kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
3,811,526 | for col in('GarageType', 'GarageFinish', 'GarageQual', 'GarageCond'):
all_data[col] = all_data[col].fillna('None' )<data_type_conversions> | X_val_check[Ypred_val_check != Y_val_check.values].shape[0] / X_val_check.shape[0] | Digit Recognizer |
3,811,526 | for col in('GarageYrBlt', 'GarageCars'):
all_data[col] = all_data[col].fillna(0 )<data_type_conversions> | display_digits(dim =(2,3),
X = X_val_check[Ypred_val_check != Y_val_check.values],
Y_true = Y_val_check.values[Ypred_val_check != Y_val_check.values],
pred = Ypred_val_check[Ypred_val_check != Y_val_check.values] ) | Digit Recognizer |
4,285,477 | for col in('BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF','TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'):
all_data[col] = all_data[col].fillna(0 )<data_type_conversions> | train = pd.read_csv('.. /input/train.csv')
test = pd.read_csv('.. /input/test.csv' ) | Digit Recognizer |
4,285,477 | for col in('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'):
all_data[col] = all_data[col].fillna('None' )<data_type_conversions> | train = pd.read_csv('.. /input/train.csv')
test = pd.read_csv('.. /input/test.csv' ) | Digit Recognizer |
4,285,477 | all_data["MasVnrType"] = all_data["MasVnrType"].fillna("None")
all_data["MasVnrArea"] = all_data["MasVnrArea"].fillna(0 )<data_type_conversions> | def clean_inputs(train, test, img_shape =(-1,28,28,1), num_classes = 10):
t_X = train.drop("label", axis=1)
t_Y = train["label"]
t_X = t_X / 255
test_x = test.values / 255
t_X = np.reshape(t_X.values, img_shape)
test_x = np.reshape(test_x, img_shape)
t_Y = keras.utils.to_categorical(t_Y, num_classes = num_classes)
train_x, dev_x, train_y, dev_y = train_test_split(t_X, t_Y, test_size = 0.15, random_state = 0)
return train_x, train_y, dev_x, dev_y, test_x | Digit Recognizer |
4,285,477 | all_data['MSZoning'] = all_data['MSZoning'].fillna(all_data['MSZoning'].mode() [0] )<drop_column> | train_x, train_y, dev_x, dev_y, test_x = clean_inputs(train, test ) | Digit Recognizer |
4,285,477 | all_data = all_data.drop(['Utilities'], axis=1 )<data_type_conversions> | def model(inp_shape):
X = Input(inp_shape, name='input')
A = Conv2D(6,(7, 7), strides=(1, 1), padding='Same', activation='relu', name='C1' )(X)
A = MaxPooling2D(pool_size=2, padding='valid' )(A)
A = Conv2D(16,(5, 5), strides=(1, 1), padding='Same', activation='relu', name='C2' )(A)
A = MaxPooling2D(pool_size=2, padding='valid' )(A)
A = Flatten()(A)
A = BatchNormalization()(A)
A = Dense(120, activation='relu', kernel_regularizer=regularizers.l2(0.01), name='FC1' )(A)
A = Dense(84, activation='relu', kernel_regularizer=regularizers.l2(0.01), name='FC2' )(A)
A = Dense(10, activation='softmax', name='Final' )(A)
model = Model(inputs=X, outputs=A, name='LeNet')
return model | Digit Recognizer |
4,285,477 | all_data["Functional"] = all_data["Functional"].fillna("Typ" )<data_type_conversions> | datagen = ImageDataGenerator(
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1)
datagen.fit(train_x ) | Digit Recognizer |
4,285,477 | all_data['Electrical'] = all_data['Electrical'].fillna(all_data['Electrical'].mode() [0] )<data_type_conversions> | train_x_pad = np.pad(train_x,(( 0,0),(2,2),(2,2),(0,0)) , mode='constant', constant_values=0 ).astype(float)
dev_x_pad = np.pad(dev_x,(( 0,0),(2,2),(2,2),(0,0)) , mode='constant', constant_values=0 ).astype(float)
test_x_pad = np.pad(test_x,(( 0,0),(2,2),(2,2),(0,0)) , mode='constant', constant_values=0 ).astype(float)
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1,factor=0.5, min_lr=0.00001)
model = model(train_x_pad.shape[1:])
model.summary()
model.compile('adam', 'categorical_crossentropy', metrics=['accuracy'])
history = model.fit_generator(datagen.flow(train_x_pad, train_y, batch_size=32), validation_data=(dev_x_pad, dev_y), steps_per_epoch=len(train_x_pad)//32, epochs=25, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
4,285,477 | all_data['KitchenQual'] = all_data['KitchenQual'].fillna(all_data['KitchenQual'].mode() [0] )<categorify> | def model2(num_classes = 10):
model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(3,3), padding = 'same', activation ='relu', input_shape =(28,28,1)))
model.add(BatchNormalization())
model.add(Conv2D(filters = 32, kernel_size =(3,3), padding = 'same', activation ='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'same', activation ='relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'same', activation ='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation = "softmax"))
return model; | Digit Recognizer |
4,285,477 | all_data['Exterior1st'] = all_data['Exterior1st'].fillna(all_data['Exterior1st'].mode() [0])
all_data['Exterior2nd'] = all_data['Exterior2nd'].fillna(all_data['Exterior2nd'].mode() [0] )<data_type_conversions> | start = time.time()
model2 = model2(10)
learning_rate_reduction2 = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1,factor=0.5, min_lr=0.00001)
model2.summary()
model2.compile('adam', 'categorical_crossentropy', metrics=['accuracy'])
history2 = model2.fit_generator(datagen.flow(train_x, train_y, batch_size=32), validation_data=(dev_x, dev_y), steps_per_epoch=len(train_x)//32, epochs=25, callbacks=[learning_rate_reduction2])
timeRecord = time.time() - start
print("--- %s seconds ---" %(timeRecord)) | Digit Recognizer |
4,285,477 | all_data['SaleType'] = all_data['SaleType'].fillna(all_data['SaleType'].mode() [0] )<data_type_conversions> | def model3(num_classes = 10):
model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(3,3), padding = 'same', activation ='relu', input_shape =(28,28,1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'same', activation ='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'same', activation ='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dense(num_classes, activation = "softmax"))
return model; | Digit Recognizer |
4,285,477 | all_data['MSSubClass'] = all_data['MSSubClass'].fillna("None" )<sort_values> | start = time.time()
model3 = model3(10)
learning_rate_reduction3 = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1,factor=0.5, min_lr=0.00001)
model3.summary()
model3.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics=['accuracy'])
history3 = model3.fit_generator(datagen.flow(train_x, train_y, batch_size=64),
validation_data=(dev_x, dev_y), steps_per_epoch=len(train_x)//64, epochs=25,
callbacks=[learning_rate_reduction3])
timeRecord = time.time() - start
print("--- %s seconds ---" %(timeRecord)) | Digit Recognizer |
4,285,477 | all_data_na =(all_data.isnull().sum() / len(all_data)) * 100
all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index ).sort_values(ascending=False)
missing_data = pd.DataFrame({'Missing Ratio' :all_data_na})
missing_data.head()<data_type_conversions> | prediction = model2.predict(test_x)
prediction = np.argmax(prediction, axis=1)
prediction = pd.Series(prediction, name="Label")
submission = pd.concat([pd.Series(range(1,28001), name = "ImageId"), prediction],axis = 1)
submission.to_csv('mnist-submission.csv', index = False)
print(submission ) | Digit Recognizer |
4,315,566 | all_data['MSSubClass'] = all_data['MSSubClass'].apply(str)
all_data['OverallCond'] = all_data['OverallCond'].astype(str)
all_data['YrSold'] = all_data['YrSold'].astype(str)
all_data['MoSold'] = all_data['MoSold'].astype(str )<categorify> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" ) | Digit Recognizer |
