kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
2,075,583 | %matplotlib inline
<merge> | def model_cnn(input_shape=input_shape, num_classes=num_classes):
model = Sequential()
model.add(Conv2D(32, kernel_size =(3,3), activation='relu', input_shape = input_shape))
model.add(BatchNormalization())
model.add(Conv2D(32, kernel_size =(3,3), activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(32, kernel_size =(5,5), strides=2, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(64, kernel_size =(3,3), activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(64, kernel_size =(3,3), activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(64, kernel_size =(5,5), strides=2, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(128, kernel_size = 4, activation='relu'))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dropout(0.4))
model.add(Dense(num_classes, activation = "softmax"))
model.compile(optimizer = Adam() , loss = "categorical_crossentropy", metrics=["accuracy"])
return model | Digit Recognizer |
2,075,583 | train_c = train.join(COLOR)
test_c = test.join(COLOR2)
<choose_model_class> | def LeNet5(input_shape=input_shape,num_classes=num_classes):
model = Sequential()
model.add(Conv2D(6, kernel_size=(5, 5), strides=(1, 1), activation='relu', input_shape=input_shape, padding="same"))
model.add(AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='valid'))
model.add(Conv2D(16, kernel_size=(5, 5), strides=(1, 1), activation='relu', padding='valid'))
model.add(AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
model.add(Conv2D(120, kernel_size=(5, 5), strides=(1, 1), activation='relu', padding='valid'))
model.add(Flatten())
model.add(Dense(84, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(optimizer = Adam() , loss = "categorical_crossentropy", metrics=["accuracy"])
return model | Digit Recognizer |
2,075,583 | def GOB() :
global y_pred_c
global train
global test
hidden_layer_sizes=(100,)
activation = 'relu'
solver = 'adam'
batch_size = 'auto'
alpha = 0.0001
random_state = 0
max_iter = 10000
early_stopping = True
train_X = train_c
train_y1 = target_GOB
clf = MLPRegressor(
hidden_layer_sizes=hidden_layer_sizes,
activation=activation,
solver=solver,
batch_size=batch_size,
alpha=alpha,
random_state=random_state,
max_iter=max_iter,
)
clf.fit(train_X, train_y1)
SAVE_TRAINED_DATA_PATH = 'train1.learn'
joblib.dump(clf, SAVE_TRAINED_DATA_PATH)
clf1 = joblib.load(SAVE_TRAINED_DATA_PATH)
test_X1 = test_c
predict_Y1 = clf1.predict(train_X)
print(predict_Y1)
y_pred_c = pd.DataFrame(predict_Y1)
train = train.join(y_pred_c)
predict_Y1 = clf1.predict(test_X1)
print(predict_Y1)
y_pred_c = pd.DataFrame(predict_Y1)
test = test.join(y_pred_c )<concatenate> | datagen = ImageDataGenerator(rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1)
datagen.fit(x_train ) | Digit Recognizer |
2,075,583 | dataset = pd.concat([train, test], ignore_index = True)
',train.isnull().sum() )<choose_model_class> | models = []
for i in range(len(model)) :
model[i].fit_generator(datagen.flow(x_train,y_train, batch_size=batch_size),
epochs = epochs, steps_per_epoch=x_train.shape[0] // batch_size,
validation_data =(x_test,y_test),
callbacks=[ReduceLROnPlateau(monitor='loss', patience=3, factor=0.1)],
verbose=2)
models.append(model[i] ) | Digit Recognizer |
2,075,583 | def lightGBM_k() :
global y_pred_AA
hidden_layer_sizes=(100,)
activation = 'relu'
solver = 'adam'
batch_size = 'auto'
alpha = 0.0001
random_state = 0
max_iter = 10000
early_stopping = True
train_X = train_k
train_y1 = target_k
clf = MLPRegressor(
hidden_layer_sizes=hidden_layer_sizes,
activation=activation,
solver=solver,
batch_size=batch_size,
alpha=alpha,
random_state=random_state,
max_iter=max_iter,
)
clf.fit(train_X, train_y1)
SAVE_TRAINED_DATA_PATH = 'train1.learn'
joblib.dump(clf, SAVE_TRAINED_DATA_PATH)
clf1 = joblib.load(SAVE_TRAINED_DATA_PATH)
test_X1 = test_k
predict_Y = clf1.predict(test_X1)
print(predict_Y)
predict_Y = np.round(predict_Y, decimals=1)
predict_Y1 = np.round(predict_Y)
print(predict_Y1)
y_pred_AA = predict_Y1
print("学習データの精度: {:.3f}".format(clf.score(train_X, train_y1)))
print("テスト結果の精度: {:.3f}".format(clf.score(test_X1, predict_Y1)) )<create_dataframe> | labels = []
for m in models:
predicts = np.argmax(m.predict(test), axis=1)
labels.append(predicts)
labels = np.array(labels)
labels = np.transpose(labels,(1, 0))
labels = scipy.stats.mode(labels, axis=-1)[0]
labels = np.squeeze(labels ) | Digit Recognizer |
2,075,583 | <save_to_csv><EOS> | pd.DataFrame({'ImageId' : np.arange(1, predicts.shape[0] + 1), 'Label' : labels } ).to_csv('submission.csv', index=False ) | Digit Recognizer |
897,687 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<set_options> | sns.set(style='white', context='notebook', palette='deep')
plt.rcParams['image.cmap']='gray'
| Digit Recognizer |
897,687 | sns.set_style("whitegrid")
warnings.filterwarnings('ignore')
<load_from_csv> | col_names = ['label']+[str(x)for x in range(784)]
df = pd.concat([
pd.read_csv('.. /input/mnist-in-csv/mnist_train.csv', names=col_names, header=0),
pd.read_csv('.. /input/mnist-in-csv/mnist_test.csv', names=col_names, header=0),
pd.read_csv('.. /input/digit-recognizer/train.csv', names=col_names, header=0),
pd.read_csv('.. /input/digit-recognizer/test.csv', names=col_names[1:], header=0),
], axis=0, sort=False, ignore_index=True ) | Digit Recognizer |
897,687 | train_data=pd.read_csv('/kaggle/input/walmart-recruiting-store-sales-forecasting/train.csv.zip',parse_dates=True)
sample_submission=pd.read_csv('/kaggle/input/walmart-recruiting-store-sales-forecasting/sampleSubmission.csv.zip')
features_data=pd.read_csv('/kaggle/input/walmart-recruiting-store-sales-forecasting/features.csv.zip',parse_dates=True)
stores_data=pd.read_csv('/kaggle/input/walmart-recruiting-store-sales-forecasting/stores.csv')
test_data=pd.read_csv('/kaggle/input/walmart-recruiting-store-sales-forecasting/test.csv.zip' )<data_type_conversions> | num_classes = 10
X, y = df[col_names[1:]], df[col_names[0]] | Digit Recognizer |
897,687 | df = pd.DataFrame()
for i in tq.tqdm(range(1,46)) :
model=Prophet()
filled=features_data[(( features_data['Store']==i)&(features_data['Date']<'2013-05-03')) ][['Date','CPI']]
tserie = filled.rename(columns = {'Date': 'ds', 'CPI': 'y'}, inplace = False)
tserie =tserie.sort_values(by=['ds'])
tserie['ds'] = pd.to_datetime(tserie['ds'])
model.fit(tserie)
future_dates=model.make_future_dataframe(periods=13,freq = 'W',include_history =True)
future_dates['ds'] = future_dates['ds'].apply(lambda x: x + timedelta(days=5))
prediction=model.predict(future_dates)
df=df.append(prediction)
df.reset_index(drop=True)
features_data['CPI1']=np.nan
for i,j in enumerate(df['yhat']):
features_data['CPI1'].iloc[i]=j
features_data=features_data.drop(['CPI'],axis=1)
features_data = features_data.rename(columns = {'CPI1': 'CPI'} )<data_type_conversions> | train = y.notna()
test = ~train
y_matrix =(y[:,None] == range(num_classes)).astype(int)
Xtrain, ytrain = X[train], y_matrix[train]
Xtest , ytest = X[test] , y_matrix[test] | Digit Recognizer |
897,687 | df = pd.DataFrame()
for i in tq.tqdm(range(1,46)) :
model=Prophet()
filled=features_data[(( features_data['Store']==i)&(features_data['Date']<'2013-05-03')) ][['Date','Unemployment']]
tserie = filled.rename(columns = {'Date': 'ds', 'Unemployment': 'y'}, inplace = False)
tserie =tserie.sort_values(by=['ds'])
tserie['ds'] = pd.to_datetime(tserie['ds'])
model.fit(tserie)
future_dates=model.make_future_dataframe(periods=13,freq = 'W',include_history =True)
future_dates['ds'] = future_dates['ds'].apply(lambda x: x + timedelta(days=5))
prediction=model.predict(future_dates)
df=df.append(prediction)
df.reset_index(drop=True)
features_data['Unemployment1']=np.nan
for i,j in enumerate(df['yhat']):
features_data['Unemployment1'].iloc[i]=j
features_data=features_data.drop(['Unemployment'],axis=1)
features_data = features_data.rename(columns = {'Unemployment1': 'Unemployment'} )<merge> | def baseline_model() :
model = Sequential()
model.add(Conv2D(32, kernel_size=(6, 6), strides=(2, 2), activation='relu',input_shape=Xtrain[0].shape))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64,(5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(25, activation='relu'))
model.add(Dense(num_classes, activation='sigmoid'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model | Digit Recognizer |
897,687 | stores = stores_data.merge(features_data, on ='Store' , how = 'left')
final_data_train = train_data.merge(stores, on = ['Store', 'Date', 'IsHoliday'], how = 'left' )<merge> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=20,
width_shift_range=0.1,
height_shift_range=0.1,
brightness_range=None,
shear_range=5,
zoom_range=-0.4,
fill_mode='nearest',
horizontal_flip=False,
vertical_flip=False,
rescale=None,
preprocessing_function=None,
data_format=None,
validation_split=0.2
) | Digit Recognizer |
897,687 | stores = stores_data.merge(features_data, on ='Store' , how = 'left')
final_data_test = test_data.merge(stores, on = ['Store', 'Date', 'IsHoliday'], how = 'left' )<categorify> | datagen.fit(Xtrain ) | Digit Recognizer |
897,687 | def markdown_imputation(final_data):
final_data.loc[final_data.MarkDown1.isnull() ,'MarkDown1']= 0
final_data.loc[final_data.MarkDown2.isnull() ,'MarkDown2']= 0
final_data.loc[final_data.MarkDown3.isnull() ,'MarkDown3']= 0
final_data.loc[final_data.MarkDown4.isnull() ,'MarkDown4']= 0
final_data.loc[final_data.MarkDown5.isnull() ,'MarkDown5']= 0
return final_data<split> | augmentation = True
if augmentation:
history = estimator.fit_generator(
datagen.flow(Xtrain, ytrain, batch_size=10),
steps_per_epoch=Xtrain.shape[0],
epochs=10
)
else:
history = estimator.fit(
Xtrain, ytrain,
batch_size=32, epochs=10,
validation_split=len(ytest)/len(y)
) | Digit Recognizer |
897,687 | def train_temp_bins(final_data):
temp_100_110_f=final_data[(( final_data.Temperature>100)&(final_data.Temperature< 110)) ].Weekly_Sales.sum()
temp_90_100_f=final_data[(( final_data.Temperature>90)&(final_data.Temperature< 100)) ].Weekly_Sales.sum()
