kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
6,789,424 | img_size = 768
def decode_image(filename, label=None, image_size=(img_size, img_size)) :
bits = tf.io.read_file(filename)
image = tf.image.decode_jpeg(bits, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.image.resize(image, image_size)
if label is None:
return image
else:
return image, label
def data_augment(image, label=None, seed=2020):
image = tf.image.random_flip_left_right(image, seed=seed)
image = tf.image.random_flip_up_down(image, seed=seed)
if label is None:
return image
else:
return image, label<categorify> | interp = ClassificationInterpretation.from_learner(learn)
losses,idxs = interp.top_losses()
len(data.valid_ds)==len(losses)==len(idxs ) | Digit Recognizer |
6,789,424 | train_dataset =(
tf.data.Dataset
.from_tensor_slices(( train_paths, train_labels))
.map(decode_image, num_parallel_calls=AUTO)
.map(data_augment, num_parallel_calls=AUTO)
.repeat()
.shuffle(512)
.batch(BATCH_SIZE)
.prefetch(AUTO)
)
valid_dataset =(
tf.data.Dataset
.from_tensor_slices(( valid_paths, valid_labels))
.map(decode_image, num_parallel_calls=AUTO)
.batch(BATCH_SIZE)
.cache()
.prefetch(AUTO)
)
test_dataset =(
tf.data.Dataset
.from_tensor_slices(test_paths)
.map(decode_image, num_parallel_calls=AUTO)
.batch(BATCH_SIZE)
)<init_hyperparams> | tmp_df = pd.read_csv(path+'sample_submission.csv')
tmp_df.head() | Digit Recognizer |
6,789,424 | LR_START = 0.00001
LR_MAX = 0.0001 * strategy.num_replicas_in_sync
LR_MIN = 0.00001
LR_RAMPUP_EPOCHS = 5
LR_SUSTAIN_EPOCHS = 0
LR_EXP_DECAY =.8
def lrfn(epoch):
if epoch < LR_RAMPUP_EPOCHS:
lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START
elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS:
lr = LR_MAX
else:
lr =(LR_MAX - LR_MIN)* LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN
return lr
lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=True)
rng = [i for i in range(EPOCHS)]
y = [lrfn(x)for x in rng]
plt.plot(rng, y)
print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1]))<choose_model_class> | for i in range(28000):
img = learn.data.test_ds[i][0]
tmp_array[i,1] = int(learn.predict(img)[1] ) | Digit Recognizer |
6,789,424 | def get_model(use_model):
base_model = use_model(weights='noisy-student',
include_top=False, pooling='avg',
input_shape=(img_size, img_size, 3))
x = base_model.output
predictions = Dense(train_labels.shape[1], activation="softmax" )(x)
return Model(inputs=base_model.input, outputs=predictions)
with strategy.scope() :
model = get_model(EfficientNetB7)
model.compile(optimizer='nadam', loss='categorical_crossentropy',metrics=['categorical_accuracy'])
model.summary()<train_model> | tmp_df = pd.DataFrame(tmp_array,columns = ['ImageId','Label'])
tmp_df | Digit Recognizer |
6,789,424 | history = model.fit(
train_dataset,
steps_per_epoch=train_labels.shape[0] // BATCH_SIZE,
callbacks=[lr_callback, ModelCheckpoint(filepath='pretrained_EfficientNetB7.h5', monitor='val_loss', save_best_only=True)],
validation_data=valid_dataset, epochs=EPOCHS )<load_pretrained> | tmp_df.to_csv('submission.csv',index=False ) | Digit Recognizer |
6,789,424 | <save_to_csv><EOS> | mnist_test = pd.read_csv(".. /input/mnist-in-csv/mnist_test.csv")
mnist_train = pd.read_csv(".. /input/mnist-in-csv/mnist_train.csv" ) | Digit Recognizer |
10,425,390 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<install_modules> | import numpy as np
import sklearn as sk
import tensorflow as tf
import matplotlib.pyplot as plt
import pandas as pd
import sklearn.model_selection as ms
import sklearn.preprocessing as p
import math | Digit Recognizer |
10,425,390 | !pip install scorecardpy<import_modules> | tf.version.VERSION | Digit Recognizer |
10,425,390 | import numpy as np
import pandas as pd
from scipy.special import logit
import lightgbm as lgb
import scorecardpy as sc<load_from_csv> | mnist = pd.read_csv('.. /input/digit-recognizer/train.csv' ) | Digit Recognizer |
10,425,390 | train = pd.read_csv(".. /input/santander-customer-transaction-prediction/train.csv")
test = pd.read_csv(".. /input/santander-customer-transaction-prediction/test.csv")
train = train.drop('ID_code', axis = 1)
train.head()<drop_column> | height = 28
width = 28
channels = 1 | Digit Recognizer |
10,425,390 | test_id = test.ID_code
test = test.drop('ID_code', axis = 1)
test.head()<count_missing_values> | n_outputs = 10 | Digit Recognizer |
10,425,390 | print(f"The number of missing values in the training set is: {np.sum(np.sum(pd.isnull(train)))}")
print(f"The number of missing values in the test set is: {np.sum(np.sum(pd.isnull(test)))}" )<sort_values> | mnist.loc[:3].apply(show_digit_and_print_label, axis=1)
| Digit Recognizer |
10,425,390 | correlations = train.drop("target", axis = 1 ).corr().abs().unstack().sort_values(kind = "quicksort" ).reset_index()
correlations = correlations[correlations['level_0'] != correlations['level_1']]
correlations.head(10 )<compute_test_metric> | X_data = mnist.drop(columns='label')
y_data = mnist['label'] | Digit Recognizer |
10,425,390 | variables = train.drop("target", axis = 1 ).columns.values.tolist()
corr_pre_res = np.zeros(len(variables))
i = 0
for var in variables:
corr_pre_res[i] = np.corrcoef(train[var], train["target"])[0, 1]
i += 1<create_dataframe> | y_data = tf.keras.utils.to_categorical(y_data, num_classes = n_outputs)
y_data.shape | Digit Recognizer |
10,425,390 | corr_pre_res = abs(pd.DataFrame(corr_pre_res))
corr_pre_res.columns = ['corr_pre_res']
corr_pre_res.sort_values(by = 'corr_pre_res' )<groupby> | X_train, X_val, y_train, y_val = ms.train_test_split(X_data, y_data, test_size=0.15 ) | Digit Recognizer |
10,425,390 | features = [x for x in train.columns if x.startswith("var")]
hist_df = pd.DataFrame()
for var in features:
var_stats = train[var].append(test[var] ).value_counts()
hist_df[var] = pd.Series(test[var] ).map(var_stats)
hist_df[var] = hist_df[var] > 1
ind = hist_df.sum(axis = 1)!= 200
var_stats = {var: train[var].append(test[ind][var] ).value_counts() for var in features}
pred = 0
for var in features:
model = lgb.LGBMClassifier(**{'learning_rate': 0.05,
'max_bin': 165,
'max_depth': 5,
'min_child_samples': 150,
'min_child_weight': 0.1,
'min_split_gain': 0.0018,
'n_estimators': 41,
'num_leaves': 6,
'reg_alpha': 2.0,
'reg_lambda': 2.54,
'objective': 'binary',
'n_jobs': -1})
model = model.fit(np.hstack([train[var].values.reshape(-1, 1),
train[var].map(var_stats[var] ).values.reshape(-1, 1)]), train["target"].values)
pred += logit(model.predict_proba(np.hstack([test[var].values.reshape(-1, 1),
test[var].map(var_stats[var] ).values.reshape(-1, 1)])) [:, 1])
pd.DataFrame({"ID_code": test_id, "target": pred} ).to_csv("submission.csv", index = False )<define_variables> | scaler = p.StandardScaler()
X_train = scaler.fit_transform(X_train)
X_train = X_train.reshape(-1, height, width, channels)
X_val = scaler.transform(X_val)
X_val = X_val.reshape(-1, height, width, channels ) | Digit Recognizer |
10,425,390 | input_path = '/kaggle/input/severstal-steel-defect-detection/'
base = '/kaggle/input/severstal-inference-base'
requirements_dir = base + '/requirements/'<install_modules> | batch_size = 250 | Digit Recognizer |
