kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
12,607,235 | n_folds = 5
seed = 42
ScaleData = False
if(ScaleData):
scaler = MinMaxScaler(feature_range =(0, 1)).fit(train[features])
train.loc[:,features] = scaler.transform(train[features])
X = train[features]
y =(train['resp'].values > 0 ).astype(int)
X_train = train[train['date'] < 400][features]
X_test = train[train['date'] >= 400][features]
train['action'] =(( train['weight'].values * train['resp'].values)> 0 ).astype('int')
y_train = train[train['date'] < 400]['action']
y_test = train[train['date'] >= 400]['action']
X_train = train[features]
y_train = train['action']<count_unique_values> | model_pred = np.zeros(( X_test_resized.shape[0], label_count))
for fold_i in range(NFOLD):
best_model_file_path = make_best_model_file_path(fold_i)
model.load_weights(best_model_file_path)
train_ds, val_ds = get_fold(fold_i)
val_pred = model.predict(val_ds)
val_pred_file_name = make_val_pred_file_path(fold_i)
np.save(val_pred_file_name, val_pred)
test_ds = make_test_ds(X_test_resized)
print("Fold {0}".format(fold_i), end='', flush=True)
for i in range(TTA_COUNT):
print('.', end='', flush=True)
model_pred += model.predict(test_ds)
print()
y_pred = np.argmax(model_pred, axis=1)
print(y_pred.shape ) | Digit Recognizer |
12,607,235 | unique, counts = np.unique(y_test, return_counts=True)
dict(zip(unique, counts))<train_model> | submission_df = read_df('sample_submission.csv')
submission_df | Digit Recognizer |
12,607,235 | <normalization><EOS> | submission_df['Label'] = y_pred
submission_df.to_csv("submission.csv", index=False)
!head submission.csv | Digit Recognizer |
13,231,007 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_from_csv> | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import seaborn as sns
from sklearn.model_selection import train_test_split
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import tensorflow.keras.layers.experimental.preprocessing as preprocessing | Digit Recognizer |
13,231,007 | SEED = 1111
np.random.seed(SEED)
train = pd.read_csv('.. /input/jane-street-market-prediction/train.csv')
train = train.query('date > 85' ).reset_index(drop = True)
train = train[train['weight'] != 0]
train.fillna(train.mean() ,inplace=True)
train['action'] =(( train['resp'].values)> 0 ).astype(int)
features = [c for c in train.columns if "feature" in c]
f_mean = np.mean(train[features[1:]].values,axis=0)
resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4']
X_train = train.loc[:, train.columns.str.contains('feature')]
y_train = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T
def create_mlp(
num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate
):
inp = tf.keras.layers.Input(shape=(num_columns,))
x = tf.keras.layers.BatchNormalization()(inp)
x = tf.keras.layers.Dropout(dropout_rates[0] )(x)
for i in range(len(hidden_units)) :
x = tf.keras.layers.Dense(hidden_units[i] )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.keras.activations.swish )(x)
x = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x)
x = tf.keras.layers.Dense(num_labels )(x)
out = tf.keras.layers.Activation("sigmoid" )(x)
model = tf.keras.models.Model(inputs=inp, outputs=out)
model.compile(
optimizer=tfa.optimizers.RectifiedAdam(learning_rate=learning_rate),
loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing),
metrics=tf.keras.metrics.AUC(name="AUC"),
)
return model
epochs = 200
batch_size = 4096
hidden_units = [160, 160, 160]
dropout_rates = [0.2, 0.2, 0.2, 0.2]
label_smoothing = 1e-2
learning_rate = 1e-3
tf.keras.backend.clear_session()
tf.random.set_seed(SEED)
clf = create_mlp(
len(features), 5, hidden_units, dropout_rates, label_smoothing, learning_rate
)
clf.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, verbose=2)
clf.save(f'model.h5')
th = 0.502
models = [clf]
f = np.median
env = janestreet.make_env()
for(test_df, pred_df)in tqdm(env.iter_test()):
if test_df['weight'].item() > 0:
x_tt = test_df.loc[:, features].values
if np.isnan(x_tt[:, 1:].sum()):
x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:])* f_mean
pred = np.mean([model(x_tt, training = False ).numpy() for model in models],axis=0)
pred = f(pred)
pred_df.action = np.where(pred >= th, 1, 0 ).astype(int)
else:
pred_df.action = 0
env.predict(pred_df )<install_modules> | %matplotlib inline
plt.style.use('bmh')
np.random.seed(42 ) | Digit Recognizer |
13,231,007 | %%bash
python -m pip install py7zr
mkdir data<load_pretrained> | data = pd.read_csv(".. /input/digit-recognizer/train.csv")
holdout = pd.read_csv(".. /input/digit-recognizer/test.csv" ) | Digit Recognizer |
13,231,007 | for f in ["train.tsv.7z", "test.tsv.7z"]:
archive = py7zr.SevenZipFile(".. /input/mercari-price-suggestion-challenge/{}".format(f), mode='r')
archive.extractall(path="./data")
archive.close()
with zipfile.ZipFile(".. /input/mercari-price-suggestion-challenge/test_stg2.tsv.zip", 'r')as zip_ref:
zip_ref.extractall("./data" )<install_modules> | X = data
y = X.pop('label')
del data | Digit Recognizer |
13,231,007 | %%bash
git clone https://github.com/joren015/MercariProject.git
cp -r MercariProject/*./
python -m pip install -r requirements.txt<set_options> | X = X / 255.0
holdout = holdout / 255.0 | Digit Recognizer |
13,231,007 | %%bash
python main.py neural_network predict<set_options> | X = X.values.reshape(-1,28,28,1)
holdout = holdout.values.reshape(-1,28,28,1)
y = keras.utils.to_categorical(y, num_classes = 10 ) | Digit Recognizer |
13,231,007 | pd.set_option('display.max_rows', 100)
pd.set_option('display.max_columns', 500)
pd.set_option('display.max_colwidth', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
<load_pretrained> | X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size =.1,
stratify = y,
random_state = 42 ) | Digit Recognizer |
13,231,007 | !apt-get install p7zip
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/train.tsv.7z
!unzip -o /kaggle/input/mercari-price-suggestion-challenge/sample_submission_stg2.csv.zip
!unzip -o /kaggle/input/mercari-price-suggestion-challenge/test_stg2.tsv.zip<load_from_csv> | model = keras.Sequential([
layers.InputLayer(input_shape=[28, 28, 1]),
preprocessing.RandomRotation(factor = 0.10),
preprocessing.RandomTranslation(height_factor = 0.1, width_factor = 0.1),
preprocessing.RandomZoom(height_factor = 0.1, width_factor = 0.1),
layers.BatchNormalization(renorm = True),
layers.Conv2D(filters = 32, kernel_size = 5, activation = 'relu', padding = 'same'),
layers.Conv2D(filters = 32, kernel_size = 5, activation = 'relu', padding = 'same'),