temp_80_90_f=final_data[(( final_data.Temperature>80)&(final_data.Temperature< 90)) ].Weekly_Sales.sum()
temp_70_80_f=final_data[(( final_data.Temperature>70)&(final_data.Temperature< 80)) ].Weekly_Sales.sum()
temp_60_70_f=final_data[(( final_data.Temperature>60)&(final_data.Temperature< 70)) ].Weekly_Sales.sum()
temp_50_60_f=final_data[(( final_data.Temperature>50)&(final_data.Temperature< 60)) ].Weekly_Sales.sum()
temp_40_50_f=final_data[(( final_data.Temperature>40)&(final_data.Temperature< 50)) ].Weekly_Sales.sum()
temp_30_40_f=final_data[(( final_data.Temperature>30)&(final_data.Temperature< 40)) ].Weekly_Sales.sum()
temp_0_30_f=final_data[(( final_data.Temperature>0)&(final_data.Temperature< 30)) ].Weekly_Sales.sum()
temp_less_than_0_f=final_data[(( final_data.Temperature>-10)&(final_data.Temperature< 0)) ].Weekly_Sales.sum()
final_data['Temp_bins'] = np.nan
final_data.loc[(( final_data.Temperature>-10)&(final_data.Temperature<0)) ,'Temp_bins']= temp_less_than_0_f
final_data.loc[(( final_data.Temperature>0)&(final_data.Temperature< 30)) ,'Temp_bins']= temp_0_30_f
final_data.loc[(( final_data.Temperature>30)&(final_data.Temperature< 40)) ,'Temp_bins']= temp_30_40_f
final_data.loc[(( final_data.Temperature>40)&(final_data.Temperature< 50)) ,'Temp_bins']= temp_40_50_f
final_data.loc[(( final_data.Temperature>50)&(final_data.Temperature< 60)) ,'Temp_bins']= temp_50_60_f
final_data.loc[(( final_data.Temperature>60)&(final_data.Temperature< 70)) ,'Temp_bins']= temp_60_70_f
final_data.loc[(( final_data.Temperature>70)&(final_data.Temperature< 80)) ,'Temp_bins']= temp_70_80_f
final_data.loc[(( final_data.Temperature>80)&(final_data.Temperature< 90)) ,'Temp_bins']= temp_80_90_f
final_data.loc[(( final_data.Temperature>90)&(final_data.Temperature< 100)) ,'Temp_bins']= temp_90_100_f
final_data.loc[(( final_data.Temperature>100)&(final_data.Temperature< 110)) ,'Temp_bins']= temp_100_110_f
final_data.loc[final_data.Temp_bins.isnull() ,'Temp_bins']= 0
list1=[temp_less_than_0_f,temp_0_30_f,temp_30_40_f,temp_40_50_f,temp_50_60_f,temp_60_70_f,temp_70_80_f,temp_80_90_f,temp_90_100_f,temp_100_110_f]
return final_data,list1<feature_engineering> | ytest = estimator.predict_classes(Xtest ) | Digit Recognizer |
897,687 | def test_temp_bins(final_data,list1):
final_data['Temp_bins'] = np.nan
final_data.loc[(( final_data.Temperature>-10)&(final_data.Temperature<0)) ,'Temp_bins']= list1[0]
final_data.loc[(( final_data.Temperature>0)&(final_data.Temperature< 30)) ,'Temp_bins']= list1[1]
final_data.loc[(( final_data.Temperature>30)&(final_data.Temperature< 40)) ,'Temp_bins']= list1[2]
final_data.loc[(( final_data.Temperature>40)&(final_data.Temperature< 50)) ,'Temp_bins']= list1[3]
final_data.loc[(( final_data.Temperature>50)&(final_data.Temperature< 60)) ,'Temp_bins']= list1[4]
final_data.loc[(( final_data.Temperature>60)&(final_data.Temperature< 70)) ,'Temp_bins']= list1[5]
final_data.loc[(( final_data.Temperature>70)&(final_data.Temperature< 80)) ,'Temp_bins']= list1[6]
final_data.loc[(( final_data.Temperature>80)&(final_data.Temperature< 90)) ,'Temp_bins']= list1[7]
final_data.loc[(( final_data.Temperature>90)&(final_data.Temperature< 100)) ,'Temp_bins']= list1[8]
final_data.loc[(( final_data.Temperature>100)&(final_data.Temperature< 110)) ,'Temp_bins']= list1[9]
final_data.loc[final_data.Temp_bins.isnull() ,'Temp_bins']= 0
return final_data<feature_engineering> | submit = pd.DataFrame(data={'ImageId': range(1, ytest.shape[0]+1), 'Label': ytest} ) | Digit Recognizer |
897,687 | def split(final_data):
final_data['Date'] = pd.to_datetime(final_data['Date'])
final_data['Year'] = final_data['Date'].dt.year
final_data['Month']= final_data['Date'].dt.month
final_data['Week'] = final_data['Date'].dt.week
final_data['Day'] = final_data['Date'].dt.day
return final_data<feature_engineering> | submit.to_csv("submit.csv", index=None ) | Digit Recognizer |
7,780,225 | def days_from_christmas_for_train(x):
if x['Year']== 2010 :
diff=datetime.datetime(2010, 12, 31)-x['Date']
return diff.days
if(( x['Year']== 2011)and(x['Date']< datetime.datetime(2011, 12, 30))):
diff=datetime.datetime(2011, 12, 30)-x['Date']
return diff.days
else:
return 0<feature_engineering> | import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler | Digit Recognizer |
7,780,225 | def days_from_christmas_for_test(x):
if x['Year']== 2010 :
diff=datetime.datetime(2010, 12, 31)-x['Date']
return diff.days
if(( x['Year']== 2011)and(x['Date']< datetime.datetime(2011, 12, 30))):
diff=datetime.datetime(2011, 12, 30)-x['Date']
return diff.days
if(( x['Year']== 2012)and(x['Date']< datetime.datetime(2012, 12, 28))):
diff=datetime.datetime(2012, 12, 28)-x['Date']
return diff.days
if(( x['Year']== 2013)and(x['Date']< datetime.datetime(2013, 12, 27))):
diff=datetime.datetime(2013, 12, 27)-x['Date']
return diff.days
else:
return 0<categorify> | sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv")
train = pd.read_csv(".. /input/digit-recognizer/train.csv" ) | Digit Recognizer |
7,780,225 | def days_from_thanksgiving_for_train(x):
if(( x['Year']== 2010)and(x['Date']< datetime.datetime(2010, 11, 26))):
diff=datetime.datetime(2010, 11, 26)-x['Date']
return diff.days
if(( x['Year']== 2011)and(x['Date']< datetime.datetime(2011, 11, 25))):
diff=datetime.datetime(2011, 11, 25)-x['Date']
return diff.days
else:
return 0<feature_engineering> | Y_train = train["label"]
X_train = train.drop(labels = ["label"],axis = 1)
X_train = X_train / 255.0
X_test = test / 255.0
X_train = X_train.values.reshape(-1,28,28,1)
X_test = X_test.values.reshape(-1,28,28,1)
Y_train = to_categorical(Y_train, num_classes = 10 ) | Digit Recognizer |
7,780,225 | def days_from_thanksgiving_for_test(x):
if(( x['Year']== 2010)and(x['Date']< datetime.datetime(2010, 11, 26))):
diff=datetime.datetime(2010, 11, 26)-x['Date']
return diff.days
if(( x['Year']== 2011)and(x['Date']< datetime.datetime(2011, 11, 25))):
diff=datetime.datetime(2011, 11, 25)-x['Date']
return diff.days
if(( x['Year']== 2012)and(x['Date']< datetime.datetime(2012, 11, 23))):
diff=datetime.datetime(2012, 11, 23)-x['Date']
return diff.days
if(( x['Year']== 2013)and(x['Date']< datetime.datetime(2013, 11, 29))):
diff=datetime.datetime(2013, 11, 29)-x['Date']
return diff.days
else:
return 0<categorify> | datagen = ImageDataGenerator(
rotation_range=10,
zoom_range = 0.10,
width_shift_range=0.1,
height_shift_range=0.1 ) | Digit Recognizer |
7,780,225 | def holiday_type(x):
if(x['IsHoliday']== 1)&(x['Week']==6):
return 1
elif(x['IsHoliday']== 1)&(x['Week']==36):
return 2
elif(x['IsHoliday']== 1)&(x['Week']==47):
return 3
elif(x['IsHoliday']== 1)&(x['Week']==52):
return 4
else:
return 0<feature_engineering> | nets = 15
model = [0] *nets
for j in range(nets):
model[j] = Sequential()
model[j].add(Conv2D(32, kernel_size = 3, activation='relu', input_shape =(28, 28, 1)))
model[j].add(BatchNormalization())
model[j].add(Conv2D(32, kernel_size = 3, activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Conv2D(32, kernel_size = 5, strides=2, padding='same', activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Dropout(0.4))
model[j].add(Conv2D(64, kernel_size = 3, activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Conv2D(64, kernel_size = 3, activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Conv2D(64, kernel_size = 5, strides=2, padding='same', activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Dropout(0.4))
model[j].add(Conv2D(128, kernel_size = 4, activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Flatten())
model[j].add(Dropout(0.4))
model[j].add(Dense(10, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
7,780,225 | def holiday_label(final_data):
final_data.loc[(final_data.IsHoliday==True),'IsHoliday']= 1
final_data.loc[(final_data.IsHoliday==False),'IsHoliday']= 0
return final_data<categorify> | annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x)
history = [0] * nets
epochs = 20
for j in range(nets):
X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size = 0.1)
history[j] = model[j].fit_generator(datagen.flow(X_train2,Y_train2, batch_size=66),
epochs = epochs, steps_per_epoch = X_train2.shape[0]//66,
validation_data =(X_val2,Y_val2), callbacks=[annealer], verbose=0)
print("CNN {0:d}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format(j+1,epochs,max(history[j].history['accuracy']),max(history[j].history['val_accuracy'])) ) | Digit Recognizer |
7,780,225 | def type_label(final_data):
final_data.loc[(final_data.Type=='A'),'Type']= 1
final_data.loc[(final_data.Type=='B'),'Type']= 2
final_data.loc[(final_data.Type=='C'),'Type']= 3
return final_data<categorify> | results = np.zeros(( X_test.shape[0],10))
for j in range(nets):
results = results + model[j].predict(X_test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("submission_digit.csv",index=False ) | Digit Recognizer |
8,708,408 | def holiday_in_week_train(final_data):
dates =[]
for ptr in holidays.US(years = 2010 ).items() :
dates.append(ptr[0])
for ptr in holidays.US(years = 2011 ).items() :
dates.append(ptr[0])
for ptr in holidays.US(years = 2012 ).items() :
dates.append(ptr[0])
holiday_count=[]
for index, row in final_data.iterrows() :
dat = final_data['Date'][index]
dt=[]
for i in range(0,5):
dt.append(dat - datetime.timedelta(days = i))
for i in range(1,3):
dt.append(dat + datetime.timedelta(days = i))
count = 0
for date in dates:
if date in dt:
count +=1
holiday_count.append(count)
return holiday_count<define_variables> | file_path = "/kaggle/input/digit-recognizer/train.csv"
X_train = pd.read_csv(file_path)
y_train = X_train.label
X_train = X_train.drop(columns = ["label"])
file_path = "/kaggle/input/digit-recognizer/test.csv"
X_test = pd.read_csv(file_path)
X_test = np.array(X_test ) | Digit Recognizer |
8,708,408 | def holiday_in_week_test(final_data):
dates =[]
for ptr in holidays.US(years = 2010 ).items() :
dates.append(ptr[0])
for ptr in holidays.US(years = 2011 ).items() :
dates.append(ptr[0])
for ptr in holidays.US(years = 2012 ).items() :