10,425,390 | !pip -q config set global.disable-pip-version-check true
!pip -q install {requirements_dir}Keras_Applications-1.0.8-py3-none-any.whl
!pip -q install {requirements_dir}efficientnet-1.1.1-py3-none-any.whl<set_options> | train_data_gen = image_gen.flow(X_train, y=y_train, batch_size=batch_size ) | Digit Recognizer |
10,425,390 | !cp -r {base}/tpu_segmentation./
!cp -r {base}/*.py./
!rm -r tpu_segmentation *.py
AUTO = tf.data.experimental.AUTOTUNE
strategy = tf.distribute.get_strategy()
start_notebook = time()
print('Notebook started at: ', current_time_str())
print('Tensorflow version: ', tf.__version__ )<define_variables> | class CosineAnnealingLearningRateCallback(tf.keras.callbacks.Callback):
def __init__(self, n_epochs, n_cycles, lrate_max, n_epochs_for_saving, verbose=0):
self.epochs = n_epochs
self.cycles = n_cycles
self.lr_max = lrate_max
self.n_epochs_for_saving = n_epochs_for_saving
self.best_val_acc_per_cycle = float('-inf')
def is_save_range(self, epoch, epochs_per_cycle, n_epochs_for_saving):
epoch += 1
f, d = math.modf(epoch / epochs_per_cycle)
next_end = epochs_per_cycle *(d +(1 if f > 0 else 0))
need_to_save = epoch >(next_end - n_epochs_for_saving)
return need_to_save
def cosine_annealing(self, epoch, n_epochs, n_cycles, lrate_max):
epochs_per_cycle = math.floor(n_epochs/n_cycles)
cos_inner =(math.pi *(epoch % epochs_per_cycle)) /(epochs_per_cycle)
return lrate_max/2 *(math.cos(cos_inner)+ 1)
def on_epoch_begin(self, epoch, logs=None):
lr = self.cosine_annealing(epoch, self.epochs, self.cycles, self.lr_max)
tf.keras.backend.set_value(self.model.optimizer.lr, lr)
def on_epoch_end(self, epoch, logs={}):
epochs_per_cycle = math.floor(self.epochs / self.cycles)
if epoch % epochs_per_cycle == 0:
self.best_val_acc_per_cycle = float('-inf')
isr = self.is_save_range(epoch, epochs_per_cycle, self.n_epochs_for_saving)
last_val_acc = logs['val_accuracy']
if epoch != 0 and isr and last_val_acc > self.best_val_acc_per_cycle:
self.best_val_acc_per_cycle = last_val_acc
filename = f'snapshot_model_{epoch // epochs_per_cycle}.h5'
self.model.save(filename)
print(f'saved snapshot {filename}, epoch: {epoch}, val_accuracy: {last_val_acc:.5f}')
n_epochs = 300
n_cycles = n_epochs / 50
n_epochs_for_saving = 20
calrc = CosineAnnealingLearningRateCallback(n_epochs, n_cycles, 0.01, n_epochs_for_saving ) | Digit Recognizer |
10,425,390 | IMAGE_SIZE =(256, 1600)
target_size =(128, 800)
input_shape =(*target_size, 3)
N_CLASSES = 4<define_variables> | model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, 3, 1, padding='same', activation='relu', input_shape=(height, width, channels)))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Conv2D(32, 3, 1, padding='same', activation='relu', input_shape=(height, width, channels)))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Dropout(0.20))
model.add(tf.keras.layers.Conv2D(64, 3, 1, padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Conv2D(64, 3, 1, padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Dropout(0.20))
model.add(tf.keras.layers.Conv2D(128, 3, 1, padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Dropout(0.25))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Dropout(0.20))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
model.compile(optimizer='Adam', loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
10,425,390 | test_fnames = tf.io.gfile.glob(input_path + 'test_images/*')
test_ids = [x.split('/')[-1].split('.')[0] for x in test_fnames]
get_test_path = lambda x: input_path + 'test_images/' + x + '.jpg'<categorify> | model.fit(train_data_gen, batch_size=batch_size, epochs = n_epochs, validation_data =(X_val, y_val), callbacks=[calrc], verbose=2 ) | Digit Recognizer |
10,425,390 | def normalize_and_reshape(img, target_size):
img = tf.image.resize(img, target_size)
img = tf.cast(img, tf.float32)/ 255.0
img = tf.reshape(img, [*target_size, 3])
return img
def get_image_and_id(file_name, target_size):
img = tf.io.read_file(file_name)
img = tf.image.decode_jpeg(img, channels=3)
img = normalize_and_reshape(img, target_size)
img_id = tf.strings.split(file_name, os.path.sep)[-1]
img_id = tf.strings.split(img_id, '.')[0]
return img, img_id
def get_test_dataset(fnames, target_size, batch_size):
dataset = tf.data.Dataset.from_tensor_slices(fnames)
dataset = dataset.map(lambda file_name: get_image_and_id(file_name, target_size), num_parallel_calls=AUTO)
dataset = dataset.batch(batch_size=batch_size, drop_remainder=False)
dataset = dataset.prefetch(AUTO)
return dataset<load_pretrained> | def load_all_models(n_models):
all_models = list()
for i in range(n_models):
filename = f'snapshot_model_{str(i)}.h5'
model = tf.keras.models.load_model(filename)
all_models.append(model)
return all_models
def ensemble_predictions(models, testX):
yhats = [model.predict(testX)for model in models]
yhats = np.array(yhats)
summed = np.sum(yhats, axis=0)
result = np.argmax(summed, axis=1)
return result
def evaluate_n_models(models, n_models, testX, testy):
subset = models[:n_models]
yhat = ensemble_predictions(subset, testX)
return sk.metrics.accuracy_score(testy, yhat ) | Digit Recognizer |
10,425,390 | df = pd.read_csv(base + '/weights_meta.csv')
df1 = df[df.source == 1]
df2 = df[df.source == 2]
bin1 = df1[df1.type == 'bin']
bin1 = get_best_weights(bin1, 1)
seg1 = df1[df1.type != 'bin']
seg1 = get_best_weights(seg1, 1)
bin2 = df2[df2.type == 'bin']
seg2 = df2[df2.type != 'bin']
bin_weights = list(bin2.filename)+ list(bin1.filename)
seg_weights = list(seg2.filename)+ list(seg1.filename )<load_pretrained> | X_pred = pd.read_csv('.. /input/digit-recognizer/test.csv')
X_pred = scaler.transform(X_pred)
X_pred = X_pred.reshape(-1, height, width, channels ) | Digit Recognizer |
10,425,390 | <create_dataframe><EOS> | y_pred = pd.DataFrame()
y_pred['ImageId'] = pd.Series(range(1,X_pred.shape[0] + 1))
y_pred['Label'] = ensemble_predictions(models, X_pred)
y_pred.to_csv("submission.csv", index=False ) | Digit Recognizer |
9,149,413 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class> | Path.ls = lambda x: list(x.iterdir())
path = Path('/kaggle/input/digit-recognizer/')
def get_data(path,fn='train.csv'):
df = pd.read_csv(path/fn)
if 'label' not in df.columns:
vals = np.ones_like(df.iloc[:,0].values)*-1
df.insert(0,'label',vals)
X = df.iloc[:,1:].values
y = df.iloc[:,0].values
return X,y
class Dataset:
def __init__(self,X,y):
self.X, self.y = X,y
def __len__(self):
return len(self.X)
def __getitem__(self,idx):
return torch.tensor(self.X[idx],dtype=torch.float),torch.tensor(self.y[idx],dtype=torch.long)
def get_dls(train_ds,test_ds,bs=64):
return(DataLoader(train_ds,batch_size = bs, shuffle=True, drop_last=True),
DataLoader(test_ds, batch_size = bs*2, shuffle=False))
def init_cnn(m, uniform=False):
f = init.kaiming_uniform_ if uniform else init.kaiming_normal_
for l in m:
if isinstance(l, nn.Sequential):
f(l[0].weight, a=0.1)
if l[0].bias is not None:
l[0].bias.data.zero_()
class Lambda(nn.Module):
def __init__(self,func):
super().__init__()
self.func = func
def forward(self,x):
return self.func(x)
def flatten(x):
return x.view(x.shape[0],-1)
def mnist_resize(x):
