kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
4,048,733 | learn = Learner(dls, model, metrics=[accuracy, F1Score() ] ).to_fp16()
learn.lr_find()<train_model> | X_train,X_val,Y_train,Y_val =train_test_split(X_train, y_train, test_size=0.1, random_state=0 ) | Digit Recognizer |
4,048,733 | learn.fit_one_cycle(3, lr_max=1e-5 )<find_best_params> | datagen = ImageDataGenerator(rotation_range = 15, width_shift_range = 0.1, height_shift_range = 0.1)
datagen.fit(X_train)
np.concatenate(( X_train,X_train),axis=0)
random.seed(12345)
for X_batch, Y_batch in datagen.flow(np.concatenate(( X_train,X_train),axis=0), np.concatenate(( Y_train,Y_train),axis=0), batch_size=35700):
break
X_train_aug = X_batch
Y_train_aug = Y_batch
for i in range(0, 9):
pyplot.subplot(330 + 1 + i)
pyplot.imshow(X_train_aug[i].reshape(28, 28), cmap=pyplot.get_cmap('gray'))
pyplot.show() | Digit Recognizer |
4,048,733 | preds, targs = learn.get_preds()
min_threshold = None
max_f1 = -float("inf")
thresholds = np.linspace(0.3, 0.7, 50)
for threshold in thresholds:
f1 = f1_score(targs, F.softmax(preds, dim=1)[:, 1]>threshold)
if f1 > max_f1:
min_threshold = threshold
min_f1 = f1
print(f"threshold:{threshold:.4f} - f1:{f1:.4f}" )<string_transform> | X_train_aug = np.concatenate(( X_train,X_train_aug),axis=0)
Y_train_aug = np.concatenate(( Y_train,Y_train_aug),axis=0)
print(X_train_aug.shape,Y_train_aug.shape ) | Digit Recognizer |
4,048,733 | test_tensor = tokenizer(list(test_df["text"]),
padding="max_length",
truncation=True,
max_length=30,
return_tensors="pt")["input_ids"]<load_pretrained> | model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax")) | Digit Recognizer |
4,048,733 | class TestDS:
def __init__(self, tensors):
self.tensors = tensors
def __len__(self):
return len(self.tensors)
def __getitem__(self, idx):
t = self.tensors[idx]
return t, tensor(0)
test_dl = DataLoader(TestDS(test_tensor), bs=128 )<predict_on_test> | optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0 ) | Digit Recognizer |
4,048,733 | test_preds = learn.get_preds(dl=test_dl )<save_to_csv> | model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
| Digit Recognizer |
4,048,733 | sub = pd.read_csv(dir_path + "sample_submission.csv")
prediction =(F.softmax(test_preds[0], dim=1)[:, 1]>min_threshold ).int()
sub = pd.read_csv(dir_path + "sample_submission.csv")
sub["target"] = prediction
sub.to_csv("submission.csv", index=False )<import_modules> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 ) | Digit Recognizer |
4,048,733 | import numpy as np
import pandas as pd<load_from_csv> | epochs = 10
batch_size = 86 | Digit Recognizer |
4,048,733 | train=pd.read_csv('.. /input/nlp-getting-started/train.csv')
test=pd.read_csv('.. /input/nlp-getting-started/test.csv' )<load_pretrained> | history = model.fit(X_train_aug,
Y_train_aug,
batch_size = batch_size,
epochs = epochs,
validation_data =(X_val, Y_val),
verbose = 2,
callbacks=[learning_rate_reduction] ) | Digit Recognizer |
4,048,733 | nltk.download('punkt')
nltk.download('stopwords')
!pip install contractions
nltk.download('wordnet')
!pip install pyspellchecker
<string_transform> | result = model.predict(Test)
result = np.argmax(result,axis = 1)
result.shape | Digit Recognizer |
4,048,733 | stop_words=nltk.corpus.stopwords.words('english')
i=0
wnl=WordNetLemmatizer()
stemmer=SnowballStemmer('english')
for doc in train.text:
doc=re.sub(r'https?://\S+|www\.\S+','',doc)
doc=re.sub(r'<.*?>','',doc)
doc=re.sub(r'[^a-zA-Z\s]','',doc,re.I|re.A)
doc=' '.join([wnl.lemmatize(i)for i in doc.lower().split() ])
doc=contractions.fix(doc)
tokens=nltk.word_tokenize(doc)
filtered=[token for token in tokens if token not in stop_words]
doc=' '.join(filtered)
train.text[i]=doc
i+=1
i=0
for doc in test.text:
doc=re.sub(r'https?://\S+|www\.\S+','',doc)
doc=re.sub(r'<.*?>','',doc)
doc=re.sub(r'[^a-zA-Z\s]','',doc,re.I|re.A)
doc=' '.join([wnl.lemmatize(i)for i in doc.lower().split() ])
doc=contractions.fix(doc)
tokens=nltk.word_tokenize(doc)
filtered=[token for token in tokens if token not in stop_words]
doc=' '.join(filtered)
test.text[i]=doc
i+=1<install_modules> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_datagen.csv",index=False ) | Digit Recognizer |
3,287,070 | !pip install tensorflow_text
<define_variables> | %matplotlib inline | Digit Recognizer |
3,287,070 | bert_model_name = 'bert_en_uncased_L-12_H-768_A-12'
map_name_to_handle = {
'bert_en_uncased_L-12_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/3',
'bert_en_cased_L-12_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_en_cased_L-12_H-768_A-12/3',
'bert_multi_cased_L-12_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/3',
'small_bert/bert_en_uncased_L-2_H-128_A-2':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-128_A-2/1',
'small_bert/bert_en_uncased_L-2_H-256_A-4':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1',
'small_bert/bert_en_uncased_L-2_H-512_A-8':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-512_A-8/1',
'small_bert/bert_en_uncased_L-2_H-768_A-12':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-768_A-12/1',
'small_bert/bert_en_uncased_L-4_H-128_A-2':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-128_A-2/1',
'small_bert/bert_en_uncased_L-4_H-256_A-4':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-256_A-4/1',
'small_bert/bert_en_uncased_L-4_H-512_A-8':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1',
'small_bert/bert_en_uncased_L-4_H-768_A-12':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-768_A-12/1',
'small_bert/bert_en_uncased_L-6_H-128_A-2':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-6_H-128_A-2/1',
'small_bert/bert_en_uncased_L-6_H-256_A-4':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-6_H-256_A-4/1',
'small_bert/bert_en_uncased_L-6_H-512_A-8':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-6_H-512_A-8/1',
'small_bert/bert_en_uncased_L-6_H-768_A-12':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-6_H-768_A-12/1',
'small_bert/bert_en_uncased_L-8_H-128_A-2':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-8_H-128_A-2/1',
