kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
8,655,915
test = test.drop('Survived', axis = 1) test.head()<data_type_conversions>
lr=1e-03
Digit Recognizer
8,655,915
train['Cabin'] = train['Cabin'].astype('int' )<data_type_conversions>
learn.fit_one_cycle(5, slice(lr))
Digit Recognizer
8,655,915
test['Cabin'] = test['Cabin'].astype('int' )<train_model>
learn.save('stage-4' )
Digit Recognizer
8,655,915
X_train = train.drop('Survived', axis = 1) Y_train = train['Survived'] X_test = test.drop('PassengerId', axis = 1 ).copy() print("X_train shape: ", X_train.shape) print("Y_train shape: ", Y_train.shape) print("X_test shape: ", X_test.shape )<compute_train_metric>
learn.fit_one_cycle(5, slice(1e-5, lr/5))
Digit Recognizer
8,655,915
logreg = LogisticRegression() logreg.fit(X_train, Y_train) Y_pred = logreg.predict(X_test) acc_log = round(logreg.score(X_train, Y_train)* 100, 2) acc_log<compute_train_metric>
learn.fit_one_cycle(10, 1e-05, wd=0.5 )
Digit Recognizer
8,655,915
svc = SVC() svc.fit(X_train, Y_train) Y_pred = svc.predict(X_test) acc_svc = round(svc.score(X_train, Y_train)* 100, 2) acc_svc<predict_on_test>
class_score , y = learn.get_preds(DatasetType.Test )
Digit Recognizer
8,655,915
knn = KNeighborsClassifier(n_neighbors = 5) knn.fit(X_train, Y_train) Y_pred = knn.predict(X_test) acc_knn = round(knn.score(X_train, Y_train)* 100, 2) acc_knn<predict_on_test>
probabilities = class_score[0].tolist() [f"{index}: {probabilities[index]}" for index in range(len(probabilities)) ]
Digit Recognizer
8,655,915
gaussian = GaussianNB() gaussian.fit(X_train, Y_train) Y_pred = gaussian.predict(X_test) acc_gaussian = round(gaussian.score(X_train, Y_train)* 100, 2) acc_gaussian<predict_on_test>
class_score = np.argmax(class_score, axis=1 )
Digit Recognizer
8,655,915
perceptron = Perceptron() perceptron.fit(X_train, Y_train) Y_pred = perceptron.predict(X_test) acc_perceptron = round(perceptron.score(X_train, Y_train)* 100, 2) acc_perceptron<compute_train_metric>
sample_submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') sample_submission.head()
Digit Recognizer
8,655,915
linear_svc = LinearSVC() linear_svc.fit(X_train, Y_train) Y_pred = linear_svc.predict(X_test) acc_linear_svc = round(linear_svc.score(X_train, Y_train)* 100, 2) acc_linear_svc<compute_train_metric>
ImageId = [os.path.splitext(path)[0] for path in os.listdir(TEST)] ImageId = [int(path)for path in ImageId] ImageId = [ID+1 for ID in ImageId]
Digit Recognizer
8,655,915
<choose_model_class><EOS>
submission = pd.DataFrame({ "ImageId": ImageId, "Label": class_score }) submission.to_csv("submission.csv", index=False )
Digit Recognizer
8,530,185
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<predict_on_test>
train_df = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test_df = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') sample_df = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv' )
Digit Recognizer
8,530,185
random_forest = RandomForestClassifier(n_estimators = 100) random_forest.fit(X_train, Y_train) Y_pred = random_forest.predict(X_test) acc_random_forest = round(random_forest.score(X_train, Y_train)* 100, 2) acc_random_forest<choose_model_class>
class MnistDataset(Dataset): def __init__(self, df, transforms=None, train=True): self.train = train self.transforms = transforms self.X = df.loc[:, df.columns != 'label'].to_numpy(float) self.X = torch.from_numpy(self.X) if train: self.y = df.get('label' ).to_numpy() self.y = torch.from_numpy(self.y) def __len__(self): return self.X.shape[0] def __getitem__(self, i): x = self.X[i].view(1, 28, 28 ).expand(3, 28, 28) if self.transforms: x = self.transforms(x) if self.train: return x, self.y[i] return x
Digit Recognizer
8,530,185
catboost = CatBoostClassifier() catboost.fit(X_train, Y_train) Y_pred = catboost.predict(X_test) acc_catboost = round(catboost.score(X_train, Y_train)* 100, 2 )<create_dataframe>
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] )
Digit Recognizer
8,530,185
models = pd.DataFrame({'Model': ['Support Vector Machines', 'KNN', 'Logistic Regression', 'Random Forest', 'Naive Bayes', 'Perceptron', 'Stochastic Gradient Decent', 'Linear SVC', 'Decision Tree', 'CatBoost'], 'Score': [acc_svc, acc_knn, acc_log, acc_random_forest, acc_gaussian, acc_perceptron, acc_sgd, acc_linear_svc, acc_decision_tree, acc_catboost]}) models.sort_values(by = 'Score', ascending = False, ignore_index = True )<choose_model_class>
ds = MnistDataset(train_df, normalize) len(ds )
Digit Recognizer
8,530,185
classifiers = [] classifiers.append(LogisticRegression()) classifiers.append(SVC()) classifiers.append(KNeighborsClassifier(n_neighbors = 5)) classifiers.append(GaussianNB()) classifiers.append(Perceptron()) classifiers.append(LinearSVC()) classifiers.append(SGDClassifier()) classifiers.append(DecisionTreeClassifier()) classifiers.append(RandomForestClassifier()) classifiers.append(CatBoostClassifier()) len(classifiers )<compute_train_metric>
val_len = int(len(ds)*0.01) train_len = len(ds)- val_len train_ds, val_ds = random_split(ds, [train_len, val_len]) len(train_ds), len(val_ds )
Digit Recognizer
8,530,185
cv_results = [] for classifier in classifiers: cv_results.append(cross_val_score(classifier, X_train, Y_train, scoring = 'accuracy', cv = 10))<create_dataframe>
bs = 512 num_workers = 2 train_dl = DataLoader(train_ds, bs, num_workers=num_workers) val_dl = DataLoader(val_ds, bs, num_workers=num_workers )
Digit Recognizer
8,530,185
cv_res = pd.DataFrame({'Cross Validation Mean': cv_mean, 'Cross Validation Std': cv_std, 'Algorithm': ['Logistic Regression', 'Support Vector Machines', 'KNN', 'Gausian Naive Bayes', 'Perceptron', 'Linear SVC', 'Stochastic Gradient Descent', 'Decision Tree', 'Random Forest', 'CatBoost']}) cv_res.sort_values(by = 'Cross Validation Mean', ascending = False, ignore_index = True )<train_on_grid>
resnet18 = models.resnet18(pretrained=True) resnet18.fc
Digit Recognizer
8,530,185
