kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
11,650,794 | del pickle
gc.collect()<set_options> | optimizer = Adam(learning_rate=0.001, epsilon=1e-07)
model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics=['accuracy'])
earlyStopping = EarlyStopping(monitor='val_accuracy', patience=10, verbose=0, mode='auto')
mcp = ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True, monitor='val_accuracy', mode='auto')
reduce_lr_loss = ReduceLROnPlateau(monitor='val_accuracy', factor=0.1, patience=7, verbose=1, epsilon=1e-4, mode='auto')
| Digit Recognizer |
11,650,794 | torch.cuda.is_available()<set_options> | datagen = ImageDataGenerator(
rotation_range=5,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=5,
zoom_range=0.1)
datagen.fit(X_train ) | Digit Recognizer |
11,650,794 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu" )<choose_model_class> | history = model.fit_generator(datagen.flow(X_train, y_train, batch_size=64),
epochs = 100,
validation_data =(X_val,y_val),
verbose = 1,
steps_per_epoch=X_train.shape[0]//64,
callbacks = [earlyStopping, mcp, reduce_lr_loss] ) | Digit Recognizer |
11,650,794 | def create_model() :
return SAKTModel(n_skill, max_seq=MAX_SEQ, embed_dim=EMBED_SIZE, forward_expansion=1, enc_layers=1, heads=8, dropout=0.1 )<load_pretrained> | model.load_weights(filepath = '.mdl_wts.hdf5' ) | Digit Recognizer |
11,650,794 | model_attention = create_model()
try:
model_attention.load_state_dict(torch.load("/kaggle/input/attention/attention.pth"))
except:
model_attention.load_state_dict(torch.load("/kaggle/input/attention/attention.pth", map_location='cpu'))
model_attention.to(device )<split> | scores = model.evaluate(X_val, y_val, callbacks = [earlyStopping, mcp, reduce_lr_loss] ) | Digit Recognizer |
11,650,794 | env = riiideducation.make_env()
iter_test = env.iter_test()
prior_test_df = None
prev_test_df = None<feature_engineering> | img_tensor = X_test[5].reshape(-1, 28, 28, 1 ) | Digit Recognizer |
11,650,794 | %%time
model_attention.eval()
for(test_df, sample_prediction_df)in(iter_test):
if(prev_test_df is not None)&(psutil.virtual_memory().percent < 95):
print(psutil.virtual_memory().percent)
prev_test_df['answered_correctly'] = eval(test_df['prior_group_answers_correct'].iloc[0])
prev_test_df = prev_test_df[prev_test_df.content_type_id == False]
prev_group = prev_test_df[['user_id', 'content_id', 'answered_correctly']].groupby('user_id' ).apply(lambda r:(
r['content_id'].values,
r['answered_correctly'].values))
for prev_user_id in prev_group.index:
prev_group_content = prev_group[prev_user_id][0]
prev_group_answered_correctly = prev_group[prev_user_id][1]
if prev_user_id in group.index:
group[prev_user_id] =(np.append(group[prev_user_id][0], prev_group_content),
np.append(group[prev_user_id][1], prev_group_answered_correctly))
else:
group[prev_user_id] =(prev_group_content, prev_group_answered_correctly)
if len(group[prev_user_id][0])> MAX_SEQ:
new_group_content = group[prev_user_id][0][-MAX_SEQ:]
new_group_answered_correctly = group[prev_user_id][1][-MAX_SEQ:]
group[prev_user_id] =(new_group_content, new_group_answered_correctly)
prev_test_df = test_df.copy()
test_df_attention = test_df.copy()
test_df_attention = test_df_attention[test_df_attention.content_type_id == False]
test_dataset = TestDataset(group, test_df_attention, n_skill, max_seq=MAX_SEQ)
test_dataloader = DataLoader(test_dataset, batch_size=len(test_df_attention), shuffle=False)
attention_predictions = []
item = next(iter(test_dataloader))
x = item[0].to(device ).long()
target_id = item[1].to(device ).long()
with torch.no_grad() :
output, _ = model_attention(x, target_id)
output = torch.sigmoid(output)
output = output[:, -1]
attention_predictions.extend(output.cpu().numpy())
if prior_test_df is not None:
prior_test_df[target] = eval(test_df['prior_group_answers_correct'].iloc[0])
prior_test_df_lecture = prior_test_df[prior_test_df[target] == -1].reset_index(drop=True)
if len(prior_test_df_lecture)> 0:
prior_test_df_lecture = pd.merge(prior_test_df_lecture, lectures_df, left_on='content_id', right_on='lecture_id', how='left')
user_ids = prior_test_df_lecture['user_id'].values
lecture_tags = prior_test_df_lecture['tag'].values
for user_id, lecture_tag in zip(user_ids, lecture_tags):
user_lectures_count_dict[user_id] += 1
last_lecture_tag_dict[user_id] = lecture_tag
prior_test_df = prior_test_df[prior_test_df[target] != -1].reset_index(drop=True)
user_ids = prior_test_df['user_id'].values
content_ids = prior_test_df['content_id'].values
targets = prior_test_df[target].values
prior_explanations = prior_test_df['prior_question_had_explanation'].values
prior_question_times = prior_test_df['prior_question_elapsed_time'].values
tags = prior_test_df['first_tag'].values
timestamps = prior_test_df['timestamp'].values
timestamp_diffs = prior_test_df['timestamp_diff_last'].values
for user_id, content_id, answered_correctly, explanation, prior_question_time, tag, timestamp, timestamp_diff in zip(user_ids, content_ids, targets, prior_explanations, prior_question_times, tags, timestamps, timestamp_diffs):
if answered_correctly != 1:
answered_correctly = 0
user_sum_dict[user_id] += answered_correctly
user_count_dict[user_id] += 1
content_sum_dict[content_id] += answered_correctly
content_count_dict[content_id] += 1
explanation_sum_dict[user_id] += explanation
explanation_count_dict[user_id] += 1
last_correct_dict[user_id] = answered_correctly
prior_questions_time_sum_dict[user_id] += prior_question_time
prior_questions_time_count_dict[user_id] += 1
user_tag_agg_sum_dict[user_id, tag] += answered_correctly
user_tag_agg_count_dict[user_id, tag] += 1
last_timestamp_dict[user_id] = timestamp
user_content_id = str(user_id)+ str(content_id)
user_content_id_count_dict[user_content_id] += 1
change_next_out = True
if(user_id, 9)not in user_target_window_10_dict:
for k in range(10):
if(user_id, k)not in user_target_window_10_dict:
user_target_window_10_dict[user_id, k] = answered_correctly
change_next_out = False
break
if change_next_out:
next_out = user_target_next_out_window_10_dict[user_id]
user_target_window_10_dict[user_id, next_out] = answered_correctly
next_out += 1
if next_out > 9:
next_out = 0
user_target_next_out_window_10_dict[user_id] = next_out
else:
user_target_next_out_window_10_dict[user_id] = 0
change_next_out = True
if(user_id, 9)not in timestamp_diff_window_10_dict:
for k in range(10):
if(user_id, k)not in timestamp_diff_window_10_dict:
timestamp_diff_window_10_dict[user_id, k] = timestamp_diff
change_next_out = False
break
if change_next_out:
next_out = timestamp_diff_next_window_10_dict[user_id]
timestamp_diff_window_10_dict[user_id, next_out] = timestamp_diff
next_out += 1
if next_out > 9:
next_out = 0
timestamp_diff_next_window_10_dict[user_id] = next_out
else:
timestamp_diff_next_window_10_dict[user_id] = 0
test_df['content_id'] = test_df['content_id'].astype('int16')
test_df['prior_question_elapsed_time'] = test_df['prior_question_elapsed_time'].apply(lambda x: x/1000)
test_df['prior_question_elapsed_time'].fillna(25, inplace=True)
test_df['prior_question_elapsed_time'] = test_df['prior_question_elapsed_time'].astype('int16')
test_df['prior_question_had_explanation'] = test_df['prior_question_had_explanation'].fillna(False ).astype(int)
test_df['timestamp'] = test_df['timestamp'].apply(lambda x: x/1000 ).astype('int32')
prior_test_df = test_df.copy()
prior_test_df['first_tag'] = 0
prior_test_df['timestamp_diff_last'] = 0
test_df = test_df[test_df['content_type_id'] == 0].reset_index(drop=True)
test_df = pd.merge(test_df, questions_df, left_on='content_id', right_on='question_id', how='left')
prior_test_df.loc[prior_test_df['content_type_id'] == 0,'first_tag'] = test_df['first_tag'].values
user_sum = np.zeros(len(test_df), dtype=np.int32)
user_count = np.zeros(len(test_df), dtype=np.int32)
content_sum = np.zeros(len(test_df), dtype=np.int32)
content_count = np.zeros(len(test_df), dtype=np.int32)
user_content_id_count = np.zeros(len(test_df), dtype=np.int16)
user_target_window_10_array = np.zeros(len(test_df))
timestamp_diff_window_10_array = np.zeros(len(test_df))
explanation_sum = np.zeros(len(test_df), dtype=np.int32)
explanation_count = np.zeros(len(test_df), dtype=np.int32)
user_lectures_count = np.zeros(len(test_df), dtype=np.int16)
last_lecture_tag_array = np.zeros(len(test_df), dtype=np.int16)
prior_questions_time_sum = np.zeros(len(test_df), dtype=np.int32)
prior_questions_time_count = np.zeros(len(test_df), dtype=np.int32)
last_correct_array = np.zeros(len(test_df), dtype=np.int8)
user_tag_sum = np.zeros(len(test_df), dtype=np.int16)
user_tag_count = np.zeros(len(test_df), dtype=np.int16)
last_timestamp_array = np.zeros(len(test_df), dtype=np.int32)
for i,(user_id, content_id, tag)in enumerate(zip(test_df['user_id'].values, test_df['content_id'].values, test_df['first_tag'].values)) :
user_sum[i] = user_sum_dict[user_id]
user_count[i] = user_count_dict[user_id]
content_sum[i] = content_sum_dict[content_id]
content_count[i] = content_count_dict[content_id]
explanation_sum[i] = explanation_sum_dict[user_id]
explanation_count[i] = explanation_count_dict[user_id]
user_tag_sum[i] = user_tag_agg_sum_dict[user_id, tag]
user_tag_count[i] = user_tag_agg_count_dict[user_id, tag]
last_timestamp_array[i] = last_timestamp_dict[user_id]
if(user_id)in last_lecture_tag_dict:
last_lecture_tag_array[i] = last_lecture_tag_dict[user_id]
else:
last_lecture_tag_array[i] = -9
if(user_id)in prior_questions_time_sum_dict:
prior_questions_time_sum[i] = prior_questions_time_sum_dict[user_id]
prior_questions_time_count[i] = prior_questions_time_count_dict[user_id]
else:
prior_questions_time_sum[i] = 0
prior_questions_time_count[i] = 0
if(user_id)in last_correct_dict:
last_correct_array[i] = last_correct_dict[user_id]
else:
last_correct_array[i] = -1
user_content_id = str(user_id)+ str(content_id)
user_content_id_count[i] = user_content_id_count_dict[user_content_id]
user_target_10 = 0
for k in range(10):
if(user_id, k)in user_target_window_10_dict:
user_target_10 += user_target_window_10_dict[user_id, k]
else:
k -= 1
break
if k >= 0:
user_target_window_10_array[i] = user_target_10 /(k + 1)
else:
user_target_window_10_array[i] = -1
timestamp_diff_10 = 0
for k in range(10):
if(user_id, k)in timestamp_diff_window_10_dict:
timestamp_diff_10 += timestamp_diff_window_10_dict[user_id, k]
else:
k -= 1
break
if k >= 0:
timestamp_diff_window_10_array[i] = timestamp_diff_10 /(k + 1)
else:
timestamp_diff_window_10_array[i] = -1
test_df['timestamp_diff_last'] = test_df['timestamp'].values - last_timestamp_array
test_df['timestamp_diff_last'] = test_df['timestamp_diff_last'].astype('int32')
prior_test_df.loc[prior_test_df['content_type_id'] == 0,'timestamp_diff_last'] = test_df['timestamp_diff_last'].values
test_df['last_correct'] = last_correct_array
test_df['last_correct'].fillna(-1, inplace=True)
test_df['last_correct'] = test_df['last_correct'].astype('int8')
test_df['task_container_id'] = test_df['task_container_id'].astype('int16')
test_df['prior_questions_mean_time'] =(prior_questions_time_sum + test_df['prior_question_elapsed_time'].values)/(prior_questions_time_count + 1)
test_df['prior_questions_mean_time'].fillna(25, inplace=True)
test_df['prior_questions_mean_time'] = test_df['prior_questions_mean_time'].astype('int16')
test_df['last_lecture_tag'] = last_lecture_tag_array
test_df['last_lecture_tag'].fillna(-9, inplace=True)
test_df['last_lecture_tag'] = test_df['last_lecture_tag'].astype('int16')
test_df['user_count_lectures'] = user_lectures_count
test_df['user_count_lectures'] = test_df['user_count_lectures'].astype('int16')
test_df['user_correctness'] = user_sum / user_count
test_df['content_id_correctness_total'] = content_sum / content_count
test_df['user_correctness'].fillna(-1, inplace=True)
test_df['user_correctness'] = test_df['user_correctness'].astype('float32')
test_df['content_id_correctness_total'].fillna(0.600382459, inplace=True)
test_df['content_id_correctness_total'] = test_df['content_id_correctness_total'].astype('float32')
test_df['user_count_questions'] = user_count
test_df['user_count_questions'].fillna(0, inplace=True)
test_df['user_count_questions'] = test_df['user_count_questions'].astype('int32')
test_df['explanation_mean_user'] =(explanation_sum + test_df['prior_question_had_explanation'].values)/(explanation_count + 1)
test_df['explanation_mean_user'].fillna(0, inplace=True)
test_df['explanation_mean_user'] = test_df['explanation_mean_user'].astype('float32')
test_df['content_count'] = content_count
test_df['content_sum'] = content_sum
test_df['repeated_times'] = user_content_id_count
test_df['repeated_times'] = test_df['repeated_times'].astype('int16')
test_df['repeated_times_tag'] = user_tag_count
test_df['repeated_times_tag'] = test_df['repeated_times_tag'].astype('int16')
test_df['user_tag_correctness'] = user_tag_sum / user_tag_count
