kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
9,877,165 | def fillna_using_knn_imputer(df):
imputer = KNNImputer(n_neighbors=5,
weights='uniform',
metric='nan_euclidean')
df['Sex'] = df['Sex'].factorize() [0]
df['Embarked'] = df['Embarked'].factorize() [0]
df['Kind'] = df['Kind'].factorize() [0]
X_train = df[~df['Survived'].isnull() ].drop('Survived', axis=1)
X_test = df[df['Survived'].isnull() ].drop('Survived', axis=1)
X_train_trans = pd.DataFrame(imputer.fit_transform(X_train), columns=X_train.columns, index=X_train.index)
X_test_trans = pd.DataFrame(imputer.transform(X_test), columns=X_test.columns, index=X_test.index)
dff = pd.concat([X_train_trans, X_test_trans], axis=0)
dff['Survived'] = df['Survived']
dff = dff.sort_index()
return dff
df = fillna_using_knn_imputer(df)
df.info()<normalization> | x_train = np.concatenate(( x_train, x_train_mnist))
y_train = np.concatenate(( y_train, y_train_mnist)) | Digit Recognizer |
9,877,165 | def encode_cols(df, cols=['Pclass', 'Embarked']):
for col in cols:
dumm = pd.get_dummies(data=df[col], prefix=col)
df = pd.concat([df, dumm], axis=1)
df = df.drop(col, axis=1)
return df
def scale_all_features(df):
X = df.drop('Survived', axis=1)
scaler = MinMaxScaler()
X = pd.DataFrame(scaler.fit_transform(X), columns=X.columns, index=X.index)
df = pd.concat([X, df['Survived']], axis=1)
return df, scaler
df = encode_cols(df)
df, _ = scale_all_features(df)
df.info()<split> | datagen = ImageDataGenerator(
rotation_range=10,
zoom_range = 0.10,
width_shift_range=0.1,
height_shift_range=0.1 ) | Digit Recognizer |
9,877,165 | def split_to_train_test_X_y(df):
X = df[~df['Survived'].isna() ].drop('Survived', axis=1)
y = df[~df['Survived'].isna() ]['Survived']
X_test = df[df['Survived'].isna() ].drop('Survived', axis=1)
return X, y, X_test
X, y, X_test = split_to_train_test_X_y(df )<init_hyperparams> | np.random.seed(0 ) | Digit Recognizer |
9,877,165 | class ML_Classifier_Switcher(object):
def pick_model(self, model_name):
self.param_grid = None
method_name = str(model_name)
method = getattr(self, method_name, lambda: "Invalid ML Model")
return method()
def SVM(self):
self.param_grid = {'kernel': ['rbf', 'sigmoid', 'linear'],
'C': np.logspace(-2, 2, 10),
'gamma': np.logspace(-5, 1, 14)}
return SVC()
def XGR(self):
self.param_grid = {'gamma': np.logspace(-5, 1, 7),
'subsample': [0.5, 0.75, 1.0],
'colsample_bytree': [0.5, 0.75, 1.0],
'eta': [0.1, 0.5, 0.9],
'max_depth': [3, 5]}
return XGBClassifier(random_state=42, nthread=7, use_label_encoder=False,
eval_metric='error', tree_method = "hist")
def RF(self):
self.param_grid = {
'n_estimators': [50, 100, 200, 300],
'max_features': ['auto'],
'criterion': ['entropy'],
'max_depth': [5, 10],
'min_samples_split': [5],
'min_samples_leaf': [1]
}
return RandomForestClassifier(random_state=42, n_jobs=-1)
def LR(self):
self.param_grid = {'solver': ['newton-cg', 'lbfgs', 'liblinear'],
'penalty': ['l2'],
'C': [100, 10, 1.0, 0.1, 0.01]}
return LogisticRegression(n_jobs=None, random_state=42)
def KNN(self):
self.param_grid = {
'n_neighbors': list(range(1, 5)) ,
'weights': ['uniform', 'distance'],
'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
'leaf_size': list(range(1, 10)) ,
'p': [1, 2]
}
return KNeighborsClassifier()<compute_train_metric> | input_shape =(28,28,1)
model = Sequential()
model.add(Conv2D(filters = 96, kernel_size =(3, 3), padding='same', activation='relu', input_shape=input_shape))
model.add(BatchNormalization())
model.add(Conv2D(filters = 96,kernel_size =(3, 3), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(filters = 192, kernel_size =(3,3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 256, kernel_size =(3,3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters = 256, kernel_size =(3,3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 256, kernel_size =(3,3), activation='relu', padding='same'))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Dense(units=10, activation='softmax'))
model.compile(optimizer=OPTIMIZER, loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
9,877,165 | def cross_validate(X, y, model_name='RF', cv=5, scoring='accuracy',
gridsearch=True):
switcher = ML_Classifier_Switcher()
model = switcher.pick_model(model_name)
if gridsearch:
gr = GridSearchCV(model, switcher.param_grid,
scoring=scoring, cv=cv, n_jobs=-1)
gr.fit(X, y)
model = gr.best_estimator_
cvr = cross_val_score(model, X, y, cv=cv, scoring=scoring)
cvr = pd.DataFrame(cvr ).T
cvr.index = [model_name]
cvr.columns = ['fold_{}'.format(x+1)for x in cvr.columns]
cvr['mean'] = cvr.mean(axis=1)
cvr['std'] = cvr.std(axis=1)
return cvr, model<compute_train_metric> | learning_rate = ReduceLROnPlateau(monitor='val_acc', patience=2, verbose=1, factor=0.5, min_lr=1.0e-5 ) | Digit Recognizer |
9,877,165 | def cross_validate_models(X, y, cv=5, scoring='accuracy'):
models = ['LR', 'KNN', 'SVM', 'RF']
cvrs = []
bests = []
for model_name in models:
print('Optimizing {} model'.format(model_name))
cvr, best = cross_validate(X, y, model_name=model_name, cv=cv, scoring=scoring,
gridsearch=True)
cvrs.append(cvr)
bests.append(best)
cvr = pd.concat(cvrs, axis=0)
return cvr, bests<compute_train_metric> | EarlyStopping_cb = keras.callbacks.EarlyStopping(monitor='val_acc', patience=5, verbose=1, mode='auto' ) | Digit Recognizer |
9,877,165 | cvr, bests = cross_validate_models(X,y)
print(cvr )<save_to_csv> | csv_logger = CSVLogger('model.log' ) | Digit Recognizer |
9,877,165 | def predict_on_test(X_test, model, submission_df, target='Survived'):
preds_test = model.predict(X_test)
submission_df.loc[:, target] = [int(x)for x in preds_test]
submission_df.to_csv('submission.csv', index=False)