param_grid = {'learning_rate': [0.03, 0.1], 'depth': [4, 6, 10], 'l2_leaf_reg': [1, 3, 5, 7, 9]} grid = GridSearchCV(CatBoostClassifier() , param_grid = param_grid, cv = 3, refit=True, verbose = True) grid.fit(X_train, Y_train )<train_model>
lin_in = resnet18.fc.in_features resnet18.fc = nn.Sequential( nn.Linear(lin_in, 10) )
Digit Recognizer
8,530,185
print("Best parameters: ", grid.best_params_) print("Best estimator: ", grid.best_estimator_ )<predict_on_test>
device = torch.device('cuda:0')if torch.cuda.is_available() else 'cpu' net = net.to(device) device
Digit Recognizer
8,530,185
catboost = CatBoostClassifier(depth=10, l2_leaf_reg=5, learning_rate=0.1) catboost.fit(X_train, Y_train) Y_pred = catboost.predict(X_test) acc_catboost = round(catboost.score(X_train, Y_train)* 100, 2 )<compute_train_metric>
epochs = 10 loss_fn = nn.CrossEntropyLoss() o = optim.Adam(net.parameters() ,lr=0.001 )
Digit Recognizer
8,530,185
cross_val_score(catboost, X_train, Y_train, scoring = 'accuracy', cv = 10 ).mean()<create_dataframe>
bs = 640 test_ds = MnistDataset(test_df, normalize, train = False) test_dl = DataLoader(test_ds, bs )
Digit Recognizer
8,530,185
output = pd.DataFrame({'PassengerId': test['PassengerId'], 'Survived': Y_pred} )<save_to_csv>
outputs = [] with torch.no_grad() : for images in test_dl: images = images.to(device, dtype=torch.float) out = net(images) outputs.extend(out.argmax(dim=1 ).tolist() )
Digit Recognizer
8,530,185
<train_model><EOS>
sample_df['Label'] = outputs sample_df.to_csv('submission.csv', index=False )
Digit Recognizer
6,956,162
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<set_options>
warnings.filterwarnings('ignore') %matplotlib inline mpl.style.use('ggplot') sns.set_style('white') pylab.rcParams[ 'figure.figsize' ] = 8 , 6
Digit Recognizer
6,956,162
pd.set_option('max_columns', 90) PALETTE = [' BACKCOLOR = ' sns.set_palette(PALETTE) warnings.filterwarnings('ignore') mpl.rcParams['figure.dpi'] = 120 mpl.rcParams['axes.spines.top'] = False mpl.rcParams['axes.spines.right'] = False<load_from_csv>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
6,956,162
train = pd.read_csv('.. /input/titanic/train.csv') test = pd.read_csv('.. /input/titanic/test.csv') all_data = pd.concat(( train, test)).reset_index(drop=True )<categorify>
df = train.copy()
Digit Recognizer
6,956,162
def multi_table(table_list): return HTML( f"<table><tr> {''.join(['<td>' + table._repr_html_() + '</td>' for table in table_list])} </tr></table>" )<count_values>
y = df.label.values.astype('int32') df = df[df.columns[1:]].values.astype('float32') X_train , X_test , y_train , y_test = train_test_split(df , y , test_size = 0.2 , random_state = 100 )
Digit Recognizer
6,956,162
multi_table([pd.DataFrame(all_data[i].value_counts())for i in all_data.columns] )<define_variables>
test = test.values.astype('float32' )
Digit Recognizer
6,956,162
numerical_vars = ['Age', 'SibSp', 'Parch', 'Fare'] ordinal_vars = ['Pclass'] nominal_vars = ['Survived', 'Name', 'Sex', 'Ticket', 'Cabin', 'Embarked']<create_dataframe>
new = pd.read_csv('.. /input/digit-recognizer/train.csv' )
Digit Recognizer
6,956,162
train0 = train[train.Survived == 0] train1 = train[train.Survived == 1] cnt = 0 detail_desc = [] for c in train.columns: if c == 'PassengerId': continue if train[c].dtypes != 'object': desc = pd.DataFrame(columns=['feature', 'data', 'type', 'count', 'mean', 'median', 'std', 'min', 'max', 'skew', 'null']) desc.loc[0] = [c, 'Train', train[c].dtype.name, train[c].count() , train[c].mean() , train[c].median() , train[c].std() , train[c].min() , train[c].max() , train[c].skew() , train[c].isnull().sum() ] desc.loc[1] = [c, 'All', train[c].dtype.name, all_data[c].count() , all_data[c].mean() , all_data[c].median() , all_data[c].std() , all_data[c].min() , all_data[c].max() , all_data[c].skew() , all_data[c].isnull().sum() ] desc.loc[2] = [c, 'Target=0', train0[c].dtype.name, train0[c].count() , train0[c].mean() , train0[c].median() , train0[c].std() , train0[c].min() , train0[c].max() , train0[c].skew() , train0[c].isnull().sum() ] desc.loc[3] = [c, 'Target=1', train1[c].dtype.name, train1[c].count() , train1[c].mean() , train1[c].median() , train1[c].std() , train1[c].min() , train1[c].max() , train1[c].skew() , train1[c].isnull().sum() ] desc = desc.set_index(['feature', 'data'],drop=True) detail_desc.append(desc.style.background_gradient() )<create_dataframe>
label_counter = new.label.value_counts() print(label_counter )
Digit Recognizer
6,956,162
train0 = train[train.Survived == 0] train1 = train[train.Survived == 1] cnt = 0 detail_desc = [] for c in train.columns: if c == 'PassengerId': continue if train[c].dtypes == 'object': desc = pd.DataFrame(columns=['feature', 'data', 'type', 'count', 'null', 'mode', 'value_count']) desc.loc[0] = [c, 'Train', train[c].dtype.name, train[c].count() , train[c].isnull().sum() , train[c].mode() , train[c].value_counts() ] desc = desc.set_index(['feature', 'data'],drop=True) detail_desc.append(desc.style.background_gradient() )<create_dataframe>
X_train = X_train / 255 X_test = X_test / 255 test = test / 255
Digit Recognizer
6,956,162
multi_table(detail_desc )<feature_engineering>
y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10 )
Digit Recognizer
6,956,162
tmp_train = copy.deepcopy(train) tmp_train['AgeBin'] = 6 for i in range(6): tmp_train.loc[(tmp_train.Age >= 10*i)&(tmp_train.Age < 10*(i + 1)) , 'AgeBin'] = i tmp_train.head(3 )<concatenate>
from keras.models import Sequential, load_model from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D, BatchNormalization from keras.optimizers import RMSprop from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ReduceLROnPlateau
Digit Recognizer
6,956,162
cat_dist(tmp_train, var='AgeBin', hue='Survived', msg_show=False )<categorify>
model = Sequential() model.add(Conv2D(32,(3, 3), activation='relu', padding='same',input_shape=(28 , 28 , 1))) model.add(Conv2D(32,(3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(64,(3, 3), activation='relu', padding='same')) model.add(Conv2D(64,(3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(100, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
