kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
14,568,394 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<correct_missing_values> | test_df = pd.read_csv('.. /input/digit-recognizer/test.csv')
train_df = pd.read_csv('.. /input/digit-recognizer/train.csv')
print('Shape of the testing dataset:', test_df.shape)
print('Shape of the training dataset:', train_df.shape ) | Digit Recognizer |
14,568,394 | fill_missing_values(train_data)
fill_missing_values(validation_data )<load_from_csv> | train_labels = train_df['label']
train_images = train_df.drop('label', axis=1)
train_images = train_images.astype('float32')/255
test_images = test_df.astype('float32')/255
train_images = np.array(train_images ).reshape(42000,28,28,1)
test_images = np.array(test_images ).reshape(28000,28,28,1)
train_images, validation_images, train_labels, validation_labels = train_test_split(train_images, train_labels, test_size=0.1, random_state=0)
train_labels = to_categorical(train_labels)
validation_labels = to_categorical(validation_labels ) | Digit Recognizer |
14,568,394 | test_data = pd.read_csv('test_stg2.tsv',sep='\t')
test = test_data.copy()<count_missing_values> | datagen = ImageDataGenerator(rotation_range=10,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.1,
zoom_range=0.05,
horizontal_flip=False,
fill_mode='nearest')
datagen.fit(train_images ) | Digit Recognizer |
14,568,394 | test_data.isnull().sum()<string_transform> | model = models.Sequential()
model.add(layers.Conv2D(32,(3, 3), activation='relu', padding='same', input_shape=(28, 28, 1)))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D(( 2, 2)))
model.add(layers.Dropout(0.2))
model.add(layers.Conv2D(64,(3, 3), activation='relu', padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D(( 2, 2)))
model.add(layers.Dropout(0.2))
model.add(layers.Conv2D(128,(3, 3), activation='relu', padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D(( 2, 2)))
model.add(layers.Dropout(0.2))
model.add(layers.Conv2D(256,(3, 3), activation='relu', padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D(( 2, 2)))
model.add(layers.Dropout(0.2))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer=optimizers.Adam(lr=1e-3),
loss='categorical_crossentropy',
metrics=['acc'] ) | Digit Recognizer |
14,568,394 | create_split_categories(test_data)
fill_missing_values(test_data )<feature_engineering> | lr_reduction = ReduceLROnPlateau(monitor = 'val_acc', factor = 0.5, min_lr = 1e-6)
checkpoint = ModelCheckpoint('./trainedModel.hdf5',monitor = 'val_acc', mode = "max", save_best_model = True ) | Digit Recognizer |
14,568,394 | train_data['log_prices']= np.log(train_data['price']+1 )<feature_engineering> | history = model.fit(datagen.flow(train_images, train_labels, batch_size=100),
epochs=50,
validation_data=(validation_images, validation_labels),
callbacks = [lr_reduction, checkpoint] ) | Digit Recognizer |
14,568,394 | validation_data['log_prices']= np.log(validation_data['price']+1 )<load_pretrained> | pred = model.predict(test_images ) | Digit Recognizer |
14,568,394 | nltk.download('stopwords' )<string_transform> | pred = np.argmax(pred, axis=-1)
sub = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv')
sub['Label'] = pred
sub.head() | Digit Recognizer |
14,568,394 | stop = stopwords.words('english')
def remove_stop_words(x):
x = ' '.join([i for i in x.lower().split(' ')if i not in stop])
return x<feature_engineering> | sub.to_csv('submission.csv', index=False ) | Digit Recognizer |
14,568,394 | <categorify><EOS> | sub.to_csv('submission.csv', index=False ) | Digit Recognizer |
14,595,493 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering> | import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
from keras.datasets import mnist
import pandas as pd | Digit Recognizer |
14,595,493 | train_data['item_description']=text_preprocessing(train_data['item_description'])
validation_data['item_description']=text_preprocessing(validation_data['item_description'])
test_data['item_description']=text_preprocessing(test_data['item_description'])
train_data['name']=text_preprocessing(train_data['name'])
validation_data['name']=text_preprocessing(validation_data['name'])
test_data['name']=text_preprocessing(test_data['name'] )<string_transform> | train = pd.read_csv(".. /input/digit-recognizer/train.csv")
test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ) | Digit Recognizer |
14,595,493 | print(train_data['item_description'].iloc[33],len(train_data['item_description'].iloc[33].split(' ')))
print(train['item_description'].iloc[33],len(train['item_description'].iloc[33].split(' ')) )<drop_column> | X_train, X_test, y_train, y_test = train_test_split(train.iloc[:, 1:].values, train.iloc[:, 0].values, test_size=0.1 ) | Digit Recognizer |
14,595,493 | def clean_cat(cat_col):
cat_list = []
for i in tqdm(cat_col.values):
i = re.sub('[^A-Za-z0-9]+', ' ', i)
i = i.replace(' ','')
i = i.replace('&','_')
cat_list.append(i.strip())
return cat_list<concatenate> | X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1 ) | Digit Recognizer |
14,595,493 | train_data['sub_category1'] = clean_cat(train_data['sub_category1'])
validation_data['sub_category1'] = clean_cat(validation_data['sub_category1'])
test_data['sub_category1'] = clean_cat(test_data['sub_category1'])
train_data['sub_category2'] = clean_cat(train_data['sub_category2'])
validation_data['sub_category2'] = clean_cat(validation_data['sub_category2'])
test_data['sub_category2'] = clean_cat(test_data['sub_category2'])
train_data['sub_category3'] = clean_cat(train_data['sub_category3'])