dates.append(ptr[0])
for ptr in holidays.US(years = 2013 ).items() :
dates.append(ptr[0])
holiday_count=[]
for index, row in final_data.iterrows() :
dat = final_data['Date'][index]
dt=[]
for i in range(0,5):
dt.append(dat - datetime.timedelta(days = i))
for i in range(1,3):
dt.append(dat + datetime.timedelta(days = i))
count = 0
for date in dates:
if date in dt:
count +=1
holiday_count.append(count)
return holiday_count<feature_engineering> | X_train = np.array(X_train)
X_test = np.array(X_test ) | Digit Recognizer |
8,708,408 | final_data_train=markdown_imputation(final_data_train)
final_data_train=weekly_sales_imputation(final_data_train)
final_data_train,list1=train_temp_bins(final_data_train)
final_data_train=split(final_data_train)
final_data_train['diff_from_christmas'] = final_data_train.apply(days_from_christmas_for_train, axis=1)
final_data_train['days_from_thanksgiving'] = final_data_train.apply(days_from_thanksgiving_for_train, axis=1)
final_data_train['IsHoliday_bins'] = final_data_train.apply(holiday_type, axis=1)
final_data_train=holiday_label(final_data_train)
final_data_train=type_label(final_data_train)
final_data_train['Holidays'] = np.array(holiday_in_week_train(final_data_train))<feature_engineering> | X_train = X_train /255
X_test = X_test / 255 | Digit Recognizer |
8,708,408 | final_data_test=markdown_imputation(final_data_test)
final_data_test=test_temp_bins(final_data_test,list1)
final_data_test=split(final_data_test)
final_data_test['diff_from_christmas'] = final_data_test.apply(days_from_christmas_for_test, axis=1)
final_data_test['days_from_thanksgiving'] = final_data_test.apply(days_from_thanksgiving_for_test, axis=1)
final_data_test['IsHoliday_bins'] = final_data_test.apply(holiday_type, axis=1)
final_data_test=holiday_label(final_data_test)
final_data_test=type_label(final_data_test)
final_data_test['Holidays'] = np.array(holiday_in_week_test(final_data_test))<drop_column> | y_train = to_categorical(y_train, num_classes = 10 ) | Digit Recognizer |
8,708,408 | final_data_train=final_data_train.reset_index(drop=True )<data_type_conversions> | random_seed = 2
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size = 0.1, random_state=random_seed)
| Digit Recognizer |
8,708,408 | final_data_train=final_data_train[['Store','Dept','IsHoliday','Size','Week','Type','Year','Weekly_Sales','Holidays','Day']]
final_data_test=final_data_test[['Store','Dept','IsHoliday','Size','Week','Type','Year','Holidays','Day']]
final_data_train['IsHoliday']=final_data_train['IsHoliday'].astype('bool')
final_data_test['IsHoliday']=final_data_test['IsHoliday'].astype('bool')
final_data_train['Type']=final_data_train['Type'].astype('int')
final_data_test['Type']=final_data_test['Type'].astype('int')
y = final_data_train['Weekly_Sales']
X = final_data_train.drop(['Weekly_Sales'], axis=1)
rf_Model = RandomForestRegressor(n_estimators= 140,max_depth=27,n_jobs = -1)
rf_Model.fit(X, y)
y_hat= rf_Model.predict(final_data_test )<define_variables> | from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from keras.models import Model | Digit Recognizer |
8,708,408 | sample_submission['Weekly_Sales'] = list(y_hat )<save_to_csv> | !pip install -q efficientnet
model = Sequential()
model.add(Conv2D(64, kernel_size=5, activation="relu", padding = "same", input_shape=(28,28,1)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(256, kernel_size=3, activation="relu", padding = "same"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Conv2D(128, kernel_size=3, activation="relu", padding = "same"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Conv2D(128, kernel_size=3, activation="relu", padding = "same"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Conv2D(256, kernel_size=3, activation="relu", padding = "same"))
model.add(Flatten())
model.add(Dense(10, activation="softmax")) | Digit Recognizer |
8,708,408 | sample_submission.to_csv('submission.csv',index = False )<set_options> | optimizer = keras.optimizers.RMSprop(learning_rate=0.001,
rho=0.9,
epsilon=1e-08,
decay=0.0 ) | Digit Recognizer |
8,708,408 | %%HTML
<style type="text/css">
div.h1 {
background-color:
color: white;
padding: 8px;
padding-right: 300px;
font-size: 35px;
max-width: 1500px;
margin: auto;
margin-top: 50px;
}
div.h2 {
background-color:
color: white;
padding: 8px;
padding-right: 300px;
font-size: 35px;
max-width: 1500px;
margin: auto;
margin-top: 50px;
}
</style><set_options> | model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
8,708,408 | warnings.filterwarnings('ignore' )<import_modules> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 ) | Digit Recognizer |
8,708,408 | from sklearn.preprocessing import QuantileTransformer<load_from_csv> | epochs = 40
batch_size = 50 | Digit Recognizer |
8,708,408 | train_features = pd.read_csv('.. /input/lish-moa/train_features.csv')
train_targets_scored = pd.read_csv('.. /input/lish-moa/train_targets_scored.csv')
train_targets_nonscored = pd.read_csv('.. /input/lish-moa/train_targets_nonscored.csv')
test_features = pd.read_csv('.. /input/lish-moa/test_features.csv')
sample_submission = pd.read_csv('.. /input/lish-moa/sample_submission.csv' )<define_variables> | datagen = keras.preprocessing.image.ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
8,708,408 | GENES = [col for col in train_features.columns if col.startswith('g-')]
CELLS = [col for col in train_features.columns if col.startswith('c-')]<normalization> | history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
8,708,408 | for col in(GENES + CELLS):
transformer = QuantileTransformer(n_quantiles=100, random_state=0, output_distribution="normal")
vec_len = len(train_features[col].values)
vec_len_test = len(test_features[col].values)
raw_vec = train_features[col].values.reshape(vec_len, 1)
transformer.fit(raw_vec)
train_features[col] = transformer.transform(raw_vec ).reshape(1, vec_len)[0]
test_features[col] = transformer.transform(test_features[col].values.reshape(vec_len_test, 1)).reshape(1, vec_len_test)[0]<set_options> | results = model.predict(X_test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
| Digit Recognizer |
8,708,408 | def seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
seed_everything(seed=42 )<sort_values> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv('my_submission.csv', index=False)
print("Your submission was successfully saved!" ) | Digit Recognizer |
8,708,408 | train_targets_scored.sum() [1:].sort_values()<concatenate> | file_path = "/kaggle/input/digit-recognizer/train.csv"
X_train = pd.read_csv(file_path)
y_train = X_train.label
X_train = X_train.drop(columns = ["label"])
file_path = "/kaggle/input/digit-recognizer/test.csv"
X_test = pd.read_csv(file_path)
X_test = np.array(X_test ) | Digit Recognizer |
8,708,408 | n_comp = 50
data = pd.concat([pd.DataFrame(train_features[GENES]), pd.DataFrame(test_features[GENES])])
data2 =(PCA(n_components=n_comp, random_state=42 ).fit_transform(data[GENES]))
train2 = data2[:train_features.shape[0]]; test2 = data2[-test_features.shape[0]:]
train2 = pd.DataFrame(train2, columns=[f'pca_G-{i}' for i in range(n_comp)])
test2 = pd.DataFrame(test2, columns=[f'pca_G-{i}' for i in range(n_comp)])
train_features = pd.concat(( train_features, train2), axis=1)
test_features = pd.concat(( test_features, test2), axis=1 )<concatenate> | X_train = np.array(X_train)
X_test = np.array(X_test ) | Digit Recognizer |
8,708,408 | n_comp = 15
data = pd.concat([pd.DataFrame(train_features[CELLS]), pd.DataFrame(test_features[CELLS])])
data2 =(PCA(n_components=n_comp, random_state=42 ).fit_transform(data[CELLS]))
train2 = data2[:train_features.shape[0]]; test2 = data2[-test_features.shape[0]:]
train2 = pd.DataFrame(train2, columns=[f'pca_C-{i}' for i in range(n_comp)])
test2 = pd.DataFrame(test2, columns=[f'pca_C-{i}' for i in range(n_comp)])
train_features = pd.concat(( train_features, train2), axis=1)
test_features = pd.concat(( test_features, test2), axis=1 )<create_dataframe> | X_train = X_train /255
X_test = X_test / 255 | Digit Recognizer |
8,708,408 | var_thresh = VarianceThreshold(threshold=0.5)
data = train_features.append(test_features)
data_transformed = var_thresh.fit_transform(data.iloc[:, 4:])
train_features_transformed = data_transformed[ : train_features.shape[0]]
test_features_transformed = data_transformed[-test_features.shape[0] : ]
train_features = pd.DataFrame(train_features[['sig_id','cp_type','cp_time','cp_dose']].values.reshape(-1, 4),\
columns=['sig_id','cp_type','cp_time','cp_dose'])
train_features = pd.concat([train_features, pd.DataFrame(train_features_transformed)], axis=1)
test_features = pd.DataFrame(test_features[['sig_id','cp_type','cp_time','cp_dose']].values.reshape(-1, 4),\
columns=['sig_id','cp_type','cp_time','cp_dose'])
test_features = pd.concat([test_features, pd.DataFrame(test_features_transformed)], axis=1)
train_features
<merge> | y_train = to_categorical(y_train, num_classes = 10 ) | Digit Recognizer |
8,708,408 | train = train_features.merge(train_targets_scored, on='sig_id')
train = train[train['cp_type']!='ctl_vehicle'].reset_index(drop=True)
test = test_features[test_features['cp_type']!='ctl_vehicle'].reset_index(drop=True)
target = train[train_targets_scored.columns]<drop_column> | random_seed = 2
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size = 0.1, random_state=random_seed)
| Digit Recognizer |
8,708,408 | train = train.drop('cp_type', axis=1)
test = test.drop('cp_type', axis=1 )<feature_engineering> | from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from keras.models import Model | Digit Recognizer |
8,708,408 |
<feature_engineering> | !pip install -q efficientnet
model = Sequential()
model.add(Conv2D(64, kernel_size=5, activation="relu", padding = "same", input_shape=(28,28,1)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(256, kernel_size=3, activation="relu", padding = "same"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Conv2D(128, kernel_size=3, activation="relu", padding = "same"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Conv2D(128, kernel_size=3, activation="relu", padding = "same"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Conv2D(256, kernel_size=3, activation="relu", padding = "same"))
