kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
2,858,410 | MAX_SEQ = 100
n_part = 7
D_MODEL = 256
N_LAYER = 2
DROPOUT = 0.1<feature_engineering> | X_train,Y_train=read_csv(".. /input/train.csv")
X_test,_=read_csv(".. /input/test.csv")
m,pixels=X_train.shape
classes=10
height,width,channels=28,28,1
X_train, X_test=X_train/255, X_test/255
X_train=X_train.reshape(-1,height,width,channels)
X_test=X_test.reshape(-1,height,width,channels)
print(Y_train.shape,X_train.shape,X_test.shape)
random_seed = 2
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=random_seed)
print(Y_train.shape,X_train.shape,X_test.shape,X_val.shape,Y_val.shape ) | Digit Recognizer |
2,858,410 | def feature_time_lag(df, time_dict):
tt = np.zeros(len(df), dtype=np.int64)
for ind, row in enumerate(df[['user_id','timestamp','task_container_id']].values):
if row[0] in time_dict.keys() :
if row[2]-time_dict[row[0]][1] == 0:
tt[ind] = time_dict[row[0]][2]
else:
t_last = time_dict[row[0]][0]
task_ind_last = time_dict[row[0]][1]
tt[ind] = row[1]-t_last
time_dict[row[0]] =(row[1], row[2], tt[ind])
else:
time_dict[row[0]] =(row[1], row[2], -1)
tt[ind] = 0
df["time_lag"] = tt
return df<define_search_model> | def DigitalRecognizerModel(input_shape):
X_input = Input(input_shape)
X=Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))(X_input)
X=Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu' )(X)
X=MaxPooling2D(pool_size=(2,2))(X)
X=Dropout(0.25 )(X)
X=Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu' )(X)
X=Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu' )(X)
X=MaxPooling2D(pool_size=(2,2), strides=(2,2))(X)
X=Dropout(0.25 )(X)
X=Flatten()(X)
X=Dense(256, activation = "relu" )(X)
X=Dropout(0.5 )(X)
X=Dense(10, activation = "softmax" )(X)
model = Model(inputs = X_input, outputs = X, name='DigitalRecognizer')
return model | Digit Recognizer |
2,858,410 | class FFN(nn.Module):
def __init__(self, state_size=200):
super(FFN, self ).__init__()
self.state_size = state_size
self.lr1 = nn.Linear(state_size, state_size)
self.relu = nn.ReLU()
self.lr2 = nn.Linear(state_size, state_size)
self.dropout = nn.Dropout(DROPOUT)
def forward(self, x):
x = self.lr1(x)
x = self.relu(x)
x = self.lr2(x)
return self.dropout(x)
def future_mask(seq_length):
future_mask = np.triu(np.ones(( seq_length, seq_length)) , k=1 ).astype('bool')
return torch.from_numpy(future_mask)
class SAINTModel(nn.Module):
def __init__(self, n_skill, n_part, max_seq=MAX_SEQ, embed_dim= 128, elapsed_time_cat_flag = True):
super(SAINTModel, self ).__init__()
self.n_skill = n_skill
self.embed_dim = embed_dim
self.n_cat = n_part
self.elapsed_time_cat_flag = elapsed_time_cat_flag
self.e_embedding = nn.Embedding(self.n_skill+1, embed_dim)
self.c_embedding = nn.Embedding(self.n_cat+1, embed_dim)
self.pos_embedding = nn.Embedding(max_seq-1, embed_dim)
self.res_embedding = nn.Embedding(2+1, embed_dim)
if self.elapsed_time_cat_flag == True:
self.elapsed_time_embedding = nn.Embedding(300+1, embed_dim)
self.lag_embedding1 = nn.Embedding(300+1, embed_dim)
self.lag_embedding2 = nn.Embedding(1440+1, embed_dim)
self.lag_embedding3 = nn.Embedding(365+1, embed_dim)
else:
self.elapsed_time_embedding = nn.Linear(1, embed_dim, bias=False)
self.lag_embedding = nn.Linear(1, embed_dim, bias=False)
self.exp_embedding = nn.Embedding(2+1, embed_dim)
self.transformer = nn.Transformer(nhead=8, d_model = embed_dim, num_encoder_layers= N_LAYER, num_decoder_layers= N_LAYER, dropout = DROPOUT)
self.dropout = nn.Dropout(DROPOUT)
self.layer_normal = nn.LayerNorm(embed_dim)
self.ffn = FFN(embed_dim)
self.pred = nn.Linear(embed_dim, 1)
def forward(self, question, part, response, elapsed_time, lag_time, exp):
device = question.device
question = self.e_embedding(question)
part = self.c_embedding(part)
pos_id = torch.arange(question.size(1)).unsqueeze(0 ).to(device)
pos_id = self.pos_embedding(pos_id)
res = self.res_embedding(response)
exp = self.exp_embedding(exp)
if self.elapsed_time_cat_flag == True:
elapsed_time = torch.true_divide(elapsed_time, 1000)
elapsed_time = torch.round(elapsed_time)
elapsed_time = torch.where(elapsed_time.float() <= 300, elapsed_time, torch.tensor(300.0 ).to(device)).long()
elapsed_time = self.elapsed_time_embedding(elapsed_time)
lag_time = torch.true_divide(lag_time, 1000)
lag_time = torch.round(lag_time)
lag_time1 = torch.where(lag_time.float() <= 300, lag_time, torch.tensor(300.0 ).to(device)).long()
lag_time = torch.true_divide(lag_time, 60)
lag_time = torch.round(lag_time)
lag_time2 = torch.where(lag_time.float() <= 1440, lag_time, torch.tensor(1440.0 ).to(device)).long()
lag_time = torch.true_divide(lag_time, 1440)
lag_time = torch.round(lag_time)
lag_time3 = torch.where(lag_time.float() <= 365, lag_time, torch.tensor(365.0 ).to(device)).long()
lag_time1 = self.lag_embedding1(lag_time1)
lag_time2 = self.lag_embedding2(lag_time2)
lag_time3 = self.lag_embedding3(lag_time3)
else:
elapsed_time = elapsed_time.view(-1,1)
elapsed_time = self.elapsed_time_embedding(elapsed_time)
elapsed_time = elapsed_time.view(-1, MAX_SEQ-1, self.embed_dim)
lag_time = lag_time.view(-1,1)
lag_time = self.lag_embedding(lag_time)
lag_time = lag_time.view(-1, MAX_SEQ-1, self.embed_dim)
enc = question + part + pos_id + exp
dec = pos_id + res + elapsed_time + lag_time1 + lag_time2 + lag_time3
enc = enc.permute(1, 0, 2)
dec = dec.permute(1, 0, 2)
mask = future_mask(enc.size(0)).to(device)
att_output = self.transformer(enc, dec, src_mask=mask, tgt_mask=mask, memory_mask = mask)
att_output = self.layer_normal(att_output)
att_output = att_output.permute(1, 0, 2)
x = self.ffn(att_output)
x = self.layer_normal(x + att_output)
x = self.pred(x)
return x.squeeze(-1 )<load_from_csv> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
2,858,410 | n_skill = 13523
group = joblib.load(".. /input/saint-plus-data-new/group_20210102.pkl.zip")
questions_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/questions.csv')
time_dict = joblib.load(".. /input/saint-plus-data-new/time_dict.pkl.zip" )<load_pretrained> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 ) | Digit Recognizer |
2,858,410 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model1 = SAINTModel(n_skill, n_part, embed_dim= D_MODEL)
try:
model1.load_state_dict(torch.load(".. /input/saint-plus-model/saint_plus_model_20210102_padding_v2.pt"))
except:
model1.load_state_dict(torch.load(".. /input/saint-plus-model/saint_plus_model_20210102_padding_v2.pt", map_location='cpu'))
model1.to(device)
model1.eval()<load_pretrained> | digitalRecognizerModel = DigitalRecognizerModel(X_train[0].shape)
digitalRecognizerModel.compile(optimizer = "Adam", loss = "binary_crossentropy", metrics = ["accuracy"])
history = digitalRecognizerModel.fit_generator(datagen.flow(X_train,Y_train, batch_size=62),
epochs = 30, validation_data =(X_val,Y_val),
verbose = 2, steps_per_epoch=610,callbacks=[learning_rate_reduction] ) | Digit Recognizer |
2,858,410 | <define_variables><EOS> | print("Time Start:" ,time.time())
val_predictions=digitalRecognizerModel.predict(X_val)
correct_val_predictions=np.mean(np.equal(np.argmax(val_predictions,axis=1), np.argmax(Y_val,axis=1)))
print("Validation Accuracy",correct_val_predictions)
test_predictions=digitalRecognizerModel.predict(X_test)
correct_test_predictions=np.argmax(test_predictions,axis=1)
write_csv('submission.csv',correct_test_predictions)
print("Time End:" ,int(round(time.time())) ) | Digit Recognizer |
594,887 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_pretrained> | df_train = pd.read_csv('.. /input/train.csv')
df_test = pd.read_csv('.. /input/test.csv' ) | Digit Recognizer |
594,887 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model2 = SAINTModel(n_skill, n_part, embed_dim= D_MODEL)
try:
model2.load_state_dict(torch.load(".. /input/saint-plus-model/saint_plus_model_20210103.pt_v2"))
except:
model2.load_state_dict(torch.load(".. /input/saint-plus-model/saint_plus_model_20210103.pt_v2", map_location='cpu'))
model2.to(device)
model2.eval()<load_pretrained> | from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.utils import np_utils
from keras.optimizers import RMSprop
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split | Digit Recognizer |
594,887 | lt_correct_dict = pickle.load(open('.. /input/arvis-feature/last_timestamp_correct.pkl', 'rb'))
np_uq_td = pickle.load(open(".. /input/uq-data/np_uq_td_0518.pkl.data","rb"))
curr_u_dict = pickle.load(open(".. /input/uq-data/curr_u_dict_0614_only_user_three_time_diff.pkl.data","rb"))
max_timestamp_u_dict = pickle.load(open(".. /input/arvis-feature/max_timestamp_u_dict_2015.pkl","rb"))
max_timestamp_u_dict2 = pickle.load(open(".. /input/arvis-feature/max_timestamp_u_dict2_2015.pkl","rb"))
max_timestamp_u_dict3 = pickle.load(open(".. /input/arvis-feature/max_timestamp_u_dict3_2015.pkl","rb"))<feature_engineering> | df_train_x = df_train.iloc[:,1:]
df_train_y = df_train.iloc[:,:1] | Digit Recognizer |
594,887 | def add_uq_feats_and_update(df):
conn = sqlite3.connect('user_ques_db.db')
cursor = conn.cursor()
global idx
uq_timediff = np.zeros(len(df), dtype=np.uint64)
for cnt,row in enumerate(df[['user_id','content_id','timestamp']].itertuples(index=False)) :
cursor.execute(f'select idx from user where user_id = {row[0]} and content_id = {row[1]}')
tmp_idx = cursor.fetchall()
if tmp_idx == []:
uq_timediff[cnt] = 0
np_uq_td[idx] = row[2]
cursor.execute(f'insert into user(user_id, content_id, idx)values({row[0]}, {row[1]}, {idx})')
idx += 1
else:
tmp_idx = tmp_idx[0][0]
uq_timediff[cnt] = row[2] - np_uq_td[tmp_idx]
np_uq_td[tmp_idx] = row[2]
cursor.close()
conn.commit()
conn.close()
uq_feats_df = pd.DataFrame({'curr_uq_time_diff':uq_timediff})
df = pd.concat([df, uq_feats_df], axis=1)
return df<feature_engineering> | def cnn_model(result_class_size):
model = Sequential()
model.add(Conv2D(32,(5, 5), input_shape=(28,28,1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(16,(3, 3), activation='relu'))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(130, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(result_class_size, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=RMSprop() , metrics=['accuracy'])
return model | Digit Recognizer |
594,887 | def add_user_feats_without_update(df):
utdiff = np.zeros(len(df), dtype=np.uint64)
utdiff_mean = np.zeros(len(df), dtype=np.uint64)
uelapdiff = np.zeros(len(df), dtype=np.float32)
for cnt,row in enumerate(df[['user_id','timestamp','prior_question_elapsed_time']].itertuples(index=False)) :
if row[0] in curr_u_dict:
utdiff[cnt] = row[1] - curr_u_dict[row[0]]["uts"]
utdiff_mean[cnt] = curr_u_dict[row[0]]["utsdiff"][1] / curr_u_dict[row[0]]["utsdiff"][0]
uelapdiff[cnt] = row[2] - curr_u_dict[row[0]]["uelapdiff"]
else:
utdiff[cnt] = 0; utdiff_mean[cnt] = 0; uelapdiff[cnt] = 0;
user_feats_df = pd.DataFrame({'curr_user_time_diff':utdiff, 'curr_user_time_diff_mean':utdiff_mean,
'curr_user_elapsed_time_diff':uelapdiff
})
user_feats_df['curr_user_elapsed_time_diff'].fillna(0, inplace=True)
df = pd.concat([df, user_feats_df], axis=1)
return df
def update_user_feats(df):
for cnt,row in enumerate(df[['user_id','content_id','answered_correctly','timestamp','prior_question_elapsed_time']].itertuples(index=False)) :
if row[0] in curr_u_dict:
curr_u_dict[row[0]]["uts"] = row[3]
curr_u_dict[row[0]]["utsdiff"][0] += 1
curr_u_dict[row[0]]["utsdiff"][1] += row[3]
curr_u_dict[row[0]]["uelapdiff"] = row[4]
else:
curr_u_dict[row[0]] = {}
curr_u_dict[row[0]]["uts"] = row[3]
curr_u_dict[row[0]]["utsdiff"] = [1, row[3]]
curr_u_dict[row[0]]["uelapdiff"] = row[4]<categorify> | df_test = df_test / 255
df_train_x = df_train_x / 255 | Digit Recognizer |
594,887 | def add_user_feats(df):
utdiff = np.zeros(len(df), dtype=np.uint64)
utdiff_mean = np.zeros(len(df), dtype=np.uint64)
uelapdiff = np.zeros(len(df), dtype=np.float32)
for cnt,row in enumerate(tqdm(df[['user_id','content_id','answered_correctly',
'timestamp','prior_question_elapsed_time',
]].itertuples(index=False),total=df.shape[0])) :
if row[0] in curr_u_dict:
utdiff[cnt] = row[3] - curr_u_dict[row[0]]["uts"]
utdiff_mean[cnt] = curr_u_dict[row[0]]["utsdiff"][1] / curr_u_dict[row[0]]["utsdiff"][0]
uelapdiff[cnt] = row[4] - curr_u_dict[row[0]]["uelapdiff"]
curr_u_dict[row[0]]["uts"] = row[3]
curr_u_dict[row[0]]["utsdiff"][0] += 1
curr_u_dict[row[0]]["utsdiff"][1] += row[3]
curr_u_dict[row[0]]["uelapdiff"] = row[4]
else:
utdiff[cnt] = 0; utdiff_mean[cnt] = 0; uelapdiff[cnt] = 0;
curr_u_dict[row[0]] = {}
curr_u_dict[row[0]]["uts"] = row[3]
curr_u_dict[row[0]]["utsdiff"] = [1, row[3]]
curr_u_dict[row[0]]["uelapdiff"] = row[4]