'small_bert/bert_en_uncased_L-8_H-256_A-4':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-8_H-256_A-4/1',
'small_bert/bert_en_uncased_L-8_H-512_A-8':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-8_H-512_A-8/1',
'small_bert/bert_en_uncased_L-8_H-768_A-12':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-8_H-768_A-12/1',
'small_bert/bert_en_uncased_L-10_H-128_A-2':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-10_H-128_A-2/1',
'small_bert/bert_en_uncased_L-10_H-256_A-4':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-10_H-256_A-4/1',
'small_bert/bert_en_uncased_L-10_H-512_A-8':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-10_H-512_A-8/1',
'small_bert/bert_en_uncased_L-10_H-768_A-12':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-10_H-768_A-12/1',
'small_bert/bert_en_uncased_L-12_H-128_A-2':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-128_A-2/1',
'small_bert/bert_en_uncased_L-12_H-256_A-4':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-256_A-4/1',
'small_bert/bert_en_uncased_L-12_H-512_A-8':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-512_A-8/1',
'small_bert/bert_en_uncased_L-12_H-768_A-12':
'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-768_A-12/1',
'albert_en_base':
'https://tfhub.dev/tensorflow/albert_en_base/2',
'electra_small':
'https://tfhub.dev/google/electra_small/2',
'electra_base':
'https://tfhub.dev/google/electra_base/2',
'experts_pubmed':
'https://tfhub.dev/google/experts/bert/pubmed/2',
'experts_wiki_books':
'https://tfhub.dev/google/experts/bert/wiki_books/2',
'talking-heads_base':
'https://tfhub.dev/tensorflow/talkheads_ggelu_bert_en_base/1',
}
map_model_to_preprocess = {
'bert_en_uncased_L-12_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'bert_en_cased_L-12_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_en_cased_preprocess/3',
'small_bert/bert_en_uncased_L-2_H-128_A-2':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-2_H-256_A-4':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-2_H-512_A-8':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-2_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-4_H-128_A-2':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-4_H-256_A-4':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-4_H-512_A-8':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-4_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-6_H-128_A-2':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-6_H-256_A-4':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-6_H-512_A-8':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-6_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-8_H-128_A-2':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-8_H-256_A-4':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-8_H-512_A-8':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-8_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-10_H-128_A-2':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-10_H-256_A-4':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-10_H-512_A-8':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-10_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-12_H-128_A-2':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-12_H-256_A-4':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-12_H-512_A-8':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'small_bert/bert_en_uncased_L-12_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'bert_multi_cased_L-12_H-768_A-12':
'https://tfhub.dev/tensorflow/bert_multi_cased_preprocess/3',
'albert_en_base':
'https://tfhub.dev/tensorflow/albert_en_preprocess/3',
'electra_small':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'electra_base':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'experts_pubmed':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'experts_wiki_books':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
'talking-heads_base':
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3',
}
tfhub_handle_encoder = map_name_to_handle[bert_model_name]
tfhub_handle_preprocess = map_model_to_preprocess[bert_model_name]
print(f'BERT model selected : {tfhub_handle_encoder}')
print(f'Preprocess model auto-selected: {tfhub_handle_preprocess}' )<categorify> | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import seaborn as sns | Digit Recognizer |
3,287,070 | bert_preprocess_model = hub.KerasLayer(tfhub_handle_preprocess)
text_test = ['this is such an amazing movie!']
text_preprocessed = bert_preprocess_model(text_test)
print(f'Keys : {list(text_preprocessed.keys())}')
print(f'Shape : {text_preprocessed["input_word_ids"].shape}')
print(f'Word Ids : {text_preprocessed["input_word_ids"][0, :12]}')
print(f'Input Mask : {text_preprocessed["input_mask"][0, :12]}')
print(f'Type Ids : {text_preprocessed["input_type_ids"][0, :12]}' )<train_model> | from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, BatchNormalization
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from keras.optimizers import RMSprop, Adam
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import itertools | Digit Recognizer |
3,287,070 | bert_model = hub.KerasLayer(tfhub_handle_encoder)
bert_results = bert_model(text_preprocessed)
print(f'Loaded BERT: {tfhub_handle_encoder}')
print(f'Pooled Outputs Shape:{bert_results["pooled_output"].shape}')
print(f'Pooled Outputs Values:{bert_results["pooled_output"][0, :12]}')
print(f'Sequence Outputs Shape:{bert_results["sequence_output"].shape}')
print(f'Sequence Outputs Values:{bert_results["sequence_output"][0, :12]}' )<categorify> | PATH = '.. /input/' | Digit Recognizer |
3,287,070 | def build_classifier_model() :
text_input = tf.keras.layers.Input(shape=() , dtype=tf.string, name='text')
preprocessing_layer = hub.KerasLayer(tfhub_handle_preprocess, name='preprocessing')
encoder_inputs = preprocessing_layer(text_input)
encoder = hub.KerasLayer(tfhub_handle_encoder, trainable=True, name='BERT_encoder')
outputs = encoder(encoder_inputs)
