kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
6,805,765
warnings.filterwarnings("ignore") VERSION = ''<define_variables>
pred = model.predict_classes(X_test_norm )
Digit Recognizer
6,805,765
SEED = 420 N_ESTIMATORS = 250 DEVICE = torch.device("cpu" )<compute_test_metric>
sample_submission['Label'] = pred
Digit Recognizer
6,805,765
<load_pretrained><EOS>
sample_submission.to_csv("submission.csv", index=False )
Digit Recognizer
1,909,759
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class>
import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.misc import toimage from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score import keras from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.constraints import maxnorm from keras.optimizers import SGD from keras.utils import to_categorical from keras.preprocessing.image import ImageDataGenerator
Digit Recognizer
1,909,759
class Best_clf_cv_transformer(BaseEstimator, TransformerMixin): def __init__(self, myparams={'name':'LSvc', 'C':1}, **other_params): self.myparams = myparams self.myinit(**other_params) return def myinit(self, **other_params): self.cv = 5 if 'cv' in self.myparams: self.cv= self.myparams['cv'] clf = None name = self.myparams['name'] if name == 'Logit': clf = LogisticRegression(random_state=0) elif name == 'DT': clf = DecisionTreeClassifier(random_state=0) elif name == 'RidgClf': clf = RidgeClassifier(random_state=0) elif name == 'Prcpt': clf = Perceptron(random_state=0) elif name == 'PssAggClf': clf = PassiveAggressiveClassifier(random_state=0) elif name == 'Knn': clf = KNeighborsClassifier(random_state=0) elif name == 'RF': clf = RandomForestClassifier(random_state=0) elif name == 'NearCent': clf = NearestCentroid(random_state=0) elif name == 'MultNB': clf = MultinomialNB(random_state=0) elif name == 'BernNB': clf = BernoulliNB(random_state=0) elif name == 'Svc': clf = SVC(probability=True, random_state=0) elif name == 'LSvc': clf = LinearSVC(random_state=0) elif name == 'Xgb': clf = xgb.XGBClassifier(random_state=0) elif name == 'Catb' : clf = CatBoostClassifier(verbose=False, random_state=0) elif name == 'FCNN': clf = None else: print('ERROR Best_clf_cv_transformer: invalid @param name ') clf = None self.isCV = True if 'isCV' in self.myparams: self.isCV = self.myparams['isCV'] self.n_estimators = 1 if 'n_estimators' in self.myparams: self.n_estimators = self.myparams['n_estimators'] if 'params' in self.myparams: clf.set_params(**self.myparams['params']) if other_params: clf.set_params(**other_params) self.param_grid = None if 'param_grid' in self.myparams: self.param_grid = self.myparams['param_grid'] self.clf = clf self.cv_score = 0 self.name = name self._estimator_type='classifier' return def fit(self, X, Y, **FIT_PARAMS): train_len = len(Y[pd.isnull(Y)==False]) X, Y = X[:train_len], Y[:train_len] print('training', self.name, 'for X.shape =', X.shape) n_jobs = -1 if self.name == 'FCNN': lrScheduler = LRScheduler( CyclicLR, base_lr=0.0001, max_lr=0.05, step_every='batch' ) self.clf = NeuralNetClassifier( module=MyModule, module__inputCount=X.shape[1], module__outputCount=2, module__hiddenLayerCounts=[15], max_epochs=1000, verbose=0, iterator_train__shuffle=True, callbacks=[('LRScheduler', lrScheduler),('EarlyStopping', EarlyStopping(patience=20)) ] ) X = X.astype(np.float32) Y = Y.astype(np.int64) n_jobs = None if self.isCV: if self.param_grid: gridSearchCV = GridSearchCV( self.clf, self.param_grid, iid=False, cv=self.cv, scoring=CV_SCORERS, refit='f1_score', n_jobs=n_jobs ) gridSearchCV.fit(X, Y) print(self.name, ": Best_clf_cv_transformer: Best parameter(CV score=%0.3f):" % gridSearchCV.best_score_) print(gridSearchCV.best_params_) self.clf = gridSearchCV.best_estimator_ self.cv_score = gridSearchCV.best_score_ if self.name == 'LSvc': self.clf = CalibratedClassifierCV(self.clf) else: if self.name == 'LSvc': self.clf = CalibratedClassifierCV(self.clf) print(self.name, ': Best_clf_cv_transformer: starting CV =', self.cv) if self.name not in {'fss'}: cv_results = cross_validate(self.clf, X, Y, cv=int(self.cv)) else: voting_clf = VotingClassifier(estimators=[(self.name, self.clf)]) cv_results = cross_validate(voting_clf, X, Y, cv=self.cv) self.cv_score = np.mean(cv_results['test_score']) print(self.name, ": cv_score: %0.3f" % self.cv_score) else: if self.name == 'LSvc': self.clf = CalibratedClassifierCV(self.clf) if self.n_estimators > 1: self.clf = BaggingClassifier(base_estimator=self.clf, n_estimators=self.n_estimators) self.clf.fit(X, Y) print("Done Fitting", self.name) return self def get_cv_score(self): return self.cv_score def transform(self, X, Y=None, **FIT_PARAMS): if self.name == 'FCNN': X = X.astype(np.float32) if not Y is None: Y = Y.astype(np.int64) return self.clf.transform(X, Y) def predict(self, X, **FIT_PARAMS): if self.name == 'FCNN': X = X.astype(np.float32) return self.clf.predict(X) def predict_proba(self, X): if self.name == 'FCNN': X = X.astype(np.float32) return self.clf.predict_proba(X) def predict_log_proba(self, X): if self.name == 'FCNN': X = X.astype(np.float32) return self.clf.predict_log_proba(X) def score(self, X, Y, **FIT_PARAMS): if self.name == 'FCNN': X = X.astype(np.float32) return self.clf.score(X, Y, **FIT_PARAMS) def decision_function(self, X, **FIT_PARAMS): if self.name == 'FCNN': X = X.astype(np.float32) return self.clf.decision_function(X) def set_params(self, **params): self.myparams = params['myparams'] params.pop('myparams') self.myinit(**params) return self def get_params(self, deep=True): params = {'myparams': self.myparams} return params def apply(self, X): return self.clf.apply(X) def decision_path(self, X): return self.clf.decision_path(X) def staged_decision_function(self, X): return self.clf.staged_decision_function(X) def staged_predict(self, X): return self.clf.staged_predict(X) def staged_predict_proba(self, X): return self.clf.staged_predict_proba(X) def staged_score(self, X): return self.clf.staged_score(X )<define_variables>
df_train = pd.read_csv(".. /input/train.csv", encoding = 'ISO-8859-1') df_subm = pd.read_csv(".. /input/test.csv", encoding = 'ISO-8859-1' )
Digit Recognizer
1,909,759
def seed_all() : random.seed(SEED) np.random.seed(SEED) random.seed(SEED) seed_all()<load_from_csv>
df_train.isnull().sum().sum() , df_subm.isnull().sum().sum()
Digit Recognizer
1,909,759