layers.Dropout(0.25),
layers.Conv2D(filters = 128, kernel_size = 3, activation = 'relu', padding = 'same'),
layers.MaxPool2D() ,
layers.Conv2D(filters = 64, kernel_size =(3, 3), activation = 'relu', padding = 'same'),
layers.Conv2D(filters = 64, kernel_size =(3, 3), activation = 'relu', padding = 'same'),
layers.MaxPool2D(pool_size =(2, 2), strides =(2, 2)) ,
layers.Flatten() ,
layers.Dense(256, activation = 'relu'),
layers.Dense(10, activation = 'softmax'),
] ) | Digit Recognizer |
13,231,007 | train = pd.read_csv("train.tsv", low_memory=False, sep='\t')
test = pd.read_csv("test_stg2.tsv", low_memory=False, sep='\t')
train.info(memory_usage="deep" )<count_unique_values> | optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
13,231,007 | df = pd.concat([train.drop(["train_id", "price"], axis=1 ).nunique() , test.drop(["test_id"], axis=1 ).nunique() ], axis=1)
df.columns = ["Train", "Test"]
df.T<count_values> | epochs = 300
batch_size = 64 | Digit Recognizer |
13,231,007 | train["name"].value_counts() [:5], test["name"].value_counts() [:5]<count_values> | early_stopping = keras.callbacks.EarlyStopping(
min_delta=0.001,
patience=10,
restore_best_weights=True,
) | Digit Recognizer |
13,231,007 | train["brand_name"].value_counts() [:5], test["brand_name"].value_counts() [:5]<count_values> | optimizer = tf.keras.optimizers.Adam(epsilon=0.01)
model.compile(
optimizer=optimizer,
loss='categorical_crossentropy',
metrics=['accuracy'],
)
history = model.fit(X_train, y_train,
batch_size = batch_size,
epochs = epochs,
validation_data =(X_test, y_test),
callbacks = [early_stopping],
verbose = 2)
| Digit Recognizer |
13,231,007 | train["category_name"].value_counts() [:5], test["category_name"].value_counts() [:5]<count_values> | results = model.predict(holdout)
results = np.argmax(results,axis = 1)
results = pd.Series(results, name = "Label" ) | Digit Recognizer |
13,231,007 | train["item_description"].value_counts() [:5], test["item_description"].value_counts() [:5]<drop_column> | submission = pd.concat(
[pd.Series(range(1, 28001), name = "ImageId"),
results],
axis = 1)
submission.to_csv("digits_submission.csv", index = False ) | Digit Recognizer |
5,674,715 | train.drop(train[train["price"] <= 0].index, inplace=True)
train.reset_index(inplace=True, drop=True )<feature_engineering> | from keras.utils.np_utils import to_categorical | Digit Recognizer |
5,674,715 | def process_data(df):
df[["First_category", "Second_category", "Third_category"]] = df["category_name"].str.split('/', 2, expand=True)
df.drop("category_name", axis=1, inplace=True)
df["item_description"] = df["item_description"].replace({"No description yet": np.nan})
df["Category_was_missing"] = df["First_category"].isna()
df["Brand_was_missing"] = df["brand_name"].isna()
df["Description_was_missing"] = df["item_description"].isna()
for i in ["brand_name", "First_category", "Second_category", "Third_category", "item_description"]:
df[i] = df[i].fillna("missing")
df["Price_was_in_description"] = df["item_description"].str.contains("\[rm\]")
df["Price_was_in_name"] = df["name"].str.contains("\[rm\]")
df["descr_len"] = df["item_description"].str.len()
df["descr_len"] = pd.cut(df["descr_len"], np.arange(0, 1055, 5), right=False)
df["descr_len"] = df["descr_len"].astype("string")
stop_words = set(stopwords.words("english"))
for column in ["item_description", "brand_name", "name"]:
processed_column = []
for text_row in df[column]:
text_row = text_row.replace('[rm]', '')
text_row = re.sub('[^A-Za-z0-9]+', ' ', text_row)
if column != "brand_name":
text_row = ' '.join(word for word in text_row.lower().split() if word not in stop_words)
processed_column.append(text_row.strip())
df[column] = processed_column
for column in ["First_category", "Second_category", "Third_category"]:
processed_column = []
for text_row in df[column]:
text_row = text_row.replace(' ','')
text_row = text_row.replace('&','_')
text_row = re.sub('[^A-Za-z0-9_]+', ' ', text_row)
processed_column.append(text_row.lower().strip())
df[column] = processed_column
return df<create_dataframe> | training_dataset = pd.read_csv("/kaggle/input/train.csv")
testing_dataset = pd.read_csv("/kaggle/input/test.csv" ) | Digit Recognizer |
5,674,715 | train = process_data(train )<prepare_x_and_y> | Y_train_init = training_dataset['label']
X_train_init = training_dataset.drop(labels=['label'], axis=1 ) | Digit Recognizer |
5,674,715 | def make_tokens_count_plot(count_vercorizer, matrix, column_name, set_name="train"):
if set_name == "train":
color = "lightcoral"
else:
color = "steelblue"
df = pd.DataFrame()
df["tokens"] = count_vercorizer.get_feature_names()
df["counts"] = np.asarray(matrix.sum(axis=0)) [0]
x = df.sort_values("counts", axis=0, ascending=False ).head(50)["tokens"]
y = df.sort_values("counts", axis=0, ascending=False ).head(50)["counts"]
fig, ax = plt.subplots(figsize=(15, 6))
ax.bar(x, y, color=color, edgecolor="black")
ax.set_title(f"Most popular words in the {column_name} column of the {set_name} dataset", fontsize=20, pad=15)
ax.set_ylabel("Count", fontsize=14, labelpad=15)
ax.set_xlabel("Word", fontsize=14, labelpad=10)
ax.set_xticks(x)
ax.set_xticklabels(x, rotation = 60, ha="right", rotation_mode='anchor')
ax.tick_params(axis="x", labelsize=14)
ax.tick_params(axis="y", labelsize=14)
ax.grid(axis="y")
ax.margins(0.025, 0.05)
plt.show() ;<split> | Digit Recognizer |
|
5,674,715 | def get_transformed_train_valid_data(df, y, cat_features):
X_train, X_valid, y_train, y_valid = train_test_split(df, y, test_size=0.2, random_state=42)
label_binarizers = []
binarized_columns = []
count_vercorizers = []
vectorized_columns = []
for column in cat_features:
binarizer = LabelBinarizer(sparse_output=True)
binarized_column = binarizer.fit_transform(X_train[column])
label_binarizers.append(binarizer)
binarized_columns.append(binarized_column)
vectorizer = CountVectorizer(min_df=7, max_features=20000)
vectorized_column = vectorizer.fit_transform(X_train["name"])
count_vercorizers.append(vectorizer)
vectorized_columns.append(vectorized_column)
make_tokens_count_plot(vectorizer, vectorized_column, "name", "train")
vectorizer = CountVectorizer(min_df=15, ngram_range=(1, 2), max_features=60000)
vectorized_column = vectorizer.fit_transform(X_train["item_description"])
count_vercorizers.append(vectorizer)
vectorized_columns.append(vectorized_column)
make_tokens_count_plot(vectorizer, vectorized_column, "item_description", "train")
vectorizer = CountVectorizer(min_df=30, ngram_range=(3, 3), max_features=10000)