net = outputs['pooled_output']
net = tf.keras.layers.Dropout(0.1 )(net)
net = tf.keras.layers.Dense(1, activation='sigmoid', name='classifier' )(net)
return tf.keras.Model(text_input, net)
classifier_model = build_classifier_model()
classifier_model.compile(optimizer=tf.keras.optimizers.Adam(3e-5),
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=tf.metrics.BinaryAccuracy())
checkpoint=tf.keras.callbacks.ModelCheckpoint('model.h5',monitor='val_loss',save_best_only=True)
es=tf.keras.callbacks.EarlyStopping(monitor='val_loss',patience=2,restore_best_weights=True)
history = classifier_model.fit(train.text,train.target,validation_split=0.2,epochs=10,callbacks=[checkpoint,es],batch_size=8 )<load_pretrained> | df_train = pd.read_csv(f'{PATH}train.csv')
df_test = pd.read_csv(f'{PATH}test.csv' ) | Digit Recognizer |
3,287,070 | classifier_model.load_weights('./model.h5')
pred=classifier_model.predict(test.text )<count_values> | X_train = df_train.drop('label', axis=1 ).values
X_test = df_test.values
Y_train = df_train.label
print(f'Number of training Examples, {X_train.shape[0]}')
print(f'Number of test Examples, {X_test.shape[0]}')
print(f'Number of classes, {np.unique(Y_train)}' ) | Digit Recognizer |
3,287,070 | pd.DataFrame(np.where(pred>0.5,1,0)).value_counts()<save_to_csv> | X_train = X_train.reshape(-1, 28, 28, 1)
X_test = X_test.reshape(-1, 28, 28, 1 ) | Digit Recognizer |
3,287,070 | pd.DataFrame({
'id':test.id,
'target':np.where(pred>0.5,1,0)[:,0]
} ).to_csv('submission.csv',index=False )<load_from_csv> | print('Integer Valued Labels')
print(Y_train[:10])
Y_train = np_utils.to_categorical(Y_train, 10)
print('One Hot Labels')
print(Y_train[:10] ) | Digit Recognizer |
3,287,070 | train_data = pd.read_csv(".. /input/nlp-getting-started/train.csv")
train_data.head(5 )<load_from_csv> | X_train = X_train.astype('float32')/ 255
X_test = X_test.astype('float32')/ 255 | Digit Recognizer |
3,287,070 | test_data = pd.read_csv(".. /input/nlp-getting-started/test.csv")
test_data.head(5 )<install_modules> | X_train, X_valid = X_train[7000:], X_train[:7000]
Y_train, Y_valid = Y_train[7000:], Y_train[:7000] | Digit Recognizer |
3,287,070 | !pip install BeautifulSoup4<string_transform> | model = Sequential()
model.add(Flatten(input_shape=X_train.shape[1:]))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
model.summary() | Digit Recognizer |
3,287,070 | stop = set(stopwords.words('english'))
stop.update(list(string.punctuation))
def clean_tweets(text):
re1 = re.compile(r' +')
x1 = text.lower().replace('
'nbsp;', ' ' ).replace('
', "
" ).replace('quot;', "'" ).replace(
'<br />', "
" ).replace('\"', '"' ).replace('<unk>', 'u_n' ).replace(' @.@ ', '.' ).replace(
' @-@ ', '-' ).replace('\', ' \\ ')
text = re1.sub(' ', html.unescape(x1))
text = unicodedata.normalize('NFKD', text ).encode('ascii', 'ignore' ).decode('utf-8', 'ignore')
soup = BeautifulSoup(text, 'html.parser')
text = soup.get_text()
text = re.sub('\[[^]]*\]', '', text)
text = re.sub(r'http\S+', '', text)
text = text.replace("@", "")
text = text.replace("
text = re.sub(r'[^a-zA-Z ]', '', text)
final_text = []
for word in text.split() :
if word.strip().lower() not in stop:
final_text.append(word.strip().lower())
text = " ".join(final_text)
lemmatizer = WordNetLemmatizer()
text = " ".join([lemmatizer.lemmatize(word)for word in text.split() ])
text = " ".join([lemmatizer.lemmatize(word, pos = 'v')for word in text.split() ])
text = re.sub("\d", "num", text)
return text.lower()
train_data['prep_text'] = train_data['text'].apply(clean_tweets)
train_data['prep_text'].head(5 )<feature_engineering> | model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'] ) | Digit Recognizer |
3,287,070 | test_data['text'] = test_data['text'].apply(clean_tweets)
test_data['text'].head(5 )<train_model> | checkpointer = ModelCheckpoint(filepath='mnist.model.best.hdf5',
verbose=1, save_best_only=True)
hist = model.fit(X_train, Y_train, batch_size=128, epochs=10,
validation_split=0.2, callbacks=[checkpointer],
verbose=1, shuffle=True ) | Digit Recognizer |
3,287,070 | vocab_size = 1000
tokenizer = Tokenizer(num_words = vocab_size, oov_token = 'UNK')
tokenizer.fit_on_texts(list(train_data['prep_text'])+ list(test_data['text']))<data_type_conversions> | model.load_weights('mnist.model.best.hdf5' ) | Digit Recognizer |
3,287,070 | X_train_ohe = tokenizer.texts_to_matrix(train_data['prep_text'], mode = 'binary')
X_test_ohe = tokenizer.texts_to_matrix(test_data['text'], mode = 'binary')
y_train = np.array(train_data['target'] ).astype(int)
print(f"X_train shape: {X_train_ohe.shape}")
print(f"X_test shape: {X_test_ohe.shape}")
print(f"y_train shape: {y_train.shape}" )<split> | score = model.evaluate(X_valid, Y_valid, verbose=0)
accuracy = 100 * score[1]
print(f'Test Accuracy {accuracy:.4f}' ) | Digit Recognizer |
3,287,070 | X_train_ohe, X_val_ohe, y_train, y_val = train_test_split(X_train_ohe, y_train, random_state = 42, test_size = 0.2)
print(f"X_train shape: {X_train_ohe.shape}")
print(f"X_val shape: {X_val_ohe.shape}")
print(f"y_train shape: {y_train.shape}")
print(f"y_val shape: {y_val.shape}" )<choose_model_class> | def submit_result(model, X_test):
results = model.predict(X_test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("mnist_datagen.csv",index=False)
| Digit Recognizer |
3,287,070 | def setup_model() :
model = Sequential()
model.add(layers.Dense(1, activation='sigmoid', input_shape=(vocab_size,)))
model.compile(optimizer=optimizers.RMSprop(lr=0.001),
loss=losses.binary_crossentropy,
metrics=[metrics.binary_accuracy])
return model
model = setup_model()
model.summary()<train_model> | cnn_model = Sequential()
cnn_model.add(Conv2D(filters=32, kernel_size=(5, 5), padding='Same',
activation='relu', input_shape=X_train.shape[1:]))
cnn_model.add(Conv2D(filters=32, kernel_size=(5, 5), padding='Same',
activation='relu'))
cnn_model.add(MaxPooling2D(pool_size=(2, 2)))
cnn_model.add(Dropout(0.2))
cnn_model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='Same',
activation='relu'))