return
predict_on_test(X_test, bests[-1], submission_df )<load_from_csv> | x_train2, x_val2, y_train2, y_val2 = train_test_split(x_train, y_train, test_size=VALIDATION_SPLIT, random_state=0 ) | Digit Recognizer |
9,877,165 | train_data = pd.read_csv('/kaggle/input/titanic/train.csv')
test_data = pd.read_csv('/kaggle/input/titanic/test.csv' )<filter> | def fit_model() :
model_file = './log_dir/model_file' + '.hdf5'
checkpointer = ModelCheckpoint(filepath=model_file, verbose=1, monitor='val_acc', save_best_only=True)
history = model.fit_generator(datagen.flow(x_train2, y_train2, batch_size=BATCH_SIZE),
validation_data=(x_val2, y_val2),
epochs = NB_EPOCH,
verbose = 2,
steps_per_epoch=x_train2.shape[0] // BATCH_SIZE ,
callbacks=[learning_rate, checkpointer, csv_logger, EarlyStopping_cb])
return(history ) | Digit Recognizer |
9,877,165 | women = train_data.loc[train_data.Sex == 'female']['Survived']
print('Women survived',sum(women)/len(women))
men = train_data.loc[train_data.Sex == 'male']['Survived']
print('Men survived',sum(men)/len(men))<categorify> | history = fit_model() | Digit Recognizer |
9,877,165 | train_data['female'] = pd.get_dummies(train_data['Sex'])['female']
test_data['female'] = pd.get_dummies(test_data['Sex'])['female']<feature_engineering> | results = np.zeros(( x_test.shape[0], NB_CLASSES))
model_file = './log_dir/model_file' + '.hdf5'
model.load_weights(model_file)
results = results + model.predict(x_test)
results = np.argmax(results, axis=1)
results = pd.Series(results, name="Label")
submission = pd.concat([pd.Series(range(1, 28001), name="ImageId"), results], axis=1)
submission.to_csv("submission.csv", index=False ) | Digit Recognizer |
9,877,165 | <filter><EOS> | !wc -l./submission.csv | Digit Recognizer |
9,556,788 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<filter> | for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
| Digit Recognizer |
9,556,788 | pclass1 = train_data.loc[train_data.Pclass == 1]['Survived']
print('Class1',sum(pclass1)/len(pclass1))
pclass2 = train_data.loc[train_data.Pclass == 2]['Survived']
print('Class2',sum(pclass2)/len(pclass2))
pclass3 = train_data.loc[train_data.Pclass == 3]['Survived']
print('Class3',sum(pclass3)/len(pclass3))<count_missing_values> | dataset = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
dataset | Digit Recognizer |
9,556,788 | sum(test_data.Pclass.isna() )<categorify> | np.any(dataset.isnull().sum() ) | Digit Recognizer |
9,556,788 | train_data['class1'] = pd.get_dummies(train_data.Pclass)[1]
test_data['class1'] = pd.get_dummies(test_data.Pclass)[1]
train_data['class2'] = pd.get_dummies(train_data.Pclass)[2]
test_data['class2'] = pd.get_dummies(test_data.Pclass)[2]<count_missing_values> | scaler = StandardScaler()
X = scaler.fit_transform(X)
X | Digit Recognizer |
9,556,788 | sum(test_data.SibSp.isna() )<feature_engineering> | test_data = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
X_test = test_data.values
X_test.shape | Digit Recognizer |
9,556,788 | sibs = train_data.loc[train_data.SibSp <= 1]['Survived']
print(sum(sibs)/len(sibs))
train_data['many_sibs'] =(train_data.SibSp > 1)*1
test_data['many_sibs'] =(test_data.SibSp > 1)*1<filter> | X_test_scaled = scaler.fit_transform(X_test)
X_test_scaled | Digit Recognizer |
9,556,788 | young = train_data.loc[train_data.Age <= 15]['Survived']
print(sum(young)/len(young))
old = train_data.loc[train_data.Age >=40]['Survived']
print(sum(old)/len(old))<feature_engineering> | datagen = ImageDataGenerator(rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1)
| Digit Recognizer |
9,556,788 | bins = [0.42, 15, 30, 50,80]
train_data['bin_age'] = pd.cut(x=train_data.Age, bins=bins)
test_data['bin_age'] = pd.cut(x=test_data.Age, bins=bins )<categorify> | model_list = [] | Digit Recognizer |
9,556,788 | train_data['young'] = pd.get_dummies(train_data.bin_age ).iloc[:,0]
test_data['young'] = pd.get_dummies(test_data.bin_age ).iloc[:,0]
train_data['senior'] = pd.get_dummies(train_data.bin_age ).iloc[:,3]
test_data['senior'] = pd.get_dummies(test_data.bin_age ).iloc[:,3]<import_modules> | reduce_lr = ReduceLROnPlateau(monitor='val_accuracy',
patience=3,
verbose=1,
factor=0.2,
min_lr=1e-6 ) | Digit Recognizer |
9,556,788 | from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix<split> | for i in range(7):
model = keras.models.Sequential([
keras.layers.Conv2D(32, kernel_size = 3, activation = 'relu', padding = 'same', input_shape = [28, 28, 1]),
keras.layers.BatchNormalization() ,
keras.layers.Conv2D(64, kernel_size = 3, activation = 'relu', padding = 'same'),
keras.layers.MaxPool2D() ,
keras.layers.Conv2D(32, kernel_size = 3, activation = 'relu', padding = 'same'),
keras.layers.BatchNormalization() ,
keras.layers.Conv2D(64, kernel_size = 3, activation = 'relu', padding = 'same'),
keras.layers.MaxPool2D() ,
keras.layers.Flatten() ,
keras.layers.Dropout(0.25),
keras.layers.Dense(256, activation = 'relu'),
keras.layers.Dropout(0.5),
keras.layers.Dense(10, activation = 'softmax')])
model.compile(loss = 'sparse_categorical_crossentropy', optimizer = 'nadam', metrics = ['accuracy'])
model_list.append(model)
| Digit Recognizer |
9,556,788 | X = train_data[features]
y = train_data.Survived
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state = 0 )<choose_model_class> | history = [0] * 7
for i in range(7):
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size = 0.08)
history[i] = model_list[i].fit_generator(datagen.flow(X, y, batch_size = 64),
epochs = 20, validation_data =(X_valid, y_valid), callbacks = [reduce_lr])
print("CNN : {} Maximum Train Accuracy : {} Maximum Validation Accuracy : {}".format(i+1, max(history[i].history['accuracy']), max(history[i].history['val_accuracy'])) ) | Digit Recognizer |