validation_data['sub_category3'] = clean_cat(validation_data['sub_category3'])
test_data['sub_category3'] = clean_cat(test_data['sub_category3'] )<feature_engineering> | y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)
print('Data y origin ', y_train[0])
print('Data y one-hot encoding ',y_train[0] ) | Digit Recognizer |
14,595,493 | train_data['brand_name'] = clean_cat(train_data['brand_name'])
validation_data['brand_name'] = clean_cat(validation_data['brand_name'])
test_data['brand_name'] = clean_cat(test_data['brand_name'] )<categorify> | model = Sequential()
model.add(Conv2D(32,(3, 3), activation='sigmoid', input_shape=(28,28,1)))
model.add(Conv2D(32,(3, 3), activation='sigmoid'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(128, activation='sigmoid'))
model.add(Dense(10, activation='softmax')) | Digit Recognizer |
14,595,493 | countvectorizer=CountVectorizer().fit(train_data['sub_category1'])
bow_cat1_train=countvectorizer.transform(train_data['sub_category1'])
bow_cat1_val=countvectorizer.transform(validation_data['sub_category1'])
bow_cat1_test=countvectorizer.transform(test_data['sub_category1'])
print("Shape of sub_category1 features:")
print(bow_cat1_train.shape)
print(bow_cat1_val.shape)
print(bow_cat1_test.shape)
print("Some Features are:")
print(countvectorizer.get_feature_names() )<categorify> | model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'] ) | Digit Recognizer |
14,595,493 | countvectorizer=CountVectorizer().fit(train_data['sub_category2'])
bow_cat2_train=countvectorizer.transform(train_data['sub_category2'])
bow_cat2_val=countvectorizer.transform(validation_data['sub_category2'])
bow_cat2_test=countvectorizer.transform(test_data['sub_category2'])
print("Shape of sub_category2 features:")
print(bow_cat2_train.shape)
print(bow_cat2_val.shape)
print(bow_cat2_test.shape)
print("Some Features are: ")
print(countvectorizer.get_feature_names() [50:60] )<categorify> | datagen = ImageDataGenerator(
rotation_range= 10,
zoom_range = 0.1,
width_shift_range = 0.1,
height_shift_range = 0.1
)
datagen.fit(X_train ) | Digit Recognizer |
14,595,493 | countvectorizer=CountVectorizer().fit(train_data['sub_category3'])
bow_cat3_train=countvectorizer.transform(train_data['sub_category3'])
bow_cat3_val=countvectorizer.transform(validation_data['sub_category3'])
bow_cat3_test=countvectorizer.transform(test_data['sub_category3'])
("Shape of sub_category3 features:")
print(bow_cat3_train.shape)
print(bow_cat3_val.shape)
print(bow_cat3_test.shape)
print("Some Features are: ")
print(countvectorizer.get_feature_names() [200:210] )<categorify> | train_generator = datagen.flow(X_train, y_train, batch_size = 32)
validation_generator = datagen.flow(X_test, y_test, batch_size = 32 ) | Digit Recognizer |
14,595,493 | countvectorizer=CountVectorizer().fit(train_data['brand_name'])
bow_brand_train=countvectorizer.transform(train_data['brand_name'])
bow_brand_val=countvectorizer.transform(validation_data['brand_name'])
bow_brand_test=countvectorizer.transform(test_data['brand_name'])
("Shape of brand_name features:")
print(bow_brand_train.shape)
print(bow_brand_val.shape)
print(bow_brand_test.shape)
print("Some Features are: ")
print(countvectorizer.get_feature_names() [35:45] )<categorify> | %%time
H = model.fit_generator(train_generator,
steps_per_epoch = X_train.shape[0] // 32,
epochs=50,
validation_data = validation_generator,
validation_steps = X_test.shape[0] // 32,
verbose=1 ) | Digit Recognizer |
14,595,493 | countvectorizer=CountVectorizer(min_df=10 ).fit(train_data['name'])
bow_name_train=countvectorizer.transform(train_data['name'])
bow_name_val=countvectorizer.transform(validation_data['name'])
bow_name_test=countvectorizer.transform(test_data['name'])
print("After Vectorization of name feature: ")
print(bow_name_train.shape)
print(bow_name_val.shape)
print(bow_name_test.shape)
print("Some Features are: ")
print(countvectorizer.get_feature_names() [210:220] )<categorify> | score = model.evaluate(X_test, y_test, verbose=0)
print(score ) | Digit Recognizer |
14,595,493 | tfidfvectorizer=TfidfVectorizer(ngram_range=(1,2),min_df=10,max_features=5000 ).fit(train_data['item_description'])
tfidf_description_train=tfidfvectorizer.transform(train_data['item_description'])
tfidf_description_val=tfidfvectorizer.transform(validation_data['item_description'])
tfidf_description_test=tfidfvectorizer.transform(test_data['item_description'])
print("After Vectorization of item description feature: ")
print(tfidf_description_train.shape)
print(tfidf_description_val.shape)
print(tfidf_description_test.shape)
print("Some Features are: ")
print(tfidfvectorizer.get_feature_names() [222:234] )<categorify> | plt.imshow(X_test[0].reshape(28,28), cmap='gray')
y_predict = model.predict(X_test[0].reshape(1,28,28,1))
print('Value: ', np.argmax(y_predict)) | Digit Recognizer |
14,595,493 | features_train = csr_matrix(pd.get_dummies(train_data[['item_condition_id', 'shipping']],sparse=True ).values)
features_val = csr_matrix(pd.get_dummies(validation_data[['item_condition_id', 'shipping']],sparse=True ).values)
features_test = csr_matrix(pd.get_dummies(test_data[['item_condition_id', 'shipping']],sparse=True ).values)
print(features_train.shape)
print(features_val.shape)
print(features_test.shape )<compute_train_metric> | %%time
y_pred = model.predict(sub ) | Digit Recognizer |
14,595,493 | linearregression=LinearRegression(normalize=True)
linearregression.fit(X_train,train_data['log_prices'])
ytrain_predict=linearregression.predict(X_train)
yval_predict=linearregression.predict(X_val)
train_error=np.sqrt(mean_squared_log_error(train_data['log_prices'],ytrain_predict))