vectorized_column = vectorizer.fit_transform(X_train["item_description"])
count_vercorizers.append(vectorizer)
vectorized_columns.append(vectorized_column)
make_tokens_count_plot(vectorizer, vectorized_column, "item_description", "train")
print(f"Name columns vectorized shape is {vectorized_columns[0].shape}")
print(f"Item_description columns vectorized shape is {vectorized_columns[1].shape}")
print(f"Item_description columns vectorized(1,3)shape is {vectorized_columns[2].shape}")
X_train_stack = hstack(( binarized_columns[0], binarized_columns[1], binarized_columns[2],
binarized_columns[3], binarized_columns[4], binarized_columns[5],
binarized_columns[6], binarized_columns[7], binarized_columns[8],
binarized_columns[9], binarized_columns[10], binarized_columns[11],
vectorized_columns[0], vectorized_columns[1], vectorized_columns[2])).tocsr()
X_valid_stack = get_transformed_test_data(X_valid, cat_features, label_binarizers, count_vercorizers)
return X_train_stack, X_valid_stack, y_train, y_valid, label_binarizers, count_vercorizers
def get_transformed_test_data(df, cat_features, label_binarizers, count_vercorizers):
binarized_columns = []
vectorized_columns = []
for num, column in enumerate(cat_features):
binarizer = label_binarizers[num]
binarized_column = binarizer.transform(df[column])
binarized_columns.append(binarized_column)
vectorizer = count_vercorizers[0]
vectorized_column = vectorizer.transform(df["name"])
vectorized_columns.append(vectorized_column)
make_tokens_count_plot(vectorizer, vectorized_column, "name", "valid/test")
vectorizer = count_vercorizers[1]
vectorized_column = vectorizer.transform(df["item_description"])
vectorized_columns.append(vectorized_column)
make_tokens_count_plot(vectorizer, vectorized_column, "item_description", "valid/test")
vectorizer = count_vercorizers[2]
vectorized_column = vectorizer.transform(df["item_description"])
vectorized_columns.append(vectorized_column)
make_tokens_count_plot(vectorizer, vectorized_column, "item_description", "valid/test")
print(f"Name columns vectorized shape is {vectorized_columns[0].shape}")
print(f"Item_description columns vectorized shape is {vectorized_columns[1].shape}")
print(f"Item_description columns vectorized(1,3)shape is {vectorized_columns[2].shape}")
X_test_stack = hstack(( binarized_columns[0], binarized_columns[1], binarized_columns[2],
binarized_columns[3], binarized_columns[4], binarized_columns[5],
binarized_columns[6], binarized_columns[7], binarized_columns[8],
binarized_columns[9], binarized_columns[10], binarized_columns[11],
vectorized_columns[0], vectorized_columns[1], vectorized_columns[2])).tocsr()
return X_test_stack
def get_transformed_train_data(df, cat_features):
label_binarizers = []
binarized_columns = []
count_vercorizers = []
vectorized_columns = []
for column in cat_features:
binarizer = LabelBinarizer(sparse_output=True)
binarized_column = binarizer.fit_transform(df[column])
label_binarizers.append(binarizer)
binarized_columns.append(binarized_column)
vectorizer = CountVectorizer(min_df=7, max_features=20000)
vectorized_column = vectorizer.fit_transform(df["name"])
count_vercorizers.append(vectorizer)
vectorized_columns.append(vectorized_column)
make_tokens_count_plot(vectorizer, vectorized_column, "name", "train")
vectorizer = CountVectorizer(min_df=15, ngram_range=(1, 2), max_features=60000)
vectorized_column = vectorizer.fit_transform(df["item_description"])
count_vercorizers.append(vectorizer)
vectorized_columns.append(vectorized_column)
make_tokens_count_plot(vectorizer, vectorized_column, "item_description", "train")
vectorizer = CountVectorizer(min_df=30, ngram_range=(3, 3), max_features=10000)
vectorized_column = vectorizer.fit_transform(df["item_description"])
count_vercorizers.append(vectorizer)
vectorized_columns.append(vectorized_column)
make_tokens_count_plot(vectorizer, vectorized_column, "item_description", "train")
print(f"Name columns vectorized shape is {vectorized_columns[0].shape}")
print(f"Item_description columns vectorized shape is {vectorized_columns[1].shape}")
print(f"Item_description columns vectorized(1,3)shape is {vectorized_columns[2].shape}")
X_train_stack = hstack(( binarized_columns[0], binarized_columns[1], binarized_columns[2],
binarized_columns[3], binarized_columns[4], binarized_columns[5],
binarized_columns[6], binarized_columns[7], binarized_columns[8],
binarized_columns[9], binarized_columns[10], binarized_columns[11],
vectorized_columns[0], vectorized_columns[1], vectorized_columns[2])).tocsr()
return X_train_stack, label_binarizers, count_vercorizers<drop_column> | Y_train = training_dataset['label']
X_train = training_dataset.drop(labels=['label'], axis=1)
nums = 10 | Digit Recognizer |
5,674,715 | cat_features = ["item_condition_id", "First_category", "Second_category", "Third_category",
"shipping", "brand_name", "Description_was_missing", "Price_was_in_name",
"Price_was_in_description", "Brand_was_missing", "Category_was_missing",
"descr_len"]
X_train, label_binarizers, count_vercorizers = get_transformed_train_data(train.drop(["train_id", "price"], axis=1), cat_features)
y_train = np.log1p(train["price"] )<drop_column> | X_test = testing_dataset.values | Digit Recognizer |
5,674,715 | for column in train.columns:
train.drop(column, axis=1, inplace=True)
del train
gc.collect()<compute_test_metric> | X_train = X_train/255.0 | Digit Recognizer |
5,674,715 | def rmsle(y_true, y_preds):
return np.sqrt(mean_squared_log_error(y_true, y_preds))
def get_scores(model, X_train, X_valid, y_train, y_valid):
train_preds = model.predict(X_train)
val_preds = model.predict(X_valid)
scores = {"Training MAE": mean_absolute_error(y_train, train_preds),
"Validation MAE": mean_absolute_error(y_valid, val_preds),
"Training RMSLE": rmsle(y_train, train_preds),
"Validation RMSLE": rmsle(y_valid, val_preds),
"Training R^2": model.score(X_train, y_train),
"Validation R^2": model.score(X_valid, y_valid)}
return scores<train_model> | X_test = X_test/ 255.0 | Digit Recognizer |
5,674,715 | %%time
model = SGDRegressor(alpha=0.000001,
penalty="l2",
random_state=42,
loss="epsilon_insensitive",
max_iter=50000)
model.fit(X_train, y_train )<drop_column> | Y_train = to_categorical(Y_train, num_classes=nums ) | Digit Recognizer |
5,674,715 | del X_train, y_train
gc.collect()<create_dataframe> | random_seed = 2 | Digit Recognizer |
5,674,715 | preds = pd.DataFrame(columns = ["test_id", "price"])
preds["test_id"] = test["test_id"]<categorify> | from sklearn.model_selection import train_test_split | Digit Recognizer |