user_feats_df = pd.DataFrame({
'curr_user_time_diff':utdiff, 'curr_user_time_diff_mean':utdiff_mean,
'curr_user_elapsed_time_diff':uelapdiff
})
user_feats_df['curr_user_elapsed_time_diff'].fillna(0, inplace=True)
df = pd.concat([df, user_feats_df], axis=1)
return df
<categorify> | arr_train_x_28x28 = np.reshape(df_train_x.values,(df_train_x.values.shape[0], 28, 28, 1))
arr_test_x_28x28 = np.reshape(df_test.values,(df_test.values.shape[0], 28, 28, 1)) | Digit Recognizer |
594,887 | def lagtime_for_test(df):
lagtime_mean = 0
lagtime_mean2 = 0
lagtime_mean3 = 0
lagtime = np.zeros(len(df), dtype=np.float32)
lagtime2 = np.zeros(len(df), dtype=np.float32)
lagtime3 = np.zeros(len(df), dtype=np.float32)
for i,(user_id,
content_type_id,
timestamp,
content_id,)in enumerate(zip(df['user_id'].values, df['content_type_id'].values, df['timestamp'].values, df['content_id'].values)) :
if content_type_id==0:
if user_id in max_timestamp_u_dict['max_time_stamp'].keys() :
lagtime[i]=timestamp-max_timestamp_u_dict['max_time_stamp'][user_id]
if(max_timestamp_u_dict2['max_time_stamp2'][user_id]==lagtime_mean2):
lagtime2[i]=lagtime_mean2
lagtime3[i]=lagtime_mean3
else:
lagtime2[i]=timestamp-max_timestamp_u_dict2['max_time_stamp2'][user_id]
if(max_timestamp_u_dict3['max_time_stamp3'][user_id]==lagtime_mean3):
lagtime3[i]=lagtime_mean3
else:
lagtime3[i]=timestamp-max_timestamp_u_dict3['max_time_stamp3'][user_id]
max_timestamp_u_dict3['max_time_stamp3'][user_id]=max_timestamp_u_dict2['max_time_stamp2'][user_id]
max_timestamp_u_dict2['max_time_stamp2'][user_id]=max_timestamp_u_dict['max_time_stamp'][user_id]
max_timestamp_u_dict['max_time_stamp'][user_id]=timestamp
else:
lagtime[i]=lagtime_mean
max_timestamp_u_dict['max_time_stamp'].update({user_id:timestamp})
lagtime2[i]=lagtime_mean2
max_timestamp_u_dict2['max_time_stamp2'].update({user_id:lagtime_mean2})
lagtime3[i]=lagtime_mean3
max_timestamp_u_dict3['max_time_stamp3'].update({user_id:lagtime_mean3})
df["lag_time"]= lagtime
df["lag_time2"]= lagtime2
df["lag_time3"]= lagtime3
df["lag_time"].fillna(-1, inplace=True)
df["lag_time2"].fillna(-1, inplace=True)
df["lag_time3"].fillna(-1, inplace=True)
df['lag_time'] = df['lag_time'].replace(0, method="ffill")
df['lag_time2'] = df['lag_time2'].replace(0, method="ffill")
df['lag_time3'] = df['lag_time3'].replace(0, method="ffill")
df["lag_time"] = df["lag_time"].astype("uint64")
df["lag_time2"] = df["lag_time2"].astype("uint64")
df["lag_time3"] = df["lag_time3"].astype("uint64")
return df<categorify> | random_seed = 3
split_train_x, split_val_x, split_train_y, split_val_y, = train_test_split(arr_train_x_28x28, arr_train_y, test_size = 0.08, random_state=random_seed ) | Digit Recognizer |
594,887 | def add_feats(df_np, feat_dict, col_idx, col_feat):
current_feat_value = np.zeros(len(df_np))
for cnt, row in enumerate(df_np[:,[col_idx, col_feat]]):
current_feat_value[cnt] = feat_dict[row[0]]
feat_dict[row[0]] += row[1]
df_np[:, col_feat] = current_feat_value
return df_np
def add_feats_from_dict(df_np, feat_dict, col_idx, col_dict=-1):
current_feat_value = np.zeros(len(df_np))
for cnt, idx in enumerate(df_np[:,col_idx]):
if col_dict == -1: current_feat_value[cnt] = feat_dict[idx]
else: current_feat_value[cnt] = feat_dict[idx][col_dict]
return(np.c_[ df_np, current_feat_value ])
def add_feats_from_dict_got_new_user(df_np, feat_dict, col_idx, col_dict=-1):
current_feat_value = np.zeros(len(df_np))
for cnt, idx in enumerate(df_np[:,col_idx]):
if idx in feat_dict.keys() :
if col_dict == -1: current_feat_value[cnt] = feat_dict[idx]
else: current_feat_value[cnt] = feat_dict[idx][col_dict]
else:
if col_dict == -1: current_feat_value[cnt] = feat_dict[-100]
else: current_feat_value[cnt] = feat_dict[-100][col_dict]
feat_dict[idx] = feat_dict[-100]
return(np.c_[ df_np, current_feat_value ])
def update_dict(df_pd, feat_dict, col_idx, col_feat, col_dict=-1):
for row in df_pd[['content_type_id', col_idx, col_feat]].values:
if row[0] == 0:
if col_dict == -1: feat_dict[row[1]] += row[2]
else: feat_dict[row[1]][col_dict] += row[2]
def add_ohe(df, col_feat, oh_value):
return(np.c_[ df, np.array([int(i == oh_value)for i in df[:,col_feat]])])
def user_slice_accuracy_n_get(df_pd, feat_dict):
global_first_question_accuracy = 0.6453965159034877
current_list = np.zeros(len(df_pd))
for cnt,(user, content_type_id)in enumerate(df_pd[['user_id', 'content_type_id']].values):
if content_type_id == 0:
if user in feat_dict:
current_list[cnt] = np.mean(feat_dict[user])
else:
current_list[cnt] = 0.6454
else:
current_list[cnt] = 0
return current_list
def user_slice_accuracy_n_update(df_pd, feat_dict, border=5):
for cnt,(user, answer)in enumerate(df_pd[['user_id', 'answered_correctly']].values):
if user in feat_dict:
feat_dict[user].append(answer)
feat_dict[user] = feat_dict[user][-border:]
else:
feat_dict[user] = [answer]
return feat_dict
def user_slice_accuracy_session_get(df_pd, feat_dict, session_max_time=12):
current_list = np.zeros(len(df_pd))
for cnt,(user, timestamp, content_type_id)in enumerate(df_pd[['user_id', 'timestamp', 'content_type_id']].values):
if content_type_id == 0:
if user in feat_dict:
time_delta_h =(timestamp - feat_dict[user][1])/ 1000 / 60 / 60
if time_delta_h < session_max_time:
current_list[cnt] = np.mean(feat_dict[user][0])
else:
current_list[cnt] = 0.67
else:
current_list[cnt] = 0.67
else: current_list[cnt] = 0
return current_list
def user_slice_accuracy_session_update(df_pd, feat_dict, session_max_time=12):
for cnt,(user, answer, timestamp)in enumerate(df_pd[['user_id', 'answered_correctly', 'timestamp']].values):
if user in feat_dict:
time_delta_h =(timestamp - feat_dict[user][1])/ 1000 / 60 / 60
if time_delta_h < session_max_time:
feat_dict[user][0].append(answer)
feat_dict[user][1] = timestamp
else:
feat_dict[user][0] = [answer]
feat_dict[user][1] = timestamp
else:
feat_dict[user] = [[answer], timestamp]
return feat_dict
def user_question_attempt_cnt_get_update(df_pd, feat_dict):
current_feat_value = np.zeros(len(df_pd))
for idx,(user_id, content_id, content_type_id)in enumerate(df_pd[['user_id', 'content_id', 'content_type_id']].values):
if content_type_id == 0:
current_feat_value[idx] = list(feat_dict[user_id] ).count(content_id)
feat_dict[user_id] = np.append(feat_dict[user_id], content_id)
else:
current_feat_value[idx] = 0
return current_feat_value
def user_lectures_part(df_pd, feat_dict):
current_list = np.zeros(len(df_pd))
for cnt,(user, content_type_id, part_q, part_l)in enumerate(df_pd[['user_id', 'content_type_id', 'part_q', 'part_l']].values):
part_q = max(0, part_q)
if content_type_id == 0:
if user in feat_dict:
current_list[cnt] = feat_dict[user][part_q]
else:
feat_dict[user] = [0] * 8
current_list[cnt] = 0
else:
if user in feat_dict:
feat_dict[user][part_l] += 1
else:
feat_dict[user] = [0] * 8
feat_dict[user][part_l] += 1
current_list[cnt] = 0
return current_list
def user_lecture_cnt(df_pd, feat_dict):
current_list = np.zeros(len(df_pd))
for cnt, user in enumerate(df_pd['user_id'].values):
if user in feat_dict:
current_list[cnt] = sum(feat_dict[user])
else:
current_list[cnt] = 0
return current_list
def user_l_q_tag_equal(df_pd, feat_dict):
current_list = np.zeros(len(df_pd))
for idx,(user, content_type_id, tag, tags_list)in enumerate(df_pd[['user_id', 'content_type_id', 'tag_l', 'tags_list']].values):
if content_type_id == 0:
current_list[idx] = len(set(feat_dict[user])& set(tags_list))
else:
feat_dict[user].append(int(tag))
current_list[idx] = 0
return current_list
def get_q_l(df_pd, feat_dict, key):
current_list = []
for idx, content_id in enumerate(df_pd['content_id'].values):
if content_id in feat_dict:
current_list.append(feat_dict[content_id][key])
else:
current_list.append(-100)
return current_list
def dict_user_timestampsdelta_get_update_3(df, feat_dict):
q_list = np.zeros(( len(df), 3), dtype = np.float32)
l_list = np.zeros(( len(df), 3), dtype = np.float32)
for cnt,(user_id, timestamp, content_type_id)in enumerate(df[['user_id', 'timestamp', 'content_type_id']].values):
timestamp = timestamp / 1000 / 60
if user_id in feat_dict:
q_list[cnt] = np.array([timestamp - t for t in feat_dict[user_id][0]])
l_list[cnt] = np.array([timestamp - t for t in feat_dict[user_id][1]])
feat_dict[user_id][int(content_type_id)].pop(0)
feat_dict[user_id][int(content_type_id)].append(timestamp)
else:
if content_type_id == 1: feat_dict[user_id] = [[np.nan, np.nan, np.nan], [np.nan, np.nan, 0]]
else: feat_dict[user_id] = [[np.nan, np.nan, 0], [np.nan, np.nan, np.nan]]
q_list[cnt] = np.array([np.nan, np.nan, np.nan])
l_list[cnt] = np.array([np.nan, np.nan, np.nan])
for i in [0, 1, 2]:
df['prior_question_' + str(i+1)+ '_timedelta_min'] = q_list[:, i]
df['prior_lecture_' + str(i+1)+ '_timedelta_min'] = l_list[:, i]
df['prior_question_' + str(i+1)+ '_timedelta_min'] = df['prior_question_' + str(i+1)+ '_timedelta_min'].fillna(-100 ).replace(0, method='ffill')
df['prior_lecture_' + str(i+1)+ '_timedelta_min'] = df['prior_lecture_' + str(i+1)+ '_timedelta_min'].fillna(-100 ).replace(0, method='ffill')
del [q_list, l_list]
return df
def user_question_tag_accuracy_get(df, feat_calc):
tags_w = [0.43, 0.27, 0.18, 0.08, 0.03, 0.01]
values = np.zeros(len(df))
feat_list = ['user_id', 'content_type_id', 'tags_list']
for cnt,(user, content_type_id, tags_list)in enumerate(df[feat_list].values):
if tags_list == -100: tags_list = [-100]
if content_type_id == 0:
if user in feat_calc:
user_tags_accuracy = 0
for tag_i in tags_list:
tags_accuracy_list = []
if tag_i in feat_calc[user][0]:
tag_i_idx = feat_calc[user][0].index(tag_i)
tags_accuracy_list.append(feat_calc[user][2][tag_i_idx] / feat_calc[user][1][tag_i_idx])
else:
tags_accuracy_list.append(dict_global_question_tag_accuracy[tag_i][2])
l = len(tags_accuracy_list)
tags_w_l = tags_w[:l]
tags_w_l_sum = sum(tags_w_l)
tags_w_current = [x/tags_w_l_sum for x in tags_w_l]
user_tags_accuracy = sum([tag * w for tag, w in zip(tags_accuracy_list, tags_w_current)])
else:
for tag_i in tags_list:
tags_accuracy_list = []
tags_accuracy_list.append(dict_global_question_tag_accuracy[tag_i][2])
l = len(tags_accuracy_list)
tags_w_l = tags_w[:l]
tags_w_l_sum = sum(tags_w_l)
tags_w_current = [x/tags_w_l_sum for x in tags_w_l]
user_tags_accuracy = sum([tag * w for tag, w in zip(tags_accuracy_list, tags_w_current)])
values[cnt] = user_tags_accuracy
else:
values[cnt] = 0
return values
def user_question_tag_accuracy_update(df, feat_calc):
feat_list = ['user_id', 'answered_correctly', 'content_type_id', 'tags_list']
for cnt,(user, answer, content_type_id, tags_list)in enumerate(df[feat_list].values):
if tags_list == -100: tags_list = [-100]
if content_type_id == 0:
if user in feat_calc:
user_tags_accuracy = 0
for tag_i in tags_list:
tags_accuracy_list = []
if tag_i in feat_calc[user][0]:
tag_i_idx = feat_calc[user][0].index(tag_i)
feat_calc[user][1][tag_i_idx] += 1
feat_calc[user][2][tag_i_idx] += answer
else:
feat_calc[user][0].append(tag_i)
feat_calc[user][1].append(1)
feat_calc[user][2].append(answer)
else:
feat_calc[user] = [[], [], []]
for tag_i in tags_list:
feat_calc[user][0].append(tag_i)
feat_calc[user][1].append(1)
feat_calc[user][2].append(answer)
return feat_calc
def user_correct_incorrect_timestamp_get(df, feat_dict):
incorrect_list = []
correct_list = []
for(user_id, timestamp, content_type_id)in df[['user_id', 'timestamp', 'content_type_id']].values:
timestamp = timestamp / 1000 / 60
correct_value, incorrect_value = 0, 0
if content_type_id:
incorrect_list.append(-100)
correct_list.append(-100)
else:
if user_id in feat_dict:
incorrect_value, correct_value = feat_dict[user_id][0], feat_dict[user_id][1]
else:
incorrect_value, correct_value = np.nan, np.nan
incorrect_value =(timestamp - incorrect_value)
correct_value =(timestamp - correct_value)
incorrect_list.append(incorrect_value)
correct_list.append(correct_value)
df['prior_question_incorrect_timedelta_min'] = incorrect_list
df['prior_question_correct_timedelta_min'] = correct_list
df['prior_question_incorrect_timedelta_min'] = df['prior_question_incorrect_timedelta_min'].fillna(-100 ).replace(0, method='ffill')
df['prior_question_correct_timedelta_min'] = df['prior_question_correct_timedelta_min'].fillna(-100 ).replace(0, method='ffill')
return df
def user_correct_incorrect_timestamp_update(df, feat_dict):
incorrect_list = []
correct_list = []
for(user_id, timestamp, content_type_id, answer)in df[['user_id', 'timestamp', 'content_type_id', 'answered_correctly']].values:
timestamp = timestamp / 1000 / 60
if content_type_id == 0:
if user_id in feat_dict:
if answer: feat_dict[user_id][1] = timestamp
else: feat_dict[user_id][0] = timestamp
else:
if answer: feat_dict[user_id] = [np.nan, timestamp]
else: feat_dict[user_id] = [timestamp, np.nan]
return feat_dict
time_session_map = {'q_count_all' : 0,
'q_count_n' : 1,
'time_all_n' : 2,
'time_n' : 3,
'time_dict_all' : 4,
'time_dict_n' : 5,
'prior_timestamp' : 6,
'prior_container' : 7,
'prior_container_shape' : 8,
'prior_content_id' : 9,
}
def user_slice_question_time_mean_session(df_pd, feat_dict, session_max_time_min = 180):
prior_question_elapsed_time_mean = 25452.541
out_mean_n = np.zeros(len(df_pd))
out_mean_all = np.zeros(len(df_pd))
out_delta_n = np.zeros(len(df_pd))
out_delta_all = np.zeros(len(df_pd))
calc_list = ['user_id', 'timestamp', 'task_container_id', 'content_id',
'content_type_id', 'prior_question_elapsed_time', 'task_container_freq']
for cnt,(user, timestamp, task_container_id, content_id, content_type_id, prior_question_elapsed_time, task_container_freq)in enumerate(df_pd[calc_list].values):
timestamp = timestamp / 1000 / 60
if content_id not in dict_content_elapsed_time_mean: content_id = -100
if content_type_id == 0:
if user in feat_dict:
time_delta =(timestamp - feat_dict[user][time_session_map['prior_timestamp']])
if time_delta < session_max_time_min:
if task_container_id != feat_dict[user][time_session_map['prior_container']]:
s = feat_dict[user][time_session_map['prior_container_shape']]
c = feat_dict[user][time_session_map['prior_content_id']]
feat_dict[user][time_session_map['time_all_n']] += prior_question_elapsed_time * s
feat_dict[user][time_session_map['time_n']] += prior_question_elapsed_time * s
feat_dict[user][time_session_map['q_count_all']] += s
feat_dict[user][time_session_map['q_count_n']] += s
feat_dict[user][time_session_map['time_dict_all']] += dict_content_elapsed_time_mean[c] * s
feat_dict[user][time_session_map['time_dict_n']] += dict_content_elapsed_time_mean[c] * s
feat_dict[user][time_session_map['prior_timestamp']] = timestamp
feat_dict[user][time_session_map['prior_container']] = task_container_id
feat_dict[user][time_session_map['prior_content_id']] = content_id
feat_dict[user][time_session_map['prior_container_shape']] = task_container_freq
out_mean_n[cnt] = feat_dict[user][time_session_map['time_n']] / feat_dict[user][time_session_map['q_count_n']]
out_mean_all[cnt] = feat_dict[user][time_session_map['time_all_n']] / feat_dict[user][time_session_map['q_count_all']]
out_delta_n[cnt] = feat_dict[user][time_session_map['time_n']] / feat_dict[user][time_session_map['time_dict_n']]
out_delta_all[cnt] = feat_dict[user][time_session_map['time_all_n']] / feat_dict[user][time_session_map['time_dict_all']]
else:
out_mean_n[cnt] = out_mean_n[cnt-1]
out_mean_all[cnt] = out_mean_all[cnt-1]
out_delta_n[cnt] = out_delta_n[cnt-1]
out_delta_all[cnt] = out_delta_all[cnt-1]
else:
if task_container_id != feat_dict[user][time_session_map['prior_container']]:
s = feat_dict[user][time_session_map['prior_container_shape']]
c = feat_dict[user][time_session_map['prior_content_id']]
feat_dict[user][time_session_map['time_all_n']] += prior_question_elapsed_time * s
feat_dict[user][time_session_map['time_n']] = 0
feat_dict[user][time_session_map['q_count_all']] += s
feat_dict[user][time_session_map['q_count_n']] = 0
feat_dict[user][time_session_map['time_dict_all']] += dict_content_elapsed_time_mean[c] * s
feat_dict[user][time_session_map['time_dict_n']] = 0
feat_dict[user][time_session_map['prior_timestamp']] = timestamp
feat_dict[user][time_session_map['prior_container']] = task_container_id
feat_dict[user][time_session_map['prior_content_id']] = content_id
feat_dict[user][time_session_map['prior_container_shape']] = task_container_freq
out_mean_n[cnt] = feat_dict[user][time_session_map['time_all_n']] / feat_dict[user][time_session_map['q_count_all']]
out_mean_all[cnt] = feat_dict[user][time_session_map['time_all_n']] / feat_dict[user][time_session_map['q_count_all']]
out_delta_n[cnt] = feat_dict[user][time_session_map['time_all_n']] / feat_dict[user][time_session_map['time_dict_all']]
out_delta_all[cnt] = feat_dict[user][time_session_map['time_all_n']] / feat_dict[user][time_session_map['time_dict_all']]
else:
out_mean_n[cnt] = out_mean_n[cnt-1]
out_mean_all[cnt] = out_mean_all[cnt-1]
out_delta_n[cnt] = out_delta_n[cnt-1]
out_delta_all[cnt] = out_delta_all[cnt-1]
else:
out_mean_n[cnt] = prior_question_elapsed_time_mean
out_mean_all[cnt] = prior_question_elapsed_time_mean
out_delta_n[cnt] = prior_question_elapsed_time_mean / dict_content_elapsed_time_mean[content_id]
out_delta_all[cnt] = prior_question_elapsed_time_mean / dict_content_elapsed_time_mean[content_id]
feat_dict[user] = [1, 1, 0, 0,
dict_content_elapsed_time_mean[content_id], dict_content_elapsed_time_mean[content_id],
timestamp, task_container_id, task_container_freq, content_id]
else: out_mean_n[cnt], out_mean_all[cnt], out_delta_n[cnt], out_delta_all[cnt] = 0, 0, 0, 0
df_pd['user_question_time_mean_n_session'] = out_mean_n
df_pd['user_question_time_mean_all_session'] = out_mean_all
df_pd['user_question_time_delta_n_session'] = out_delta_n
df_pd['user_question_time_delta_all_session'] = out_delta_all
return df_pd
user_priorq_expl_types_map = {'q_count' : 0,
'c_t_cnt' : 1,
'c_f_cnt' : 2,
'w_t_cnt' : 3,
'w_f_cnt' : 4,
'prior_container' : 5,
'prior_container_shape' : 6,
'prior_answer_expl_type' : 7,
}
def user_priorq_expl_types_get(df_pd, feat_dict):
c_t_cnt = np.zeros(len(df_pd))
c_f_cnt = np.zeros(len(df_pd))
w_t_cnt = np.zeros(len(df_pd))
w_f_cnt = np.zeros(len(df_pd))
cw_tf_type = np.zeros(len(df_pd))
calc_list = ['user_id', 'task_container_id', 'content_type_id',
'prior_question_had_explanation', 'task_container_freq']
for cnt,(user, task_container_id, content_type_id, priorq_had_expl, task_container_freq)in enumerate(df_pd[calc_list].values):
if content_type_id == 0:
if user in feat_dict:
if task_container_id != feat_dict[user][user_priorq_expl_types_map['prior_container']]:
prior_c_shape = feat_dict[user][user_priorq_expl_types_map['prior_container_shape']]
q_count = feat_dict[user][user_priorq_expl_types_map['q_count']] + 0.0001
c_t_cnt[cnt] = feat_dict[user][user_priorq_expl_types_map['c_t_cnt']] / q_count
c_f_cnt[cnt] = feat_dict[user][user_priorq_expl_types_map['c_f_cnt']] / q_count
w_t_cnt[cnt] = feat_dict[user][user_priorq_expl_types_map['w_t_cnt']] / q_count
w_f_cnt[cnt] = feat_dict[user][user_priorq_expl_types_map['w_f_cnt']] / q_count
cw_tf_type[cnt] = feat_dict[user][user_priorq_expl_types_map['prior_answer_expl_type']]
else:
c_t_cnt[cnt] = c_t_cnt[cnt - 1]
c_f_cnt[cnt] = c_f_cnt[cnt - 1]
w_t_cnt[cnt] = w_t_cnt[cnt - 1]
w_f_cnt[cnt] = w_f_cnt[cnt - 1]
cw_tf_type[cnt] = cw_tf_type[cnt - 1]
else:
c_t_cnt[cnt], c_f_cnt[cnt], w_t_cnt[cnt], w_f_cnt[cnt], w_f_cnt[cnt] = 0, 0, 0, 0, 0
else: c_t_cnt[cnt], c_f_cnt[cnt], w_t_cnt[cnt], w_f_cnt[cnt], cw_tf_type[cnt] = 0, 0, 0, 0, 0
df_pd['user_prior_correct_expl_prc'] = c_t_cnt
df_pd['user_prior_correct_noexpl_prc'] = c_f_cnt
df_pd['user_prior_wrong_expl_prc'] = w_t_cnt
df_pd['user_prior_wrong_noexpl_prc'] = w_f_cnt
df_pd['user_prior_answer_expl_type'] = cw_tf_type
return df_pd
def user_priorq_expl_types_update(df_pd, feat_dict):
calc_list = ['user_id', 'task_container_id', 'content_type_id',
'prior_question_had_explanation', 'answered_correctly', 'task_container_freq']
for cnt,(user, task_container_id, content_type_id, priorq_had_expl, answer, task_container_freq)in enumerate(df_pd[calc_list].values):
if answer: t1 = 'c_'
else: t1 = 'w_'
if priorq_had_expl: t2 = 't_cnt'
else: t2 = 'f_cnt'
col = t1 + t2
if content_type_id == 0:
if user in feat_dict:
if task_container_id != feat_dict[user][user_priorq_expl_types_map['prior_container']]:
prior_c_shape = feat_dict[user][user_priorq_expl_types_map['prior_container_shape']]
feat_dict[user][user_priorq_expl_types_map['q_count']] += prior_c_shape
feat_dict[user][user_priorq_expl_types_map[col]] += prior_c_shape
feat_dict[user][user_priorq_expl_types_map['prior_container']] = task_container_id
feat_dict[user][user_priorq_expl_types_map['prior_container_shape']] = task_container_freq
feat_dict[user][user_priorq_expl_types_map['prior_answer_expl_type']] = user_priorq_expl_types_map[col]
else:
feat_dict[user] = [0, 0, 0, 0, 0,
task_container_id, task_container_freq, 0]
return feat_dict
def user_lectures_typeof_cnt(df, feat_dict):
concept = np.zeros(len(df))
solving_question = np.zeros(len(df))
for cnt,(user, content_id, content_type_id)in enumerate(df[['user_id', 'content_id', 'content_type_id']].values):
if content_type_id:
if user in feat_dict:
if content_id in dict_lectures:
if dict_lectures[content_id]['type_of'] == 'concept': feat_dict[user][0] += 1
elif dict_lectures[content_id]['type_of'] == 'solving question': feat_dict[user][1] += 1
else:
if content_id in dict_lectures:
feat_dict[user] = [0, 0]
if dict_lectures[content_id]['type_of'] == 'concept': feat_dict[user][0] += 1
elif dict_lectures[content_id]['type_of'] == 'solving question': feat_dict[user][1] += 1
concept[cnt] = 0
solving_question[cnt] = 0
else:
if user in feat_dict:
concept[cnt] = feat_dict[user][0]
solving_question[cnt] = feat_dict[user][1]
else:
concept[cnt] = 0
solving_question[cnt] = 0
df['lecture_concept_cnt'] = concept.astype(np.uint16)
df['lecture_solving_question_cnt'] = solving_question.astype(np.uint16)
return df
def user_answer_mode_n_get(df_pd, feat_dict, border=10):
current_list = np.zeros(len(df_pd), dtype = np.uint8)
for cnt,(user, content_type_id, content_id)in enumerate(df_pd[['user_id', 'content_type_id', 'content_id']].values):
if content_type_id == 0:
if user in feat_dict:
if content_id in dict_questions:
current_list[cnt] = max(set(feat_dict[user]), key=feat_dict[user].count)== dict_questions[content_id]['correct_answer']
else:
current_list[cnt] = 100
else:
current_list[cnt] = 100
else:
current_list[cnt] = 0
return current_list
def user_answer_mode_n_update(df_pd, feat_dict, border=10):
for cnt,(user, user_answer, content_type_id, content_id)in enumerate(df_pd[['user_id', 'user_answer', 'content_type_id', 'content_id']].values):
if content_type_id == 0:
feat_dict[user].append(user_answer)
feat_dict[user] = feat_dict[user][-border:]
return feat_dict
first_bundle_id_map = {7900 : 1,
128 : 2,
5692 : 3,
-100 : 4,
}
def question_bundle_id_get(df_pd, feat_dict):
current_list = np.zeros(len(df_pd))
for cnt,(content_type_id, content_id)in enumerate(df_pd[['content_type_id', 'content_id']].values):
if content_type_id == 0:
if content_id in feat_dict:
current_list[cnt] = feat_dict[content_id]['bundle_id']
else:
current_list[cnt] = -100
else:
current_list[cnt] = 0
df_pd['bundle_id'] = current_list.astype(np.int32)
return df_pd
def user_bundle_cluster_get_update(df_pd, feat_dict):
l = ['user_id', 'content_type_id', 'bundle_id', 'timestamp']
current_list = np.zeros(len(df_pd))
for cnt,(user, content_type_id, bundle, timestamp)in enumerate(df_pd[l].values):
if user not in feat_dict:
if content_type_id == 0 and timestamp == 0:
if bundle in first_bundle_id_map:
feat_dict[user] = first_bundle_id_map[bundle]
else: feat_dict[user] = 4
else: feat_dict[user] = 4
current_list[cnt] = feat_dict[user]
df_pd['first_bundle_id_cluster'] = current_list.astype(np.uint8)
return df_pd
def question_bundle_accuracy_update(df_pd, feat_dict):
l = ['content_type_id', 'bundle_id', 'answered_correctly', 'first_bundle_id_cluster']
for cnt,(content_type_id, bundle_id, answer, cluster)in enumerate(df_pd[l].values):
if content_type_id == 0:
if bundle_id in feat_dict:
feat_dict[bundle_id][0][0] += 1
feat_dict[bundle_id][0][1] += answer
feat_dict[bundle_id][cluster][0] += 1
feat_dict[bundle_id][cluster][1] += answer
else:
feat_dict[bundle_id] = [[1, answer], [0, 0], [0, 0], [0, 0], [1, answer]]
return feat_dict
def question_bundle_accuracy_get(df_pd, feat_dict):
current_list = np.zeros(( len(df_pd), 2), dtype = np.float32)
l = ['content_type_id', 'bundle_id', 'first_bundle_id_cluster']
for cnt,(content_type_id, bundle_id, cluster)in enumerate(df_pd[l].values):
if content_type_id == 0:
if bundle_id in feat_dict:
current_list[cnt, 0] = feat_dict[bundle_id][0][1] /(feat_dict[bundle_id][0][0] + 0.000001)
current_list[cnt, 1] = feat_dict[bundle_id][cluster][1] /(feat_dict[bundle_id][cluster][0] + 0.000001)
else:
current_list[cnt, 0] = 0.67
current_list[cnt, 1] = 0.67
else:
current_list[cnt, 0] = 0
current_list[cnt, 1] = 0
df_pd['bundle_id_all_accuracy'] = current_list[:,0].astype(np.float32)
df_pd['bundle_id_cluster_accuracy'] = current_list[:,1].astype(np.float32)
return df_pd<define_variables> | reduce_lr = ReduceLROnPlateau(monitor='val_acc',
factor=0.5,
patience=3,
min_lr=0.00001 ) | Digit Recognizer |
594,887 | question_part_map = {