test_df['user_tag_correctness'].fillna(-1, inplace=True)
test_df['user_tag_correctness'] = test_df['user_tag_correctness'].astype('float32')
test_df['user_correctness_window_10_mean'] = user_target_window_10_array
test_df['user_correctness_window_10_mean'].fillna(-1, inplace=True)
test_df['user_correctness_window_10_mean'] = test_df['user_correctness_window_10_mean'].astype('float32')
test_df['timestamp_diff_last_window_10_mean'] = timestamp_diff_window_10_array
test_df['timestamp_diff_last_window_10_mean'].fillna(-1, inplace=True)
test_df['timestamp_diff_last_window_10_mean'] = test_df['timestamp_diff_last_window_10_mean'].astype('int32')
test_df['user_count_lectures_mean'] = test_df['user_count_lectures'] / test_df['user_count_questions']
test_df['user_count_lectures_mean'].fillna(0, inplace=True)
test_df['user_count_lectures_mean'] = test_df['user_count_lectures_mean'].astype('float32')
lgbm_predictions = model.predict(test_df[features])
test_df[target] = 0.2 * np.array(attention_predictions)+ 0.8 * lgbm_predictions
env.predict(test_df[['row_id', target]])
<import_modules> | for layer in model.layers:
if'conv' in layer.name:
filters, biases = layer.get_weights()
print('Layer: ', layer.name, filters.shape)
f_min, f_max = filters.min() , filters.max()
filters =(filters - f_min)/(f_max - f_min)
print('Filter size:(', filters.shape[0], ',', filters.shape[1], ')')
print('Channels in this layer: ', filters.shape[2])
print('Number of filters: ', filters.shape[3])
count = 1
plt.figure(figsize =(18, 4))
for i in range(filters.shape[3]):
ax= plt.subplot(4, filters.shape[3]/4, count)
ax.set_xticks([])
ax.set_yticks([])
plt.imshow(filters[:,:,0, i], cmap=plt.cm.binary)
count+=1
plt.show()
| Digit Recognizer |
11,650,794 | for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
<define_variables> | layer_outputs = [layer.output for layer in model.layers[0:8]]
activation_model = models.Model(inputs = model.input, outputs = layer_outputs ) | Digit Recognizer |
11,650,794 | path = Path('/kaggle/input')
assert path.exists()<data_type_conversions> | activations = activation_model.predict(img_tensor ) | Digit Recognizer |
11,650,794 | def add_features(df, answered_correctly_u_count, answered_correctly_u_sum, elapsed_time_u_sum, explanation_u_sum,
timestamp_u, timestamp_u_incorrect, answered_correctly_q_count, answered_correctly_q_sum,
elapsed_time_q_sum, explanation_q_sum, answered_correctly_uq, update=True):
answered_correctly_u_avg = np.zeros(len(df), dtype = np.float32)
elapsed_time_u_avg = np.zeros(len(df), dtype = np.float32)
explanation_u_avg = np.zeros(len(df), dtype = np.float32)
timestamp_u_recency_1 = np.zeros(len(df), dtype = np.float32)
timestamp_u_recency_2 = np.zeros(len(df), dtype = np.float32)
timestamp_u_recency_3 = np.zeros(len(df), dtype = np.float32)
timestamp_u_incorrect_recency = np.zeros(len(df), dtype = np.float32)
answered_correctly_q_avg = np.zeros(len(df), dtype = np.float32)
elapsed_time_q_avg = np.zeros(len(df), dtype = np.float32)
explanation_q_avg = np.zeros(len(df), dtype = np.float32)
answered_correctly_uq_count = np.zeros(len(df), dtype = np.int32)
for num, row in enumerate(df[['user_id', 'answered_correctly', 'content_id', 'prior_question_elapsed_time', 'prior_question_had_explanation', 'timestamp']].values):
if answered_correctly_u_count[row[0]] != 0:
answered_correctly_u_avg[num] = answered_correctly_u_sum[row[0]] / answered_correctly_u_count[row[0]]
elapsed_time_u_avg[num] = elapsed_time_u_sum[row[0]] / answered_correctly_u_count[row[0]]
explanation_u_avg[num] = explanation_u_sum[row[0]] / answered_correctly_u_count[row[0]]
else:
answered_correctly_u_avg[num] = np.nan
elapsed_time_u_avg[num] = np.nan
explanation_u_avg[num] = np.nan
print(timestamp_u[row[0]])
if len(timestamp_u[row[0]])== 0:
timestamp_u_recency_1[num] = np.nan
timestamp_u_recency_2[num] = np.nan
timestamp_u_recency_3[num] = np.nan
elif len(timestamp_u[row[0]])== 1:
timestamp_u_recency_1[num] = row[5] - timestamp_u[row[0]][0]
timestamp_u_recency_2[num] = np.nan
timestamp_u_recency_3[num] = np.nan
elif len(timestamp_u[row[0]])== 2:
timestamp_u_recency_1[num] = row[5] - timestamp_u[row[0]][1]
timestamp_u_recency_2[num] = row[5] - timestamp_u[row[0]][0]
timestamp_u_recency_3[num] = np.nan
elif len(timestamp_u[row[0]])== 3:
timestamp_u_recency_1[num] = row[5] - timestamp_u[row[0]][2]
timestamp_u_recency_2[num] = row[5] - timestamp_u[row[0]][1]
timestamp_u_recency_3[num] = row[5] - timestamp_u[row[0]][0]
if len(timestamp_u_incorrect[row[0]])== 0:
timestamp_u_incorrect_recency[num] = np.nan
else:
timestamp_u_incorrect_recency[num] = row[5] - timestamp_u_incorrect[row[0]][0]
if answered_correctly_q_count[row[2]] != 0:
answered_correctly_q_avg[num] = answered_correctly_q_sum[row[2]] / answered_correctly_q_count[row[2]]
elapsed_time_q_avg[num] = elapsed_time_q_sum[row[2]] / answered_correctly_q_count[row[2]]
explanation_q_avg[num] = explanation_q_sum[row[2]] / answered_correctly_q_count[row[2]]
else:
answered_correctly_q_avg[num] = np.nan
elapsed_time_q_avg[num] = np.nan
explanation_q_avg[num] = np.nan
answered_correctly_uq_count[num] = answered_correctly_uq[row[0]][row[2]]
answered_correctly_u_count[row[0]] += 1
elapsed_time_u_sum[row[0]] += row[3]
explanation_u_sum[row[0]] += int(row[4])
if len(timestamp_u[row[0]])== 3:
timestamp_u[row[0]].pop(0)
timestamp_u[row[0]].append(row[5])
else:
timestamp_u[row[0]].append(row[5])
answered_correctly_q_count[row[2]] += 1
elapsed_time_q_sum[row[2]] += row[3]
explanation_q_sum[row[2]] += int(row[4])
answered_correctly_uq[row[0]][row[2]] += 1
if update:
answered_correctly_u_sum[row[0]] += row[1]
if row[1] == 0:
if len(timestamp_u_incorrect[row[0]])== 1:
timestamp_u_incorrect[row[0]].pop(0)
timestamp_u_incorrect[row[0]].append(row[5])
else:
timestamp_u_incorrect[row[0]].append(row[5])
answered_correctly_q_sum[row[2]] += row[1]
user_df = pd.DataFrame({'answered_correctly_u_avg': answered_correctly_u_avg, 'elapsed_time_u_avg': elapsed_time_u_avg, 'explanation_u_avg': explanation_u_avg,
'answered_correctly_q_avg': answered_correctly_q_avg, 'elapsed_time_q_avg': elapsed_time_q_avg, 'explanation_q_avg': explanation_q_avg,
'answered_correctly_uq_count': answered_correctly_uq_count, 'timestamp_u_recency_1': timestamp_u_recency_1, 'timestamp_u_recency_2': timestamp_u_recency_2,
'timestamp_u_recency_3': timestamp_u_recency_3, 'timestamp_u_incorrect_recency': timestamp_u_incorrect_recency})
df.reset_index(drop=True, inplace=True)
user_df.reset_index(drop=True, inplace=True)
df = pd.concat([df, user_df], axis=1)
return df
<feature_engineering> | results = np.argmax(model.predict(X_test), axis=1)
results = pd.Series(results, name = "Label")
results.head(2 ) | Digit Recognizer |
11,650,794 | <load_from_csv><EOS> | submission.to_csv("CNN_MNIST_results.csv",index=False ) | Digit Recognizer |
11,821,654 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<define_variables> | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import random
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.utils import np_utils | Digit Recognizer |
11,821,654 | gbm = lgb.Booster(model_file='.. /input/lightgbmmodel/model.txt' )<load_from_disk> | ( X_train, y_train),(X_test, y_test)= mnist.load_data()
print("X_train shape", X_train.shape)
print("y_train shape", y_train.shape)
print("X_test shape", X_test.shape)
print("y_test shape", y_test.shape ) | Digit Recognizer |
11,821,654 | json_file = ".. /input/lightgbm-features-dicts/lightgbm_features_dicts.json"
f = open(json_file)
features_dicts = json.load(f )<drop_column> | test_data = pd.read_csv('/kaggle/input/digit-recognizer/test.csv', delimiter = ',', header = 0, usecols = [x for x in range(0, 784)] ) | Digit Recognizer |
11,821,654 | del f<data_type_conversions> | X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print("Training matrix shape", X_train.shape)
print("Testing matrix shape", X_test.shape ) | Digit Recognizer |
11,821,654 | def change_type(temp):
result = defaultdict(int)
for k,v in temp.items() :
key = float(k)
value = int(float(v))
result[key] =value
return result
answered_correctly_u_count = change_type(answered_correctly_u_count_)
answered_correctly_u_sum = change_type(answered_correctly_u_sum_)
elapsed_time_u_sum = change_type(elapsed_time_u_sum_)
explanation_u_sum = change_type(explanation_u_sum_)
answered_correctly_q_count = change_type(answered_correctly_q_count_)
answered_correctly_q_sum = change_type(answered_correctly_q_sum_)
elapsed_time_q_sum = change_type(elapsed_time_q_sum_)
explanation_q_sum = change_type(explanation_q_sum_)
del answered_correctly_u_count_
del answered_correctly_u_sum_
del elapsed_time_u_sum_
del explanation_u_sum_
del answered_correctly_q_count_
del answered_correctly_q_sum_
del elapsed_time_q_sum_
del explanation_q_sum_<categorify> | no_classes = 10
Y_train = np_utils.to_categorical(y_train, no_classes)
Y_test = np_utils.to_categorical(y_test, no_classes ) | Digit Recognizer |
11,821,654 | def change_answered_correctly_uq_type(t):
result = defaultdict(lambda: defaultdict(int))
for k,v in t.items() :
key = float(k)
temp = defaultdict(int)
for k1,v1 in v.items() :
k1 = float(k1)
temp[k1] = v1
result[key] = temp
return result
answered_correctly_uq = change_answered_correctly_uq_type(answered_correctly_uq_)
del answered_correctly_uq_<categorify> | model = Sequential() | Digit Recognizer |
11,821,654 | def changetolist(t):
result = defaultdict(list)
for k,v in t.items() :
key = float(k)
value = list(v)
result[key] = value
return result
timestamp_u = changetolist(timestamp_u_)
timestamp_u_incorrect = changetolist(timestamp_u_incorrect_)
del timestamp_u_
del timestamp_u_incorrect_<define_variables> | model.add(Dense(512, input_shape=(784,)) ) | Digit Recognizer |
11,821,654 | TARGET = 'answered_correctly'
FEATURES = ['answered_correctly_u_avg', 'explanation_u_avg', 'elapsed_time_u_avg',
'answered_correctly_q_avg', 'explanation_q_avg', 'elapsed_time_q_avg',
'answered_correctly_uq_count', 'timestamp_u_recency_1',
'timestamp_u_recency_2', 'timestamp_u_recency_3',
'timestamp_u_incorrect_recency']
prior_question_elapsed_time_mean = 25423.810042960366
env = riiideducation.make_env()
iter_test = env.iter_test()
set_predict = env.predict
previous_test_df = None
for(test_df, sample_prediction_df)in iter_test:
if previous_test_df is not None:
previous_test_df[TARGET] = eval(test_df["prior_group_answers_correct"].iloc[0])
update_features(previous_test_df, answered_correctly_u_sum, answered_correctly_q_sum, timestamp_u_incorrect)
previous_test_df = test_df.copy()
test_df = test_df[test_df['content_type_id'] == 0].reset_index(drop = True)
test_df['prior_question_had_explanation'] = test_df.prior_question_had_explanation.fillna(False ).astype('int8')
test_df['prior_question_elapsed_time'].fillna(prior_question_elapsed_time_mean, inplace = True)
test_df = pd.merge(test_df, questions_df[['question_id', 'part']], left_on = 'content_id', right_on = 'question_id', how = 'left')
test_df[TARGET] = 0
test_df = add_features(test_df, answered_correctly_u_count, answered_correctly_u_sum, elapsed_time_u_sum, explanation_u_sum, timestamp_u, timestamp_u_incorrect, answered_correctly_q_count, answered_correctly_q_sum, elapsed_time_q_sum, explanation_q_sum, answered_correctly_uq, update = False)
test_df[TARGET] = gbm.predict(test_df[FEATURES],num_iteration=gbm.best_iteration)
set_predict(test_df[['row_id', TARGET]])
print('Job Done' )<import_modules> | model.add(Activation('relu')) | Digit Recognizer |
11,821,654 | import riiideducation
import numpy as np
import pandas as pd
from tqdm import tqdm<compute_test_metric> | model.add(Dropout(0.2)) | Digit Recognizer |
11,821,654 | def get_new_theta(is_good_answer, beta, left_asymptote, theta, nb_previous_answers):
return theta + learning_rate_theta(nb_previous_answers)*(
is_good_answer - probability_of_good_answer(theta, beta, left_asymptote)
)
def get_new_beta(is_good_answer, beta, left_asymptote, theta, nb_previous_answers):
return beta - learning_rate_beta(nb_previous_answers)*(
is_good_answer - probability_of_good_answer(theta, beta, left_asymptote)
)
def learning_rate_theta(nb_answers):
return max(0.3 /(1 + 0.01 * nb_answers), 0.04)
def learning_rate_beta(nb_answers):
return 1 /(1 + 0.05 * nb_answers)
def probability_of_good_answer(theta, beta, left_asymptote):
return left_asymptote +(1 - left_asymptote)* sigmoid(theta - beta)
def sigmoid(x):
return 1 /(1 + np.exp(-x))<find_best_params> | model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2)) | Digit Recognizer |
11,821,654 | def estimate_parameters(answers_df, granularity_feature_name='content_id'):
item_parameters = {
granularity_feature_value: {"beta": 0, "nb_answers": 0}
for granularity_feature_value in np.unique(answers_df[granularity_feature_name])
}
student_parameters = {
student_id: {"theta": 0, "nb_answers": 0}
for student_id in np.unique(answers_df.student_id)
}
print("Parameter estimation is starting...")