5,674,715 | test = process_data(test.drop("test_id", axis=1))
X_test = get_transformed_test_data(test, cat_features, label_binarizers, count_vercorizers )<save_to_csv> | from sklearn.model_selection import train_test_split | Digit Recognizer |
5,674,715 | preds["price"] = np.expm1(model.predict(X_test))
preds.to_csv('submission.csv', index=False)
preds.head()<load_pretrained> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, random_state=random_seed, test_size = 0.3 ) | Digit Recognizer |
5,674,715 | !apt-get install p7zip
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/train.tsv.7z
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/test.tsv.7z
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/sample_submission.csv.7z<load_from_csv> | from keras import Sequential
from keras.layers import Dense, MaxPooling2D, Dropout, Flatten, Conv2D, BatchNormalization
from keras.callbacks import ReduceLROnPlateau, LearningRateScheduler
from keras.preprocessing.image import ImageDataGenerator | Digit Recognizer |
5,674,715 | !unzip /kaggle/input/mercari-price-suggestion-challenge/sample_submission_stg2.csv.zip
!unzip /kaggle/input/mercari-price-suggestion-challenge/test_stg2.tsv.zip<import_modules> | batch_size = 65
epochs = 23
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same', input_shape=(28, 28, 1)))
model.add(BatchNormalization(scale=False,center=True))
model.add(MaxPooling2D(padding='same', pool_size=(2, 2)))
model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu', padding='same'))
model.add(MaxPooling2D(padding='same', pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu', padding='same'))
model.add(MaxPooling2D(padding='same', pool_size=(2, 2)))
model.add(Conv2D(filters=64, kernel_size=(7, 7), activation='relu', padding='same'))
model.add(MaxPooling2D(padding='same', pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters=128, kernel_size=(5, 5), activation='relu', padding='same'))
model.add(MaxPooling2D(padding='same', pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.25))
model.add(BatchNormalization(scale=False,center=True))
model.add(Dense(nums, activation='softmax')) | Digit Recognizer |
5,674,715 | import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import math
from sklearn.linear_model import Ridge, LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import LabelBinarizer<load_from_csv> | model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy'])
| Digit Recognizer |
5,674,715 | train = pd.read_table('train.tsv')
test = pd.read_table('test_stg2.tsv')
print(train.shape)
print(test.shape )<count_missing_values> | t = 1
def decide_f(t):
if t < 5:
f =.5
else:
f =.9
t = t + 1
return(f)
reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=decide_f(t),verbose=1,
patience=2, min_lr=0.00000000001 ) | Digit Recognizer |
5,674,715 | train.isnull().sum()<categorify> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=15,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False ) | Digit Recognizer |
5,674,715 | def handle_missing(dataset):
dataset.category_name.fillna(value="missing", inplace=True)
dataset.brand_name.fillna(value="missing", inplace=True)
dataset.item_description.fillna(value="missing", inplace=True)
return(dataset )<correct_missing_values> | datagen.fit(X_train)
h = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
verbose = 1, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[reduce_lr],)
final_loss, final_acc = model.evaluate(X_val, Y_val, verbose=0)
print("Final loss: {0:.6f}, final accuracy: {1:.6f}".format(final_loss, final_acc))
| Digit Recognizer |
5,674,715 | train = handle_missing(train)
test = handle_missing(test )<categorify> | prediction = model.predict(X_test)
| Digit Recognizer |
5,674,715 | def transform_category_name(category_name):
try:
sub1, sub2, sub3 = category_name.split('/')
return sub1, sub2, sub3
except:
return "none", "none", "none"
train['subcat_1'], train['subcat_2'], train['subcat_3'] = zip(*train['category_name'].apply(transform_category_name))
test['subcat_1'], test['subcat_2'], test['subcat_3'] = zip(*test['category_name'].apply(transform_category_name))
train.head(10 )<count_unique_values> | label = np.argmax(prediction, axis=1 ) | Digit Recognizer |
5,674,715 | print("There are %d unique subcat_1." % train['subcat_1'].nunique())
print("There are %d unique subcat_2." % train['subcat_2'].nunique())
print("There are %d unique subcat_3." % train['subcat_3'].nunique() )<count_values> | test_id = np.reshape(range(1, len(prediction)+ 1), label.shape ) | Digit Recognizer |
5,674,715 | <categorify><EOS> | my_submission = pd.DataFrame({'ImageId': test_id, 'Label': label})
my_submission.to_csv('submission.csv', index=False ) | Digit Recognizer |
13,071,393 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<categorify> | %matplotlib inline | Digit Recognizer |
13,071,393 | lb_shipping = LabelBinarizer(sparse_output=True)
train_shipping = lb_shipping.fit_transform(train['shipping'])
test_shipping = lb_shipping.transform(test['shipping'])
train_shipping.shape<categorify> | train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv")
y_train = train["label"]
x_train = train.drop(labels = ["label"], axis = 1)
x_train = x_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1)
del train
X_train /= 255
test /= 255 | Digit Recognizer |
13,071,393 | lb_brand_name = LabelBinarizer(sparse_output=True)
train_brand_name= lb_brand_name.fit_transform(train['brand_name'])
test_brand_name = lb_brand_name.transform(test['brand_name'])
train_brand_name.shape<feature_engineering> | y_train = to_categorical(y_train, num_classes = 10 ) | Digit Recognizer |
13,071,393 | count_vec = CountVectorizer()
train_name = count_vec.fit_transform(train['name'])
test_name = count_vec.transform(test['name'])
print(train_name.shape )<categorify> | random_seed = 2
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train,
test_size = 0.2, random_state = random_seed ) | Digit Recognizer |
13,071,393 | tfidf_des = TfidfVectorizer(max_features=50000, ngram_range=(1, 3), stop_words='english')
train_des = tfidf_des.fit_transform(train['item_description'])
test_des = tfidf_des.transform(test['item_description'])
train_des.shape<categorify> | def create_model() :
def add_conv_block(model, num_filters):
model.add(Conv2D(num_filters,3,activation='relu', padding = 'same'))
model.add(BatchNormalization())
model.add(Conv2D(num_filters,3, activation= 'relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Dropout(0.5))
return model