cnn_model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='Same',
activation='relu'))
cnn_model.add(MaxPooling2D(pool_size=(2, 2)))
cnn_model.add(Dropout(0.2))
cnn_model.add(Flatten())
cnn_model.add(Dense(512, activation='relu'))
cnn_model.add(Dropout(0.2))
cnn_model.add(Dense(512, activation='relu'))
cnn_model.add(Dropout(0.2))
cnn_model.add(Dense(10, activation='softmax'))
cnn_model.summary() | Digit Recognizer |
3,287,070 | history = model.fit(X_train_ohe, y_train, epochs = 20, batch_size = 512, validation_data =(X_val_ohe, y_val))<compute_test_metric> | optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
cnn_model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=['accuracy'] ) | Digit Recognizer |
3,287,070 | _, accuracy = model.evaluate(X_val_ohe, y_val )<data_type_conversions> | checkpointer = ModelCheckpoint(filepath='mnist.model.best.cnn.hdf5',
verbose=1, save_best_only=True)
hist = cnn_model.fit(X_train, Y_train, batch_size=128, epochs=10,
validation_split=0.2, callbacks=[checkpointer],
verbose=1, shuffle=True ) | Digit Recognizer |
3,287,070 | X_train_wc = tokenizer.texts_to_matrix(train_data['prep_text'], mode = 'count')
X_test_wc = tokenizer.texts_to_matrix(test_data['text'], mode = 'count')
y_train = np.array(train_data['target'] ).astype(int)
print(f"X_train shape: {X_train_wc.shape}")
print(f"X_test shape: {X_test_wc.shape}")
print(f"y_train shape: {y_train.shape}")
<split> | cnn_model.load_weights('mnist.model.best.cnn.hdf5' ) | Digit Recognizer |
3,287,070 | X_train_wc, X_val_wc, y_train, y_val = train_test_split(X_train_wc, y_train, random_state = 42, test_size = 0.2)
print(f"X_train shape: {X_train_wc.shape}")
print(f"X_val shape: {X_val_wc.shape}")
print(f"y_train shape: {y_train.shape}")
print(f"y_val shape: {y_val.shape}" )<train_model> | score = cnn_model.evaluate(X_valid, Y_valid, verbose=0)
accuracy = 100 * score[1]
print(f'Test Accuracy {accuracy:.4f}' ) | Digit Recognizer |
3,287,070 | history = model.fit(X_train_wc, y_train, epochs = 20, batch_size = 512, validation_data =(X_val_wc, y_val))<compute_test_metric> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.2)
print(f'Shape of the training data {X_train.shape}')
print(f'Shape of the validation dat {X_val.shape}' ) | Digit Recognizer |
3,287,070 | _, accuracy = model.evaluate(X_val_wc, y_val )<data_type_conversions> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False
)
datagen.fit(X_train ) | Digit Recognizer |
3,287,070 | X_train_freq = tokenizer.texts_to_matrix(train_data['prep_text'], mode = 'freq')
X_test_freq = tokenizer.texts_to_matrix(test_data['text'], mode = 'freq')
y_train = np.array(train_data['target'] ).astype(int)
print(f"X_train shape: {X_train_freq.shape}")
print(f"X_test shape: {X_test_freq.shape}")
print(f"y_train shape: {y_train.shape}" )<split> | batch_size=128
checkpointer = ModelCheckpoint(filepath='mnist.model.best.cnn.aug.hdf5',
verbose=1, save_best_only=True)
hist = cnn_model.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_size),
epochs=10, validation_data=(X_val, Y_val), callbacks=[checkpointer],
verbose=2, shuffle=True, steps_per_epoch=X_train.shape[0] // batch_size ) | Digit Recognizer |
3,287,070 | X_train_freq, X_val_freq, y_train, y_val = train_test_split(X_train_freq, y_train, test_size = 0.2, random_state = 42)
print(f"X_train shape: {X_train_freq.shape}")
print(f"X_val shape: {X_val_freq.shape}")
print(f"y_train shape: {y_train.shape}")
print(f"y_val shape: {y_val.shape}" )<train_model> | cnn_model.load_weights('mnist.model.best.cnn.aug.hdf5' ) | Digit Recognizer |
3,287,070 | history = model.fit(X_train_freq, y_train, epochs = 20, batch_size = 512, validation_data =(X_val_freq, y_val))<train_model> | score = cnn_model.evaluate(X_valid, Y_valid, verbose=0)
accuracy = 100 * score[1]
print(f'Test Accuracy {accuracy:.4f}' ) | Digit Recognizer |
3,287,070 | vectorizer = TfidfVectorizer(max_features = vocab_size)
vectorizer.fit(list(train_data['prep_text'])+ list(test_data['text']))
X_train_tfidf = vectorizer.transform(list(train_data['prep_text'])).toarray()
X_test_tfidf = vectorizer.transform(list(test_data['text'])).toarray()
y_train = np.array(train_data['target'] ).astype(int)
print(f"X_train shape {X_train_tfidf.shape}")
print(f"X_test shape {X_test_tfidf.shape}")
print(f"y_train shape {y_train.shape}" )<split> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 ) | Digit Recognizer |
3,287,070 | X_train_tfidf, X_val_tfidf, y_train, y_val = train_test_split(X_train_tfidf, y_train, test_size = 0.2, random_state = 42)
print(f"X_train shape: {X_train_tfidf.shape}")
print(f"X_val shape: {X_val_tfidf.shape}")
print(f"y_train shape: {y_train.shape}")
print(f"y_val shape: {y_val.shape}" )<train_model> | checkpointer = ModelCheckpoint(filepath='mnist.model.best.cnn.aug.ann.hdf5',
verbose=1, save_best_only=True)
hist = cnn_model.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_size),
epochs=20, validation_data=(X_val, Y_val), callbacks=[checkpointer, learning_rate_reduction],
verbose=2, shuffle=True, steps_per_epoch=X_train.shape[0] // batch_size)
| Digit Recognizer |
3,287,070 | history = model.fit(X_train_tfidf, y_train, epochs = 20, batch_size = 512, validation_data =(X_val_tfidf, y_val))<define_variables> | cnn_model.load_weights('mnist.model.best.cnn.aug.ann.hdf5' ) | Digit Recognizer |
3,287,070 | embedding_dict={}
with open('.. /input/glovetwitter27b100dtxt/glove.twitter.27B.100d.txt','r')as f:
for line in f:
values=line.split()
word = values[0]
vectors=np.asarray(values[1:],'float32')
embedding_dict[word]=vectors
f.close()<categorify> | score = cnn_model.evaluate(X_valid, Y_valid, verbose=0)
accuracy = 100 * score[1]
print(f'Test Accuracy {accuracy:.4f}' ) | Digit Recognizer |
3,287,070 | vocab_size = 10000
tokenizer = Tokenizer(num_words = vocab_size, oov_token = 'UNK')
tokenizer.fit_on_texts(list(train_data['prep_text'])+ list(test_data['text']))
max_len = 15
X_train_seq = tokenizer.texts_to_sequences(train_data['prep_text'])
X_test_seq = tokenizer.texts_to_sequences(test_data['text'])