for student_id, item_id, left_asymptote, answered_correctly in tqdm(
zip(answers_df.student_id.values, answers_df[granularity_feature_name].values, answers_df.left_asymptote.values, answers_df.answered_correctly.values)
):
theta = student_parameters[student_id]["theta"]
beta = item_parameters[item_id]["beta"]
item_parameters[item_id]["beta"] = get_new_beta(
answered_correctly, beta, left_asymptote, theta, item_parameters[item_id]["nb_answers"],
)
student_parameters[student_id]["theta"] = get_new_theta(
answered_correctly, beta, left_asymptote, theta, student_parameters[student_id]["nb_answers"],
)
item_parameters[item_id]["nb_answers"] += 1
student_parameters[student_id]["nb_answers"] += 1
print(f"Theta & beta estimations on {granularity_feature_name} are completed.")
return student_parameters, item_parameters<define_search_space> | model.add(Dense(10))
model.add(Activation('softmax')) | Digit Recognizer |
11,821,654 | def update_parameters(answers_df, student_parameters, item_parameters, granularity_feature_name='content_id'):
for student_id, item_id, left_asymptote, answered_correctly in tqdm(zip(
answers_df.student_id.values,
answers_df[granularity_feature_name].values,
answers_df.left_asymptote.values,
answers_df.answered_correctly.values)
):
if student_id not in student_parameters:
student_parameters[student_id] = {'theta': 0, 'nb_answers': 0}
if item_id not in item_parameters:
item_parameters[item_id] = {'beta': 0, 'nb_answers': 0}
theta = student_parameters[student_id]['theta']
beta = item_parameters[item_id]['beta']
student_parameters[student_id]['theta'] = get_new_theta(
answered_correctly, beta, left_asymptote, theta, student_parameters[student_id]['nb_answers']
)
item_parameters[item_id]['beta'] = get_new_beta(
answered_correctly, beta, left_asymptote, theta, item_parameters[item_id]['nb_answers']
)
student_parameters[student_id]['nb_answers'] += 1
item_parameters[item_id]['nb_answers'] += 1
return student_parameters, item_parameters<compute_train_metric> | model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] ) | Digit Recognizer |
11,821,654 | def estimate_probas(test_df, student_parameters, item_parameters, granularity_feature_name='content_id'):
probability_of_success_list = []
for student_id, item_id, left_asymptote in tqdm(
zip(test_df.student_id.values, test_df[granularity_feature_name].values, test_df.left_asymptote.values)
):
theta = student_parameters[student_id]['theta'] if student_id in student_parameters else 0
beta = item_parameters[item_id]['beta'] if item_id in item_parameters else 0
probability_of_success_list.append(probability_of_good_answer(theta, beta, left_asymptote))
return probability_of_success_list<define_variables> | history = model.fit(X_train, Y_train,
batch_size=128, epochs=10,
verbose=1 ) | Digit Recognizer |
11,821,654 | compute_estimations = False
nb_rows_training = None<load_from_csv> | score = model.evaluate(X_test, Y_test)
print('Test accuracy:', score[1] ) | Digit Recognizer |
11,821,654 | if compute_estimations:
training = pd.read_csv(
filepath_or_buffer="/kaggle/input/riiid-test-answer-prediction/train.csv",
usecols=["content_id", "user_id", "answered_correctly"],
dtype={'answered_correctly': "int8"},
nrows=nb_rows_training
)
training.rename(columns={'user_id': 'student_id'}, inplace=True)
training = training[training.answered_correctly != -1]
training['left_asymptote'] = 1/4
print(f"Dataset of shape {training.shape}")
print(f"Columns are {list(training.columns)}")
student_parameters, item_parameters = estimate_parameters(training)
else:
student_data = pd.read_csv('.. /input/thetas-20201217/thetas_20201217.csv', index_col='student_id')
student_parameters = student_data.to_dict('index')
print(f"Successfully read student parameter file and converted to dict.")
content_data = pd.read_csv('.. /input/betas-content-id-20201217/betas_content_id_20201217.csv', index_col='content_id')
item_parameters = content_data.to_dict('index')
print(f"Successfully read item parameter file and converted to dict." )<categorify> | results = model.predict(test_data ) | Digit Recognizer |
11,821,654 | def format_test_df(test_df):
test_copy = test_df.copy()
test_copy = test_copy[test_copy['content_type_id'] == 0]
test_copy['left_asymptote'] = 1/4
test_copy = test_copy.rename(columns={'user_id': 'student_id'})
return test_copy<predict_on_test> | results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("submission.csv",index=False ) | Digit Recognizer |
11,821,654 | <compute_test_metric><EOS> | predicted_classes = model.predict_classes(X_test)
correct_indices = np.nonzero(predicted_classes == y_test)[0]
incorrect_indices = np.nonzero(predicted_classes != y_test)[0] | Digit Recognizer |
12,529,129 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<import_modules> | np.random.seed(1)
get_ipython().magic('matplotlib inline')
print(tf.__version__ ) | Digit Recognizer |
12,529,129 | import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import RandomForestRegressor<load_from_csv> | train_path=".. /input/digit-recognizer/train.csv"
test_path=".. /input/digit-recognizer/test.csv"
train = pd.read_csv(train_path)
test= pd.read_csv(test_path)
print(train.shape)
print(test.shape)
train.head() | Digit Recognizer |
12,529,129 | np.random.seed(seed=1234)
skiprows = np.random.rand(55 * 10 ** 7)> 0.02
skiprows[0] = False
df_ = pd.read_csv("/kaggle/input/new-york-city-taxi-fare-prediction/train.csv", skiprows=lambda x: skiprows[x])
df_.head()<define_variables> | x = x.values.reshape(-1,28,28,1)
print("x shape: ",x.shape)
y = to_categorical(y, num_classes = 10)
print("y shape: ",y.shape)
print(y[10])
plt.imshow(-x[10][:,:,0],cmap='gray')
plt.axis(False)
plt.show() | Digit Recognizer |
12,529,129 | lon_min, lon_max = -75, -72
lat_min, lat_max = 40, 43<feature_engineering> | X_train, X_val, Y_train, Y_val = train_test_split(x, y, test_size = 0.2, random_state=1)
print("x_train shape",X_train.shape)
print("x_val shape",X_val.shape)
print("y_train shape",Y_train.shape)
print("y_val shape",Y_val.shape ) | Digit Recognizer |
12,529,129 | df = df_.copy()
df = df.drop(columns=["key"])
df["date"] = df["pickup_datetime"].apply(lambda x: x.split() [0])
df["time"] = df["pickup_datetime"].apply(lambda x: x.split() [1])
df = df.drop("pickup_datetime", axis=1)
df["year"] = df["date"].apply(lambda x: int(x.split("-")[0]))
df["month"] = df["date"].apply(lambda x: int(x.split("-")[1]))
df["day"] = df["date"].apply(lambda x: int(x.split("-")[2]))
df = df.drop("date", axis=1)
df["time"] = df["time"].apply(lambda x: int(x[:2])* 60 + int(x[3:5]))
df["befor_shock"] =(( df["year"] <= 2011)|(( df["year"] <= 2012)&(df["month"] <= 8)) ).apply(int)
df = df[
(~df["dropoff_longitude"].isnull())&
(~df["dropoff_latitude"].isnull())
]
df = df[
(lon_min < df["pickup_longitude"])&
(df["pickup_longitude"] < lon_max)&
(lat_min < df["pickup_latitude"])&
(df["pickup_latitude"] < lat_max)&
(lon_min < df["dropoff_longitude"])&
(df["dropoff_longitude"] < lon_max)&
(lat_min < df["dropoff_latitude"])&
(df["dropoff_latitude"] < lat_max)
]
df.head()<prepare_x_and_y> | datagen = ImageDataGenerator(rotation_range = 10,
zoom_range = 0.1,
width_shift_range = 0.1,
height_shift_range = 0.1,
horizontal_flip = False,
vertical_flip = False)
datagen.fit(X_train ) | Digit Recognizer |
12,529,129 | X = np.array(df.drop(
columns=[
"fare_amount",
]
))
y = np.array(df["fare_amount"] )<split> | Image = [[0,0,0],
[0,1,1],
[0,1,2]]
kernel = [[-4,0,0],
[0,0,0],
[0,0,4]]
result = signal.convolve(Image,kernel,'valid')
result2 = 4*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*0 + -4*2
print("Result with scipy: {}
Result with manual calculs : {}".format(result,result2))
print("
With 'same':
{}".format(signal.convolve(Image,kernel,'same')))
print("
With 'padding':
{}".format(signal.convolve(Image,kernel,'full')) ) | Digit Recognizer |
12,529,129 | np.random.seed(seed=1234)
train_rows = np.random.rand(y.size)> 0.2
X_train, y_train = X[train_rows, :], y[train_rows]
X_valid, y_valid = X[~train_rows, :], y[~train_rows]<train_model> | def define_model(actifun="elu",actifundense1="elu",actifundense2="softsign",optimizer="Adam"):
model = model = Sequential([
Conv2D(32,(3, 3), padding = 'same', activation = 'relu', input_shape =(28,28,1)) ,
BatchNormalization() ,
Conv2D(32,(3, 3), padding = 'same', activation = 'relu'),
BatchNormalization() ,
MaxPool2D(2, 2),
Dropout(0.2),
Conv2D(64,(3, 3), padding = 'same', activation = 'relu'),
BatchNormalization() ,
Conv2D(64,(3, 3), padding = 'same', activation = 'relu'),
BatchNormalization() ,
MaxPool2D(2, 2),
Dropout(0.2),
Conv2D(128,(3, 3), padding = 'same', activation = 'relu'),
BatchNormalization() ,
Conv2D(128,(3, 3), padding = 'same', activation = 'relu'),
BatchNormalization() ,
MaxPool2D(2, 2),
Dropout(0.2),
Flatten() ,
Dense(256, activation = 'relu'),
Dropout(0.25),
Dense(10, activation = 'softmax')
])
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
return model
model = define_model()
model.summary() | Digit Recognizer |
12,529,129 | model = RandomForestRegressor(max_depth=30, n_estimators=100, n_jobs=-1)
model.fit(X_train, y_train)
y_valid_pred = model.predict(X_valid)
rmse(y_valid, y_valid_pred )<load_from_csv> | %%time
X_train_train, X_train_val, Y_train_train, Y_train_val = train_test_split(X_train, Y_train, test_size = 0.3, random_state = 0)
models={}
history={}
optim_list = ["Adam","RMSprop"]
lr_sched = ReduceLROnPlateau(monitor = 'val_acc',
patience = 10,
verbose = 1,
factor = 0.1,
min_lr = 0.00001)
early_stopping = EarlyStopping(monitor = 'val_acc',
patience = 10,
verbose = 1,
mode = 'auto',
restore_best_weights = True)
epochs=50
batch_size = 200
for optim in optim_list:
for fun in ["elu","relu"]:
fun1 = fun
fun2 = fun
print(" ")
print(" ")
mtype = optim + ' + ' + fun1 + ' + ' + fun2 + ' + ' + "softsign"
print(mtype)
print(" ")
models[mtype] = define_model(fun1,fun2,"softsign",optim)
history[mtype] = models[mtype].fit(X_train,Y_train,
validation_split=0.2,epochs=epochs
,shuffle=True,steps_per_epoch=X_train.shape[0] // batch_size,
callbacks=[lr_sched,early_stopping] ) | Digit Recognizer |
12,529,129 | test = pd.read_csv("/kaggle/input/new-york-city-taxi-fare-prediction/test.csv")
test.head()<feature_engineering> | rslts={}
k=0
for optim in optim_list:
for fun in ["elu","relu"]:
fun1 = fun
fun2 = fun
fun3 = "softsign"
mtype = optim + ' + ' + fun1 + ' + ' + fun2 + ' + ' + fun3
rslts[mtype] =(models[mtype].evaluate(X_val, Y_val, verbose = 0)[1])
k=k+1
for item in sorted(rslts.items() , key=lambda x: x[1],reverse=True):