4,315,566 | cols =('FireplaceQu', 'BsmtQual', 'BsmtCond', 'GarageQual', 'GarageCond',
'ExterQual', 'ExterCond','HeatingQC', 'PoolQC', 'KitchenQual', 'BsmtFinType1',
'BsmtFinType2', 'Functional', 'Fence', 'BsmtExposure', 'GarageFinish', 'LandSlope',
'LotShape', 'PavedDrive', 'Street', 'Alley', 'CentralAir', 'MSSubClass', 'OverallCond',
'YrSold', 'MoSold')
for c in cols:
lbl = LabelEncoder()
lbl.fit(list(all_data[c].values))
all_data[c] = lbl.transform(list(all_data[c].values))
print('Shape all_data: {}'.format(all_data.shape))<feature_engineering> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" ) | Digit Recognizer |
4,315,566 | all_data['TotalSF'] = all_data['TotalBsmtSF'] + all_data['1stFlrSF'] + all_data['2ndFlrSF']<feature_engineering> | Y_train = train["label"]
X_train = train.drop(labels = ["label"],axis = 1)
del train
g = sb.countplot(Y_train)
Y_train.value_counts()
print(X_train.shape)
print(test.shape ) | Digit Recognizer |
4,315,566 | y_train = np.log(y_train )<feature_engineering> | X_train = X_train / 255.0
test = test / 255.0
X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1)
Y_train = to_categorical(Y_train, num_classes = 10)
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 1)
| Digit Recognizer |
4,315,566 | skewness = skewness[abs(skewness)> 0.75]
print("There are {} skewed numerical features to Box Cox transform".format(skewness.shape[0]))
skewed_features = skewness.index
lam = 0.15
for feat in skewed_features:
all_data[feat] = boxcox1p(all_data[feat], lam)
<categorify> | model = Sequential()
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 128, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 128, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax")) | Digit Recognizer |
4,315,566 | all_data = pd.get_dummies(all_data)
print(all_data.shape )<split> | optimizer = Adam()
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
| Digit Recognizer |
4,315,566 | train = all_data[:ntrain]
test = all_data[ntrain:]<import_modules> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
4,315,566 | from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.kernel_ridge import KernelRidge
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone
from sklearn.model_selection import KFold, cross_val_score
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import xgboost as xgb
import lightgbm as lgb<compute_train_metric> | epochs = 30
batch_size = 86
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size)
| Digit Recognizer |
4,315,566 | <choose_model_class><EOS> | predictions = model.predict_classes(test, verbose=0)
submissions=pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) ,
"Label": predictions})
submissions.to_csv("vvcp2.csv", index=False, header=True ) | Digit Recognizer |
1,562,612 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class> | %matplotlib inline | Digit Recognizer |
1,562,612 | ENet = make_pipeline(RobustScaler() , ElasticNet(alpha=0.0005, l1_ratio=.9, random_state=3))<choose_model_class> | %time dfLabel = pd.read_csv('.. /input/digit-recognizer/train.csv' ) | Digit Recognizer |
1,562,612 | KRR = KernelRidge(alpha=0.6, kernel='polynomial', degree=2, coef0=2.5 )<choose_model_class> | %time dfPredict = pd.read_csv('.. /input/digit-recognizer/test.csv' ) | Digit Recognizer |
1,562,612 | GBoost = GradientBoostingRegressor(n_estimators=3000, learning_rate=0.05,
max_depth=4, max_features='sqrt',
min_samples_leaf=15, min_samples_split=10,
loss='huber', random_state =5 )<choose_model_class> | dfTmp = dfLabel.copy(deep=True)
tmpLabel = dfTmp['label']
label = to_categorical(tmpLabel, num_classes = 10)
del dfTmp['label']
dfTmp = dfTmp/255
labeledImage = dfTmp.values.reshape(-1,28,28,1)
assert labeledImage.shape ==(dfTmp.shape[0],28,28,1), "The tensor shape {} is not equal to expected tensor size {}".format(labeledImage.shape ,(dfTmp.shape[0],28,28,1))
assert len(label)== dfTmp.shape[0], "The size of the labels {} is not equal to the labeld image size {}".format(len(label),dfTmp.shape[0] ) | Digit Recognizer |
1,562,612 | model_xgb = xgb.XGBRegressor(colsample_bytree=0.4603, gamma=0.0468,
learning_rate=0.05, max_depth=3,
min_child_weight=1.7817, n_estimators=2200,
reg_alpha=0.4640, reg_lambda=0.8571,
subsample=0.5213, silent=1,
random_state =7, nthread = -1 )<choose_model_class> | random_state=42
X_train, X_valid, y_train, y_valid = train_test_split(labeledImage, label, test_size = 0.1, random_state = random_state, stratify = label ) | Digit Recognizer |
1,562,612 | model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=5,
learning_rate=0.05, n_estimators=720,
max_bin = 55, bagging_fraction = 0.8,
bagging_freq = 5, feature_fraction = 0.2319,
feature_fraction_seed=9, bagging_seed=9,
min_data_in_leaf =6, min_sum_hessian_in_leaf = 11 )<compute_test_metric> | model = models.Sequential()
model.add(layers.Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1)))
model.add(layers.Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu'))
model.add(layers.MaxPool2D(pool_size=(2,2)))
model.add(layers.Dropout(0.25))
model.add(layers.Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(layers.Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(layers.MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(layers.Dropout(0.25))
model.add(layers.Flatten())
model.add(layers.Dense(256, activation = "relu"))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(10, activation = "softmax")) | Digit Recognizer |
1,562,612 | score = rmsle_cv(lasso)
print("
Lasso score: {:.4f}({:.4f})
".format(score.mean() , score.std()))<compute_test_metric> | optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0 ) | Digit Recognizer |
1,562,612 | score = rmsle_cv(ENet)
print("ElasticNet score: {:.4f}({:.4f})
".format(score.mean() , score.std()))<compute_test_metric> | learning_rate_reduction = keras.callbacks.ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001 ) | Digit Recognizer |
1,562,612 | score = rmsle_cv(KRR)
print("Kernel Ridge score: {:.4f}({:.4f})
".format(score.mean() , score.std()))<compute_test_metric> | epochs = 30
batch_size = 512 | Digit Recognizer |
1,562,612 | score = rmsle_cv(GBoost)
print("Gradient Boosting score: {:.4f}({:.4f})
".format(score.mean() , score.std()))<compute_test_metric> | datagen = keras.preprocessing.image.ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
1,562,612 | score = rmsle_cv(model_xgb)
print("Xgboost score: {:.4f}({:.4f})
".format(score.mean() , score.std()))<compute_test_metric> | history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_valid,y_valid),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
1,562,612 | score = rmsle_cv(model_lgb)
print("LGBM score: {:.4f}({:.4f})
".format(score.mean() , score.std()))<predict_on_test> | test_loss, test_acc = model.evaluate(X_valid, y_valid)
print("The test accuraccy is {}".format(test_acc)) | Digit Recognizer |
1,562,612 | class AveragingModels(BaseEstimator, RegressorMixin, TransformerMixin):
def __init__(self, models):
self.models = models
def fit(self, X, y):
self.models_ = [clone(x)for x in self.models]
for model in self.models_:
model.fit(X, y)
return self
def predict(self, X):
predictions = np.column_stack([
model.predict(X)for model in self.models_
])
return np.mean(predictions, axis=1 )<compute_train_metric> | results = model.predict(testImage)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
1,562,612 | averaged_models = AveragingModels(models =(ENet, GBoost, lasso, model_xgb, model_lgb))