'part_-100_count' : 0,
'part_-100_count_correct' : 1,
'part_-100_accuracy' : 2,
'part_1_count' : 3,
'part_1_count_correct' : 4,
'part_1_accuracy' : 5,
'part_2_count' : 6,
'part_2_count_correct' : 7,
'part_2_accuracy' : 8,
'part_3_count' : 9,
'part_3_count_correct' : 10,
'part_3_accuracy' : 11,
'part_4_count' : 12,
'part_4_count_correct' : 13,
'part_4_accuracy' : 14,
'part_5_count' : 15,
'part_5_count_correct' : 16,
'part_5_accuracy' : 17,
'part_6_count' : 18,
'part_6_count_correct' : 19,
'part_6_accuracy' : 20,
'part_7_count' : 21,
'part_7_count_correct' : 22,
'part_7_accuracy' : 23
}
question_part_def_accuracy = {
1 : 0.745,
2 : 0.709,
3 : 0.701,
4 : 0.631,
5 : 0.610,
6 : 0.669,
7 : 0.660,
-100 : 0.6,
}
def dict_user_question_part_accuracy_get(df_pd, feat_dict):
current_list = np.zeros(len(df_pd))
for idx,(user, part_q, content_type_id)in enumerate(df_pd[['user_id', 'part_q', 'content_type_id']].values):
part_q = int(part_q)
if content_type_id == 0:
map_accuracy = question_part_map['part_' + str(part_q)+ '_accuracy']
if user in feat_dict:
current_list[idx] = feat_dict[user][map_accuracy]
else:
current_list[idx] = question_part_def_accuracy[part_q]
else:
current_list[idx] = 0
return current_list
def dict_user_question_part_accuracy_update(df_pd, feat_dict, trust_border=10):
for _,(user, part_q, content_type_id, ans_corr)in enumerate(df_pd[['user_id', 'part_q', 'content_type_id', 'answered_correctly']].values):
part_q = int(part_q)
if content_type_id == 0:
map_cnt = question_part_map['part_' + str(part_q)+ '_count']
map_cnt_correct = question_part_map['part_' + str(part_q)+ '_count_correct']
map_accuracy = question_part_map['part_' + str(part_q)+ '_accuracy']
if user in feat_dict:
feat_dict[user][map_cnt] += 1
feat_dict[user][map_cnt_correct] += ans_corr
feat_dict[user][map_accuracy] = feat_dict[user][map_cnt_correct] / feat_dict[user][map_cnt]
if feat_dict[user][map_cnt] < trust_border:
feat_dict[user][map_accuracy] =(( feat_dict[user][map_accuracy] * feat_dict[user][map_cnt] +
question_part_def_accuracy[part_q] *(trust_border - feat_dict[user][map_cnt])) / trust_border)
else:
feat_dict[user] = [0] * len(question_part_map)
for i in range(1, 7):
feat_dict[user][question_part_map['part_' + str(i)+ '_accuracy']] = question_part_def_accuracy[i]
feat_dict[user][map_cnt] += 1
feat_dict[user][map_cnt_correct] += ans_corr
feat_dict[user][map_accuracy] = feat_dict[user][map_cnt_correct] / feat_dict[user][map_cnt]
feat_dict[user][map_accuracy] =(( feat_dict[user][map_accuracy] * feat_dict[user][map_cnt] +
question_part_def_accuracy[part_q] *(trust_border - feat_dict[user][map_cnt])) / trust_border)
return feat_dict<load_pretrained> | datagen = ImageDataGenerator(
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1
)
datagen.fit(split_train_x ) | Digit Recognizer |
594,887 | def load_obj(name):
with open('.. /input/riiid-numpy-df-3/' + name + '.pkl', 'rb')as f:
return pickle.load(f )<load_pretrained> | model.fit_generator(datagen.flow(split_train_x,split_train_y, batch_size=64),
epochs = 30, validation_data =(split_val_x,split_val_y),
verbose = 2, steps_per_epoch=700
, callbacks=[reduce_lr] ) | Digit Recognizer |
594,887 | cat_model = CatBoostClassifier()
cat_model.load_model('.. /input/riiid-lgb-v1/cat_arvis_v4.cbm')
lgb_model = lgb.Booster(model_file='.. /input/riiid-lgb-v1/model_lgb_7946_v8_full_data_arvis.txt' )<load_pretrained> | prediction = model.predict_classes(arr_test_x_28x28, verbose=0)
data_to_submit = pd.DataFrame({"ImageId": list(range(1,len(prediction)+1)) , "Label": prediction})
data_to_submit.to_csv("result.csv", header=True, index = False ) | Digit Recognizer |
594,887 | dict_lectures = load_obj('dict_lectures')
dict_questions = load_obj('dict_questions')
dict_question_user_cnt = load_obj('dict_question_user_cnt')
dict_correct_answers_user_cnt = load_obj('dict_correct_answers_user_cnt')
dict_question_explonation_user_cnt = load_obj('dict_question_explonation_user_cnt')
dict_questionid_part_tag12_avgtarget = load_obj('dict_questionid_part_tag12_avgtarget_5')
dict_user_question_attempt_cnt = load_obj('dict_user_question_attempt_cnt')
dict_user_lectures_part = load_obj('dict_user_lectures_part')
dict_user_question_part_accuracy = load_obj('dict_user_question_part_accuracy')
dict_user_l_q_tag_equal = load_obj('dict_user_l_q_tag_equal')
dict_user_slice_accuracy_5 = load_obj('dict_user_slice_accuracy_5')
dict_user_slice_accuracy_20 = load_obj('dict_user_slice_accuracy_20')
dict_user_slice_accuracy_50 = load_obj('dict_user_slice_accuracy_50')
dict_user_slice_accuracy_session_3 = load_obj('dict_user_slice_accuracy_session_3')
dict_user_slice_accuracy_session_12 = load_obj('dict_user_slice_accuracy_session_12')
dict_user_slice_accuracy_session_48 = load_obj('dict_user_slice_accuracy_session_48')
dict_user_timestampsdelta_3 = load_obj('dict_user_timestampsdelta_3')
dict_global_question_tag_accuracy = load_obj('dict_global_question_tag_accuracy')
dict_global_question_tag_accuracy[-100] = 0.64
dict_user_question_tag_accuracy = load_obj('dict_user_question_tag_accuracy')
dict_user_correct_incorrect_timestamp = load_obj('dict_user_correct_incorrect_timestamp')
dict_content_elapsed_time_mean = load_obj('dict_content_elapsed_time_mean')
dict_user_slice_question_time_mean_session = load_obj('dict_user_slice_question_time_mean_session')
dict_user_priorq_expl_types = load_obj('dict_user_priorq_expl_types')
dict_user_lectures_typeof_cnt = load_obj('dict_user_lectures_typeof_cnt')
dict_user_answer_mode_10 = load_obj('dict_user_answer_mode_10')
dict_user_answer_mode_50 = load_obj('dict_user_answer_mode_50')
dict_question_bundle_accuracy = load_obj('dict_question_bundle_accuracy')
dict_user_bundle_cluster = load_obj('dict_user_bundle_cluster' )<define_variables> | start_idx = randrange(df_test.shape[0]-10 ) | Digit Recognizer |
10,242,261 | features_map = {
'row_id' : 0,
'timestamp' : 1,
'user_id' : 2,
'content_id' : 3,
'content_type_id' : 4,
'task_container_id' : 5,
'prior_question_elapsed_time' : 6,
'prior_question_had_explanation' : 7,
'prior_group_answers_correct' : 8,
'prior_group_responses' : 9,
'prior_question_1_timedelta_min' : 10,
'prior_lecture_1_timedelta_min' : 11,
'prior_question_2_timedelta_min' : 12,
'prior_lecture_2_timedelta_min' : 13,
'prior_question_3_timedelta_min' : 14,
'prior_lecture_3_timedelta_min' : 15,
'user_slice_accuracy_5' : 16,
'user_slice_accuracy_20' : 17,
'user_slice_accuracy_50' : 18,
'user_slice_accuracy_session_3' : 19,
'user_slice_accuracy_session_12' : 20,
'user_slice_accuracy_session_48' : 21,
'task_container_freq' : 22,
'task_container_counter' : 23,
'user_question_attempt_cnt' : 24,
'lecture_cnt' : 25,
'lecture_concept_cnt' : 26,
'lecture_solving_question_cnt' : 27,
'part_l_q_cnt' : 28,
'tag_l_q_equal_cnt' : 29,
'user_question_part_accuracy' : 30,
'user_question_tag_accuracy' : 31,
'prior_question_incorrect_timedelta_min' : 32,
'prior_question_correct_timedelta_min' : 33,
'user_question_time_mean_n_session' : 34,
'user_question_time_mean_all_session' : 35,
'user_question_time_delta_n_session' : 36,
'user_question_time_delta_all_session' : 37,
'user_prior_correct_expl_prc' : 38,
'user_prior_correct_noexpl_prc' : 39,
'user_prior_wrong_expl_prc' : 40,
'user_prior_wrong_noexpl_prc' : 41,
'user_prior_answer_expl_type' : 42,
'user_answer_mode_10' : 43,
'user_answer_mode_50' : 44,
'first_bundle_id_cluster' : 45,
'bundle_id_all_accuracy' : 46,
'bundle_id_cluster_accuracy' : 47,
'question_user_cnt' : 48,
'correct_answers_user_cnt' : 49,
'correct_answers_user_prc' : 50,
'prior_question_had_explanation_user_cnt' : 51,
'prior_question_had_explanation_user_prc' : 52,
'content_id_mean' : 53,
'part' : 54,
'part_mean' : 55,
'tag_1_mean' : 56,
'tag_2_mean' : 57,
'user_to_question_accuracy' : 58,
'hmean_user_content_accuracy' : 59
}
dict_questionid_part_tag12_avgtarget_map = {
'content_id_cnt' : 0,
'content_correct_cnt' : 1,
'answered_correctly_avg_content_smooth' : 2,
'part' : 3,
'answered_correctly_avg_part' : 4,
'answered_correctly_avg_tag_1' : 5,
'answered_correctly_avg_tag_2' : 6,
'answered_correctly_avg_part_tag_1' : 7,
'answered_correctly_avg_part_tag_2' : 8,
'tags_encoded' : 9
}
train_cols_clf = [features_map['prior_question_1_timedelta_min'],
features_map['prior_question_2_timedelta_min'],
features_map['prior_question_3_timedelta_min'],
features_map['prior_lecture_1_timedelta_min'],
features_map['prior_lecture_2_timedelta_min'],
features_map['prior_lecture_3_timedelta_min'],
features_map['task_container_freq'],
features_map['task_container_counter'],
features_map['user_question_attempt_cnt'],
features_map['prior_question_elapsed_time'],
features_map['prior_question_had_explanation'],
features_map['question_user_cnt'],
features_map['correct_answers_user_cnt'],
features_map['correct_answers_user_prc'],
features_map['prior_question_had_explanation_user_cnt'],
features_map['prior_question_had_explanation_user_prc'],
features_map['user_slice_accuracy_5'],
features_map['user_slice_accuracy_20'],
features_map['user_slice_accuracy_50'],
features_map['user_slice_accuracy_session_3'],
features_map['user_slice_accuracy_session_12'],
features_map['user_slice_accuracy_session_48'],
features_map['lecture_cnt'],
features_map['lecture_concept_cnt'],
features_map['lecture_solving_question_cnt'],
features_map['part_l_q_cnt'],
features_map['tag_l_q_equal_cnt'],
features_map['user_question_part_accuracy'],
features_map['user_question_tag_accuracy'],
features_map['prior_question_incorrect_timedelta_min'],
features_map['prior_question_correct_timedelta_min'],
features_map['user_question_time_mean_n_session'],
features_map['user_question_time_mean_all_session'],
features_map['user_question_time_delta_n_session'],
features_map['user_question_time_delta_all_session'],
features_map['user_prior_correct_expl_prc'],
features_map['user_prior_correct_noexpl_prc'],
features_map['user_prior_wrong_expl_prc'],
features_map['user_prior_wrong_noexpl_prc'],
features_map['user_prior_answer_expl_type'],
features_map['user_answer_mode_10'],
features_map['user_answer_mode_50'],
features_map['first_bundle_id_cluster'],
features_map['bundle_id_all_accuracy'],
features_map['bundle_id_cluster_accuracy'],
features_map['content_id_mean'],
features_map['part'],
features_map['part_mean'],
features_map['tag_1_mean'],
features_map['tag_2_mean'],
features_map['user_to_question_accuracy'],
features_map['hmean_user_content_accuracy'],
]
train_cols_lgb = [features_map['prior_question_1_timedelta_min'],
features_map['prior_question_2_timedelta_min'],
features_map['prior_question_3_timedelta_min'],
features_map['prior_lecture_1_timedelta_min'],
features_map['prior_lecture_2_timedelta_min'],
features_map['prior_lecture_3_timedelta_min'],
features_map['task_container_freq'],
features_map['task_container_counter'],
features_map['user_question_attempt_cnt'],
features_map['prior_question_elapsed_time'],
features_map['prior_question_had_explanation'],
features_map['question_user_cnt'],
features_map['correct_answers_user_cnt'],
features_map['correct_answers_user_prc'],
features_map['prior_question_had_explanation_user_cnt'],
features_map['prior_question_had_explanation_user_prc'],
features_map['user_slice_accuracy_5'],
features_map['user_slice_accuracy_20'],
features_map['user_slice_accuracy_50'],
features_map['user_slice_accuracy_session_3'],
features_map['user_slice_accuracy_session_12'],
features_map['user_slice_accuracy_session_48'],
features_map['lecture_cnt'],
features_map['lecture_concept_cnt'],
features_map['lecture_solving_question_cnt'],
features_map['part_l_q_cnt'],
features_map['tag_l_q_equal_cnt'],
features_map['user_question_part_accuracy'],
features_map['user_question_tag_accuracy'],
features_map['prior_question_incorrect_timedelta_min'],
features_map['prior_question_correct_timedelta_min'],
features_map['user_question_time_mean_n_session'],
features_map['user_question_time_mean_all_session'],
features_map['user_question_time_delta_n_session'],
features_map['user_question_time_delta_all_session'],
features_map['user_prior_correct_expl_prc'],
features_map['user_prior_correct_noexpl_prc'],
features_map['user_prior_wrong_expl_prc'],
features_map['user_prior_wrong_noexpl_prc'],
features_map['user_prior_answer_expl_type'],
features_map['user_answer_mode_10'],
features_map['user_answer_mode_50'],
features_map['first_bundle_id_cluster'],
features_map['bundle_id_all_accuracy'],
features_map['bundle_id_cluster_accuracy'],
features_map['content_id_mean'],
features_map['part'],
features_map['part_mean'],
features_map['tag_1_mean'],
features_map['tag_2_mean'],
features_map['user_to_question_accuracy'],