val_error=np.sqrt(mean_squared_log_error(validation_data['log_prices'],yval_predict))
print(" Linear Regression RMSLE on train is {} RMSLE on cv is {}".format(train_error,val_error))
<predict_on_test> | y_sub = np.argmax(y_pred, 1 ) | Digit Recognizer |
14,595,493 | yval_linear=linearregression.predict(X_val)
ytest_linear=linearregression.predict(X_test )<load_from_csv> | submission = pd.DataFrame({'ImageId': np.arange(1, 28001), 'Label': y_sub})
submission.to_csv("submission.csv", index = False)
print("Your submission was successfully saved!" ) | Digit Recognizer |
14,595,493 | submission_data = pd.read_csv('sample_submission_stg2.csv')
submission_data.head(5 )<feature_engineering> | model.save("my_model" ) | Digit Recognizer |
14,335,264 | submission_data.loc[:, 'price'] = np.expm1(ytest_linear )<save_to_csv> | transform = transforms.Normalize(0, 255, inplace=False)
train_df = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
submit_df = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
features_train = transform(torch.Tensor(np.reshape(train_df.iloc[:,1:].to_numpy() ,(-1,1,28,28))))
labels_train = torch.LongTensor(train_df['label'].to_numpy())
features_submit = transform(torch.Tensor(np.reshape(submit_df.to_numpy() ,(-1,28,28))))
train_len = int(features_train.shape[0]*0.6)
valid_len = int(features_train.shape[0]*0.2)
train_set = torch.utils.data.TensorDataset(features_train[:train_len],labels_train[:train_len])
valid_set = torch.utils.data.TensorDataset(features_train[train_len:(train_len+valid_len)],labels_train[train_len:(train_len+valid_len)])
test_set = torch.utils.data.TensorDataset(features_train[(train_len+valid_len):],labels_train[(train_len+valid_len):])
train_loader = DataLoader(train_set, batch_size = 50)
valid_loader = DataLoader(valid_set, batch_size = 50)
test_loader = DataLoader(test_set, batch_size = 50 ) | Digit Recognizer |
14,335,264 | submission_data.to_csv('submission.csv', index=False )<load_pretrained> | class CNN_classifier(nn.Module):
def __init__(self):
super(CNN_classifier, self ).__init__()
self.conv1 = nn.Conv2d(1, 32, 5, padding=2)
self.conv2 = nn.Conv2d(32, 32, 5, padding=2)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64*3*3, 256)
self.fc2 = nn.Linear(256, 10)
self.dropout = nn.Dropout(0.25)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.dropout(x)
x = self.pool(F.relu(self.conv2(x)))
x = self.dropout(x)
x = self.pool(F.relu(self.conv3(x)))
x = self.dropout(x)
x = x.view(-1, 64*3*3)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
model = CNN_classifier()
print(model ) | Digit Recognizer |
14,335,264 | !apt-get install p7zip
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/train.tsv.7z
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/test.tsv.7z
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/sample_submission.csv.7z<load_from_csv> | criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters() , lr=0.01)
if torch.cuda.is_available() :
model = model.cuda()
criterion = criterion.cuda() | Digit Recognizer |
14,335,264 | !unzip /kaggle/input/mercari-price-suggestion-challenge/sample_submission_stg2.csv.zip
!unzip /kaggle/input/mercari-price-suggestion-challenge/test_stg2.tsv.zip<import_modules> | n_epochs = 10
valid_plot = []
train_plot = []
valid_loss_min = np.Inf
for epoch in range(1, n_epochs+1):
train_loss = 0.0
valid_loss = 0.0
model.train()
for data, target in train_loader:
if torch.cuda.is_available() :
data = data.cuda()
target = target.cuda()
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() *data.size(0)
model.eval()
for data, target in valid_loader:
if torch.cuda.is_available() :
data = data.cuda()
target = target.cuda()
output = model(data)
loss = criterion(output, target)
valid_loss += loss.item() *data.size(0)
train_loss = train_loss/len(train_loader.sampler)
valid_loss = valid_loss/len(valid_loader.sampler)
train_plot.append(train_loss)
valid_plot.append(valid_loss)
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch, train_loss, valid_loss))
if valid_loss <= valid_loss_min:
print('Validation loss decreased({:.6f} --> {:.6f} ).Saving model...'.format(
valid_loss_min,
valid_loss))
torch.save(model.state_dict() , 'model_mnist_cnn.pt')
valid_loss_min = valid_loss | Digit Recognizer |
14,335,264 | import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge, LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import LabelBinarizer<load_from_csv> | test_loss = 0.0
correct_pred = 0
false_images = torch.empty(( 1, 28, 28))
false_preds = []
false_targets = []
model.eval()
for data, target in test_loader:
if torch.cuda.is_available() :
data = data.cuda()
target = target.cuda()
output = model(data)
loss = criterion(output, target)
test_loss += loss.item() *data.size(0)
_, pred = torch.max(output, 1)
correct_pred += torch.sum(pred == target ).item()
true_pred = pred==target
for i, value in enumerate(true_pred):
if value.item() == False:
false_images = torch.cat(( false_images, data[i]), dim=0)
false_preds.append(pred[i])
false_targets.append(target[i])
false_images = false_images[1:]
test_loss = test_loss/len(test_loader.dataset)
accuracy = correct_pred /len(test_loader.dataset)
print('Test Loss: {:.6f}
'.format(test_loss))
print('Accuracy: {:.2f}%'.format(accuracy*100))
| Digit Recognizer |
14,335,264 | train = pd.read_table('train.tsv')
test = pd.read_table('test_stg2.tsv' )<count_missing_values> | data = features_submit.view(-1,1,28,28)
if torch.cuda.is_available() :
data = data.cuda()
target = target.cuda()
output = model(data)
score, predictions = torch.topk(output, 1 ) | Digit Recognizer |