score = rmsle_cv(averaged_models)
print("Averaged base models score: {:.4f}({:.4f})
".format(score.mean() , score.std()))<compute_test_metric> | submission_result = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission_result.to_csv("result.csv",index=False ) | Digit Recognizer |
6,066,161 | def rmsle(y, y_pred):
return np.sqrt(mean_squared_error(y, y_pred))<predict_on_test> | import time
import warnings
import numpy as np
import pandas as pd | Digit Recognizer |
6,066,161 | averaged_models.fit(train.values, y_train)
av_train_pred = averaged_models.predict(train.values)
print(rmsle(y_train, av_train_pred))<predict_on_test> | sns.set_style("whitegrid")
warnings.filterwarnings('ignore' ) | Digit Recognizer |
6,066,161 | av_test_pred = np.expm1(averaged_models.predict(test.values))<load_from_csv> | train=pd.read_csv(".. /input/digit-recognizer/train.csv")
submit=pd.read_csv(".. /input/digit-recognizer/test.csv")
print(typeInfo(train))
print(typeInfo(submit))
| Digit Recognizer |
6,066,161 | sample_submission = pd.read_csv("/kaggle/input/house-prices-advanced-regression-techniques/sample_submission.csv")
sample_submission<save_to_csv> | x_train = train.drop('label', axis=1)
y_train = train['label']
| Digit Recognizer |
6,066,161 | sub = pd.DataFrame()
sub['Id'] = test_ID
sub['SalePrice'] = av_test_pred
sub.to_csv('submission.csv',index=False )<load_from_csv> | x = x_train
y = y_train
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.15, random_state=0 ) | Digit Recognizer |
6,066,161 | X_train = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/train.csv', index_col='Id')
X_test = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/test.csv', index_col='Id')
X_train.dropna(axis=0, subset=['SalePrice'], inplace=True)
y_train = X_train.SalePrice
X_train.drop(['SalePrice'], axis=1, inplace=True)
categorical_cols = [cname for cname in X_train.columns if
X_train[cname].nunique() < 20 and
X_train[cname].dtype == "object"]
numerical_cols = [cname for cname in X_train.columns if
X_train[cname].dtype in ['int64', 'float64']]
my_cols = categorical_cols + numerical_cols
X_train = X_train[my_cols].copy()
X_test= X_test[my_cols].copy()<categorify> | x_train = x_train.values.reshape(-1,28,28,1)
x_test = x_test.values.reshape(-1,28,28,1)
submit = submit.values.reshape(-1,28,28,1 ) | Digit Recognizer |
6,066,161 | numerical_transformer = SimpleImputer(strategy='constant')
categorical_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='most_frequent')) ,
('onehot', OneHotEncoder(handle_unknown='ignore'))
])
preprocessor = ColumnTransformer(
transformers=[
('num', numerical_transformer, numerical_cols),
('cat', categorical_transformer, categorical_cols)
] )<compute_train_metric> | model = Sequential()
model.add(Conv2D(64,(3, 3), input_shape=(28,28,1),padding="SAME"))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64,(3, 3),padding="SAME"))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(128,(3, 3),padding="SAME"))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(128,(3, 3),padding="SAME"))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(192,(3, 3),padding="SAME"))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(192,(5, 5),strides=2,padding="SAME"))
model.add(Activation('relu'))
model.add(Flatten() ) | Digit Recognizer |
6,066,161 | def get_score(n_estimators):
my_pipeline = Pipeline(steps=[
('preprocessor', preprocessor),
('model', XGBRegressor(n_estimators=n_estimators, objective ='reg:linear', colsample_bytree = 0.3, learning_rate = 0.1,
max_depth = 5, alpha = 10)) ])
scores = -1 * cross_val_score(my_pipeline, X_train, y_train,
cv=3,
scoring='neg_mean_absolute_error')
return scores.mean()
results = {}
n_estimators=[50,100,250,300,350,400]
for i in n_estimators:
results[i]=get_score(i)
%matplotlib inline
plt.plot(list(results.keys()), list(results.values()))
plt.show()<save_to_csv> | model.add(Dense(256))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.3))
model.add(Dense(10))
model.add(Activation('softmax')) | Digit Recognizer |
6,066,161 | clf = Pipeline(steps=[
('preprocessor', preprocessor),
('model', XGBRegressor(objective ='reg:linear', colsample_bytree = 0.3, learning_rate = 0.1,
max_depth = 5, alpha = 10, n_estimators = 250)) ])
clf.fit(X_train, y_train)
preds_test = clf.predict(X_test)
output = pd.DataFrame({'Id': X_test.index,
'SalePrice': preds_test})
output.to_csv('submission.csv', index=False )<set_options> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3, verbose=1,factor=0.5,min_lr=0.00001)
best_model = ModelCheckpoint('mnist_weights.h5', monitor='val_acc',
verbose=1, save_best_only=True, mode='max')
early_stopping = EarlyStopping(monitor='val_loss', min_delta=1e-10,
patience=10,restore_best_weights=True ) | Digit Recognizer |
6,066,161 | warnings.filterwarnings('ignore' )<load_from_csv> | model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'] ) | Digit Recognizer |
6,066,161 | df_train = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/train.csv',index_col='Id')
df_test = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/test.csv', index_col ='Id' )<load_from_csv> | aug = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
rotation_range=10,
zoom_range = 0.,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
aug.fit(x_train ) | Digit Recognizer |
6,066,161 | def load_data() :
data_dir = Path('.. /input/house-prices-advanced-regression-techniques/')
df_train = pd.read_csv(data_dir / 'train.csv', index_col = 'Id')
df_test = pd.read_csv(data_dir / 'test.csv', index_col = 'Id')
df = pd.concat([df_train,df_test])
df = clean(df)
df = encode(df)
df = impute(df)
df_train = df.loc[df_train.index,:]
df_test = df.loc[df_test.index, :]
return df_train, df_test
<feature_engineering> | h = model.fit_generator(
aug.flow(x_train, y_train, batch_size=64),
validation_data=(x_test, y_test),
steps_per_epoch=len(x_train)// 64,
epochs=20, verbose=1,
callbacks=[learning_rate_reduction,best_model,early_stopping]
) | Digit Recognizer |
6,066,161 | def clean(df):
df['Exterior2nd'] = df['Exterior2nd'].replace({'Brk Cmn': 'BrkComm'})
df['GarageYrBlt'] = df['GarageYrBlt'].where(df.GarageYrBlt <=2010, df.YearBuilt)
df.rename(columns = {'1stFlrSF': 'FirstFlrSF', '2ndFlrSF': 'SecondFlrSF', '3SsnPorch':'Threeseasonporch'}, inplace=True)
return df<define_variables> | y_pred = model.predict(x_test)
y_pred = np.argmax(y_pred,axis = 1)
accuracy_score(y_test, y_pred ) | Digit Recognizer |
6,066,161 | features_nom = ['MSSubClass', 'MSZoning', 'Street', 'Alley','LandContour', 'LotConfig','Neighborhood','Condition1','Condition2','BldgType','HouseStyle','RoofStyle','RoofMatl','Exterior1st','Exterior2nd','MasVnrType','Foundation','Heating','CentralAir','GarageType','MiscFeature','SaleType','SaleCondition']
five_levels = ['Po', 'Fa', 'TA','Gd','Ex']
ten_levels =list(range(10))
ordered_levels = {
'OverallQual':ten_levels,
'OverallCond':ten_levels,
'ExterQual':five_levels,
'ExterCond':five_levels,
'BsmtQual':five_levels,
'BsmtCond':five_levels,
'HeatingQC':five_levels,
'KitchenQual':five_levels,
'FireplaceQu':five_levels,
'GarageQual': five_levels,
'GarageCond':five_levels,
'PoolQC':five_levels,
'LotShape':['Reg', 'IR1','IR2','IR3'],
'LandSlope':['Sev', 'Mod','Gtl'],
'BsmtExposure': ['No','Mn','Av','Gd'],
'BsmtFinType1':['Unf','LwQ','Rec','BLQ','ALQ','GLQ'],
'BsmtFinType2':['Unf','LwQ','Rec','BLQ','ALQ','GLQ'],
'Functional':['Sal','Sev','Maj1','Maj2','Mod','Min2','Min1','Typ'],