6,956,162
tmp_train = copy.deepcopy(train) tmp_train['FareBin'] = pd.cut(tmp_train.Fare, 10) tmp_train['FareBin'] = LabelEncoder().fit_transform(tmp_train.FareBin) tmp_train.head(3 )<concatenate>
model.compile(optimizer = RMSprop(lr=0.001),loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
6,956,162
cat_dist(tmp_train, var='FareBin', hue='Survived', msg_show=False )<concatenate>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.0, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
6,956,162
cat_dist(train, var='Embarked', hue='Survived' )<create_dataframe>
batch_size = 64 epochs = 10 lr_reduce = ReduceLROnPlateau(monitor='val_acc', factor=0.1, epsilon=0.0001, patience=1, verbose=1 )
Digit Recognizer
6,956,162
tmp_all_data = copy.deepcopy(all_data) t0 = pd.DataFrame(tmp_all_data.Name) t1 = pd.DataFrame(tmp_all_data.Name.apply(lambda x: x.split(',')[1].split('.')[0].strip() ).value_counts()) multi_table([t0, t1] )<feature_engineering>
model.fit_generator(datagen.flow(X_train, y_train, batch_size=batch_size), steps_per_epoch=X_train.shape[0] // batch_size, callbacks=[lr_reduce], validation_data=(X_test, y_test), epochs = epochs, verbose = 2 )
Digit Recognizer
6,956,162
tmp_all_data['Title'] = tmp_all_data.Name.apply(lambda x: x.split(',')[1].split('.')[0].strip()) <count_values>
score = model.evaluate(X_test, y_test, verbose=0) print('valid loss:', score[0]) print('valid accuracy:', score[1] )
Digit Recognizer
6,956,162
tmp_train.Cabin.value_counts()<feature_engineering>
pred = model.predict(test )
Digit Recognizer
6,956,162
tmp_train['CabinCnt'] = tmp_train.Cabin.apply(lambda x: 0 if pd.isna(x)else len(x.split(' '))) tmp_train['CabinClass'] = tmp_train.Cabin.apply(lambda x: str(x)[0] )<create_dataframe>
pred_digits = np.argmax(pred , axis = 1) ImageId = range(1 , len(pred_digits)+1 )
Digit Recognizer
6,956,162
t0 = pd.DataFrame(tmp_train.CabinCnt.value_counts()) t1 = pd.DataFrame(tmp_train.CabinClass.value_counts()) multi_table([t0, t1] )<concatenate>
context = {"ImageId" : ImageId , "Label" : pred_digits } ans = pd.DataFrame(context )
Digit Recognizer
6,956,162
cat_dist(tmp_train, var='CabinCnt', hue='Survived', msg_show=False )<concatenate>
ans.to_csv("Predictions by CNN.csv", index=None )
Digit Recognizer
3,995,435
cat_dist(tmp_train, var='CabinClass', hue='Survived', msg_show=False )<feature_engineering>
import keras from keras.utils.np_utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten from keras.optimizers import RMSprop from keras.callbacks import EarlyStopping, ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split
Digit Recognizer
3,995,435
tmp_train['IsNumericTicket'] = tmp_train.Ticket.apply(lambda x: 1 if x.isnumeric() else 0) tmp_train['TicketType'] = tmp_train.Ticket.apply(lambda x: ''.join(x.split(' ')[:-1] ).replace('.','' ).replace('/','' ).lower() if len(x.split(' ')[:-1])> 0 else 0 )<concatenate>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') y_train = train['label'] x_train = train.drop(labels=['label'] ,axis=1) del train x_train.isnull().any().describe() test.isnull().any().describe()
Digit Recognizer
3,995,435
cat_dist(tmp_train, var='IsNumericTicket', hue='Survived' )<drop_column>
x_train = x_train / 255.0 test = test / 255.0
Digit Recognizer
3,995,435
all_data['Age'] = all_data.Age.fillna(train.Age.median()) all_data['Fare'] = all_data.Fare.fillna(train.Fare.median()) all_data.dropna(subset=['Embarked'], inplace=True) cabins = all_data.Cabin all_data.drop(['Cabin'], axis=1, inplace=True )<feature_engineering>
NUM_CLASSES = 10 y_train = to_categorical(y_train, num_classes=NUM_CLASSES )
Digit Recognizer
3,995,435
all_data['CabinCnt'] = cabins.apply(lambda x: 0 if pd.isna(x)else len(x.split(' '))) all_data['CabinClass'] = cabins.apply(lambda x: str(x)[0]) all_data['IsNumericTicket'] = all_data.Ticket.apply(lambda x: 1 if x.isnumeric() else 0) all_data['TicketType'] = all_data.Ticket.apply(lambda x: ''.join(x.split(' ')[:-1] ).replace('.','' ).replace('/','' ).lower() if len(x.split(' ')[:-1])> 0 else 0) all_data['Title'] = all_data.Name.apply(lambda x: x.split(',')[1].split('.')[0].strip()) all_data['Family'] = all_data.SibSp + all_data.Parch<normalization>
random_seed = 2 x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.1, random_state=random_seed )
Digit Recognizer
3,995,435
numeric_vars = ['Age', 'SibSp', 'Parch', 'Fare', 'CabinCnt', 'Family'] ordinal_vars = ['Pclass'] nominal_vars = ['Name', 'Sex', 'Ticket', 'Embarked', 'CabinClass', 'IsNumericTicket', 'TicketType', 'Title'] all_data[nominal_vars] = all_data[nominal_vars].astype('str') for feature in numeric_vars: all_data[feature] = np.log1p(all_data[feature]) scaler = StandardScaler() numeric_vars = all_data.columns[(all_data.dtypes != 'object')&(all_data.columns != 'PassengerId')&(all_data.columns != 'Survived')&(all_data.columns != 'IsTrain')] all_data[numeric_vars] = scaler.fit_transform(all_data[numeric_vars] )<prepare_x_and_y>
%matplotlib inline print(x_train.shape) test_show = plt.imshow(x_train[0][:,:,0] )
Digit Recognizer
3,995,435
all_data.drop(['PassengerId', 'Name', 'Ticket'], axis=1, inplace=True) data_dummies = pd.get_dummies(all_data) X_train = data_dummies[data_dummies.Survived.notnull() ].drop(['Survived'], axis=1) y_train = data_dummies[data_dummies.Survived.notnull() ].Survived X_test = data_dummies[data_dummies.Survived.isnull() ].drop(['Survived'], axis=1 )<count_values>
model = Sequential() model.add(Conv2D(filters=32, kernel_size=(5,5), padding='Same', activation='relu', input_shape=(28, 28, 1))) model.add(Conv2D(filters=32, kernel_size=(5,5), padding='Same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3,3), padding='Same', activation='relu')) model.add(Conv2D(filters=64, kernel_size=(3,3), padding='Same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(NUM_CLASSES, activation='softmax'))