return x.view(-1,1,28,28)
def get_model(layers,pct_sparsity=0.,use_gpu=True):
model = layers;
if use_gpu:
return model.cuda()
return model
def get_optimizer(model,lr=0.1):
return optim.SGD(model.parameters() , lr=lr, momentum=0.9)
def accuracy(preds, y):
return(torch.argmax(preds, dim=1)== y ).float().mean()
def average_metrics(dataloader,model,metrics=[],use_gpu=True):
with torch.no_grad() :
count = 0
tot_metrics = [0.for _ in metrics]
for xb,yb in dataloader:
if use_gpu:
xb, yb = xb.cuda() , yb.cuda()
bs=len(xb)
for idx, metric in enumerate(metrics):
tot_metrics[idx] += metric(model(xb),yb)* bs
count += bs
avg_metrics = list()
for metric in tot_metrics:
avg_metrics.append(metric/count)
return avg_metrics
def fit_one_cycle(epochs,sched_func,use_gpu=True):
n_epochs = 0;
for epoch in range(epochs):
n_epochs = epoch
iters = len(train_dl)
model.train() ;
for xb,yb in train_dl:
if use_gpu:
xb, yb = xb.cuda() , yb.cuda()
preds = model(xb)
loss = loss_func(preds,yb)
loss.backward()
sched_params(opt, n_epochs, epochs,sched_func)
opt.step()
opt.zero_grad()
n_epochs += 1./iters
print(f"Epoch {epoch} completed")
def sched_params(opt, n_epochs, epoch,sched_func):
for pg in opt.param_groups:
pg['lr'] = sched_func(n_epochs/epoch)
def annealer(f):
def _inner(start, end): return partial(f, start, end)
return _inner
@annealer
def sched_cos(start, end, pos): return start +(1+math.cos(math.pi*(1-pos)))*(end-start)/2
def combine_scheds(pcts, scheds):
assert sum(pcts)== 1
pcts = tensor([0]+ list(pcts))
assert torch.all(pcts>=0)
pcts = torch.cumsum(pcts,0)
def _inner(pos):
idx =(pos>=pcts ).nonzero().max()
actual_pos =(pos-pcts[idx])/(pcts[idx+1]-pcts[idx])
return scheds[idx](actual_pos)
return _inner
def normalize(x,m,s):
return(x-m)/s
def normalize_to(data, train):
mean, std = train.mean() , train.std()
return normalize(data, mean, std), normalize(train, mean, std)
def get_normalized_data() :
X_train, y_train = get_data(path, 'train.csv')
X_test, y_test = get_data(path,'test.csv')
X_test, X_train = normalize_to(X_test, X_train)
return X_train, y_train, X_test, y_test
def get_stats(x):
return f'mean :{x.mean() } , std : {x.std() }';
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_preds(model,dl):
model.eval()
preds = []
for xb,yb in dl:
xb,yb = xb.cuda() , yb.cuda()
pred= model(xb)
preds += pred.cpu().detach()
return preds | Digit Recognizer |
9,149,413 | ensemble_outputs = []
with strategy.scope() :
X = L.Input(shape=input_shape)
for i, w in enumerate(bin_weights):
base_name = w.split('-bin')[0]
model = build_classifier(base_name, n_classes = 1, input_shape=input_shape, weights = None, name_suffix='-M{}'.format(i+1))
model.load_weights('weights/' + w)
model_output = model(X)
ensemble_outputs.append(model_output)
Y = L.Average()(ensemble_outputs)
binary_ensemble = tf.keras.Model(inputs=X, outputs=Y, name='Binary_Classification_Ensemble')
binary_ensemble.compile(optimizer='adam', loss='binary_crossentropy', metrics=[])
del model, ensemble_outputs, model_output<predict_on_test> | class GeneralReLU(nn.Module):
def __init__(self, leak=None, sub=None, maxv=None):
super().__init__()
self.leak, self.sub, self.maxv = leak, sub, maxv;
def forward(self, x):
x = F.leaky_relu(x, self.leak)if self.leak is not None else F.relu(x)
if self.sub is not None: x.sub_(self.sub);
if self.maxv is not None: x.clamp_max_(self.maxv)
return x | Digit Recognizer |
9,149,413 | start_preds = time()
binary_predictions = binary_ensemble.predict(test_dataset_bin)
del binary_ensemble
K.clear_session()
gc.collect()
print('Elapsed time(binary predictions){}'.format(time_passed(start_preds)) )<choose_model_class> | def conv_layer(f_in, f_out, ks, s, p):
return nn.Sequential(nn.Conv2d(f_in, f_out, kernel_size=ks, stride=s, padding=p,bias=False),
nn.BatchNorm2d(f_out),
GeneralReLU(sub=0.5))
| Digit Recognizer |
9,149,413 | ensemble_outputs = []
with strategy.scope() :
X = L.Input(shape=input_shape)
for i, w in enumerate(seg_weights):
backbone_name = w.split('-unetpp')[0]
model = xnet(backbone_name, num_classes = 4, input_shape=input_shape, weights = None)
model._name = '{}-M{}'.format(model.name, i+1)
model.load_weights('weights/' + w)
model_output = model(X)
ensemble_outputs.append(model_output)
Y = L.Average()(ensemble_outputs)
seg_ensemble = tf.keras.Model(inputs=X, outputs=Y, name='Mask_Segmentation_Ensemble')
seg_ensemble.compile(optimizer='adam', loss='binary_crossentropy', metrics=[])
del model, ensemble_outputs, model_output
!rm -r weights<define_variables> | class ResBlock(nn.Module):
def __init__(self, nf):
super().__init__()
self.nf = nf
self.conv1 = conv_layer(nf,nf,3,1,1)
self.conv2 = conv_layer(nf,nf,3,1,1)
def forward(self, X):
return X + self.conv2(self.conv1(X)) | Digit Recognizer |
9,149,413 | THRESHOLD = 0.80
masked_indexes = np.where(binary_predictions>=THRESHOLD)[0]
unmasked_indexes = np.where(binary_predictions<THRESHOLD)[0]
seg_ids = list(np.array(test_ids)[masked_indexes])
no_seg_ids = list(np.array(test_ids)[unmasked_indexes])
print(len(seg_ids), len(no_seg_ids), len(seg_ids)+ len(no_seg_ids), len(test_ids))<create_dataframe> | class DenseBlock(nn.Module):
def __init__(self, ni, nf):
super().__init__()
self.ni, self.nf = ni, nf
self.conv1 = conv_layer(ni, nf,3,1,1)
self.conv2 = conv_layer(nf, nf,3,1,1)
def forward(self, X):
return torch.cat([X,self.conv2(self.conv1(X)) ],dim=1 ) | Digit Recognizer |
9,149,413 | fnames_seg = [get_test_path(i)for i in seg_ids]
batch_size = 8
test_dataset_seg = get_test_dataset(fnames_seg, target_size=target_size, batch_size=batch_size)
num_batches = tf.data.experimental.cardinality(test_dataset_seg);
print('num of batches', num_batches.numpy() )<predict_on_test> | layers = nn.Sequential(Lambda(mnist_resize),
conv_layer(1,8,5,1,2),
nn.Dropout2d(p=0.05),
ResBlock(8),
nn.Dropout2d(p=0.05),
nn.MaxPool2d(3,2,1),
DenseBlock(8,8),
nn.Dropout2d(p=0.05),
nn.MaxPool2d(3,2,1),
DenseBlock(16,16),
nn.Dropout2d(p=0.05),
nn.AdaptiveAvgPool2d(1),
Lambda(flatten),
nn.Linear(32,10),
nn.BatchNorm1d(10)
) | Digit Recognizer |
9,149,413 | n_batches = 1
sample_preds = seg_ensemble.predict(test_dataset_seg.take(n_batches))
examples = retrieve_examples(test_dataset_seg, batch_size*n_batches)
idx = -1
mask_rgb = [(230, 184, 0),(0, 128, 0),(102, 0, 204),(204, 0, 102)]<predict_on_test> | X_train, y_train, X_test, y_test = get_normalized_data()
train_dl, valid_dl = get_dls(Dataset(X_train,y_train), Dataset(X_test,y_test))
model = get_model(layers=layers)
opt = get_optimizer(model)
loss_func = nn.CrossEntropyLoss()
init_cnn(model ) | Digit Recognizer |
9,149,413 | thresh_upper = [0.7,0.7,0.7,0.7]
thresh_lower = [0.4,0.5,0.4,0.5]
min_area = [180, 260, 200, 500]
empty_mask = np.zeros(target_size, int)
rles_dict = {}
for img_prefix in no_seg_ids:
for c in range(N_CLASSES):
row_name = '{}.jpg_{}'.format(img_prefix, c+1)
rles_dict[row_name] = ''
start_preds = time()
for item in test_dataset_seg:
mask_predictions = seg_ensemble.predict(item[0])
for k, p in enumerate(mask_predictions):
for ch in range(N_CLASSES):
ch_probs = p[..., ch]
ch_pred =(ch_probs > thresh_upper[ch])
if ch_pred.sum() < min_area[ch]:
ch_pred = empty_mask.copy()
else:
ch_pred =(ch_probs > thresh_lower[ch])
mask_predictions[k,:,:,ch] = ch_pred
img_ids = item[1]
ids = [l.decode('utf-8')for l in img_ids.numpy() ]
rles = [create_rles(p, IMAGE_SIZE)for p in mask_predictions]
for i in range(len(ids)) :
rle = rles[i]
img_prefix = ids[i]
for c in range(N_CLASSES):
row_name = '{}.jpg_{}'.format(img_prefix, c+1)
rles_dict[row_name] = rle[c].numpy().decode('utf-8')
print('Elapsed time(mask predictions){}'.format(time_passed(start_preds)) )<save_to_csv> | count_parameters(model ) | Digit Recognizer |
9,149,413 | df = pd.DataFrame.from_dict(rles_dict, orient='index')
df.reset_index(level=0, inplace=True)
df.columns = ['ImageId_ClassId', 'EncodedPixels']
df.to_csv('submission.csv', index=False )<load_from_csv> | one_cycle_sched= combine_scheds([0.3,0.7], [sched_cos(1e-3,1e-1), sched_cos(0.1,1e-6)])
fit_one_cycle(30,one_cycle_sched ) | Digit Recognizer |
9,149,413 | train_data=pd.read_csv('/kaggle/input/forest-cover-type-prediction/train.csv')
train_data.head()<load_from_csv> | preds = get_preds(model,valid_dl)
res = []
for t in preds:
r = t.argmax().item()
res.append(r ) | Digit Recognizer |
9,149,413 | <count_values><EOS> | submission = pd.read_csv(path/'sample_submission.csv')
submission['Label'] = res
submission.to_csv('subs.csv',index=False ) | Digit Recognizer |
8,428,136 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<import_modules> | %matplotlib inline
| Digit Recognizer |
8,428,136 | from sklearn.model_selection import train_test_split<import_modules> | class TrainDataset(Dataset):
def __init__(self, file_path, transform=None):
self.data = pd.read_csv(file_path)
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, index):
images = self.data.iloc[index, 1:].values.astype(np.uint8 ).reshape(( 28, 28, 1))
labels = self.data.iloc[index, 0]
if self.transform is not None:
images = self.transform(images)
return images, labels
transform = transforms.ToTensor()
train_data = TrainDataset('.. /input/digit-recognizer/train.csv', transform=transform)
valid_size = 0.15
num_train = len(train_data)
indices = list(range(num_train))
torch.manual_seed(0)
np.random.shuffle(indices)
split = int(np.floor(valid_size * num_train))
train_idx, valid_idx = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
batch_size = 20
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, sampler=train_sampler)
valid_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, sampler=valid_sampler)
class TestDataset(Dataset):
def __init__(self, file_path, transform=None):
self.data = pd.read_csv(file_path)
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, index):
images = self.data.iloc[index, :].values.astype(np.uint8 ).reshape(( 28, 28, 1))
if self.transform is not None:
images = self.transform(images)
return images
test_data = TestDataset('.. /input/digit-recognizer/test.csv', transform=transform)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False ) | Digit Recognizer |
8,428,136 | from sklearn.model_selection import train_test_split<prepare_x_and_y> | class Net(nn.Module):
def __init__(self):
super(Net, self ).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
hidden_1 = 1024
hidden_2 = 512
self.fc1 = nn.Linear(128*7*7, hidden_1)
self.fc2 = nn.Linear(hidden_1, hidden_2)
self.fc3 = nn.Linear(hidden_2, 10)
self.dropout = nn.Dropout(p=0.5)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 128*7*7)
x = self.dropout(x)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = F.relu(self.fc2(x))
x = self.dropout(x)
x = self.fc3(x)
return x | Digit Recognizer |
8,428,136 | X=train_data.drop(labels=['Id','Cover_Type'],axis=1)
y=train_data['Cover_Type']<split> | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net()
criterion = nn.CrossEntropyLoss()
lr = 0.001
optimizer = optim.Adam(model.parameters() , lr = lr)
model.to(device ) | Digit Recognizer |
8,428,136 | X_train,X_val,y_train,y_val=train_test_split(X,y,random_state=12 )<import_modules> | t0 = time.time()
n_epochs = 50
valid_loss_min = np.Inf
for epoch in range(n_epochs):
train_loss = 0.0
model.train()
for data, target in train_loader:
data, target = data.to(device),target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() *data.size(0)
valid_loss = 0.0
model.eval()
with torch.no_grad() :
for data, target in valid_loader:
data, target = data.to(device),target.to(device)
output = model(data)
loss = criterion(output, target)
valid_loss += loss.item() *data.size(0)
train_loss = train_loss/len(train_loader.dataset)
valid_loss = valid_loss/len(valid_loader.dataset)
print("Epoch: {}/{}.. ".format(epoch+1, n_epochs),
"Training Loss: {:.6f}.. ".format(train_loss),
"Validation Loss: {:.6f}.. ".format(valid_loss))
if valid_loss <= valid_loss_min:
print('Validation loss decreased({:.6f} --> {:.6f} ).Saving model...'.format(
valid_loss_min,
valid_loss))
torch.save(model.state_dict() , 'model.pt')
valid_loss_min = valid_loss
print('Training and validation executed in {:.1f} minutes.'.format(( time.time() - t0)/60)) | Digit Recognizer |
8,428,136 | from sklearn.ensemble import RandomForestClassifier<train_model> | model.load_state_dict(torch.load('model.pt')) | Digit Recognizer |
8,428,136 | rfc=RandomForestClassifier(n_estimators=70)
rfc.fit(X_train,y_train )<compute_test_metric> | class_correct = list(0.for i in range(10))
class_total = list(0.for i in range(10))
model.eval()
with torch.no_grad() :
for data, target in valid_loader:
data, target = data.to(device),target.to(device)
output = model(data)
_, pred = torch.max(output, dim=1)
correct = pred == target.view_as(pred)
for i in range(len(target)) :
label = target.data[i]
class_correct[label] += correct[i].item()
class_total[label] += 1
for i in range(10):
if class_total[i] > 0:
print('Validation Accuracy of %5s: %.1f%%(%2d/%2d)' %(
str(i), 100 * class_correct[i] / class_total[i],
np.sum(class_correct[i]), np.sum(class_total[i])))
else:
print('Validation Accuracy of %5s: N/A(no training examples)' %(classes[i]))
print('
Validation Accuracy(Overall): %.1f%%(%2d/%2d)' %(
100.* np.sum(class_correct)/ np.sum(class_total),
np.sum(class_correct), np.sum(class_total)) ) | Digit Recognizer |
8,428,136 | rfc.score(X_val,y_val )<predict_on_test> | test_preds = torch.LongTensor()
model.eval()
with torch.no_grad() :
for data in test_loader:
data, target = data.to(device),target.to(device)
output = model(data)
_, pred = torch.max(output, dim=1)
test_preds = torch.cat(( test_preds.cpu() , pred.cpu()), dim=0)
submission = pd.DataFrame({"ImageId":list(range(1, len(test_preds)+1)) ,
"Label":test_preds.numpy() })
submission | Digit Recognizer |
8,428,136 | predict=rfc.predict(test_data.drop(labels=['Id'],axis=1))<prepare_output> | submission.to_csv("my_submission.csv", index=False, header=True ) | Digit Recognizer |
8,428,136 | Submission=pd.DataFrame(data=predict,columns=['Cover_Type'])
Submission.head()<prepare_output> | submission = pd.read_csv("my_submission.csv")
submission | Digit Recognizer |
8,134,868 | Submission['Id']=test_data['Id']
Submission.set_index('Id',inplace=True )<save_to_csv> | root = Path('.. /input')
train_path = Path('train')
rseed = 7
val_size = 0.05 | Digit Recognizer |