'GarageFinish': ['Unf','RFn','Fin'],
'PavedDrive':['N','P','Y'],
'Utilities': ['NoSeWa','NoSewr','AllPub'],
'CentralAir':['N','Y'],
'Electrical':['Mix','FuseP','FuseF','FuseA','SBrkr'],
'Fence':['MnWw','GdWo','MnPrv','GdPrv'],
}
ordered_levels = {key:['None']+value for key, value in ordered_levels.items() }
def encode(df):
for name in features_nom:
df[name] = df[name].astype('category')
if 'None' not in df[name].cat.categories:
df[name].cat.add_categories('None', inplace=True)
for name, levels in ordered_levels.items() :
df[name] = df[name].astype(CategoricalDtype(levels, ordered=True))
return df<categorify> | result = model.predict(submit)
results = np.argmax(result,axis = 1)
results | Digit Recognizer |
6,066,161 | def impute(df):
for name in df.select_dtypes('number'):
df[name] = df[name].fillna(0)
for name in df.select_dtypes('category'):
df[name] = df[name].fillna('None')
return df<compute_train_metric> | Label = pd.Series(results, name = 'Label')
ImageId = pd.Series(range(1,28001), name = 'ImageId')
submission = pd.concat([ImageId,Label], axis = 1)
submission.to_csv('submission.csv', index = False ) | Digit Recognizer |
7,960,918 | def score_dataset(X,y,model = XGBRegressor()):
for colname in X.select_dtypes(['category']):
X[colname] = X[colname].cat.codes
log_y = np.log(y)
score = cross_val_score(model, X, log_y, cv=5, scoring = 'neg_mean_squared_error')
score = -1 * score.mean()
score = np.sqrt(score)
return score
<create_dataframe> | from keras.layers import *
from keras.models import Model
| Digit Recognizer |
7,960,918 | X = df_train.copy()
y = X.pop('SalePrice')
baseline_score = score_dataset(X,y)
print(baseline_score )<statistical_test> | def normalize(x):
return x /(K.sqrt(K.mean(K.square(x)))+ K.epsilon())
def deprocess_image(x):
x -= x.mean()
x /=(x.std() + K.epsilon())
x *= 0.25
x += 0.5
x = np.clip(x, 0, 1)
x *= 255
if K.image_data_format() == 'channels_first':
x = x.transpose(( 1, 2, 0))
x = np.clip(x, 0, 255 ).astype('uint8')
return x
def process_image(x, former):
if K.image_data_format() == 'channels_first':
x = x.transpose(( 2, 0, 1))
return(x / 255 - 0.5)* 4 * former.std() + former.mean()
def visualize_layer(model,
layer_name,
step=1.,
epochs=15,
upscaling_steps=9,
upscaling_factor=1.2,
output_dim=(412, 412),
filter_range=(0, None)) :
def _generate_filter_image(input_img,
layer_output,
filter_index):
s_time = time.time()
if K.image_data_format() == 'channels_first':
loss = K.mean(layer_output[:, filter_index, :, :])
else:
loss = K.mean(layer_output[:, :, :, filter_index])
grads = K.gradients(loss, input_img)[0]
grads = normalize(grads)
iterate = K.function([input_img], [loss, grads])
intermediate_dim = tuple(
int(x /(upscaling_factor ** upscaling_steps)) for x in output_dim)
if K.image_data_format() == 'channels_first':
input_img_data = np.random.random(
(1, 3, intermediate_dim[0], intermediate_dim[1]))
else:
input_img_data = np.random.random(
(1, intermediate_dim[0], intermediate_dim[1], 3))
input_img_data =(input_img_data - 0.5)* 20 + 128
for up in reversed(range(upscaling_steps)) :
for _ in range(epochs):
loss_value, grads_value = iterate([input_img_data])
input_img_data += grads_value * step
if loss_value <= K.epsilon() :
return None
intermediate_dim = tuple(
int(x /(upscaling_factor ** up)) for x in output_dim)
img = deprocess_image(input_img_data[0])
img = np.array(pil_image.fromarray(img ).resize(intermediate_dim,
pil_image.BICUBIC))
input_img_data = np.expand_dims(
process_image(img, input_img_data[0]), 0)
img = deprocess_image(input_img_data[0])
e_time = time.time()
print('Costs of filter {:3}: {:5.0f}({:4.2f}s)'.format(filter_index,
loss_value,
e_time - s_time))
return img, loss_value
def _draw_filters(filters, n=None):
if n is None:
n = int(np.floor(np.sqrt(len(filters))))
filters.sort(key=lambda x: x[1], reverse=True)
filters = filters[:n * n]
MARGIN = 5
width = n * output_dim[0] +(n - 1)* MARGIN
height = n * output_dim[1] +(n - 1)* MARGIN
stitched_filters = np.zeros(( width, height, 3), dtype='uint8')
for i in range(n):
for j in range(n):
img, _ = filters[i * n + j]
width_margin =(output_dim[0] + MARGIN)* i
height_margin =(output_dim[1] + MARGIN)* j
stitched_filters[
width_margin: width_margin + output_dim[0],
height_margin: height_margin + output_dim[1], :] = img
save_img('vgg_{0:}_{1:}x{1:}.png'.format(layer_name, n), stitched_filters)
assert len(model.inputs)== 1
input_img = model.inputs[0]
layer_dict = dict([(layer.name, layer)for layer in model.layers[1:]])
output_layer = layer_dict[layer_name]
assert isinstance(output_layer, layers.Conv2D)
filter_lower = filter_range[0]
filter_upper =(filter_range[1]
if filter_range[1] is not None
else len(output_layer.get_weights() [1]))
assert(filter_lower >= 0
and filter_upper <= len(output_layer.get_weights() [1])
and filter_upper > filter_lower)
print('Compute filters {:} to {:}'.format(filter_lower, filter_upper))
processed_filters = []
for f in range(filter_lower, filter_upper):
img_loss = _generate_filter_image(input_img, output_layer.output, f)
if img_loss is not None:
processed_filters.append(img_loss)
print('{} filter processed.'.format(len(processed_filters)))
_draw_filters(processed_filters)
| Digit Recognizer |
7,960,918 | def make_mi_scores(X, y):
X = X.copy()
for colname in X.select_dtypes(['object','category']):
X[colname], _ = X[colname].factorize()
discrete_features = [pd.api.types.is_integer_dtype(t)for t in X.dtypes]
mi_scores = mutual_info_regression(X, y, discrete_features = discrete_features, random_state=0)
mi_scores = pd.Series(mi_scores, name = 'MI Scores', index = X.columns)
mi_scores = mi_scores.sort_values(ascending = False)
return mi_scores
<prepare_x_and_y> | train_data=pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
test_data=pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ) | Digit Recognizer |
7,960,918 | X = df_train.copy()
y = X.pop('SalePrice')
mi_scores = make_mi_scores(X,y)
mi_scores<drop_column> | y=train_data["label"]
X=train_data.copy()
del X["label"] | Digit Recognizer |
7,960,918 | def drop_uninformative(df, mi_scores):
return df.loc[:, mi_scores>0.0]
<create_dataframe> | SIZE=32 | Digit Recognizer |
7,960,918 | X = df_train.copy()
y = X.pop('SalePrice')
X = drop_uninformative(X, mi_scores)
score_dataset(X,y )<categorify> | def reshape32(img):
img=img.reshape(( 28,28))
img=np.pad(img,(( SIZE-28)//2,(SIZE-28)//2))
img=img.reshape(( SIZE,SIZE,1))
return img | Digit Recognizer |
7,960,918 | def label_encode(df):
X = df.copy()
for colname in X.select_dtypes(['category']):
X[colname] = X[colname].cat.codes
return X
<feature_engineering> | new_X=[]
for i,img in enumerate(X.values):
new_X.append(reshape32(img))
new_X=np.array(new_X)
new_X[new_X<50]=0
| Digit Recognizer |
7,960,918 | def mathematical_transforms(df):
X = pd.DataFrame()
X['LivLotRatio'] = df.GrLivArea / df.LotArea
X['Spaciousness'] =(df.FirstFlrSF + df.SecondFlrSF)/ df.TotRmsAbvGrd
X['Feet'] = np.sqrt(df.GrLivArea)
X['TotalSF'] = df.TotalBsmtSF + df.FirstFlrSF + df.SecondFlrSF
X['TotalBathrooms'] = df.FullBath + 0.5* df.HalfBath + df.BsmtFullBath + 0.5 * df.BsmtHalfBath
X['TotalPorchSF']= df.OpenPorchSF + df.Threeseasonporch + df.EnclosedPorch + df.ScreenPorch + df.WoodDeckSF
return X
def interactions(df):
X = pd.get_dummies(df.BldgType, prefix = 'Bldg')
X = X.mul(df.GrLivArea, axis = 0)
return X
def counts(df):
X = pd.DataFrame()
X['PorchTypes'] = df[[
'WoodDeckSF',
'OpenPorchSF',