9,556,788 | log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
y_pred = log_reg.predict(X_test)
y_pred<compute_test_metric> | X_test_scaled = X_test_scaled.reshape(( 28000, 28, 28, 1))
X_test_scaled.shape | Digit Recognizer |
9,556,788 | accuracy_score(y_pred, y_test )<compute_test_metric> | for i in range(7):
ensemble_cnn_pred = ensemble_cnn_pred + model_list[i].predict(X_test_scaled ) | Digit Recognizer |
9,556,788 | confusion_matrix(y_pred, y_test )<train_model> | np.sum(ensemble_cnn_pred[0] ) | Digit Recognizer |
9,556,788 | model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1)
model.fit(X_train, y_train)
y_pred = model.predict(X_test )<compute_test_metric> | ensemble_cnn_pred = np.argmax(ensemble_cnn_pred, axis = 1)
ensemble_cnn_pred[0] | Digit Recognizer |
9,556,788 | accuracy_score(y_pred, y_test )<compute_test_metric> | pred_df_ensemble_cnn = pd.DataFrame(columns = ['ImageId', 'Label'])
pred_df_ensemble_cnn['ImageId'] = np.arange(1, 28001)
pred_df_ensemble_cnn['Label'] = ensemble_cnn_pred
pred_df_ensemble_cnn | Digit Recognizer |
9,556,788 | <feature_engineering><EOS> | pred_df_ensemble_cnn.to_csv('ens_cnn_with_aug_sub.csv', index = False ) | Digit Recognizer |
9,468,425 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<define_search_space> | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf | Digit Recognizer |
9,468,425 | param_grid = {
'n_estimators': [200, 500],
'max_features': ['auto', 'sqrt', 'log2'],
'max_depth' : [4,5,6,7,8],
'criterion' :['gini', 'entropy']
}
<train_model> | df=pd.read_csv(".. /input/digit-recognizer/train.csv")
df.head() | Digit Recognizer |
9,468,425 | rfc1=RandomForestClassifier(random_state=42, max_features='log2', n_estimators= 200, max_depth=6, criterion='entropy')
rfc1.fit(X_train, y_train )<save_to_csv> | df_test=pd.read_csv(".. /input/digit-recognizer/test.csv" ).values
df_test[0:5] | Digit Recognizer |
9,468,425 | predictions = rfc1.predict(test_data[features])
output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions})
output.to_csv('submission.csv', index=False)
print("Your submission was successfully saved!" )<import_modules> | X=df.drop(["label"],axis="columns" ).values
Y=df["label"].values
X=X/255.0 | Digit Recognizer |
9,468,425 | from typing import Tuple, Dict, Any
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_addons as tfa
from tensorflow.keras.metrics import Mean
import tensorflow.keras.backend as K
import tensorflow.keras.layers<feature_engineering> | x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2 ) | Digit Recognizer |
9,468,425 | def extract_titanic_features(
source: pd.DataFrame,
):
features = {
name: np.array(value, np.float32)
for name, value in source[["Age", "Fare", "SibSp", "Parch", "Pclass"]].items()
}
for age in [4, 8, 12, 16, 22, 26, 30, 35, 40, 45, 50, 60]:
features['at_least_' + str(age)] = np.array(source['Age'] >= age, np.float32)
features['name_len'] = np.array(source["Name"].str.len() , np.float32)
for title in ['Miss.', 'Master', 'Mr.', 'Mrs.']:
features['is_' + title] = np.array(source['Name'].str.contains(title), np.float32)
features["Sex"] = np.array(source["Sex"], np.str)
features["Embarked"] = np.array(source["Embarked"], np.str)
return features
train_labels = titanic_train_df["Survived"]
train_features = extract_titanic_features(titanic_train_df)
test_features = extract_titanic_features(titanic_test_df)
inputs = {
k: tf.keras.Input(shape=(1,), name=k, dtype=v.dtype)
for k, v in train_features.items()
}
preprocessed_inputs = []
numeric_inputs = {k: v for k, v in inputs.items() if v.dtype == tf.float32}
def nan_mask(
layer: tf.keras.layers.Layer,
)-> Tuple[tf.keras.layers.Layer, tf.keras.layers.Layer]:
is_nan = tf.math.is_nan(layer)
finite_input = tf.where(is_nan, tf.zeros_like(layer), layer)
norm_input = tf.keras.layers.BatchNormalization()(finite_input)
mask = tf.cast(tf.math.logical_not(is_nan), tf.float32)
return mask, norm_input
finite_numeric_inputs = {}
numeric_masks = {}
for k, v in numeric_inputs.items() :
mask_v, finite_v = nan_mask(v)
preprocessed_inputs.append(mask_v)
preprocessed_inputs.append(finite_v)
finite_numeric_inputs[k] = finite_v
numeric_masks[k] = mask_v
accomp_count = tf.math.add(
finite_numeric_inputs["Parch"], finite_numeric_inputs["SibSp"]
)
preprocessed_inputs.append(accomp_count)
gender_vocab = np.unique(train_features["Sex"])
gender_lookup = tf.keras.layers.experimental.preprocessing.StringLookup(
vocabulary=gender_vocab
)
gender_onehot = tf.keras.layers.experimental.preprocessing.CategoryEncoding(
max_tokens=gender_lookup.vocab_size()
)
gender_input = gender_onehot(gender_lookup(inputs["Sex"]))
preprocessed_inputs.append(gender_input)
embarked_vocab = np.array(( "C", "Q", "S"))
embarked_lookup = tf.keras.layers.experimental.preprocessing.StringLookup(
vocabulary=embarked_vocab
)
embarked_onehot = tf.keras.layers.experimental.preprocessing.CategoryEncoding(
max_tokens=embarked_lookup.vocab_size()
)
embarked_input = embarked_onehot(embarked_lookup(inputs["Embarked"]))
preprocessed_inputs.append(embarked_input)
x = tf.keras.layers.Concatenate()(preprocessed_inputs)
preprocess_model = tf.keras.Model(inputs, x)
tf.keras.utils.plot_model(
preprocess_model,
to_file="preprocess_model.png",
rankdir="LR",
show_shapes=True,
show_layer_names=True,
)<choose_model_class> | X=X.reshape(len(X),28,28,-1)
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2 ) | Digit Recognizer |
9,468,425 | head = preprocess_model(inputs)
columns = []
activation="relu"
for i in range(4):
c = head
c = tf.keras.layers.Dense(64, activation=activation )(c)