def load_preprocess_data(filename='.. /input/jane-street-market-prediction/train.csv', isTrainData=True): dtype = None if isTrainData: dtype = { 'date' : 'int64', 'weight' : 'float64', 'resp' : 'float64', 'ts_id' : 'int64', 'feature_0' : 'float64' } else: dtype = { 'date' : 'int64', 'weight' : 'float64', 'feature_0' : 'float64' } for i in range(1, 130): k = 'feature_' + str(i) dtype[k] = 'float32' X = pd.read_csv(filename, dtype=dtype) resp_cols = ['resp_1', 'resp_2', 'resp_3','resp_4', 'resp'] X = X.query('date > 85') X = X[X['weight'] != 0].reset_index(drop = True) y = np.stack([(X[c] > 0 ).astype('int')for c in resp_cols] ).T f_columns = [c for c in X.columns if "feature" in c] Weights = X['weight'].values.reshape(( -1,1)) if isTrainData: X.drop(columns=['date', 'weight', 'resp', 'resp_1', 'resp_2', 'resp_3', 'resp_4', 'ts_id'], inplace=True) else: X.drop(columns=['date', 'weight'], inplace=True) preprocess_pipe = Pipeline([ ("imputer", SimpleImputer(missing_values=np.nan, strategy='mean')) , ]) X = preprocess_pipe.fit_transform(X) X = np.hstack(( X, Weights)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.05) del X, y gc.collect() W_train = X_train[:, -1] X_train = X_train[:, :-1] W_test = X_test[:, -1] X_test = X_test[:, :-1] return X_train, X_test, y_train, y_test, W_train, W_test, preprocess_pipe<train_model>
X_train = df_train[df_train.columns[1:]] y_train = df_train['label']
Digit Recognizer
1,909,759
X_TRAIN, X_TEST, Y_TRAIN, Y_TEST, W_train, W_test, preprocess_pipe = load_preprocess_data() gc.collect() X_TRAIN.shape, Y_TRAIN.shape<normalization>
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train )
Digit Recognizer
1,909,759
def learning_rate_010_decay_power_09(current_iter): base_learning_rate = 0.1 lr = base_learning_rate * np.power (.995, current_iter) return lr if lr > 1e-2 else 1e-2 <init_hyperparams>
y_train = to_categorical(y_train) y_test = to_categorical(y_test )
Digit Recognizer
1,909,759
FIT_PARAMS= { "early_stopping_rounds":30, "eval_metric" : 'auc', "eval_set" : [(X_TEST, Y_TEST[:,-1])], 'eval_names': ['valid'], 'callbacks': [lgb.reset_parameter(learning_rate=learning_rate_010_decay_power_09)], 'verbose': 50, 'categorical_feature': 'auto' }<init_hyperparams>
X_train = X_train/255 X_test = X_test/255
Digit Recognizer
1,909,759
<init_hyperparams>
model = Sequential()
Digit Recognizer
1,909,759
OPT_PARAMS_1 = {'n_estimators': N_ESTIMATORS, 'colsample_bytree': 0.668, 'min_child_samples': 150, 'min_child_weight': 1, 'num_leaves': 80, 'reg_alpha': 0, 'reg_lambda': 0.002, 'subsample': 0.87} OPT_PARAMS_2 = {'n_estimators': N_ESTIMATORS, 'colsample_bytree': 0.668, 'min_child_samples': 190, 'min_child_weight': 1, 'num_leaves': 90, 'reg_alpha': 0, 'reg_lambda': 0.002, 'subsample': 0.87}<train_model>
model.add(Conv2D(32,(3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(Conv2D(32,(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64,(3, 3), activation='relu')) model.add(Conv2D(64,(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25))
Digit Recognizer
1,909,759
def create_train_lgbm(X_train, y_train, component): if component == 1: opt_params = deepcopy(OPT_PARAMS_1) else: opt_params = deepcopy(OPT_PARAMS_2) lgb_clf_1 = lgb.LGBMClassifier(**opt_params) lgb_clf_1.fit(X_train, y_train, **FIT_PARAMS) if lgb_clf_1.best_iteration_ != N_ESTIMATORS: opt_params['n_estimators'] = lgb_clf_1.best_iteration_ lgb_clf_1 = lgb.LGBMClassifier(**opt_params) lgb_clf_1.fit(X_train, y_train, **FIT_PARAMS) X_temp = X_train[10].reshape(( 1, -1)) np.round(lgb_clf_1.predict(X_temp)).astype(int) return lgb_clf_1<train_model>
model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
1,909,759
def getLgbs() : LGBS = [] for model_id in range(5): y_train = Y_TRAIN[:, model_id] lgbm_1 = create_train_lgbm(X_TRAIN, y_train, 1) lgbm_2 = create_train_lgbm(X_TRAIN, y_train, 2) LGBS.append(( lgbm_1, lgbm_2)) pickleSave(LGBS, 'lgbs.bin') return LGBS<choose_model_class>
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True )
Digit Recognizer
1,909,759
def getSclfs() : SCLFS = [] for model_id in range(5): sclf = StackingClassifier(classifiers=LGBS[model_id], fit_base_estimators=False, use_probas=True, average_probas=False, meta_classifier=Best_clf_cv_transformer({ 'name': 'LSvc', 'params': {'penalty': 'l2', 'class_weight': 'balanced'}, 'param_grid': {'C' : [0.01, 0.05, 0.1, 1]} })) sclf.name = 'sclf_' + str(model_id) y_train = Y_TRAIN[:, model_id] sclf.fit(X_TRAIN, y_train) SCLFS.append(sclf) pickleSave(SCLFS, 'sclfs.bin') X_temp = X_TRAIN[10].reshape(( 1, -1)) np.round(SCLFS[0].predict(X_temp)).astype(int) return SCLFS<load_pretrained>
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=['accuracy'] )
Digit Recognizer
1,909,759
LGBS = unpickle('.. /input/jane-lgbm-stackedlsvc/lgbs.bin') SCLFS = unpickle('.. /input/jane-lgbm-stackedlsvc/sclfs.bin' )<predict_on_test>
datagen = ImageDataGenerator( rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, )
Digit Recognizer
1,909,759
def predict(test_df, isRetProb=False): test_df.drop(columns=['weight', 'date'], inplace=True) test_df.reset_index(drop=True, inplace=True) X_test = preprocess_pipe.transform(test_df ).reshape(( -1, 130)) y_probs = [] for sclf in SCLFS: y_p = sclf.predict_proba(X_test ).reshape(( -1, 2)) [:, 1].reshape(( -1, 1)) y_probs.append(y_p) y_probs = np.hstack(y_probs) pred_pr = np.median(y_probs, axis=1) y_pred =(pred_pr >= 0.5 ).astype(int) if isRetProb: return y_pred, pred_pr else: return y_pred<define_variables>
datagen.fit(X_train )
Digit Recognizer
1,909,759
env = janestreet.make_env() env_iter = env.iter_test()<predict_on_test>
model.fit_generator(datagen.flow(X_train, y_train, batch_size=128), steps_per_epoch=int(len(X_train)/ 128), epochs=30 )
Digit Recognizer
1,909,759
for test_df, pred_df in env_iter: if test_df["weight"].item() > 0: predictions = predict(test_df) pred_df.action = predictions else: pred_df.action = 0 env.predict(pred_df )<train_model>
test_data = df_subm.values
Digit Recognizer
1,909,759
print('Done !' )<load_from_csv>
test_data = test_data.reshape(test_data.shape[0],28,28,1 )
Digit Recognizer
1,909,759