'EnclosedPorch',
'Threeseasonporch',
'ScreenPorch',
]].gt(0.0 ).sum(axis = 1)
return X
def group_transforms(df):
X = pd.DataFrame()
X['MedNhbdArea'] = df.groupby('Neighborhood')['GrLivArea'].transform('median')
return X
def break_down(df):
X = pd.DataFrame()
X['MSClass'] = df.MSSubClass.str.split('_', n=1, expand = True)[0]
return X
<create_dataframe> | train_X,val_X,train_y,val_y = train_test_split(new_X/255,y,test_size=0.1 ) | Digit Recognizer |
7,960,918 | def apply_pca(X, standarize = True):
if standarize:
X =(X - X.mean(axis=0)) / X.std(axis=0)
pca = PCA()
X_pca = pca.fit_transform(X)
component_names = [f'PC{i+1}' for i in range(X_pca.shape[1])]
X_pca = pd.DataFrame(X_pca, columns = component_names)
loadings = pd.DataFrame(pca.components_.T, columns = component_names, index = X.columns)
return pca, X_pca, loadings
def pca_inspired(df):
X = pd.DataFrame()
X['Feature1'] = df.GrLivArea + df.TotalBsmtSF
X['Feature2'] = df.YearRemodAdd * df.TotalBsmtSF
return X
def pca_components(df, features):
X = df.loc[:, features]
_, X_pca, _ = apply_pca(X)
return X_pca
pca_features = ['GarageArea', 'YearRemodAdd','TotalBsmtSF','GrLivArea']
<create_dataframe> | inp=Input(shape=(32,32,1))
model = Conv2D(filters=32, kernel_size=(2, 2), padding='SAME', activation='relu',name="conv32" )(inp)
model = Conv2D(filters=32, kernel_size=(2, 2), padding='SAME', activation='relu' )(model)
model = Conv2D(filters=32, kernel_size=(2, 2), padding='SAME', activation='relu' )(model)
model = BatchNormalization(momentum=0.15 )(model)
model = MaxPool2D(pool_size=(2, 2))(model)
model = Conv2D(filters=32, kernel_size=(3, 3), padding='SAME', activation='relu' )(model)
model = Dropout(rate=0.3 )(model)
model = Conv2D(filters=64, kernel_size=(5, 5), padding='SAME', activation='relu',name="conv64" )(model)
model = Conv2D(filters=64, kernel_size=(5, 5), padding='SAME', activation='relu' )(model)
model = Conv2D(filters=64, kernel_size=(5, 5), padding='SAME', activation='relu' )(model)
model = BatchNormalization(momentum=0.15 )(model)
model = MaxPool2D(pool_size=(2, 2))(model)
model = Conv2D(filters=64, kernel_size=(5, 5), padding='SAME', activation='relu' )(model)
model = BatchNormalization(momentum=0.15 )(model)
model = Dropout(rate=0.2 )(model)
model = Conv2D(filters=128, kernel_size=(7, 7), padding='SAME', activation='relu',name="conv128" )(model)
model = Conv2D(filters=128, kernel_size=(7, 7), padding='SAME', activation='relu' )(model)
model = Conv2D(filters=128, kernel_size=(7, 7), padding='SAME', activation='relu' )(model)
model = BatchNormalization(momentum=0.15 )(model)
model = MaxPool2D(pool_size=(2, 2))(model)
model = Conv2D(filters=128, kernel_size=(7, 7), padding='SAME', activation='relu' )(model)
model = BatchNormalization(momentum=0.15 )(model)
model = Dropout(rate=0.2 )(model)
model = Conv2D(filters=256, kernel_size=(15, 15), padding='SAME', activation='relu',name="conv256" )(model)
model = Conv2D(filters=256, kernel_size=(15, 15), padding='SAME', activation='relu' )(model)
model = Conv2D(filters=256, kernel_size=(15, 15), padding='SAME', activation='relu' )(model)
model = BatchNormalization(momentum=0.15 )(model)
model = MaxPool2D(pool_size=(2, 2))(model)
model = Dropout(rate=0.2 )(model)
my_x=Flatten()(model)
my_x=Dense(256,activation='relu',kernel_initializer='he_uniform',bias_initializer='zeros' )(my_x)
my_x=Dropout(0.2 )(my_x)
my_x=Dense(128,activation='relu',kernel_initializer='he_uniform',bias_initializer='zeros' )(my_x)
my_x=Dropout(0.2 )(my_x)
my_x=Dense(64,activation='relu',name='my' )(my_x)
my_x=Dropout(0.2 )(my_x)
my_x=Dense(32,activation='relu',name='my2' )(my_x)
my_x=Dropout(0.2 )(my_x)
preds=Dense(10,activation='softmax',kernel_initializer='he_uniform',bias_initializer='zeros',name='output' )(my_x)
my_model=Model(inputs=inp,outputs=preds)
| Digit Recognizer |
7,960,918 | def indicate_outliers(df):
X_new = pd.DataFrame()
X_new['Outlier'] =(df.Neighborhood == 'Edwards')&(df.SaleCondition == 'Partial')
return X_new
<categorify> | my_model.compile(optimizer=Adadelta() ,loss='categorical_crossentropy',metrics=['accuracy','mse'] ) | Digit Recognizer |
7,960,918 | class CrossFoldEncoder:
def __init__(self,encoder, **kwargs):
self.encoder_ = encoder
self.kwargs_ = kwargs
self.cv_ = KFold(n_splits = 5)
def fit_transform(self,X,y,cols):
self.fitted_encoders_ = []
self.cols_ = cols
X_encoded = []
for idx_encode, idx_train in self.cv_.split(X):
fitted_encoder = self.encoder_(cols = cols, **self.kwargs_)
fitted_encoder.fit(X.iloc[idx_encode, :], y.iloc[idx_encode])
X_encoded.append(fitted_encoder.transform(X.iloc[idx_train, :])[cols])
self.fitted_encoders_.append(fitted_encoder)
X_encoded = pd.concat(X_encoded)
X_encoded.columns = [name + '_encoded' for name in X_encoded.columns]
return X_encoded
def transform(self,X):
X_encoded_list = []
for fitted_encoder in self.fitted_encoders_:
X_encoded = fitted_encoder.transform(X)
X_encoded_list.append(X_encoded[self.cols_])
X_encoded = reduce(lambda x,y : x.add(y,fill_value=0), X_encoded_list)/ len(X_encoded_list)
X_encoded.columns = [name + '_encoded' for name in X_encoded.columns]
return X_encoded<merge> | rlrp = ReduceLROnPlateau(monitor='loss', factor=0.1, patience=2, min_delta=1E-30,verbose=1)
history=my_model.fit(x=train_X,y=pd.get_dummies(train_y),validation_data=(val_X,pd.get_dummies(val_y)) ,epochs=100, batch_size=1024,callbacks=[rlrp])
| Digit Recognizer |
7,960,918 | def create_features(df, df_test = None):
X = df.copy()
y = X.pop('SalePrice')
mi_scores = make_mi_scores(X,y)
if df_test is not None:
X_test = df_test.copy()
X_test.pop('SalePrice')
X = pd.concat([X, X_test])
X = drop_uninformative(X, mi_scores)
X = X.join(mathematical_transforms(X))
X = X.join(interactions(X))
X = X.join(counts(X))
X = X.join(break_down(X))
X = X.join(group_transforms(X))
X = X.join(cluster_labels(X, cluster_features, n_clusters = 20))
X = X.join(pca_inspired(X))
X = label_encode(X)
if df_test is not None:
X_test = X.loc[df_test.index, :]
X.drop(df_test.index, inplace=True)
encoder = CrossFoldEncoder(MEstimateEncoder, m=1)
X = X.join(encoder.fit_transform(X, y, cols= ['MSSubClass']))
if df_test is not None:
X_test = X_test.join(encoder.transform(X_test))
if df_test is not None:
return X, X_test
else:
return X
df_train, df_test = load_data()
X_train = create_features(df_train)
y_train = df_train.loc[:, 'SalePrice']
score_dataset(X_train, y_train )<prepare_x_and_y> | for layer in my_model.layers:
print(layer.name,)
if 'conv' not in layer.name:
continue
filters, biases = layer.get_weights()
filters, biases = layer.get_weights()
f_min, f_max = filters.min() , filters.max()
filters =(filters - f_min)/(f_max - f_min)
n_filters, ix = 6, 1
for i in range(n_filters):
f = filters[:, :, :, i]
for j in range(1):
ax = plt.subplot(n_filters, 3, ix)
ax.set_xticks([])
ax.set_yticks([])
plt.imshow(f[:, :, j], cmap='gray')
ix += 1
plt.show() | Digit Recognizer |
7,960,918 | X_train = create_features(df_train)
y_train = df_train.loc[:, 'SalePrice']
xgb_params = dict(max_depth = 6,
learning_rate = 0.01,
n_estimators = 1000,
min_child_weight = 1,
colsample_bytree = 0.7,
subsample = 0.7,
reg_alpha = 0.5,
reg_lambda = 1,
num_parallel_tree = 1)
xgb = XGBRegressor(**xgb_params)
score_dataset(X_train, y_train, xgb )<find_best_params> | for i in range(len(val_X)) :
if np.argmax(my_model.predict(val_X[i].reshape(1,32,32,1)) ,axis=1)!=val_y.values[i]:
(plt.imshow(val_X[i].reshape(32,32),))
plt.show()
print("Label : ",val_y.values[i])