model.add(Flatten())
model.add(Dense(10, activation="softmax")) | Digit Recognizer |
8,708,408 |
<create_dataframe> | optimizer = keras.optimizers.RMSprop(learning_rate=0.001,
rho=0.9,
epsilon=1e-08,
decay=0.0 ) | Digit Recognizer |
8,708,408 |
<drop_column> | model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
8,708,408 | target_cols = target.drop('sig_id', axis=1 ).columns.values.tolist()<split> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 ) | Digit Recognizer |
8,708,408 | folds = train.copy()
mskf = MultilabelStratifiedKFold(n_splits=5)
for f,(t_idx, v_idx)in enumerate(mskf.split(X=train, y=target)) :
folds.loc[v_idx, 'kfold'] = int(f)
folds['kfold'] = folds['kfold'].astype(int)
folds<categorify> | epochs = 40
batch_size = 50 | Digit Recognizer |
8,708,408 | class MoADataset:
def __init__(self, features, targets):
self.features = features
self.targets = targets
def __len__(self):
return(self.features.shape[0])
def __getitem__(self, idx):
dct = {
'x' : torch.tensor(self.features[idx, :], dtype=torch.float),
'y' : torch.tensor(self.targets[idx, :], dtype=torch.float)
}
return dct
class TestDataset:
def __init__(self, features):
self.features = features
def __len__(self):
return(self.features.shape[0])
def __getitem__(self, idx):
dct = {
'x' : torch.tensor(self.features[idx, :], dtype=torch.float)
}
return dct
<train_model> | datagen = keras.preprocessing.image.ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
8,708,408 | def train_fn(model, optimizer, scheduler, loss_fn, dataloader, device):
model.train()
final_loss = 0
for data in dataloader:
optimizer.zero_grad()
inputs, targets = data['x'].to(device), data['y'].to(device)
outputs = model(inputs)
loss = loss_fn(outputs, targets)
loss.backward()
optimizer.step()
scheduler.step()
final_loss += loss.item()
final_loss /= len(dataloader)
return final_loss
def valid_fn(model, loss_fn, dataloader, device):
model.eval()
final_loss = 0
valid_preds = []
for data in dataloader:
inputs, targets = data['x'].to(device), data['y'].to(device)
outputs = model(inputs)
loss = loss_fn(outputs, targets)
final_loss += loss.item()
valid_preds.append(outputs.sigmoid().detach().cpu().numpy())
final_loss /= len(dataloader)
valid_preds = np.concatenate(valid_preds)
return final_loss, valid_preds
def inference_fn(model, dataloader, device):
model.eval()
preds = []
for data in dataloader:
inputs = data['x'].to(device)
with torch.no_grad() :
outputs = model(inputs)
preds.append(outputs.sigmoid().detach().cpu().numpy())
preds = np.concatenate(preds)
return preds
<normalization> | history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
8,708,408 | class Model(nn.Module):
def __init__(self, num_features, num_targets, hidden_size):
super(Model, self ).__init__()
self.batch_norm1 = nn.BatchNorm1d(num_features)
self.dropout1 = nn.Dropout(0.2)
self.dense1 = nn.utils.weight_norm(nn.Linear(num_features, hidden_size))
self.batch_norm2 = nn.BatchNorm1d(hidden_size)
self.dropout2 = nn.Dropout(0.5)
self.dense2 = nn.utils.weight_norm(nn.Linear(hidden_size, hidden_size))
self.batch_norm3 = nn.BatchNorm1d(hidden_size)
self.dropout3 = nn.Dropout(0.5)
self.dense3 = nn.utils.weight_norm(nn.Linear(hidden_size, num_targets))
def forward(self, x):
x = self.batch_norm1(x)
x = self.dropout1(x)
x = F.relu(self.dense1(x))
x = self.batch_norm2(x)
x = self.dropout2(x)
x = F.relu(self.dense2(x))
x = self.batch_norm3(x)
x = self.dropout3(x)
x = self.dense3(x)
return x<feature_engineering> | results = model.predict(X_test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
| Digit Recognizer |
8,708,408 | def process_data(data):
data = pd.get_dummies(data, columns=['cp_time','cp_dose'])
return data<define_variables> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv('my_submission.csv', index=False)
print("Your submission was successfully saved!" ) | Digit Recognizer |
3,233,000 | feature_cols = [c for c in process_data(folds ).columns if c not in target_cols]
feature_cols = [c for c in feature_cols if c not in ['kfold','sig_id']]
len(feature_cols )<define_variables> | train_dir = ".. /input/train.csv"
test_dir = ".. /input/test.csv"
df = pd.read_csv(train_dir)
df.info() | Digit Recognizer |
3,233,000 | DEVICE =('cuda' if torch.cuda.is_available() else 'cpu')
EPOCHS = 25
BATCH_SIZE = 128
LEARNING_RATE = 1e-3
WEIGHT_DECAY = 1e-5
NFOLDS = 5
EARLY_STOPPING_STEPS = 10
EARLY_STOP = False
num_features=len(feature_cols)
num_targets=len(target_cols)
hidden_size=1024
<prepare_x_and_y> | labels = df["label"].values.tolist()
labels = np.array(labels)
n_classes = len(set(labels))
labels = keras.utils.to_categorical(labels ) | Digit Recognizer |
3,233,000 | def run_training(fold, seed):
seed_everything(seed)
train = process_data(folds)
test_ = process_data(test)
trn_idx = train[train['kfold'] != fold].index
val_idx = train[train['kfold'] == fold].index
train_df = train[train['kfold'] != fold].reset_index(drop=True)
valid_df = train[train['kfold'] == fold].reset_index(drop=True)
x_train, y_train = train_df[feature_cols].values, train_df[target_cols].values
x_valid, y_valid = valid_df[feature_cols].values, valid_df[target_cols].values
train_dataset = MoADataset(x_train, y_train)
valid_dataset = MoADataset(x_valid, y_valid)
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
validloader = torch.utils.data.DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=False)
model = Model(
num_features=num_features,
num_targets=num_targets,
hidden_size=hidden_size,
)
model.to(DEVICE)
optimizer = torch.optim.Adam(model.parameters() , lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer=optimizer, pct_start=0.1, div_factor=1e3,
max_lr=1e-2, epochs=EPOCHS, steps_per_epoch=len(trainloader))
loss_fn = nn.BCEWithLogitsLoss()
early_stopping_steps = EARLY_STOPPING_STEPS
early_step = 0
oof = np.zeros(( len(train), target.iloc[:, 1:].shape[1]))
best_loss = np.inf
for epoch in range(EPOCHS):
train_loss = train_fn(model, optimizer,scheduler, loss_fn, trainloader, DEVICE)
print(f"FOLD: {fold}, EPOCH: {epoch}, train_loss: {train_loss}")
valid_loss, valid_preds = valid_fn(model, loss_fn, validloader, DEVICE)
print(f"FOLD: {fold}, EPOCH: {epoch}, valid_loss: {valid_loss}")
if valid_loss < best_loss:
best_loss = valid_loss
oof[val_idx] = valid_preds
torch.save(model.state_dict() , f"FOLD{fold}_.pth")
elif(EARLY_STOP == True):
early_step += 1
if(early_step >= early_stopping_steps):
break
x_test = test_[feature_cols].values
testdataset = TestDataset(x_test)
testloader = torch.utils.data.DataLoader(testdataset, batch_size=BATCH_SIZE, shuffle=False)
model = Model(
num_features=num_features,
num_targets=num_targets,
hidden_size=hidden_size,
)
model.load_state_dict(torch.load(f"FOLD{fold}_.pth"))
model.to(DEVICE)
predictions = np.zeros(( len(test_), target.iloc[:, 1:].shape[1]))
predictions = inference_fn(model, testloader, DEVICE)
return oof, predictions
<categorify> | df_train = df.drop(["label"], axis = 1)
data = df_train.values.tolist()
data = np.array(data)
data = data.astype('float32')/255.0 | Digit Recognizer |
3,233,000 | def run_k_fold(NFOLDS, seed):
oof = np.zeros(( len(train), len(target_cols)))
predictions = np.zeros(( len(test), len(target_cols)))
for fold in range(NFOLDS):
oof_, pred_ = run_training(fold, seed)
predictions += pred_ / NFOLDS
oof += oof_
return oof, predictions<categorify> | print("Training data shape = " + str(data.shape))
print("Training labels shape = " + str(labels.shape)) | Digit Recognizer |
3,233,000 | SEED = [0, 1, 2, 3 ,4, 5]
oof = np.zeros(( len(train), len(target_cols)))
predictions = np.zeros(( len(test), len(target_cols)))
for seed in SEED:
oof_, predictions_ = run_k_fold(NFOLDS, seed)
oof += oof_ / len(SEED)
predictions += predictions_ / len(SEED)
train[target_cols] = oof
test[target_cols] = predictions
<merge> | gen_model = Sequential()
gen_model.add(Dense(784, activation = 'relu', input_shape =(784,)))
gen_model.add(Dense(512, activation = 'relu'))
gen_model.add(Dense(264, activation = 'relu'))
gen_model.add(Dense(10, activation = 'softmax'))
print("STANDARD NEURAL NETWORK MODEL :-")
gen_model.summary() | Digit Recognizer |
3,233,000 | valid_results = train_targets_scored.drop(columns=target_cols ).merge(train[['sig_id']+target_cols], on='sig_id', how='left' ).fillna(0)
y_true = train_targets_scored[target_cols].values
y_pred = valid_results[target_cols].values
score = 0
for i in range(len(target_cols)) :
score_ = log_loss(y_true[:, i], y_pred[:, i])
score += score_ / target.shape[1]
print("CV log_loss: ", score)
<save_to_csv> | gen_model.compile(loss = 'categorical_crossentropy', optimizer = keras.optimizers.Adadelta() , metrics = ['accuracy'] ) | Digit Recognizer |
3,233,000 | sub = sample_submission.drop(columns=target_cols ).merge(test[['sig_id']+target_cols], on='sig_id', how='left' ).fillna(0)
sub.to_csv('submission.csv', index=False )<define_variables> | gen_model_hist = gen_model.fit(data, labels, batch_size = 32, epochs = 5, validation_split = 0.1 ) | Digit Recognizer |
3,233,000 | TEST_MODE = False
MOCK_MODE = False
SKIP_ADD_FEATURE = False
LOCAL = False
SAINT_PICKLE_PATH = ".. /input/saint-final"
SAINT_MODEL_PATH = ".. /input/saint-final/saintv113.pth"<import_modules> | del gen_model, gen_model_hist
gc.collect() | Digit Recognizer |
3,233,000 | if MOCK_MODE:
<import_modules> | X_train_cnn = data.reshape(len(data), 28, 28, 1 ) | Digit Recognizer |
3,233,000 | if LOCAL is False:
<load_pretrained> | cnn_model = Sequential()
cnn_model.add(Conv2D(32, kernel_size = [3,3], activation = 'relu', input_shape =(28,28,1)))
cnn_model.add(Conv2D(64, kernel_size = [3,3], activation = 'relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(MaxPool2D(pool_size = [2,2], strides = 2))
cnn_model.add(Conv2D(128, kernel_size = [3,3], activation = 'relu'))
cnn_model.add(MaxPool2D(pool_size = [2,2], strides = 2))