features_map['hmean_user_content_accuracy'],
]<define_variables> | df_train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
df_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' ) | Digit Recognizer |
10,242,261 | idx = 86867031<split> | x_train = np.array(df_train.iloc[:,1:])
x_train = np.array([np.reshape(i,(28, 28, 1)) for i in x_train])
y_train = np.array(df_train.iloc[:,0] ) | Digit Recognizer |
10,242,261 | env = riiideducation.make_env()
iter_test = env.iter_test()<feature_engineering> | x_train = x_train/255.0
y_train = keras.utils.to_categorical(y_train ) | Digit Recognizer |
10,242,261 | previous_test_df = pd.DataFrame()
prev_test_df = None
for(test_df, sample_prediction_df)in iter_test:
test_df_saint = test_df.copy()
if(prev_test_df is not None)&(psutil.virtual_memory().percent < 90):
prev_test_df['answered_correctly'] = eval(test_df['prior_group_answers_correct'].iloc[0])
prev_test_df = prev_test_df[prev_test_df.content_type_id == False]
prev_test_df = feature_time_lag(prev_test_df, time_dict)
prev_group = prev_test_df[['user_id', 'content_id', 'answered_correctly', 'part', 'prior_question_elapsed_time', 'time_lag', 'prior_question_had_explanation']].groupby('user_id' ).apply(lambda r:(
r['content_id'].values,
r['answered_correctly'].values,
r['part'].values,
r['prior_question_elapsed_time'].values,
r['time_lag'].values,
r['prior_question_had_explanation'].values))
for prev_user_id in prev_group.index:
if prev_user_id in group.index:
group[prev_user_id] =(
np.append(group[prev_user_id][0], prev_group[prev_user_id][0])[-MAX_SEQ:],
np.append(group[prev_user_id][1], prev_group[prev_user_id][1])[-MAX_SEQ:],
np.append(group[prev_user_id][2], prev_group[prev_user_id][2])[-MAX_SEQ:],
np.append(group[prev_user_id][3], prev_group[prev_user_id][3])[-MAX_SEQ:],
np.append(group[prev_user_id][4], prev_group[prev_user_id][4])[-MAX_SEQ:],
np.append(group[prev_user_id][5], prev_group[prev_user_id][5])[-MAX_SEQ:]
)
else:
group[prev_user_id] =(
prev_group[prev_user_id][0],
prev_group[prev_user_id][1],
prev_group[prev_user_id][2],
prev_group[prev_user_id][3],
prev_group[prev_user_id][4],
prev_group[prev_user_id][5]
)
test_df_saint.prior_question_elapsed_time = test_df_saint.prior_question_elapsed_time.fillna(0)
test_df_saint['prior_question_had_explanation'] = test_df_saint['prior_question_had_explanation'].fillna(value = False ).astype(int)
test_df_saint = test_df_saint.merge(questions_df[["question_id","part"]], how = "left",left_on = 'content_id', right_on = 'question_id')
prev_test_df = test_df_saint.copy()
test_df_saint = test_df_saint[test_df_saint.content_type_id == False]
test_df_saint = feature_time_lag(test_df_saint, time_dict)
test_dataset = TestDataset(group, test_df_saint, n_skill)
test_dataloader = DataLoader(test_dataset, batch_size=51200, shuffle=False)
outs1 = []
outs2 = []
outs3 = []
for item in test_dataloader:
exercise = item[0].to(device ).long()
part = item[1].to(device ).long()
response = item[2].to(device ).long()
elapsed_time = item[3].to(device ).long()
lag_time = item[4].to(device ).long()
pri_exp = item[5].to(device ).long()
with torch.no_grad() :
output1 = model1(exercise, part, response, elapsed_time, lag_time, pri_exp)
output2 = model2(exercise, part, response, elapsed_time, lag_time, pri_exp)
output3 = model3(exercise, part, response, elapsed_time, lag_time, pri_exp)
outs1.extend(torch.sigmoid(output1)[:, -1].view(-1 ).data.cpu().numpy())
outs2.extend(torch.sigmoid(output2)[:, -1].view(-1 ).data.cpu().numpy())
outs3.extend(torch.sigmoid(output3)[:, -1].view(-1 ).data.cpu().numpy())
if previous_test_df.shape[0] != 0:
previous_test_df['answered_correctly'] = eval(test_df['prior_group_answers_correct'].iloc[0])
previous_test_df['user_answer'] = eval(test_df['prior_group_responses'].iloc[0])
previous_test_df = previous_test_df[previous_test_df['content_type_id'] == 0]
previous_test_df['q_counter'] = 1
update_dict(previous_test_df, dict_question_user_cnt, 'user_id', 'q_counter')
update_dict(previous_test_df, dict_correct_answers_user_cnt, 'user_id', 'answered_correctly')
previous_test_df['prior_question_had_explanation'] = previous_test_df['prior_question_had_explanation'].fillna(0 ).astype(int)
update_dict(previous_test_df, dict_question_explonation_user_cnt, 'user_id', 'prior_question_had_explanation')
update_dict(previous_test_df, dict_questionid_part_tag12_avgtarget, 'content_id', 'q_counter', 0)
update_dict(previous_test_df, dict_questionid_part_tag12_avgtarget, 'content_id', 'answered_correctly', 1)
answered_correctly_avg_content_global = 0.5
trust_border = 5
for c in previous_test_df['content_id'].unique() :
answered_correctly_avg_content = dict_questionid_part_tag12_avgtarget[c][1] / dict_questionid_part_tag12_avgtarget[c][0]
if dict_questionid_part_tag12_avgtarget[c][0] >= trust_border:
dict_questionid_part_tag12_avgtarget[c][2] = answered_correctly_avg_content
else:
border_calc_K = np.minimum(dict_questionid_part_tag12_avgtarget[c][0], trust_border)
border_calc_L =(trust_border - border_calc_K)/ trust_border
dict_questionid_part_tag12_avgtarget[c][2] =(
answered_correctly_avg_content * border_calc_K / trust_border +
answered_correctly_avg_content_global * border_calc_L
)
dict_user_question_part_accuracy = dict_user_question_part_accuracy_update(previous_test_df, dict_user_question_part_accuracy)
dict_user_slice_accuracy_5 = user_slice_accuracy_n_update(previous_test_df, dict_user_slice_accuracy_5, border=5)
dict_user_slice_accuracy_20 = user_slice_accuracy_n_update(previous_test_df, dict_user_slice_accuracy_20, border=20)
dict_user_slice_accuracy_50 = user_slice_accuracy_n_update(previous_test_df, dict_user_slice_accuracy_50, border=50)
dict_user_slice_accuracy_session_3 = user_slice_accuracy_session_update(previous_test_df, dict_user_slice_accuracy_session_3, session_max_time=3)
dict_user_slice_accuracy_session_12 = user_slice_accuracy_session_update(previous_test_df, dict_user_slice_accuracy_session_12, session_max_time=12)
dict_user_slice_accuracy_session_48 = user_slice_accuracy_session_update(previous_test_df, dict_user_slice_accuracy_session_48, session_max_time=48)
dict_user_correct_incorrect_timestamp = user_correct_incorrect_timestamp_update(previous_test_df, dict_user_correct_incorrect_timestamp)
dict_user_question_tag_accuracy = user_question_tag_accuracy_update(previous_test_df, dict_user_question_tag_accuracy)
dict_user_priorq_expl_types = user_priorq_expl_types_update(previous_test_df, dict_user_priorq_expl_types)
dict_user_answer_mode_10 = user_answer_mode_n_update(previous_test_df, dict_user_answer_mode_10, border=10)
dict_user_answer_mode_50 = user_answer_mode_n_update(previous_test_df, dict_user_answer_mode_50, border=50)
dict_question_bundle_accuracy = question_bundle_accuracy_update(previous_test_df, dict_question_bundle_accuracy)
update_user_feats(previous_test_df)
for user_id, answered_correctly, t in zip(previous_test_df['user_id'].values, previous_test_df['answered_correctly'].values, previous_test_df['timestamp'].values):
if user_id in lt_correct_dict['timestamp']:
if t == lt_correct_dict['timestamp'][user_id]:
lt_correct_dict['last_timestamp_correct_cnt'][user_id] += 1
lt_correct_dict['last_timestamp_correct_sum'][user_id] += answered_correctly
else:
lt_correct_dict['timestamp'].update({user_id:t})
lt_correct_dict['last_timestamp_correct_cnt'][user_id] = 1
lt_correct_dict['last_timestamp_correct_sum'][user_id] = answered_correctly
else:
lt_correct_dict['timestamp'].update({user_id:t})
lt_correct_dict['last_timestamp_correct_cnt'].update({user_id:1})
lt_correct_dict['last_timestamp_correct_sum'].update({user_id:answered_correctly})
lt_correct_dict['last_timestamp_correct_pct'][user_id] = lt_correct_dict['last_timestamp_correct_sum'][user_id] / lt_correct_dict['last_timestamp_correct_cnt'][user_id]
previous_test_df = test_df.copy()
test_df2 = test_df.copy()
prior_question_elapsed_time_mean = 25452.541
test_df2 = test_df[test_df['content_type_id'] == 0].reset_index(drop=True)
lt_correct_cnt = np.zeros(len(test_df2), dtype=np.int8)
lt_correct_sum = np.zeros(len(test_df2), dtype=np.int8)
lt_correct_pct = np.zeros(len(test_df2), dtype=np.float16)
test_df2 = add_user_feats_without_update(test_df2)
test_df2 = add_uq_feats_and_update(test_df2)
test_df2 = lagtime_for_test(test_df2)
for i,(user_id, t)in enumerate(zip(test_df2['user_id'].values, test_df2['timestamp'].values)) :
if user_id in lt_correct_dict['timestamp']:
lt_correct_cnt[i] = lt_correct_dict['last_timestamp_correct_cnt'][user_id]
lt_correct_sum[i] = lt_correct_dict['last_timestamp_correct_sum'][user_id]
lt_correct_pct[i] = lt_correct_dict['last_timestamp_correct_pct'][user_id]
else:
lt_correct_cnt[i] = -1
lt_correct_sum[i] = -1
lt_correct_pct[i] = -1
test_df2['last_timestamp_correct_cnt'] = lt_correct_cnt
test_df2['last_timestamp_correct_sum'] = lt_correct_sum
test_df2['last_timestamp_correct_pct'] = lt_correct_pct
additional_test_feature = test_df2[['last_timestamp_correct_cnt', 'last_timestamp_correct_sum',
'last_timestamp_correct_pct', 'lag_time', 'lag_time2',
'lag_time3', 'curr_user_time_diff', 'curr_user_time_diff_mean',
'curr_user_elapsed_time_diff', 'curr_uq_time_diff']].values
test_df['prior_question_elapsed_time'] = test_df['prior_question_elapsed_time'].fillna(prior_question_elapsed_time_mean)
test_df['prior_group_answers_correct'] = 0
test_df['prior_group_responses'] = 0
test_df = test_df.replace([np.inf, -np.inf], np.nan)
test_df = test_df.fillna(0)
test_df = dict_user_timestampsdelta_get_update_3(test_df, dict_user_timestampsdelta_3)
test_df['user_slice_accuracy_5'] = user_slice_accuracy_n_get(test_df, dict_user_slice_accuracy_5)
test_df['user_slice_accuracy_20'] = user_slice_accuracy_n_get(test_df, dict_user_slice_accuracy_20)
test_df['user_slice_accuracy_50'] = user_slice_accuracy_n_get(test_df, dict_user_slice_accuracy_50)
test_df['user_slice_accuracy_session_3'] = user_slice_accuracy_session_get(test_df, dict_user_slice_accuracy_session_3, session_max_time=3)
test_df['user_slice_accuracy_session_12'] = user_slice_accuracy_session_get(test_df, dict_user_slice_accuracy_session_12, session_max_time=12)
test_df['user_slice_accuracy_session_48'] = user_slice_accuracy_session_get(test_df, dict_user_slice_accuracy_session_48, session_max_time=48)
test_df['task_container_freq'] = test_df.groupby(['user_id', 'task_container_id'])['task_container_id'].transform('count')
test_df['task_container_counter'] = test_df[['user_id', 'task_container_id', 'content_id']].groupby(['user_id', 'task_container_id'], as_index=False ).agg(['cumcount'])+ 1
test_df['user_question_attempt_cnt'] = user_question_attempt_cnt_get_update(test_df, dict_user_question_attempt_cnt ).astype(np.int16)
test_df['lecture_cnt'] = user_lecture_cnt(test_df, dict_user_lectures_part)
test_df = user_lectures_typeof_cnt(test_df, dict_user_lectures_typeof_cnt)
test_df['part_q'] = get_q_l(test_df, dict_questions, 'part')
test_df['tags_list'] = get_q_l(test_df, dict_questions, 'tags_list')
test_df['part_l'] = get_q_l(test_df, dict_lectures, 'part')
test_df['tag_l'] = get_q_l(test_df, dict_lectures, 'tag')
test_df['part_l_q_cnt'] = user_lectures_part(test_df, dict_user_lectures_part ).astype(np.int16)
test_df['tag_l_q_equal_cnt'] = user_l_q_tag_equal(test_df, dict_user_l_q_tag_equal ).astype(np.int16)
test_df['user_question_part_accuracy'] = dict_user_question_part_accuracy_get(test_df, dict_user_question_part_accuracy)
test_df['user_question_tag_accuracy'] = user_question_tag_accuracy_get(test_df, dict_user_question_tag_accuracy)
test_df = user_correct_incorrect_timestamp_get(test_df, dict_user_correct_incorrect_timestamp)
test_df = user_slice_question_time_mean_session(test_df, dict_user_slice_question_time_mean_session)
test_df = user_priorq_expl_types_get(test_df, dict_user_priorq_expl_types)
test_df['user_answer_mode_10'] = user_answer_mode_n_get(test_df, dict_user_answer_mode_10, border=10)
test_df['user_answer_mode_50'] = user_answer_mode_n_get(test_df, dict_user_answer_mode_50, border=50)
test_df = question_bundle_id_get(test_df, dict_questions)
test_df = user_bundle_cluster_get_update(test_df, dict_user_bundle_cluster)
test_df = question_bundle_accuracy_get(test_df, dict_question_bundle_accuracy)
previous_test_df['part_q'] = test_df['part_q'].values
previous_test_df['tags_list'] = test_df['tags_list'].values
previous_test_df['task_container_freq'] = test_df['task_container_freq'].values
previous_test_df['bundle_id'] = test_df['bundle_id'].values
previous_test_df['first_bundle_id_cluster'] = test_df['first_bundle_id_cluster'].values