Digit Recognizer
3,995,435
all_data.Title = all_data.Title.apply(lambda x: 'Others' if x in list(all_data.Title.value_counts() [all_data.Title.value_counts() < 8].index)else x) all_data.TicketType = all_data.TicketType.apply(lambda x: 'Others' if x in list(all_data.TicketType.value_counts() [all_data.TicketType.value_counts() < 10].index)else x )<prepare_x_and_y>
model.compile(optimizer=RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0), loss='categorical_crossentropy', metrics=['accuracy']) reduce_lr = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) epochs = 30 batch_size = 86
Digit Recognizer
3,995,435
data_dummies = pd.get_dummies(all_data) X_train = data_dummies[data_dummies.Survived.notnull() ].drop(['Survived'], axis=1) X_test = data_dummies[data_dummies.Survived.isnull() ].drop(['Survived'], axis=1 )<train_model>
params = { 'rotation_range':10, 'zoom_range':0.1, 'width_shift_range':0.1, 'height_shift_range':0.1, 'featurewise_center':False, 'samplewise_center':False, 'featurewise_std_normalization':False, 'samplewise_std_normalization':False, 'zca_whitening':False, 'horizontal_flip':False, 'vertical_flip':False } datagen = ImageDataGenerator(**params) datagen.fit(x_train )
Digit Recognizer
3,995,435
allow_tuning = False<split>
hist = model.fit_generator( datagen.flow(x_train, y_train, batch_size=batch_size), epochs=epochs, validation_data=(x_test, y_test), verbose=1, steps_per_epoch=x_train.shape[0] // batch_size, callbacks=[reduce_lr] )
Digit Recognizer
3,995,435
def xgb_gridsearch(params_grid_xgb, features, values, X, y, last=False): x_train, x_test = train_test_split(X, test_size=.2, random_state=42) y_train_tmp, y_test_tmp = train_test_split(y, test_size=.2, random_state=42) cv = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_state = 42) model_xgb = XGBClassifier(use_label_encoder = False, objective = 'binary:logistic') for i in range(len(features)) : params_grid_xgb[features[i]] = values[i] search_xgb = GridSearchCV(model_xgb, params_grid_xgb, verbose = 0, scoring = 'neg_log_loss', cv = cv ).fit(x_train, y_train_tmp, early_stopping_rounds = 15, eval_set = [[x_test, y_test_tmp]], eval_metric = 'logloss', verbose = False) for i in range(len(features)) : print(f"{features[i]}: {search_xgb.best_params_[features[i]]}") if not last: for k, v in search_xgb.best_params_.items() : search_xgb.best_params_[k] = [v] return search_xgb, search_xgb.best_params_<train_on_grid>
submission = pd.concat([pd.Series(range(1,28001), name="ImageId"), results], axis=1) submission.to_csv('mnist_datagen.csv', index=False )
Digit Recognizer
3,971,606
if allow_tuning: params_knn = { 'n_neighbors' : range(1, 10), 'weights' : ['uniform', 'distance'], 'algorithm' : ['auto', 'ball_tree','kd_tree'], 'p' : [1,2] } model_knn = knn() search_knn = GridSearchCV(model_knn, params_knn, cv=5, scoring='accuracy', n_jobs=-1, verbose=1 ).fit(X_train, y_train) print(search_knn.best_params_ )<train_on_grid>
train = pd.read_csv(".. /input/train.csv") test= pd.read_csv(".. /input/test.csv") print("Train size:{} Test size:{}".format(train.shape, test.shape)) x_train = train.drop(['label'], axis=1 ).values.astype('float32') y_train = train['label'].values.astype('int32') x_test = test.values.astype('float32') x_train = x_train.reshape(x_train.shape[0], 28, 28)/ 255.0 x_test = x_test.reshape(x_test.shape[0], 28, 28)/ 255.0 x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size = 0.05, random_state=42) print(x_train.shape) print(x_val.shape) print(y_train.shape) print(x_test.shape )
Digit Recognizer
3,971,606
if allow_tuning: params_logistic = { 'max_iter': [2000], 'penalty': ['l1', 'l2'], 'C': np.logspace(-4, 4, 20), 'solver': ['liblinear'] } model_logistic = LogisticRegression() search_logistic = GridSearchCV(model_logistic, params_logistic, cv=5, scoring='accuracy', n_jobs=-1, verbose=1 ).fit(X_train, y_train) print(search_logistic.best_params_ )<train_on_grid>
x_train = x_train.reshape(x_train.shape[0], 28, 28,1) x_val = x_val.reshape(x_val.shape[0], 28, 28,1) x_test = x_test.reshape(x_test.shape[0], 28, 28,1) print("Train size:{} validation size:{} Test size:{}".format(x_train.shape,x_val.shape, x_test.shape)) mean_px = x_train.mean().astype(np.float32) std_px = x_train.std().astype(np.float32)
Digit Recognizer
3,971,606
if allow_tuning: params_svc = [{'kernel': ['rbf'], 'gamma': [.01,.1,.5, 1, 2, 5, 10], 'C': [.1, 1, 10, 100, 1000], 'probability': [True]}, {'kernel': ['poly'], 'degree' : [2, 3, 4, 5], 'C': [.01,.1, 1, 10, 100, 1000], 'probability': [True]}] model_svc = SVC() search_svc = GridSearchCV(model_svc, params_svc, cv=5, scoring='accuracy', n_jobs=-1, verbose=1 ).fit(X_train, y_train) print(search_svc.best_params_ )<train_on_grid>
input = Input(shape=[28, 28, 1]) x = Conv2D(32,(5, 5), strides=1, padding='same', name='conv1' )(input) x = BatchNormalization(momentum=0.1, epsilon=1e-5, gamma_initializer='uniform',name='batch1' )(x) x = Activation('relu', name='relu1' )(x) x = Conv2D(32,(5, 5), strides=1, padding='same', name='conv2' )(x) x = BatchNormalization(momentum=0.1, epsilon=1e-5, gamma_initializer='uniform',name='batch2' )(x) x = Activation('relu', name='relu2' )(x) x = Conv2D(32,(5, 5), strides=1, padding='same', name='conv2add' )(x) x = BatchNormalization(momentum=0.1, epsilon=1e-5, gamma_initializer='uniform',name='batch2add' )(x) x = Activation('relu', name='relu2add' )(x) x = Dropout(0.15 )(x) x = MaxPool2D(pool_size=2, strides=2, padding='same' )(x) x = Conv2D(64,(3, 3), strides=1, padding='same', name='conv3' )(x) x = BatchNormalization(momentum=0.1, epsilon=1e-5, gamma_initializer='uniform',name='batch3' )(x) x = Activation('relu', name='relu3' )(x) x = Conv2D(64,(3, 3), strides=1, padding='same', name='conv4' )(x) x = BatchNormalization(momentum=0.1, epsilon=1e-5, gamma_initializer='uniform',name='batch4' )(x) x = Activation('relu', name='relu4' )(x) x = Conv2D(32,(3, 3), strides=1, padding='same', name='conv5' )(x) x = BatchNormalization(momentum=0.1, epsilon=1e-5, gamma_initializer='uniform',name='batch5' )(x) x = Activation('relu', name='relu5' )(x) x = Dropout(0.15 )(x) x = MaxPool2D(pool_size=2, strides=2 )(x) x = Flatten()(x) x = Dense(100, name='Dense30' )(x) x = Activation('relu', name='relu6' )(x) x = Dropout(0.05 )(x) x = Dense(10, name='Dense10' )(x) x = Activation('softmax' )(x) model = Model(inputs = input, outputs =x) print(model.summary() )