8,134,868 | Submission.to_csv('Submission.csv' )<load_from_csv> | def save_imgs(path:Path, data, labels):
path.mkdir(parents=True,exist_ok=True)
for label in np.unique(labels):
(path/str(label)).mkdir(parents=True,exist_ok=True)
for i in range(len(data)) :
if(len(labels)!=0):
imageio.imsave(str(path/str(labels[i])/(str(i)+'.jpg')) , data[i])
else:
imageio.imsave(str(path/(str(i)+'.jpg')) , data[i] ) | Digit Recognizer |
8,134,868 | SEED = 1111
tf.random.set_seed(SEED)
np.random.seed(SEED)
train = pd.read_csv('.. /input/jane-street-market-prediction/train.csv')
train = train.query('date > 85' ).reset_index(drop = True)
train = train[train['weight'] != 0]
train.fillna(train.mean() ,inplace=True)
train['action'] =(( train['resp'].values)> 0 ).astype(int)
features = [c for c in train.columns if "feature" in c]
f_mean = np.mean(train[features[1:]].values,axis=0)
resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4']
X_train = train.loc[:, train.columns.str.contains('feature')]
y_train = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T
def create_mlp(
num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate
):
inp = tf.keras.layers.Input(shape=(num_columns,))
x = tf.keras.layers.BatchNormalization()(inp)
x = tf.keras.layers.Dropout(dropout_rates[0] )(x)
for i in range(len(hidden_units)) :
x = tf.keras.layers.Dense(hidden_units[i] )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.keras.activations.swish )(x)
x = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x)
x = tf.keras.layers.Dense(num_labels )(x)
out = tf.keras.layers.Activation("sigmoid" )(x)
model = tf.keras.models.Model(inputs=inp, outputs=out)
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing),
metrics=tf.keras.metrics.AUC(name="AUC"),
)
return model
batch_size = 5000
hidden_units = [150.5, 150.5, 150.5]
dropout_rates = [0.2, 0.2, 0.2, 0.2]
label_smoothing = 1e-2
learning_rate = 1e-3
clf = create_mlp(
len(features), 5, hidden_units, dropout_rates, label_smoothing, learning_rate
)
clf.fit(X_train, y_train, epochs=200, batch_size=5000)
models = []
models.append(clf)
th = 0.502
f = np.median
models = models[-3:]
env = janestreet.make_env()
for(test_df, pred_df)in tqdm(env.iter_test()):
if test_df['weight'].item() > 0:
x_tt = test_df.loc[:, features].values
if np.isnan(x_tt[:, 1:].sum()):
x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:])* f_mean
pred = np.mean([model(x_tt, training = False ).numpy() for model in models],axis=0)
pred = f(pred)
pred_df.action = np.where(pred >= th, 1, 0 ).astype(int)
else:
pred_df.action = 0
env.predict(pred_df )<define_variables> | train_csv = pd.read_csv(root/'train.csv' ) | Digit Recognizer |
8,134,868 | pca_components = 60<choose_model_class> | test_csv = pd.read_csv(root/'test.csv' ) | Digit Recognizer |
8,134,868 | e_size = 64
fc_input = pca_components
h_dims = [512,512,256,128]
dropout_rate = 0.5
epochs = 200
minibatch_size = 100000
class MarketPredictor(nn.Module):
def __init__(self):
super(MarketPredictor, self ).__init__()
self.e = nn.Embedding(2,e_size)
self.deep = nn.Sequential(
nn.Linear(fc_input,h_dims[0]),
nn.BatchNorm1d(h_dims[0]),
nn.LeakyReLU() ,
nn.Dropout(dropout_rate),
nn.Linear(h_dims[0],h_dims[1]),
nn.BatchNorm1d(h_dims[1]),
nn.LeakyReLU() ,
nn.Dropout(dropout_rate),
nn.Linear(h_dims[1],h_dims[2]),
nn.BatchNorm1d(h_dims[2]),
nn.LeakyReLU() ,
nn.Dropout(dropout_rate),
nn.Linear(h_dims[2],h_dims[3]),
nn.BatchNorm1d(h_dims[3]),
nn.LeakyReLU() ,
nn.Dropout(dropout_rate),
nn.Linear(h_dims[3],e_size),
nn.BatchNorm1d(e_size),
nn.LeakyReLU() ,
nn.Dropout(dropout_rate)
)
self.reduce = nn.utils.weight_norm(nn.Linear(e_size,1))
self.sig = nn.Sigmoid()
def forward(self,xi,xf):
e_out = self.e(xi)
f_out = self.deep(xf)
ef_out = self.reduce(e_out+f_out)
sig_out = self.sig(ef_out)
return sig_out
<load_pretrained> | data_X, data_y = train_csv.loc[:,'pixel0':'pixel783'], train_csv['label'] | Digit Recognizer |
8,134,868 | epochs = 200
path = '/kaggle/input/pytorch-nn-model/marketpredictor_state_dict_'+str(epochs)+'epochs.pt'
model = MarketPredictor()
model.load_state_dict(torch.load(path,map_location=dev))
model.to(dev)
model.eval()<load_pretrained> | train_X, val_X, train_y, val_y = train_test_split(data_X, data_y, test_size=val_size,random_state=rseed,stratify=data_y ) | Digit Recognizer |
8,134,868 | with open('/kaggle/input/pytorch-nn-model/feature_processing.pkl', 'rb')as f:
sc, pca, maxindex, fill_val = pickle.load(f )<define_variables> | def to_img_shape(data_X, data_y=[]):
data_X = np.array(data_X ).reshape(-1,28,28)
data_X = np.stack(( data_X,)*3, axis=-1)
data_y = np.array(data_y)
return data_X,data_y | Digit Recognizer |
8,134,868 | feature_names = ['feature_'+str(i)for i in range(1,130)]
exclude = np.where([maxindex[i,1] > 100 and maxindex [i,2] > 1 for i in range(129)])[0]<split> | train_X,train_y = to_img_shape(data_X, data_y ) | Digit Recognizer |
8,134,868 | env = janestreet.make_env()
iter_test = env.iter_test()<data_type_conversions> | val_X,val_y = to_img_shape(val_X,val_y ) | Digit Recognizer |
8,134,868 | for(test_df, sample_prediction_df)in iter_test:
if test_df['weight'].item() == 0:
sample_prediction_df.action = 0
else:
test_df_features = test_df[feature_names].to_numpy()
for i in exclude:
if test_df_features[0,i] == maxindex[i,0]:
test_df_features[0,i] = fill_val[i]
test_df_int_features = test_df['feature_0'].to_numpy()
nans = np.isnan(test_df_features)
for i in range(129):
if nans[0,i]:
test_df_features[0,i] = fill_val[i]
test_df_features_scaled = sc.transform(test_df_features)
test_df_features_pca=pca.transform(test_df_features_scaled)
itensor = torch.tensor(( test_df_int_features+1)//2,dtype=torch.long,device=dev)
ftensor = torch.tensor(test_df_features_pca,dtype=torch.float,device=dev)
s = model(itensor,ftensor ).item()
sample_prediction_df.action = int(np.round(s))
env.predict(sample_prediction_df)
<import_modules> | save_imgs(Path('/data/train'),train_X,train_y ) | Digit Recognizer |
8,134,868 | import numpy as np
import pandas as pd
from tensorflow.keras.callbacks import TensorBoard
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder<import_modules> | save_imgs(Path('/data/valid'),val_X,val_y ) | Digit Recognizer |
8,134,868 | from tensorflow import keras
from tensorflow.keras.layers import MaxPooling1D, Dense, LeakyReLU, Conv1D
from tensorflow.keras.layers import Flatten, Activation, BatchNormalization, Dropout
from tensorflow.keras.losses import BinaryCrossentropy
from tensorflow.keras import layers
from kerastuner.tuners import RandomSearch
from kerastuner.engine.hyperparameters import HyperParameters
import time
import pickle<import_modules> | data = ImageDataBunch.from_folder('/data/',bs=256,size=28,ds_tfms=get_transforms(do_flip=False),num_workers=0 ).normalize(imagenet_stats ) | Digit Recognizer |
8,134,868 | import tensorflow as tf<load_from_csv> | data.show_batch(3,figsize=(6,6)) | Digit Recognizer |
8,134,868 | %%time
train = pd.read_csv('.. /input/jane-street-market-prediction/train.csv')
train = train.query('date > 85' ).reset_index(drop = True)
train = train[train['weight'] != 0]
train.fillna(train.mean() ,inplace=True )<prepare_x_and_y> | learn = cnn_learner(data,models.resnet18,metrics=accuracy,path='.')