c = tf.keras.layers.Dropout(0.5 )(c)
c = tf.keras.layers.Dense(64, activation=activation )(c)
c = tf.keras.layers.BatchNormalization()(c)
c = tf.keras.layers.Dropout(0.2 )(c)
c = tf.keras.layers.Dense(32, activation=activation )(c)
columns.append(c)
if len(columns)== 1:
tail = columns[0]
else:
tail = tf.keras.layers.Add()(columns)
tail = tf.keras.layers.Dense(16, activation="relu" )(tail)
tail = tf.keras.layers.Dense(1, activation="sigmoid" )(tail)
model = tf.keras.Model(inputs, tail)
model.compile(
loss=tf.losses.BinaryCrossentropy() ,
optimizer=tfa.optimizers.Lookahead(tf.keras.optimizers.Nadam()),
metrics=["accuracy"],
)
if False:
model.summary()
tf.keras.utils.plot_model(
model,
to_file="final_model.png",
rankdir="LR",
show_shapes=True,
)
callbacks = [
tf.keras.callbacks.ProgbarLogger() ,
tf.keras.callbacks.EarlyStopping(
monitor='val_loss',
patience=10,
),
]
fit_params = dict(
batch_size=128,
validation_freq=1,
validation_split=0.1,
epochs=300,
verbose=0,
callbacks=[callbacks],
)
submit = True
if submit:
fit_params.update(dict(
validation_freq=0,
validation_split=0,
epochs=125,
verbose=0,
))
history = model.fit(
train_features,
train_labels.to_numpy() ,
**fit_params,
)
print("accuracy:", history.history['accuracy'][-1])
if not submit:
print("val_accuracy:", history.history['val_accuracy'][-1])
plt.plot(history.history['accuracy'][10:])
plt.plot(history.history['loss'][10:])
if not submit:
plt.plot(history.history['val_accuracy'][10:])
plt.plot(history.history['val_loss'][10:])
plt.xlabel('epoch')
plt.show()<save_to_csv> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(x_train ) | Digit Recognizer |
9,468,425 | test_predictions = model(test_features)
test_ids = titanic_test_df["PassengerId"].to_numpy()
test_hard_predictions =(
np.floor(np.array(test_predictions)+ 0.5 ).astype("int" ).reshape(-1)
)
pred_df = pd.Series(data=test_hard_predictions, name="Survived", index=test_ids)
pred_df.to_csv(
"submission.csv",
index_label="PassengerId",
header=["Survived"],
)<load_from_csv> | reduce_lr = tf.keras.callbacks.LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x ) | Digit Recognizer |
9,468,425 | train_data = pd.read_csv('.. /input/titanic/train.csv')
test_data = pd.read_csv('.. /input/titanic/test.csv')
train_data.info()<sort_values> | model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(16,(3,3),padding='same',activation='relu',input_shape=(28,28,1)) ,
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.MaxPooling2D() ,
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Conv2D(32,(3,3),padding='same',activation='relu'),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.MaxPooling2D() ,
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Conv2D(64,(3,3),padding='same',activation='relu'),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Conv2D(64,(3,3),padding='same',activation='relu'),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Flatten() ,
tf.keras.layers.Dense(1024, activation="relu"),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(512, activation="relu"),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Dense(10, activation="softmax")
])
optimizer=tf.keras.optimizers.Adam(lr=0.001)
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.summary() | Digit Recognizer |
9,468,425 | missing_train_total = train_data.isnull().sum().sort_values(ascending= False)
missing_train_percentage =(train_data.isnull().sum() /train_data.count() ).sort_values(ascending= False)
missing_train_data = pd.concat([missing_train_total, missing_train_percentage], axis=1, keys=['Total', 'Percent'])
missing_train_data.head(10 )<sort_values> | batch_size = 64
epochs = 20
history = model.fit_generator(datagen.flow(x_train, y_train, batch_size = batch_size), epochs = epochs,
validation_data =(x_test, y_test), verbose=2,
steps_per_epoch=x_train.shape[0] // batch_size,
callbacks = [reduce_lr] ) | Digit Recognizer |
9,468,425 | missing_test_total = test_data.isnull().sum().sort_values(ascending= False)
missing_test_percentage =(test_data.isnull().sum() /test_data.count() ).sort_values(ascending= False)
missing_test_data = pd.concat([missing_test_total, missing_test_percentage], axis=1, keys=['Total', 'Percent'])
missing_test_data.head(10 )<groupby> | model.evaluate(x_test,y_test ) | Digit Recognizer |
9,468,425 | train_data.groupby('Pclass')['Age'].mean()<groupby> | y_pred=model.predict(x_test)
y_preds=[np.argmax(pred)for pred in y_pred]
accuracy_score(y_preds,y_test ) | Digit Recognizer |
9,468,425 | train_data.groupby(['Pclass','Sex'])['Sex'].count()<groupby> | df_test=df_test.reshape(len(df_test),28,28,-1)
a_pred=model.predict(( df_test)/255.0)
a_preds=[np.argmax(pred)for pred in a_pred]
samp=pd.read_csv(".. /input/digit-recognizer/sample_submission.csv")
samp["Label"]=a_preds
samp.head() | Digit Recognizer |
9,468,425 | train_data.groupby('Sex')['Sex'].count()<groupby> | samp.to_csv("outputCNN.csv",index=False ) | Digit Recognizer |
9,468,425 | mean = train_data.groupby(['Pclass','Sex'])['Age'].mean()
median = train_data.groupby(['Pclass','Sex'])['Age'].median()
age_sex_Pclass = pd.concat([mean, median], axis=1, keys=['Age mean', 'Age median'])
age_sex_Pclass.head(6)
<count_values> | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf | Digit Recognizer |
9,468,425 | train_data.Embarked.value_counts()<prepare_x_and_y> | df=pd.read_csv(".. /input/digit-recognizer/train.csv")
df.head() | Digit Recognizer |
9,468,425 | features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
X = train_data[features]
y = train_data.Survived
Pclass_Sex_Age_median = X.groupby(['Pclass','Sex'] ).Age.transform('median')
X.Age.fillna(Pclass_Sex_Age_median, inplace = True)