Digit Recognizer
3,971,606
if allow_tuning: params_svc = {'kernel': ['rbf'], 'gamma': [i/10000 for i in range(90, 110)], 'C': range(50, 80, 10), 'probability': [True]} model_svc = SVC() search_svc = GridSearchCV(model_svc, params_svc, cv=5, scoring='accuracy', n_jobs=-1, verbose=1 ).fit(X_train, y_train) print(search_svc.best_params_ )<choose_model_class>
checkpoint = ModelCheckpoint("best_weights.hdf5", monitor='val_acc', verbose=1, save_best_only=True, mode='max') datagen = ImageDataGenerator( rotation_range= 8, zoom_range = 0.13, width_shift_range=0.13, height_shift_range=0.13) epochs = 60 lr_initial = 0.0011 optimizer = Adam(lr=lr_initial, decay= lr_initial /(epochs*1.3)) model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy']) datagen.fit(x_train) batch_size = 64 history = model.fit_generator(datagen.flow(x_train,y_train, batch_size=batch_size), epochs = epochs, validation_data =(x_val,y_val), verbose = 1, steps_per_epoch=x_train.shape[0] // batch_size, callbacks=[checkpoint]) model.load_weights("best_weights.hdf5")
Digit Recognizer
3,971,606
<train_on_grid><EOS>
results = model.predict(x_test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("MNIST-CNN-ENSEMBLE.csv",index=False )
Digit Recognizer
5,217,179
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<init_hyperparams>
!pip install neural-structured-learning !pip install tensorflow-gpu==2.1.0
Digit Recognizer
5,217,179
if allow_tuning: params_xgb = {'n_estimators': [1000], 'learning_rate': [0.1], 'max_depth': [5], 'min_child_weight': [1], 'gamma': [0], 'subsample': [0.8], 'colsample_bytree': [0.8], 'n_jobs': [-1], 'objective': ['binary:logistic'], 'use_label_encoder': [False], 'eval_metric': ['logloss'], 'scale_pos_weight': [1]} search_xgb, params_xgb = xgb_gridsearch(params_xgb, ['learning_rate'], [[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2]], X_train, y_train) search_xgb, params_xgb = xgb_gridsearch(params_xgb, ['max_depth', 'min_child_weight'], [range(3, 10), range(1, 6)], X_train, y_train) search_xgb, params_xgb = xgb_gridsearch(params_xgb, ['gamma'], [[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2]], X_train, y_train) search_xgb, params_xgb = xgb_gridsearch(params_xgb, ['subsample', 'colsample_bytree'], [[i/100.0 for i in range(75,90,5)], [i/100.0 for i in range(75,90,5)]], X_train, y_train) search_xgb, params_xgb = xgb_gridsearch(params_xgb, ['reg_alpha'], [[1e-5, 1e-2, 0.1, 1, 100]], X_train, y_train) params_xgb['n_estimators'] = [5000] search_xgb, params_xgb = xgb_gridsearch(params_xgb, ['learning_rate'], [[0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2]], X_train, y_train, last=True) x_train, x_test = train_test_split(X_train, test_size=.2, random_state=42) y_train_tmp, y_test_tmp = train_test_split(y_train, test_size=.2, random_state=42) model_xgb = XGBClassifier(**params_xgb) model_xgb = model_xgb.fit(x_train, y_train_tmp, eval_set=[(x_test, y_test_tmp)], eval_metric=['logloss'], early_stopping_rounds=15, verbose=0) search_xgb.best_estimator_.n_estimators = model_xgb.best_iteration<choose_model_class>
train = pd.read_csv('/kaggle/input/train.csv') train.head()
Digit Recognizer
5,217,179
if allow_tuning: model_knn = search_knn.best_estimator_ model_logistic = search_logistic.best_estimator_ model_svc = search_svc.best_estimator_ model_rf = search_rf.best_estimator_ model_xgb = search_xgb.best_estimator_ else: model_knn = knn(algorithm='auto', n_neighbors=9, p=1, weights='uniform') model_logistic = LogisticRegression(C=0.08858667904100823, max_iter=2000, penalty='l2', solver='liblinear') model_svc = SVC(C=70, gamma=0.0106, kernel='rbf', probability=True) model_rf = RandomForestClassifier(bootstrap=True, criterion='entropy', max_depth=50, max_features=6, min_samples_leaf=1, min_samples_split=10, n_estimators=100, random_state=734) model_xgb = XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.8, enable_categorical=False, eval_metric='logloss', gamma=0.8,gpu_id=-1, importance_type=None, interaction_constraints='', learning_rate=0.15, max_delta_step=0, max_depth=5, min_child_weight=1, missing=np.nan, monotone_constraints='() ', n_estimators=15, n_jobs=-1, num_parallel_tree=1, predictor='auto', random_state=0, reg_alpha=1e-05, reg_lambda=1, scale_pos_weight=1, subsample=0.8, tree_method='exact', use_label_encoder=False, validate_parameters=1, verbosity=0) models = { 'knn': model_knn, 'logistic': model_logistic, 'svc': model_svc, 'rf': model_rf, 'xgb': model_xgb }<choose_model_class>
def get_labels(train): return np.array(train['label']) def get_features(train): features = train.drop(['label'], axis=1) features_normalized = features / 255 return features_normalized
Digit Recognizer
5,217,179
def select_models(start, cnt, goal, estimators, voting): if cnt == goal: estimators_copy = copy.deepcopy(estimators) voting_name = f'{voting}_' + '_'.join([i[0] for i in list(estimators_copy)]) models[voting_name] = VotingClassifier(estimators=estimators_copy, voting=voting) return for i in range(start, 5): estimators.append(list(models.items())[i]) select_models(i + 1, cnt + 1, goal, estimators, voting) estimators.pop()<define_search_space>
def get_generator_dict(in_gen, should_augment=True): if should_augment: image_gen = ImageDataGenerator(fill_mode='reflect', data_format='channels_last', brightness_range=[0.5, 1.5]) else: image_gen = ImageDataGenerator(fill_mode='reflect', data_format='channels_last', brightness_range=[1, 1]) for items in in_gen: if len(items)== 2: in_x, in_y = items else: in_x, in_y, weights = items g_x = image_gen.flow(255 * in_x, in_y, batch_size=in_x.shape[0]) x, y = next(g_x) yield {'feature': x / 255.0, 'label': y}