X_train_seq = pad_sequences(X_train_seq, maxlen = max_len, truncating = 'post', padding = 'post')
X_test_seq = pad_sequences(X_test_seq, maxlen = max_len, truncating = 'post', padding = 'post')
y_train = np.array(train_data['target'] ).astype(int)
print(f"X_train shape: {X_train_seq.shape}")
print(f"X_test shape: {X_test_seq.shape}")
print(f"y_train shape: {y_train.shape}" )<split> | submit_result(cnn_model, X_test ) | Digit Recognizer |
3,287,070 | X_train_seq, X_val_seq, y_train, y_val = train_test_split(X_train_seq, y_train, test_size = 0.2, random_state = 42)
print(f"X_train shape: {X_train_seq.shape}")
print(f"X_val shape: {X_val_seq.shape}")
print(f"y_train shape: {y_train.shape}")
print(f"y_val shape: {y_val.shape}" )<count_unique_values> | cnn_bn_model = Sequential()
cnn_bn_model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1)))
cnn_bn_model.add(BatchNormalization())
cnn_bn_model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu'))
cnn_bn_model.add(BatchNormalization())
cnn_bn_model.add(MaxPooling2D(pool_size=(2,2)))
cnn_bn_model.add(Dropout(0.25))
cnn_bn_model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
cnn_bn_model.add(BatchNormalization())
cnn_bn_model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
cnn_bn_model.add(BatchNormalization())
cnn_bn_model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
cnn_bn_model.add(Dropout(0.25))
cnn_bn_model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation ='relu'))
cnn_bn_model.add(BatchNormalization())
cnn_bn_model.add(Dropout(0.25))
cnn_bn_model.add(Flatten())
cnn_bn_model.add(Dense(256, activation = "relu"))
cnn_bn_model.add(BatchNormalization())
cnn_bn_model.add(Dropout(0.25))
cnn_bn_model.add(Dense(10, activation = "softmax"))
cnn_bn_model.summary() | Digit Recognizer |
3,287,070 | num_words = len(tokenizer.word_index)
print(f"Number of unique words: {num_words}" )<categorify> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 ) | Digit Recognizer |
3,287,070 | embedding_matrix=np.zeros(( num_words,100))
for word,i in tokenizer.word_index.items() :
if i < num_words:
emb_vec = embedding_dict.get(word)
if emb_vec is not None:
embedding_matrix[i] = emb_vec<choose_model_class> | optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
cnn_bn_model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=['accuracy'] ) | Digit Recognizer |
3,287,070 | n_latent_factors = 100
model_glove = Sequential()
model_glove.add(layers.Embedding(num_words, n_latent_factors, weights = [embedding_matrix],
input_length = max_len, trainable=True))
model_glove.add(layers.Flatten())
model_glove.add(layers.Dropout(0.5))
model_glove.add(layers.Dense(1, activation='sigmoid'))
model_glove.summary()<train_model> | checkpointer = ModelCheckpoint(filepath='final.model.hdf5',
verbose=1, save_best_only=True)
hist = cnn_bn_model.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_size),
epochs=20, validation_data=(X_val, Y_val), callbacks=[checkpointer, learning_rate_reduction],
verbose=2, shuffle=True, steps_per_epoch=X_train.shape[0] // batch_size)
| Digit Recognizer |
3,287,070 | model_glove.compile(optimizer = optimizers.RMSprop(lr=0.001),
loss = losses.binary_crossentropy,
metrics = [metrics.binary_accuracy])
history = model_glove.fit(X_train_seq,
y_train,
epochs=20,
batch_size=512,
validation_data=(X_val_seq, y_val))<categorify> | cnn_bn_model.load_weights('final.model.hdf5' ) | Digit Recognizer |
3,287,070 | max_len = 15
X_train_seq = tokenizer.texts_to_sequences(train_data['prep_text'])
X_test_seq = tokenizer.texts_to_sequences(test_data['text'])
X_train_seq = pad_sequences(X_train_seq, maxlen = max_len, truncating = 'post', padding = 'post')
X_test_seq = pad_sequences(X_test_seq, maxlen = max_len, truncating = 'post', padding = 'post')
y_train = np.array(train_data['target'] ).astype(int)
print(f"X_train shape: {X_train_seq.shape}")
print(f"X_test shape: {X_test_seq.shape}")
print(f"y_train shape: {y_train.shape}
")
n_latent_factors = 100
model_glove = Sequential()
model_glove.add(layers.Embedding(num_words, n_latent_factors, weights = [embedding_matrix],
input_length = max_len, trainable=True))
model_glove.add(layers.Flatten())
model_glove.add(layers.Dropout(0.5))
model_glove.add(layers.Dense(1, activation='sigmoid'))
print(f"{model_glove.summary() }
")
model_glove.compile(optimizer = optimizers.RMSprop(lr=0.001),
loss = losses.binary_crossentropy,
metrics = [metrics.binary_accuracy])
history = model_glove.fit(X_train_seq,
y_train,
epochs=20,
batch_size=512 )<split> | score = cnn_bn_model.evaluate(X_valid, Y_valid, verbose=0)
accuracy = 100 * score[1]
print(f'Test Accuracy {accuracy:.4f}' ) | Digit Recognizer |
3,287,070 | <save_to_csv><EOS> | submit_result(cnn_bn_model, X_test ) | Digit Recognizer |
6,293,082 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<import_modules> | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg | Digit Recognizer |
6,293,082 | import pandas as pd
import numpy as np
from sklearn.metrics import f1_score<load_from_csv> | train = pd.read_csv(".. /input/digit-recognizer/train.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv")
train.shape | Digit Recognizer |
6,293,082 | train=pd.read_csv('.. /input/nlp-getting-started/train.csv')
test=pd.read_csv('.. /input/nlp-getting-started/test.csv' )<count_values> | Y_train = train["label"]
X_train = train.drop(labels = ["label"],axis = 1 ) | Digit Recognizer |
6,293,082 | train.target.value_counts()<load_pretrained> | X_train = X_train / 255.0
test = test / 255.0 | Digit Recognizer |
6,293,082 | nltk.download('punkt')
nltk.download('stopwords')
!pip install contractions
nltk.download('wordnet')
!pip install pyspellchecker
<string_transform> | X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1 ) | Digit Recognizer |
6,293,082 | stop_words=nltk.corpus.stopwords.words('english')
i=0
wnl=WordNetLemmatizer()
stemmer=SnowballStemmer('english')
for doc in train.text:
doc=re.sub(r'https?://\S+|www\.\S+','',doc)
doc=re.sub(r'<.*?>','',doc)
doc=re.sub(r'[^a-zA-Z\s]','',doc,re.I|re.A)