if tuning or training: train_data = pd.read_csv('/kaggle/input/jane-street-market-prediction/train.csv') train_data.fillna(train_data.mean() ,inplace=True) metadata = pd.read_csv('/kaggle/input/jane-street-market-prediction/features.csv') metadata.drop(['feature'],axis=1,inplace=True) def replace_bool(tf): if tf: return 1 else: return 0 metadata = metadata.applymap(replace_bool) metadata_norm = metadata/metadata.sum() metadata_norm = metadata_norm.applymap(np.sqrt) features_transform = metadata_norm.values start_date=86 feature_columns = [col for col in train_data.columns.values if 'feature' in col] X_m = np.matmul(train_data[train_data['date']>=start_date][feature_columns].values,features_transform) corr=abs(train_data[feature_columns].corr()) ordered_feature_columns=[feature_columns.pop(0)] for col in feature_columns: corr_max = corr[col][ordered_feature_columns].idxmax() corr_max_idx = ordered_feature_columns.index(corr_max) ordered_feature_columns.insert(corr_max_idx+1,col) f_mean = train_data[ordered_feature_columns].mean() f_mean.to_csv('f_mean.csv',index=False) with open("ordered_columns.txt", 'wb')as f: pickle.dump(( ordered_feature_columns), f) resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4'] train_data = train_data[train_data['date']>=start_date] X = np.concatenate(( train_data[ordered_feature_columns].values,X_m),axis=1) y = np.stack([(train_data[c] > 0 ).astype('int')for c in resp_cols] ).T max_date = train_data['date'].max() split_date = int(0.7*(max_date-start_date)) train_test_split = train_data['date'][train_data['date']==split_date].index[0] del train_data X_train=X[:train_test_split,:] X_test=X[train_test_split:,:] y_train=y[:train_test_split,:] y_test=y[train_test_split:,:] <choose_model_class>
test_data = test_data/255
Digit Recognizer
1,909,759
tf.random.set_seed(42) SEED=42 def create_model(hp, num_columns, num_labels): inp = tf.keras.layers.Input(shape =(num_columns, 1)) x = tf.keras.layers.BatchNormalization()(inp) x = tf.keras.layers.Conv1D(filters=8, kernel_size=hp.Int('kernel_size',5,10,step=5), strides=1, activation='relu' )(x) x = tf.keras.layers.MaxPooling1D(pool_size=2 )(x) x = tf.keras.layers.Flatten()(x) for i in range(hp.Int('num_layers',12,16)) : x = tf.keras.layers.Dense(hp.Int(f'num_units_{i}',32,64))(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.Activation(tf.keras.activations.swish )(x) x = tf.keras.layers.Dropout(hp.Float(f'dropout_{i}',0,0.5))(x) x = tf.keras.layers.Dense(num_labels )(x) out = tf.keras.layers.Activation('sigmoid' )(x) model = tf.keras.models.Model(inputs = inp, outputs = out) model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate = hp.Float('lr',0.00001,0.1,default=0.001)) , loss = tf.keras.losses.BinaryCrossentropy(label_smoothing = 0.01), metrics = tf.keras.metrics.AUC(name = 'AUC'), ) return model<train_model>
predictions = model.predict(test_data )
Digit Recognizer
1,909,759
if tuning: model_fn = lambda hp: create_model(hp,X_train.shape[-1],y_train.shape[-1]) tuner = kt.tuners.bayesian.BayesianOptimization( hypermodel=model_fn, objective= kt.Objective('val_AUC', direction='max'), num_initial_points=4, max_trials=20) tuner.search(X_train,y_train,batch_size=4096,epochs=20, validation_data =(X_test, y_test), callbacks=[EarlyStopping('val_AUC', mode='max',patience=5)]) hp = tuner.get_best_hyperparameters(1)[0] pd.to_pickle(hp,'best_hp_cnn_day_86_metadata_deep.pkl' )<train_model>
predictions = np.argmax(predictions, axis=1, out=None )
Digit Recognizer
1,909,759
if training: hp = pd.read_pickle('best_hp_cnn_day_86_metadata_deep.pkl') model_fn = lambda hp: create_model(hp,X_train.shape[-1],y_train.shape[-1]) model = model_fn(hp) model.fit(X_train,y_train,validation_data=(X_test,y_test),epochs=100,batch_size=4096, callbacks=[EarlyStopping('val_AUC',mode='max',patience=10,restore_best_weights=True)]) model.save_weights('JS_CNN_day_86_metadata_deep.hdf5' )<load_from_csv>
with open("resultCNNwithPrepros.csv", "wb")as f: f.write(b'ImageId,Label ') np.savetxt(f, np.hstack([(np.array(range(28000)) +1 ).reshape(-1,1), predictions.astype(int ).reshape(-1,1)]), fmt='%i', delimiter="," )
Digit Recognizer
4,940,763
if not training or tuning: model_fn = lambda hp: create_model(hp,159,5) hp = pd.read_pickle('/kaggle/input/jscnn/best_hp_cnn_day_86.pkl') model = model_fn(hp) model.load_weights('/kaggle/input/jscnn/JS_CNN_day_86.hdf5') samples_mean = pd.read_csv('/kaggle/input/jscnn/f_mean.csv') features_transform = np.load('/kaggle/input/jscnn/features_transform _130.npy') env = janestreet.make_env() iter_test = env.iter_test() for(test_df, sample_prediction_df)in iter_test: weight = test_df.weight.iloc[0] with open("/kaggle/input/jscnn/ordered_columns.txt", 'rb')as f: ordered_cols = pickle.load(f) test_df = test_df[ordered_cols] X_test = test_df.values[0] if weight==0: sample_prediction_df.action = 0 else: for index, x in np.ndenumerate(X_test): idx=index[0] if np.isnan(x): X_test[idx] = samples_mean.iloc[idx] X_test=X_test.reshape(( 1,-1)) X_metadata = np.matmul(X_test,features_transform) X = np.concatenate(( X_test,X_metadata),axis=1) prediction = np.median(model(X, training=False ).numpy() [0]) sample_prediction_df.action = int(round(prediction)) env.predict(sample_prediction_df) <set_options>
%matplotlib inline
Digit Recognizer
4,940,763
plt.style.use('fivethirtyeight') y_ = Fore.YELLOW r_ = Fore.RED g_ = Fore.GREEN b_ = Fore.BLUE m_ = Fore.MAGENTA c_ = Fore.CYAN sr_ = Style.RESET_ALL warnings.filterwarnings('ignore') <load_from_csv>
base = Path('.. /input' )
Digit Recognizer
4,940,763
folder_path = '.. /input/jane-street-market-prediction/' sample = pd.read_csv(folder_path + 'example_sample_submission.csv') test_data = pd.read_csv(folder_path + 'example_test.csv' )<set_options>
data_df = pd.read_csv(base/'train.csv') data_df.head()
Digit Recognizer
4,940,763
def seed_everything(seed=42): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(seed=42 )<load_from_csv>
trn_df = data_df.drop(val_df.index) trn_df.shape
Digit Recognizer
4,940,763
features = [f'feature_{i}' for i in range(130)] config = { "epochs":100, "train_batch_size":1024, "valid_batch_size":1024, "test_batch_size":64, "nfolds":5, "learning_rate":0.0005, 'encoder_input':len(features), "input_size1":len(features), "input_size2":128, 'output_size':5, } data_path = '.. /input/jsmp-pytorch-bottelneck-model-train' train_data_mean = pd.read_csv(f"{data_path}/train_data_mean.csv" ).to_numpy()<normalization>
trn_x, trn_y = trn_df.loc[:, 'pixel0':'pixel783'], trn_df['label'] val_x, val_y = val_df.loc[:, 'pixel0':'pixel783'], val_df['label']
Digit Recognizer
4,940,763