14,335,264 | <set_options><EOS> | ImageId = np.arange(1,predictions.size() [0]+1)
Label = predictions.view(predictions.size() [0] ).numpy()
new_submission = pd.DataFrame({'ImageId': ImageId, 'Label': Label})
new_submission.to_csv('my_submission.csv', index=False)
print("Your submission was successfully saved!" ) | Digit Recognizer |
14,468,122 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<data_type_conversions> | import numpy as np
import pandas as pd | Digit Recognizer |
14,468,122 | train['brand_name'] = train['brand_name'].fillna('Nobrand')
test['brand_name'] = test['brand_name'].fillna('Nobrand' )<data_type_conversions> | training_data = pd.read_csv(".. /input/digit-recognizer/train.csv")
test_images = pd.read_csv(".. /input/digit-recognizer/test.csv")
train_images = training_data.drop("label", axis=1)
train_labels = training_data["label"] | Digit Recognizer |
14,468,122 | train['category_name'] = train['category_name'].fillna('No/No/No')
test['category_name'] =test['category_name'].fillna('No/No/No' )<data_type_conversions> | train_images.to_numpy()
train_labels.to_numpy()
test_images.to_numpy() | Digit Recognizer |
14,468,122 | train['item_description'] = train['item_description'].fillna('No Description')
test['item_description'] = test['item_description'].fillna('No Description' )<string_transform> | train_images = train_images / 255.0
test_images = test_images / 255.0 | Digit Recognizer |
14,468,122 | def split_cat(category_name):
try:
return category_name.split('/')
return("done")
except:
return ['Null', 'Null', 'Null']<feature_engineering> | train_labels = to_categorical(train_labels ) | Digit Recognizer |
14,468,122 | train['cat_1'], train['cat_2'], train['cat_3'] = zip(*train['category_name'].apply(lambda x:split_cat(x)))
test['cat_1'], test['cat_2'], test['cat_3'] = zip(*test['category_name'].apply(lambda x: split_cat(x)))
<count_values> | network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
network.summary() | Digit Recognizer |
14,468,122 | ( train['shipping'].value_counts())*100/train.shape[0]<count_values> | network.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'] ) | Digit Recognizer |
14,468,122 | brands =train['brand_name'].value_counts()
print(brands[:10] )<count_unique_values> | network.fit(train_images, train_labels, epochs = 5, batch_size=128 ) | Digit Recognizer |
14,468,122 | <count_unique_values><EOS> | submit = pd.DataFrame(np.argmax(network.predict(test_images), axis=1),
columns=['Label'],
index=pd.read_csv('.. /input/digit-recognizer/sample_submission.csv')['ImageId'])
submit.index.name = 'ImageId'
submit.to_csv('submittion.csv' ) | Digit Recognizer |
14,355,205 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<count_unique_values> | import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
import itertools
import tensorflow as tf
from tensorflow import keras
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns | Digit Recognizer |
14,355,205 | print("Có %d nhãn ở cột cat_3." % train['cat_3'].nunique() )<count_values> | mnist_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
mnist_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ) | Digit Recognizer |
14,355,205 | train['name'].value_counts() [:10]<categorify> | mnist_train | Digit Recognizer |
14,355,205 | lb_item_condition_id = LabelBinarizer(sparse_output=True)
train_condition = lb_item_condition_id.fit_transform(train['item_condition_id'])
test_condition = lb_item_condition_id.transform(test['item_condition_id'] )<categorify> | x_train = mnist_train.drop(labels = "label", axis = 1)
x_train | Digit Recognizer |
14,355,205 | lb_shipping = LabelBinarizer(sparse_output=True)
train_shipping = lb_shipping.fit_transform(train['shipping'])
test_shipping = lb_shipping.transform(test['shipping'] )<categorify> | y_train = mnist_train["label"]
y_train | Digit Recognizer |
14,355,205 | lb_brand_name = LabelBinarizer(sparse_output=True)
train_brand_name= lb_brand_name.fit_transform(train['brand_name'])
test_brand_name = lb_brand_name.transform(test['brand_name'])
<feature_engineering> | x_train = x_train/255.0
mnist_test = mnist_test/255.0 | Digit Recognizer |
14,355,205 | count_vec = CountVectorizer()
train_name = count_vec.fit_transform(train['name'])
test_name = count_vec.transform(test['name'] )<categorify> | x_train = x_train.values.reshape(-1,28,28,1)
mnist_test = mnist_test.values.reshape(-1,28,28,1)
x_train.shape | Digit Recognizer |
14,355,205 | tfidf_des = TfidfVectorizer(max_features=50000, ngram_range=(1, 3), stop_words='english')
train_des = tfidf_des.fit_transform(train['item_description'])
test_des = tfidf_des.transform(test['item_description'] )<categorify> | y_train = tf.keras.utils.to_categorical(y_train, num_classes=10 ) | Digit Recognizer |
14,355,205 | lb_cat_1 = LabelBinarizer(sparse_output=True)
train_cat_1 = lb_cat_1.fit_transform(train['cat_1'])
test_cat_1 = lb_cat_1.transform(test['cat_1'])
lb_cat_2 = LabelBinarizer(sparse_output=True)
train_cat_2 = lb_cat_2.fit_transform(train['cat_2'])
test_cat_2 = lb_cat_2.transform(test['cat_2'])
lb_cat_3 = LabelBinarizer(sparse_output=True)
train_cat_3 = lb_cat_3.fit_transform(train['cat_3'])
test_cat_3 = lb_cat_3.transform(test['cat_3'] )<import_modules> | datagen = ImageDataGenerator(rotation_range=12, zoom_range = 0.15, width_shift_range=0.15, height_shift_range=0.13)
datagen.fit(x_train)
datagen.fit(x_test ) | Digit Recognizer |
14,355,205 | from scipy.sparse import hstack
import gc<define_variables> | x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size = 0.15)
print(x_train.shape)
print(x_val.shape ) | Digit Recognizer |