cnn_model.add(Flatten())
cnn_model.add(Dense(512, activation = 'relu'))
cnn_model.add(Dense(10, activation = 'softmax'))
print("CONVOLUTIONAL NEURAL NETWORK MODEL :-")
cnn_model.summary() | Digit Recognizer |
3,233,000 | def load_group() :
group = None
for i in range(10):
with open(f"{SAINT_PICKLE_PATH}/{i}groupv1.pickle", "rb")as f:
if group is None:
group = pickle.load(f)
else:
group = pd.concat([group, pickle.load(f)])
gc.collect()
gc.collect()
return group<groupby> | cnn_model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
cnn_model_hist = cnn_model.fit(X_train_cnn, labels, batch_size = 32, epochs = 6, validation_split = 0.1 ) | Digit Recognizer |
3,233,000 | group = load_group()<define_variables> | del cnn_model, cnn_model_hist
gc.collect() | Digit Recognizer |
3,233,000 | SEED = 123
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
seed_everything(SEED )<categorify> | data_aug = ImageDataGenerator(featurewise_center = False,
samplewise_center = False,
featurewise_std_normalization = False,
samplewise_std_normalization = False,
zca_whitening = False,
rotation_range = 10,
zoom_range = 0.1,
width_shift_range = 0.1,
height_shift_range = 0.1,
horizontal_flip = False,
vertical_flip = False ) | Digit Recognizer |
3,233,000 | MAX_SEQ = 100
n_skill = 13523
n_part = 7
n_et = 300
n_lt = 1441
n_lsi = 128
DROPOUT = 0.1
EMBED_SIZE = 256
BATCH_SIZE = 256
def future_mask(seq_length):
future_mask = np.triu(np.ones(( seq_length, seq_length)) , k=1 ).astype('bool')
return torch.from_numpy(future_mask)
class FFN(nn.Module):
def __init__(self, state_size = 200, forward_expansion = 1, bn_size=MAX_SEQ - 1):
super(FFN, self ).__init__()
self.state_size = state_size
self.lr1 = nn.Linear(state_size, forward_expansion * state_size)
self.relu = nn.ReLU()
self.lr2 = nn.Linear(forward_expansion * state_size, state_size)
self.dropout = nn.Dropout(0.2)
def forward(self, x):
x = self.relu(self.lr1(x))
x = self.lr2(x)
return self.dropout(x)
class Encoder(nn.Module):
def __init__(self, n_skill, n_pt=7, n_lsi=n_lsi, max_seq=100, embed_dim=128, dropout = DROPOUT, forward_expansion = 1, num_layers=1, heads = 8):
super(Encoder, self ).__init__()
self.n_skill, self.embed_dim = n_skill, embed_dim
self.embedding = nn.Embedding(n_skill + 1, embed_dim)
self.pos_embedding = nn.Embedding(max_seq, embed_dim)
self.dropout = nn.Dropout(dropout)
self.n_pt = n_pt
self.pt_embedding = nn.Embedding(n_pt + 1, embed_dim)
self.n_lsi = n_lsi
self.lsi_embedding = nn.Embedding(n_lsi + 1, embed_dim)
self.layer_normal = nn.LayerNorm(embed_dim)
def forward(self, x, question_ids, pt_x, lsi_x):
device = x.device
x = self.embedding(x)
pt_x = self.pt_embedding(pt_x)
lsi_x = self.lsi_embedding(lsi_x)
pos_id = torch.arange(x.size(1)).unsqueeze(0 ).to(device)
pos_x = self.pos_embedding(pos_id)
x = self.dropout(self.layer_normal(x + pos_x + pt_x + lsi_x))
return x
class Decoder(nn.Module):
def __init__(self, n_et=n_et, n_lt=n_lt, max_seq=100, embed_dim=128, dropout = DROPOUT, forward_expansion = 1, num_layers=1, heads = 8):
super(Decoder, self ).__init__()
self.embed_dim = embed_dim
self.pos_embedding = nn.Embedding(max_seq, embed_dim)
self.dropout = nn.Dropout(dropout)
self.n_response = 2
self.n_et = n_et
self.n_lt = n_lt
self.response_embedding = nn.Embedding(self.n_response + 2, embed_dim)
self.et_embedding = nn.Embedding(self.n_et + 2, embed_dim)
self.lt_embedding = nn.Embedding(self.n_lt + 2, embed_dim)
self.layer_normal = nn.LayerNorm(embed_dim)
def forward(self, c, et, lt):
device = c.device
c = self.response_embedding(c)
pos_id = torch.arange(c.size(1)).unsqueeze(0 ).to(device)
pos_x = self.pos_embedding(pos_id)
et = self.et_embedding(et)
lt = self.lt_embedding(lt)
x = self.dropout(self.layer_normal(c + pos_x + et + lt))
return x
class SAINTModel(nn.Module):
def __init__(self, n_skill, n_pt=7, n_lsi=n_lsi, n_et=n_et, n_lt=n_lt, max_seq=100, embed_dim=128, dropout = DROPOUT, forward_expansion = 1, enc_layers=3, dec_layers=3, heads = 8):
super(SAINTModel, self ).__init__()
self.encoder = Encoder(n_skill, n_pt, n_lsi, max_seq, embed_dim, dropout, forward_expansion, num_layers=enc_layers)
self.decoder = Decoder(n_et, n_lt, max_seq, embed_dim, dropout, forward_expansion, num_layers=dec_layers)
self.transformer = torch.nn.Transformer(embed_dim, heads, enc_layers, dec_layers, embed_dim*forward_expansion, dropout)
self.ffn = FFN(embed_dim, forward_expansion = forward_expansion)
self.pred = nn.Linear(embed_dim, 1)
self.layer_normal = nn.LayerNorm(embed_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x, question_ids, pt_x, lsi_x, c, et, lt):
ex = self.encoder(x, question_ids, pt_x, lsi_x)
dx = self.decoder(c, et, lt)
ex = ex.permute(1, 0, 2)
dx = dx.permute(1, 0, 2)
device = ex.device
mask = future_mask(ex.size(0)).to(device)
att_output = self.transformer(ex, dx, src_mask=mask, tgt_mask=mask)
att_output = self.layer_normal(att_output)
att_output = att_output.permute(1, 0, 2)
x = self.ffn(att_output)
x = self.dropout(self.layer_normal(x + att_output))
x = self.pred(x)
return x.squeeze(-1)
class TestDataset(Dataset):
def __init__(self, samples, test_df, n_skill=n_skill, n_et=n_et, n_lt=n_lt, n_pt=7, max_seq=MAX_SEQ):
super(TestDataset, self ).__init__()
self.samples = samples
self.user_ids = [x for x in test_df["user_id"].unique() ]
self.test_df = test_df
self.n_skill = n_skill
self.n_et = n_et
self.n_lt = n_lt
self.n_pt = n_pt
self.max_seq = max_seq
def __len__(self):
return self.test_df.shape[0]
def __getitem__(self, index):
test_info = self.test_df.iloc[index]
user_id = test_info["user_id"]
target_id_new = test_info["content_id"]
part_new = test_info["part"]
lsi_topic_new = test_info["lsi_topic"]
content_id_seq = np.zeros(self.max_seq, dtype=int)
answered_correctly_seq = np.zeros(self.max_seq, dtype=int)
c_seq = np.zeros(self.max_seq, dtype=int)
lag_seq = np.zeros(self.max_seq, dtype=int)
elapsed_time_seq = np.zeros(self.max_seq, dtype=int)
part_seq = np.zeros(self.max_seq, dtype=int)
lsi_topic_seq = np.zeros(self.max_seq, dtype=int)
if user_id in self.samples.index:
content_id, answered_correctly, lag, elapsed_time, part, lsi_topic = self.samples[user_id]
seq_len = len(content_id)
if seq_len >= self.max_seq:
content_id_seq[:] = content_id[-self.max_seq:]
answered_correctly_seq[:] = answered_correctly[-self.max_seq:]
c_seq[:] = answered_correctly[-self.max_seq:] + 1
lag_seq[:] = lag[-self.max_seq:] + 1
elapsed_time_seq[:] = elapsed_time[-self.max_seq:] + 1
part_seq[:] = part[-self.max_seq:]
lsi_topic_seq[:] = lsi_topic[-self.max_seq:]
else:
content_id_seq[-seq_len:] = content_id
c_seq[-seq_len:] = answered_correctly[:] + 1
lag_seq[-seq_len:] = lag[:] + 1
elapsed_time_seq[-seq_len:] = elapsed_time[:] + 1
part_seq[-seq_len:] = part
lsi_topic_seq[-seq_len:] = lsi_topic
target_id = content_id_seq
label = answered_correctly_seq
x = np.append(content_id_seq.copy() [1:], target_id_new)
pt_x = np.append(part_seq.copy() [1:], part_new)
lsi_x = np.append(lsi_topic_seq.copy() [1:], lsi_topic_new)
c = c_seq.copy()
et = elapsed_time_seq.copy()
lt = lag_seq.copy()
return x, target_id, pt_x, lsi_x, c, et, lt<choose_model_class> | models_ensemble = []
for i in range(7):
model = Sequential()
model.add(Conv2D(32, kernel_size = [3,3], activation = 'relu', input_shape =(28,28,1)))
model.add(Conv2D(64, kernel_size = [3,3], activation = 'relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size = [2,2], strides = 2))
model.add(Conv2D(128, kernel_size = [3,3], activation = 'relu'))
model.add(MaxPool2D(pool_size = [2,2], strides = 2))
model.add(Flatten())
model.add(Dense(512, activation = 'relu'))
model.add(Dense(10, activation = 'softmax'))
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
models_ensemble.append(model ) | Digit Recognizer |
3,233,000 | def create_model() :
return SAINTModel(n_skill, n_pt=7, n_lsi=n_lsi, n_et=n_et, n_lt=n_lt, max_seq=MAX_SEQ, embed_dim=EMBED_SIZE, forward_expansion=1, enc_layers=2, dec_layers=2, heads=8, dropout=0.1 )<load_pretrained> | model_histories = []
i = 1
for model in models_ensemble:
xtrain, xtest, ytrain, ytest = train_test_split(X_train_cnn, labels, test_size = 0.07)
print("Model " +str(i)+ " : ",end="")
model_history = model.fit_generator(data_aug.flow(xtrain, ytrain, batch_size = 64), epochs = 1, verbose = 1, validation_data =(xtest, ytest), steps_per_epoch = xtrain.shape[0])
model_histories.append(model_history)
i += 1 | Digit Recognizer |
3,233,000 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
saint_model = create_model()
try:
saint_model.load_state_dict(torch.load(SAINT_MODEL_PATH))
except:
saint_model.load_state_dict(torch.load(SAINT_MODEL_PATH, map_location='cpu'))
saint_model.to(device)
saint_model.eval()<categorify> | testdata = pd.read_csv(test_dir)
testdata = testdata.values.tolist()
testdata = np.array(testdata)
testdata_reshaped = testdata.reshape(testdata.shape[0], 28, 28, 1)
testdata_reshaped = testdata_reshaped.astype('float')/255.0
def make_predictions_final_model(curr_model):
prediction_array = curr_model.predict_on_batch(testdata_reshaped)
predictions = [np.argmax(i)for i in prediction_array]
return predictions | Digit Recognizer |
3,233,000 | class PredictEnv:
def __init__(self, folds_path, folds):
self.conn = sqlite3.connect(':memory:')
self.c = self.conn.cursor()
self.setup_folds(folds_path, folds)
def setup_folds(self, folds_path, folds):
self.c.executescript(f ).fetchone()
self.group_num = 0
self.records_remaining = self.c.execute('SELECT COUNT(*)FROM b_records' ).fetchone() [0]
self.df_users = pd.read_sql('SELECT * FROM b_users', self.conn)
def iter_test(self):
next_correct = '[]'
next_responses = '[]'
while self.records_remaining:
self.c.execute(f ).fetchone()
self.conn.commit()
df_b = pd.read_sql(f , self.conn)
if len(df_b):
df_b['group_num'] = self.group_num
df_b['prior_group_answers_correct'] = None
df_b.at[0, 'prior_group_answers_correct'] = next_correct
df_b['prior_group_responses'] = None
df_b.at[0, 'prior_group_responses'] = next_responses
next_correct = f'[{(", " ).join(df_b.answered_correctly.astype(str)) }]'