learn.lr_find()
learn.recorder.plot() | Digit Recognizer |
8,134,868 | SEED = 1111
tf.random.set_seed(SEED)
np.random.seed(SEED)
train['action'] =(( train['resp'].values)> 0 ).astype(int)
features = [c for c in train.columns if "feature" in c]
f_mean = np.mean(train[features[1:]].values,axis=0)
resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4']
X = train.loc[:, train.columns.str.contains('feature')]
Y = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T
leaky_relu_alpha =0.05
LeakyReLU(alpha=leaky_relu_alpha)
<choose_model_class> | learn.fit_one_cycle(1,1e-02 ) | Digit Recognizer |
8,134,868 | def build_model() :
model = keras.models.Sequential()
model.add(Conv1D(180, 2, input_shape=x_train.shape[1:]))
model.add(BatchNormalization())
model.add(LeakyReLU(alpha=leaky_relu_alpha))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.15))
model.add(Flatten())
model.add(Dense(180))
model.add(LeakyReLU(alpha=leaky_relu_alpha))
model.add(Dropout(0.15))
model.add(Dense(5))
model.add(Activation("sigmoid"))
model.compile(optimizer=keras.optimizers.Adam(lr=1e-3),
loss=BinaryCrossentropy(label_smoothing=0.095),
metrics=[tf.keras.metrics.AUC(name = 'auc'), "accuracy"])
return model<choose_model_class> | learn.save('s1' ) | Digit Recognizer |
8,134,868 | model = build_model()<train_model> | learn.load('s1'); | Digit Recognizer |
8,134,868 | model.fit(x=x_train,
y=Y,
epochs=10,
batch_size=1024 )<import_modules> | learn.lr_find() | Digit Recognizer |
8,134,868 | from tqdm import tqdm<feature_engineering> | learn.fit_one_cycle(10,max_lr=slice(1e-6,1e-5)) | Digit Recognizer |
8,134,868 | f = np.median
th = 0.5000
env = janestreet.make_env()
for(test_df, pred_df)in tqdm(env.iter_test()):
if test_df['weight'].item() > 0:
x_tt = test_df.loc[:, features].values
if np.isnan(x_tt[:, 1:].sum()):
x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:])* f_mean
pred = np.mean([model(x_tt.reshape(-1, x_tt.shape[1], 1), training = False ).numpy() ],axis=0)
pred = f(pred)
pred_df.action = np.where(pred >= th, 1, 0 ).astype(int)
else:
pred_df.action = 0
env.predict(pred_df )<define_variables> | interp = ClassificationInterpretation.from_learner(learn ) | Digit Recognizer |
8,134,868 | START_TIME = time.time()
<data_type_conversions> | learn1 = learn.load('s1')
sub_df = pd.DataFrame(columns=['ImageId','Label'] ) | Digit Recognizer |
8,134,868 | train = pd.read_csv('.. /input/jane-street-market-prediction/train.csv')
train = train.astype({c: np.float32 for c in train.select_dtypes(include='float64' ).columns})
train.fillna(train.median() , inplace=True)
train = train.query('weight > 0' ).reset_index(drop = True)
train['action'] =(train['resp'] > 0 ).astype('int')
features = [c for c in train.columns if 'feature' in c]
resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4']
X = train[features].values
y = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T
f_median = np.median(train[features[1:]].values, axis=0)
<prepare_x_and_y> | def get_img(data):
t1 = data.reshape(28,28)/255
t1 = np.stack([t1]*3,axis=0)
img = Image(FloatTensor(t1))
return img | Digit Recognizer |
8,134,868 | y_resps = train[resp_cols].values
y_actions = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T<choose_model_class> | from fastprogress import progress_bar | Digit Recognizer |
8,134,868 | def create_model(input_dim, output_dims, add_models=0):
input_layer_0 = Input(input_dim)
bn_0 = BatchNormalization()(input_layer_0)
outputs_layer_0 = []
for m in range(2+add_models):
x = Dropout(0.2 )(bn_0)
for i in range(m+1):
x = Dense(64 )(x)
x = BatchNormalization()(x)
x = Lambda(tf.keras.activations.swish )(x)
x = Dropout(0.1 )(x)
output = Dense(output_dims[3], activation='linear', name=f'level_0_output_{m}' )(x)
outputs_layer_0.append(output)
output_layer_0_average = Average(name='output_layer_0_average' )(outputs_layer_0)
bn_1 = BatchNormalization()(output_layer_0_average)
input_layer_1 = Concatenate()([bn_0] + [bn_1])
outputs_layer_1 = []
for m in range(2+add_models):
x = Dropout(0.2 )(input_layer_1)
for i in range(m+1):
x = Dense(64 )(x)
x = BatchNormalization()(x)
x = Lambda(tf.keras.activations.swish )(x)
x = Dropout(0.1 )(x)
output = Dense(output_dims[2], activation='sigmoid', name=f'level_1_output_{m}' )(x)
outputs_layer_1.append(output)
output_layer_1_average = Average(name='output_layer_1_average' )(outputs_layer_1)
bn_2 = BatchNormalization()(output_layer_1_average)
input_layer_2 = Concatenate()([bn_1] + [bn_2])
outputs_layer_2 = []
for m in range(2+add_models):
x = Dropout(0.2 )(input_layer_2)
for i in range(m+1):
x = Dense(64 )(x)
x = BatchNormalization()(x)
x = Lambda(tf.keras.activations.swish )(x)
x = Dropout(0.1 )(x)
output = Dense(output_dims[1], activation='linear', name=f'level_2_output_{m}' )(x)
outputs_layer_2.append(output)
output_layer_2_average = Average(name='output_layer_2_average' )(outputs_layer_2)
bn_3 = BatchNormalization()(output_layer_2_average)
input_layer_3 = Concatenate()([bn_2] + [bn_3])
outputs_layer_3 = []
for m in range(2+add_models):
x = Dropout(0.2 )(input_layer_3)
for i in range(m+1):
x = Dense(64 )(x)
x = BatchNormalization()(x)
x = Lambda(tf.keras.activations.swish )(x)
x = Dropout(0.1 )(x)
output = Dense(output_dims[1], activation='sigmoid', name=f'level_3_output_{m}' )(x)
outputs_layer_3.append(output)
output_layer_3_average = Average(name='output_layer_3_average' )(outputs_layer_3)
model = Model(inputs=input_layer_0, outputs=[output_layer_3_average, output_layer_2_average, output_layer_1_average, output_layer_0_average])
loss = {}
loss['output_layer_3_average'] = BinaryCrossentropy(label_smoothing = 0.1)
loss['output_layer_2_average'] = 'mse'
loss['output_layer_1_average'] = BinaryCrossentropy(label_smoothing = 0.1)
loss['output_layer_0_average'] = 'mse'
loss_weights={}
loss_weights['output_layer_3_average'] =.25
loss_weights['output_layer_2_average'] =.25
loss_weights['output_layer_1_average'] =.25
loss_weights['output_layer_0_average'] =.25
metrics = {}
metrics['output_layer_3_average'] = tf.keras.metrics.AUC(name = 'auc')
metrics['output_layer_2_average'] = 'mse'
metrics['output_layer_1_average'] = tf.keras.metrics.AUC(name = 'auc')
metrics['output_layer_0_average'] = 'mse'
model.compile(optimizer = Adam() , loss = loss, metrics = metrics, loss_weights=loss_weights)
return model
<prepare_x_and_y> | sub_df.to_csv('submission.csv',index=False ) | Digit Recognizer |
4,408,047 | epochs = 50
batch_size = 1024 * 4
verbose = True
objective = 'val_output_layer_3_average_auc'
objective = 'output_layer_3_average_auc'
direction = 'max'
tr =(0, 400)
te =(420, 500)
train_indices = train[(train.date >= tr[0])&(train.date < tr[1])].index
test_indices = train[(train.date >= te[0])&(train.date < te[1])].index
model = create_model(input_dim=130, output_dims=(1,1,5,5), add_models=3)