doc=' '.join([wnl.lemmatize(i)for i in doc.lower().split() ])
doc=contractions.fix(doc)
tokens=nltk.word_tokenize(doc)
filtered=[token for token in tokens if token not in stop_words]
doc=' '.join(filtered)
train.text[i]=doc
i+=1
i=0
for doc in test.text:
doc=re.sub(r'https?://\S+|www\.\S+','',doc)
doc=re.sub(r'<.*?>','',doc)
doc=re.sub(r'[^a-zA-Z\s]','',doc,re.I|re.A)
doc=' '.join([wnl.lemmatize(i)for i in doc.lower().split() ])
doc=contractions.fix(doc)
tokens=nltk.word_tokenize(doc)
filtered=[token for token in tokens if token not in stop_words]
doc=' '.join(filtered)
test.text[i]=doc
i+=1<categorify> | from keras.utils.np_utils import to_categorical | Digit Recognizer |
6,293,082 | tfidf=TfidfVectorizer(ngram_range=(1,1),use_idf=True)
mat=tfidf.fit_transform(train.text ).toarray()
train_df=pd.DataFrame(mat,columns=tfidf.get_feature_names())
test_df=pd.DataFrame(tfidf.transform(test.text ).toarray() ,columns=tfidf.get_feature_names())
train_df.head()<predict_on_test> | Y_train = to_categorical(Y_train, num_classes = 10 ) | Digit Recognizer |
6,293,082 | model=LogisticRegression()
model.fit(train_df,train.target)
print(f1_score(model.predict(train_df),train.target))
pred=model.predict(test_df )<save_to_csv> | from sklearn.model_selection import train_test_split | Digit Recognizer |
6,293,082 | pd.DataFrame({
'id':test.id,
'target':pred
} ).to_csv('submission.csv',index=False )<import_modules> | from sklearn.model_selection import train_test_split | Digit Recognizer |
6,293,082 | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from nltk.corpus import stopwords
from nltk.util import ngrams
from nltk.stem import WordNetLemmatizer
import re
from textblob import TextBlob
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix
from sklearn.tree import DecisionTreeClassifier
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
import tensorflow as tf
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from gensim.models import Word2Vec
from gensim.models.keyedvectors import KeyedVectors
import time
from keras.layers import Dense, Input, Flatten, Dropout
from keras.layers import Conv1D, MaxPooling1D, Embedding
from keras.models import Sequential
from keras import losses
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import Model<load_from_csv> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=10 ) | Digit Recognizer |
6,293,082 | train_data = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
submit_data = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv' )<count_missing_values> | from tensorflow import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.optimizers import RMSprop
import tensorflow as tf | Digit Recognizer |
6,293,082 | train_data[train_data['text'].isna() ]<groupby> | model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64,(3, 3), activation='relu', input_shape=(28, 28, 1),padding='same'),
tf.keras.layers.Conv2D(64,(3, 3), activation='relu', input_shape=(28, 28, 1),padding='same'),
tf.keras.layers.Conv2D(128,(3, 3), activation='relu', input_shape=(28, 28, 1),padding='same'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(128,(3, 3), activation='relu',padding='same'),
tf.keras.layers.Conv2D(192,(3, 3), activation='relu',padding='same'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(192,(3, 3), activation='relu',padding='same'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Dropout (.5),
tf.keras.layers.Flatten() ,
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
] ) | Digit Recognizer |
6,293,082 | train_data.groupby('target' ).count()<set_options> | model.compile(optimizer = keras.optimizers.RMSprop(learning_rate=0.001, rho=0.9), loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
6,293,082 | %matplotlib inline<concatenate> | model.fit(X_train, Y_train, batch_size = 86, epochs =50, validation_data =(X_val, Y_val), verbose = 1 ) | Digit Recognizer |
6,293,082 | data = pd.concat([train_data, submit_data])
data.shape<feature_engineering> | results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_fourth.csv",index=False ) | Digit Recognizer |
3,821,292 | data['text'] = data['text'].apply(lambda x: re.sub(re.compile(r'https?\S+'), '', x))
data['text'] = data['text'].apply(lambda x: re.sub(re.compile(r'[\//:,.!?@&\-'\`"\_
\
data['text'] = data['text'].apply(lambda x: re.sub(re.compile(r'<.*?>'), '', x))
data['text'] = data['text'].apply(lambda x: re.sub(re.compile("["
u"\U0001F600-\U0001F64F"
u"\U0001F300-\U0001F5FF"
u"\U0001F680-\U0001F6FF"
u"\U0001F1E0-\U0001F1FF"
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"
"]+", flags=re.UNICODE), '', x))
data['text'] = data['text'].apply(lambda x: re.sub(re.compile(r'\d'), '', x))
data['text'] = data['text'].apply(lambda x: re.sub(re.compile(r'[^\w]'), ' ', x))
data['text'] = data['text'].str.lower()<split> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" ) | Digit Recognizer |
3,821,292 | clean_train = data[0:train_data.shape[0]]
clean_submit = data[train_data.shape[0]:-1]
X_train, X_test, y_train, y_test = train_test_split(clean_train['text'], clean_train['target'],
test_size = 0.2, random_state = 4 )<feature_engineering> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" ) | Digit Recognizer |
3,821,292 | def tfidf(words):
tfidf_vectorizer = TfidfVectorizer()
data_feature = tfidf_vectorizer.fit_transform(words)
return data_feature, tfidf_vectorizer
X_train_tfidf, tfidf_vectorizer = tfidf(X_train.tolist())
X_test_tfidf = tfidf_vectorizer.transform(X_test.tolist() )<train_model> | X_train = train.iloc[:, 1:].values.reshape(-1,28,28,1)
Y_train = train.iloc[:, 0]
x_test = test.values.reshape(-1,28,28,1 ) | Digit Recognizer |
3,821,292 | lr_tfidf = LogisticRegression(class_weight = 'balanced', solver = 'lbfgs', n_jobs = -1)
lr_tfidf.fit(X_train_tfidf, y_train)
y_predicted_lr = lr_tfidf.predict(X_test_tfidf )<compute_test_metric> | seed_value= 1998
os.environ['PYTHONHASHSEED']=str(seed_value)
random.seed(seed_value)
np.random.seed(seed_value)
tf.set_random_seed(seed_value)
config = tf.ConfigProto(
device_count = {'GPU': 1, 'CPU': 100},