next_responses = f'[{(", " ).join(df_b.user_answer.astype(str)) }]'
del df_b['answered_correctly']
del df_b['user_answer']
df_b = df_b.set_index('group_num')
df_p = df_b[['row_id']].copy()
df_p['answered_correctly'] = 0.5
self.records_remaining -= len(df_b)
yield df_b, df_p
self.group_num += 1
def predict(self, df_pred):
if(df_pred.answered_correctly == -1 ).any() :
raise
else:
df_pred.reset_index().to_sql('predictions', self.conn, if_exists='append', index=False)
def get_predictions(self):
df_preds = pd.read_sql(, self.conn)
self.score = roc_auc_score(df_preds.y_true, df_preds.y_pred)
print(f'ROC AUC Score: {self.score:0.4f}')
return df_preds<predict_on_test> | predictions_ensemble = []
for model in models_ensemble:
curr_predictions = make_predictions_final_model(model)
predictions_ensemble.append(curr_predictions)
prediction_per_image = []
for i in range(len(predictions_ensemble[0])) :
temppred = [predictions_ensemble[0][i], predictions_ensemble[1][i], predictions_ensemble[2][i], predictions_ensemble[3][i], predictions_ensemble[4][i], predictions_ensemble[5][i], predictions_ensemble[6][i]]
prediction_per_image.append(temppred)
prediction_per_image = np.array(prediction_per_image)
modes = stats.mode(prediction_per_image, axis = 1)
final_predictions = []
for i in modes[0]:
final_predictions.append(i[0] ) | Digit Recognizer |
3,233,000 | if MOCK_MODE:
FOLDS = Path('.. /input/riiid-folds/riiid.db')
env = PredictEnv(FOLDS, [0, 1])
iter_test = env.iter_test()
else:
env = riiideducation.make_env()
iter_test = env.iter_test()
set_predict = env.predict
if TEST_MODE and type(iter_test)!= list:
list_df = []
for itr,(df_test, sample_prediction_df)in enumerate(iter_test):
df_test.loc[:, 'answered_correctly'] = 0.5
list_df.append(( df_test, None))
env.predict(df_test.loc[df_test['content_type_id'] == 0, ['row_id', 'answered_correctly']])
iter_test = list_df
print("TEST_MODE MODE ENABLED")
else:
print("TEST_MODE MODE DISABLED" )<define_variables> | final_csv = []
csv_title = ['ImageId', 'Label']
final_csv.append(csv_title)
for i in range(len(final_predictions)) :
image_id = i + 1
label = final_predictions[i]
temp = [image_id, label]
final_csv.append(temp)
print(len(final_csv))
with open('submission_csv_aug.csv', 'w')as file:
writer = csv.writer(file)
writer.writerows(final_csv)
file.close() | Digit Recognizer |
4,950,920 | TARGET = "answered_correctly"<categorify> | data_train = pd.read_csv(".. /input/train.csv")
data_train.head()
| Digit Recognizer |
4,950,920 | QUESTION_FEATURES = ["part", "question_id", "lsi_topic"]
question_file = ".. /input/question-features-0102/questions.pickle"
questions_df = pd.read_pickle(question_file)[QUESTION_FEATURES]
questions_df["lsi_topic"] = questions_df["lsi_topic"].fillna(-1)
questions_df["lsi_topic"] = questions_df["lsi_topic"].map(dict(map(lambda x:(x[1],x[0]), enumerate(questions_df["lsi_topic"].fillna(-1 ).unique()))))
questions_df["lsi_topic"] = questions_df["lsi_topic"] + 1<set_options> | y_train = data_train['label']
x_train = data_train.drop(labels = ["label"], axis = 1)
print('Shape of whole data for training', data_train.shape)
print('x_train:', x_train.shape)
print('y_train:', y_train.shape)
%matplotlib inline
def convert_to_grid(x_input):
N, H, W = x_input.shape
grid_size = int(ceil(sqrt(N)))
grid_height = H * grid_size + 1 *(grid_size - 1)
grid_width = W * grid_size + 1 *(grid_size - 1)
grid = np.zeros(( grid_height, grid_width)) + 255
next_idx = 0
y0, y1 = 0, H
for y in range(grid_size):
x0, x1 = 0, W
for x in range(grid_size):
if next_idx < N:
img = x_input[next_idx]
low, high = np.min(img), np.max(img)
grid[y0:y1, x0:x1] = 255.0 *(img - low)/(high - low)
next_idx += 1
x0 += W + 1
x1 += W + 1
y0 += H + 1
y1 += H + 1
return grid
examples = np.array(x_train.iloc[:81] ).reshape(81, 28, 28)
print(examples.shape)
fig = plt.figure()
grid = convert_to_grid(examples)
plt.imshow(grid.astype('uint8'), cmap='gray')
plt.axis('off')
plt.gcf().set_size_inches(7, 7)
plt.title('Some examples of training data', fontsize=24)
plt.show()
plt.close()
fig.savefig('training_examples.png')
plt.close()
| Digit Recognizer |
4,950,920 | warnings.filterwarnings(action="ignore" )<load_pretrained> | x_test = pd.read_csv(".. /input/test.csv")
x_test.head()
| Digit Recognizer |
4,950,920 | last_row_file = ".. /input/saint-final/last_row_states.pickle"
with open(last_row_file, "rb")as f:
last_row_states = pickle.load(f)
def inference(iter_test, TARGET, saint_model, questions_df):
previous_test_df = None
for(test_df, sample_prediction_df)in tqdm(iter_test):
if previous_test_df is not None:
previous_test_df[TARGET] = eval(test_df["prior_group_answers_correct"].iloc[0])
previous_test_df = previous_test_df[previous_test_df.content_type_id == False]
previous_test_df["user_to_remove"] = False
previous_test_df["prior_question_elapsed_time"] =(previous_test_df["prior_question_elapsed_time"] // 100 ).clip(0,300)
previous_test_df['current_container_size'] = previous_test_df[['user_id', 'task_container_id']].groupby(['user_id', 'task_container_id'])['task_container_id'].transform('size')
if TEST_MODE: previous_test_df.to_csv("./previous_test_df1.csv")
common_users = set(previous_test_df["user_id"].unique() ).intersection(set(last_row_states.keys()))
last_records = pd.DataFrame([
{**last_row_states[user_id], **{'user_id': user_id}} for user_id in common_users
])
if len(last_records)!= 0:
previous_test_df = pd.concat([last_records, previous_test_df] ).reset_index(drop=True)
previous_test_df = previous_test_df.sort_values(['user_id','timestamp'], ascending=True ).reset_index(drop = True)
previous_test_df['last_timestamp'] = previous_test_df[['user_id', 'timestamp']].groupby(['user_id'])['timestamp'].shift(1, fill_value=0)
previous_test_df['last_timestamp'] = previous_test_df[['user_id', 'task_container_id', 'last_timestamp']].groupby(['user_id', 'task_container_id'])['last_timestamp'].transform('first')
previous_test_df['last_task_container_size'] = previous_test_df[['user_id', 'current_container_size']].groupby(['user_id'])['current_container_size'].shift(1, fill_value=0)
previous_test_df['last_task_container_size'] = previous_test_df[['user_id', 'task_container_id', 'last_task_container_size']].groupby(['user_id', 'task_container_id'])['last_task_container_size'].transform('first')
if TEST_MODE: previous_test_df.to_csv("./previous_test_df2.csv")
previous_test_df['lag'] = previous_test_df['timestamp'] - previous_test_df['last_timestamp'] -(previous_test_df['prior_question_elapsed_time'] * previous_test_df['last_task_container_size'])
previous_test_df["lag"] =(previous_test_df["lag"]//(100*60)).clip(0, 1440)
if TEST_MODE: previous_test_df.to_csv("./previous_test_df3.csv")
if TEST_MODE: previous_test_df.to_csv("./previous_test_df4.csv")
previous_test_df = previous_test_df[previous_test_df["user_to_remove"] != True]
if TEST_MODE: previous_test_df.to_csv("./previous_test_df5.csv")
prev_group = previous_test_df[[
'user_id',
'content_id',
'answered_correctly',
'lag',
'prior_question_elapsed_time',
'part',
'lsi_topic'
]].groupby('user_id' ).apply(lambda r:(
r['content_id'].values,
r['answered_correctly'].values,
r['lag'].values,
r['prior_question_elapsed_time'].values,
r['part'].values,
r['lsi_topic'].values))
for prev_user_id in prev_group.index:
if prev_user_id in group.index:
group[prev_user_id] =(
np.append(group[prev_user_id][0], prev_group[prev_user_id][0])[-MAX_SEQ:],
np.append(group[prev_user_id][1], prev_group[prev_user_id][1])[-MAX_SEQ:],
np.append(group[prev_user_id][2], prev_group[prev_user_id][2])[-MAX_SEQ:],
np.append(group[prev_user_id][3], prev_group[prev_user_id][3])[-MAX_SEQ:],
np.append(group[prev_user_id][4], prev_group[prev_user_id][4])[-MAX_SEQ:],
np.append(group[prev_user_id][5], prev_group[prev_user_id][5])[-MAX_SEQ:],
)
else:
group[prev_user_id] =(
prev_group[prev_user_id][0],
prev_group[prev_user_id][1],
prev_group[prev_user_id][2],
prev_group[prev_user_id][3],
prev_group[prev_user_id][4],
prev_group[prev_user_id][5],
)
users_to_cache = previous_test_df.groupby("user_id" ).last()
user_ids = users_to_cache.index
timestamps = users_to_cache["timestamp"].values
content_ids = users_to_cache["content_id"].values
content_type_ids = users_to_cache["content_type_id"].values
task_container_ids = users_to_cache["task_container_id"].values
prior_question_elapsed_times = users_to_cache["prior_question_elapsed_time"].values
prior_question_had_explanations = users_to_cache["prior_question_had_explanation"].values
current_container_sizes = previous_test_df['current_container_size']
for row in zip(
user_ids,
timestamps,
content_ids,
content_type_ids,
task_container_ids,
prior_question_elapsed_times,
prior_question_had_explanations,
current_container_sizes,
):
user_id = row[0]
timestamp = row[1]
content_id = row[2]
content_type_id = row[3]
task_container_id = row[4]
prior_question_elapsed_time = row[5]
prior_question_had_explanation = row[6]
current_container_size = row[7]
row = {
"user_id": user_id,
"timestamp": timestamp,
"content_id": content_id,
"content_type_id": content_type_id,
"task_container_id": task_container_id,
"prior_question_elapsed_time": prior_question_elapsed_time,
"prior_question_had_explanation": prior_question_had_explanation,
"current_container_size": current_container_size,
}
row["user_to_remove"] = True
last_row_states[row["user_id"]] = row
test_df = pd.merge(test_df, questions_df[QUESTION_FEATURES], left_on = 'content_id', right_on = 'question_id', how = 'left')
test_df['prior_question_had_explanation'] = test_df.prior_question_had_explanation.fillna(False ).astype('int8')
test_df['prior_question_elapsed_time'].fillna(0, inplace = True)
previous_test_df = test_df.copy()
test_df = test_df[test_df['content_type_id'] == 0].reset_index(drop = True)
test_df[TARGET] = 0
test_df = test_df[test_df.content_type_id == False]
test_dataset = TestDataset(group, test_df)
test_dataloader = DataLoader(test_dataset, batch_size=51200, shuffle=False)
outs = []
for item in test_dataloader:
x = item[0].to(device ).long()