test_df.drop(columns=['part_l', 'part_q', 'tag_l', 'tags_list', 'bundle_id'], inplace=True)
test_df = test_df[test_df['content_type_id'] == 0]
if test_df.shape[0] > 0:
np_test_df = test_df.to_numpy(dtype=np.float64, na_value=0)
col_idx = features_map['user_id']
np_test_df = add_feats_from_dict(np_test_df, dict_question_user_cnt, col_idx)
np_test_df = add_feats_from_dict(np_test_df, dict_correct_answers_user_cnt, col_idx)
col_numerator = features_map['correct_answers_user_cnt']
col_denominator = features_map['question_user_cnt']
np_test_df = np.c_[ np_test_df, np.divide(np_test_df[:,col_numerator], np_test_df[:,col_denominator],
out=np.zeros_like(np_test_df[:,col_denominator]),
where=np_test_df[:,col_denominator]!=0)]
np_test_df = add_feats_from_dict(np_test_df, dict_question_explonation_user_cnt, col_idx)
col_numerator = features_map['prior_question_had_explanation_user_cnt']
col_denominator = features_map['question_user_cnt']
np_test_df = np.c_[ np_test_df, np.divide(np_test_df[:,col_numerator], np_test_df[:,col_denominator],
out=np.zeros_like(np_test_df[:,col_denominator]),
where=np_test_df[:,col_denominator]!=0)]
for i in [dict_questionid_part_tag12_avgtarget_map['answered_correctly_avg_content_smooth'],
dict_questionid_part_tag12_avgtarget_map['part'],
dict_questionid_part_tag12_avgtarget_map['answered_correctly_avg_part'],
dict_questionid_part_tag12_avgtarget_map['answered_correctly_avg_tag_1'],
dict_questionid_part_tag12_avgtarget_map['answered_correctly_avg_tag_2'],
]:
np_test_df = add_feats_from_dict_got_new_user(np_test_df, dict_questionid_part_tag12_avgtarget, col_idx=features_map['content_id'], col_dict=i)
col_numerator = features_map['correct_answers_user_prc']
col_denominator = features_map['content_id_mean']
np_test_df = np.c_[ np_test_df, np.divide(np_test_df[:,col_numerator], np_test_df[:,col_denominator], out=np.zeros_like(np_test_df[:,col_denominator]), where=np_test_df[:,col_denominator]!=0)]
user_acc = features_map['correct_answers_user_prc']
question_acc = features_map['content_id_mean']
np_test_df = np.c_[ np_test_df, 2*(np_test_df[:,user_acc] * np_test_df[:,question_acc])/(np_test_df[:,user_acc] + np_test_df[:,question_acc])]
pred_feature = np_test_df[:,train_cols_clf]
pred_feature = np.concatenate(( pred_feature, additional_test_feature), axis=1)
pred = pd.DataFrame()
pred['score_lgbm'] = lgb_model.predict(pred_feature)
pred['score_cat'] = cat_model.predict_proba(pred_feature)[:,1]
pred['score_saint1'] = np.array(outs1)
pred['score_saint2'] = np.array(outs2)
pred['score_saint3'] = np.array(outs3)
test_df['answered_correctly'] =(c1*pred['score_lgbm'] + c1_2 * pred['score_cat'] + c2*pred['score_saint1'] + c3*pred['score_saint2']+ c4*pred['score_saint3'] ).values
else:
test_df['answered_correctly'] = np.array([], dtype = np.float32)
env.predict(test_df[['row_id', 'answered_correctly']] )<import_modules> | x_test = np.array(df_test)
x_test = np.array([np.reshape(i,(28, 28, 1)) for i in x_test])
x_test = x_test/255.0 | Digit Recognizer |
10,242,261 | import torch
import pandas as pd
from saintmodel import SaintModel, SaintLightningModule, SaintHistory
from saintsubmit import load_saint_config, SaintPredictor, make_submission<choose_model_class> | X_train, X_test, Y_train, Y_test = train_test_split(x_train, y_train, test_size=0.2, stratify=y_train ) | Digit Recognizer |
10,242,261 | args = load_saint_config()
model = SaintModel(
seq_len=args.seq_len, n_dim=args.n_dim, std=args.std, dropout=args.dropout, nhead=args.nhead, n_layers=args.n_layers
)
module = SaintLightningModule(args, model )<load_pretrained> | model = keras.models.Sequential()
model.add(keras.layers.Conv2D(filters=32, kernel_size=(3,3), kernel_initializer='random_uniform', padding='same', activation='relu', input_shape=(X_train.shape[1:])))
model.add(keras.layers.Conv2D(filters=32, kernel_size=(3,3), kernel_initializer='random_uniform', padding='same', activation='relu'))
model.add(keras.layers.MaxPool2D(pool_size=(2,2)))
model.add(keras.layers.Conv2D(filters=64, kernel_size=(5,5), kernel_initializer='random_uniform', padding='same', activation='relu'))
model.add(keras.layers.Conv2D(filters=64, kernel_size=(5,5), kernel_initializer='random_uniform', padding='same', activation='relu'))
model.add(keras.layers.MaxPool2D(pool_size=(2,2)))
model.add(keras.layers.Conv2D(filters=128, kernel_size=(7,7), kernel_initializer='random_uniform', padding='same', activation='relu'))
model.add(keras.layers.Conv2D(filters=128, kernel_size=(7,7), kernel_initializer='random_uniform', padding='same', activation='relu'))
model.add(keras.layers.MaxPool2D(pool_size=(3,3)))
model.add(keras.layers.Conv2D(filters=256, kernel_size=(7,7), padding='same'))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation('relu'))
model.add(keras.layers.Dense(units=256, activation='relu'))
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(units=100, activation='relu'))
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(units=y_train.shape[1], activation='softmax'))
print(model.summary())
model.compile(loss='categorical_crossentropy',optimizer='Adam', metrics=['accuracy'] ) | Digit Recognizer |
10,242,261 | %%time
module.load_state_dict(torch.load('/kaggle/input/riiid-saintp-solution/saint.ckpt')['state_dict'] )<load_pretrained> | es = EarlyStopping(monitor='loss', mode='min', verbose=1, patience=5)
filepath = "model.h5"
ckpt = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
rlp = ReduceLROnPlateau(monitor='loss', patience=2, factor=0.2 ) | Digit Recognizer |
10,242,261 | %%time
last_history = pd.read_pickle('/kaggle/input/riiid-saintp-solution/last_history.pickle')
last_timestamp = pd.read_pickle('/kaggle/input/riiid-saintp-solution/last_timestamp.pickle')
last_user_count = pd.read_pickle('/kaggle/input/riiid-saintp-solution/last_user_count.pickle')
dict_lag = pd.read_pickle('/kaggle/input/riiid-saintp-solution/dict_lag.pickle')
dict_elapsed = pd.read_pickle('/kaggle/input/riiid-saintp-solution/dict_elapsed.pickle')
dict_user_count = pd.read_pickle('/kaggle/input/riiid-saintp-solution/dict_user_count.pickle' )<set_options> | history = model.fit(X_train, Y_train, batch_size=500, callbacks=[es, ckpt, rlp], epochs=100, validation_data=(X_test,Y_test)) | Digit Recognizer |
10,242,261 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
module.to(device )<choose_model_class> | id_img = []
label = []
for i in range(len(x_test)) :
id_img.append(i+1)
label.append(np.argmax(model.predict(x_test[i:i+1])))
img_id = np.array(id_img)
label = np.array(label ) | Digit Recognizer |
10,242,261 | <set_options><EOS> | op_df = pd.DataFrame()
op_df['ImageId'] = img_id
op_df['Label'] = label
op_df.to_csv("submission.csv", index=False ) | Digit Recognizer |
9,870,532 | <compute_test_metric><EOS> | decay=1e-4
xtrain = []
ytrain = []
xtest = []
xval = []
yval = []
for dirname, _, filenames in os.walk('/kaggle/input/digit-recognizer/'):
for filename in filenames:
print(os.path.join(dirname, filename))
train =pd.read_csv(os.path.join(dirname,'train.csv'))
test =pd.read_csv(os.path.join(dirname,'test.csv'))
sample_submission =pd.read_csv(os.path.join(dirname,'sample_submission.csv'))
val = train[35000:]
train = train[:35000]
xtrain=train.drop('label',axis=1)
ytrain=train.label
xtest = test
xval=val.drop('label',axis=1)
yval=val.label
xtrain=xtrain.values
xtest=xtest.values
xval=xval.values
ytrain=ytrain.values
yval=yval.values
xtrain=xtrain.reshape(-1,28,28,1 ).astype('float32')
xtest=xtest.reshape(-1,28,28,1 ).astype('float32')
xval=xval.reshape(-1,28,28,1 ).astype('float32')
xtrain=(xtrain-np.mean(xtrain)) /255
xtest=(xtest-np.mean(xtest)) /255
xval=(xval-np.mean(xval)) /255
model=Sequential()
model.add(layers.Conv2D(64,(3,3), padding='same', input_shape=(28, 28, 1)))
model.add(layers.BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform"))
model.add(layers.LeakyReLU(alpha=0.1))
model.add(layers.Conv2D(64,(3,3), padding='same'))
model.add(layers.BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform"))
model.add(layers.LeakyReLU(alpha=0.1))
model.add(layers.Conv2D(64,(3,3), padding='same'))
model.add(layers.BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform"))
model.add(layers.LeakyReLU(alpha=0.1))
model.add(layers.MaxPooling2D(2, 2))
model.add(layers.Dropout(0.2))
model.add(layers.Conv2D(128,(3,3), padding='same'))
model.add(layers.BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform"))
model.add(layers.LeakyReLU(alpha=0.1))
model.add(layers.Conv2D(128,(3,3), padding='same'))
model.add(layers.BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform"))
model.add(layers.LeakyReLU(alpha=0.1))
model.add(layers.Conv2D(128,(3,3), padding='same'))
model.add(layers.BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform"))
model.add(layers.LeakyReLU(alpha=0.1))
model.add(layers.MaxPooling2D(2,2))
model.add(layers.Dropout(0.2))
model.add(layers.Conv2D(256,(3,3), padding='same'))
model.add(layers.BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform"))
model.add(layers.LeakyReLU(alpha=0.1))
model.add(layers.Conv2D(256,(3,3), padding='same'))
model.add(layers.BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform"))
model.add(layers.LeakyReLU(alpha=0.1))
model.add(layers.MaxPooling2D(2,2))
model.add(layers.Dropout(0.2))
model.add(layers.Flatten())
model.add(layers.Dense(256))
model.add(layers.LeakyReLU(alpha=0.1))
model.add(layers.BatchNormalization())
model.add(layers.Dense(256))
model.add(layers.LeakyReLU(alpha=0.1))
model.add(layers.BatchNormalization())
model.add(layers.Dense(10, activation='softmax'))
adam_opt = Adam(lr=0.0002, beta_1=0.9, beta_2=0.999, decay=0.0, amsgrad=False)
optimizer = RMSprop(learning_rate=0.002,rho=0.9)
model.compile(optimizer=optimizer,loss='sparse_categorical_crossentropy',metrics=['accuracy'])
datagen = ImageDataGenerator(
rotation_range=12,
zoom_range=0.35,
width_shift_range=0.3,
height_shift_range=0.3,
)
datagen.fit(xtrain)
learning_rate_reduction = tf.keras.callbacks.ReduceLROnPlateau(
monitor='loss',
factor=0.2,
patience=2,
verbose=1,
mode="min",
min_delta=0.0001,
cooldown=0,
min_lr=0.00001
)
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=300, restore_best_weights=True)
model.fit_generator(datagen.flow(xtrain, ytrain, batch_size=512),
steps_per_epoch=len(xtrain)//512,
epochs=42,
validation_data=(np.array(xval),np.array(yval)) ,
validation_steps=50,
callbacks=[learning_rate_reduction, es])
model.summary()
score=model.evaluate(np.array(xval),np.array(yval),batch_size=512)
results = model.predict_classes(xtest)
results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_datagen.csv",index=False)
print("accuracy",score[1] ) | Digit Recognizer |
9,011,532 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<install_modules> | import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt | Digit Recognizer |
9,011,532 | !pip install.. /input/python-datatable/datatable-0.11.0-cp37-cp37m-manylinux2010_x86_64.whl > /dev/null 2>&1<import_modules> | df = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
df.shape | Digit Recognizer |
9,011,532 | import numpy as np
import random
import pandas as pd
import joblib<set_options> | train_data = train_data.to_numpy()
train_labels = train_labels.to_numpy() | Digit Recognizer |
9,011,532 | _ = np.seterr(divide='ignore', invalid='ignore' )<define_variables> | train_data = train_data / 255 | Digit Recognizer |
9,011,532 | data_types_dict = {
'timestamp': 'int64',
'user_id': 'int32',
'content_id': 'int16',
'content_type_id':'int8',
'task_container_id': 'int16',
'answered_correctly': 'int8',
'prior_question_elapsed_time': 'float32',
'prior_question_had_explanation': 'bool'
}
target = 'answered_correctly'<load_from_csv> | filters = 64
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(filters=filters, kernel_size=(3,3), activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Conv2D(filters=filters, kernel_size=(3,3), activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Conv2D(filters=filters, kernel_size=(5,5), strides=2, padding='same', activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Conv2D(filters=2*filters, kernel_size=(3,3), activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Conv2D(filters=2*filters, kernel_size=(3,3), activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Conv2D(filters=2*filters, kernel_size=(5,5), strides=2, padding='same', activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Conv2D(filters=4*filters, kernel_size=(4,4), activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Flatten() ,
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'] ) | Digit Recognizer |
9,011,532 | print('start read train data...')