Digit Recognizer
5,217,179
select_models(0, 0, 2, [], 'hard') select_models(0, 0, 3, [], 'hard') select_models(0, 0, 4, [], 'hard') select_models(0, 0, 5, [], 'hard') select_models(0, 0, 2, [], 'soft') select_models(0, 0, 3, [], 'soft') select_models(0, 0, 4, [], 'soft') select_models(0, 0, 5, [], 'soft' )<create_dataframe>
def get_model(shape, n_class): model = Sequential() model.add(Conv2D(64,(4,4), input_shape=shape)) model.add(MaxPool2D(( 2,2))) model.add(BatchNormalization()) model.add(tf.keras.layers.Activation("selu")) , model.add(Conv2D(128,(3,3))) model.add(MaxPool2D(( 2,2))) model.add(BatchNormalization()) model.add(tf.keras.layers.Activation("selu")) , model.add(Conv2D(256,(2,2))) model.add(MaxPool2D(( 2,2))) model.add(Dropout(0.2)) model.add(BatchNormalization()) model.add(Flatten()) model.add(tf.keras.layers.Activation("selu")) model.add(Dense(64, kernel_initializer="he_normal", use_bias=False)) model.add(Dropout(0.2)) model.add(BatchNormalization()) model.add(tf.keras.layers.Activation("selu")) model.add(Dense(32, kernel_initializer="he_normal", use_bias=False)) model.add(BatchNormalization()) model.add(Dense(n_class, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model
Digit Recognizer
5,217,179
result_by_model = pd.DataFrame({'model name': models.keys() , 'model': models.values() , 'score': 0} )<compute_train_metric>
def get_adv_model(shape, n_class): model = Sequential([ Conv2D(64,(4,4), input_shape=shape, dynamic=True), MaxPool2D(( 2,2)) , BatchNormalization() , tf.keras.layers.Activation("selu"), Conv2D(128,(3,3)) , MaxPool2D(( 2,2)) , BatchNormalization() , tf.keras.layers.Activation("selu"), Conv2D(256,(2,2)) , MaxPool2D(( 2,2)) , Dropout(0.2), BatchNormalization() , Flatten() , tf.keras.layers.Activation("selu"), Dense(64, kernel_initializer="he_normal", use_bias=False), Dropout(0.2), BatchNormalization() , tf.keras.layers.Activation("selu"), Dense(32, kernel_initializer="he_normal", use_bias=False), BatchNormalization() , Dense(n_class, activation='softmax')]) adv_config = nsl.configs.make_adv_reg_config(multiplier=0.2, adv_step_size=0.05) adv_model = nsl.keras.AdversarialRegularization(model, adv_config=adv_config) adv_model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'], run_eagerly=True) return adv_model
Digit Recognizer
5,217,179
for name, model in models.items() : result_by_model.loc[result_by_model['model name'] == name, 'score'] = cross_val_score(model, X_train,y_train,cv=5 ).mean()<sort_values>
def get_sample_model(shape, n_class): model = tf.keras.Sequential([ tf.keras.Input(shape, name='feature'), tf.keras.layers.Flatten() , tf.keras.layers.Dense(128, activation=tf.nn.relu), tf.keras.layers.Dense(n_class, activation=tf.nn.softmax) ]) adv_config = nsl.configs.make_adv_reg_config(multiplier=0.2, adv_step_size=0.05) adv_model = nsl.keras.AdversarialRegularization(model, adv_config=adv_config) adv_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) return adv_model
Digit Recognizer
5,217,179
result_by_model.sort_values('score', ascending=False ).reset_index(drop=True )<save_to_csv>
features = get_features(train) labels = get_labels(train)
Digit Recognizer
5,217,179
model_name = 'rf' models[model_name].fit(X_train, y_train) y_pred = models[model_name].predict(X_test ).astype('int') submission = pd.DataFrame({'PassengerId': test.PassengerId, 'Survived': y_pred}) submission.to_csv('submission.csv', index = False )<import_modules>
model = get_adv_model(x[0].shape, 10) print(model )
Digit Recognizer
5,217,179
import numpy as np import pandas as pd from sklearn import ensemble from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_validate,GridSearchCV import lightgbm as lgbm from collections import Counter<load_from_csv>
train_x = x[:36000] test_x = x[36000:] labels_train = labels[:36000] labels_test = labels[36000:]
Digit Recognizer
5,217,179
train = pd.read_csv(".. /input/titanic/train.csv") test = pd.read_csv(".. /input/titanic/test.csv" )<prepare_x_and_y>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(train_x )
Digit Recognizer
5,217,179
y = train['Survived'] X = train.drop(['Survived'], axis=1) X_test = test<define_search_space>
earlyStop = tf.keras.callbacks.EarlyStopping(monitor='val_acc', patience=10) reduceLROnPlateau = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
5,217,179
params={"n_estimators":np.arange(50,200,10), "max_depth":np.arange(1,11,1), "learning_rate":[0.1,0.01,0.001] }<train_on_grid>
model.fit(datagen.flow(train_x, labels_train, batch_size=32), steps_per_epoch=len(train_x)// 32, epochs=5)
Digit Recognizer
5,217,179
xgb_est=lgbm.LGBMClassifier( random_state=42, objective='binary', eval_metric="auc" ) gr_xgb_est=GridSearchCV(xgb_est,param_grid=params,cv=5,n_jobs=-1,verbose=10) gr_xgb_est.fit(X,y )<find_best_params>
model.evaluate({'feature': test_x, 'label': np.array(labels_test)} )
Digit Recognizer
5,217,179
gr_xgb_est.best_estimator_.get_params()<predict_on_test>
test = pd.read_csv('/kaggle/input/test.csv') test.head()
Digit Recognizer
5,217,179
pred_test = gr_xgb_est.predict(X_test )<save_to_csv>
test_normalized = test/ 255 x_test = np.array(test_normalized ).reshape(-1,28,28,1 )
Digit Recognizer
5,217,179
submission = pd.read_csv('.. /input/titanic/gender_submission.csv') submission['Survived'] =(pred_test > 0.5 ).astype(int) submission.to_csv('sub.csv', index=False) submission.head()<set_options>
lo = [0] * len(x_test) predictions = model.predict({'feature':x_test, 'label':np.array(lo)} )
Digit Recognizer
5,217,179
seed = 50 os.environ['PYTHONHASHSEED'] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.enabled = False<set_options>
response = [] for i, prediction in enumerate(predictions): response.append([i + 1, np.argmax(prediction)]) resposta = pd.DataFrame(response, columns=['ImageId', 'Label']) resposta.to_csv('output.csv', index=False)
Digit Recognizer
7,366,854