X_train, X_test = X[train_indices], X[test_indices]
y_train =(y_actions[train_indices][:,3], y_resps[train_indices][:,3], y_actions[train_indices], y_resps[train_indices])
y_test =(y_actions[test_indices][:,3], y_resps[test_indices][:,3], y_actions[test_indices], y_resps[test_indices])
rlr = ReduceLROnPlateau(monitor = objective, factor = 0.5, patience = 4, verbose = 1, min_delta = 1e-4, mode = direction)
es = EarlyStopping(objective, patience=21, restore_best_weights=True, mode=direction)
h = model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, verbose=verbose, callbacks = [es, rlr])
model.save_weights('./model.hdf5')
metrics = model.evaluate(X_test, y_test, batch_size=batch_size)
print(metrics )<train_model> | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from keras.utils import to_categorical
import os
import time
from keras.models import Sequential
from keras.layers import Dense,Conv2D,Flatten,Dropout,MaxPooling2D,BatchNormalization
from keras.callbacks import EarlyStopping
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
import seaborn as sns
from keras import optimizers
from sklearn.metrics import classification_report | Digit Recognizer |
4,408,047 | tf.keras.utils.plot_model(model, to_file=f'model.png', show_shapes=True )<predict_on_test> | path_train='.. /input/train.csv'
path_test=".. /input/test.csv"
train=pd.read_csv(path_train)
test=pd.read_csv(path_test)
X_train=train.drop("label",axis=1 ).values
Y_train=train["label"].values
X_test=test.values
X_train=X_train/X_train.max()
X_test=X_test/X_test.max() | Digit Recognizer |
4,408,047 | pred = model.predict(X_test, batch_size=batch_size, verbose=True )<split> | label=[0,1,2,3,4,5,6,7,8,9]
nc=10
Y_train_d=to_categorical(Y_train,10)
X_train_c=X_train.reshape(-1,28,28,1)
X_test_c=X_test.reshape(-1,28,28,1 ) | Digit Recognizer |
4,408,047 | env = janestreet.make_env()
iter_test = env.iter_test()<define_variables> | np.random.seed(2)
m=Sequential()
m.add(Conv2D(filters=128,kernel_size=4,padding="same",activation="relu",input_shape=(28,28,1)))
m.add(Conv2D(filters=128,kernel_size=4,padding="same",activation="relu"))
m.add(MaxPooling2D(pool_size=2,strides=2))
m.add(Dropout(0.2))
m.add(Conv2D(filters=64,kernel_size=4,padding="same",activation="relu",))
m.add(Conv2D(filters=64,kernel_size=4,padding="same",activation="relu"))
m.add(MaxPooling2D(pool_size=2,strides=2))
m.add(Dropout(0.2))
m.add(Flatten())
m.add(Dense(1024,activation="relu"))
m.add(Dropout(0.2))
m.add(Dense(512,activation="relu"))
m.add(Dropout(0.4))
m.add(Dense(256,activation="relu"))
m.add(Dropout(0.6))
m.add(Dense(128,activation="relu"))
m.add(Dense(nc,activation='softmax'))
m.summary() | Digit Recognizer |
4,408,047 | selected_models = [model]<feature_engineering> | el=EarlyStopping(monitor='val_loss',min_delta=0.001,patience=5,restore_best_weights=True)
ad=optimizers.Adam(lr=0.002,beta_1=0.9,beta_2=0.999,decay=0.004)
m.compile(loss="categorical_crossentropy",optimizer=ad,metrics=["accuracy"])
s=time.time()
h=m.fit(X_train_c,Y_train_d,batch_size=32,validation_split=0.4,epochs=50,callbacks=[el])
e=time.time()
t=e-s
print("Addestramento completato in %d minuti e %d secondi" %(t/60,t*60))
| Digit Recognizer |
4,408,047 | start = time.time()
th = 0.5
j = 0
for(test_df, pred_df)in tqdm(iter_test):
if test_df['weight'].item() > 0:
x_tt = test_df.loc[:, features].values
if np.isnan(x_tt[:, 1:].sum()):
x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:])* f_median
try:
pred = model(x_tt, training=False)[2].numpy().flatten()
pred = np.median(pred)
pred_df.action = np.where(pred >= th, 1, 0 ).astype(int)
except:
pred_df.action = 0
else:
pred_df.action = 0
env.predict(pred_df)
j +=1
total = time.time() - start
print(f'Expected time for 1M: { total * 1000000 /(j*60*60+1):.2} hours')
print(f'Iters per second: {j/total:.1f} iter/s')
print(f'Global time: {(time.time() - START_TIME)/ 60:.1f} minutes' )<load_pretrained> | acc=h.history['acc']
val_acc=h.history['val_acc']
loss=h.history['loss']
val_loss=h.history['val_loss'] | Digit Recognizer |
4,408,047 | <import_modules><EOS> | y_test=m.predict(X_test_c)
y_test = np.argmax(y_test,axis = 1)
out=pd.DataFrame({"ImageId": list(range(1,len(y_test)+1)) ,"Label": y_test})
out.to_csv("Submission_cnn.csv", index=False, header=True ) | Digit Recognizer |
5,380,372 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_from_csv> | os.listdir('.. /input/digit-recognizer')
| Digit Recognizer |
5,380,372 | train = pd.read_csv('.. /input/tabular-playground-series-feb-2021/train.csv')
test = pd.read_csv('.. /input/tabular-playground-series-feb-2021/test.csv')
sample_sub = pd.read_csv('.. /input/tabular-playground-series-feb-2021/sample_submission.csv' )<drop_column> | PATH = '.. /input/digit-recognizer'
df_train = pd.read_csv(os.path.join(PATH, 'train.csv'))
train_y = df_train['label'].values
train_x = df_train.drop(['label'], axis=1 ).values
df_test = pd.read_csv(os.path.join(PATH, 'test.csv'))
test_x = df_test.values
print(train_x.shape)
print(train_y.shape)
print(test_x.shape ) | Digit Recognizer |
5,380,372 | delete_columns = ['id']
train.drop(delete_columns, axis=1, inplace=True)
test.drop(delete_columns, axis=1, inplace=True )<define_variables> | IMG_SIZE = 32 | Digit Recognizer |
5,380,372 | categorical_features = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6','cat7', 'cat8', 'cat9']<categorify> | def resize(img_array):
tmp = np.empty(( img_array.shape[0], IMG_SIZE, IMG_SIZE))
for i in range(len(img_array)) :
img = img_array[i].reshape(28, 28 ).astype('uint8')
img = cv2.resize(img,(IMG_SIZE, IMG_SIZE))
img = img.astype('float32')/255
tmp[i] = img
return tmp
train_x_resize = resize(train_x)
test_x_resize = resize(test_x ) | Digit Recognizer |
5,380,372 | for c in train.columns:
if train[c].dtype == 'object':
lbl = LabelEncoder()
lbl.fit(list(train[c].values)+list(test[c].values))
train[c] = lbl.transform(train[c].values)
test[c] = lbl.transform(test[c].values)
display(train.head())
<prepare_x_and_y> | train_y_final = to_categorical(train_y, num_classes=10)
print(train_y_final.shape ) | Digit Recognizer |
5,380,372 | y_train = train['target']
X_train = train.drop('target', axis = 1)
X_test = test<init_hyperparams> | vgg16 = VGG16(weights = 'imagenet',
include_top = False,
input_shape=(IMG_SIZE, IMG_SIZE, 3)
)
model = Sequential()
model.add(vgg16)
model.add(Flatten())
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
model.summary() | Digit Recognizer |
5,380,372 | y_preds = []
models = []
oof_train = np.zeros(len(X_train))
cv = KFold(n_splits=5, shuffle=True, random_state=0)
params = {
'random_state':42,
'metric': 'rmse',
'n_jobs': -1,
'cat_feature': [x for x in range(len(categorical_features)) ],
'bagging_seed':42,
'feature_fraction_seed':42,
'learning_rate': 0.0011992715138089741,