print(item[0])
print(item[1])
print(" ")
plt.figure(figsize=(30,30))
i=0
fun ="elu"
fun1 = fun
fun2 = fun
fun3 = "softsign"
mtype = optim + ' + ' + fun1 + ' + ' + fun2 + ' + ' + fun3
plt.subplot(2,1,i+1)
plt.plot(history[mtype].history['loss'], label='loss')
plt.plot(history[mtype].history['val_loss'], color='b', label='val_loss')
plt.title("mtype")
plt.xlabel("Number of Epochs")
plt.ylabel("Loss")
plt.legend()
i = i +1
plt.show() | Digit Recognizer |
12,529,129 | test["date"] = test["pickup_datetime"].apply(lambda x: x.split() [0])
test["time"] = test["pickup_datetime"].apply(lambda x: x.split() [1])
test = test.drop("pickup_datetime", axis=1)
test["year"] = test["date"].apply(lambda x: int(x.split("-")[0]))
test["month"] = test["date"].apply(lambda x: int(x.split("-")[1]))
test["day"] = test["date"].apply(lambda x: int(x.split("-")[2]))
test = test.drop("date", axis=1)
test["time"] = test["time"].apply(lambda x: int(x[:2])* 60 + int(x[3:5]))
test["before_shock"] =(( test["year"] <= 2011)|(( test["year"] <= 2012)&(test["month"] <= 8)) ).apply(int)
test.head()<save_to_csv> | datagen.fit(x)
X_train, X_val, Y_train, Y_val = train_test_split(x, y, test_size = 0.1, random_state = 0)
lr_sched = ReduceLROnPlateau(monitor = 'val_acc',
patience = 10,
verbose = 1,
factor = 0.1,
min_lr = 0.00001)
early_stopping = EarlyStopping(monitor = 'val_acc',
patience = 10,
verbose = 1,
mode = 'auto',
restore_best_weights = True)
epochs=50
batch_size = 200
model = define_model("elu","elu","softsign","RMSprop")
history_final = model.fit(datagen.flow(X_train,Y_train, batch_size = batch_size),
epochs = epochs,
steps_per_epoch = X_train.shape[0] // batch_size,
validation_data =(X_val, Y_val),
callbacks = [lr_sched, early_stopping] ) | Digit Recognizer |
12,529,129 | X_test = np.array(test.drop(columns=[
"key",
]))
y_pred = model.predict(X_test)
test["fare_amount"] = y_pred
submission= test[["key", "fare_amount"]]
submission.to_csv("./submission.csv", index=False )<load_from_csv> | test_path=".. /input/digit-recognizer/test.csv"
test = pd.read_csv(test_path)
test = test / 255.0
test = test.values.reshape(-1,28,28,1)
Y_pred_test = model.predict(test)
Y_pred_classes_test = np.argmax(Y_pred_test,axis = 1)
np.savetxt('submission.csv',
np.c_[range(1,len(test)+1), Y_pred_classes_test],
delimiter=',',
header = 'ImageId,Label',
comments = '',
fmt='%d' ) | Digit Recognizer |
12,445,197 | MODE = 1
FUDGE = 2.0
FILE = '.. /input/rfcx-minimal/submission.csv'
df = pd.read_csv(FILE)
for k in range(24):
df.iloc[:,1+k] -= df.iloc[:,1+k].min()
df.iloc[:,1+k] /= df.iloc[:,1+k].max()
def scale(probs, factor):
probs = probs.copy()
idx = np.where(probs!=1)[0]
odds = factor * probs[idx] /(1-probs[idx])
probs[idx] = odds/(1+odds)
return probs
d1 = df.iloc[:,1:].mean().values
d2 = np.array([113,204,44,923,53,41,3,213,44,23,26,149,255,14,123,222,46,6,474,4,17,18,23,72])/1000.
for k in range(24):
if MODE==1: d = FUDGE
if MODE==2: d = d1[k]/(1-d1[k])
if MODE==3: s = d2[k] / d1[k]
else: s =(d2[k]/(1-d2[k])) /d
df.iloc[:,k+1] = scale(df.iloc[:,k+1].values,s)
df.to_csv('submission_with_pp.csv',index=False )<define_variables> | train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' ) | Digit Recognizer |
12,445,197 | save_to_disk = 0<install_modules> | X_train_raw = train.drop(columns=['label'] ).to_numpy()
y_train_raw = train['label'].to_numpy() | Digit Recognizer |
12,445,197 | !pip install resnest > /dev/null<normalization> | x_mean = np.mean(X_train_raw)
x_std = np.std(X_train_raw)
def standarize(X):
return(X - x_mean)/ x_std
X_train = np.reshape(X_train_raw,(-1,28,28,1))
X_train = standarize(X_train)
y_train_cat = keras.utils.to_categorical(y_train_raw ) | Digit Recognizer |
12,445,197 | def horizontal_flip(img):
horizontal_flip_img = img[:, ::-1]
return addChannels(horizontal_flip_img)
def vertical_flip(img):
vertical_flip_img = img[::-1, :]
return addChannels(vertical_flip_img)
def addNoisy(img):
noise_img = util.random_noise(img)
return addChannels(noise_img)
def contrast_stretching(img):
contrast_img = exposure.rescale_intensity(img)
return addChannels(contrast_img)
def randomGaussian(img):
gaussian_img = gaussian(img)
return addChannels(gaussian_img)
def grayScale(img):
gray_img = rgb2gray(img)
return addChannels(gray_img)
def randomGamma(img):
img_gamma = exposure.adjust_gamma(img)
return addChannels(img_gamma)
def addChannels(img):
return np.stack(( img, img, img))
def spec_to_image(spec):
spec = resize(spec,(224, 400))
eps=1e-6
mean = spec.mean()
std = spec.std()
spec_norm =(spec - mean)/(std + eps)
spec_min, spec_max = spec_norm.min() , spec_norm.max()
spec_scaled = 255 *(spec_norm - spec_min)/(spec_max - spec_min)
spec_scaled = spec_scaled.astype(np.uint8)
spec_scaled = np.asarray(spec_scaled)
return spec_scaled<choose_model_class> | data_generator = keras.preprocessing.image.ImageDataGenerator(
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.1
)
data_generator.fit(X_train ) | Digit Recognizer |
12,445,197 | def get_model() :
resnet_model = resnest50(pretrained=True)
num_ftrs = resnet_model.fc.in_features
resnet_model.fc = nn.Linear(num_ftrs, num_birds)
resnet_model = resnet_model.to(device)
return resnet_model<define_variables> | def make_model() :
model = keras.models.Sequential()
model.add(keras.layers.Conv2D(32, kernel_size=3,activation='relu',kernel_initializer='he_normal',input_shape=(28, 28, 1)))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Conv2D(32, kernel_size=3,activation='relu'))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Conv2D(32, kernel_size=5, strides=2, padding='same',activation='relu'))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Dropout(0.4))
model.add(keras.layers.Conv2D(64, kernel_size=3, activation ='relu'))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Conv2D(64, kernel_size=3, activation ='relu'))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Conv2D(64, kernel_size=5, strides=2, padding='same',activation='relu'))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Dropout(0.4))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128, activation = "relu"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Dropout(0.4))
model.add(keras.layers.Dense(10, activation = "softmax"))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model | Digit Recognizer |
12,445,197 | class AudioData(Dataset):
def __init__(self, X, y, data_type):
self.data = []
self.labels = []
self.augs = [
addNoisy, contrast_stretching,
randomGaussian, grayScale,
randomGamma, vertical_flip,
horizontal_flip, addChannels
]
self.data_type=data_type
for i in range(0, len(X)) :
recording_id = X[i]
label = y[i]
mel_spec = audio_data[recording_id]['original']
self.data.append(mel_spec)
self.labels.append(label)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if self.data_type == "train":
aug= random.choice(self.augs)
data = aug(self.data[idx])
else:
data = addChannels(self.data[idx])
return data, self.labels[idx]<import_modules> | ens_size=16
model = [0]*ens_size
for i in range(ens_size):
model[i] = make_model() | Digit Recognizer |
12,445,197 | import torch
import torch.nn as nn
import copy<init_hyperparams> | history = [0]*ens_size
start = time.perf_counter()
for i in range(ens_size):
callbacks = [keras.callbacks.ModelCheckpoint('/kaggle/working/mdl-{}-of-{}.hdf5'
.format(i,ens_size-1),save_best_only=True, monitor='val_accuracy', mode='max')]
X_train_ens, X_valid_ens, y_train_ens, y_valid_ens = train_test_split(X_train, y_train_cat, train_size=0.9)
train_aug = data_generator.flow(X_train_ens, y_train_ens)
history[i] = model[i].fit_generator(train_aug, epochs=40,
validation_data=(X_valid_ens, y_valid_ens),
callbacks=callbacks, verbose = 0)
print("CNN {}: Train accuracy={:0.5f}, Validation accuracy={:0.5f}"
.format(i,max(history[i].history['accuracy']),max(history[i].history['val_accuracy'])))
stop = time.perf_counter()
print(f"{stop - start:0.4f}" ) | Digit Recognizer |
12,445,197 | class Adas(Optimizer):
r
def __init__(self, params,
lr = 0.001, lr2 =.005, lr3 =.0005,
beta_1 = 0.999, beta_2 = 0.999, beta_3 = 0.9999,
epsilon = 1e-8, **kwargs):
if not 0.0 <= lr:
raise ValueError("Invalid lr: {}".format(lr))
if not 0.0 <= lr2:
raise ValueError("Invalid lr2: {}".format(lr))
if not 0.0 <= lr3:
raise ValueError("Invalid lr3: {}".format(lr))
if not 0.0 <= epsilon:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= beta_1 < 1.0:
raise ValueError("Invalid beta_1 parameter: {}".format(betas[0]))
if not 0.0 <= beta_2 < 1.0:
raise ValueError("Invalid beta_2 parameter: {}".format(betas[1]))
if not 0.0 <= beta_3 < 1.0:
raise ValueError("Invalid beta_3 parameter: {}".format(betas[2]))
defaults = dict(lr=lr, lr2=lr2, lr3=lr3, beta_1=beta_1, beta_2=beta_2, beta_3=beta_3, epsilon=epsilon)
self._varn = None
self._is_create_slots = None
self._curr_var = None
self._lr = lr
self._lr2 = lr2
self._lr3 = lr3
self._beta_1 = beta_1
self._beta_2 = beta_2
self._beta_3 = beta_3
self._epsilon = epsilon
super(Adas, self ).__init__(params, defaults)
def __setstate__(self, state):
super(Adas, self ).__setstate__(state)
@torch.no_grad()
def _add(self,x,y):
x.add_(y)
return x
@torch.no_grad()
def _derivatives_normalizer(self,derivative,beta):
steps = self._make_variable(0,() ,derivative.dtype)
self._add(steps,1)
factor =(1.-(self._beta_1 ** steps)).sqrt()
m = self._make_variable(0,derivative.shape,derivative.dtype)
moments = self._make_variable(0,derivative.shape,derivative.dtype)
m.mul_(self._beta_1 ).add_(( 1 - self._beta_1)* derivative * derivative)
np_t = derivative * factor /(m.sqrt() + self._epsilon)
return(moments,np_t,lambda: moments.mul_(beta ).add_(( 1 - beta)* np_t))
def _make_variable(self,value,shape,dtype):
self._varn += 1
name = 'unnamed_variable' + str(self._varn)
if self._is_create_slots:
self.state[self._curr_var][name] = torch.full(size=shape,fill_value=value,dtype=dtype,device=self._curr_var.device)
return self.state[self._curr_var][name]
@torch.no_grad()
def _get_updates_universal_impl(self, grad, param):
lr = self._make_variable(value = self._lr,shape=param.shape[1:], dtype=param.dtype)
moment, deriv, f = self._derivatives_normalizer(grad,self._beta_3)
param.add_(- torch.unsqueeze(lr,0)* deriv)
lr_deriv = torch.sum(moment * grad,0)
f()
master_lr = self._make_variable(self._lr2,() ,dtype=torch.float32)
m2,d2, f = self._derivatives_normalizer(lr_deriv,self._beta_2)
self._add(lr,master_lr * lr * d2)
master_lr_deriv2 = torch.sum(m2 * lr_deriv)
f()
m3,d3,f = self._derivatives_normalizer(master_lr_deriv2,0.)