)
set_session(tf.Session(config=config))
print(tensorflow_backend._get_available_gpus() ) | Digit Recognizer |
3,821,292 | def score_metrics(y_test, y_predicted):
accuracy = accuracy_score(y_test, y_predicted)
precision = precision_score(y_test, y_predicted)
recall = recall_score(y_test, y_predicted)
print("accuracy = %0.3f, precision = %0.3f, recall = %0.3f" %(accuracy, precision, recall))<compute_test_metric> | X_train = X_train/255
x_test = x_test/255 | Digit Recognizer |
3,821,292 | score_metrics(y_test, y_predicted_lr )<train_on_grid> | KFold = 5
Folds = StratifiedKFold(n_splits=KFold, shuffle=True ).split(X_train, Y_train ) | Digit Recognizer |
3,821,292 | pipeline = Pipeline([
('clf', DecisionTreeClassifier(splitter='random', class_weight='balanced'))
])
parameters = {
'clf__max_depth':(150,160,165),
'clf__min_samples_split':(18,20,23),
'clf__min_samples_leaf':(5,6,7)
}
df_tfidf = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=-1, scoring='f1')
df_tfidf.fit(X_train_tfidf, y_train)
print(df_tfidf.best_estimator_.get_params() )<predict_on_test> | classifiers = []
for train_idx, valid_idx in Folds:
FOLD = len(classifiers)+1
print("STARTED TRAINING ON FOLD-%d"%(FOLD))
x_train, x_valid = X_train[train_idx], X_train[valid_idx]
y_train, y_valid = to_categorical(Y_train[train_idx], 10), to_categorical(Y_train[valid_idx], 10)
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False
)
datagen.fit(x_train)
callbacks = [
EarlyStopping(monitor='val_loss', patience=15, verbose=1, mode='auto', restore_best_weights=True),
ModelCheckpoint(filepath='MNIST_DigitRecognizer_CNN_Fold%d.hdf5'%(FOLD), monitor='val_loss', save_best_only=True, verbose=1),
ReduceLROnPlateau(monitor='val_loss', patience=3, verbose=1, factor=0.5, min_lr=0.000001)
]
clf = Sequential([
Conv2D(32, kernel_size=(3,3), input_shape=(28,28,1), activation='relu', padding='same', kernel_initializer='glorot_uniform'),
Conv2D(32, kernel_size=(3,3), activation='relu', padding='same', kernel_initializer='glorot_uniform'),
MaxPooling2D() ,
Conv2D(64, kernel_size=(3,3), activation='relu', padding='same', kernel_initializer='glorot_uniform'),
Conv2D(64, kernel_size=(3,3), activation='relu', padding='same', kernel_initializer='glorot_uniform'),
MaxPooling2D() ,
Dropout(rate=0.15),
Flatten() ,
Dense(512, activation='relu', kernel_initializer='glorot_uniform'),
Dropout(rate=0.5),
Dense(10, activation='softmax', kernel_initializer='glorot_uniform')
])
clf.compile(loss='categorical_crossentropy', optimizer=adam(lr=0.001))
train_history = clf.fit_generator(
datagen.flow(x_train, y_train, batch_size=32),
validation_data=(x_valid, y_valid),
steps_per_epoch=len(x_train)/32,
epochs=50,
workers=6,
use_multiprocessing=True,
callbacks = callbacks,
verbose=0
)
plot_eval_result(train_hist = train_history)
classifiers.append(clf)
| Digit Recognizer |
3,821,292 | y_predicted_dt = df_tfidf.predict(X_test_tfidf )<compute_test_metric> | final_result = sum(clf.predict(x_test)for clf in classifiers)/KFold
final_result = np.argmax(final_result, axis=1 ) | Digit Recognizer |
3,821,292 | score_metrics(y_test, y_predicted_dt )<install_modules> | y_pred = pd.DataFrame(data = final_result, index=list(range(1, test.shape[0]+1)) , columns = ['Label'])
y_pred.to_csv("output.csv", index=True, index_label='ImageId' ) | Digit Recognizer |
3,070,649 | !pip install gensim -i http://pypi.douban.com/simple --trusted-host pypi.douban.com<string_transform> | %reload_ext autoreload
%autoreload 2
%matplotlib inline | Digit Recognizer |
3,070,649 | stop_words = stopwords.words('english')
for word in ['us','no','yet']:
stop_words.append(word)
data_list = []
text_series = data['text']
for i in range(len(text_series)) :
content = text_series.iloc[i]
cutwords = [word for word in content.split(' ')if word not in stop_words if len(word)!= 0]
data_list.append(cutwords )<define_variables> | from fastai import *
from fastai.vision import *
import numpy as np
import pandas as pd
import re | Digit Recognizer |
3,070,649 | for i in range(len(data_list)) :
content = data_list[i]
if len(content)<1:
print(i )<load_pretrained> | df_train = pd.read_csv('.. /input/train.csv')
df_train['fn'] = df_train.index
df_train.head() | Digit Recognizer |
3,070,649 | word2vec_path='./GoogleNews-vectors-negative300.bin.gz'
word2vec_model = gensim.models.KeyedVectors.load_word2vec_format(word2vec_path, binary=True )<feature_engineering> | data =(src.transform(tfms=(rand_pad(padding=5,size=28,mode='zeros'),[]))
.databunch(num_workers=2,bs=128)
.normalize(imagenet_stats)) | Digit Recognizer |
3,070,649 | def get_textVector(data_list, word2vec, textsVectors_list):
for i in range(len(data_list)) :
words_perText = data_list[i]
if len(words_perText)< 1:
words_vector = [np.zeros(300)]
else:
words_vector = [word2vec.wv[k] if k in word2vec_model else np.zeros(300)for k in words_perText]
text_vector = np.array(words_vector ).mean(axis=0)
textsVectors_list.append(text_vector)
return textsVectors_list<prepare_x_and_y> | data.show_batch(rows=3,figsize=(10,7)) | Digit Recognizer |
3,070,649 | textsVectors_list = []
get_textVector(data_list, word2vec_model, textsVectors_list)
X = np.array(textsVectors_list )<count_missing_values> | learn = cnn_learner(data,models.resnet50,metrics=accuracy,model_dir='/kaggle/model' ) | Digit Recognizer |
3,070,649 | pd.isnull(X ).any()<split> | learn.lr_find(end_lr=100 ) | Digit Recognizer |
3,070,649 | word2vec_X = X[0:train_data.shape[0]]
y = data['target'][0:train_data.shape[0]]
word2vec_submit = X[train_data.shape[0]:-1]
X_train_word2vec, X_test_word2vec, y_train_word2vec, y_test_word2vec = train_test_split(word2vec_X, y,
test_size = 0.2, random_state = 4 )<train_model> | lr = 1e-2 | Digit Recognizer |
3,070,649 | word2vec_lr = LogisticRegression(class_weight = 'balanced', solver = 'lbfgs', n_jobs = -1)
word2vec_lr.fit(X_train_word2vec, y_train_word2vec)
y_predicted_word2vec_lr = word2vec_lr.predict(X_test_word2vec )<compute_test_metric> | learn.fit_one_cycle(5,slice(lr)) | Digit Recognizer |