Pclass_Fare_median = X.groupby('Pclass' ).Fare.transform('median')
X.Fare.fillna(Pclass_Fare_median, inplace = True)
missing_test_total = X.isnull().sum().sort_values(ascending= False)
X.Embarked.fillna('S', inplace = True)
X['Embarked'].replace({'S': 0, 'Q': 1, 'C': 2}, inplace = True)
X['Sex'].replace({'female': 0, 'male': 1}, inplace = True)
X.info()
print(X.Sex )<split> | df_test=pd.read_csv(".. /input/digit-recognizer/test.csv" ).values
df_test[0:5] | Digit Recognizer |
9,468,425 | X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.25, random_state=1)
print(type(X_train))
<predict_on_test> | X=df.drop(["label"],axis="columns" ).values
Y=df["label"].values
X=X/255.0 | Digit Recognizer |
9,468,425 | clf_mae=[]
for md in range(8):
clf = RandomForestClassifier(max_depth=(md+1), random_state=1)
clf.fit(X_train, y_train)
predictions = clf.predict(X_val)
mae =(1.- mean_absolute_error(predictions, y_val)) *100.
clf_mae.append(mae)
print(clf_mae )<predict_on_test> | x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2 ) | Digit Recognizer |
9,468,425 | clf = RandomForestClassifier(max_depth=4, random_state=1)
clf.fit(X_train, y_train)
predictions = clf.predict(X_val)
mae =(1.- mean_absolute_error(predictions, y_val)) *100.
print(mae )<compute_train_metric> | X=X.reshape(len(X),28,28,-1)
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2 ) | Digit Recognizer |
9,468,425 | logreg = LogisticRegression(solver='liblinear')
logreg.fit(X_train, y_train)
predictions = logreg.predict(X_val)
mae = mean_absolute_error(predictions, y_val)
print(( 1-mae)*100,"%")
<sort_values> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(x_train ) | Digit Recognizer |
9,468,425 | missing_test_total = test_data.isnull().sum().sort_values(ascending= False)
missing_test_total.head()<categorify> | reduce_lr = tf.keras.callbacks.LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x ) | Digit Recognizer |
9,468,425 | Pclass_Sex_Age_median = test_data.groupby(['Pclass','Sex'] ).Age.transform('median')
test_data.Age.fillna(Pclass_Sex_Age_median, inplace = True)
Pclass_Fare_median = test_data.groupby('Pclass' ).Fare.transform('median')
test_data.Fare.fillna(Pclass_Fare_median, inplace = True)
test_data['Embarked'].replace({'S': 0, 'Q': 1, 'C': 2}, inplace = True)
test_data['Sex'].replace({'female': 0, 'male': 1}, inplace = True)
<sort_values> | model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(16,(3,3),padding='same',activation='relu',input_shape=(28,28,1)) ,
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.MaxPooling2D() ,
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Conv2D(32,(3,3),padding='same',activation='relu'),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.MaxPooling2D() ,
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Conv2D(64,(3,3),padding='same',activation='relu'),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Conv2D(64,(3,3),padding='same',activation='relu'),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Flatten() ,
tf.keras.layers.Dense(1024, activation="relu"),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(512, activation="relu"),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Dense(10, activation="softmax")
])
optimizer=tf.keras.optimizers.Adam(lr=0.001)
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.summary() | Digit Recognizer |
9,468,425 | missing_test_total = test_data.isnull().sum().sort_values(ascending= False)
missing_test_total.head()<save_to_csv> | batch_size = 64
epochs = 20
history = model.fit_generator(datagen.flow(x_train, y_train, batch_size = batch_size), epochs = epochs,
validation_data =(x_test, y_test), verbose=2,
steps_per_epoch=x_train.shape[0] // batch_size,
callbacks = [reduce_lr] ) | Digit Recognizer |
9,468,425 |
<data_type_conversions> | model.evaluate(x_test,y_test ) | Digit Recognizer |
9,468,425 | name_list_train = train_data.Name.to_list()
print(name_list_train )<count_values> | y_pred=model.predict(x_test)
y_preds=[np.argmax(pred)for pred in y_pred]
accuracy_score(y_preds,y_test ) | Digit Recognizer |
9,468,425 | list_of_titles = title_retriever(name_list_train)
print(len(list_of_titles))
train_data['Title'] = list_of_titles
train_data.Title.value_counts()<categorify> | df_test=df_test.reshape(len(df_test),28,28,-1)
a_pred=model.predict(( df_test)/255.0)
a_preds=[np.argmax(pred)for pred in a_pred]
samp=pd.read_csv(".. /input/digit-recognizer/sample_submission.csv")
samp["Label"]=a_preds
samp.head() | Digit Recognizer |
9,468,425 | Title_Age_median = train_data.groupby(['Title'] ).Age.transform('median')
train_data.Age.fillna(Title_Age_median, inplace = True)
<data_type_conversions> | samp.to_csv("outputCNN.csv",index=False ) | Digit Recognizer |
9,039,809 | name_list_test = test_data.Name.to_list()
print(name_list_test )<count_values> | import matplotlib.pyplot as plt
import seaborn as sns
import keras
from keras.models import Sequential
from keras.layers import Dense, Conv2D , MaxPool2D , Flatten , Dropout
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_matrix | Digit Recognizer |
9,039,809 | list_of_titles_test = title_retriever(name_list_test)
print(len(list_of_titles_test))
test_data['Title'] = list_of_titles_test
test_data.Title.value_counts()<categorify> | train_df = pd.read_csv(".. /input/digit-recognizer/train.csv")
test_df = pd.read_csv(".. /input/digit-recognizer/test.csv")
submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv" ) | Digit Recognizer |
9,039,809 | Title_Age_median_test = test_data.groupby(['Title'] ).Age.transform('median')
test_data.Age.fillna(Title_Age_median_test, inplace = True)
<categorify> | y_train = train_df['label']