print("Prediction : ",np.argmax(my_model.predict(val_X[i].reshape(1,32,32,1)) ,axis=1))
| Digit Recognizer |
7,960,918 | def objective(trial):
xgb_params = dict(
max_depth = trial.suggest_int('max_depth',2,10),
learning_rate = trial.suggest_float('learning_rate',1e-4, 1e-1, log=True),
n_estimators = trial.suggest_int('n_estimators',1000,8000),
min_child_weight = trial.suggest_int('min_child_weight', 1,10),
colsample_bytree = trial.suggest_float('colsample_bytree',0.2,1),
subsample = trial.suggest_float('subsample',0.2,1),
reg_alpha = trial.suggest_float('reg_alpha',1e-4, 1e2, log=True),
reg_lambda = trial.suggest_float('reg_lambda', 1e-4, 1e2, log=True))
xgb = XGBRegressor(**xgb_params)
return score_dataset(X_train, y_train, xgb)
study = optuna.create_study(direction = 'minimize')
study.optimize(objective, n_trials = 20)
xgb_params = study.best_params
<save_to_csv> | test_X=[]
for i,img in enumerate(test_data.values):
z=reshape32(img)
test_X.append(z)
test_X=np.array(test_X)
test_X[test_X<50]=0
test_X=test_X/255 | Digit Recognizer |
7,960,918 | <load_from_csv><EOS> | sol=np.argmax(my_model.predict(( test_X)) ,axis=1)
df=pd.DataFrame(sol)
df.index+=1
df.to_csv("/kaggle/working/sol_final.csv",index=True,header=["Label"],index_label=["ImageId"] ) | Digit Recognizer |
6,805,765 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering> | %matplotlib inline
Dense,
Flatten,
Dropout,
Conv2D,
MaxPooling2D,
Activation,
BatchNormalization
)
| Digit Recognizer |
6,805,765 | train['SalePrice'] = np.log1p(train['SalePrice'] )<sort_values> | config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config ) | Digit Recognizer |
6,805,765 | corr["SalePrice"].sort_values(ascending = False )<drop_column> | sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv")
train = pd.read_csv(".. /input/digit-recognizer/train.csv" ) | Digit Recognizer |
6,805,765 | data = pd.concat([train, test], axis = 0, sort = False)
data.drop(['Id', 'SalePrice'], axis = 1)
data<sort_values> | X_train = train.loc[:, train.columns!='label'].values.astype('uint8')
y_train = train['label'].values
X_train = X_train.reshape(( X_train.shape[0],28,28)) | Digit Recognizer |
6,805,765 | missing = data.isnull().sum().sort_values(ascending = False)
missing<concatenate> | X_test = test.loc[:, test.columns!='label'].values.astype('uint8')
X_test = X_test.reshape(( X_test.shape[0],28,28)) | Digit Recognizer |
6,805,765 | missingg = missing*100/len(data)
missing_data = pd.concat([missing, missingg], axis=1, keys=['missing', 'missing_%'])
missing_data<drop_column> | X_train = X_train[:,:,:,None]
X_test = X_test[:,:,:,None] | Digit Recognizer |
6,805,765 | data.drop(( missing_data[missing_data['missing'] > 5] ).index, axis = 1, inplace = True )<categorify> | batch_size = 32
num_samples = X_train.shape[0]
num_classes = np.unique(y_train ).shape[0]
num_epochs = 50
img_rows, img_cols = X_train[0,:,:,0].shape
img_channels = 1
classes = np.unique(y_train ) | Digit Recognizer |
6,805,765 | numeric = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'GarageArea', 'GarageCars']
for feature in numeric: data[feature] = data[feature].fillna(0)
categorical = ['Exterior1st', 'Exterior2nd', 'SaleType', 'MSZoning', 'Electrical', 'KitchenQual']
for feature in categorical: data[feature] = data[feature].fillna(data[feature].mode() [0] )<data_type_conversions> | y_train = np_utils.to_categorical(y_train, num_classes)
| Digit Recognizer |
6,805,765 | data['Functional'] = data['Functional'].fillna('Typ' )<drop_column> | X_train_norm = X_train.astype('float32')
X_test_norm = X_test.astype('float32')
X_train_norm /= 255
X_test_norm /= 255 | Digit Recognizer |
6,805,765 | data.drop(['Utilities'], axis = 1, inplace = True )<sort_values> | model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=(28, 28, 1)))
model.add(Conv2D(64,(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'] ) | Digit Recognizer |
6,805,765 | numeric_feats = data.dtypes[data.dtypes != 'object'].index
skewed_feats = data[numeric_feats].apply(lambda x: x.skew() ).sort_values(ascending = False)
high_skew = skewed_feats[abs(skewed_feats)> 0.5]
high_skew<feature_engineering> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss',
patience=5,
verbose=1,
factor=0.2)
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10 ) | Digit Recognizer |
6,805,765 | for feature in high_skew.index: data[feature] = np.log1p(data[feature] )<categorify> | history = model.fit(
X_train_norm,
y_train,
batch_size=batch_size,
epochs=num_epochs,
validation_split=0.1,
shuffle=True,
callbacks=[learning_rate_reduction, es]
) | Digit Recognizer |
6,805,765 | data = pd.get_dummies(data)
data<prepare_x_and_y> | ! mkdir newer | Digit Recognizer |
6,805,765 | y_train = train["SalePrice"]
x_train = data[:len(y_train)]
x_test = data[len(y_train):]<compute_train_metric> | model.save('newer/simple.h5' ) | Digit Recognizer |
6,805,765 | scorer = make_scorer(mean_squared_error, greater_is_better = False)
def rmse_CV_train(model):
kf = KFold(5, shuffle = True, random_state = 42 ).get_n_splits(x_train.values)
rmse = np.sqrt(-cross_val_score(model, x_train, y_train, scoring = "neg_mean_squared_error", cv = kf))
return(rmse)
def rmse_CV_test(model):
kf = KFold(5, shuffle = True, random_state = 42 ).get_n_splits(train.values)
rmse = np.sqrt(-cross_val_score(model, x_test, y_test,scoring = "neg_mean_squared_error", cv = kf))
return(rmse )<train_model> | model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=(28, 28, 1)))
model.add(BatchNormalization())
model.add(Conv2D(64,(3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'] ) | Digit Recognizer |
6,805,765 | model = XGB.XGBRegressor(colsample_bytree = 0.4603, gamma = 0.0468, learning_rate = 0.05, max_depth = 3, min_child_weight = 1.7817, n_estimators = 2200, reg_alpha = 0.4640, reg_lambda = 0.8571, subsample = 0.5213, random_state = 7, nthread = -1)
model.fit(x_train, y_train )<predict_on_test> | history1 = model.fit(
X_train_norm,
y_train,
batch_size=batch_size,
epochs=num_epochs,
validation_split=0.1,
shuffle=True,
callbacks=[learning_rate_reduction, es]
) | Digit Recognizer |
6,805,765 | prediction = np.floor(np.expm1(model.predict(x_test)) )<create_dataframe> | model.save('newer/simple_batch.h5' ) | Digit Recognizer |
6,805,765 | submission = pd.DataFrame({'Id': test.Id, 'SalePrice': prediction})
submission<save_to_csv> | model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=(28, 28, 1)))
model.add(BatchNormalization())
model.add(Conv2D(64,(3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=(3, 3),
activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(128,(3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'] ) | Digit Recognizer |
6,805,765 | submission.to_csv('submission.csv', index = False )<load_from_csv> | history2 = model.fit(
X_train_norm,
y_train,
batch_size=batch_size,
epochs=num_epochs,
validation_split=0.1,
shuffle=True,
callbacks=[learning_rate_reduction, es]
) | Digit Recognizer |
6,805,765 | if tuning or training:
train_data = pd.read_csv('/kaggle/input/jane-street-market-prediction/train.csv')
train_data.fillna(train_data.mean() ,inplace=True)
start_date=86
feature_columns = [col for col in train_data.columns.values if 'feature' in col]
corr=abs(train_data[feature_columns].corr())
ordered_feature_columns=[feature_columns.pop(0)]
for col in feature_columns:
corr_max = corr[col][ordered_feature_columns].idxmax()
corr_max_idx = ordered_feature_columns.index(corr_max)