self._add(master_lr,self._lr3 * master_lr * d3)
f()
@torch.no_grad()
def _get_updates_universal(self, param, grad, is_create_slots):
self._curr_var = param
self._is_create_slots = is_create_slots
self._varn = 0
return self._get_updates_universal_impl(grad,self._curr_var.data)
@torch.no_grad()
def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad() :
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adas does not support sparse gradients')
self._get_updates_universal(p,grad,len(self.state[p])== 0)
return loss<set_options> | X_test = np.reshape(test.to_numpy() ,(-1,28,28,1))
X_test = standarize(X_test ) | Digit Recognizer |
12,445,197 | num_birds = 24
if torch.cuda.is_available() :
device=torch.device('cuda:0')
else:
device=torch.device('cpu' )<train_model> | preds = np.zeros(( X_test.shape[0],10))
for i in range(ens_size):
mdl = keras.models.load_model('/kaggle/working/mdl-{}-of-{}.hdf5'.format(i,ens_size-1))
preds = preds + mdl.predict(X_test ) | Digit Recognizer |
12,445,197 | learning_rate = 2e-4
epochs = 20
loss_fn = nn.CrossEntropyLoss()
def train(model, loss_fn, train_loader, valid_loader, epochs, optimizer, scheduler):
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
train_losses = []
valid_losses = []
for epoch in tqdm(range(1,epochs+1)) :
model.train()
batch_losses=[]
for i, data in enumerate(train_loader):
x, y = data
optimizer.zero_grad()
x = x.to(device, dtype=torch.float32)
y = y.to(device, dtype=torch.long)
y_hat = model(x)
loss = loss_fn(y_hat, y)
loss.backward()
batch_losses.append(loss.item())
optimizer.step()
train_losses.append(batch_losses)
print(f'Epoch - {epoch} Train-Loss : {np.mean(train_losses[-1])}')
model.eval()
batch_losses=[]
trace_y = []
trace_yhat = []
for i, data in enumerate(valid_loader):
x, y = data
x = x.to(device, dtype=torch.float32)
y = y.to(device, dtype=torch.long)
y_hat = model(x)
loss = loss_fn(y_hat, y)
trace_y.append(y.cpu().detach().numpy())
trace_yhat.append(y_hat.cpu().detach().numpy())
batch_losses.append(loss.item())
valid_losses.append(batch_losses)
trace_y = np.concatenate(trace_y)
trace_yhat = np.concatenate(trace_yhat)
accuracy = np.mean(trace_yhat.argmax(axis=1)==trace_y)
print(f'Epoch - {epoch} Valid-Loss : {np.mean(valid_losses[-1])} Valid-Accuracy : {accuracy}')
scheduler.step(np.mean(valid_losses[-1]))
if accuracy > best_acc:
best_acc = accuracy
best_model_wts = copy.deepcopy(model.state_dict())
model.load_state_dict(best_model_wts)
return model<load_from_csv> | submit_pred = np.argmax(preds,axis=1)
submit_pred.shape | Digit Recognizer |
12,445,197 | fft = 2048
hop = 512
sr = 48000
length = 10 * sr
with open('/kaggle/input/rfcx-species-audio-detection/train_tp.csv')as f:
reader = csv.reader(f)
next(reader, None)
data = list(reader)
fmin = 24000
fmax = 0
for i in range(0, len(data)) :
if fmin > float(data[i][4]):
fmin = float(data[i][4])
if fmax < float(data[i][6]):
fmax = float(data[i][6])
fmin = int(fmin * 0.9)
fmax = int(fmax * 1.1)
print('Minimum frequency: ' + str(fmin)+ ', maximum frequency: ' + str(fmax))
label_list = []
data_list = []
audio_data = {}
for d in data:
recording_id = d[0]
species_id = int(d[1])
data_list.append(recording_id)
label_list.append(species_id)
audio_data[recording_id] = {}
wav, sr = librosa.load('/kaggle/input/rfcx-species-audio-detection/train/' + recording_id + '.flac', sr=None)
t_min = float(d[3])* sr
t_max = float(d[5])* sr
center = np.round(( t_min + t_max)/ 2)
beginning = center - length / 2
if beginning < 0:
beginning = 0
ending = beginning + length
if ending > len(wav):
ending = len(wav)
beginning = ending - length
slice = wav[int(beginning):int(ending)]
spec=librosa.feature.melspectrogram(slice, sr=sr,n_fft=fft,hop_length=hop,fmin=fmin,fmax=fmax)
spec_db=librosa.power_to_db(spec,top_db=80)
img = spec_to_image(spec_db)
audio_data[recording_id]["original"] = img<train_model> | submition = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv')
submition['Label'] = submit_pred | Digit Recognizer |
12,445,197 | nfold = 5
skf = KFold(n_splits=nfold, shuffle=True, random_state=32)
for fold_id,(train_index, val_index)in enumerate(skf.split(data_list, label_list)) :
print("Fold", fold_id)
X_train = np.take(data_list, train_index)
y_train = np.take(label_list, train_index, axis = 0)
X_val = np.take(data_list, val_index)
y_val = np.take(label_list, val_index, axis = 0)
train_data = AudioData(X_train, y_train, "train")
valid_data = AudioData(X_val, y_val, "valid")
train_loader = DataLoader(train_data, batch_size=8, shuffle=True, drop_last=True)
valid_loader = DataLoader(valid_data, batch_size=8, shuffle=True, drop_last=True)
resnet_model = get_model()
optimizer = Adas(resnet_model.parameters() , lr=learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3)
resnet_model = train(resnet_model, loss_fn, train_loader, valid_loader, epochs, optimizer, scheduler)
torch.save(resnet_model.state_dict() , "model"+str(fold_id)+".pt")
del train_data, valid_data, train_loader, valid_loader, resnet_model, X_train, X_val, y_train, y_val<load_pretrained> | submition.to_csv('/kaggle/working/submition_ens3.csv', index=False ) | Digit Recognizer |
12,468,048 | def load_test_file(f):
wav, sr = librosa.load('/kaggle/input/rfcx-species-audio-detection/test/' + f, sr=None)
segments = len(wav)/ length
segments = int(np.ceil(segments))
mel_array = []
for i in range(0, segments):
if(i + 1)* length > len(wav):
slice = wav[len(wav)- length:len(wav)]
else:
slice = wav[i * length:(i + 1)* length]
spec=librosa.feature.melspectrogram(slice, sr=sr,n_fft=fft,hop_length=hop,fmin=fmin,fmax=fmax)
spec_db=librosa.power_to_db(spec,top_db=80)
img = spec_to_image(spec_db)
mel_spec = np.stack(( img, img, img))
mel_array.append(mel_spec)
return mel_array<load_pretrained> | import pandas as pd
import numpy as np | Digit Recognizer |
12,468,048 | del audio_data
members = []
for i in range(nfold):
model = get_model()
model.load_state_dict(torch.load('/kaggle/working/model'+str(i)+'.pt'))
model.eval()
members.append(model )<save_to_csv> | import pandas as pd
import numpy as np | Digit Recognizer |
12,468,048 | if save_to_disk == 0:
for f in os.listdir('/kaggle/working/'):
os.remove('/kaggle/working/' + f)
print('Starting prediction loop')
with open('submission.csv', 'w', newline='')as csvfile:
submission_writer = csv.writer(csvfile, delimiter=',')
submission_writer.writerow(['recording_id','s0','s1','s2','s3','s4','s5','s6','s7','s8','s9','s10','s11',
's12','s13','s14','s15','s16','s17','s18','s19','s20','s21','s22','s23'])
test_files = os.listdir('/kaggle/input/rfcx-species-audio-detection/test/')
print(len(test_files))
for i in range(0, len(test_files)) :
data = load_test_file(test_files[i])
data = torch.tensor(data)
data = data.float()
if torch.cuda.is_available() :
data = data.cuda()
output_list = []
for m in members:
output = m(data)
maxed_output = torch.max(output, dim=0)[0]
maxed_output = maxed_output.cpu().detach()
output_list.append(maxed_output)
avg_maxed_output = torch.mean(torch.stack(output_list), dim=0)
file_id = str.split(test_files[i], '.')[0]
write_array = [file_id]
for out in avg_maxed_output:
write_array.append(out.item())
submission_writer.writerow(write_array)
if i % 100 == 0 and i > 0:
print('Predicted for ' + str(i)+ ' of ' + str(len(test_files)+ 1)+ ' files')
print('Submission generated' )<install_modules> | import tensorflow as tf
from tensorflow import keras | Digit Recognizer |
12,468,048 | ! pip install -q efficientnet<import_modules> | train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
train.head() | Digit Recognizer |
12,468,048 | import math, os, re, warnings, random , time
from collections import namedtuple
import tensorflow as tf
import numpy as np
import pandas as pd
import librosa
from kaggle_datasets import KaggleDatasets
import matplotlib.pyplot as plt
from IPython.display import Audio
from tensorflow.keras import Model, layers , optimizers
from sklearn.model_selection import KFold
import tensorflow.keras.backend as K
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, LearningRateScheduler
from tensorflow.keras.layers import GlobalAveragePooling2D, Input, Dense, Dropout, GaussianNoise, concatenate
from tensorflow.keras.applications import ResNet50
import efficientnet.keras as efn
import seaborn as sns<set_options> | test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
test.head() | Digit Recognizer |
12,468,048 | try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
print(f'Running on TPU {tpu.master() }')
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
AUTO = tf.data.experimental.AUTOTUNE
REPLICAS = strategy.num_replicas_in_sync
print(f'REPLICAS: {REPLICAS}' )<define_variables> | X_train /= 255
test /= 255 | Digit Recognizer |
12,468,048 | def seed_everything(seed=0):
random.seed(seed)
np.random.seed(seed)
tf.random.set_seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
os.environ['TF_DETERMINISTIC_OPS'] = '1'
seed = 42
seed_everything(seed)
warnings.filterwarnings('ignore' )<define_variables> | X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1 ) | Digit Recognizer |
12,468,048 | def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n)
TRAIN_DATA_DIR = 'rfcx-audio-detection'
TRAIN_GCS_PATH = KaggleDatasets().get_gcs_path(TRAIN_DATA_DIR)
FILENAMES = tf.io.gfile.glob(TRAIN_GCS_PATH + '/tp*.tfrec')
TEST_DATA_DIR = 'rfcx-species-audio-detection'
TEST_GCS_PATH = KaggleDatasets().get_gcs_path(TEST_DATA_DIR)
TEST_FILES = tf.io.gfile.glob(TEST_GCS_PATH + '/tfrecords/test/*.tfrec')
no_of_training_samples = count_data_items(FILENAMES)
print('num_training_samples are', no_of_training_samples )<define_variables> | Y_train = to_categorical(y_train,num_classes = 10 ) | Digit Recognizer |
12,468,048 | CUT = 10
TIME = 10
EPOCHS = 25
GLOBAL_BATCH_SIZE = 4 * REPLICAS
LEARNING_RATE = 0.0015
WARMUP_LEARNING_RATE = 1e-5
WARMUP_EPOCHS = int(EPOCHS*0.1)
PATIENCE = 10
STEPS_PER_EPOCH = 64
N_FOLDS = 5
NUM_TRAINING_SAMPLES = no_of_training_samples
class params:
sample_rate = 48000
stft_window_seconds: float = 0.025
stft_hop_seconds: float = 0.005
frame_length: int = 1200
mel_bands: int = 256
mel_min_hz: float = 50.0
mel_max_hz: float = 16000.0
log_offset: float = 0.001
patch_bands = mel_bands
conv_padding: str = 'same'
batchnorm_center: bool = True
batchnorm_scale: bool = False
batchnorm_epsilon: float = 1e-4
num_classes: int = 24
dropout = 0.40
classifier_activation: str = 'sigmoid'
height = mel_bands