class GaussianNoise(nn.Module): def __init__(self,device,sigma=0.1, is_relative_detach=True): super().__init__() self.sigma = sigma self.is_relative_detach = is_relative_detach self.noise = torch.tensor(0,dtype=torch.float ).to(device) def forward(self, x): if self.training and self.sigma != 0: scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x sampled_noise = self.noise.repeat(*x.size() ).normal_() * scale x = x + sampled_noise return x class Autoencoder(nn.Module): def __init__(self,input_size,gaussian_noise,noise_level= 0.1): super(Autoencoder,self ).__init__() self.noise_level = noise_level self.gaussian_noise = gaussian_noise self.layer1 = self.batch_linear(input_size,768,nn.ReLU) self.layer2 = self.batch_linear(768,768,nn.ReLU) self.layer3 = self.batch_linear(768,128,nn.ReLU) self.layer4 = self.batch_linear(128,768,nn.ReLU) self.layer5 = self.batch_linear(768,768,nn.ReLU) self.layer6 = self.batch_linear(768,input_size) def swap_noise(self,x): batch_size = x.shape[0] num_columns = x.shape[1] random_rows = torch.randint(low = 0,high = batch_size,size=(batch_size,)) t = x[random_rows] random_swap = torch.rand(num_columns)< self.noise_level x[:,random_swap] = t[:,random_swap] return x def batch_linear(self,inp,out,activation=None): if activation: return nn.Sequential(nn.BatchNorm1d(inp),nn.Linear(inp,out),activation()) else: return nn.Sequential(nn.BatchNorm1d(inp),nn.Linear(inp,out)) def forward(self,x): x = self.gaussian_noise(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) x = self.layer6(x) return x def get_encoder(self,x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) return x<choose_model_class>
def reshape(dt_x, dt_y): dt_x = np.array(dt_x, dtype = np.uint8 ).reshape(-1,28,28) dt_x = np.stack(( dt_x,)*3, axis=-1) dt_y = np.array(dt_y) return dt_x, dt_y
Digit Recognizer
4,940,763
class Model(nn.Module): def __init__(self,input_size1,input_size2,output_size): super(Model,self ).__init__() self.layer1 = self.batch_linear_drop(input_size1,256,0.3,activation=nn.ELU) self.layer2 = self.batch_linear(256,128,activation= nn.ELU) self.layer3 = self.batch_linear_drop(input_size1+128,256,0.1,nn.ReLU) self.layer4 = self.batch_linear_drop(input_size1+384,256,0.1,nn.ELU) self.layer5 = self.batch_linear(256,128,nn.ReLU) self.layer6 = self.batch_linear_drop(384,256,0.1,nn.ELU) self.layer7 = self.batch_linear(256,128,nn.ReLU) self.layer8 = self.batch_linear_drop(512,256,0.1,nn.ELU) self.layer9 = self.batch_linear(256,128,nn.ReLU) self.layer10 = self.batch_linear_drop(384,256,0.1,nn.ELU) self.layer11 = self.batch_linear(256,128,nn.ReLU) self.layer12 = self.batch_linear(768,256,nn.SELU) self.layer13 = self.batch_linear(256,128,nn.SELU) self.layer14 = nn.Sequential(nn.BatchNorm1d(128),nn.Linear(128,output_size)) def batch_linear_drop(self,inp,out,drop,activation=None): if activation: return nn.Sequential(nn.BatchNorm1d(inp),nn.Dropout(drop),nn.Linear(inp,out),activation()) else: return nn.Sequential(nn.BatchNorm1d(inp),nn.Dropout(drop),nn.Linear(inp,out)) def batch_linear(self,inp,out,activation=None): if activation: return nn.Sequential(nn.BatchNorm1d(inp),nn.Linear(inp,out),activation()) else: return nn.Sequential(nn.BatchNorm1d(inp),nn.Linear(inp,out)) def forward(self,input1,input2): x1 = self.layer1(input1) x1 = self.layer2(x1) x2 = torch.cat([input1,x1],1) x2 = self.layer3(x2) x3 = torch.cat([input1,x1,x2],1) x3 = self.layer4(x3) x3 = self.layer5(x3) x4 = torch.cat([x2,x3],1) x4 = self.layer6(x4) x4 = self.layer7(x4) x5 = torch.cat([x2,x3,x4],1) x5 = self.layer8(x5) x5 = self.layer9(x5) x6 = torch.cat([x3,x4,x5],1) x6 = self.layer10(x6) x6 = self.layer11(x6) x7 = torch.cat([x1,x2,x3,x5,x6],1) x7 = self.layer12(x7) x7 = self.layer13(x7) x7 = self.layer14(x7) return x7 <categorify>
trn_x, trn_y = reshape(trn_x, trn_y) val_x, val_y = reshape(val_x, val_y )
Digit Recognizer
4,940,763
data_path = '.. /input/jsmp-pytorch-bottelneck-model-train' models = list() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") for i in range(config['nfolds']): model = Model(config['input_size1'],config['input_size2'],config['output_size']) model.load_state_dict(torch.load(f"{data_path}/model{i}.bin",map_location=device)) model.to(device) model.eval() models.append(model) gaussian_noise = GaussianNoise(device) encoder = Autoencoder(config['input_size1'],gaussian_noise) encoder.load_state_dict(torch.load(f'{data_path}/encoder.bin',map_location=device)) encoder.to(device) encoder.eval() ;<categorify>
train=Path('.. /working/data/train') save(train, trn_x, trn_y) valid = Path('.. /working/data/valid') save(valid, val_x, val_y )
Digit Recognizer
4,940,763
def inference(test): all_prediction = np.zeros(( test.shape[0],5)) inputs = torch.tensor(test,dtype=torch.float) for model in models: inputs = inputs.to(device,dtype=torch.float) encoder_inp = encoder.get_encoder(inputs) outputs = model(inputs,encoder_inp) all_prediction += outputs.sigmoid().detach().cpu().numpy() return all_prediction/len(models )<load_from_csv>
path = Path('.. /working/data/') data =(ImageList.from_folder(path) .split_by_folder(train='train', valid='valid') .label_from_folder() .transform(get_transforms(do_flip=False), size=28) .databunch(bs=256 ).normalize(imagenet_stats))
Digit Recognizer
4,940,763
test_data = pd.read_csv(folder_path + 'example_test.csv') test_data.fillna(0,inplace=True) test_data = test_data[features].to_numpy() predictions = inference(test_data) predictions = predictions.mean(axis=1) sns.distplot(predictions);<split>
learn = cnn_learner(data, models.resnet34, loss_func=nn.CrossEntropyLoss() , metrics=accuracy )
Digit Recognizer
4,940,763
env = janestreet.make_env() iter_test = env.iter_test()<predict_on_test>
learn.fit_one_cycle(3, 1e-2 )
Digit Recognizer
4,940,763
%%time all_predictions = list() for(test_df, sample_prediction_df)in iter_test: if test_df['weight'].item() != 0: test_df.fillna(0,inplace=True) predictions = inference(test_df[features].to_numpy()) prediction = np.mean(predictions) all_predictions.append(prediction) sample_prediction_df.action = np.where(prediction >= 0.5, 1, 0 ).astype(int) else: sample_prediction_df.action = 0 env.predict(sample_prediction_df )<load_from_csv>
learn.save('stage1' )
Digit Recognizer
4,940,763
submission = pd.read_csv('./submission.csv') submission.head()<install_modules>
learn.unfreeze() learn.lr_find() learn.recorder.plot()