14,355,205 | sparse_matrix_list =(train_name, train_des, train_brand_name, train_condition,
train_shipping, train_cat_1, train_cat_2, train_cat_3 )<compute_test_metric> | input_layer = tf.keras.layers.Input(shape =(28, 28, 1))
hidden_layer_1 = tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation=tf.keras.activations.relu )(input_layer)
norm_1 = tf.keras.layers.BatchNormalization()(hidden_layer_1)
max_1 = tf.keras.layers.MaxPooling2D(pool_size=(3,3), strides=(2,2))(norm_1)
dropout_layer_1 = tf.keras.layers.Dropout(0.25 )(max_1)
flatten_layer = tf.keras.layers.Flatten()(dropout_layer_1)
hidden_layer_3 = tf.keras.layers.Dense(256, activation=tf.keras.activations.relu )(flatten_layer)
hidden_layer_4 = tf.keras.layers.Dense(128, activation=tf.keras.activations.relu )(hidden_layer_3)
dropout_layer_3 = tf.keras.layers.Dropout(0.5 )(hidden_layer_4)
output_layer = tf.keras.layers.Dense(10, activation=tf.keras.activations.sigmoid )(dropout_layer_3 ) | Digit Recognizer |
14,355,205 | def rmsle(y, y_preds):
assert len(y)== len(y_preds)
return np.sqrt(np.mean(np.power(np.log1p(y)-np.log1p(y_preds), 2)) )<split> | model = tf.keras.Model(inputs = input_layer, outputs = output_layer)
model.summary() | Digit Recognizer |
14,355,205 | def run_model(model, matrix_list):
X = hstack(matrix_list ).tocsr()
X_train, x_test, Y_train, y_test = train_test_split(X, np.log1p(train['price']), test_size=0.2)
model.fit(X_train, Y_train)
preds = model.predict(x_test)
del X, X_train, x_test, Y_train
gc.collect()
return preds, y_test<choose_model_class> | model.compile(optimizer = tf.keras.optimizers.Adam() , loss = tf.keras.losses.CategoricalCrossentropy() , metrics = ['accuracy'] ) | Digit Recognizer |
14,355,205 | model = ridge = Ridge()
Ridge_preds, y_test = run_model(model, matrix_list=sparse_matrix_list)
<compute_test_metric> | his = model.fit(x_train, y_train, batch_size = 1000, epochs = 40, validation_data=(x_val, y_val)) | Digit Recognizer |
14,355,205 | print("rmsle: "+str(rmsle(np.expm1(y_test), np.expm1(Ridge_preds))))<prepare_x_and_y> | results = model.predict(mnist_test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
14,355,205 | <compute_test_metric><EOS> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("mnist_result.csv",index=False)
submission | Digit Recognizer |
11,516,406 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<prepare_x_and_y> | import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from keras import Sequential
from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split | Digit Recognizer |
11,516,406 | sparse_matrix_list =(train_name, train_des, train_brand_name, train_condition,
train_shipping, train_cat_1, train_cat_2, train_cat_3)
X_train = hstack(sparse_matrix_list ).tocsr()
X_train<prepare_x_and_y> | path = '/kaggle/input/digit-recognizer/'
data = pd.read_csv(path +'train.csv')
print(data.shape ) | Digit Recognizer |
11,516,406 | y_train = np.log1p(train['price'])
y_train<train_model> | label = tf.keras.utils.to_categorical(data['label'].values)
X = data.drop('label',axis=1 ).values
num_images = X.shape[0]
m = X.shape[1]
max_pixel = 255
img_dim = np.sqrt(m ).astype(int)
out_dim = label.shape[1]
print('Number of different labels/output dimension ' + str(out_dim))
X = X.reshape(( num_images,img_dim,img_dim,1)) / max_pixel
print('Shape of input data X ' + str(X.shape)) | Digit Recognizer |
11,516,406 | Ridge_model = Ridge()
Ridge_model.fit(X_train, y_train )<concatenate> | tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
tpu_strategy = tf.distribute.experimental.TPUStrategy(tpu ) | Digit Recognizer |
11,516,406 | sparse_matrix_list =(test_name, test_des, test_brand_name, test_condition,
test_shipping, test_cat_1, test_cat_2, test_cat_3)
X_test = hstack(sparse_matrix_list ).tocsr()<predict_on_test> | def create_model() :
my_model = Sequential()
my_model.add(Conv2D(32,
kernel_size =(3,3),
activation = 'relu',
input_shape =(img_dim,img_dim,1)))
my_model.add(Dropout(0.5))
my_model.add(MaxPooling2D(pool_size=(2, 2), strides=None, padding="valid"))
my_model.add(Conv2D(32, kernel_size =(3,3), activation = 'relu'))
my_model.add(Dropout(0.5))
my_model.add(MaxPooling2D(pool_size=(2, 2), strides=None, padding="valid"))
my_model.add(Flatten())
my_model.add(Dense(units = 500))
my_model.add(Dense(out_dim, activation = 'softmax'))
return my_model | Digit Recognizer |
11,516,406 | preds = Ridge_model.predict(X_test)
preds<prepare_output> | with tpu_strategy.scope() :
my_model = create_model()
my_model.compile(optimizer = 'adam',
loss = 'categorical_crossentropy',
metrics = ['accuracy'] ) | Digit Recognizer |
11,516,406 | preds = np.expm1(preds)
preds<load_from_csv> | X_train, X_val, y_train, y_val = train_test_split(X, label, test_size = 0.1 ) | Digit Recognizer |
11,516,406 | submission = pd.read_csv('sample_submission_stg2.csv')
submission<prepare_output> | BATCH_SIZE = 128 * tpu_strategy.num_replicas_in_sync
EPOCHS = 100
STEPS_PER_EPOCH = num_images // BATCH_SIZE | Digit Recognizer |
11,516,406 | submission.loc[:, 'price'] = preds
submission<save_to_csv> | history = my_model.fit(X_train, y_train ,
epochs = EPOCHS,
steps_per_epoch = STEPS_PER_EPOCH,
validation_data =(X_val, y_val)) | Digit Recognizer |
11,516,406 | submission.to_csv('submission.csv', index=False )<save_to_csv> | data_test = pd.read_csv(path+'test.csv' ).values
num_test = data_test.shape[0]
data_test = data_test.reshape(( num_test,img_dim,img_dim,1)) / max_pixel | Digit Recognizer |
11,516,406 | submission.to_csv('submission.csv', index=False )<import_modules> | datagen = ImageDataGenerator(rotation_range=20,
zoom_range = 0.20,
width_shift_range=0.15,