width = 1024<feature_engineering> | random_seed=2
X_train, X_val, Y_train, Y_val = train_test_split(X_train,Y_train,test_size = 0.1, random_state=random_seed ) | Digit Recognizer |
12,468,048 | feature_description = {
'wav': tf.io.FixedLenFeature([], tf.string),
'recording_id': tf.io.FixedLenFeature([], tf.string),
'target' : tf.io.FixedLenFeature([], tf.float32),
'song_id': tf.io.FixedLenFeature([], tf.float32),
'tmin' : tf.io.FixedLenFeature([], tf.float32),
'fmin' : tf.io.FixedLenFeature([], tf.float32),
'tmax' : tf.io.FixedLenFeature([], tf.float32),
'fmax' : tf.io.FixedLenFeature([], tf.float32),
}
feature_dtype = {
'wav': tf.float32,
'recording_id': tf.string,
'target': tf.float32,
'song_id': tf.float32,
't_min': tf.float32,
'f_min': tf.float32,
't_max': tf.float32,
'f_max':tf.float32,
}<normalization> | from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau | Digit Recognizer |
12,468,048 | def waveform_to_log_mel_spectrogram(waveform,target_or_rec_id):
window_length_samples = int(
round(params.sample_rate * params.stft_window_seconds))
hop_length_samples = int(
round(params.sample_rate * params.stft_hop_seconds))
fft_length = 2 ** int(np.ceil(np.log(window_length_samples)/ np.log(2.0)))
num_spectrogram_bins = fft_length // 2 + 1
magnitude_spectrogram = tf.abs(tf.signal.stft(
signals=waveform,
frame_length=params.frame_length,
frame_step=hop_length_samples,
fft_length= fft_length))
linear_to_mel_weight_matrix = tf.signal.linear_to_mel_weight_matrix(
num_mel_bins=params.mel_bands,
num_spectrogram_bins=num_spectrogram_bins,
sample_rate=params.sample_rate,
lower_edge_hertz=params.mel_min_hz,
upper_edge_hertz=params.mel_max_hz)
mel_spectrogram = tf.matmul(
magnitude_spectrogram, linear_to_mel_weight_matrix)
log_mel = tf.math.log(mel_spectrogram + params.log_offset)
log_mel = tf.transpose(log_mel)
log_mel_spectrogram = tf.reshape(log_mel , [tf.shape(log_mel)[0] ,tf.shape(log_mel)[1],1])
return log_mel_spectrogram, target_or_rec_id<categorify> | cnn = Sequential()
cnn.add(Conv2D(filters=32,kernel_size=(5,5),padding='Same',activation='relu', input_shape=(28,28,1)))
cnn.add(Conv2D(filters=32,kernel_size=(5,5),padding='Same',activation='relu'))
cnn.add(MaxPool2D(pool_size=(2,2)))
cnn.add(Dropout(0.25))
cnn.add(Conv2D(filters=64,kernel_size=(3,3),padding='Same',activation='relu'))
cnn.add(Conv2D(filters=64,kernel_size=(3,3),padding='Same',activation='relu'))
cnn.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
cnn.add(Dropout(0.25))
cnn.add(Flatten())
cnn.add(Dense(units=256, activation='relu'))
cnn.add(Dropout(0.25))
cnn.add(Dense(units=10, activation='softmax')) | Digit Recognizer |
12,468,048 | def frequency_masking(mel_spectrogram):
frequency_masking_para = 80,
frequency_mask_num = 2
fbank_size = tf.shape(mel_spectrogram)
n, v = fbank_size[0], fbank_size[1]
for i in range(frequency_mask_num):
f = tf.random.uniform([], minval=0, maxval= tf.squeeze(frequency_masking_para), dtype=tf.int32)
v = tf.cast(v, dtype=tf.int32)
f0 = tf.random.uniform([], minval=0, maxval= tf.squeeze(v-f), dtype=tf.int32)
mask = tf.concat(( tf.ones(shape=(n, v - f0 - f,1)) ,
tf.zeros(shape=(n, f,1)) ,
tf.ones(shape=(n, f0,1)) ,
),1)
mel_spectrogram = mel_spectrogram * mask
return tf.cast(mel_spectrogram, dtype=tf.float32)
def time_masking(mel_spectrogram):
time_masking_para = 40,
time_mask_num = 1
fbank_size = tf.shape(mel_spectrogram)
n, v = fbank_size[0], fbank_size[1]
for i in range(time_mask_num):
t = tf.random.uniform([], minval=0, maxval=tf.squeeze(time_masking_para), dtype=tf.int32)
t0 = tf.random.uniform([], minval=0, maxval= n-t, dtype=tf.int32)
mask = tf.concat(( tf.ones(shape=(n-t0-t, v,1)) ,
tf.zeros(shape=(t, v,1)) ,
tf.ones(shape=(t0, v,1)) ,
), 0)
mel_spectrogram = mel_spectrogram * mask
return tf.cast(mel_spectrogram, dtype=tf.float32)
def random_brightness(image):
return tf.image.random_brightness(image, 0.2)
def random_gamma(image):
return tf.image.random_contrast(image, lower = 0.1, upper = 0.3)
def random_flip_right(image):
return tf.image.random_flip_left_right(image)
def random_flip_up_down(image):
return tf.image.random_flip_left_right(image)
available_ops = [
frequency_masking ,
time_masking,
random_brightness,
random_flip_up_down,
random_flip_right
]
def apply_augmentation(image, target):
num_layers = int(np.random.uniform(low = 0, high = 3))
for layer_num in range(num_layers):
op_to_select = tf.random.uniform([], maxval=len(available_ops), dtype=tf.int32)
for(i, op_name)in enumerate(available_ops):
image = tf.cond(
tf.equal(i, op_to_select),
lambda selected_func=op_name,: selected_func(
image),
lambda: image)
return image, target<categorify> | optimizer = RMSprop(lr=0.001,rho=0.9,epsilon=1e-08,decay=0.0 ) | Digit Recognizer |
12,468,048 | def preprocess(image, target_or_rec_id):
image = tf.image.grayscale_to_rgb(image)
image = tf.image.resize(image, [params.height,params.width])
image = tf.image.per_image_standardization(image)
return image , target_or_rec_id
def read_labeled_tfrecord(example_proto):
sample = tf.io.parse_single_example(example_proto, feature_description)
wav, _ = tf.audio.decode_wav(sample['wav'], desired_channels=1)
target = tf.cast(sample['target'],tf.float32)
target = tf.squeeze(tf.one_hot([target,], depth = params.num_classes), axis = 0)
tmin = tf.cast(sample['tmin'], tf.float32)
fmin = tf.cast(sample['fmin'], tf.float32)
tmax = tf.cast(sample['tmax'], tf.float32)
fmax = tf.cast(sample['fmax'], tf.float32)
tmax_s = tmax * tf.cast(params.sample_rate, tf.float32)
tmin_s = tmin * tf.cast(params.sample_rate, tf.float32)
cut_s = tf.cast(CUT * params.sample_rate, tf.float32)
all_s = tf.cast(60 * params.sample_rate, tf.float32)
tsize_s = tmax_s - tmin_s
cut_min = tf.cast(
tf.maximum(0.0,
tf.minimum(tmin_s -(cut_s - tsize_s)/ 2,
tf.minimum(tmax_s +(cut_s - tsize_s)/ 2, all_s)- cut_s)
), tf.int32
)
cut_max = cut_min + CUT * params.sample_rate
wav = tf.squeeze(wav[cut_min : cut_max])
return wav, target
def read_unlabeled_tfrecord(example):
feature_description = {
'recording_id': tf.io.FixedLenFeature([], tf.string),
'audio_wav': tf.io.FixedLenFeature([], tf.string),
}
sample = tf.io.parse_single_example(example, feature_description)
wav, _ = tf.audio.decode_wav(sample['audio_wav'], desired_channels=1)
recording_id = tf.reshape(tf.cast(sample['recording_id'] , tf.string), [1])
def _cut_audio(i):
_sample = {
'audio_wav': tf.reshape(wav[i*params.sample_rate*TIME:(i+1)*params.sample_rate*TIME], [params.sample_rate*TIME]),
'recording_id': sample['recording_id']
}
return _sample
return tf.map_fn(_cut_audio, tf.range(60//TIME), dtype={
'audio_wav': tf.float32,
'recording_id': tf.string
} )<create_dataframe> | cnn.compile(optimizer = optimizer, loss ='categorical_crossentropy', metrics=['accuracy'] ) | Digit Recognizer |
12,468,048 | def load_dataset(filenames, labeled = True, ordered = False , training = True):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads = AUTO)
dataset = dataset.map(read_labeled_tfrecord , num_parallel_calls = AUTO)
dataset = dataset.map(waveform_to_log_mel_spectrogram , num_parallel_calls = AUTO)
dataset = dataset.map(preprocess, num_parallel_calls = AUTO)
return dataset<prepare_x_and_y> | learning_rate_reduction = ReduceLROnPlateau(moniter = 'val_acc',
patience = 3,
verbose = 1,
factor=0.5,
min_lr = 0.00001 ) | Digit Recognizer |
12,468,048 | def get_dataset(filenames, training = True):
if training:
dataset = load_dataset(filenames , training = True)
dataset = dataset.shuffle(256 ).repeat()
dataset = dataset.batch(GLOBAL_BATCH_SIZE, drop_remainder = True)
else:
dataset = load_dataset(filenames , training = False)
dataset = dataset.repeat().batch(GLOBAL_BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset<groupby> | epochs = 10
batch_size = 86 | Digit Recognizer |
12,468,048 | @tf.function
def _one_sample_positive_class_precisions(example):
y_true, y_pred = example
y_true = tf.reshape(y_true, tf.shape(y_pred))
retrieved_classes = tf.argsort(y_pred, direction='DESCENDING')
class_rankings = tf.argsort(retrieved_classes)
retrieved_class_true = tf.gather(y_true, retrieved_classes)
retrieved_cumulative_hits = tf.math.cumsum(tf.cast(retrieved_class_true, tf.float32))
idx = tf.where(y_true)[:, 0]
i = tf.boolean_mask(class_rankings, y_true)
r = tf.gather(retrieved_cumulative_hits, i)
c = 1 + tf.cast(i, tf.float32)
precisions = r / c
dense = tf.scatter_nd(idx[:, None], precisions, [y_pred.shape[0]])
return dense
class LWLRAP(tf.keras.metrics.Metric):
def __init__(self, num_classes, name='lwlrap'):
super().__init__(name=name)
self._precisions = self.add_weight(
name='per_class_cumulative_precision',
shape=[num_classes],
initializer='zeros',
)
self._counts = self.add_weight(
name='per_class_cumulative_count',
shape=[num_classes],
initializer='zeros',
)
def update_state(self, y_true, y_pred, sample_weight=None):
precisions = tf.map_fn(
fn=_one_sample_positive_class_precisions,
elems=(y_true, y_pred),
dtype=(tf.float32),
)
increments = tf.cast(precisions > 0, tf.float32)
total_increments = tf.reduce_sum(increments, axis=0)
total_precisions = tf.reduce_sum(precisions, axis=0)
self._precisions.assign_add(total_precisions)
self._counts.assign_add(total_increments)
def result(self):
per_class_lwlrap = self._precisions / tf.maximum(self._counts, 1.0)
per_class_weight = self._counts / tf.reduce_sum(self._counts)
overall_lwlrap = tf.reduce_sum(per_class_lwlrap * per_class_weight)
return overall_lwlrap
def reset_states(self):
self._precisions.assign(self._precisions * 0)
self._counts.assign(self._counts * 0 )<normalization> | Digit Recognizer |
|
12,468,048 | learning_rate_base = LEARNING_RATE
total_steps = STEPS_PER_EPOCH * EPOCHS
warmup_learning_rate = WARMUP_LEARNING_RATE
warmup_steps= WARMUP_EPOCHS * STEPS_PER_EPOCH
@tf.function
def cosine_decay_with_warmup(global_step,
hold_base_rate_steps=0):
if total_steps < warmup_steps:
raise ValueError('total_steps must be larger or equal to '
'warmup_steps.')
learning_rate = 0.5 * learning_rate_base *(1 + tf.cos(
np.pi *
(tf.cast(global_step, tf.float32)- warmup_steps - hold_base_rate_steps
)/ float(total_steps - warmup_steps - hold_base_rate_steps)))
if hold_base_rate_steps > 0:
learning_rate = tf.where(
global_step > warmup_steps + hold_base_rate_steps,
learning_rate, learning_rate_base)
if warmup_steps > 0:
if learning_rate_base < warmup_learning_rate:
raise ValueError('learning_rate_base must be larger or equal to '
'warmup_learning_rate.')