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device<load_from_csv>
print(tf.__version__ )
Digit Recognizer
7,366,854
data_path = '/kaggle/input/plant-pathology-2020-fgvc7/' train = pd.read_csv(data_path + 'train.csv') test = pd.read_csv(data_path + 'test.csv') submission = pd.read_csv(data_path + 'sample_submission.csv' )<split>
train=pd.read_csv(".. /input/digit-recognizer/train.csv") test=pd.read_csv(".. /input/digit-recognizer/test.csv") print("Train Shape: {}".format(train.shape)) print("Test Shape: {}".format(test.shape))
Digit Recognizer
7,366,854
train, valid = train_test_split(train, test_size=0.1, stratify=train[['healthy', 'multiple_diseases', 'rust', 'scab']], random_state=50 )<normalization>
print("Train Nulls: {}".format(train.isna().any().sum())) print("Test Nulls: {}".format(test.isna().any().sum()))
Digit Recognizer
7,366,854
class ImageDataset(Dataset): def __init__(self, df, img_dir='./', transform=None, is_test=False): super().__init__() self.df = df self.img_dir = img_dir self.transform = transform self.is_test = is_test def __len__(self): return len(self.df) def __getitem__(self, idx): img_id = self.df.iloc[idx, 0] img_path = self.img_dir + img_id + '.jpg' image = cv2.imread(img_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if self.transform is not None: image = self.transform(image=image)['image'] if self.is_test: return image else: label = np.argmax(self.df.iloc[idx, 1:5]) return image, label<import_modules>
y = train['label'].astype('int8') X = train.drop(columns=['label'] ).astype('float16' ).values X = X.reshape(42000, 28,28, 1 )
Digit Recognizer
7,366,854
import albumentations as A from albumentations.pytorch import ToTensorV2<categorify>
X_train, X_validation, y_train, y_validation = train_test_split(X, y, test_size=0.2 )
Digit Recognizer
7,366,854
transform_test = A.Compose([ A.Resize(450, 650), A.Normalize() , ToTensorV2() ] )<create_dataframe>
train_image_generator = ImageDataGenerator( rescale=1./255 ) validation_image_generator = ImageDataGenerator( rescale=1./255 ) train_image_gen = train_image_generator.flow( x=X_train, y=y_train, ) validation_image_gen = validation_image_generator.flow( x=X_validation, y=y_validation, )
Digit Recognizer
7,366,854
img_dir = '/kaggle/input/plant-pathology-2020-fgvc7/images/' dataset_train = ImageDataset(train, img_dir=img_dir, transform=transform_train) dataset_valid = ImageDataset(valid, img_dir=img_dir, transform=transform_test )<define_variables>
model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32,(3,3), activation='relu',padding='same', input_shape=(28, 28, 1)) , tf.keras.layers.Conv2D(64,(3,3), activation='relu',padding='same'), tf.keras.layers.Conv2D(128,(3,3), activation='relu',padding='same'), tf.keras.layers.MaxPooling2D(( 2,2)) , tf.keras.layers.Dropout(0.1), tf.keras.layers.Conv2D(64,(3,3), activation='relu',padding='same'), tf.keras.layers.Conv2D(128,(3,3), activation='relu',padding='same'), tf.keras.layers.MaxPooling2D(( 2,2)) , tf.keras.layers.Dropout(0.1), tf.keras.layers.Flatten() , tf.keras.layers.Dense(1024, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001)) , tf.keras.layers.BatchNormalization() , tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(512, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001)) , tf.keras.layers.BatchNormalization() , tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(10, activation='softmax') ] )
Digit Recognizer
7,366,854
def seed_worker(worker_id): worker_seed = torch.initial_seed() % 2**32 np.random.seed(worker_seed) random.seed(worker_seed) g = torch.Generator() g.manual_seed(0 )<load_pretrained>
tf.keras.backend.clear_session() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit( train_image_gen, epochs=5, validation_data=validation_image_gen )
Digit Recognizer
7,366,854
batch_size = 4 loader_train = DataLoader(dataset_train, batch_size=batch_size, shuffle=True, worker_init_fn=seed_worker, generator=g, num_workers=2) loader_valid = DataLoader(dataset_valid, batch_size=batch_size, shuffle=False, worker_init_fn=seed_worker, generator=g, num_workers=2 )<install_modules>
validation_predict = model.predict(X_validation) low_predictions = pd.DataFrame() low_predictions['label'] = np.argmax(validation_predict, axis=1) low_predictions['Confidence'] = np.max(validation_predict, axis=1) low_index = low_predictions.sort_values(by=['Confidence'])[:10].index low_labels = low_predictions.sort_values(by=['Confidence'])['label'] fig, axs = plt.subplots(2, 5, figsize=(24,9.5)) for i, low_label, ax in zip(low_index,low_labels, axs.flat): image = X_validation[i].astype('float32' ).reshape(28, 28) ax.imshow(image, cmap='gray') ax.set_xlabel("True: {}".format(y_validation.iloc[i])) ax.set_title("Guessed:{} ".format(low_label))
Digit Recognizer
7,366,854
!pip install efficientnet-pytorch==0.7.1<load_pretrained>
train_image_generator = ImageDataGenerator( rescale=1./255, rotation_range=25, width_shift_range=.1, height_shift_range=.1, zoom_range=0.1 ) validation_image_generator = ImageDataGenerator( rescale=1./255, rotation_range=25, width_shift_range=.1, height_shift_range=.1, zoom_range=0.1 ) train_image_gen = train_image_generator.flow( x=X_train, y=y_train, ) validation_image_gen = validation_image_generator.flow( x=X_validation, y=y_validation, ) lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay( initial_learning_rate=0.001, decay_steps=250, decay_rate=1, staircase=False ) def get_optimizer() : return tf.keras.optimizers.Adam(lr_schedule) tf.keras.backend.clear_session() model.compile(optimizer=get_optimizer() , loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit( train_image_gen, epochs=20, validation_data=validation_image_gen )
Digit Recognizer
7,366,854
model = EfficientNet.from_pretrained('efficientnet-b7', num_classes=4) model = model.to(device )<import_modules>
X_test = test.astype('float16' ).values X_test = X_test / 255.0 X_test = X_test.reshape(len(X_test), 28, 28, 1 )
Digit Recognizer
7,366,854