Digit Recognizer
4,940,763
!pip install -q git+https://github.com/mljar/mljar-supervised.git@dev<import_modules>
learn.fit_one_cycle(15, slice(5e-5))
Digit Recognizer
4,940,763
import pandas as pd from supervised.automl import AutoML<load_from_csv>
learn.save('stage2' )
Digit Recognizer
4,940,763
train = pd.read_csv(".. /input/bnp-paribas-cardif-claims-management/train.csv.zip") test = pd.read_csv(".. /input/bnp-paribas-cardif-claims-management/test.csv.zip") sub = pd.read_csv(".. /input/bnp-paribas-cardif-claims-management/sample_submission.csv.zip") x_cols = [f for f in train.columns if "v" in f]<train_model>
learn.unfreeze() learn.lr_find() learn.recorder.plot()
Digit Recognizer
4,940,763
automl = AutoML( total_time_limit=8*3600, optuna_time_budget=1800, mode="Optuna", ) automl.fit(train[x_cols], train["target"] )<save_to_csv>
learn.fit_one_cycle(5, 5e-5 )
Digit Recognizer
4,940,763
pred = automl.predict_proba(test) sub["PredictedProb"] = pred[:, 1] sub.to_csv("./1_submission.csv", index=False )<import_modules>
def create_tst(path:Path, test): path.mkdir(parents=True, exist_ok=True) for i in range(len(test)) : matplotlib.image.imsave(str(path/(str(i)+ '.jpeg')) , test[i] )
Digit Recognizer
4,940,763
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold from sklearn.preprocessing import MinMaxScaler<load_from_csv>
test_df = pd.read_csv(base/'test.csv') test_df = np.array(test_df, dtype=np.uint8 ).reshape(-1,28,28) test_df = np.stack(( test_df,)*3, axis=-1) test_df.shape
Digit Recognizer
4,940,763
data = pd.read_csv('.. /input/ghouls-goblins-and-ghosts-boo/train.csv.zip') data<load_from_csv>
tst_path = Path('.. /working/test') create_tst(tst_path, test_df )
Digit Recognizer
4,940,763
validate_data = pd.read_csv('.. /input/ghouls-goblins-and-ghosts-boo/test.csv.zip') validate_data<define_variables>
preds = [] ImageId = [] for i in range(len(test_df)) : img = open_image(tst_path/str(str(i)+'.jpeg')) pred_cls, pred_idx, pred_img = learn.predict(img) preds.append(int(pred_idx)) ImageId.append(i+1 )
Digit Recognizer
4,940,763
validate_data_ids = validate_data['id']<count_missing_values>
submission = pd.DataFrame({'ImageId':ImageId, 'Label':preds} )
Digit Recognizer
4,940,763
data.isnull().any()<data_type_conversions>
submission.to_csv('submission.csv',index=False )
Digit Recognizer
4,940,763
<compute_test_metric><EOS>
shutil.rmtree(tst_path) path_val = Path('.. /working/data/valid') shutil.rmtree(path_val) path_trn = Path('.. /working/data/train') shutil.rmtree(path_trn )
Digit Recognizer
800,022
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<compute_test_metric>
print(os.listdir(".. /input"))
Digit Recognizer
800,022
data, validate_data<prepare_x_and_y>
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv" )
Digit Recognizer
800,022
train_set_x, train_set_y = data.drop('type', 1), data['type']<choose_model_class>
Y_train = train["label"] X_train = train.drop(labels="label",axis=1) Y_train.value_counts()
Digit Recognizer
800,022
classifier = GridSearchCV( KNeighborsClassifier() , param_grid={ 'n_neighbors': np.arange(1, 100), 'p': np.arange(1, 10) }, scoring='accuracy', cv=3 )<train_model>
X_train = X_train/255.0 test = test/255.0
Digit Recognizer
800,022
classifier.fit(train_set_x, train_set_y )<find_best_params>
X_train = X_train.values.reshape(-1,28,28,1) test = test.values.reshape(-1,28,28,1 )
Digit Recognizer
800,022
scores = classifier.cv_results_['mean_test_score'] scores, scores.mean() , scores.max()<find_best_params>
Y_train = to_categorical(Y_train,num_classes=10 )
Digit Recognizer
800,022
classifier.best_params_<predict_on_test>
X_train, X_test, Y_train, Y_test = train_test_split(X_train, Y_train, test_size = 0.05 )
Digit Recognizer
800,022
np.mean(classifier.predict(train_set_x)== train_set_y )<predict_on_test>
def conv_layer(x,concat_axis,nb_filter,dropout_rate=None,weight_decay=1E-4): x = BatchNormalization(axis=concat_axis, gamma_regularizer=l2(weight_decay), beta_regularizer=l2(weight_decay))(x) x = Activation('relu' )(x) x = Conv2D(nb_filter,(3,3),padding='same',kernel_regularizer=l2(weight_decay),use_bias=False )(x) if dropout_rate: x = Dropout(dropout_rate )(x) return x def transition_layer(x,concat_axis,nb_filter,dropout_rate=None,weight_decay=1E-4): x = BatchNormalization(axis=concat_axis, gamma_regularizer=l2(weight_decay), beta_regularizer=l2(weight_decay))(x) x = Activation('relu' )(x) x = Conv2D(nb_filter,(1,1),padding='same',kernel_regularizer=l2(weight_decay),use_bias=False )(x) if dropout_rate: x = Dropout(dropout_rate )(x) x = AveragePooling2D(( 2,2),strides=(2,2))(x) return x def denseblock(x,concat_axis,nb_filter,nb_layers,growth_rate,dropout_rate=None,weight_decay=1E-4): list_features = [x] for i in range(nb_layers): x = conv_layer(x,concat_axis,growth_rate,dropout_rate=None,weight_decay=1E-4) list_features.append(x) x = Concatenate(axis=concat_axis )(list_features) nb_filter += growth_rate return x,nb_filter def Densenet(nb_classes,img_dim,depth,nb_dense_block,nb_filter,growth_rate, dropout_rate=None,weight_decay=1E-4): if K.image_dim_ordering() == "th": concat_axis = 1 elif K.image_dim_ordering() == "tf": concat_axis = -1 model_input = Input(shape=img_dim) assert(depth-4)%3 == 0 , "Depth must be 4*N +3" nb_layers = int(( depth-4)/ 3) x = Conv2D(nb_filter,(3,3),padding='same',use_bias=False, kernel_regularizer=l2(weight_decay))(model_input) for block_id in range(nb_dense_block-1): x,nb_filter = denseblock(x,concat_axis,nb_filter,nb_layers,growth_rate, dropout_rate=None,weight_decay=1E-4) x = transition_layer(x,concat_axis,nb_filter,dropout_rate=None,weight_decay=1E-4) x = BatchNormalization(axis=concat_axis, gamma_regularizer=l2(weight_decay), beta_regularizer=l2(weight_decay))(x) x = Activation('relu' )(x) x = GlobalAveragePooling2D(data_format=K.image_data_format() )(x) x = Dense(nb_classes,activation='softmax',kernel_regularizer=l2(weight_decay), bias_regularizer=l2(weight_decay))(x) densenet = Model(inputs=[model_input], outputs=[x], name="DenseNet") return densenet
Digit Recognizer
800,022
submission = classifier.predict(validate_data )<save_to_csv>
model = Densenet(nb_classes=10, img_dim=(28,28,1), depth = 34, nb_dense_block = 5, growth_rate=12, nb_filter=32, dropout_rate=0.2, weight_decay=1E-4) model.summary()
Digit Recognizer
800,022
pd.DataFrame({'id': validate_data_ids, 'type': submission} ).to_csv('submission.csv', index=False )<load_pretrained>