3,070,649 | score_metrics(y_test_word2vec, y_predicted_word2vec_lr )<define_variables> | learn.unfreeze()
learn.lr_find()
learn.recorder.plot() | Digit Recognizer |
3,070,649 | compare_list = []
for(i,j)in zip(y_test_word2vec, y_predicted_word2vec_lr):
k = i - j
compare_list.append(k)
wrong_num = [i for i,j in enumerate(compare_list)if j != 0]
text_series[0:train_data.shape[0]][wrong_num]<define_variables> | learn.fit_one_cycle(8,slice(2e-5,lr/5)) | Digit Recognizer |
3,070,649 | lenlen = []
for i in range(len(data_list)) :
content = data_list[i]
perlen = len(content)
lenlen.append(perlen)
print(max(lenlen))<define_variables> | df_test = pd.read_csv('.. /input/test.csv')
df_test['label'] = 0
df_test['fn'] = df_test.index
df_test.head() | Digit Recognizer |
3,070,649 | max_sequence_length = 26
embedding_dim = 300<train_model> | learn.data.add_test(PixelImageItemList.from_df(df_test,path='.',cols='fn')) | Digit Recognizer |
3,070,649 | tokenizer = Tokenizer()
tokenizer.fit_on_texts(data_list)
sequences = tokenizer.texts_to_sequences(data_list)
word_index = tokenizer.word_index
cnn_data = pad_sequences(sequences, maxlen = max_sequence_length)
cnn_label = to_categorical(np.asarray(train_data['target']))
print('len of word_index:', len(word_index))
print('shape of data tensor:', cnn_data.shape)
print('shape of label tensoe:', cnn_label.shape )<split> | pred_test = learn.get_preds(ds_type=DatasetType.Test ) | Digit Recognizer |
3,070,649 | trainCNN_data = cnn_data[0:train_data.shape[0]]
X_train_cnn, X_test_cnn, y_train_cnn, y_test_cnn = train_test_split(trainCNN_data, cnn_label,
test_size = 0.2, random_state = 4)
X_cnn, X_val_cnn, y_cnn, y_val_cnn = train_test_split(X_train_cnn, y_train_cnn,
test_size = 0.2, random_state = 4 )<choose_model_class> | test_result = torch.argmax(pred_test[0],dim=1)
result = test_result.numpy() | Digit Recognizer |
3,070,649 | <train_model><EOS> | final = pd.Series(result,name='Label')
submission = pd.concat([pd.Series(range(1,28001),name='ImageId'),final],axis=1)
submission.to_csv('fastai-res34-0.992.csv',index=False ) | Digit Recognizer |
8,872,016 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<compute_test_metric> | !pip install emnist | Digit Recognizer |
8,872,016 | test_loss, test_acc = CNNmodel.evaluate(X_test_cnn, y_test_cnn, verbose=2)
print('test loss:',test_loss)
print('test acc:',test_acc )<prepare_x_and_y> | import matplotlib.pyplot as plt,seaborn as sns,pandas as pd,numpy as np
from keras.models import Sequential, load_model
from keras.layers.core import Dense, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D,MaxPool2D,Flatten,BatchNormalization
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau
from emnist import extract_training_samples
from emnist import extract_test_samples
from keras.optimizers import Adam | Digit Recognizer |
8,872,016 | embedding_matrix = np.zeros(( len(word_index)+ 1, embedding_dim))
for word, i in word_index.items() :
if word in word2vec_model:
embedding_matrix[i] = np.asarray(word2vec_model.wv[word] )<choose_model_class> | x_train, y_train = extract_training_samples('digits')
x_test, y_test = extract_test_samples('digits' ) | Digit Recognizer |
8,872,016 | embedding_layer = Embedding(len(word_index)+1,
embedding_dim,
weights = [embedding_matrix],
input_length = max_sequence_length,
trainable = False )<choose_model_class> | in_train_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
ex_y_train = in_train_data["label"]
ex_x_train = in_train_data.drop(labels = ["label"],axis = 1 ) | Digit Recognizer |
8,872,016 | model = Sequential()
model.add(embedding_layer)
model.add(Conv1D(filters=150, kernel_size=3, strides=1, padding='valid', activation = 'relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(Flatten())
model.add(Dense(embedding_dim, activation='relu'))
model.add(Dropout(0.8))
model.add(Dense(cnn_label.shape[1], activation='sigmoid'))
model.summary()<train_model> | X_train = x_train.reshape(240000, 28, 28,1)
X_test = x_test.reshape(40000, 28, 28,1)
ex_x_train = ex_x_train.values.reshape(42000,28,28,1)
X_train = np.vstack(( X_train, ex_x_train))
print(X_train.shape ) | Digit Recognizer |
8,872,016 | model.compile(optimizer='adam', loss=losses.binary_crossentropy, metrics=['accuracy'])
history = model.fit(X_cnn, y_cnn, epochs=10, validation_data=(X_val_cnn, y_val_cnn))<compute_test_metric> | X_train = X_train.astype('float32')
X_test = X_test.astype('float32' ) | Digit Recognizer |
8,872,016 | test_loss, test_acc = model.evaluate(X_test_cnn, y_test_cnn, verbose=2)
print('test loss:',test_loss)
print('test acc:',test_acc )<import_modules> | X_train /= 255
X_test /= 255 | Digit Recognizer |
8,872,016 | tf.__version__<import_modules> | y_train = np.concatenate([y_train,ex_y_train.values])
print(y_train.shape ) | Digit Recognizer |
8,872,016 | hub.__version__<load_from_url> | n_classes = 10
print("Shape before one-hot encoding: ", y_train.shape)
Y_train = np_utils.to_categorical(y_train, n_classes)
Y_test = np_utils.to_categorical(y_test, n_classes)
print("Shape after one-hot encoding: ", Y_train.shape ) | Digit Recognizer |
8,872,016 | !wget --quiet https://raw.githubusercontent.com/tensorflow/models/master/official/nlp/bert/tokenization.py<import_modules> | model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(5,5), padding='same', activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPool2D(pool_size = 2,strides=2))
model.add(Conv2D(filters=48, kernel_size=(5,5), padding='valid', activation='relu'))
model.add(MaxPool2D(pool_size = 2,strides=2))
model.add(Flatten())
model.add(Dense(120, activation='relu'))
model.add(Dense(84, activation='relu'))
model.add(Dense(10, activation='softmax'))
adam = Adam(lr=5e-4)
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer=adam ) | Digit Recognizer |
8,872,016 | import tensorflow as tf
from tensorflow.keras.callbacks import ModelCheckpoint
import tensorflow_hub as hub
import tokenization<categorify> | reduce_lr = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.2,
min_lr=1e-6 ) | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.