train_df = dt.fread('.. /input/riiid-test-answer-prediction/train.csv', columns=set(data_types_dict.keys())).to_pandas()<train_model> | history = model.fit(train_data, train_labels, epochs=40, batch_size=32, verbose=0 ) | Digit Recognizer |
9,011,532 | print('start handle lecture data...' )<load_from_csv> | df_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv")
df_test.shape | Digit Recognizer |
9,011,532 | lectures_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/lectures.csv' )<categorify> | test_data = df_test.to_numpy()
test_data = test_data / 255
test_data = test_data.reshape(( test_data.shape[0], 28, 28, 1))
test_data.shape | Digit Recognizer |
9,011,532 | lectures_df['type_of'] = lectures_df['type_of'].replace('solving question', 'solving_question')
lectures_df = pd.get_dummies(lectures_df, columns=['part', 'type_of'])
part_lectures_columns = [column for column in lectures_df.columns if column.startswith('part')]
types_of_lectures_columns = [column for column in lectures_df.columns if column.startswith('type_of_')]<merge> | predictions = model.predict(test_data)
predictions = np.asarray([np.argmax(prediction)for prediction in predictions])
predictions.shape | Digit Recognizer |
9,011,532 | train_lectures = train_df[train_df.content_type_id == True].merge(lectures_df, left_on='content_id', right_on='lecture_id', how='left' )<groupby> | df_predictions = pd.DataFrame(predictions ).rename(columns={0: "Label"})
df_predictions.index.names = ['ImageId']
df_predictions.index += 1
df_predictions.head() | Digit Recognizer |
9,011,532 | user_lecture_stats_part = train_lectures.groupby('user_id',as_index = False)[part_lectures_columns + types_of_lectures_columns].sum()<data_type_conversions> | df_predictions.shape
df_predictions.to_csv("predictions.csv" ) | Digit Recognizer |
9,011,532 | lecturedata_types_dict = {
'user_id': 'int32',
'part_1': 'int8',
'part_2': 'int8',
'part_3': 'int8',
'part_4': 'int8',
'part_5': 'int8',
'part_6': 'int8',
'part_7': 'int8',
'type_of_concept': 'int8',
'type_of_intention': 'int8',
'type_of_solving_question': 'int8',
'type_of_starter': 'int8'
}
user_lecture_stats_part = user_lecture_stats_part.astype(lecturedata_types_dict )<data_type_conversions> | import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt | Digit Recognizer |
9,011,532 | for column in user_lecture_stats_part.columns:
if(column !='user_id'):
user_lecture_stats_part[column] =(user_lecture_stats_part[column] > 0 ).astype('int8' )<drop_column> | df = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
df.shape | Digit Recognizer |
9,011,532 | del(train_lectures)
gc.collect()<categorify> | train_data = train_data.to_numpy()
train_labels = train_labels.to_numpy() | Digit Recognizer |
9,011,532 | user_lecture_agg = train_df.groupby('user_id')['content_type_id'].agg(['sum', 'count'])
user_lecture_agg=user_lecture_agg.astype('int16' )<data_type_conversions> | train_data = train_data / 255 | Digit Recognizer |
9,011,532 | cum = train_df.groupby('user_id')['content_type_id'].agg(['cumsum', 'cumcount'])
cum['cumcount']=cum['cumcount']+1
train_df['user_interaction_count'] = cum['cumcount']
train_df['user_interaction_timestamp_mean'] = train_df['timestamp']/cum['cumcount']
train_df['user_lecture_sum'] = cum['cumsum']
train_df['user_lecture_lv'] = cum['cumsum'] / cum['cumcount']
train_df.user_lecture_lv=train_df.user_lecture_lv.astype('float16')
train_df.user_lecture_sum=train_df.user_lecture_sum.astype('int16')
train_df.user_interaction_count=train_df.user_interaction_count.astype('int16')
train_df['user_interaction_timestamp_mean']=train_df['user_interaction_timestamp_mean']/(1000*3600)
train_df.user_interaction_timestamp_mean=train_df.user_interaction_timestamp_mean.astype('float32')
<set_options> | filters = 64
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(filters=filters, kernel_size=(3,3), activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Conv2D(filters=filters, kernel_size=(3,3), activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Conv2D(filters=filters, kernel_size=(5,5), strides=2, padding='same', activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Conv2D(filters=2*filters, kernel_size=(3,3), activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Conv2D(filters=2*filters, kernel_size=(3,3), activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Conv2D(filters=2*filters, kernel_size=(5,5), strides=2, padding='same', activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Conv2D(filters=4*filters, kernel_size=(4,4), activation=tf.nn.relu),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Flatten() ,
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'] ) | Digit Recognizer |
9,011,532 | del cum
gc.collect()<train_model> | history = model.fit(train_data, train_labels, epochs=40, batch_size=32, verbose=0 ) | Digit Recognizer |
9,011,532 | print('start handle train_df...' )<data_type_conversions> | df_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv")
df_test.shape | Digit Recognizer |
9,011,532 | train_df['prior_question_had_explanation'].fillna(False, inplace=True)
train_df = train_df.astype(data_types_dict)
train_df = train_df[train_df[target] != -1].reset_index(drop=True )<groupby> | test_data = df_test.to_numpy()
test_data = test_data / 255
test_data = test_data.reshape(( test_data.shape[0], 28, 28, 1))
test_data.shape | Digit Recognizer |
9,011,532 | content_explation_agg=train_df[["content_id","prior_question_had_explanation",target]].groupby(["content_id","prior_question_had_explanation"])[target].agg(['mean'] )<rename_columns> | predictions = model.predict(test_data)
predictions = np.asarray([np.argmax(prediction)for prediction in predictions])
predictions.shape | Digit Recognizer |
9,011,532 | content_explation_agg=content_explation_agg.unstack()
content_explation_agg=content_explation_agg.reset_index()
content_explation_agg.columns = ['content_id', 'content_explation_false_mean','content_explation_true_mean']<data_type_conversions> | df_predictions = pd.DataFrame(predictions ).rename(columns={0: "Label"})
df_predictions.index.names = ['ImageId']
df_predictions.index += 1
df_predictions.head() | Digit Recognizer |
9,011,532 | content_explation_agg.content_id=content_explation_agg.content_id.astype('int16')
content_explation_agg.content_explation_false_mean=content_explation_agg.content_explation_false_mean.astype('float16')
content_explation_agg.content_explation_true_mean=content_explation_agg.content_explation_true_mean.astype('float16' )<train_model> | df_predictions.shape
df_predictions.to_csv("predictions.csv" ) | Digit Recognizer |
9,999,514 | print('start handle attempt_no...' )<data_type_conversions> | train=pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
test=pd.read_csv("/kaggle/input/digit-recognizer/test.csv")
train.head() | Digit Recognizer |
9,999,514 | train_df["attempt_no"] = 1
train_df.attempt_no=train_df.attempt_no.astype('int8')
attempt_no_agg=train_df.groupby(["user_id","content_id"])["attempt_no"].agg(['sum'] ).astype('int8')
train_df["attempt_no"] = train_df[["user_id","content_id",'attempt_no']].groupby(["user_id","content_id"])["attempt_no"].cumsum()<data_type_conversions> | X_train=train.drop("label", axis=1)
y_train=train["label"]
X_test=test | Digit Recognizer |
9,999,514 | print('start handle timestamp...')
prior_question_elapsed_time_mean=train_df['prior_question_elapsed_time'].mean()
train_df['prior_question_elapsed_time'].fillna(prior_question_elapsed_time_mean, inplace=True )<data_type_conversions> | X_train/=255.0
X_test/=255.0
X_train=X_train.values.reshape(-1,28,28,1)
X_test=X_test.values.reshape(-1,28,28,1)
y_train=to_categorical(y_train, num_classes=10 ) | Digit Recognizer |
9,999,514 | max_timestamp_u = train_df[['user_id','timestamp']].groupby(['user_id'] ).agg(['max'] ).reset_index()
max_timestamp_u.columns = ['user_id', 'max_time_stamp']
max_timestamp_u.user_id=max_timestamp_u.user_id.astype('int32' )<data_type_conversions> | X_train, x_test, Y_train, y_test= train_test_split(X_train,y_train,test_size=0.1,random_state=0 ) | Digit Recognizer |
9,999,514 | train_df['lagtime'] = train_df.groupby('user_id')['timestamp'].shift()
max_timestamp_u2 = train_df[['user_id','lagtime']].groupby(['user_id'] ).agg(['max'] ).reset_index()
max_timestamp_u2.columns = ['user_id', 'max_time_stamp2']
max_timestamp_u2.user_id=max_timestamp_u2.user_id.astype('int32' )<feature_engineering> | classifier=Sequential()
classifier.add(Conv2D(64,3,3, input_shape=(28,28,1), activation='relu'))
classifier.add(BatchNormalization())
classifier.add(Conv2D(64,3,3, activation='relu'))
classifier.add(BatchNormalization())
classifier.add(Conv2D(64,3,3, activation='relu'))
classifier.add(BatchNormalization())
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Dropout(0.4))
classifier.add(Conv2D(64,3,3, activation='relu'))
classifier.add(BatchNormalization())
classifier.add(Conv2D(64,3,3, activation='relu'))
classifier.add(BatchNormalization())
classifier.add(Conv2D(64,3,3, activation='relu'))
classifier.add(BatchNormalization())
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Dropout(0.4))
classifier.add(Flatten())
classifier.add(Dense(output_dim=256,activation='relu'))
classifier.add(Dropout(0.4))
classifier.add(Dense(output_dim=512,activation='relu'))
classifier.add(Dropout(0.4))
classifier.add(Dense(output_dim=1024,activation='relu'))
classifier.add(Dropout(0.5))
classifier.add(Dense(output_dim=10, activation='softmax')) | Digit Recognizer |
9,999,514 | train_df['lagtime']=train_df['timestamp']-train_df['lagtime']
lagtime_mean=train_df['lagtime'].mean()
train_df['lagtime'].fillna(lagtime_mean, inplace=True )<data_type_conversions> | optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0 ) | Digit Recognizer |
9,999,514 | train_df['lagtime']=train_df['lagtime']/(1000*3600)
train_df.lagtime=train_df.lagtime.astype('float32' )<data_type_conversions> | classifier.compile(optimizer=optimizer, loss='categorical_crossentropy',
metrics=['accuracy'] ) | Digit Recognizer |
9,999,514 |
<data_type_conversions> | datagen = ImageDataGenerator(zoom_range = 0.1,
height_shift_range = 0.1,
width_shift_range = 0.1,
rotation_range = 10 ) | Digit Recognizer |
9,999,514 | train_df['lagtime2'] = train_df.groupby('user_id')['timestamp'].shift(2)
max_timestamp_u3 = train_df[['user_id','lagtime2']].groupby(['user_id'] ).agg(['max'] ).reset_index()
max_timestamp_u3.columns = ['user_id', 'max_time_stamp3']
max_timestamp_u3.user_id=max_timestamp_u3.user_id.astype('int32')
train_df['lagtime2']=train_df['timestamp']-train_df['lagtime2']
lagtime_mean2=train_df['lagtime2'].mean()
train_df['lagtime2'].fillna(lagtime_mean2, inplace=True)
<data_type_conversions> | annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x ) | Digit Recognizer |
9,999,514 | train_df['lagtime2']=train_df['lagtime2']/(1000*3600)
train_df.lagtime2=train_df.lagtime2.astype('float32' )<data_type_conversions> | classifier.fit_generator(datagen.flow(X_train, Y_train, batch_size=16),
steps_per_epoch=500,
epochs=40,
verbose=2,
validation_data=(x_test[:400,:], y_test[:400,:]),
callbacks=[annealer] ) | Digit Recognizer |
9,999,514 | train_df['lagtime3'] = train_df.groupby('user_id')['timestamp'].shift(3)
train_df['lagtime3']=train_df['timestamp']-train_df['lagtime3']
lagtime_mean3=train_df['lagtime3'].mean()
train_df['lagtime3'].fillna(lagtime_mean3, inplace=True)
train_df['lagtime3']=train_df['lagtime3']/(1000*3600)
train_df.lagtime3=train_df.lagtime3.astype('float32' )<data_type_conversions> | result=classifier.predict(X_test)
result=pd.Series(np.argmax(result, axis=1), name='Label')
result | Digit Recognizer |
9,999,514 |
<data_type_conversions> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),result],axis = 1)
submission.to_csv("cnn_mnist_datagen.csv",index=False ) | Digit Recognizer |
11,220,007 | train_df['timestamp']=train_df['timestamp']/(1000*3600)
train_df.timestamp=train_df.timestamp.astype('float16' )<feature_engineering> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
x_test = pd.read_csv('.. /input/digit-recognizer/test.csv')
train.head() | Digit Recognizer |
11,220,007 | train_df['delta_prior_question_elapsed_time'] = train_df.groupby('user_id')['prior_question_elapsed_time'].shift()
train_df['delta_prior_question_elapsed_time']=train_df['prior_question_elapsed_time']-train_df['delta_prior_question_elapsed_time']<data_type_conversions> | x_train = x_train.to_numpy()
x_test = x_test.to_numpy()
y_train = y_train.to_numpy() | Digit Recognizer |
11,220,007 | delta_prior_question_elapsed_time_mean=train_df['delta_prior_question_elapsed_time'].mean()
train_df['delta_prior_question_elapsed_time'].fillna(delta_prior_question_elapsed_time_mean, inplace=True)
train_df.delta_prior_question_elapsed_time=train_df.delta_prior_question_elapsed_time.astype('int32' )<data_type_conversions> | x_train = x_train.reshape(-1,28,28)
x_test = x_test.reshape(-1,28,28)
print("(Image)Train Inputs: " , x_train.shape)
print("(Image)Test Inputs: " , x_test.shape ) | Digit Recognizer |
11,220,007 | train_df['lag'] = train_df.groupby('user_id')[target].shift()
cum = train_df.groupby('user_id')['lag'].agg(['cumsum', 'cumcount'])
user_agg = train_df.groupby('user_id')['lag'].agg(['sum', 'count'] ).astype('int16')
cum['cumsum'].fillna(0, inplace=True)
train_df['user_correctness'] = cum['cumsum'] / cum['cumcount']
train_df['user_correct_count'] = cum['cumsum']
train_df['user_uncorrect_count'] = cum['cumcount']-cum['cumsum']
train_df.drop(columns=['lag'], inplace=True)
train_df['user_correctness'].fillna(0.67, inplace=True)
train_df.user_correctness=train_df.user_correctness.astype('float16')
train_df.user_correct_count=train_df.user_correct_count.astype('int16')
train_df.user_uncorrect_count=train_df.user_uncorrect_count.astype('int16')
<set_options> | def sharpner(img):
img = Image.fromarray(img.astype('uint8'))
img = img.filter(ImageFilter.UnsharpMask(radius=2, percent=150))
return np.array(img)
for i in range(x_train.shape[0]):
x_train[i] = sharpner(x_train[i])
for i in range(x_test.shape[0]):
x_test[i] = sharpner(x_test[i])
print(x_train.shape)
print(x_test.shape)
plt.imshow(x_train[3] ) | Digit Recognizer |
11,220,007 | del cum
gc.collect()<data_type_conversions> | def one_hottie(labels,C):
One_hot_matrix = tf.one_hot(labels,C)
return tf.keras.backend.eval(One_hot_matrix)
y_train = one_hottie(y_train, 10)
print("Y shape: " + str(y_train.shape)) | Digit Recognizer |