model_filepath = 'model.h5' batch_size=64 annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x) lr_reduce = ReduceLROnPlateau(monitor='val_acc', factor=0.1, epsilon=1e-5, patience=2, verbose=1) msave = ModelCheckpoint(model_filepath, save_best_only=True )
Digit Recognizer
800,022
warnings.filterwarnings('ignore'); zipfile.ZipFile('/kaggle/input/ghouls-goblins-and-ghosts-boo/train.csv.zip' ).extractall() zipfile.ZipFile('/kaggle/input/ghouls-goblins-and-ghosts-boo/test.csv.zip' ).extractall() %matplotlib inline <train_model>
model.compile(loss='categorical_crossentropy', optimizer = Adamax() , metrics=['accuracy']) model.fit(X_train ,Y_train, batch_size = 64, validation_data =(X_test,Y_test), epochs = 20, callbacks=[lr_reduce,msave,annealer], verbose = 1 )
Digit Recognizer
800,022
def N_net(train, test, target): hidden_layer_sizes=(100,) activation = 'relu' solver = 'adam' batch_size = 'auto' alpha = 0.0001 random_state = 0 max_iter = 10000 early_stopping = True clf = MLPClassifier( hidden_layer_sizes=hidden_layer_sizes, activation=activation, solver=solver, batch_size=batch_size, alpha=alpha, random_state=random_state, max_iter=max_iter, ) clf.fit(train, target) SAVE_TRAINED_DATA_PATH = 'train1.learn' joblib.dump(clf, SAVE_TRAINED_DATA_PATH) clf1 = joblib.load(SAVE_TRAINED_DATA_PATH) predict_no = clf1.predict(test) predict = np.round(np.round(predict_no, decimals=1)) return predict<train_model>
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
800,022
<split><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False )
Digit Recognizer
1,636,227
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<train_on_grid>
import numpy as np import pandas as pd import seaborn as sns from seaborn import countplot import matplotlib.pyplot as plt from keras import optimizers from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, Activation, BatchNormalization from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix
Digit Recognizer
1,636,227
def SVM(train, test, target): clf_result=svm.SVC(kernel='rbf', gamma=1/2 , C=1.0,class_weight='balanced', random_state=0) clf_result.fit(train, target) predict= np.array(clf_result.predict(test)) return predict<categorify>
TRAIN_PATH = '.. /input/train.csv' TEST_PATH = '.. /input/test.csv' SUBMISSION_NAME = 'submission.csv' BATCH_SIZE = 64 EPOCHS = 45 LEARNING_RATE = 0.001 HEIGHT = 28 WIDTH = 28 CANAL = 1 N_CLASSES = 10
Digit Recognizer
1,636,227
def LogRes(ghost,ghoul,goblin, test, target,HowDo): vsnp= np.empty(( 529,6),dtype="float64") submission=np.empty(( 529),dtype="int") ghost0=np.zeros(len(ghost)) ;ghost1=np.ones(len(ghost)) ghoul0=np.zeros(len(ghoul)) ;ghoul1=np.ones(len(ghoul)) goblin0=np.zeros(len(goblin)) ;goblin1=np.ones(len(goblin)) vs1 = ghost.append(ghoul, ignore_index=True);vs1t = np.append(ghost0,ghoul1) vs2 = ghoul.append(goblin, ignore_index=True);vs2t = np.append(ghoul0,goblin1) vs3 = goblin.append(ghost, ignore_index=True);vs3t = np.append(goblin0,ghost1) if HowDo == "log": model1 = LogisticRegression() ;model1.fit(vs1,vs1t);vsnp[:,0:2]=model1.predict_proba(test) model2 = LogisticRegression() ;model2.fit(vs2,vs2t);vsnp[:,2:4]=model2.predict_proba(test) model3 = LogisticRegression() ;model3.fit(vs3,vs3t);vsnp[:,4:6]=model3.predict_proba(test) if HowDo == "net": vsnp[:,0]=1-N_netlog(vs1, test, vs1t);vsnp[:,1]=1-vsnp[:,0] vsnp[:,2]=1-N_netlog(vs2, test, vs2t);vsnp[:,3]=1-vsnp[:,2] vsnp[:,4]=1-N_netlog(vs3, test, vs3t);vsnp[:,5]=1-vsnp[:,4] for n in range(len(vsnp)) : if np.argmax(vsnp[n,:])==0: submission[n]=0 if np.argmax(vsnp[n,:])==1: submission[n]=2 if np.argmax(vsnp[n,:])==2: submission[n]=2 if np.argmax(vsnp[n,:])==3: submission[n]=1 if np.argmax(vsnp[n,:])==4: submission[n]=1 if np.argmax(vsnp[n,:])==5: submission[n]=0 print(vsnp) return submission<categorify>
train = pd.read_csv(TRAIN_PATH) test = pd.read_csv(TEST_PATH) labels = train['label'] train = train.drop(['label'], axis=1 )
Digit Recognizer
1,636,227
def LogRes2(ghost,ghoul,goblin, test, target,HowDo): vsnp=np.empty(( 529,3),dtype="float64") submission=np.empty(( 529),dtype="int") ghost0=np.zeros(len(ghost)) ;ghost1=np.ones(len(ghost)) ghoul0=np.zeros(len(ghoul)) ;ghoul1=np.ones(len(ghoul)) goblin0=np.zeros(len(goblin)) ;goblin1=np.ones(len(goblin)) vs1 = ghost.append(ghoul, ignore_index=True) vs1 = vs1.append(goblin, ignore_index=True) vs1t = np.append(ghost0,ghoul1) vs1t = np.append(vs1t,goblin1) vs2 = ghoul.append(goblin, ignore_index=True) vs2 = vs2.append(ghost, ignore_index=True) vs2t = np.append(ghoul0,goblin1) vs2t = np.append(vs2t,ghost1) vs3 = goblin.append(ghost, ignore_index=True) vs3 = vs3.append(ghoul, ignore_index=True) vs3t = np.append(goblin0,ghost1) vs3t = np.append(vs3t,ghoul1) if HowDo == "log": model1 = LogisticRegression() ;model1.fit(vs1,vs1t);vsnp[:,0]=model1.predict_proba(test)[:,0] model2 = LogisticRegression() ;model2.fit(vs2,vs2t);vsnp[:,1]=model2.predict_proba(test)[:,0] model3 = LogisticRegression() ;model3.fit(vs3,vs3t);vsnp[:,2]=model3.predict_proba(test)[:,0] if HowDo == "net": vsnp[:,0]=1-N_netlog(vs1, test, vs1t) vsnp[:,1]=1-N_netlog(vs2, test, vs2t) vsnp[:,2]=1-N_netlog(vs3, test, vs3t) for n in range(len(vsnp)) : if np.argmax(vsnp[n,:])==0: submission[n]=0 if np.argmax(vsnp[n,:])==1: submission[n]=2 if np.argmax(vsnp[n,:])==2: submission[n]=1 print(vsnp) return submission<create_dataframe>
labels.value_counts()
Digit Recognizer
1,636,227
def syuunou(vote, ID): pred:str=[] for n in range(len(ID)) : if np.argmax(vote[:,n])==0: pred.append('Ghost') if np.argmax(vote[:,n])==2: pred.append('Ghoul') if np.argmax(vote[:,n])==1: pred.append('Goblin') s_c= pd.DataFrame({"id": ID, "type": pred}) return s_c<compute_test_metric>
train = train.values.reshape(-1,HEIGHT,WIDTH,CANAL) test = test.values.reshape(-1,HEIGHT,WIDTH,CANAL) labels = labels.values
Digit Recognizer
1,636,227
def tohyo(predict, vote): vote[0] +=(predict==0);vote[1] +=(predict==1);vote[2] +=(predict==2 )<load_from_csv>
labels = pd.get_dummies(labels ).values
Digit Recognizer
1,636,227