model = tf.keras.models.Sequential()
model.add(Input(shape=(28,28,1)))
model = add_conv_block(model, 32)
model = add_conv_block(model, 64)
model = add_conv_block(model, 128)
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dense(128, activation="relu"))
model.add(Dense(10,activation = 'softmax'))
model.compile(
loss = 'categorical_crossentropy',
optimizer = 'adam', metrics = ['accuracy']
)
return model
model = create_model()
model.summary() | Digit Recognizer |
13,071,393 | lb_cat_1 = LabelBinarizer(sparse_output=True)
train_cat_1 = lb_cat_1.fit_transform(train['subcat_1'])
test_cat_1 = lb_cat_1.transform(test['subcat_1'])
lb_cat_2 = LabelBinarizer(sparse_output=True)
train_cat_2 = lb_cat_2.fit_transform(train['subcat_2'])
test_cat_2 = lb_cat_2.transform(test['subcat_2'])
lb_cat_3 = LabelBinarizer(sparse_output=True)
train_cat_3 = lb_cat_3.fit_transform(train['subcat_3'])
test_cat_3 = lb_cat_3.transform(test['subcat_3'] )<set_options> | h = model.fit(
x_train,y_train,
validation_data =(x_val,y_val),
epochs=20,batch_size=30
) | Digit Recognizer |
13,071,393 | sparse_matrix_list =(train_name, train_des, train_brand_name, train_condition,
train_shipping, train_cat_1, train_cat_2, train_cat_3)
X_train = hstack(sparse_matrix_list ).tocsr()
print(X_train.shape)
del X_train
gc.collect()<compute_test_metric> | results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
13,071,393 | <split><EOS> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_datagen.csv",index=False ) | Digit Recognizer |
12,762,404 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<compute_test_metric> | %matplotlib inline | Digit Recognizer |
12,762,404 | model = ridge = Ridge()
Ridge_preds, y_test = run_model(model, matrix_list=sparse_matrix_list)
print("rmsle: "+str(rmsle(np.expm1(y_test), np.expm1(Ridge_preds))))<load_from_csv> | test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ) | Digit Recognizer |
12,762,404 | submission = pd.read_csv('sample_submission_stg2.csv')
submission
submission.loc[:, 'price'] = preds
submission<save_to_csv> | ( x_train, y_train),(x_test, y_test)= mnist.load_data() | Digit Recognizer |
12,762,404 | submission.to_csv('submission.csv', index=False )<save_to_csv> | pred_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
pred_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
pred_train = pred_train.astype('float32')
pred_test = pred_test.astype('float32')
pred_train /=255
pred_test /=255
class_train = np_utils.to_categorical(y_train, 10)
class_test = np_utils.to_categorical(y_test, 10 ) | Digit Recognizer |
12,762,404 | submission.to_csv('submission.csv', index=False )<load_pretrained> | classifier = Sequential()
classifier.add(Conv2D(32,(3,3), input_shape =(28,28,1), activation = 'relu'))
classifier.add(BatchNormalization())
classifier.add(MaxPooling2D(pool_size =(2,2)))
classifier.add(Conv2D(32,(3,3), activation = 'relu'))
classifier.add(BatchNormalization())
classifier.add(MaxPooling2D(pool_size =(2,2)))
classifier.add(Flatten())
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dropout(0.2))
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dropout(0.2))
classifier.add(Dense(units = 10, activation = 'softmax'))
classifier.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics=['accuracy'] ) | Digit Recognizer |
12,762,404 | !apt-get install p7zip
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/train.tsv.7z<compute_test_metric> | classifier.fit(pred_train,
class_train,
batch_size = 128,
epochs = 30,
validation_data =(pred_test, class_test)) | Digit Recognizer |
12,762,404 | def rmsle(y, y_pred):
assert len(y)== len(y_pred)
to_sum = [(math.log(y_pred[i] + 1)- math.log(y[i] + 1)) ** 2.0 for i,pred in enumerate(y_pred)]
return(sum(to_sum)*(1.0/len(y)))** 0.5
<load_from_csv> | X_test = test/255
X_test = X_test.values
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1 ).astype('float32')
pred = classifier.predict(X_test)
pred.shape | Digit Recognizer |
12,762,404 | print("Loading data...")
train = pd.read_table("train.tsv", sep="\t")
test = pd.read_csv(".. /input/mercari-price-suggestion-challenge/test_stg2.tsv.zip" , sep='\t')
print(train.shape)
print(test.shape )<categorify> | sample_submit = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv")
sample_submit.head() | Digit Recognizer |
12,762,404 | <categorify><EOS> | y_pred = pred.argmax(axis=1)
ImageID = np.arange(len(y_pred)) +1
submit = pd.DataFrame([ImageID,y_pred] ).T
submit.rename(columns = {0:'ImageId', 1:'Label'})
submit.to_csv('submission.csv', header = ['ImageId', 'Label' ], index = None ) | Digit Recognizer |
14,318,308 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering> | from logging import DEBUG
from logging import Formatter
from logging import getLogger
from logging import StreamHandler
from matplotlib import pyplot
from numpy import arange
from numpy import argmax
from numpy import asarray
from pandas import DataFrame
from pandas import read_csv
from tensorflow import random
from tensorflow.keras import initializers
from tensorflow.keras import layers
from tensorflow.keras import models
from tensorflow.keras import optimizers
from tensorflow.keras import preprocessing
from tensorflow.keras import utils
| Digit Recognizer |
14,318,308 | print("Text to seq process...")
raw_text = np.hstack([train.item_description.str.lower() , train.name.str.lower() ])
print(" Fitting tokenizer...")
tok_raw = Tokenizer()
tok_raw.fit_on_texts(raw_text)
print(" Transforming text to seq...")
train["seq_item_description"] = tok_raw.texts_to_sequences(train.item_description.str.lower())
test["seq_item_description"] = tok_raw.texts_to_sequences(test.item_description.str.lower())
train["seq_name"] = tok_raw.texts_to_sequences(train.name.str.lower())
test["seq_name"] = tok_raw.texts_to_sequences(test.name.str.lower())
train.head(3 )<define_variables> | FOLDER_PATH = '.. /input/digit-recognizer/'
FILE_NAME_TRAIN = 'train.csv'
FILE_NAME_TEST = 'test.csv'
FILE_NAME_SUBMISSION = 'submission.csv'
| Digit Recognizer |
14,318,308 | MAX_NAME_SEQ = 10
MAX_ITEM_DESC_SEQ = 75
MAX_TEXT = np.max([np.max(train.seq_name.max())
, np.max(test.seq_name.max())
, np.max(train.seq_item_description.max())
, np.max(test.seq_item_description.max())])+2
MAX_CATEGORY = np.max([train.category_name.max() , test.category_name.max() ])+1
MAX_BRAND = np.max([train.brand_name.max() , test.brand_name.max() ])+1
MAX_CONDITION = np.max([train.item_condition_id.max() , test.item_condition_id.max() ])+1<split> | def get_logger() :
fmt = '%(asctime)s'