slope =(learning_rate_base - warmup_learning_rate)/ warmup_steps
warmup_rate = slope * tf.cast(global_step,
tf.float32)+ warmup_learning_rate
learning_rate = tf.where(global_step < warmup_steps, warmup_rate,
learning_rate)
return tf.where(global_step > total_steps, 0.0, learning_rate,
name='learning_rate')
rng = [i for i in range(int(EPOCHS * STEPS_PER_EPOCH)) ]
WARMUP_STEPS = int(WARMUP_EPOCHS * STEPS_PER_EPOCH)
y = [cosine_decay_with_warmup(x)for x in rng]
sns.set(style='whitegrid')
fig, ax = plt.subplots(figsize=(20, 6))
plt.plot(rng, y )<choose_model_class> | datagen = ImageDataGenerator(featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization = False,
samplewise_std_normalization = False,
zca_whitening=False,
rotation_range=10,
zoom_range=0.1,
width_shift_range = 0.1,
height_shift_range = 0.1,
horizontal_flip = False,
vertical_flip = False)
datagen.fit(X_train ) | Digit Recognizer |
12,468,048 | class RFCX_MODEL(tf.keras.Model):
def __init__(self):
super(RFCX_MODEL , self ).__init__()
self.gaussian_noise = GaussianNoise(0.05)
self.resnet_model = ResNet50(include_top=False, weights='imagenet')
self.model_output = GlobalAveragePooling2D()
self.dropout = Dropout(params.dropout)
self.predictions = Dense(params.num_classes, activation = params.classifier_activation)
def call(self, inputs):
noisy_input = self.gaussian_noise(inputs)
resnet_output = self.resnet_model(noisy_input)
x = self.model_output(resnet_output)
x = self.dropout(x)
x = self.predictions(x)
return x<split> | history = cnn.fit_generator(datagen.flow(X_train,Y_train,batch_size=batch_size),
epochs =epochs, validation_data =(X_val, Y_val),
verbose=2, steps_per_epoch=X_train.shape[0]//batch_size,
callbacks = [learning_rate_reduction] ) | Digit Recognizer |
12,468,048 | def train_one_fold(train_dataset, valid_dataset):
print('Start fine-tuning!', flush=True)
train_dist_dataset = strategy.experimental_distribute_dataset(train_dataset)
valid_dist_dataset = strategy.experimental_distribute_dataset(valid_dataset)
start_time = epoch_start_time = time.time()
print("Steps per epoch:", STEPS_PER_EPOCH)
History = namedtuple('History', 'history')
history = History(history={'train_loss': [], 'val_loss': [], 'train_lwlrap' : [], 'val_lwlrap' : []})
train_iterator = iter(train_dist_dataset)
val_iterator = iter(valid_dist_dataset)
steps = 0
best_val_lwlrap = 0
for epoch in range(EPOCHS):
print('
EPOCH {:d}/{:d}'.format(epoch+1, EPOCHS))
train_multiple_steps(train_iterator , tf.convert_to_tensor(STEPS_PER_EPOCH))
steps += STEPS_PER_EPOCH
if(steps // STEPS_PER_EPOCH)> epoch:
val_steps = 0
val_multiple_steps(val_iterator, tf.convert_to_tensor(VAL_STEPS))
val_steps += VAL_STEPS
history.history['train_loss'].append(train_loss.result().numpy() /(STEPS_PER_EPOCH))
history.history['val_loss'].append(( val_loss.result().numpy() / val_steps))
history.history['train_lwlrap'].append(train_lwlrap.result().numpy())
history.history['val_lwlrap'].append(val_lwlrap.result().numpy())
epoch_time = time.time() - epoch_start_time
print('time: {:0.1f}s'.format(epoch_time),
'train_loss: {:0.4f}'.format(history.history['train_loss'][-1]),
'val_loss: {:0.4f}'.format(history.history['val_loss'][-1]),
'train_lwlrap: {:0.4f}'.format(history.history['train_lwlrap'][-1]),
'val_lwlrap: {:0.4f}'.format(history.history['val_lwlrap'][-1]),
'lr : {:0.6f}'.format(cosine_decay_with_warmup(steps))
)
if history.history['val_lwlrap'][-1] >= best_val_lwlrap:
best_val_lwlrap = history.history['val_lwlrap'][-1]
model.save_weights(model_path)
print(f'Saved model weights at "{model_path}"')
patience_cnt = 1
else:
patience_cnt += 1
if patience_cnt > PATIENCE:
print(f'Epoch {epoch:05d}: early stopping')
break
epoch_start_time = time.time()
train_loss.reset_states()
val_loss.reset_states()
train_lwlrap.reset_states()
val_lwlrap.reset_states()
history_list.append(history )<split> | results = cnn.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
12,468,048 | <create_dataframe><EOS> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_datagen.csv",index=False)
| Digit Recognizer |
12,607,235 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<predict_on_test> | import numpy as np
import pandas as pd | Digit Recognizer |
12,607,235 | test_predict = []
test_data = get_test_dataset(TEST_FILES, training = False)
test_audio = test_data.map(lambda frames, recording_id: frames)
for fold in range(N_FOLDS):
model.load_weights(f'./RFCX_model_fold {fold}.h5')
test_predict.append(model.predict(test_audio, verbose = 1))<load_from_csv> | print(tf.__version__ ) | Digit Recognizer |
12,607,235 | SUB = pd.read_csv('.. /input/rfcx-species-audio-detection/sample_submission.csv')
predict = np.array(test_predict ).reshape(N_FOLDS, len(SUB), 60 // TIME, params.num_classes)
predict = np.mean(np.max(predict ,axis = 2), axis = 0)
recording_id = test_data.map(lambda frames, recording_id: recording_id ).unbatch()
test_ids = next(iter(recording_id.batch(len(SUB)* 60 // TIME)) ).numpy().astype('U' ).reshape(len(SUB), 60 // TIME)
pred_df = pd.DataFrame({ 'recording_id' : test_ids[:, 0],
**{f's{i}' : predict[:, i] for i in range(params.num_classes)} } )<save_to_csv> | try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
print('Running on TPU ', tpu.master())
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
print("REPLICAS: ", strategy.num_replicas_in_sync ) | Digit Recognizer |
12,607,235 | pred_df.sort_values('recording_id', inplace = True)
pred_df.to_csv('submission.csv', index = False )<import_modules> | EPOCHS = 75
DROP_RATE = 0.4
BATCH_SIZE = 16 * strategy.num_replicas_in_sync
RESIZE_SIZE =(224, 224)
TTA_COUNT = 10
MODEL_VERSION = 'V17' | Digit Recognizer |
12,607,235 | import pandas as pd, numpy as np
import os<define_variables> | DATA_DIR = '.. /input/digit-recognizer/'
def read_df(file_name):
file_path = DATA_DIR + file_name
data_df = pd.read_csv(file_path)
return data_df | Digit Recognizer |
12,607,235 | paths = [
".. /input/rfcx-best-performing-public-kernels/kkiller_inference-tpu-rfcx-audio-detection-fast_0861.csv",
".. /input/rfcx-best-performing-public-kernels/submission_khoongweihao_0845.csv",
]
weights = np.array([0.6, 0.4])
sum(weights )<define_variables> | train_df = read_df('train.csv')
train_df | Digit Recognizer |
12,607,235 | cols = [f"s{i}" for i in range(24)]<load_from_csv> | IMAGE_SIZE =(28, 28)
IMAGE_SHAPE =(*IMAGE_SIZE, 1)
def get_images_from(data_df):
pixels_df = data_df.loc[ : , 'pixel0':'pixel783' ]
pixels_array = pixels_df.to_numpy(dtype=np.uint8)
images = pixels_array.reshape(-1, *IMAGE_SHAPE)
return images | Digit Recognizer |
12,607,235 | scores = []
for path in paths:
df = pd.read_csv(path ).sort_values("recording_id" ).reset_index(drop=True)
score = np.empty(( len(df), 24))
o = df[cols].values.argsort(1)
score[np.arange(len(df)) [:, None], o] = np.arange(24)[None]
scores.append(score)
scores = np.stack(scores)
scores.shape<compute_test_metric> | def get_labels_from(data_df):
labels = data_df['label'].to_numpy(dtype=np.int32)
return labels | Digit Recognizer |
12,607,235 | sub_score = np.sum(scores*weights[:, None, None], 0)
print(sub_score.shape)
sub_score<prepare_output> | X = get_images_from(train_df)
y = get_labels_from(train_df)
print(X.shape)
print(y.shape ) | Digit Recognizer |
12,607,235 | sub = pd.DataFrame(sub_score, columns=cols)
sub["recording_id"] = df["recording_id"]
sub = sub[["recording_id"] + cols]
print(sub.shape)
sub.head()<save_to_csv> | RESIZE_SHAPE =(*RESIZE_SIZE, 1)
def resize_image(orig_np):
reshape_np = np.reshape(orig_np, IMAGE_SIZE)
orig_im = Image.fromarray(reshape_np)
resized_im = orig_im.resize(RESIZE_SIZE, Image.LANCZOS)
resized_np = np.asarray(resized_im, dtype=np.uint8)
resized_reshaped_np = np.reshape(resized_np, RESIZE_SHAPE)
return resized_reshaped_np | Digit Recognizer |
12,607,235 | sub.to_csv("submission.csv", index=False )<import_modules> | def resize_images(orig_nps):
n_images = orig_nps.shape[0]
resized_shape =(n_images, *RESIZE_SHAPE)
resized_nps = np.empty(resized_shape, dtype=np.uint8)
for i in range(n_images):
if i % 100 == 0:
print('.', end='', flush=True)
x_np = orig_nps[i]
resized_nps[i] = resize_image(x_np)
print()
return resized_nps | Digit Recognizer |
12,607,235 | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import keras
import math<load_from_csv> | def get_mat(rotation, shear, height_zoom, width_zoom, height_shift, width_shift):
rotation = math.pi * rotation / 180.
shear = math.pi * shear / 180.
c1 = tf.math.cos(rotation)
s1 = tf.math.sin(rotation)
one = tf.constant([1],dtype='float32')
zero = tf.constant([0],dtype='float32')
rotation_matrix = tf.reshape(tf.concat([c1,s1,zero, -s1,c1,zero, zero,zero,one],axis=0),[3,3])
c2 = tf.math.cos(shear)
s2 = tf.math.sin(shear)
shear_matrix = tf.reshape(tf.concat([one,s2,zero, zero,c2,zero, zero,zero,one],axis=0),[3,3])
zoom_matrix = tf.reshape(tf.concat([one/height_zoom,zero,zero, zero,one/width_zoom,zero, zero,zero,one],axis=0),[3,3])
shift_matrix = tf.reshape(tf.concat([one,zero,height_shift, zero,one,width_shift, zero,zero,one],axis=0),[3,3])
return K.dot(K.dot(rotation_matrix, shear_matrix), K.dot(zoom_matrix, shift_matrix)) | Digit Recognizer |
12,607,235 | test = pd.read_csv('.. /input/quickdraw-doodle-recognition/test_simplified.csv')
print(test.shape)
test.head()<categorify> | def do_transform(image,label):
DIM = RESIZE_SIZE[0]
XDIM = DIM%2
rot = 10.* tf.random.normal([1],dtype='float32')
shr = 5.* tf.random.normal([1],dtype='float32')
h_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10.
w_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10.
h_shift = DIM * 0.05 * tf.random.normal([1],dtype='float32')
w_shift = DIM * 0.05 * tf.random.normal([1],dtype='float32')
m = get_mat(rot,shr,h_zoom,w_zoom,h_shift,w_shift)
x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM)
y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM])
z = tf.ones([DIM*DIM],dtype='int32')
idx = tf.stack([x,y,z])
idx2 = K.dot(m,tf.cast(idx,dtype='float32'))
idx2 = K.cast(idx2,dtype='int32')
idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2)
idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]])
d = tf.gather_nd(image,tf.transpose(idx3))
return tf.reshape(d,[DIM,DIM,1]),label | Digit Recognizer |
12,607,235 | def img_to_np(img_str, ht, wt, lw, pad):
strokes = eval(img_str)
ht_ = ht - 2*pad
wt_ = wt - 2*pad
img = np.zeros(( ht, wt), np.uint8)
for s in strokes:
sx =(np.array(s[0])* wt_ / 256 ).round().astype('int')+ pad
sy =(np.array(s[1])* ht_ / 256 ).round().astype('int')+ pad
for i in range(len(sx)- 1):
p1 =(sx[i], sy[i])
p2 =(sx[i+1], sy[i+1])
img = cv2.line(img, p1, p2,(255, 0, 0), lw, lineType=cv2.LINE_AA)
return img
<define_variables> | def randints(shape, minval, maxval):
return tf.random.uniform(
shape=shape, minval=minval, maxval=maxval+1, dtype=tf.int32 ) | Digit Recognizer |
12,607,235 | test_imgs = np.zeros(shape =(test.shape[0], 64, 64, 1))<feature_engineering> | def make_range_mask(size, start, end):
indice = tf.range(size, dtype=tf.int32)
start_mask =(start <= indice)
end_mask =(indice <= end)
range_mask = start_mask & end_mask
return range_mask
def make_region_mask(image_height, image_width, top, left, bottom, right):
row_mask = make_range_mask(image_height, top, bottom)
col_mask = make_range_mask(image_width, left, right)
region_mask = row_mask[..., tf.newaxis] & col_mask[ tf.newaxis,...]