y = train_df['label']
del train_df['label']
| Digit Recognizer |
9,039,809 | X = train_data[features]
y = train_data.Survived
Pclass_Fare_median = X.groupby('Pclass' ).Fare.transform('median')
X.Fare.fillna(Pclass_Fare_median, inplace = True)
X.Embarked.fillna('S', inplace = True)
X['Embarked'].replace({'S': 0, 'Q': 1, 'C': 2}, inplace = True)
X['Sex'].replace({'female': 0, 'male': 1}, inplace = True)
X.info()
print(X.Sex)
<save_to_csv> | label_binarizer = LabelBinarizer()
y_train = label_binarizer.fit_transform(y_train)
print(train_df.shape,y_train.shape)
| Digit Recognizer |
9,039,809 | X_test = test_data[features]
clf.fit(X, y)
predictions = clf.predict(X_test)
output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions})
output.to_csv('submission.csv', index=False)
print("Your submission was successfully saved!" )<load_from_csv> | x_train = x_train / 255
x_test = x_test / 255 | Digit Recognizer |
9,039,809 | train_data = pd.read_csv('/kaggle/input/titanic/train.csv')
test_data = pd.read_csv('/kaggle/input/titanic/test.csv' )<filter> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(x_train ) | Digit Recognizer |
9,039,809 | women = train_data.loc[train_data.Sex == 'female']['Survived']
print('Women survived',sum(women)/len(women))
men = train_data.loc[train_data.Sex == 'male']['Survived']
print('Men survived',sum(men)/len(men))<categorify> | x_train,x_val,y_train,y_val = train_test_split(x_train,y_train,test_size = 0.1)
print(x_train.shape,x_val.shape,y_train.shape,y_val.shape ) | Digit Recognizer |
9,039,809 | train_data['female'] = pd.get_dummies(train_data['Sex'])['female']
test_data['female'] = pd.get_dummies(test_data['Sex'])['female']<feature_engineering> | model = Sequential()
model.add(Conv2D(150 ,(3,3), strides = 1 , padding = 'same' , activation = 'relu' , input_shape =(28,28,1)))
model.add(MaxPool2D(( 2,2), strides = 2 , padding = 'same'))
model.add(Conv2D(100 ,(3,3), strides = 1 , padding = 'same' , activation = 'relu'))
model.add(Dropout(0.1))
model.add(MaxPool2D(( 2,2), strides = 2 , padding = 'same'))
model.add(Conv2D(75 ,(5,5), strides = 1 , padding = 'same' , activation = 'relu'))
model.add(Dropout(0.2))
model.add(MaxPool2D(( 2,2), strides = 2 , padding = 'same'))
model.add(Conv2D(50 ,(4,4), strides = 1 , padding = 'same' , activation = 'relu'))
model.add(Dropout(0.15))
model.add(MaxPool2D(( 2,2), strides = 2 , padding = 'same'))
model.add(Conv2D(25 ,(4,4), strides = 1 , padding = 'same' , activation = 'relu'))
model.add(MaxPool2D(( 2,2), strides = 2 , padding = 'same'))
model.add(Flatten())
model.add(Dense(units = 512 , activation = 'relu'))
model.add(Dropout(0.25))
model.add(Dense(units = 10 , activation = 'softmax'))
model.compile(optimizer = 'adam' , loss = 'categorical_crossentropy' , metrics = ['accuracy'])
model.summary() | Digit Recognizer |
9,039,809 | sum(train_data['Age'].isnull())
train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean())
test_data['Age'] = test_data['Age'].fillna(test_data['Age'].mean() )<filter> | history = model.fit(datagen.flow(x_train,y_train, batch_size = 256),epochs = 30 , validation_data =(x_val, y_val)) | Digit Recognizer |
9,039,809 | <filter><EOS> | y_pred=model.predict_classes(x_test)
submission.head()
submission=pd.DataFrame({'ImageId': submission.ImageId,'Label':y_pred})
submission.to_csv('/kaggle/working/submission.csv',index=False)
check=pd.read_csv('/kaggle/working/submission.csv')
check | Digit Recognizer |
8,885,855 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<count_missing_values> | np.random.seed(2)
%matplotlib inline
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
| Digit Recognizer |
8,885,855 | sum(test_data.Pclass.isna() )<categorify> | train=pd.read_csv('.. /input/digit-recognizer/train.csv')
test=pd.read_csv('.. /input/digit-recognizer/test.csv')
print(train.shape)
print(test.shape)
| Digit Recognizer |
8,885,855 | train_data['class1'] = pd.get_dummies(train_data.Pclass)[1]
test_data['class1'] = pd.get_dummies(test_data.Pclass)[1]
train_data['class2'] = pd.get_dummies(train_data.Pclass)[2]
test_data['class2'] = pd.get_dummies(test_data.Pclass)[2]<count_missing_values> | Y_train = train["label"]
X_train = train.drop(labels = ["label"],axis = 1)
del train
print(X_train.shape)
print(Y_train.shape)
X_train = X_train / 255.0
test = test / 255.0
X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1)
print(X_train.shape)
print(test.shape ) | Digit Recognizer |
8,885,855 | sum(test_data.SibSp.isna() )<feature_engineering> | Y_train = to_categorical(Y_train, num_classes = 10 ) | Digit Recognizer |
8,885,855 | sibs = train_data.loc[train_data.SibSp <= 1]['Survived']
print(sum(sibs)/len(sibs))
train_data['many_sibs'] =(train_data.SibSp > 1)*1
test_data['many_sibs'] =(test_data.SibSp > 1)*1<filter> | class LeNet:
@staticmethod
def build(input_shape, classes):
model = Sequential()
model.add(Conv2D(20, kernel_size=5, padding="same",
input_shape=input_shape))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(50, kernel_size=5, padding="same"))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(500))
model.add(Dropout(0.3))
model.add(Activation("relu"))
model.add(Dense(classes))
model.add(Activation("softmax"))
return model
| Digit Recognizer |
8,885,855 | young = train_data.loc[train_data.Age <= 15]['Survived']
print(sum(young)/len(young))
old = train_data.loc[train_data.Age >=40]['Survived']
print(sum(old)/len(old))<feature_engineering> | NB_EPOCH = 20
BATCH_SIZE = 128
VERBOSE = 1
OPTIMIZER = Adam()
VALIDATION_SPLIT=0.2
IMG_ROWS, IMG_COLS = 28, 28
NB_CLASSES = 10
INPUT_SHAPE =(IMG_ROWS, IMG_COLS, 1)
| Digit Recognizer |
8,885,855 | bins = [0.42, 15, 30, 50,80]