ordered_feature_columns.insert(corr_max_idx+1,col)
f_mean = train_data[ordered_feature_columns].mean()
f_mean.to_csv('f_mean.csv',index=False)
with open("ordered_columns.txt", 'wb')as f:
pickle.dump(( ordered_feature_columns), f)
resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4']
train_data = train_data[train_data['date']>=start_date]
X = train_data[ordered_feature_columns].values
y = np.stack([(train_data[c] > 0 ).astype('int')for c in resp_cols] ).T
max_date = train_data['date'].max()
split_date = int(0.7*(max_date-start_date))
train_test_split = train_data['date'][train_data['date']==split_date].index[0]
del train_data
X_train=X[:train_test_split,:]
X_test=X[train_test_split:,:]
y_train=y[:train_test_split,:]
y_test=y[train_test_split:,:]<choose_model_class> | model.save('newer/32x64_64x128.h5' ) | Digit Recognizer |
6,805,765 | tf.random.set_seed(SEED)
def create_model(hp, num_columns, num_labels,encoder):
inp = tf.keras.layers.Input(shape =(num_columns, 1))
x1 = encoder(inp)
x = tf.keras.layers.BatchNormalization()(inp)
x = tf.keras.layers.Conv1D(filters=8,
kernel_size=hp.Int('kernel_size',5,10,step=5),
strides=1,
activation='relu' )(x)
x = tf.keras.layers.MaxPooling1D(pool_size=2 )(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Concatenate()([x,x1])
for i in range(hp.Int('num_layers',4,6)) :
x = tf.keras.layers.Dense(hp.Int(f'num_units_{i}',256,512))(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.keras.activations.swish )(x)
x = tf.keras.layers.Dropout(hp.Float(f'dropout_{i}',0,0.5))(x)
x = tf.keras.layers.Dense(num_labels )(x)
out = tf.keras.layers.Activation('sigmoid' )(x)
model = tf.keras.models.Model(inputs = inp, outputs = out)
model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate = hp.Float('lr',0.00001,0.1,default=0.001)) ,
loss = tf.keras.losses.BinaryCrossentropy(label_smoothing = 0.01),
metrics = tf.keras.metrics.AUC(name = 'AUC'),
)
return model
def create_autoencoder(input_dim,output_dim):
i = tf.keras.layers.Input(input_dim)
encoded = tf.keras.layers.BatchNormalization()(i)
encoded = tf.keras.layers.GaussianNoise(0.05 )(encoded)
encoded = tf.keras.layers.Dense(64,activation='relu' )(encoded)
decoded = tf.keras.layers.Dropout(0.2 )(encoded)
decoded = tf.keras.layers.Dense(input_dim,name='decoded' )(decoded)
x = tf.keras.layers.Dense(32,activation='relu' )(decoded)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Dropout(0.2 )(x)
x = tf.keras.layers.Dense(output_dim,activation='sigmoid',name='label_output' )(x)
encoder = Model(inputs=i,outputs=encoded)
autoencoder = Model(inputs=i,outputs=[decoded,x])
autoencoder.compile(optimizer=Adam(0.001),loss={'decoded':'mse','label_output':'binary_crossentropy'})
return autoencoder, encoder<categorify> | model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=(28, 28, 1)))
model.add(BatchNormalization())
model.add(Conv2D(64,(3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(64,(5, 5), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'] ) | Digit Recognizer |
6,805,765 | autoencoder, encoder = create_autoencoder(130,5)
if training:
autoencoder.fit(X,(X,y),
epochs=1000,
batch_size=4096,
validation_split=0.1,
callbacks=[EarlyStopping('val_loss',patience=10,restore_best_weights=True)])
encoder.save_weights('JS_CNN_encoder.hdf5')
else:
encoder.load_weights('/kaggle/input/jscnn/JS_CNN_encoder_seed_111.hdf5')
encoder.trainable = False<train_model> | history3 = model.fit(
X_train_norm,
y_train,
batch_size=batch_size,
epochs=num_epochs,
validation_split=0.1,
shuffle=True,
callbacks=[learning_rate_reduction, es]
) | Digit Recognizer |
6,805,765 | if tuning:
model_fn = lambda hp: create_model(hp,X_train.shape[-1],y_train.shape[-1],encoder)
tuner = kt.tuners.bayesian.BayesianOptimization(
hypermodel=model_fn,
objective= kt.Objective('val_AUC', direction='max'),
num_initial_points=4,
max_trials=20)
tuner.search(X_train,y_train,batch_size=4096,epochs=20, validation_data =(X_test, y_test), callbacks=[EarlyStopping('val_AUC', mode='max',patience=5)])
hp = tuner.get_best_hyperparameters(1)[0]
pd.to_pickle(hp,'best_hp_cnn_day_86_encoder_seed_111.pkl' )<train_model> | model.save('newer/32x64x64.h5' ) | Digit Recognizer |
6,805,765 | if training:
hp = pd.read_pickle('best_hp_cnn_day_86_encoder_seed_111.pkl')
model_fn = lambda hp: create_model(hp,X_train.shape[-1],y_train.shape[-1],encoder)
model = model_fn(hp)
model.fit(X_train,y_train,validation_data=(X_test,y_test),epochs=100,batch_size=4096,
callbacks=[EarlyStopping('val_AUC',mode='max',patience=10,restore_best_weights=True)])
model.save_weights('JS_CNN_day_86_encoder_seed_111.hdf5' )<load_from_csv> | model = Sequential()
model.add(Conv2D(64, kernel_size=(3, 3),
activation='relu',
input_shape=(28, 28, 1)))
model.add(BatchNormalization())
model.add(Conv2D(128,(3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'] ) | Digit Recognizer |
6,805,765 | if not training or tuning:
model_fn = lambda hp: create_model(hp,130,5,encoder)
hp = pd.read_pickle('/kaggle/input/jscnn/best_hp_cnn_day_86_encoder_seed_111.pkl')
model = model_fn(hp)
model.load_weights('/kaggle/input/jscnn/JS_CNN_day_86_encoder_seed_111.hdf5')
samples_mean = pd.read_csv('/kaggle/input/jscnn/f_mean.csv')
env = janestreet.make_env()
iter_test = env.iter_test()
for(test_df, sample_prediction_df)in iter_test:
weight = test_df.weight.iloc[0]
with open("/kaggle/input/jscnn/ordered_columns.txt", 'rb')as f:
ordered_cols = pickle.load(f)
test_df = test_df[ordered_cols]
X_test = test_df.values[0]
if weight==0:
sample_prediction_df.action = 0
else:
for index, x in np.ndenumerate(X_test):
idx=index[0]
if np.isnan(x):
X_test[idx] = samples_mean.iloc[idx]
X=X_test.reshape(( 1,-1))
prediction = np.median(model(X, training=False ).numpy() [0])
sample_prediction_df.action = int(round(prediction))
env.predict(sample_prediction_df)
<import_modules> | history4 = model.fit(
X_train_norm,
y_train,
batch_size=batch_size,
epochs=num_epochs,
validation_split=0.1,
shuffle=True,
callbacks=[learning_rate_reduction, es]
) | Digit Recognizer |
6,805,765 | from tensorflow.keras.layers import Input, Dense, BatchNormalization, Dropout, Concatenate, Lambda, GaussianNoise, Activation
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.losses import BinaryCrossentropy
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.layers.experimental.preprocessing import Normalization
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.model_selection import GroupKFold
import tensorflow_addons as tfa
from tqdm import tqdm
from random import choices
import kerastuner as kt<import_modules> | model.save('newer/64x128.h5' ) | Digit Recognizer |
6,805,765 | class PurgedGroupTimeSeriesSplit(_BaseKFold):
@_deprecate_positional_args
def __init__(self,
n_splits=5,
*,
max_train_group_size=np.inf,
max_test_group_size=np.inf,
group_gap=None,
verbose=False
):
super().__init__(n_splits, shuffle=False, random_state=None)
self.max_train_group_size = max_train_group_size
self.group_gap = group_gap
self.max_test_group_size = max_test_group_size
self.verbose = verbose
def split(self, X, y=None, groups=None):
if groups is None:
raise ValueError(
"The 'groups' parameter should not be None")
X, y, groups = indexable(X, y, groups)
n_samples = _num_samples(X)
n_splits = self.n_splits
group_gap = self.group_gap
max_test_group_size = self.max_test_group_size
max_train_group_size = self.max_train_group_size
n_folds = n_splits + 1
group_dict = {}
u, ind = np.unique(groups, return_index=True)