reshaped_region_mask = region_mask[..., tf.newaxis]
return reshaped_region_mask | Digit Recognizer |
12,607,235 | %%time
for i, row in test.iterrows() :
test_imgs[i,:,:,0] = img_to_np(row.drawing, 64, 64, 1, 2)/ 255
<predict_on_test> | def do_cutout(orig_image, label):
mask_ratio = 0.5
image_shape = tf.shape(orig_image)
image_height = image_shape[0]
image_width = image_shape[1]
mask_h = tf.cast(tf.cast(image_height, tf.float32)* mask_ratio, tf.int32)
mask_w = tf.cast(tf.cast(image_width, tf.float32)* mask_ratio, tf.int32)
mask_value = 0.0
top = randints([], -mask_h // 2, image_height - mask_h // 2)
left = randints([], -mask_w // 2, image_width - mask_w // 2)
bottom = top + mask_h
right = left + mask_w
cut_region = make_region_mask(
image_height, image_width, top, left, bottom, right)
cutout_image = tf.where(cut_region, mask_value, orig_image)
return cutout_image, label | Digit Recognizer |
12,607,235 | %%time
probs = cnn.predict(test_imgs)
print(probs.shape )<concatenate> | unique_y = np.unique(y)
label_count = len(unique_y)
print(unique_y)
print(label_count ) | Digit Recognizer |
12,607,235 | N_train = probs.shape[0]
top_3_probs = np.zeros(shape=(N_train, 3))
for i in range(N_train):
p = probs[i, :]
top_classes = np.argpartition(p, -3)[-3:]
top_classes = top_classes[np.argsort(p[top_classes])]
top_classes = np.flip(top_classes)
top_probs = p[top_classes]
top_3_probs[i,:] = top_probs
print(top_3_probs[:10, :].round(2))
print(top_3_probs.shape)
plt.figure(figsize=[10,6])
for i in range(3):
plt.subplot(3,1,i+1)
plt.hist(top_3_probs[:,i], color='orchid', edgecolor='k', bins = np.arange(0, 1.01, 0.025))
plt.yscale('log')
plt.show()<sort_values> | AUTO = tf.data.experimental.AUTOTUNE
def make_dataset(
X_np, y_np,
transform=False, cutout=False, repeat=False, shuffle=False):
def _cast_to_float(x, y):
return tf.cast(x, tf.float32), y
ds = tf.data.Dataset.from_tensor_slices(( X_np, y_np))
ds = ds.map(_cast_to_float, num_parallel_calls=AUTO)
if shuffle:
ds = ds.shuffle(2048)
if transform:
ds = ds.map(do_transform, num_parallel_calls=AUTO)
if cutout:
ds = ds.map(do_cutout, num_parallel_calls=AUTO)
ds = ds.batch(BATCH_SIZE)
if repeat:
ds = ds.repeat()
return ds | Digit Recognizer |
12,607,235 | N_train = probs.shape[0]
predictions = []
t = 0.35
for i in range(N_train):
p = probs[i, :]
top_classes = np.argpartition(p, -3)[-3:]
top_classes = top_classes[np.argsort(p[top_classes])]
top_classes = np.flip(top_classes)
top_probs = p[top_classes]
sel = top_probs > t
sel[0] = True
predictions.append(top_classes[sel])
print(len(predictions))<load_from_csv> | def make_train_ds(X_np, y_np):
ds = make_dataset(
X_np, y_np, transform=True, cutout=True, repeat=True, shuffle=True)
return ds
def make_val_ds(X_np, y_np):
ds = make_dataset(
X_np, y_np, transform=False, cutout=False, repeat=False, shuffle=False)
return ds
def make_test_ds(X_np):
y_np = np.zeros(X_np.shape[0], dtype=np.int32)
ds = make_dataset(
X_np, y_np, transform=True, cutout=False, repeat=False, shuffle=False)
return ds | Digit Recognizer |
12,607,235 | submission = pd.read_csv('.. /input/quickdraw-doodle-recognition/sample_submission.csv')
submission.head()<load_from_csv> | NFOLD = 5
k_fold = StratifiedKFold(n_splits=NFOLD)
fold_index_list = []
for train_index, val_index in k_fold.split(X_resized, y):
fold_index_list.append(( train_index, val_index))
def get_fold(fold_i):
train_index, val_index = fold_index_list[fold_i]
X_train, y_train = X_resized[train_index], y[train_index]
X_val, y_val = X_resized[val_index], y[val_index]
train_ds = make_train_ds(X_train, y_train)
val_ds = make_val_ds(X_val, y_val)
return train_ds, val_ds | Digit Recognizer |
12,607,235 | label_lookup_df = pd.read_csv('.. /input/models-and-submissions/Quick Draw Models/label_lookup.csv')
label_lookup = {k:v for k,v in zip(label_lookup_df.index.values, label_lookup_df.label.values)}
label_lookup[0]<feature_engineering> | def calc_steps_per_epoch(fold_i):
train_index, val_index = fold_index_list[fold_i]
steps_per_epoch =(len(train_index)+ BATCH_SIZE - 1)// BATCH_SIZE
return steps_per_epoch | Digit Recognizer |
12,607,235 | %%time
for i in range(N_train):
classes = predictions[i]
words_list = [label_lookup[c] for c in classes]
words_string = ' '.join(words_list)
submission.loc[i, 'word'] = words_string
submission.head()<save_to_csv> | MODEL_INPUT_SHAPE =(*RESIZE_SIZE, 3)
def make_model(name):
with strategy.scope() :
inputs = L.Input(shape=RESIZE_SHAPE, name="input")
scaled = L.Lambda(lambda v: v / 255.0, name='scaling' )(inputs)
img_input = L.Concatenate(name='concat' )([scaled, scaled, scaled])
x = ResNet50(
include_top=False, weights='imagenet',
input_shape=MODEL_INPUT_SHAPE, pooling='avg' )(img_input)
x = L.Dropout(DROP_RATE, name="dropout" )(x)
outputs = L.Dense(label_count, activation='sigmoid', name='classify' )(x)
model = M.Model(inputs=inputs, outputs=outputs, name=name)
model.compile(
optimizer='adam',
loss="sparse_categorical_crossentropy",
metrics=['accuracy'])
return model | Digit Recognizer |
12,607,235 | submission.to_csv('submission.csv', index=False )<save_to_csv> | LR_START = 0.00001
LR_MAX = 0.00005 * strategy.num_replicas_in_sync
LR_MIN = 0.00001
LR_RAMPUP_EPOCHS = min(5, EPOCHS // 5)
LR_SUSTAIN_EPOCHS = 0
def lrfn(epoch):
if epoch < LR_RAMPUP_EPOCHS:
lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START
elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS:
lr = LR_MAX
else:
decay_total_epochs = EPOCHS - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS
decay_epoch_index = epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS
phase = math.pi * decay_epoch_index / decay_total_epochs
cosine_decay = 0.5 *(1 + math.cos(phase))
lr =(LR_MAX - LR_MIN)* cosine_decay + LR_MIN
return lr
def make_lr_callback() :
lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose = False)
return lr_callback
rng = [i for i in range(EPOCHS)]
lr_y = [lrfn(x)for x in rng]
plt.figure(figsize=(10, 4))
plt.plot(rng, lr_y)
print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".\
format(lr_y[0], max(lr_y), lr_y[-1])) | Digit Recognizer |
12,607,235 | submission.to_csv('submission.csv', index=False )<load_pretrained> | def make_best_model_file_path(fold_i):
file_name = "best_model_{0}_{1}.hdf5".format(MODEL_VERSION, fold_i)
return file_name | Digit Recognizer |
12,607,235 | pd.set_option('display.max_columns', 100)
pd.set_option('display.max_rows', 100)
DATA_PATH = '.. /input/jane-street-market-prediction/'
NFOLDS = 5
TRAIN = False
CACHE_PATH = '.. /input/mlp012003weights'
def save_pickle(dic, save_path):
with open(save_path, 'wb')as f:
pickle.dump(dic, f)
def load_pickle(load_path):
with open(load_path, 'rb')as f:
message_dict = pickle.load(f)
return message_dict
feat_cols = [f'feature_{i}' for i in range(130)]
target_cols = ['action', 'action_1', 'action_2', 'action_3', 'action_4']
f_mean = np.load(f'{CACHE_PATH}/f_mean_online.npy')
all_feat_cols = [col for col in feat_cols]
all_feat_cols.extend(['cross_41_42_43', 'cross_1_2'])
class Model(nn.Module):
def __init__(self):
super(Model, self ).__init__()
self.batch_norm0 = nn.BatchNorm1d(len(all_feat_cols))
self.dropout0 = nn.Dropout(0.2)
dropout_rate = 0.2
hidden_size = 256
self.dense1 = nn.Linear(len(all_feat_cols), hidden_size)
self.batch_norm1 = nn.BatchNorm1d(hidden_size)
self.dropout1 = nn.Dropout(dropout_rate)
self.dense2 = nn.Linear(hidden_size+len(all_feat_cols), hidden_size)
self.batch_norm2 = nn.BatchNorm1d(hidden_size)
self.dropout2 = nn.Dropout(dropout_rate)
self.dense3 = nn.Linear(hidden_size+hidden_size, hidden_size)
self.batch_norm3 = nn.BatchNorm1d(hidden_size)
self.dropout3 = nn.Dropout(dropout_rate)
self.dense4 = nn.Linear(hidden_size+hidden_size, hidden_size)
self.batch_norm4 = nn.BatchNorm1d(hidden_size)
self.dropout4 = nn.Dropout(dropout_rate)
self.dense5 = nn.Linear(hidden_size+hidden_size, len(target_cols))
self.Relu = nn.ReLU(inplace=True)
self.PReLU = nn.PReLU()
self.LeakyReLU = nn.LeakyReLU(negative_slope=0.01, inplace=True)
self.RReLU = nn.RReLU()
def forward(self, x):
x = self.batch_norm0(x)
x = self.dropout0(x)
x1 = self.dense1(x)
x1 = self.batch_norm1(x1)
x1 = self.LeakyReLU(x1)
x1 = self.dropout1(x1)
x = torch.cat([x, x1], 1)
x2 = self.dense2(x)
x2 = self.batch_norm2(x2)
x2 = self.LeakyReLU(x2)
x2 = self.dropout2(x2)
x = torch.cat([x1, x2], 1)
x3 = self.dense3(x)
x3 = self.batch_norm3(x3)
x3 = self.LeakyReLU(x3)
x3 = self.dropout3(x3)
x = torch.cat([x2, x3], 1)
x4 = self.dense4(x)
x4 = self.batch_norm4(x4)
x4 = self.LeakyReLU(x4)
x4 = self.dropout4(x4)
x = torch.cat([x3, x4], 1)
x = self.dense5(x)
return x
if True:
device = torch.device("cuda:0")
model_list = []
tmp = np.zeros(len(feat_cols))
for _fold in range(NFOLDS):
torch.cuda.empty_cache()
model = Model()
model.to(device)
model_weights = f"{CACHE_PATH}/online_model{_fold}.pth"
model.load_state_dict(torch.load(model_weights))
model.eval()
model_list.append(model)
<choose_model_class> | def make_model_check_point(fold_i):
best_model_file_path = make_best_model_file_path(fold_i)
return ModelCheckpoint(
best_model_file_path, monitor='val_accuracy', mode='max',
verbose=0, save_best_only=True, save_weights_only=False, period=1 ) | Digit Recognizer |
12,607,235 | SEED = 1111
np.random.seed(SEED)
def create_mlp(
num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate
):
inp = tf.keras.layers.Input(shape=(num_columns,))
x = tf.keras.layers.BatchNormalization()(inp)
x = tf.keras.layers.Dropout(dropout_rates[0] )(x)
for i in range(len(hidden_units)) :
x = tf.keras.layers.Dense(hidden_units[i] )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.keras.activations.swish )(x)
x = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x)
x = tf.keras.layers.Dense(num_labels )(x)
out = tf.keras.layers.Activation("sigmoid" )(x)
model = tf.keras.models.Model(inputs=inp, outputs=out)
model.compile(
optimizer=tfa.optimizers.RectifiedAdam(learning_rate=learning_rate),
loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing),
metrics=tf.keras.metrics.AUC(name="AUC"),
)
return model
epochs = 200
batch_size = 4096
hidden_units = [160, 160, 160]
dropout_rates = [0.2, 0.2, 0.2, 0.2]
label_smoothing = 1e-2
learning_rate = 1e-3
tf.keras.backend.clear_session()
tf.random.set_seed(SEED)
clf = create_mlp(
len(feat_cols), 5, hidden_units, dropout_rates, label_smoothing, learning_rate
)
clf.load_weights('.. /input/jane-street-with-keras-nn-overfit/model.h5')
tf_models = [clf]<statistical_test> | initial_weights_file_path = "initial_weights.hdf5"
model.save_weights(initial_weights_file_path ) | Digit Recognizer |
12,607,235 | if True:
env = janestreet.make_env()
env_iter = env.iter_test()
for(test_df, pred_df)in tqdm(env_iter):
if test_df['weight'].item() > 0:
x_tt = test_df.loc[:, feat_cols].values
if np.isnan(x_tt.sum()):
x_tt = np.nan_to_num(x_tt)+ np.isnan(x_tt)* f_mean
cross_41_42_43 = x_tt[:, 41] + x_tt[:, 42] + x_tt[:, 43]
cross_1_2 = x_tt[:, 1] /(x_tt[:, 2] + 1e-5)
feature_inp = np.concatenate((
x_tt,
np.array(cross_41_42_43 ).reshape(x_tt.shape[0], 1),
np.array(cross_1_2 ).reshape(x_tt.shape[0], 1),
), axis=1)
torch_pred = np.zeros(( 1, len(target_cols)))
for model in model_list:
torch_pred += model(torch.tensor(feature_inp, dtype=torch.float ).to(device)).sigmoid().detach().cpu().numpy() / NFOLDS
torch_pred = np.median(torch_pred)
tf_pred = np.median(np.mean([model(x_tt, training = False ).numpy() for model in tf_models],axis=0))
pred = torch_pred * 0.5 + tf_pred * 0.5
pred_df.action = np.where(pred >= 0.5, 1, 0 ).astype(int)
else:
pred_df.action = 0
env.predict(pred_df )<import_modules> | history_list = []
for fold_i in range(NFOLD):
print("
print("
train_ds, val_ds = get_fold(fold_i)
steps_per_epoch = calc_steps_per_epoch(fold_i)
lr_callback = make_lr_callback()
check_point = make_model_check_point(fold_i)
model.load_weights(initial_weights_file_path)
history = model.fit(
train_ds, epochs=EPOCHS, steps_per_epoch=steps_per_epoch,
validation_data=val_ds,
callbacks=[lr_callback, check_point], verbose=0)
history_list.append(history)
best_acc = max(history.history['accuracy'])
best_val_acc = max(history.history['val_accuracy'])
print(
"Fold {0}: accuracy={1:.5f}, val_accuracy={2:.5f}".format(
fold_i, best_acc, best_val_acc)) | Digit Recognizer |
12,607,235 | import pandas as pd
import gc
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import StratifiedKFold<load_from_csv> | test_df = read_df('test.csv')
test_df | Digit Recognizer |
12,607,235 | train = pd.read_csv('/kaggle/input/jane-street-market-prediction/train.csv')
train = reduce_mem_usage(train)
features = [c for c in train.columns if 'feature' in c]
train = train.astype({c: np.float32 for c in train.select_dtypes(include='float16' ).columns})
train = train.fillna(train.mean())
f_mean = np.mean(train[features[1:]].values,axis=0)
train = train.query('date > 85' ).reset_index(drop = True)
train = train[train.weight != 0]<prepare_x_and_y> | def make_val_pred_file_path(fold_i):
file_name = "val_pred_{0}_{1}".format(MODEL_VERSION, fold_i)
return file_name | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.