<choose_model_class><EOS>
label_pred = model.predict_classes(X_test, verbose=0) submission = pd.DataFrame() submission['Label'] = label_pred submission['ImageId'] = submission.index + 1 submission.to_csv('.. /working/output.csv', index=False )
Digit Recognizer
6,789,424
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<train_model>
from fastai import * from fastai.vision import * import pandas as pd
Digit Recognizer
6,789,424
epochs = 5 for epoch in range(epochs): model.train() epoch_train_loss = 0 for images, labels in tqdm(loader_train): images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) epoch_train_loss += loss.item() loss.backward() optimizer.step() print(f'에폭 [{epoch+1}/{epochs}] - 훈련 데이터 손실값 : {epoch_train_loss/len(loader_train):.4f}') model.eval() epoch_valid_loss = 0 preds_list = [] true_onehot_list = [] with torch.no_grad() : for images, labels in loader_valid: images = images.to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) epoch_valid_loss += loss.item() preds = torch.softmax(outputs.cpu() , dim=1 ).numpy() true_onehot = torch.eye(4)[labels].cpu().numpy() preds_list.extend(preds) true_onehot_list.extend(true_onehot) print(f'에폭 [{epoch+1}/{epochs}] - 검증 데이터 손실값 : {epoch_valid_loss/len(loader_valid):.4f} / 검증 데이터 ROC AUC : {roc_auc_score(true_onehot_list, preds_list):.4f}' )<load_pretrained>
df = pd.read_csv('.. /input/digit-recognizer/train.csv') df2 = pd.read_csv('.. /input/mnist-in-csv/mnist_train.csv') df2.columns = df.columns df_temp = pd.concat([df,df2], join='outer',axis=0 ,ignore_index=False ,sort=False ).reset_index(drop=True) df_temp.to_csv('train.csv',index=False )
Digit Recognizer
6,789,424
dataset_test = ImageDataset(test, img_dir=img_dir, transform=transform_test, is_test=True) loader_test = DataLoader(dataset_test, batch_size=batch_size, shuffle=False, worker_init_fn=seed_worker, generator=g, num_workers=2 )<find_best_params>
df_temp.to_csv('train.csv',index=False )
Digit Recognizer
6,789,424
model.eval() preds = np.zeros(( len(test), 4)) with torch.no_grad() : for i, images in enumerate(loader_test): images = images.to(device) outputs = model(images) preds_part = torch.softmax(outputs.cpu() , dim=1 ).squeeze().numpy() preds[i*batch_size:(i+1)*batch_size] += preds_part<save_to_csv>
class CustomImageItemList(ImageList): def open(self, fn): img = fn.reshape(28, 28) img = np.stack(( img,)*3, axis=-1) return Image(pil2tensor(img, dtype=np.float32)) @classmethod def from_csv_custom(cls, path:PathOrStr, csv_name:str, imgIdx:int=1, header:str='infer', **kwargs)-> 'ItemList': df = pd.read_csv(Path(path)/csv_name, header=header) res = super().from_df(df, path=path, cols=0, **kwargs) res.items = df.iloc[:,imgIdx:].apply(lambda x: x.values / 783.0, axis=1 ).values return res
Digit Recognizer
6,789,424
submission[['healthy', 'multiple_diseases', 'rust', 'scab']] = preds submission.to_csv('submission.csv', index=False )<install_modules>
test = CustomImageItemList.from_csv_custom(path=path, csv_name='test.csv', imgIdx=0) data =(CustomImageItemList.from_csv_custom(path='.', csv_name='train.csv') .split_by_rand_pct (.2) .label_from_df(cols='label') .add_test(test, label=0) .transform(get_transforms(do_flip = False, max_rotate = 0.) , size=49) .databunch(bs=1024, num_workers=16) .normalize(mnist_stats)) data
Digit Recognizer
6,789,424
!pip install -q efficientnet<import_modules>
data.show_batch(rows=3, figsize=(12,9))
Digit Recognizer
6,789,424
import numpy as np import pandas as pd from matplotlib import pyplot as plt from kaggle_datasets import KaggleDatasets import tensorflow as tf import tensorflow.keras.layers as L from sklearn import metrics from sklearn.model_selection import train_test_split from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.applications.vgg19 import VGG19 from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2 from tensorflow.keras.applications.densenet import DenseNet121, DenseNet169, DenseNet201 from tensorflow.keras.applications.xception import Xception from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet_v2 import ResNet50V2, ResNet101V2, ResNet152V2 from tensorflow.keras.applications.nasnet import NASNetLarge from efficientnet.tfkeras import EfficientNetB7, EfficientNetL2 from tensorflow.keras.layers import Flatten,Dense,Dropout,BatchNormalization from tensorflow.keras.models import Model,Sequential from tensorflow.keras.utils import to_categorical from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from keras.optimizers import Adam,SGD,Adagrad,Adadelta,RMSprop from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint<train_on_grid>
arch = models.resnet50 arch
Digit Recognizer
6,789,424
AUTO = tf.data.experimental.AUTOTUNE try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.master()) except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) else: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync) GCS_DS_PATH = KaggleDatasets().get_gcs_path() EPOCHS = 50 BATCH_SIZE = 8 * strategy.num_replicas_in_sync<define_variables>
learn = cnn_learner(data, arch,pretrained = False, metrics=[error_rate, accuracy], model_dir='.. /kaggle/working')
Digit Recognizer
6,789,424
def format_path(st): return GCS_DS_PATH + '/images/' + st + '.jpg'<load_from_csv>
lr = 1e-02
Digit Recognizer
6,789,424
train = pd.read_csv('/kaggle/input/plant-pathology-2020-fgvc7/train.csv') test = pd.read_csv('/kaggle/input/plant-pathology-2020-fgvc7/test.csv') sub = pd.read_csv('/kaggle/input/plant-pathology-2020-fgvc7/sample_submission.csv') train_paths = train.image_id.apply(format_path ).values test_paths = test.image_id.apply(format_path ).values train_labels = train.loc[:, 'healthy':].values train_paths, valid_paths, train_labels, valid_labels = train_test_split( train_paths, train_labels, test_size=0.06, random_state=2020) train_paths = train.image_id.apply(format_path ).values train_labels = train.loc[:, 'healthy':].values<normalization>
learn.fit_one_cycle(15, lr) learn.save('stage-1-50' )
Digit Recognizer