unique_groups = u[np.argsort(ind)]
n_samples = _num_samples(X)
n_groups = _num_samples(unique_groups)
for idx in np.arange(n_samples):
if(groups[idx] in group_dict):
group_dict[groups[idx]].append(idx)
else:
group_dict[groups[idx]] = [idx]
if n_folds > n_groups:
raise ValueError(
("Cannot have number of folds={0} greater than"
" the number of groups={1}" ).format(n_folds,
n_groups))
group_test_size = min(n_groups // n_folds, max_test_group_size)
group_test_starts = range(n_groups - n_splits * group_test_size,
n_groups, group_test_size)
for group_test_start in group_test_starts:
train_array = []
test_array = []
group_st = max(0, group_test_start - group_gap - max_train_group_size)
for train_group_idx in unique_groups[group_st:(group_test_start - group_gap)]:
train_array_tmp = group_dict[train_group_idx]
train_array = np.sort(np.unique(
np.concatenate(( train_array,
train_array_tmp)) ,
axis=None), axis=None)
train_end = train_array.size
for test_group_idx in unique_groups[group_test_start:
group_test_start +
group_test_size]:
test_array_tmp = group_dict[test_group_idx]
test_array = np.sort(np.unique(
np.concatenate(( test_array,
test_array_tmp)) ,
axis=None), axis=None)
test_array = test_array[group_gap:]
if self.verbose > 0:
pass
yield [int(i)for i in train_array], [int(i)for i in test_array]<split> | model = Sequential()
model.add(Conv2D(64, kernel_size=(3, 3),
activation='relu',
input_shape=(28, 28, 1)))
model.add(BatchNormalization())
model.add(Conv2D(128,(3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(256, kernel_size=(3, 3),
activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512,(3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'] ) | Digit Recognizer |
6,805,765 | class CVTuner(kt.engine.tuner.Tuner):
def run_trial(self, trial, X, y, splits, batch_size=32, epochs=1,callbacks=None):
val_losses = []
for train_indices, test_indices in splits:
X_train, X_test = [x[train_indices] for x in X], [x[test_indices] for x in X]
y_train, y_test = [a[train_indices] for a in y], [a[test_indices] for a in y]
if len(X_train)< 2:
X_train = X_train[0]
X_test = X_test[0]
if len(y_train)< 2:
y_train = y_train[0]
y_test = y_test[0]
model = self.hypermodel.build(trial.hyperparameters)
hist = model.fit(X_train,y_train,
validation_data=(X_test,y_test),
epochs=epochs,
batch_size=batch_size,
callbacks=callbacks)
val_losses.append([hist.history[k][-1] for k in hist.history])
val_losses = np.asarray(val_losses)
self.oracle.update_trial(trial.trial_id, {k:np.mean(val_losses[:,i])for i,k in enumerate(hist.history.keys())})
self.save_model(trial.trial_id, model )<data_type_conversions> | history5 = model.fit(
X_train_norm,
y_train,
batch_size=batch_size,
epochs=num_epochs,
validation_split=0.1,
shuffle=True,
callbacks=[learning_rate_reduction, es]
) | Digit Recognizer |
6,805,765 | TRAINING = True
USE_FINETUNE = True
FOLDS = 5
SEED = 1111
tf.random.set_seed(SEED)
np.random.seed(SEED)
train = pd.read_csv('.. /input/jane-street-market-prediction/train.csv')
train = train.query('date > 85' ).reset_index(drop = True)
train = train.astype({c: np.float32 for c in train.select_dtypes(include='float64' ).columns})
train.fillna(train.mean() ,inplace=True)
train = train.query('weight > 0' ).reset_index(drop = True)
train['action'] =(( train['resp_1'] > 0)&(train['resp_2'] > 0)&(train['resp_3'] > 0)&(train['resp_4'] > 0)&(train['resp'] > 0)).astype('int')
features = [c for c in train.columns if 'feature' in c]
resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4']
X = train[features].values
y = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T
f_mean = np.mean(train[features[1:]].values,axis=0 )<categorify> | model.save('newer/64x128_256x512.h5' ) | Digit Recognizer |
6,805,765 | def create_autoencoder(input_dim,output_dim,noise=0.05):
i = Input(input_dim)
encoded = BatchNormalization()(i)
encoded = GaussianNoise(noise )(encoded)
encoded = Dense(150,activation='relu' )(encoded)
encoded = BatchNormalization()(encoded)
encoded = Dropout(0.1 )(encoded)
encoded = Dense(80,activation='relu' )(encoded)
encoded = BatchNormalization()(encoded)
encoded = Dropout(0.1 )(encoded)
encoded = Dense(25,activation='relu',name='encoder' )(encoded)
encoded = BatchNormalization()(encoded)
decoded = Dropout(0.1 )(encoded)
decoded = Dense(80,activation='relu' )(decoded)
decoded = BatchNormalization()(decoded)
decoded = Dropout(0.1 )(decoded)
decoded = Dense(150,activation='relu' )(decoded)
decoded = BatchNormalization()(decoded)
decoded = Dropout(0.1 )(decoded)
decoded = Dense(input_dim,name='decoded' )(decoded)
encoder = Model(inputs=i,outputs=encoded)
autoencoder = Model(inputs=i,outputs=decoded)
autoencoder.compile(optimizer=tfa.optimizers.RectifiedAdam(0.001),loss={'decoded':'mse'})
return autoencoder, encoder<categorify> | model = Sequential()
model.add(Conv2D(64, kernel_size=(3, 3),
activation='relu',
input_shape=(28, 28, 1)))
model.add(BatchNormalization())
model.add(Conv2D(128,(3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(256, kernel_size=(3, 3),
activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512,(3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(BatchNormalization())
model.add(Dense(256))
model.add(BatchNormalization())
model.add(Dense(128))
model.add(BatchNormalization())
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'] ) | Digit Recognizer |
6,805,765 | def create_model(hp,input_dim,output_dim,encoder):
inputs = Input(input_dim)
x = encoder(inputs)
x = Concatenate()([x,inputs])
x = BatchNormalization()(x)
x = Dropout(hp.Float('init_dropout',0.0,0.5))(x)
for i in range(hp.Int('num_layers',1,3)) :
x = Dense(hp.Int('num_units_{i}',64,256))(x)
x = BatchNormalization()(x)
x = Lambda(tf.keras.activations.swish )(x)
x = Dropout(hp.Float(f'dropout_{i}',0.0,0.5))(x)
x = Dense(output_dim,activation='sigmoid' )(x)
model = Model(inputs=inputs,outputs=x)
model.compile(optimizer=tfa.optimizers.RectifiedAdam(hp.Float('lr',0.00001,0.1,default=0.001)) ,loss=BinaryCrossentropy(label_smoothing=hp.Float('label_smoothing',0.0,0.1)) ,metrics=[tf.keras.metrics.AUC(name = 'auc')])
return model<categorify> | history6 = model.fit(
X_train_norm,
y_train,
batch_size=batch_size,
epochs=num_epochs,
validation_split=0.1,
shuffle=True,
callbacks=[learning_rate_reduction, es]
) | Digit Recognizer |
6,805,765 | autoencoder, encoder = create_autoencoder(X.shape[-1],y.shape[-1],noise=0.1)
if TRAINING:
autoencoder.fit(X,X,
epochs=1000,
batch_size=4096,
validation_split=0.1,
callbacks=[EarlyStopping('val_loss',patience=10,restore_best_weights=True)])
encoder.save_weights('./encoder.hdf5')
else:
encoder.load_weights('.. /input/ver-0-seed-1111/encoder.hdf5')
encoder.trainable = False<feature_engineering> | model.save('newer/64x128_256x512_diff_fcnn.h5' ) | Digit Recognizer |
6,805,765 | if not TRAINING:
f = np.median
models = models[-2:]
env = janestreet.make_env()
th = 0.5
for(test_df, pred_df)in tqdm(env.iter_test()):
if test_df['weight'].item() > 0:
x_tt = test_df.loc[:, features].values
if np.isnan(x_tt[:, 1:].sum()):
x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:])* f_mean
pred = np.mean([model(x_tt, training = False ).numpy() for model in models],axis=0)
pred = f(pred)
pred_df.action = np.where(pred >= th, 1, 0 ).astype(int)
else:
pred_df.action = 0
env.predict(pred_df )<import_modules> | model = load_model('newer/64x128_256x512_diff_fcnn.h5' ) | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.