def main_n() : train = pd.read_csv('./train.csv') test = pd.read_csv('./test.csv') type_array = pd.get_dummies(train['type']); del train['type'] COLOR = pd.get_dummies(train['color']); del train['color'] ;del train['id'] COLOR2 = pd.get_dummies(test['color']); del test['color']; ID = test["id"]; del test['id'] vote = np.zeros(( 3,529),dtype = 'int') target = pd.DataFrame(type_array['Ghost']* 0 + type_array['Ghoul'] * 2 + type_array['Goblin'] * 1) ghost=train[type_array['Ghost']==1] ghoul=train[type_array['Ghoul']==1] goblin=train[type_array['Goblin']==1] tohyo(N_net(train, test, target), vote) tohyo(lightgbm(train, test, target), vote) tohyo(SVM(train, test, target), vote) tohyo(LogRes2(ghost,ghoul,goblin, test, target,"log"), vote) tohyo(LogRes2(ghost,ghoul,goblin, test, target,"net"), vote) train = train.join(COLOR) test = test.join(COLOR2) ghost=train[type_array['Ghost']==1] ghoul=train[type_array['Ghoul']==1] goblin=train[type_array['Goblin']==1] tohyo(LogRes2(ghost,ghoul,goblin, test, target,"net"), vote) tohyo(N_net(train, test, target), vote) submission = syuunou(vote, ID) return submission<save_to_csv>
train = train / 255.0 test = test / 255.0
Digit Recognizer
1,636,227
submission=main_n() rows=submission submission = rows submission.to_csv("submission6.csv", index=False )<choose_model_class>
x_train, x_val, y_train, y_val = train_test_split(train, labels, test_size=0.1, random_state=1 )
Digit Recognizer
1,636,227
<categorify>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, horizontal_flip=False, vertical_flip=False, rotation_range=15, zoom_range = 0.15, width_shift_range=0.15, height_shift_range=0.15) datagen.fit(x_train )
Digit Recognizer
1,636,227
<load_from_csv>
model = Sequential() model.add(Conv2D(filters=32, kernel_size=(5,5),padding='Same', input_shape=(HEIGHT, WIDTH, CANAL))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(filters=32, kernel_size=(5,5),padding='Same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3,3),padding='Same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(filters=64, kernel_size=(3,3),padding='Same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(N_CLASSES, activation = "softmax")) optimizer = optimizers.adam(lr=LEARNING_RATE) model.compile(optimizer=optimizer , loss="categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
1,636,227
train_data=pd.read_csv('/kaggle/input/ghouls-goblins-and-ghosts-boo/train.csv.zip') train_data.head()<count_values>
print('Dataset size: %s' % train.shape[0]) print('Epochs: %s' % EPOCHS) print('Learning rate: %s' % LEARNING_RATE) print('Batch size: %s' % BATCH_SIZE) print('Input dimension:(%s, %s, %s)' %(HEIGHT, WIDTH, CANAL))
Digit Recognizer
1,636,227
train_data['type'].value_counts()<load_from_csv>
history = model.fit_generator(datagen.flow(x_train,y_train, batch_size=BATCH_SIZE), epochs=EPOCHS, validation_data=(x_val, y_val), verbose=2, steps_per_epoch=x_train.shape[0] // BATCH_SIZE )
Digit Recognizer
1,636,227
test_data=pd.read_csv('/kaggle/input/ghouls-goblins-and-ghosts-boo/test.csv.zip') test_data.head()<count_values>
predictions = model.predict_classes(test )
Digit Recognizer
1,636,227
train_data['color'].value_counts()<count_values>
submission = pd.DataFrame({"ImageId": list(range(1, len(predictions)+ 1)) , "Label": predictions}) submission.to_csv(SUBMISSION_NAME, index=False) submission.head(10 )
Digit Recognizer
2,158,474
test_data['color'].value_counts()<categorify>
sns.set()
Digit Recognizer
2,158,474
train_data=pd.concat([train_data,pd.get_dummies(train_data['color'])],axis=1) train_data.drop('color',axis=1,inplace=True) train_data.head()<categorify>
train_data = pd.read_csv(".. /input/train.csv") test_data = pd.read_csv(".. /input/test.csv") sample_submission = pd.read_csv(".. /input/sample_submission.csv" )
Digit Recognizer
2,158,474
test_data=pd.concat([test_data,pd.get_dummies(test_data['color'])],axis=1) test_data.drop('color',axis=1,inplace=True) test_data.head()<prepare_x_and_y>
X_train = train_data.drop("label", axis=1) y_train = train_data[["label"]] X_test = test_data.copy()
Digit Recognizer
2,158,474
X=train_data.drop(['id','type'],axis=1) y=pd.get_dummies(train_data['type'] )<split>
X_train = X_train.astype("float32")/ 255 X_test = X_test.astype("float32")/ 255 X_train = X_train.values.reshape(( len(X_train), 28, 28, 1)) X_test = X_test.values.reshape(( len(X_test), 28, 28, 1)) y_train = pd.get_dummies(y_train, columns=["label"] )
Digit Recognizer
2,158,474
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.1,random_state=42) print(X_train.shape,y_train.shape) print(X_test.shape,y_test.shape )<import_modules>
model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), padding="valid", input_shape=X_train.shape[1:])) model.add(Activation("relu")) model.add(Conv2D(64, kernel_size=(3, 3), padding="valid")) model.add(Activation("relu")) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(64, kernel_size=(3, 3), padding="valid")) model.add(Activation("relu")) model.add(Conv2D(128, kernel_size=(3, 3), padding="valid")) model.add(Activation("relu")) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(128)) model.add(Activation("relu")) model.add(Dropout(0.4)) model.add(Dense(10)) model.add(Activation("softmax")) model.compile(optimizer="adadelta", loss="categorical_crossentropy", metrics=["accuracy"]) model.summary()
Digit Recognizer
2,158,474
from tensorflow import keras from keras.layers import Dense,Dropout from keras.models import Sequential<choose_model_class>
epochs = 50 batch_size = 256 model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.2 )
Digit Recognizer
2,158,474
model=Sequential() model.add(Dense(100,input_shape=(X.shape[1],))) model.add(Dense(100,activation='relu')) model.add(Dense(100,activation='relu')) model.add(Dense(3,activation='softmax')) model.summary()<choose_model_class>
y_pred = np.argmax(model.predict(X_test), axis=1 )
Digit Recognizer
2,158,474
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] )<train_model>
result = pd.Series(y_pred, name="Label" ).to_frame().reset_index().rename(columns={"index": "ImageId"}) result["ImageId"] += 1 result.head()
Digit Recognizer
2,158,474
<import_modules><EOS>
result.to_csv("out.csv", index=False )
Digit Recognizer
5,082,686
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<predict_on_test>
%matplotlib inline
Digit Recognizer
5,082,686
pred=model.predict(test_data.drop('id',axis=1)) pred_final=[np.argmax(i)for i in pred] submission = pd.DataFrame({'id':test_data['id'], 'type':pred_final}) submission.head()<categorify>