train_data['bin_age'] = pd.cut(x=train_data.Age, bins=bins)
test_data['bin_age'] = pd.cut(x=test_data.Age, bins=bins )<categorify> | model = LeNet.build(input_shape=INPUT_SHAPE, classes=NB_CLASSES)
model.compile(loss="categorical_crossentropy", optimizer=OPTIMIZER,
metrics=["accuracy"])
| Digit Recognizer |
8,885,855 | train_data['young'] = pd.get_dummies(train_data.bin_age ).iloc[:,0]
test_data['young'] = pd.get_dummies(test_data.bin_age ).iloc[:,0]
train_data['senior'] = pd.get_dummies(train_data.bin_age ).iloc[:,3]
test_data['senior'] = pd.get_dummies(test_data.bin_age ).iloc[:,3]<import_modules> | history = model.fit(X_train, Y_train,
batch_size=BATCH_SIZE, epochs=NB_EPOCH,
verbose=VERBOSE, validation_split=VALIDATION_SPLIT)
| Digit Recognizer |
8,885,855 | from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix<split> | lr_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience=3, verbose=1, factor=0.5, min_lr=0.00001)
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=2)
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
8,885,855 | X = train_data[features]
y = train_data.Survived
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state = 0 )<choose_model_class> | NB_EPOCH = 30
BATCH_SIZE = 128
VERBOSE = 1
model.compile(loss="categorical_crossentropy", optimizer=OPTIMIZER,
metrics=["accuracy"])
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=BATCH_SIZE),
epochs = NB_EPOCH, validation_data =(X_val,Y_val),
verbose = VERBOSE, steps_per_epoch=X_train.shape[0] // BATCH_SIZE
, callbacks=[lr_reduction] ) | Digit Recognizer |
8,885,855 | log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
y_pred = log_reg.predict(X_test)
y_pred<compute_test_metric> | results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
| Digit Recognizer |
8,885,855 | <compute_test_metric><EOS> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("LeNet_mnist_datagen.csv",index=False)
| Digit Recognizer |
10,762,457 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<train_model> | %matplotlib inline
np.random.seed(2)
dense_regularizer = L1L2(l2=0.0001)
os.chdir('/kaggle/working')
sns.set(style='white', context='notebook', palette='deep' ) | Digit Recognizer |
10,762,457 | model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1)
model.fit(X_train, y_train)
y_pred = model.predict(X_test )<compute_test_metric> | train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ) | Digit Recognizer |
10,762,457 | accuracy_score(y_pred, y_test )<compute_test_metric> | Y = train["label"]
X = train.drop(labels = ["label"],axis = 1 ) | Digit Recognizer |
10,762,457 | confusion_matrix(y_pred, y_test )<feature_engineering> | X = X / 255.0
test = test / 255.0 | Digit Recognizer |
10,762,457 | test_data.Fare = test_data.Fare.fillna(test_data.Fare.mean() )<define_search_space> | Y = to_categorical(Y, num_classes = 10 ) | Digit Recognizer |
10,762,457 | param_grid = {
'n_estimators': [200, 500],
'max_features': ['auto', 'sqrt', 'log2'],
'max_depth' : [4,5,6,7,8],
'criterion' :['gini', 'entropy']
}
<train_model> | random_seed = 2
X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size = 0.1, random_state=random_seed ) | Digit Recognizer |
10,762,457 | rfc1=RandomForestClassifier(random_state=42, max_features='log2', n_estimators= 200, max_depth=6, criterion='entropy')
rfc1.fit(X_train, y_train )<save_to_csv> | model1 = Sequential()
model1.add(Conv2D(filters = 32, kernel_size =(5,5), padding = 'Same', activation ='relu', input_shape =(28,28,1)))
model1.add(Conv2D(filters = 32, kernel_size =(5,5), padding = 'Same', activation ='relu'))
model1.add(MaxPool2D(pool_size=(2,2)))
model1.add(Dropout(0.25))
model1.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model1.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model1.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model1.add(Dropout(0.25))
model1.add(Flatten())
model1.add(Dense(256, activation = "relu"))
model1.add(Dropout(0.5))
model1.add(Dense(10, activation = "softmax"))
model1.compile(optimizer = 'adam' , loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
10,762,457 | predictions = rfc1.predict(test_data[features])
output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions})
output.to_csv('my_submission3.csv', index=False)
print("Your submission was successfully saved!" )<import_modules> | epochs = 5
batch_size = 86
model1.fit(
X_train,
Y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(X_val, Y_val),
verbose=2
) | Digit Recognizer |
10,762,457 | import numpy as np
import pandas as pd
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import ComplementNB
from sklearn.naive_bayes import BernoulliNB
from sklearn.naive_bayes import CategoricalNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import Perceptron
from sklearn.svm import SVC
from sklearn.linear_model import SGDClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier<load_from_csv> | results = model1.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission1 = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission1.to_csv("sub1.csv",index=False ) | Digit Recognizer |
10,762,457 | train_data = pd.read_csv('.. /input/titanic/train.csv')
test_data = pd.read_csv('.. /input/titanic/test.csv' )<count_missing_values> | model1.compile(optimizer = 'RMSprop' , loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
10,762,457 | missing_values = train_data.isna().any()
print('Columns which have missing values:
{0}'.format(missing_values[missing_values == True].index.tolist()))<count_missing_values> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 ) | Digit Recognizer |
