kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
10,286,233
evaluate_model(best_model_gaussian_nb.best_estimator_, 'gaussian_nb' )<choose_model_class>
X_train = train.iloc[:,1:] y_train = train.iloc[:,0]
Digit Recognizer
10,286,233
hyperparameters = { 'alpha' : [0.5, 1.0, 1.5, 2.0, 5], 'fit_prior' : [True, False], } estimator = MultinomialNB() best_model_multinominal_nb = get_best_model(estimator, hyperparameters )<find_best_params>
X_train = X_train/255.0 test_data = test_data/255.0 X_train = X_train.values.reshape(-1,28,28,1) test_data = test_data.values.reshape(-1,28,28,1 )
Digit Recognizer
10,286,233
evaluate_model(best_model_multinominal_nb.best_estimator_, 'multinominal_nb' )<choose_model_class>
import tensorflow as tf from tensorflow import keras from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dropout, Lambda, Flatten, Dense from keras.utils.np_utils import to_categorical
Digit Recognizer
10,286,233
hyperparameters = { 'alpha' : [0.5, 1.0, 1.5, 2.0, 5], 'fit_prior' : [True, False], 'norm' : [True, False] } estimator = ComplementNB() best_model_complement_nb = get_best_model(estimator, hyperparameters )<find_best_params>
y_train = to_categorical(y_train,num_classes=10 )
Digit Recognizer
10,286,233
evaluate_model(best_model_complement_nb.best_estimator_, 'complement_nb' )<choose_model_class>
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.1, random_state=42 )
Digit Recognizer
10,286,233
hyperparameters = { 'alpha' : [0.5, 1.0, 1.5, 2.0, 5], 'fit_prior' : [True, False], } estimator = BernoulliNB() best_model_bernoulli_nb = get_best_model(estimator, hyperparameters )<find_best_params>
model = Sequential() model.add(Conv2D(32,(5,5),padding='Same', activation='relu', kernel_initializer='glorot_uniform', input_shape=(28, 28, 1))) model.add(Conv2D(32,(5,5),padding='Same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64,(3,3), padding='Same', activation='relu')) model.add(Conv2D(64,(3,3), padding='Same', activation='relu')) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
10,286,233
evaluate_model(best_model_bernoulli_nb.best_estimator_, 'bernoulli_nb' )<choose_model_class>
opt = RMSprop(lr=0.001) model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
10,286,233
hyperparameters = { 'n_neighbors' : list(range(1,5)) , 'weights' : ['uniform', 'distance'], 'algorithm' : ['auto', 'ball_tree', 'kd_tree', 'brute'], 'leaf_size' : list(range(1,10)) , 'p' : [1,2] } estimator = KNeighborsClassifier() best_model_kneighbors = get_best_model(estimator, hyperparameters )<find_best_params>
from keras.preprocessing.image import ImageDataGenerator,img_to_array,load_img import itertools
Digit Recognizer
10,286,233
evaluate_model(best_model_kneighbors.best_estimator_, 'kneighbors' )<choose_model_class>
datagen = ImageDataGenerator(rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1) datagen.fit(X_train) history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=86), epochs = 30, validation_data =(X_test,y_test),verbose = 2, steps_per_epoch=X_train.shape[0]/86 )
Digit Recognizer
10,286,233
hyperparameters = { 'penalty' : ['l1', 'l2', 'elasticnet'], 'eta0' : [0.0001, 0.001, 0.01, 0.1, 1.0], 'max_iter' : list(range(50, 200, 50)) } estimator = Perceptron(random_state=1) best_model_perceptron = get_best_model(estimator, hyperparameters )<find_best_params>
pred = model.predict(test_data) pred
Digit Recognizer
10,286,233
evaluate_model(best_model_perceptron.best_estimator_, 'perceptron' )<find_best_params>
prediction = np.argmax(pred, axis = 1) prediction
Digit Recognizer
10,286,233
