].apply(remove_html )<drop_column> | epochs = 35
batch_size = 64 | Digit Recognizer |
967,865 | def remove_emoji(text):
emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F"
u"\U0001F300-\U0001F5FF"
u"\U0001F680-\U0001F6FF"
u"\U0001F1E0-\U0001F1FF"
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"
"]+", flags=re.UNICODE)
return emoji_pattern.sub(r'', text)
train_df["text"] = train_df["text"].apply(remove_emoji)
test_df["text"] = test_df["text"].apply(remove_emoji )<string_transform> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=15,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
967,865 | train_df["text"].apply(lambda x:len(x.split())).plot(kind="hist");<import_modules> | history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
967,865 | from transformers import AutoTokenizer, AutoModelForSequenceClassification<load_pretrained> | results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
967,865 | tokenizer = AutoTokenizer.from_pretrained("roberta-large" )<string_transform> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_datagen.csv",index=False ) | Digit Recognizer |
4,048,733 | train_tensor = tokenizer(list(train_df["text"]), padding="max_length",
truncation=True, max_length=30,
return_tensors="pt")["input_ids"]<categorify> | Train = pd.read_csv(".. /input/train.csv")
Test = pd.read_csv(".. /input/test.csv" ) | Digit Recognizer |
4,048,733 | class TweetDataset:
def __init__(self, tensors, targ, ids):
self.text = tensors[ids, :]
self.targ = targ[ids].reset_index(drop=True)
def __len__(self):
return len(self.text)
def __getitem__(self, idx):
t = self.text[idx]
y = self.targ[idx]
return t, tensor(y )<split> | y_train = Train['label']
X_train = Train.drop(labels='label', axis=1)
y_train.value_counts() | Digit Recognizer |
4,048,733 | train_ids, valid_ids = RandomSplitter()(train_df)
target = train_df["target"]
train_ds = TweetDataset(train_tensor, target, train_ids)
valid_ds = TweetDataset(train_tensor, target, valid_ids)
train_dl = DataLoader(train_ds, bs=64)
valid_dl = DataLoader(valid_ds, bs=512)
dls = DataLoaders(train_dl, valid_dl ).to("cuda" )<choose_model_class> | X_train = X_train/255.0
Test = Test/255.0 | Digit Recognizer |
4,048,733 | bert = AutoModelForSequenceClassification.from_pretrained("roberta-large", num_labels=2 ).train().to("cuda")
class BertClassifier(Module):
def __init__(self, bert):
self.bert = bert
def forward(self, x):
return self.bert(x ).logits
model = BertClassifier(bert )<choose_model_class> | y_train = to_categorical(y_train, num_classes = 10 ) | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.