target_id = item[1].to(device ).long()
pt_x = item[2].to(device ).long()
lsi_x = item[3].to(device ).long()
c = item[4].to(device ).long()
et = item[5].to(device ).long()
lt = item[6].to(device ).long()
if TEST_MODE:
pd.DataFrame({
"x": x[0],
"target_id": target_id[0].detach().numpy() ,
"pt_x": pt_x[0].detach().numpy() ,
"lsi_x": lsi_x[0].detach().numpy() ,
"c": c[0].detach().numpy() ,
"et": et[0].detach().numpy() ,
"lt": lt[0].detach().numpy() ,
} ).to_csv("input.csv")
with torch.no_grad() :
output = saint_model(x, target_id, pt_x, lsi_x, c, et, lt)
outs.extend(torch.sigmoid(output)[:, -1].view(-1 ).data.cpu().numpy())
pred = np.array(outs)
test_df[TARGET] = pred
if not TEST_MODE and not MOCK_MODE:
set_predict(test_df[['row_id', TARGET]])
print('Job Done')
inference(iter_test, TARGET, saint_model, questions_df )<define_variables> | def pre_process_mnist(x_train, y_train, x_test):
x_train = x_train / 255.0
x_test = x_test / 255.0
batch_mask = list(range(41000, 42000))
x_validation = x_train[batch_mask]
y_validation = y_train[batch_mask]
batch_mask = list(range(41000))
x_train = x_train[batch_mask]
y_train = y_train[batch_mask]
mean_image = np.mean(x_train, axis=0)
std = np.std(x_train, axis=0)
for j in range(28):
for i in range(28):
if std[i, j, 0] == 0:
std[i, j, 0] = 1.0
x_train -= mean_image
x_validation -= mean_image
x_test -= mean_image
x_train /= std
x_validation /= std
x_test /= std
y_train = to_categorical(y_train, num_classes=10)
y_validation = to_categorical(y_validation, num_classes=10)
d_processed = {'x_train': x_train, 'y_train': y_train,
'x_validation': x_validation, 'y_validation': y_validation,
'x_test': x_test}
return d_processed
data = pre_process_mnist(x_train, y_train, x_test)
for i, j in data.items() :
print(i + ':', j.shape)
| Digit Recognizer |
4,950,920 | global_test = 2
<import_modules> | model = Sequential()
model.add(Conv2D(64, kernel_size=7, padding='same', activation='relu', input_shape=(28, 28, 1)))
model.add(BatchNormalization())
model.add(Conv2D(64, kernel_size=9, strides=2, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(64, kernel_size=7, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(128, kernel_size=5, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(128, kernel_size=7, strides=2, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(128, kernel_size=5, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(256, kernel_size=3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(256, kernel_size=5, strides=2, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(256, kernel_size=3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
| Digit Recognizer |
4,950,920 | import numpy as np
import pandas as pd
import glob
import riiideducation
import matplotlib.pyplot as plt
from tqdm import tqdm
from catboost import CatBoostClassifier
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
<set_options> | annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 **(x + epochs))
epochs = 50
h = model.fit(data['x_train'], data['y_train'], batch_size=100, epochs = epochs,
validation_data =(data['x_validation'], data['y_validation']), callbacks=[annealer], verbose=1)
| Digit Recognizer |
4,950,920 | pd.options.display.max_rows = 100
pd.options.display.max_columns = 100<data_type_conversions> | print("Epochs={0:d}, Train accuracy={1:.5f}, Validation accuracy={2:.5f}".format(epochs, max(h.history['acc']),
max(h.history['val_acc'])))
| Digit Recognizer |
4,950,920 | def df_to_np(df, filter_lectures:bool, convert_answers:bool):
tmstmp =(df['timestamp']/3600000 ).to_numpy(dtype = np.float32)
userid = df['user_id'].to_numpy()
ctntid = df['content_id'].to_numpy()
ctnttp = df['content_type_id'].to_numpy()
contnr = df['task_container_id'].to_numpy()
pqtime = np.nan_to_num(df['prior_question_elapsed_time']\
.to_numpy(dtype = np.float32), nan = float32m1)
pqexpl = df['prior_question_had_explanation']\
.to_numpy(dtype = np.int8, na_value = 1)
if convert_answers:
usrans = df['user_answer'].to_numpy()
anscor = df['answered_correctly'].to_numpy()
if filter_lectures:
f = ctnttp == int8_0
if convert_answers:
return tmstmp[f], userid[f], ctntid[f], ctnttp[f],\
contnr[f], pqtime[f], pqexpl[f], usrans[f], anscor[f]
else:
return tmstmp[f], userid[f], ctntid[f], ctnttp[f],\
contnr[f], pqtime[f], pqexpl[f]
else:
return tmstmp, userid, ctntid, ctnttp, contnr, pqtime, pqexpl, usrans, anscor<load_from_csv> | model.save('my_model.h5' ) | Digit Recognizer |
4,950,920 | <load_from_csv><EOS> | results = model.predict(data['x_test'])
results = np.argmax(results, axis=1)
submission = pd.read_csv('.. /input/sample_submission.csv')
submission['Label'] = results
submission.to_csv('sample_submission.csv', index=None)
| Digit Recognizer |
3,081,290 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<data_type_conversions> | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from keras import layers
from keras import models
from keras import optimizers
from keras.utils import to_categorical
from sklearn.utils import shuffle
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from skimage import img_as_ubyte
from skimage.transform import resize
from scipy.ndimage.interpolation import rotate | Digit Recognizer |
3,081,290 | def get_cor_table() :
max_neigbrs = 1000
global cor_table
map1 = np.load('.. /input/content-correlation-100to300/ctnt_map.npy')
map2 = np.load('.. /input/content-correlation/ctnt_map.npy')
cor1 = np.load('.. /input/content-correlation-100to300/result.npy')
cor2 = np.load('.. /input/content-correlation/result.npy')
cor =(cor2[map2[:max_content],:,:][:,map2[:max_content],:].astype(np.uint32)
+cor1[map1[:max_content],:,:][:,map1[:max_content],:].astype(np.uint32))
size = np.log(np.log(cor[:,:,0].sum(axis = 1)+1))
size = size/size.max() /10
corrs =(cor[:,:,0]+5)/(cor[:,:,1]*1.7+cor[:,:,0]+10)+size
cor_table = corrs.argsort(axis = 1)[:,-max_neigbrs:].astype(np.int32)
<create_dataframe> | train_data = pd.read_csv('/kaggle/input/train.csv')
test_data = pd.read_csv('/kaggle/input/test.csv' ) | Digit Recognizer |
3,081,290 | def get_content_answer_shares() :
global ca_shares_all
columns = ['user_id',
'content_id',
'content_type_id',
'user_answer',
'answered_correctly']
df = get_train_large(t_part=99, columns=columns)
df = df.loc[df.content_type_id == 0, df.columns != 'content_type_id']
ca_shares_all = pd.pivot_table(df,
values='answered_correctly',
index='content_id',
columns='user_answer',
aggfunc='count',
fill_value=0 ).to_numpy() +1
ca_shares_all =(ca_shares_all.T/ca_shares_all.sum(axis = 1)).T.astype(np.float32 )<groupby> | X_model = train_data.drop('label', axis=1)
y_model = train_data['label'].copy()
Y_finish = test_data
print('size train data:', X_model.shape)
print('size train labels:', y_model.shape)
print('size finish test data:', Y_finish.shape ) | Digit Recognizer |
3,081,290 | def get_content_first_answer_mean() :
global ctnt_fam
columns = ['user_id',
'new_order',
'answered_correctly',
'content_id',
'content_type_id']
df = get_train_large(t_part = 99, columns = columns)
df = df\
.loc[df.content_type_id==0, df.columns!='content_type_id']\
.sort_values(by = 'new_order')
df = df.groupby(['user_id','content_id'] ).first()
df = df.groupby('content_id' ).answered_correctly.mean().sort_index()
ctnt_fam = df.to_numpy(dtype = np.float32 )<normalization> | def img_rotate(df_x, angle):
change_img = np.empty([df_x.shape[0], df_x.shape[1]])
for i, image in enumerate(df_x.values):
img = rotate(image.reshape(28, 28), angle, cval=0, reshape=False, order=0)
change_img[i] = img.ravel()
return pd.DataFrame(data=change_img, columns=df_x.columns)
def img_zoom(df_x, scale):
if(scale > 0.9)or(scale < -0.9):
raise Exception('scale values must be between -0.9 and 0.9')
if scale < 0:
change_img = np.empty([df_x.shape[0], df_x.shape[1]])
for i, image in enumerate(df_x.values):
number_around = round(28*abs(scale)/2)
img = image.reshape(28, 28 ).astype('float32' ).copy()
img = np.pad(img, number_around, mode='constant')
img = resize(img,(28,28), anti_aliasing=False, mode='constant', cval=0, order=0)
change_img[i] = img.ravel().astype('int64')
return pd.DataFrame(data=change_img, columns=df_x.columns)
elif scale >= 0:
change_img = np.empty([df_x.shape[0], df_x.shape[1]])
for i, image in enumerate(df_x.values):
number_slice = round(28*abs(scale)/2)
img = image.reshape(28, 28 ).astype('float32' ).copy()
img = img[number_slice:28-number_slice, number_slice:28-number_slice]
img = resize(img,(28,28), anti_aliasing=False, mode='constant', cval=0, order=0)
change_img[i] = img.ravel().astype('int64')
return pd.DataFrame(data=change_img, columns=df_x.columns)
| Digit Recognizer |
3,081,290 | def get_ctnt_enc() :
global ctnt_enc
qestn_tagsmap_ohe = np.zeros(( len(qestn_tagsmap), 189), dtype = np.bool)
for i,j in enumerate(qestn_tagsmap):
for k in j:
qestn_tagsmap_ohe[i,k] = True
tags_comps = StandardScaler().fit_transform(
PCA(n_components=3, random_state=0 ).fit_transform(qestn_tagsmap_ohe)
)
corr_comps = StandardScaler().fit_transform(
PCA(n_components=9, random_state=0 ).fit_transform(cor_table)
)
comb_comps = np.concatenate([tags_comps,corr_comps], axis = 1)
ctnt_enc = PCA(n_components=1, random_state=0)\
.fit_transform(comb_comps ).astype(np.float32 ).ravel()<load_pretrained> | X_train, X_test, y_train, y_test = train_test_split(X_model, y_model, test_size=0.2 ) | Digit Recognizer |
3,081,290 | def get_train_small(t_part:int):
all_files = glob.glob('.. /input/riiid-parquets-v5/df_*')
read_files = [file for file in all_files if file.endswith('_'+str(t_part)) ]
df = pd.read_parquet(read_files[0])
return df<load_pretrained> | X_train_add = X_train.append(img_zoom(X_train, 0.2))
X_train_add = X_train_add.append(img_zoom(X_train, -0.3))
X_train_add = X_train_add.append(img_rotate(X_train, 11))
X_train_add = X_train_add.append(img_rotate(X_train, -11))
y_train_add = y_train.append(y_train)
y_train_add = y_train_add.append(y_train)
y_train_add = y_train_add.append(y_train)
y_train_add = y_train_add.append(y_train)
X_train = X_train_add.copy()
y_train = y_train_add.copy()