'max_depth': 101,
'num_leaves': 86,
'reg_alpha': 7.504329214783163,
'reg_lambda': 1.5631184517427836,
'colsample_bytree': 0.22354989226986266,
'min_child_samples': 149,
'subsample_freq': 4,
'subsample': 0.5143496951794435,
'max_bin': 720,
'min_data_per_group': 55,
'cat_smooth': 78,
'cat_l2': 7
}
y_preds = 0
for fold_id,(train_index, valid_index)in enumerate(cv.split(X_train, y_train)) :
X_tr = X_train.loc[train_index, :]
X_val = X_train.loc[valid_index, :]
y_tr = y_train[train_index]
y_val = y_train[valid_index]
lgb_train = lgb.Dataset(X_tr, y_tr, categorical_feature=categorical_features)
lgb_eval = lgb.Dataset(X_val, y_val, reference=lgb_train, categorical_feature=categorical_features)
model = lgb.train(params, lgb_train,
valid_sets=[lgb_train, lgb_eval],
verbose_eval = 1000,
num_boost_round = 30000,
early_stopping_rounds=1000)
oof_train[valid_index] = model.predict(X_val, num_iteration=model.best_iteration)
y_pred = model.predict(X_test, num_iteration=model.best_iteration)
y_preds += y_pred/5
models.append(model )<save_to_csv> | x_train, x_test, y_train, y_test = train_test_split(train_x_final, train_y_final, test_size=0.2, random_state=2019)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
| Digit Recognizer |
5,380,372 | pd.DataFrame(oof_train ).to_csv('oof_train_kfold.csv', index=False )<create_dataframe> | es = EarlyStopping(monitor='val_acc', verbose=1, patience=5)
mc = ModelCheckpoint(filepath='mnist-vgg13.h5', verbose=1, monitor='val_acc')
cb = [es, mc] | Digit Recognizer |
5,380,372 | y_preds = pd.DataFrame(y_preds )<prepare_output> | history = model.fit(x_train, y_train,
epochs=100,
batch_size=128,
validation_data=(x_test, y_test),
callbacks=cb ) | Digit Recognizer |
5,380,372 | y_subs = y_preds<save_to_csv> | preds = model.predict(test_x_final, batch_size=128 ) | Digit Recognizer |
5,380,372 | sample_sub['target'] = y_subs
sample_sub.to_csv('submission_CV.csv', index=False )<import_modules> | results = np.argmax(preds, axis=-1)
results.shape | Digit Recognizer |
5,380,372 | <load_from_csv><EOS> | sub = pd.read_csv(os.path.join(PATH, 'sample_submission.csv'))
sub.head()
df = pd.DataFrame({'ImageId': sub['ImageId'], 'Label': results})
df.to_csv('submission.csv', index=False)
os.listdir('./' ) | Digit Recognizer |
4,143,339 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<drop_column> | %matplotlib inline
| Digit Recognizer |
4,143,339 | train_id = df_train["id"]
test_id = df_test["id"]
df_train.drop("id", axis=1, inplace=True)
df_test.drop("id", axis=1, inplace=True )<define_variables> | train_data=pd.read_csv(".. /input/train.csv")
test_data=pd.read_csv('.. /input/test.csv' ) | Digit Recognizer |
4,143,339 | cat_features = [f"cat{i}" for i in range(9 + 1)]<categorify> | y_label=train_data['label'] | Digit Recognizer |
4,143,339 | onehot_encoder = ce.one_hot.OneHotEncoder()
onehot_encoder.fit(pd.concat([df_train[cat_features], df_test[cat_features]], axis=0))
train_ohe = onehot_encoder.transform(df_train[cat_features])
test_ohe = onehot_encoder.transform(df_test[cat_features])
train_ohe.columns = [f"OHE_{col}" for col in train_ohe]
test_ohe.columns = [f"OHE_{col}" for col in test_ohe]<define_variables> | img_rows, img_cols = 28, 28
num_classes = 10 | Digit Recognizer |
4,143,339 | numerical_features = [f"cont{i}" for i in range(13 + 1)]<concatenate> | def data_prep(raw):
out_y = keras.utils.to_categorical(raw.label, num_classes)
num_images = raw.shape[0]
x_as_array = raw.values[:,1:]
x_shaped_array = x_as_array.reshape(num_images, img_rows, img_cols, 1)
out_x = x_shaped_array / 255
return out_x, out_y | Digit Recognizer |
4,143,339 | train_x = pd.concat([
df_train[numerical_features],
train_ohe
], axis=1 )<concatenate> | train_size =len(train_data ) | Digit Recognizer |
4,143,339 | test_x = pd.concat([
df_test[numerical_features],
test_ohe
], axis=1 )<prepare_x_and_y> | x,y = data_prep(train_data ) | Digit Recognizer |
4,143,339 | train_y = df_train["target"]<choose_model_class> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=20,
zoom_range = 0.18,
width_shift_range=0.15,
height_shift_range=0.15,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(x ) | Digit Recognizer |
4,143,339 | folds = KFold(n_splits=5, shuffle=True, random_state=2021 )<train_model> | X_train, X_val, Y_train, Y_val = train_test_split(x, y, test_size = 0.1, random_state=2 ) | Digit Recognizer |
4,143,339 | class FoldsAverageLGBM:
def __init__(self, folds):
self.folds = folds
self.models = []
def fit(self, lgb_params, train_x, train_y):
oof_preds = np.zeros_like(train_y)
self.train_x = train_x
self.train_y = train_y.values
for tr_idx, va_idx in tqdm(folds.split(train_x)) :
tr_x, va_x = self.train_x.iloc[tr_idx], self.train_x.iloc[va_idx]
tr_y, va_y = self.train_y[tr_idx], self.train_y[va_idx]
lgb_train_dataset = lgb.Dataset(tr_x, tr_y)
lgb_valid_dataset = lgb.Dataset(va_x, va_y)
model = lgb.train(lgb_params, lgb_train_dataset, valid_sets=[lgb_valid_dataset], verbose_eval=100)
self.models.append(model)
oof_pred = model.predict(va_x)
oof_preds[va_idx] = oof_pred
self.oof_preds = oof_preds
def predict(self, test_x):
preds = []
for model in tqdm(self.models):
pred = model.predict(test_x)
preds.append(pred)
preds = np.mean(preds, axis=0)
return preds
def get_feature_importance(self, importance_type="gain"):
feature_names = self.models[0].feature_name()
feature_importances_list = [model.feature_importance(importance_type)for model in self.models]
out_df = pd.DataFrame()
for i, name in enumerate(feature_names):
out_df[name] = [v[i] for v in feature_importances_list]
return out_df<init_hyperparams> | class myCallback(keras.callbacks.Callback):
def on_epoch_end(self,epoch,logs={}):
if(logs.get('acc')>0.997):
print("
Reached 99.7% accuracy so cancelling training")
self.model.stop_training=True | Digit Recognizer |
4,143,339 | lgb_params = {
'objective': 'regression',
'metric': 'rmse',
'verbosity': -1,
'learning_rate': 0.01,
'feature_pre_filter': False,
'lambda_l1': 6.271548464074981,
'lambda_l2': 6.442666191955093e-05,
'num_leaves': 244,
'feature_fraction': 0.4,
'bagging_fraction': 0.6165715549446614,
'bagging_freq': 6,
'min_child_samples': 100
}
lgb_params["learning_rate"] = 0.001
lgb_params["early_stopping_round"] = 1000
lgb_params["num_iterations"] = 20000<statistical_test> | model = Sequential() | Digit Recognizer |
4,143,339 | folds_average_lgbm = FoldsAverageLGBM(folds )<train_model> | model.add(Conv2D(filters = 16, kernel_size =(3,3),padding = 'Same',
activation ='relu', input_shape =(28,28,1)))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters = 32, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
model.add(Flatten())
model.add(Dense(512, activation = "relu"))
model.add(Dense(10, activation = "softmax"))
| Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.