train_file = ".. /input/train.csv" test_file = ".. /input/test.csv" output_file = "submission.csv" raw_data = np.loadtxt(train_file, skiprows=1, dtype='int', delimiter=',') x_train, y_train = raw_data[:, 1:], raw_data[:, 0] x_train = x_train.reshape(-1, 28, 28, 1 ).astype("float32")/255 y_train = keras.utils.to_categorical(y_train )
Digit Recognizer
5,082,686
submission['type'].replace(to_replace=[0,1,2],value=['Ghost','Ghoul','Goblin'],inplace=True) submission.head()<save_to_csv>
model = keras.models.Sequential([ keras.layers.Conv2D(32, kernel_size=3, activation='relu', input_shape=(28, 28, 1)) , keras.layers.BatchNormalization() , keras.layers.Conv2D(32, kernel_size=3, activation='relu'), keras.layers.BatchNormalization() , keras.layers.Conv2D(32, kernel_size=5, strides=2, padding='same', activation='relu'), keras.layers.BatchNormalization() , keras.layers.Dropout(rate=0.4), keras.layers.Conv2D(64, kernel_size=3, activation='relu'), keras.layers.BatchNormalization() , keras.layers.Conv2D(64, kernel_size=3, activation='relu'), keras.layers.BatchNormalization() , keras.layers.Conv2D(64, kernel_size=5, strides=2, padding='same', activation='relu'), keras.layers.BatchNormalization() , keras.layers.Dropout(rate=0.4), keras.layers.Flatten() , keras.layers.Dense(128, activation='relu'), keras.layers.BatchNormalization() , keras.layers.Dropout(rate=0.4), keras.layers.Dense(10, activation='softmax') ]) model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=["accuracy"] )
Digit Recognizer
5,082,686
submission.to_csv('.. /working/submission.csv', index=False )<load_pretrained>
def elastic_transform(image, alpha_range, sigma, random_state=None): random_state = np.random.RandomState(random_state) if np.isscalar(alpha_range): alpha = alpha_range else: alpha = np.random.uniform(low=alpha_range[0], high=alpha_range[1]) shape = image.shape dx = gaussian_filter(random_state.rand(*shape)* 2 - 1, sigma)* alpha dy = gaussian_filter(random_state.rand(*shape)* 2 - 1, sigma)* alpha x, y, z = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), np.arange(shape[2]), indexing='ij') indices =(np.reshape(x + dx,(-1, 1)) , np.reshape(y + dy,(-1, 1)) , np.reshape(z,(-1, 1))) return map_coordinates(image, indices, order=1, mode='reflect' ).reshape(shape )
Digit Recognizer
5,082,686
zf1 = zipfile.ZipFile('/kaggle/input/ghouls-goblins-and-ghosts-boo/train.csv.zip') print(zf1.namelist()) zf2 = zipfile.ZipFile('/kaggle/input/ghouls-goblins-and-ghosts-boo/test.csv.zip') print(zf2.namelist()) zf3 = zipfile.ZipFile('/kaggle/input/ghouls-goblins-and-ghosts-boo/sample_submission.csv.zip') print(zf3.namelist() )<load_pretrained>
datagen = keras.preprocessing.image.ImageDataGenerator( zoom_range=0.0, height_shift_range=2, width_shift_range=2, preprocessing_function=lambda x: elastic_transform(x, alpha_range=[8, 10], sigma=3)) datagen.fit(x_train )
Digit Recognizer
5,082,686
zf1.extractall() zf2.extractall() zf3.extractall()<load_from_csv>
batch_size = 32 epochs = 30 learning_rate_reduction = keras.callbacks.ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), epochs=epochs, verbose=2, callbacks=[learning_rate_reduction], steps_per_epoch=x_train.shape[0] // batch_size )
Digit Recognizer
5,082,686
train = pd.read_csv('train.csv') test = pd.read_csv('test.csv' )<load_from_csv>
raw_data_test = np.loadtxt(test_file, skiprows=1, dtype='int', delimiter=',') x_test = raw_data_test.reshape(-1, 28, 28, 1 ).astype("float32")/255
Digit Recognizer
5,082,686
<categorify><EOS>
results = model.predict_classes(x_test) results = pd.Series(results, name='Label') submission = pd.concat([pd.Series(range(1, x_test.shape[0] + 1), name='ImageId'), results], axis=1) submission.to_csv(output_file, index=False )
Digit Recognizer
2,075,583
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<import_modules>
np.random.seed(13 )
Digit Recognizer
2,075,583
from sklearn.neural_network import MLPClassifier from sklearn import metrics import joblib<prepare_x_and_y>
num_classes = 10 batch_size = 128 epochs = 700 img_rows, img_cols = 28, 28 input_shape =(img_rows, img_cols,1 )
Digit Recognizer
2,075,583
hidden_layer_sizes=(100,) activation = 'relu' solver = 'adam' batch_size = 'auto' alpha = 0.0001 random_state = 0 max_iter = 10000 x = ['bone_length', 'rotting_flesh', 'hair_length', 'has_soul'] train_X = training[x] y1 = ['type'] train_y1 = training[y1] clf = MLPClassifier( hidden_layer_sizes=hidden_layer_sizes, activation=activation, solver=solver, batch_size=batch_size, alpha=alpha, random_state=random_state, max_iter=max_iter, ) clf.fit(train_X, train_y1) SAVE_TRAINED_DATA_PATH = 'train1.learn' joblib.dump(clf, SAVE_TRAINED_DATA_PATH) clf1 = joblib.load(SAVE_TRAINED_DATA_PATH) test_X1 = testing[x] predict_y1 = clf1.predict_proba(test_X1) predict_Y1 = clf1.predict(test_X1) print(predict_Y1) print("学習データの精度: {:.3f}".format(clf.score(train_X, train_y1))) print("テスト結果の精度: {:.3f}".format(clf.score(test_X1, predict_Y1)) )<save_to_csv>
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv" )
Digit Recognizer
2,075,583
sub = pd.read_csv('sample_submission.csv') sub['type'] = list(predict_Y1) sub.to_csv('sample_submission.csv', index=False )<set_options>
y_train = train["label"] x_train = train.drop(labels = ["label"],axis = 1 )
Digit Recognizer
2,075,583
warnings.filterwarnings('ignore' )<load_pretrained>
x_train /= 255 test /= 255
Digit Recognizer
2,075,583
zipfile.ZipFile('/kaggle/input/ghouls-goblins-and-ghosts-boo/train.csv.zip' ).extractall() zipfile.ZipFile('/kaggle/input/ghouls-goblins-and-ghosts-boo/test.csv.zip' ).extractall() <load_from_csv>
x_train = x_train.values.reshape(-1,img_rows,img_cols,1 ).astype('float32') test = test.values.reshape(-1,img_rows,img_cols,1 ).astype('float32' )
Digit Recognizer
2,075,583
train = pd.read_csv('./train.csv') test = pd.read_csv('./test.csv') <categorify>
y_train = keras.utils.to_categorical(y_train, num_classes = num_classes )
Digit Recognizer
2,075,583
train2 = pd.get_dummies(train['type']) del train['type'] COLOR = pd.get_dummies(train['color']) del train['color'] del train['id'] target = pd.DataFrame(train2['Ghost']* 0 + train2['Ghoul'] * 2 + train2['Goblin'] * 1) target_GOB = pd.DataFrame(train2['Ghost']* 0 + train2['Ghoul'] * 0 + train2['Goblin'] * 1) target = target.rename(columns={'0': 'target'}) COLOR2 = pd.get_dummies(test['color']) del test['color'] ID = test["id"] del test['id']<set_options>
x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size = 0.1 )
Digit Recognizer