hyperparameters = { 'C' : [0.1, 1, 10, 100], 'gamma' : [0.0001, 0.001, 0.01, 0.1, 1], 'kernel' : ['rbf'] } estimator = SVC(random_state=1) best_model_svc = get_best_model(estimator, hyperparameters )<find_best_params>
submission = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv') submission['Label'] = prediction submission.head(10 )
Digit Recognizer
10,286,233
evaluate_model(best_model_svc.best_estimator_, 'svc' )<choose_model_class>
submission.to_csv("submission.csv", index=False, header=True )
Digit Recognizer
9,566,226
hyperparameters = { 'loss' : ['hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron'], 'penalty' : ['l1', 'l2', 'elasticnet'], 'alpha' : [0.01, 0.1, 1, 10] } estimator = SGDClassifier(random_state=1, early_stopping=True) best_model_sgd = get_best_model(estimator, hyperparameters )<find_best_params>
%matplotlib inline np.random.seed(2)
Digit Recognizer
9,566,226
evaluate_model(best_model_sgd.best_estimator_, 'sgd' )<choose_model_class>
from keras.layers import Dense from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.layers import Flatten from keras.layers import Dropout from keras.layers import Activation
Digit Recognizer
9,566,226
hyperparameters = { 'loss' : ['deviance', 'exponential'], 'learning_rate' : [0.01, 0.1, 0.2, 0.3], 'n_estimators' : [50, 100, 200], 'subsample' : [0.1, 0.2, 0.5, 1.0], 'max_depth' : [2, 3, 4, 5] } estimator = GradientBoostingClassifier(random_state=1) best_model_gbc = get_best_model(estimator, hyperparameters )<find_best_params>
train_df = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') train_df.head()
Digit Recognizer
9,566,226
evaluate_model(best_model_gbc.best_estimator_, 'gbc' )<choose_model_class>
test_df = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') test_df.head()
Digit Recognizer
9,566,226
hyperparameters = { 'n_estimators' : [10, 50, 100, 500], 'learning_rate' : [0.001, 0.01, 0.1, 1.0] } estimator = AdaBoostClassifier(random_state=1) best_model_adaboost = get_best_model(estimator, hyperparameters )<find_best_params>
columns = train_df.columns X = train_df[columns[columns != 'label']] y = train_df['label']
Digit Recognizer
9,566,226
evaluate_model(best_model_adaboost.best_estimator_, 'adaboost' )<choose_model_class>
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state = 4 )
Digit Recognizer
9,566,226
hyperparameters = { 'criterion' : ['gini', 'entropy'], 'splitter' : ['best', 'random'], 'max_depth' : [None, 1, 2, 3, 4, 5], 'min_samples_split' : list(range(2,5)) , 'min_samples_leaf' : list(range(1,5)) } estimator = DecisionTreeClassifier(random_state=1) best_model_decision_tree = get_best_model(estimator, hyperparameters )<find_best_params>
X_train = X_train.values.reshape(X_train.shape[0], 28, 28, 1 ).astype('float32') X_test = X_test.values.reshape(X_test.shape[0], 28, 28, 1 ).astype('float32' )
Digit Recognizer
9,566,226
evaluate_model(best_model_decision_tree.best_estimator_, 'decision_tree' )<define_search_space>
X_train = X_train / 255 X_test = X_test / 255
Digit Recognizer
9,566,226
hyperparameters = { 'n_estimators' : list(range(10, 50, 10)) , 'max_features' : ['auto', 'sqrt', 'log2'], 'criterion' : ['gini', 'entropy'], 'max_depth' : [None, 1, 2, 3, 4, 5], 'min_samples_split' : list(range(2,5)) , 'min_samples_leaf' : list(range(1,5)) } estimator = RandomForestClassifier(random_state=1) best_model_random_forest = get_best_model(estimator, hyperparameters )<find_best_params>
y_train = to_categorical(y_train) y_test = to_categorical(y_test) num_classes = y_test.shape[1]
Digit Recognizer
9,566,226