height_shift_range=0.15 ) | Digit Recognizer |
11,516,406 | import time
from scipy.sparse import csr_matrix, hstack
from sklearn.preprocessing import LabelEncoder, Normalizer
from keras.callbacks import ModelCheckpoint
from sklearn.model_selection import train_test_split
import sys
import os
import random
import numpy as np
from keras import backend as K
from nltk.corpus import stopwords
import re
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Input, Dropout, Dense, concatenate, GRU, Embedding, Flatten, Activation
from keras.optimizers import Adam
from keras.models import Model
from keras import backend as K<load_pretrained> | Train_x, Train_y = None, None
batch = 0
for x_batch, y_batch in datagen.flow(X_train, y_train,
batch_size=BATCH_SIZE, shuffle=False):
if batch == 0:
Train_x, Train_y = x_batch, y_batch
elif batch >= len(datagen.flow(X_train, y_train,
batch_size=BATCH_SIZE)) :
break
else:
Train_x = np.concatenate(( Train_x, x_batch))
Train_y = np.concatenate(( Train_y, y_batch))
batch += 1 | Digit Recognizer |
11,516,406 | !apt-get install p7zip
!p7zip -d -f -k /kaggle/input/mercari-price-suggestion-challenge/train.tsv.7z
<define_variables> | Digit Recognizer |
|
11,516,406 | NUM_BRANDS = 4500
NUM_CATEGORIES = 1250<compute_test_metric> | with tpu_strategy.scope() :
my_model_aug = create_model()
my_model_aug.compile(optimizer = 'adam',
loss = 'categorical_crossentropy',
metrics = ['accuracy'] ) | Digit Recognizer |
11,516,406 | def rmsle(y, y0):
assert len(y)== len(y0)
return np.sqrt(np.mean(np.power(np.log1p(y)- np.log1p(y0), 2)) )<load_from_csv> | history_aug = my_model_aug.fit(Train_x, Train_y,
epochs = EPOCHS,
steps_per_epoch = STEPS_PER_EPOCH,
validation_data =(X_val, y_val)) | Digit Recognizer |
11,516,406 | train_df = pd.read_table("train.tsv")
test_df = pd.read_csv(".. /input/mercari-price-suggestion-challenge/test_stg2.tsv.zip" , sep='\t')
<string_transform> | my_predictions = my_model.predict(data_test)
imageId = np.arange(len(my_predictions))
results = my_predictions.argmax(axis=1 ) | Digit Recognizer |
11,516,406 | def split_cat(text):
try:
return text.split("/")
except:
return("missing", "missing", "missing" )<categorify> | submission = pd.DataFrame(np.array([imageId + 1,results] ).transpose() , columns = ['ImageId','Label'])
submission.to_csv('submission.csv', index = False ) | Digit Recognizer |
11,516,406 | def handle_missing_inplace(dataset):
dataset['general_cat'].fillna(value='missing', inplace=True)
dataset['subcat_1'].fillna(value='missing', inplace=True)
dataset['subcat_2'].fillna(value='missing', inplace=True)
dataset['brand_name'].fillna(value='missing', inplace=True)
dataset['item_description'].fillna(value='No description yet', inplace=True )<count_values> | my_predictions_aug = my_model_aug.predict(data_test)
imageId = np.arange(len(my_predictions_aug))
results_aug = my_predictions_aug.argmax(axis=1 ) | Digit Recognizer |
11,516,406 | <data_type_conversions><EOS> | submission_aug = pd.DataFrame(np.array([imageId + 1,results_aug] ).transpose() , columns = ['ImageId','Label'])
submission_aug.to_csv('submission_aug.csv', index = False ) | Digit Recognizer |
14,259,513 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<define_variables> | import numpy as np
import pandas as pd
import os
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from torch.optim import lr_scheduler
import time
import random
import copy
import matplotlib.pyplot as plt
from typing import Union, List, Dict, Any, cast
from PIL import Image | Digit Recognizer |
14,259,513 | stopwords = {x: 1 for x in stopwords.words('english')}
non_alphanums = re.compile(u'[^A-Za-z0-9]+' )<string_transform> | def seed_torch(seed=1029):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = True
seed_torch() | Digit Recognizer |
14,259,513 | def wordCount(text):
try:
if text == 'No description yet':
return 0
else:
text = text.lower()
words = [w for w in text.split(" ")]
return len(words)
except:
return 0<string_transform> | BATCH = 32
EPOCHS = 100
LR = 0.001
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device = DEVICE | Digit Recognizer |
14,259,513 | def normalize_text(text):
return u" ".join(
[x for x in [y for y in non_alphanums.sub(' ', text ).lower().strip().split(" ")] \
if len(x)> 1 and x not in stopwords])
<data_type_conversions> | all_df = pd.read_csv("/kaggle/input/digit-recognizer/train.csv", dtype=np.float32)
test_df = pd.read_csv("/kaggle/input/digit-recognizer/test.csv", dtype=np.float32)
sample_sub = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv")
| Digit Recognizer |
14,259,513 | def normalize_dataset_text(dataset):
dataset['item_description'] = dataset['item_description'].apply(lambda x: normalize_text(x))
dataset['brand_name'] = dataset['brand_name'].apply(lambda x: normalize_text(x))<feature_engineering> | train_df, validate_df = train_test_split(all_df, train_size=0.8, test_size=0.2 ) | Digit Recognizer |
14,259,513 | def delete_unseen(dataset):
dataset.loc[~dataset['brand_name'].isin(all_brand), 'brand_name'] = 'missing'
dataset.loc[~dataset['general_cat'].isin(all_general_cat), 'general_cat'] = 'missing'
dataset.loc[~dataset['subcat_1'].isin(all_subcat_1), 'subcat_1'] = 'missing'
dataset.loc[~dataset['subcat_2'].isin(all_subcat_2), 'subcat_2'] = 'missing'<feature_engineering> | original_transforms = transforms.Compose([
transforms.ToPILImage() ,
transforms.ToTensor()
])
sub = [original_transforms]
train_transforms = transforms.Compose([
transforms.ToPILImage() ,
transforms.RandomAffine(degrees=25, translate=(0.1, 0.1), scale=(0.8, 1.2)) ,
transforms.ToTensor()
] ) | Digit Recognizer |