11,220,007 |
<data_type_conversions> | model = tf.keras.Sequential([
tf.keras.layers.Conv2D(64, 3, activation='relu', input_shape=(28,28,1),padding="same"),
tf.keras.layers.MaxPool2D(strides=2),
tf.keras.layers.Conv2D(128, 3, activation='relu',padding="same"),
tf.keras.layers.MaxPool2D(strides=2),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Conv2D(256, 3, activation='relu',padding="same"),
tf.keras.layers.MaxPool2D(strides=2),
tf.keras.layers.Conv2D(256, 3, activation='relu',padding="same"),
tf.keras.layers.MaxPool2D(strides=2),
tf.keras.layers.Flatten() ,
tf.keras.layers.Dense(100,kernel_regularizer=tf.keras.regularizers.l2(0.01), activation='relu'),
tf.keras.layers.Dense(50,kernel_regularizer=tf.keras.regularizers.l2(0.01), activation='relu'),
tf.keras.layers.Dense(10, kernel_regularizer=tf.keras.regularizers.l2(0.01),activation='softmax')
])
model.summary() | Digit Recognizer |
11,220,007 | train_df.prior_question_had_explanation=train_df.prior_question_had_explanation.astype('int8')
explanation_agg = train_df.groupby('user_id')['prior_question_had_explanation'].agg(['sum', 'count'])
explanation_agg=explanation_agg.astype('int16')
<data_type_conversions> | model.compile(optimizer='adam', loss=tf.keras.losses.CategoricalCrossentropy() , metrics=['accuracy'] ) | Digit Recognizer |
11,220,007 | cum = train_df.groupby('user_id')['prior_question_had_explanation'].agg(['cumsum', 'cumcount'])
cum['cumcount']=cum['cumcount']+1
train_df['explanation_mean'] = cum['cumsum'] / cum['cumcount']
train_df['explanation_true_count'] = cum['cumsum']
train_df['explanation_false_count'] = cum['cumcount']-cum['cumsum']
train_df.explanation_mean=train_df.explanation_mean.astype('float16')
train_df.explanation_true_count=train_df.explanation_true_count.astype('int16')
train_df.explanation_false_count=train_df.explanation_false_count.astype('int16' )<set_options> | datagen = tf.keras.preprocessing.image.ImageDataGenerator(
rotation_range=45,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
fill_mode='nearest')
datagen.fit(x_train)
result = model.fit_generator(datagen.flow(x_train, y_train,
batch_size=64),
epochs=50,
workers=4 ) | Digit Recognizer |
11,220,007 | del cum
gc.collect()<categorify> | model.compile(optimizer=tf.keras.optimizers.Nadam(learning_rate=0.006),
loss=tf.keras.losses.CategoricalCrossentropy() ,
metrics=['accuracy'])
| Digit Recognizer |
11,220,007 | content_agg = train_df.groupby('content_id')[target].agg(['sum', 'count','var'])
task_container_agg = train_df.groupby('task_container_id')[target].agg(['sum', 'count','var'])
content_agg=content_agg.astype('float32')
task_container_agg=task_container_agg.astype('float32' )<data_type_conversions> | result = model.fit(x=x_train,
y=y_train,
batch_size=64,
epochs=50,
verbose=1,
shuffle=False,
initial_epoch=20,
validation_split=0.2 ) | Digit Recognizer |
11,220,007 | train_df['task_container_uncor_count'] = train_df['task_container_id'].map(task_container_agg['count']-task_container_agg['sum'] ).astype('int32')
train_df['task_container_cor_count'] = train_df['task_container_id'].map(task_container_agg['sum'] ).astype('int32')
train_df['task_container_std'] = train_df['task_container_id'].map(task_container_agg['var'] ).astype('float16')
train_df['task_container_correctness'] = train_df['task_container_id'].map(task_container_agg['sum'] / task_container_agg['count'])
train_df.task_container_correctness=train_df.task_container_correctness.astype('float16' )<groupby> | model.compile(optimizer=tf.keras.optimizers.Nadam(learning_rate=0.0001),
loss=tf.keras.losses.CategoricalCrossentropy() ,
metrics=['accuracy'] ) | Digit Recognizer |
11,220,007 | content_elapsed_time_agg=train_df.groupby('content_id')['prior_question_elapsed_time'].agg(['mean'])
content_had_explanation_agg=train_df.groupby('content_id')['prior_question_had_explanation'].agg(['mean'] )<train_model> | result = model.fit(x=x_train,
y=y_train,
batch_size=64,
epochs=50,
verbose=1,
shuffle=False,
initial_epoch=20,
validation_split=0.2 ) | Digit Recognizer |
11,220,007 | print('start questions data...' )<load_from_csv> | model.compile(optimizer=tf.keras.optimizers.Nadam(learning_rate=0.00006),
loss=tf.keras.losses.CategoricalCrossentropy() ,
metrics=['accuracy'] ) | Digit Recognizer |
11,220,007 | questions_df = pd.read_csv(
'.. /input/riiid-test-answer-prediction/questions.csv',
usecols=[0, 1,3,4],
dtype={'question_id': 'int16','bundle_id': 'int16', 'part': 'int8','tags': 'str'}
)<groupby> | result = model.fit(x=x_train,
y=y_train,batch_size=64,
epochs=90,
verbose=1,
shuffle=False,
initial_epoch=50,
validation_split=0.2 ) | Digit Recognizer |
11,220,007 | bundle_agg = questions_df.groupby('bundle_id')['question_id'].agg(['count'] )<data_type_conversions> | check = model.evaluate(x_train,y_train ) | Digit Recognizer |
11,220,007 | questions_df['content_sub_bundle'] = questions_df['bundle_id'].map(bundle_agg['count'] ).astype('int8' )<set_options> | preds = model.predict_classes(x_train)
preds.shape | Digit Recognizer |
11,220,007 | questions_df['tags'].fillna('188', inplace=True )<string_transform> | train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
y_train = train.iloc[:,0]
y_train = y_train.to_numpy() | Digit Recognizer |
11,220,007 | def gettags(tags,num):
tags_splits=tags.split(" ")
result=''
for t in tags_splits:
x=int(t)
if(x<32*(num+1)and x>=32*num):
result=result+' '+t
return result<categorify> | preds = model.predict_classes(x_test ) | Digit Recognizer |
11,220,007 | for num in range(0,6):
questions_df["tags"+str(num)] = questions_df["tags"].apply(lambda row: gettags(row,num))
le = LabelEncoder()
le.fit(np.unique(questions_df['tags'+str(num)].values))
questions_df['tags'+str(num)]=questions_df[['tags'+str(num)]].apply(le.transform )<data_type_conversions> | arr = [x for x in range(1,28001)]
label = pd.DataFrame(arr,columns = ["ImageId"])
label["Label"] = pd.DataFrame(preds)
label.head() | Digit Recognizer |
11,220,007 | questions_df_dict = {
'tags0': 'int8',
'tags1': 'int8',
'tags2': 'int8',
'tags3': 'int8',
'tags4': 'int8',
'tags5': 'int8',
}
questions_df = questions_df.astype(questions_df_dict )<drop_column> | label.to_csv('Y_test.csv',header=True,index = False ) | Digit Recognizer |
11,220,007 | questions_df.drop(columns=['tags'], inplace=True )<data_type_conversions> | model.save("MNIST_CNN_model_dataaug" ) | Digit Recognizer |
12,201,447 | questions_df['part_bundle_id']=questions_df['part']*100000+questions_df['bundle_id']
questions_df.part_bundle_id=questions_df.part_bundle_id.astype('int32')
<load_from_csv> | data_dir='/kaggle/input/digit-recognizer/' | Digit Recognizer |
12,201,447 |
<rename_columns> | train=pd.read_csv(data_dir+'train.csv')
test=pd.read_csv(data_dir+'test.csv' ) | Digit Recognizer |
12,201,447 | questions_df.rename(columns={'question_id':'content_id'}, inplace=True )<merge> | y_train=train['label']
x_train=train.drop('label',axis=1 ) | Digit Recognizer |
12,201,447 | questions_df = pd.merge(questions_df, content_explation_agg, on='content_id', how='left',right_index=True)
<drop_column> | def image_printer(i,df):
idx=i
data=df.iloc[idx].to_numpy().reshape(28,28 ).astype('uint8')
plt.imshow(data ) | Digit Recognizer |
12,201,447 | del content_explation_agg<data_type_conversions> | x_test=test | Digit Recognizer |
12,201,447 | questions_df['content_correctness'] = questions_df['content_id'].map(content_agg['sum'] / content_agg['count'])
questions_df.content_correctness=questions_df.content_correctness.astype('float16')
questions_df['content_correctness_std'] = questions_df['content_id'].map(content_agg['var'])
questions_df.content_correctness_std=questions_df.content_correctness_std.astype('float16')
questions_df['content_uncorrect_count'] = questions_df['content_id'].map(content_agg['count']-content_agg['sum'] ).astype('int32')
questions_df['content_correct_count'] = questions_df['content_id'].map(content_agg['sum'] ).astype('int32' )<data_type_conversions> | import tensorflow as tf
import keras
from keras import backend as k
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Activation, BatchNormalization
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import plot_model
from keras.callbacks import EarlyStopping | Digit Recognizer |
12,201,447 | questions_df['content_elapsed_time_mean'] = questions_df['content_id'].map(content_elapsed_time_agg['mean'])
questions_df.content_elapsed_time_mean=questions_df.content_elapsed_time_mean.astype('float16')
questions_df['content_had_explanation_mean'] = questions_df['content_id'].map(content_had_explanation_agg['mean'])
questions_df.content_had_explanation_mean=questions_df.content_had_explanation_mean.astype('float16' )<drop_column> | img_cols=28
img_rows=28 | Digit Recognizer |
12,201,447 | del content_elapsed_time_agg
del content_had_explanation_agg
gc.collect()<categorify> | if k.image_data_format=='channels_first':
x_train=x_train.values.reshape(x_train.shape[0],1,img_rows,img_cols)
test=test.values.reshape(test.shape[0],1,img_rows,img_cols)
x_train=x_train/255.0
test=test/255.0
input_shape=(1,img_rows,img_cols)
else:
x_train=x_train.values.reshape(x_train.shape[0],img_rows,img_cols,1)
test=test.values.reshape(test.shape[0],img_rows,img_cols,1)
x_train=x_train/255.0
test=test/255.0
input_shape=(img_rows,img_cols,1)
| Digit Recognizer |
12,201,447 | part_agg = questions_df.groupby('part')['content_correctness'].agg(['mean', 'var'])
questions_df['part_correctness_mean'] = questions_df['part'].map(part_agg['mean'])
questions_df['part_correctness_std'] = questions_df['part'].map(part_agg['var'])
questions_df.part_correctness_mean=questions_df.part_correctness_mean.astype('float16')
questions_df.part_correctness_std=questions_df.part_correctness_std.astype('float16' )<data_type_conversions> | earlystopping=EarlyStopping(monitor='val_accuracy',mode='auto',patience=10,restore_best_weights=True)
modelacc=[]
nfilters=[64,128,256]
conv_layers=[1,2,3,4,5]
dense_layers=[0,1,2,3,4]
dropouts=[0.5]
for filters in nfilters:
for conl in conv_layers:
for densel in dense_layers:
for dp in dropouts:
cnnsays='Feature Maps: {} Convlayers: {} Denselayers: {} Dropouts: {}'.format(filters,conl,densel,dp)
print(cnnsays)
model=Sequential()
model.add(Conv2D(filters,(3,3),input_shape=input_shape))
model.add(BatchNormalization())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(dp))
for i in range(conl-1):
model.add(Conv2D(filters,(3,3),padding='same'))
model.add(BatchNormalization())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2),padding='same'))
model.add(Dropout(dp))
model.add(Flatten())
for i in range(densel):
model.add(Dense(256))
model.add(BatchNormalization())
model.add(Activation("relu"))
model.add(Dropout(dp))
model.add(Dense(10,activation='softmax'))
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
EPOCHS=30
history=model.fit(x_train,y_train,batch_size=32,epochs=EPOCHS,validation_split=0.2,callbacks=[earlystopping])
modelacc.append([round(100*max(history.history['val_accuracy']),2),cnnsays])
| Digit Recognizer |
12,201,447 | part_agg = questions_df.groupby('part')['content_uncorrect_count'].agg(['sum'])
questions_df['part_uncor_count'] = questions_df['part'].map(part_agg['sum'] ).astype('int32')
part_agg = questions_df.groupby('part')['content_correct_count'].agg(['sum'])
questions_df['part_cor_count'] = questions_df['part'].map(part_agg['sum'] ).astype('int32' )<categorify> | print('Highest validation accuracy {}'.format(round(100*max(history.history['val_accuracy']),2)) ) | Digit Recognizer |
12,201,447 | bundle_agg = questions_df.groupby('bundle_id')['content_correctness'].agg(['mean'])
questions_df['bundle_correctness_mean'] = questions_df['bundle_id'].map(bundle_agg['mean'])
questions_df.bundle_correctness_mean=questions_df.bundle_correctness_mean.astype('float16')
<data_type_conversions> | modelacc.sort(reverse=True)
modelacc | Digit Recognizer |
12,201,447 |
<drop_column> | pred=model.predict([test])
soln=[]
for i in range(len(pred)) :
soln.append(np.argmax(pred[i]))
| Digit Recognizer |
12,201,447 | <define_variables><EOS> | final=pd.DataFrame()
final['ImageId']=[i+1 for i in x_test.index]
final['Label']=soln
final.to_csv('newmnistcnn',index=False ) | Digit Recognizer |
12,294,222 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<init_hyperparams> | import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
from keras.preprocessing.image import ImageDataGenerator, load_img
from keras.layers import Conv2D, BatchNormalization, Activation, MaxPooling2D, GlobalAveragePooling2D, Dense, Flatten, Dropout
from keras.optimizers import RMSprop, Adam, SGD
from keras import regularizers
from keras.callbacks import CSVLogger, ModelCheckpoint, ReduceLROnPlateau | Digit Recognizer |
12,294,222 | flag_lgbm=True
clfs = list()
params = {
'num_leaves': 400,
'max_bin':500,
'min_child_weight': 0.03454472573214212,
'feature_fraction': 0.52,
'bagging_fraction': 0.52,
'objective': 'binary',
'learning_rate': 0.2,
"boosting_type": "gbdt",
"metric": 'auc',
'reg_alpha': 0.3899927210061127,
'reg_lambda': 0.6485237330340494,
}
trains=list()
valids=list()
num=1
for i in range(0,num):
train_df_clf=train_df[1200*10000:2*1200*10000]
print('sample end')
del train_df
users=train_df_clf['user_id'].drop_duplicates()
users=users.sample(frac=0.08)
users_df=pd.DataFrame()
users_df['user_id']=users.values
valid_df_newuser = pd.merge(train_df_clf, users_df, on=['user_id'], how='inner',right_index=True)
del users_df
del users
gc.collect()
train_df_clf.drop(valid_df_newuser.index, inplace=True)
print('pd.merge(train_df_clf, questions_df)')
train_df_clf = pd.merge(train_df_clf, questions_df, on='content_id', how='left',right_index=True)
valid_df_newuser = pd.merge(valid_df_newuser, questions_df, on='content_id', how='left',right_index=True)
print('valid_df')
valid_df=train_df_clf.sample(frac=0.1)
train_df_clf.drop(valid_df.index, inplace=True)
valid_df = valid_df.append(valid_df_newuser)
del valid_df_newuser
gc.collect()
trains.append(train_df_clf)
valids.append(valid_df)
print('train_df_clf length:',len(train_df_clf))
print('valid_df length:',len(valid_df))
<drop_column> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
test = pd.read_csv('.. /input/digit-recognizer/test.csv')
train.head(5 ) | Digit Recognizer |
12,294,222 | del train_df_clf
del valid_df
gc.collect()<prepare_x_and_y> | y = train['label']
train.drop('label', axis=1, inplace=True ) | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.