evaluate_model(best_model_random_forest.best_estimator_, 'random_forest' )<init_hyperparams>
def convolutional_model() : ADAMAX = optimizers.Adamax(lr = 0.002, beta_1 = 0.9, beta_2 = 0.999) model = Sequential() model.add(Conv2D(32,(4, 4), activation = 'relu', input_shape =(28, 28, 1))) model.add(Conv2D(64,(3, 3), activation = 'relu')) model.add(MaxPooling2D(pool_size =(2, 2), strides =(2, 2))) model.add(BatchNormalization(axis = -1)) model.add(Dropout(0.2)) model.add(Conv2D(128,(3, 3), activation = 'relu')) model.add(MaxPooling2D(pool_size =(2, 2), strides =(2, 2))) model.add(BatchNormalization(axis = -1)) model.add(Dropout(0.2)) model.add(Conv2D(128,(2, 2), activation = 'relu')) model.add(Conv2D(256,(2, 2), activation = 'relu')) model.add(MaxPooling2D(pool_size =(2, 2), strides =(2, 2))) model.add(BatchNormalization(axis = -1)) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(256, activation = 'relu')) model.add(BatchNormalization()) model.add(Dense(128, activation = 'relu')) model.add(Activation('relu')) model.add(Dropout(0.2)) model.add(Dense(num_classes, activation = 'softmax')) model.compile(optimizer = ADAMAX, loss = 'categorical_crossentropy', metrics = ['accuracy']) return model
Digit Recognizer
9,566,226
hyperparameters = { 'learning_rate' : [0.3, 0.4, 0.5], 'gamma' : [0, 0.4, 0.8], 'max_depth' : [2, 3, 4], 'reg_lambda' : [0, 0.1, 1], 'reg_alpha' : [0.1, 1] } fit_params = { 'verbose' : False, 'early_stopping_rounds' : 40, 'eval_metric' : 'logloss', 'eval_set' : [(val_X, val_y)] } estimator = XGBClassifier(seed=1, tree_method='gpu_hist', predictor='gpu_predictor', use_label_encoder=False) best_model_xgb = get_best_model(estimator, hyperparameters, fit_params )<find_best_params>
gen = ImageDataGenerator(rotation_range = 12, width_shift_range = 0.1, shear_range = 0.1, height_shift_range = 0.1, zoom_range = 0.1, fill_mode = 'nearest', horizontal_flip = False, vertical_flip = False, featurewise_center = False, samplewise_center = False, featurewise_std_normalization = False, samplewise_std_normalization = False) test_gen = ImageDataGenerator() train_generator = gen.flow(X_train, y_train, batch_size = 32) test_generator = test_gen.flow(X_test, y_test, batch_size = 32 )
Digit Recognizer
9,566,226
evaluate_model(best_model_xgb.best_estimator_, 'xgb' )<choose_model_class>
reduce_lr = ReduceLROnPlateau(monitor = 'val_accuracy', patience = 3, verbose = 1, factor = 0.4, min_lr = 0.00002, mode = 'auto', cooldown = 0 )
Digit Recognizer
9,566,226
hyperparameters = { 'boosting_type' : ['gbdt', 'dart', 'goss'], 'num_leaves' : [4, 8, 16, 32], 'learning_rate' : [0.01, 0.1, 1], 'n_estimators' : [25, 50, 100], 'reg_alpha' : [0, 0.1, 1], 'reg_lambda' : [0, 0.1, 1], } estimator = LGBMClassifier(random_state=1, device='gpu') best_model_lgbm = get_best_model(estimator, hyperparameters )<find_best_params>
model = convolutional_model() epochs = 80 history = model.fit_generator(train_generator, steps_per_epoch = 40000//16, epochs = epochs, validation_data = test_generator, validation_steps = 10000//8, verbose = 1, callbacks=[reduce_lr]) scores = model.evaluate(X_test, y_test, verbose = 0) print("Accuracy: {} Error: {}".format(scores[1], 100-scores[1]*100)) plot_loss_accuracy(history )
Digit Recognizer
9,566,226
evaluate_model(best_model_lgbm.best_estimator_, 'lgbm' )<save_to_csv>
test_data = test_df.values.reshape(test_df.shape[0], 28, 28, 1 ).astype('float32') test_data = test_data / 255 Y_pred = model.predict(test_data )
Digit Recognizer
9,566,226