fmt += ' - %(levelname)s'
fmt += ' - %(name)s'
fmt += ' - %(lineno)d'
fmt += ' - %(funcName)s'
fmt += ' - %(message)s'
handler = StreamHandler()
handler.setLevel(DEBUG)
handler.setFormatter(Formatter(fmt))
logger = getLogger(__name__)
logger.setLevel(DEBUG)
logger.addHandler(handler)
logger.propagate = False
return logger
def kill_logger(logger):
for h in logger.handlers:
logger.removeHandler(h)
| Digit Recognizer |
14,318,308 | dtrain, dvalid = train_test_split(train, random_state=123, train_size=0.99)
print(dtrain.shape)
print(dvalid.shape )<categorify> | def initialize() :
random.set_seed(0)
| Digit Recognizer |
14,318,308 | def get_keras_data(dataset):
X = {
'name': pad_sequences(dataset.seq_name, maxlen=MAX_NAME_SEQ)
,'item_desc': pad_sequences(dataset.seq_item_description, maxlen=MAX_ITEM_DESC_SEQ)
,'brand_name': np.array(dataset.brand_name)
,'category_name': np.array(dataset.category_name)
,'item_condition': np.array(dataset.item_condition_id)
,'num_vars': np.array(dataset[["shipping"]])
}
return X
X_train = get_keras_data(dtrain)
X_valid = get_keras_data(dvalid)
X_test = get_keras_data(test )<compute_train_metric> | def get_model() :
layer_in, layer_out = get_layers()
model = models.Model(
name='Model',
inputs=layer_in,
outputs=layer_out
)
model.compile(
loss='categorical_crossentropy',
optimizer=optimizers.Nadam(learning_rate=0.01),
metrics=['accuracy']
)
model.summary()
print()
return model
def get_layers() :
layer_in = get_input_layer('001', 28, 28, 1)
layer_out = layer_in
layer_out = get_conv_layer(layer_out, '002', 3, 3, 32)
layer_out = get_conv_layer(layer_out, '003', 3, 3, 32)
layer_out = get_pooling_layer(layer_out, '004', 2, 2)
layer_out = get_dropout_layer(layer_out, '005', 0.2)
layer_out = get_batchnormalization_layer(layer_out, '006')
layer_out = get_conv_layer(layer_out, '007', 3, 3, 32)
layer_out = get_conv_layer(layer_out, '008', 3, 3, 32)
layer_out = get_pooling_layer(layer_out, '009', 2, 2)
layer_out = get_dropout_layer(layer_out, '010', 0.2)
layer_out = get_batchnormalization_layer(layer_out, '011')
layer_out = get_flatten_layer(layer_out, '012')
layer_out = get_full_connect_layer(layer_out, '013', 400)
layer_out = get_dropout_layer(layer_out, '014', 0.5)
layer_out = get_batchnormalization_layer(layer_out, '015')
layer_out = get_output_layer(layer_out, '016', 10)
return layer_in, layer_out
| Digit Recognizer |
14,318,308 | def get_callbacks(filepath, patience=2):
es = EarlyStopping('val_loss', patience=patience, mode="min")
msave = ModelCheckpoint(filepath, save_best_only=True)
return [es, msave]
def rmsle_cust(y_true, y_pred):
first_log = K.log(K.clip(y_pred, K.epsilon() , None)+ 1.)
second_log = K.log(K.clip(y_true, K.epsilon() , None)+ 1.)
return K.sqrt(K.mean(K.square(first_log - second_log), axis=-1))
def get_model() :
dr_r = 0.1
name = Input(shape=[X_train["name"].shape[1]], name="name")
item_desc = Input(shape=[X_train["item_desc"].shape[1]], name="item_desc")
brand_name = Input(shape=[1], name="brand_name")
category_name = Input(shape=[1], name="category_name")
item_condition = Input(shape=[1], name="item_condition")
num_vars = Input(shape=[X_train["num_vars"].shape[1]], name="num_vars")
emb_name = Embedding(MAX_TEXT, 50 )(name)
emb_item_desc = Embedding(MAX_TEXT, 50 )(item_desc)
emb_brand_name = Embedding(MAX_BRAND, 10 )(brand_name)
emb_category_name = Embedding(MAX_CATEGORY, 10 )(category_name)
emb_item_condition = Embedding(MAX_CONDITION, 5 )(item_condition)
rnn_layer1 = GRU(16 )(emb_item_desc)
rnn_layer2 = GRU(8 )(emb_name)
main_l = concatenate([
Flatten()(emb_brand_name)
, Flatten()(emb_category_name)
, Flatten()(emb_item_condition)
, rnn_layer1
, rnn_layer2
, num_vars
])
main_l = Dropout(dr_r )(Dense(128 )(main_l))
main_l = Dropout(dr_r )(Dense(64 )(main_l))
output = Dense(1, activation="linear" )(main_l)
model = Model([name, item_desc, brand_name
, category_name, item_condition, num_vars], output)
model.compile(loss="mse", optimizer="adam", metrics=["mae", rmsle_cust])
return model
model = get_model()
model.summary()<train_model> | def get_input_layer(name, width, height, channel):
return layers.Input(
name=name,
shape=(width, height, channel)
)
| Digit Recognizer |
14,318,308 | BATCH_SIZE = 20000
epochs = 5
model = get_model()
model.fit(X_train, dtrain.target, epochs=epochs, batch_size=BATCH_SIZE
, validation_data=(X_valid, dvalid.target)
, verbose=1 )<compute_test_metric> | def get_conv_layer(layer, name, width, height, filters):
stddev =(1 / width / height / layer.shape[-1])** 0.5
initializer = initializers.TruncatedNormal(stddev=stddev)
return layers.Conv2D(
name=name,
filters=filters,
kernel_size=(width, height),
kernel_initializer=initializer,
activation='relu'
)(layer)
| Digit Recognizer |
14,318,308 | val_preds = model.predict(X_valid)
val_preds = np.exp(val_preds)+1
y_true = np.array(dvalid.price.values)
y_pred = val_preds[:,0]
v_rmsle = rmsle(y_true, y_pred)
print(" RMSLE error on dev test: "+str(v_rmsle))<predict_on_test> | def get_pooling_layer(layer, name, width, height):
return layers.MaxPooling2D(
name=name,
pool_size=(width, height)
)(layer)
| Digit Recognizer |
14,318,308 | preds = model.predict(X_test, batch_size=BATCH_SIZE)
preds = np.exp(preds)-1
submission = test[["test_id"]]
submission["price"] = preds<save_to_csv> | def get_dropout_layer(layer, name, rate):
return layers.Dropout(
name=name,
rate=rate
)(layer)
| Digit Recognizer |
14,318,308 | submission.to_csv("./submission.csv", index=False)
submission.price.hist()<load_from_csv> | def get_batchnormalization_layer(layer, name):
return layers.BatchNormalization(
name=name
)(layer)
| Digit Recognizer |
14,318,308 | !apt-get install p7zip
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/train.tsv.7z
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/test.tsv.7z
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/sample_submission.csv.7z
!unzip /kaggle/input/mercari-price-suggestion-challenge/sample_submission_stg2.csv.zip
!unzip /kaggle/input/mercari-price-suggestion-challenge/test_stg2.tsv.zip
<load_from_csv> | def get_flatten_layer(layer, name):
return layers.Flatten(
name=name
)(layer)
| Digit Recognizer |
14,318,308 | train_dataset = pd.read_table("train.tsv")
test_dataset = pd.read_table("test_stg2.tsv" )<split> | def get_full_connect_layer(layer, name, units):
stddev =(1 / layer.shape[-1])** 0.5
initializer = initializers.TruncatedNormal(stddev=stddev)
return layers.Dense(
name=name,
units=units,
kernel_initializer=initializer,
activation='relu'
)(layer)
| Digit Recognizer |