14,259,513 | def text_length_feature(dataset, train = True):
if train:
dataset['desc_len'] = dataset['item_description'].apply(lambda x: wordCount(x))
dataset['name_len'] = dataset['name'].apply(lambda x: wordCount(x))
dataset[['desc_len', 'name_len']] = desc_normalizer.fit_transform(dataset[['desc_len', 'name_len']])
else:
dataset['desc_len'] = dataset['item_description'].apply(lambda x: wordCount(x))
dataset['name_len'] = dataset['name'].apply(lambda x: wordCount(x))
dataset[['desc_len', 'name_len']] = desc_normalizer.transform(dataset[['desc_len', 'name_len']] )<data_type_conversions> | class GetData(Dataset):
def __init__(self, X_Train, Y_Train, Transform):
self.X = X_Train
self.transform = Transform
self.Y = Y_Train
def __len__(self):
return len(self.X)
def __getitem__(self, index):
return self.transform(self.X[index] ).contiguous() , self.Y[index] | Digit Recognizer |
14,259,513 | start_time = time.time()
print(strftime("%Y-%m-%d %H:%M:%S", gmtime()))<split> | def getSet(data_df, Transform):
data_df.head()
Y = data_df.label.values
X0 = data_df.loc[:, data_df.columns != 'label'].values/255
Y = torch.from_numpy(Y ).type(torch.LongTensor)
X = X0.reshape(( -1, 1, 28, 28))
X = torch.from_numpy(X)
return GetData(X, Y, Transform ) | Digit Recognizer |
14,259,513 | train_df, dev_df = train_test_split(train_df, random_state=200, train_size=0.70 )<prepare_x_and_y> | trainset = getSet(train_df, train_transforms)
validateset = getSet(validate_df, original_transforms)
dataloaders = { 'train': DataLoader(trainset, batch_size=BATCH, shuffle=True, num_workers=4),
'val': DataLoader(validateset, batch_size=BATCH, shuffle=True, num_workers=4)}
| Digit Recognizer |
14,259,513 | train_df = train_df.drop(train_df[(train_df.price < 1.0)].index)
train_y = np.log1p(train_df["price"])
dev_y = np.log1p(dev_df["price"] )<feature_engineering> | dataset_sizes = { 'train': len(trainset), 'val': len(validateset)}
dataset_sizes | Digit Recognizer |
14,259,513 | train_df['general_cat'], train_df['subcat_1'], train_df['subcat_2'] = \
zip(*train_df['category_name'].apply(lambda x: split_cat(x)))
train_df.drop('category_name', axis=1, inplace=True)
print('[{}] Split categories completed.'.format(time.time() - start_time))
handle_missing_inplace(train_df)
print('[{}] Handle missing completed.'.format(time.time() - start_time))
cutting(train_df)
print('[{}] Cut completed.'.format(time.time() - start_time))
to_categorical(train_df)
print('[{}] Convert categorical completed'.format(time.time() - start_time))
<categorify> | class VGG(nn.Module):
def __init__(
self,
features: nn.Module,
num_classes: int = 1000,
init_weights: bool = True
)-> None:
super(VGG, self ).__init__()
self.features = features
self.avgpool = nn.AdaptiveAvgPool2d(( 1, 1))
self.classifier = nn.Sequential(
nn.Linear(256, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self, x: torch.Tensor)-> torch.Tensor:
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def _initialize_weights(self)-> None:
for m in self.modules() :
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
cfgs: Dict[str, List[Union[str, int]]] = {
'A': [64, 'M', 128, 128, 'M', 256, 256, 256, 'M'],
'B': [16, 'M', 256, 'M'],
'firstPadding': 2
}
def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False)-> nn.Sequential:
layers: List[nn.Module] = []
in_channels = 1
in_padding = 5
i = 0
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
v = cast(int, v)
in_padding = 1
if i == 5:
in_padding = 2
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=in_padding)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
i = i + 1
return nn.Sequential(*layers)
def _vgg(arch: str, cfg: str, batch_norm: bool,num_classes: int, **kwargs: Any)-> VGG:
model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), num_classes, **kwargs)
return model
def selfDefineVgg(num_classes: int, **kwargs: Any)-> VGG:
return _vgg('vgg', 'A', True, num_classes, **kwargs)
model = selfDefineVgg(10)
model = model.to(DEVICE ) | Digit Recognizer |
14,259,513 | desc_normalizer = Normalizer()
name_normalizer = Normalizer()
text_length_feature(train_df)
print('[{}] Calculate length features'.format(time.time() - start_time))
normalize_dataset_text(train_df)
print('[{}] Normalization text'.format(time.time() - start_time))<categorify> | criterion = nn.CrossEntropyLoss()
| Digit Recognizer |
14,259,513 | all_brand = set(train_df["brand_name"].values)
all_general_cat = set(train_df["general_cat"].values)
all_subcat_1 = set(train_df["subcat_1"].values)
all_subcat_2 = set(train_df["subcat_2"].values)
le_brand = LabelEncoder()
le_general_cat = LabelEncoder()
le_subcat_1 = LabelEncoder()
le_subcat_2 = LabelEncoder()
le_brand.fit(train_df['brand_name'])
train_df['encoded_brand_name'] = le_brand.transform(train_df['brand_name'])
le_general_cat.fit(train_df['general_cat'])
train_df['encoded_general_cat'] = le_general_cat.transform(train_df['general_cat'])
le_subcat_1.fit(train_df['subcat_1'])
train_df['encoded_subcat_1'] = le_subcat_1.transform(train_df['subcat_1'])
le_subcat_2.fit(train_df['subcat_2'])
train_df['encoded_subcat_2'] = le_subcat_2.transform(train_df['subcat_2'] )<feature_engineering> | optimizer = torch.optim.Adam(model.parameters() , lr=LR, betas=(0.9, 0.999), eps=1e-9)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.7, patience=3, verbose=True ) | Digit Recognizer |
14,259,513 | print("Tokenizing item description")
tok_desc = Tokenizer()
tok_desc.fit_on_texts(train_df["item_description"].values)
print("Tokenizing name")
tok_name = Tokenizer()
tok_name.fit_on_texts(train_df["name"].values)
print("Transforming text to sequences...")