10,762,457 | print("Percentage of missing values in `Age` column: {0:.2f}".format(100.*(train_data.Age.isna().sum() /len(train_data))))
print("Percentage of missing values in `Cabin` column: {0:.2f}".format(100.*(train_data.Cabin.isna().sum() /len(train_data))))
print("Percentage of missing values in `Embarked` column: {0:.2f}".format(100.*(train_data.Embarked.isna().sum() /len(train_data))))<count_duplicates> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
10,762,457 | duplicates = train_data.duplicated().sum()
print('Duplicates in train data: {0}'.format(duplicates))<count_unique_values> | epochs = 5
batch_size = 86
history = model1.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
10,762,457 | categorical = train_data.nunique().sort_values(ascending=True)
print('Categorical variables in train data:
{0}'.format(categorical))<drop_column> | results = model1.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission2 = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission2.to_csv("sub2.csv",index=False ) | Digit Recognizer |
10,762,457 | def clean_data(data):
data.drop(['Cabin'], axis=1, inplace=True)
data.drop(['Name', 'Ticket', 'Fare', 'Embarked'], axis=1, inplace=True)
return data
train_data = clean_data(train_data)
test_data = clean_data(test_data )<data_type_conversions> | def Model_2(x=None):
model = Sequential()
model.add(Conv2D(64,(5, 5), input_shape=(28,28,1), padding='same', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(Conv2D(64,(5, 5), padding='same', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(Conv2D(64,(5, 5), padding='same', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Dropout(0.3))
model.add(Conv2D(128,(3, 3), padding='same', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(Conv2D(128,(3, 3), padding='same', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(Conv2D(128,(3, 3), padding='same', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(256,(3, 3), padding='same', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(Conv2D(256,(3, 3), padding='same', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(Conv2D(256,(3, 3), padding='same', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(512,(3, 3), padding='same', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(Conv2D(512,(3, 3), padding='same', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(MaxPooling2D(pool_size=(3, 3), strides=(3, 3)))
model.add(Flatten())
model.add(Dense(10, activation='softmax', kernel_regularizer=dense_regularizer,kernel_initializer="he_normal"))
return model
model2 = Model_2() | Digit Recognizer |
10,762,457 | train_data['Sex'].replace({'male':0, 'female':1}, inplace=True)
test_data['Sex'].replace({'male':0, 'female':1}, inplace=True)
all_data = pd.concat([train_data, test_data])
average = all_data.Age.median()
print("Average Age: {0}".format(average))
train_data.fillna(value={'Age': average}, inplace=True)
test_data.fillna(value={'Age': average}, inplace=True )<prepare_x_and_y> | optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model2.compile(optimizer = optimizer , loss = "sparse_categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
10,762,457 | X = train_data.drop(['Survived', 'PassengerId'], axis=1)
y = train_data['Survived']
test_X = test_data.drop(['PassengerId'], axis=1 )<train_on_grid> | Y = train["label"]
Y = np.array(Y ) | Digit Recognizer |
10,762,457 | best_models = {}
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1)
def print_best_parameters(hyperparameters, best_parameters):
value = "Best parameters: "
for key in hyperparameters:
value += str(key)+ ": " + str(best_parameters[key])+ ", "
if hyperparameters:
print(value[:-2])
def get_best_model(estimator, hyperparameters, fit_params={}):
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
grid_search = GridSearchCV(estimator=estimator, param_grid=hyperparameters, n_jobs=-1, cv=cv, scoring="accuracy")
best_model = grid_search.fit(train_X, train_y, **fit_params)
best_parameters = best_model.best_estimator_.get_params()
print_best_parameters(hyperparameters, best_parameters)
return best_model
def evaluate_model(model, name):
print("Accuracy score:", accuracy_score(train_y, model.predict(train_X)))
best_models[name] = model<choose_model_class> | k_fold = StratifiedKFold(n_splits=10, random_state=12, shuffle=True)
batch_size = 86
epochs = 10
for k_train_index, k_test_index in k_fold.split(X, Y):
model2.fit_generator(datagen.flow(X[k_train_index,:],Y[k_train_index], batch_size=batch_size),
epochs = epochs, validation_data =(X[k_test_index,:],Y[k_test_index]),
verbose = 2, steps_per_epoch=X[k_train_index,:].shape[0] // batch_size
, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
10,762,457 | hyperparameters = {
'solver' : ['newton-cg', 'lbfgs', 'liblinear'],
'penalty' : ['l2'],
'C' : [100, 10, 1.0, 0.1, 0.01]
}
estimator = LogisticRegression(random_state=1)
best_model_logistic = get_best_model(estimator, hyperparameters )<find_best_params> | val_loss, val_acc = model2.evaluate(X, Y)
val_acc | Digit Recognizer |
10,762,457 | evaluate_model(best_model_logistic.best_estimator_, 'logistic' )<choose_model_class> | results = model2.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission3 = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission3.to_csv("sub3.csv",index=False ) | Digit Recognizer |
10,286,233 | hyperparameters = {
'var_smoothing': np.logspace(0, -9, num=100)
}
estimator = GaussianNB()
best_model_gaussian_nb = get_best_model(estimator, hyperparameters )<find_best_params> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
test_data = pd.read_csv('.. /input/digit-recognizer/test.csv')
print(train.info() ) | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.