14,318,308 | train_dataset = train_dataset[train_dataset['price'] > 0].reset_index(drop = True)
train, validation = train_test_split(train_dataset, test_size = 0.1, random_state = 30)
test = test_dataset.copy()
print(train.shape)
print(validation.shape)
print(test.shape )<count_missing_values> | def get_output_layer(layer, name, units):
stddev =(1 / layer.shape[-1])** 0.5
initializer = initializers.TruncatedNormal(stddev=stddev)
return layers.Dense(
name=name,
units=units,
kernel_initializer=initializer,
activation='softmax'
)(layer)
| Digit Recognizer |
14,318,308 | train.isnull().sum()<count_missing_values> | def read_csv_x(file_path):
return read_csv(
file_path,
usecols=lambda col: col != 'label',
dtype=float
)
def read_csv_y(file_path):
return read_csv(
file_path,
usecols=['label'],
dtype=int
)
| Digit Recognizer |
14,318,308 | train.isnull().sum()<count_missing_values> | def transform_x_train(x_read):
x_base = x_read.values.reshape(-1, 28, 28, 1)/ 255.0
result = list(x_base.copy())
for t in [10, -10]:
result.extend(
[
preprocessing.image.apply_affine_transform(
x,
channel_axis=2,
theta=t,
fill_mode='nearest'
)for x in x_base
]
)
return asarray(result)
def transform_x_test(x_read):
return x_read.values.reshape(-1, 28, 28, 1)/ 255.0
def transform_y(y_read):
y_base = y_read.values.reshape(-1, 1)
result = list(y_base.copy())
for i in range(2):
result.extend(list(y_base))
return utils.to_categorical(asarray(result))
| Digit Recognizer |
14,318,308 | validation.isnull().sum()<count_missing_values> | def predict(model, x):
return argmax(model.predict(x, batch_size=1000), axis=1)
| Digit Recognizer |
14,318,308 | test.isnull().sum()<count_missing_values> | def write_csv(result):
df = DataFrame()
df['ImageId'] = arange(len(result)) + 1
df['Label'] = result
df.to_csv(FILE_NAME_SUBMISSION, index=False)
| Digit Recognizer |
14,318,308 | <categorify><EOS> | logger = get_logger()
logger.debug('Start')
initialize()
model = get_model()
x_read_train = read_csv_x(FOLDER_PATH + FILE_NAME_TRAIN)
y_read_train = read_csv_y(FOLDER_PATH + FILE_NAME_TRAIN)
x_read_test = read_csv_x(FOLDER_PATH + FILE_NAME_TEST)
x_train = transform_x_train(x_read_train)
y_train = transform_y(y_read_train)
x_test = transform_x_test(x_read_test)
train(model, x_train, y_train)
result = predict(model, x_test)
write_csv(result)
terminate()
logger.debug('End')
kill_logger(logger)
| Digit Recognizer |
14,403,737 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<categorify> | train = pd.read_csv(".. /input/digit-recognizer/train.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv" ) | Digit Recognizer |
14,403,737 | fill(train)
fill(validation)
fill(test )<feature_engineering> | x_train = train.drop('label',axis = 1)
y_train = train['label']
x_test = test
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.2, random_state=42)
x_train = x_train.values.reshape(-1,28,28,1)
x_val = x_val.values.reshape(-1,28,28,1)
x_test = x_test.values.reshape(-1,28,28,1 ) | Digit Recognizer |
14,403,737 | def split_category(cate):
try:
sub_cate1, sub_cate2, sub_cate3 = cate.split("/")
return sub_cate1, sub_cate2, sub_cate3
except:
return("Missing", "Missing", "Missing")
def creat_category(data):
data['sub_category1'], data['sub_category2'], data['sub_category3'] = zip(*data['category_name'].apply(lambda x: split_category(x)) )<import_modules> | aug = ImageDataGenerator(rotation_range=5, width_shift_range=0.05, height_shift_range=0.05, zoom_range = 0.05)
aug.fit(x_train ) | Digit Recognizer |
14,403,737 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import LabelBinarizer
from scipy.sparse import csr_matrix, hstack<concatenate> | model = Sequential()
model.add(Conv2D(6, 5, padding="same",
activation="relu", input_shape=[28, 28, 1]))
model.add(MaxPool2D())
model.add(BatchNormalization())
model.add(Conv2D(16, 5, padding="same", activation="relu"))
model.add(MaxPool2D())
model.add(BatchNormalization())
model.add(Conv2D(120, 5, padding="same", activation="relu"))
model.add(Flatten())
model.add(BatchNormalization())
model.add(Dense(84, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation="softmax"))
model.compile(loss='sparse_categorical_crossentropy',
optimizer="sgd", metrics=["accuracy"])
model.summary() | Digit Recognizer |
14,403,737 | merge: pd.DataFrame = pd.concat([train, validation, test])
submission: pd.DataFrame = test[['test_id']]
n_train = train.shape[0]
n_validation = validation.shape[0]
n_test = test.shape[0]<feature_engineering> | early_stop = EarlyStopping(
patience=6, restore_best_weights=True,monitor = 'val_acc')
model.fit(aug.flow(x_train, y_train,batch_size = 64),steps_per_epoch=len(x_train)/ 64, epochs=100,validation_data =(x_val,y_val),callbacks=[early_stop],use_multiprocessing = True, verbose = 0 ) | Digit Recognizer |
14,403,737 | NAME_MIN_DF = 10
MAX_FEATURES_ITEM_DESCRIPTION = 30000
def condition2vec(data):
vectorizer = LabelBinarizer(sparse_output=True)
vec = vectorizer.fit_transform(data)
return vec
def shipping2vec(data):
vectorizer = LabelBinarizer(sparse_output=True)
vec = vectorizer.fit_transform(data)
return vec
def brandname2vec(data):
vectorizer = LabelBinarizer(sparse_output=True)
vec = vectorizer.fit_transform(data)
return vec
def name2vec(data):
vectorizer = CountVectorizer(
min_df=NAME_MIN_DF,
ngram_range=(1, 2),
stop_words='english'
)
vec = vectorizer.fit_transform(data)
return vec
def description2vec(data):
vectorizer = TfidfVectorizer(
max_features=MAX_FEATURES_ITEM_DESCRIPTION,
ngram_range=(1, 2),
stop_words='english'
)
vec = vectorizer.fit_transform(data)
return vec
def category2vec(data):
vectorizer = CountVectorizer()
data_vec = []
for x in data:
category_vec = vectorizer.fit_transform(x)
data_vec.append(category_vec)
print('Convert Category ')
return hstack(data_vec)
def put_all_together(merge):
res = hstack((
name2vec(merge['name']),
condition2vec(merge['item_condition_id']),
brandname2vec(merge['brand_name']),
shipping2vec(merge['shipping']),
description2vec(merge['item_description']),
category2vec(( merge['sub_category1'], merge['sub_category2'], merge['sub_category3']))
))
return res<compute_test_metric> | y_pred = np.argmax(model.predict(x_test),axis = 1)
submission = pd.DataFrame({"imageId": np.arange(1, len(y_pred)+1),"Label":y_pred})
| Digit Recognizer |
14,403,737 | all_data = all_data.tocsr()
train_X, validation_X, test_X = all_data[:n_train], all_data[n_train:n_train + n_validation], all_data[n_train + n_validation:]<prepare_x_and_y> | submission.to_csv("lenet_sub.csv",index=False ) | Digit Recognizer |