train_df['seq_item_description'] = tok_desc.texts_to_sequences(train_df["item_description"].values)
train_df['seq_name'] = tok_name.texts_to_sequences(train_df["name"].values)
<define_variables> | def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
acc = 100.* running_corrects.double() / dataset_sizes[phase]
scheduler.step(acc)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
if phase == 'train':
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
model.load_state_dict(best_model_wts)
return model | Digit Recognizer |
14,259,513 | MAX_NAME_SEQ = 15
MAX_ITEM_DESC_SEQ = 50
MAX_DESC_TEXT = len(tok_desc.word_index)+ 1
MAX_NAME_TEXT = len(tok_name.word_index)+ 1
MAX_BRAND = len(le_brand.classes_)
MAX_GENCAT = len(le_general_cat.classes_)
MAX_SUBCAT_1 = len(le_subcat_1.classes_)
MAX_SUBCAT_2 = len(le_subcat_2.classes_)
MAX_CONDITION = max(train_df.item_condition_id)+ 1<categorify> | model = train_model(model, criterion, optimizer, scheduler,
num_epochs=EPOCHS ) | Digit Recognizer |
14,259,513 | def get_rnn_data(dataset):
X = {
'name': pad_sequences(dataset.seq_name, maxlen=MAX_NAME_SEQ),
'item_desc': pad_sequences(dataset.seq_item_description, maxlen=MAX_ITEM_DESC_SEQ),
'brand_name': np.array(dataset.encoded_brand_name),
'item_condition': np.array(dataset.item_condition_id),
'num_vars': np.array(dataset[["shipping"]]),
'desc_len': np.array(dataset[["desc_len"]]),
'name_len': np.array(dataset[["name_len"]]),
'general_cat': np.array(dataset.encoded_general_cat),
'subcat_1': np.array(dataset.encoded_subcat_1),
'subcat_2': np.array(dataset.encoded_subcat_2),
}
return X<prepare_x_and_y> | y_val = validate_df.label.values
x_val = validate_df.loc[:, validate_df.columns != 'label'].values/255
x_val = x_val.reshape(( -1, 1, 28, 28))
print(x_val[0].shape)
with torch.no_grad() :
model.eval()
preds = model(torch.from_numpy(x_val ).to(DEVICE)).cpu().argmax(dim=1)
| Digit Recognizer |
14,259,513 | train_X = get_rnn_data(train_df )<define_variables> | with torch.no_grad() :
model.eval()
sample_sub['Label'] = model(torch.from_numpy(Xt ).to(DEVICE)).cpu().argmax(dim=1 ) | Digit Recognizer |
14,259,513 | <init_hyperparams><EOS> | sample_sub.to_csv("submission.csv", index=False ) | Digit Recognizer |
14,596,146 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<train_model> | test_df = pd.read_csv('.. /input/digit-recognizer/test.csv')
train_df = pd.read_csv('.. /input/digit-recognizer/train.csv')
print('Shape of the testing dataset:', test_df.shape)
print('Shape of the training dataset:', train_df.shape ) | Digit Recognizer |
14,596,146 | model = rnn_model(lr=lr_init, decay=lr_decay)
model.fit(train_X, train_y, epochs=epochs, batch_size=BATCH_SIZE, verbose=2 )<feature_engineering> | train_labels = train_df['label']
train_images = train_df.drop('label', axis=1)
train_images = train_images.astype('float32')/255
test_images = test_df.astype('float32')/255
train_images = np.array(train_images ).reshape(42000,28,28,1)
test_images = np.array(test_images ).reshape(28000,28,28,1)
train_images, validation_images, train_labels, validation_labels = train_test_split(train_images, train_labels, test_size=0.1, random_state=0)
train_labels = to_categorical(train_labels)
validation_labels = to_categorical(validation_labels ) | Digit Recognizer |
14,596,146 | dev_df['general_cat'], dev_df['subcat_1'], dev_df['subcat_2'] = \
zip(*dev_df['category_name'].apply(lambda x: split_cat(x)))
handle_missing_inplace(dev_df)
cutting(dev_df)
text_length_feature(dev_df)
normalize_dataset_text(dev_df)
delete_unseen(dev_df)
to_categorical(dev_df )<categorify> | datagen = ImageDataGenerator(rotation_range=10,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.1,
zoom_range=0.05,
horizontal_flip=False,
fill_mode='nearest')
datagen.fit(train_images ) | Digit Recognizer |
14,596,146 | dev_df['encoded_brand_name'] = le_brand.transform(dev_df['brand_name'])
dev_df['encoded_general_cat'] = le_general_cat.transform(dev_df['general_cat'])
dev_df['encoded_subcat_1'] = le_subcat_1.transform(dev_df['subcat_1'])
dev_df['encoded_subcat_2'] = le_subcat_2.transform(dev_df['subcat_2'])
dev_df['seq_item_description'] = tok_desc.texts_to_sequences(dev_df["item_description"].values)
dev_df['seq_name'] = tok_name.texts_to_sequences(dev_df["name"].values)
dev_X = get_rnn_data(dev_df)
preds_rnn = model.predict(dev_X)
print("RNN dev RMSLE:", rmsle(np.expm1(dev_y), np.expm1(preds_rnn.flatten())) )<feature_engineering> | def createModel() :
model = models.Sequential()
model.add(layers.Conv2D(32,(3, 3), activation='relu', padding='same', input_shape=(28, 28, 1)))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D(( 2, 2)))
model.add(layers.Dropout(0.2))
model.add(layers.Conv2D(64,(3, 3), activation='relu', padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D(( 2, 2)))
model.add(layers.Dropout(0.2))
model.add(layers.Conv2D(128,(3, 3), activation='relu', padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D(( 2, 2)))
model.add(layers.Dropout(0.2))
model.add(layers.Conv2D(256,(3, 3), activation='relu', padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D(( 2, 2)))
model.add(layers.Dropout(0.2))
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.Dropout(0.2))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer=optimizers.Adam(lr=1e-3),
loss='categorical_crossentropy',
metrics=['acc'])
return model | Digit Recognizer |
14,596,146 | test_df['general_cat'], test_df['subcat_1'], test_df['subcat_2'] = \
zip(*test_df['category_name'].apply(lambda x: split_cat(x)))
test_df.drop('category_name', axis=1, inplace=True)
handle_missing_inplace(test_df)
cutting(test_df)
text_length_feature(test_df)
normalize_dataset_text(test_df)
delete_unseen(test_df)
to_categorical(test_df )<predict_on_test> | lr_reduction = ReduceLROnPlateau(monitor = 'val_acc', factor = 0.5, min_lr = 1e-6)
checkpoint = ModelCheckpoint('./trainedModel.hdf5',monitor = 'val_acc', mode = "max", save_best_model = True ) | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.