X_train, y_train = shuffle(X_train, y_train ) | Digit Recognizer |
3,081,290 | def get_train_large(t_part:int, columns:list):
all_files = glob.glob('.. /input/riiid-parquets-v5/df_*')
read_files = [file for file in all_files if not file.endswith('_'+str(t_part)) ]
df = pd.concat([pd.read_parquet(file, columns = columns)for file in read_files])
return df<groupby> | X_train = X_train.values.reshape(X_train.shape[0], 28, 28 ,1)
X_train = X_train.astype('float32')/ 255
X_test = X_test.values.reshape(X_test.shape[0], 28, 28, 1)
X_test = X_test.astype('float32')/ 255
Y_finish = Y_finish.values.reshape(Y_finish.shape[0], 28, 28 ,1)
Y_finish = Y_finish.astype('float32')/ 255 | Digit Recognizer |
3,081,290 | def get_train_groups(t_part:int):
df = get_train_small(t_part)
groups = []
for i in np.arange(0, 10000, dtype = np.int16):
group = df.loc[df.new_order == i].reset_index(drop = True)
groups.append(group)
return groups<data_type_conversions> | def build_model() :
model = models.Sequential()
model.add(layers.Conv2D(32,(3,3), activation='relu', input_shape=(28,28,1)))
model.add(layers.MaxPooling2D(( 2,2)))
model.add(layers.Dropout(0.12))
model.add(layers.Conv2D(64,(3,3), activation='relu'))
model.add(layers.MaxPooling2D(( 2,2)))
model.add(layers.Dropout(0.12))
model.add(layers.Conv2D(64,(3,3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dropout(0.12))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
opt = optimizers.Adam(lr=0.0015, beta_1=0.9, beta_2=0.99, epsilon=None, decay=0.0, amsgrad=False)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model | Digit Recognizer |
3,081,290 | def get_arrays_and_lists() :
global next_uplace,\
au_ctntid,\
a_userid,\
lu_seq,\
lu_seq_part,\
au_anshar,\
au_ctshar,\
user_map,\
au_tmstmp_prv
au_ctntid = np.zeros(( max_users, max_content, 3), dtype = np.int8)
a_userid = np.zeros(( max_users, 2), dtype = np.int16)
au_anshar = np.zeros(( max_users, 2), dtype = np.float32)
au_ctshar = np.zeros(( max_users, 2), dtype = np.float32)
user_map = np.zeros(np.iinfo(np.int32 ).max,dtype = np.int32)
next_uplace = np.int32(1)
au_tmstmp_prv = np.zeros(( max_users,3), dtype = np.float32)
lu_seq = [[] for _ in range(max_users)]
lu_seq_part = [[[],[],[],[],[],[],[]] for _ in range(max_users)]
<categorify> | y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
cnn = build_model()
cnn.fit(X_train,
y_train,
epochs=4,
batch_size=64 ) | Digit Recognizer |
3,081,290 | def update_user_map(unique_users):
global next_uplace
for u in unique_users:
if user_map[u] == int32_0:
user_map[u] = next_uplace
next_uplace += int32_1<feature_engineering> | test_loss, test_acc = cnn.evaluate(X_test, y_test)
test_acc | Digit Recognizer |
3,081,290 | def update_arrays(df):
tmstmp,userid,ctntid,ctnttp,contnr,pqtime,pqexpl,usrans,anscor = df_to_np(df,False,True)
for r in range(len(df)) :
user_ = user_map[userid[r]]
if tmstmp[r] > au_tmstmp_prv[user_,0]:
au_tmstmp_prv[user_,2] = au_tmstmp_prv[user_,1]
au_tmstmp_prv[user_,1] = au_tmstmp_prv[user_,0]
au_tmstmp_prv[user_,0] = tmstmp[r]
if ctnttp[r] == int8_0:
lsu = lu_seq[user_]
lsup = lu_seq_part[user_][qestn_partmap[ctntid[r]]]
bndl_ = qestn_bndlmap[ctntid[r]]
ctnt_ = ctntid[r]
if len(lsu)>m: lsu.pop(0)
if len(lsup)>m: lsup.pop(0)
au_ctntid[user_,ctnt_,1] += int8_1
au_ctntid[user_,ctnt_,2] = usrans[r]
if anscor[r] == int8_1:
a_userid[user_,0] += int16_1
au_ctntid[user_,ctnt_,0] = int8_1
lsu.append(True)
lsup.append(True)
au_anshar[user_, 0] += ca_shares_all[ctnt_,usrans[r]]
au_ctshar[user_, 0] += ctnt_fam[ctnt_]
else:
a_userid[user_,1] += int16_1
au_ctntid[user_,ctnt_,0] = int8_0
lsu.append(False)
lsup.append(False)
au_anshar[user_, 1] += ca_shares_all[ctnt_,usrans[r]]
au_ctshar[user_, 1] += ctnt_fam[ctnt_]
<categorify> | predict_test = cnn.predict_classes(X_test)
y_correct = np.argmax(y_test, axis=1)
correct_idx = np.nonzero(predict_test==y_correct)
incorrect_idx = np.nonzero(predict_test!=y_correct ) | Digit Recognizer |
3,081,290 | def get_features(df, is_test:bool):
if is_test:
tmstmp,userid,ctntid,ctnttp,contnr,pqtime,pqexpl=\
df_to_np(df,True,False)
else:
tmstmp,userid,ctntid,ctnttp,contnr,pqtime,pqexpl,usrans,anscor=\
df_to_np(df,True,True)
user = user_map[userid]
part = qestn_partmap[ctntid]
userid_ctntid_ = au_ctntid[user,ctntid]
userid_ = a_userid[user,:]
userid_avg_ =(userid_[:,0]/(userid_[:,0]+userid_[:,1]+int16_1)).astype(np.float32)
cp_ = ac_pqexpl[ctntid,pqexpl,:]
ctntid_pqexpl_avg_ =(cp_[:,0]/(cp_[:,0]+cp_[:,1]+int32_1)).astype(np.float32)
uanshar_ = au_anshar[user, :]
uanshar_fls =(uanshar_[:,1]/(userid_[:,1]+e)).astype(np.float32)
uctshar_ = au_ctshar[user, :]
uctshar_slf =(uctshar_[:,0]/(uctshar_[:,0]+uctshar_[:,1]+e)).astype(np.float32)
uctshar_cor =(uctshar_[:,0]/(userid_[:,0]+e)).astype(np.float32)
uctshar_fls =(uctshar_[:,1]/(userid_[:,1]+e)).astype(np.float32)
correlation_ids = cor_table[ctntid]
neigh = au_ctntid[user.reshape(-1,1),correlation_ids,:]
all_ans_cnt = np.count_nonzero(neigh[:,:,1],axis = 1 ).astype(np.int16)
cor_ans_cnt = np.count_nonzero(neigh[:,:,0],axis = 1 ).astype(np.int16)
fls_ans_cnt = all_ans_cnt - cor_ans_cnt
neigh_ca_shrs_all = ca_shares_all[correlation_ids,neigh[:,:,2]]*(neigh[:,:,1]!=int8_0)
cor_shrs_all =(( neigh_ca_shrs_all*(neigh[:,:,0]==int8_1)).sum(axis = 1)/
(cor_ans_cnt+e)).astype(np.float32)
fls_shrs_all =(( neigh_ca_shrs_all*(neigh[:,:,0]==int8_0)).sum(axis = 1)/
(fls_ans_cnt+e)).astype(np.float32)
lu_seq_ = [lu_seq[u] for u in user]
lst_m_avg = np.array(
[x.count(True)/(len(x)+e)for x in lu_seq_],
dtype = np.float32)
lst_s_avg = np.array(
[x[-s:].count(True)/(len(x[-s:])+e)for x in lu_seq_],
dtype = np.float32)
lu_seq_part_ = [lu_seq_part[u][part[_]] for _, u in enumerate(user)]
lst_part_m_avg = np.array(
[x.count(True)/(len(x)+e)for x in lu_seq_part_],
dtype = np.float32)
lst_part_s_avg = np.array(
[x[-s:].count(True)/(len(x[-s:])+e)for x in lu_seq_part_],
dtype = np.float32)
X = pd.DataFrame({
'part':part,
'prior_explanation':pqexpl,
'prior_elapsed_time':pqtime,
'content':ctntid,
'ctntent_encoded':ctnt_enc[ctntid],
'task_container':contnr,
'time_to_cont_1':tmstmp - au_tmstmp_prv[user,0],
'time_to_cont_3':tmstmp - au_tmstmp_prv[user,2],
'time_cont1_to_cont2':au_tmstmp_prv[user,0] - au_tmstmp_prv[user,1],
'time_cont2_to_cont3':au_tmstmp_prv[user,1] - au_tmstmp_prv[user,2],
'user_content_attempts':userid_ctntid_[:,1],
'user_content_last_1':userid_ctntid_[:,0],
'user_part_last_m_avg':lst_part_m_avg,
'user_part_last_s_avg':lst_part_s_avg,
'user_last_m_avg':lst_m_avg,
'user_last_s_avg':lst_s_avg,
'content_explanation_avg':ctntid_pqexpl_avg_,
'content_first_answer_avg':ctnt_fam[ctntid],
'content_avg_time':ctnt_mtime[ctntid],
'user_relative_content_avg':uctshar_slf,
'user_true_content_avg':uctshar_cor,
'user_false_content_avg':uctshar_fls,
'user_false_answer_avg':uanshar_fls,
'neighbor_content_true_shares':cor_shrs_all,
'neighbor_content_false_shares':fls_shrs_all,
})
if is_test:
return X
else:
return X, anscor
<init_hyperparams> | target_names = ["Class {}".format(i)for i in range(10)]
print(classification_report(y_correct, predict_test, target_names=target_names)) | Digit Recognizer |
3,081,290 | %%time
uint8_0 = np.uint8(0)
uint8_1 = np.uint8(1)
uint16_0 = np.uint16(0)
uint16_1 = np.uint16(1)
int8_0 = np.int8(0)
int8_1 = np.int8(1)
int16_0 = np.int16(0)
int16_1 = np.int16(1)
int32_0 = np.int32(0)
int32_1 = np.int32(1)
float32m1 = np.float32(-1)
max_users = 450000
max_content = 13523
m = 100
s = 20
e = 0.1
question_maps()
lecture_maps()
get_cor_table()
get_content_answer_shares()
get_ac_pqexpl()
get_content_first_answer_mean()
get_ctnt_enc()
ctnt_mtime = np.load('.. /input/question-duration/question_mean_time.npy' )<categorify> | predict = cnn.predict_classes(Y_finish ) | Digit Recognizer |
3,081,290 | %%time
if global_test == 1:
for i in tqdm(range(10)) :
X = []
y = []
get_arrays_and_lists()
groups = get_train_groups(i)
for df in groups:
update_user_map(df.user_id.unique())
X_, y_ = get_features(df,False)
X.append(X_)
y.append(y_)
update_arrays(df)
del(groups)
X = pd.concat(X)
y = np.concatenate(y)
X.to_parquet('X_'+str(i))
np.save('y_'+str(i), y )<load_pretrained> | df_out = pd.DataFrame({'ImageId': range(1, len(predict)+1),
'Label': predict} ) | Digit Recognizer |
3,081,290 | <split><EOS> | df_out.to_csv('mnist_cnn.csv', index=False, header=True ) | Digit Recognizer |
2,858,410 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering> | %matplotlib inline
plt.rcParams['figure.figsize'] =(5.0, 4.0)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
print(os.listdir(".. /input"))
np.random.seed(2)
| Digit Recognizer |
2,858,410 | %%time
if global_test == 2:
old_df = None
for(new_df, sample)in iter_test:
if old_df is not None:
old_df['user_answer'] = np.array(
[int(x)for x in new_df.iloc[0,9][1:-1].split(', ')], dtype = np.int8)
old_df['answered_correctly'] = np.array(
[int(x)for x in new_df.iloc[0,8][1:-1].split(', ')], dtype = np.int8)
update_arrays(old_df)
old_df = new_df.iloc[:,:8].copy()
update_user_map(new_df.user_id.unique())
X = get_features(new_df, True)
sample['answered_correctly'] =(
model1.predict_proba(X)[:,1]/2 + model2.predict_proba(X)[:,1]/2
)
env.predict(sample )<import_modules> | def convert_to_one_hot(Y, C):
Y = np.eye(C)[Y.reshape(-1)]
return Y | Digit Recognizer |
2,858,410 | import pandas as pd
import numpy as np
import gc
import pickle
import psutil
import joblib
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import sqlite3<define_search_space> | def read_csv(filename):
X,Y=[],[]
test=pd.read_csv(filename)
if filename.find("train.csv")>0:
Y=test.iloc[:,0].values
Y=convert_to_one_hot(Y,10)
X=test.iloc[:,1:785].values
else:
X=test.iloc[:,0:784].values
return X, Y | Digit Recognizer |
2,858,410 | c1, c1_2, c2, c3 , c4 = 0.175, 0.075, 0.25, 0.25, 0.25<init_hyperparams> | def write_csv(filename,predictions):
my_submission = pd.DataFrame({'ImageId': range(1,predictions.shape[0]+1), 'Label': predictions})
my_submission.to_csv('submission.csv', index=False)
| Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.