14,542,096 | train_Y = np.log1p(train["price"])
validation_Y = np.log1p(validation["price"] )<import_modules> | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import itertools
from keras.models import Sequential, load_model
from keras.layers import Flatten, Dense, MaxPool2D, Conv2D, Dropout, BatchNormalization
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
from keras.utils.np_utils import to_categorical
import tensorflow as tf | Digit Recognizer |
14,542,096 | from sklearn.linear_model import Ridge<train_model> | train =pd.read_csv('.. /input/digit-recognizer/train.csv')
test =pd.read_csv('.. /input/digit-recognizer/test.csv' ) | Digit Recognizer |
14,542,096 | model = Ridge(
alpha=.5,
copy_X=True,
fit_intercept=True,
max_iter=100,
normalize=False,
random_state=101,
solver='auto',
tol=0.01
)
model.fit(train_X, train_Y )<compute_test_metric> | y_train = train['label']
X_train = train.drop('label', axis=1 ) | Digit Recognizer |
14,542,096 | def rmsle(y, y0):
assert len(y)== len(y0)
return np.sqrt(np.mean(np.power(np.log1p(y)-np.log1p(y0), 2)) )<predict_on_test> | train.isnull().sum() | Digit Recognizer |
14,542,096 | val_pred = model.predict(validation_X)
val_pred = np.expm1(val_pred)
print(rmsle(val_pred, validation["price"]))<predict_on_test> | train.isnull().sum() | Digit Recognizer |
14,542,096 | test_pred = model.predict(test_X)
submission['price'] = np.expm1(test_pred )<save_to_csv> | X_train = X_train / 255.0
test = test / 255.0
X_train = X_train.values.reshape(-1, 28,28,1)
test = test.values.reshape(-1, 28,28,1)
y_train = to_categorical(y_train, num_classes=10 ) | Digit Recognizer |
14,542,096 | submission.to_csv("submission.csv", index=False )<import_modules> | X_train, X_test, y_train, y_test = train_test_split(X_train, y_train)
print("X_train shape: ", X_train.shape,"
X_test shape: ", X_test.shape,
"
y_train shape: ", y_train.shape,"
y_test shape: ", y_test.shape ) | Digit Recognizer |
14,542,096 | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split<load_pretrained> | IMG_SIZE = 28
batch_size= 86
AUTOTUNE = tf.data.experimental.AUTOTUNE
num_classes = 10 | Digit Recognizer |
14,542,096 | !apt-get install p7zip
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/train.tsv.7z
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/test.tsv.7z
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/sample_submission.csv.7z<load_from_csv> | from keras.models import Sequential, load_model
from keras.layers import Flatten, Dense, MaxPool2D, Conv2D, Dropout, BatchNormalization
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import layers | Digit Recognizer |
14,542,096 | !unzip /kaggle/input/mercari-price-suggestion-challenge/sample_submission_stg2.csv.zip
!unzip /kaggle/input/mercari-price-suggestion-challenge/test_stg2.tsv.zip<load_from_csv> | def create_model(train_ds, val_ds, epochs):
model = tf.keras.Sequential([
layers.Conv2D(32,(3, 3), activation = 'relu', padding = 'same', input_shape=(28,28,1)) ,
layers.Conv2D(32,(3, 3), activation = 'relu', padding = 'same'),
layers.BatchNormalization() ,
layers.MaxPooling2D(2, 2),
layers.Dropout(0.2),
layers.Conv2D(64,(3, 3), activation = 'relu', padding = 'same'),
layers.Conv2D(64,(3, 3), activation = 'relu', padding = 'same'),
layers.BatchNormalization() ,
layers.MaxPooling2D(2, 2),
layers.Dropout(0.2),
layers.Conv2D(128,(3, 3), activation = 'relu', padding = 'same'),
layers.Conv2D(128,(3, 3), activation = 'relu', padding = 'same'),
layers.BatchNormalization() ,
layers.MaxPooling2D(2, 2),
layers.Dropout(0.2),
layers.Flatten() ,
layers.Dense(512, activation = 'relu'),
layers.BatchNormalization() ,
layers.Dropout(0.2),
layers.Dense(256, activation = 'relu'),
layers.BatchNormalization() ,
layers.Dropout(0.35),
layers.Dense(10, activation = 'softmax')
])
model.compile(optimizer='adam',
loss=tf.keras.losses.CategoricalCrossentropy() ,
metrics=['accuracy'])
print(model.summary())
return model | Digit Recognizer |
14,542,096 | train_data = pd.read_csv('train.tsv', sep='\t')
train_data.head(5 )<count_missing_values> | cnn_model = create_model(X_train, y_train, 100 ) | Digit Recognizer |
14,542,096 | train_data.isnull().sum()<split> | optimizer = RMSprop(lr = 0.001, rho = 0.9, epsilon=1e-08, decay =0.0)
cnn_model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['accuracy'] ) | Digit Recognizer |
14,542,096 | train_data = train_data[train_data['price'] > 0].reset_index(drop=True)
train_data,validation_data=train_test_split(train_data,test_size=0.1,random_state=42)
print(train_data.shape)
print(validation_data.shape )<count_missing_values> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 ) | Digit Recognizer |
14,542,096 | train_data.isnull().sum()<count_missing_values> | datagen = ImageDataGenerator(
featurewise_center=False, samplewise_center=False,
featurewise_std_normalization=False, samplewise_std_normalization=False,
zca_whitening=False, zca_epsilon=1e-06, rotation_range=0, width_shift_range=0.0,
height_shift_range=0.0, brightness_range=None, shear_range=0.0, zoom_range=0.0,
channel_shift_range=0.0, fill_mode='nearest', cval=0.0,
horizontal_flip=False, vertical_flip=False, rescale=None,
preprocessing_function=None, data_format=None, validation_split=0.0, dtype=None
)
datagen.fit(X_train ) | Digit Recognizer |
14,542,096 | validation_data.isnull().sum()<create_dataframe> | history = cnn_model.fit(datagen.flow(X_train,y_train, batch_size=batch_size),
epochs = 28, validation_data =(X_test,y_test),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
14,542,096 | train = train_data.copy()
valid = validation_data.copy()<feature_engineering> | prediction = cnn_model.predict(X_test ).argmax(axis=1)
| Digit Recognizer |
14,542,096 | def split_categories(category):
try:
sub_category1,sub_category2,sub_category3 = category.split("/")
return sub_category1,sub_category2,sub_category3
except:
return("No label","No label","No label")
def create_split_categories(data):
data['sub_category1'],data['sub_category2'],data['sub_category3']=zip(*data['category_name'].\
apply(lambda x: split_categories(x)) )<string_transform> | score = cnn_model.evaluate(X_test, y_test, verbose = 0)
print("Test Accuracy: ",score[1] ) | Digit Recognizer |
14,542,096 | <categorify><EOS> | result = cnn_model.predict(test)
result = np.argmax(result, axis=1)
result = pd.Series(result, name='Label')
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),result],axis = 1)
submission.to_csv("submission.csv",index=False ) | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.