for model in best_models: predictions = best_models[model].predict(test_X) output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.to_csv('submission_' + model + '.csv', index=False )<set_options>
Y_pred = np.argmax(Y_pred,axis = 1) Y_pred = pd.Series(Y_pred, name = "Label" )
Digit Recognizer
9,566,226
!pip install -q -U keras-tuner clear_output() <define_variables>
submission_df = pd.DataFrame({ "ImageId": pd.Series(range(1, len(Y_pred)+1)) , "Label": pd.Series(Y_pred)} )
Digit Recognizer
9,566,226
<load_from_csv><EOS>
submission_df.to_csv('/kaggle/working/Submission.csv', index = False )
Digit Recognizer
9,303,840
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<categorify>
import numpy as np import pandas as pd from time import time from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Flatten, Dense, Dropout from tensorflow.keras.utils import to_categorical from tensorflow.keras.preprocessing.image import ImageDataGenerator
Digit Recognizer
9,303,840
drop_elements = ['PassengerId', 'Name', 'Ticket', 'Cabin', 'SibSp','Parch'] train = train.drop(drop_elements, axis = 1) test = test.drop(drop_elements, axis = 1) def checkNull_fillData(df): for col in df.columns: if len(df.loc[df[col].isnull() == True])!= 0: if df[col].dtype == "float64" or df[col].dtype == "int64": df.loc[df[col].isnull() == True,col] = df[col].mean() else: df.loc[df[col].isnull() == True,col] = df[col].mode() [0] checkNull_fillData(train) checkNull_fillData(test) str_list = [] num_list = [] for colname, colvalue in train.iteritems() : if type(colvalue[1])== str: str_list.append(colname) else: num_list.append(colname) train = pd.get_dummies(train, columns=str_list) test = pd.get_dummies(test, columns=str_list )<prepare_x_and_y>
data_train = pd.read_csv('.. /input/digit-recognizer/train.csv') data_test = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
9,303,840
y = train[TARGET] X = train.drop([TARGET],axis=1) X_test = test gc.collect()<split>
target_train = data_train.iloc[:, 0].values image_train = data_train.iloc[:, 1:].values image_test = data_test.values
Digit Recognizer
9,303,840
X_train,X_val,y_train,y_val=train_test_split(X,y,test_size=TEST_SIZE,random_state=RANDOM_SEED )<train_on_grid>
X = image_train.reshape(-1,28,28,1 ).astype('float32') X_test = image_test.reshape(-1,28,28,1 ).astype('float32') y = to_categorical(target_train.reshape(-1,1), num_classes=10) X /= 255 X_test /= 255 plt.imshow(image_train[0].reshape(28,28))
Digit Recognizer
9,303,840
def build_random_forest(hp): model = ensemble.RandomForestClassifier( n_estimators=hp.Int('n_estimators', 10, 50, step=10), max_depth=hp.Int('max_depth', 3, 10)) return model tuner = kt.tuners.Sklearn( oracle=kt.oracles.BayesianOptimization( objective=kt.Objective('score', 'max'), max_trials=10), hypermodel= build_random_forest, directory='.', project_name='random_forest') tuner.search(X_train.values, y_train.values.ravel()) best_hp = tuner.get_best_hyperparameters(num_trials=1)[0]<train_model>
datagen = ImageDataGenerator(rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1) datagen.fit(X )
Digit Recognizer
9,303,840
model = tuner.hypermodel.build(best_hp) model.fit(X_train, y_train.values )<predict_on_test>
num_models = 15 model = [None] * num_models for i in range(num_models): model[i] = Sequential() model[i].add(Conv2D(32,(3, 3), activation='relu', input_shape=(28,28,1))) model[i].add(BatchNormalization()) model[i].add(Conv2D(32,(3, 3), activation='relu')) model[i].add(BatchNormalization()) model[i].add(MaxPooling2D(( 2, 2), strides=2)) model[i].add(BatchNormalization()) model[i].add(Conv2D(64,(3, 3), activation='relu')) model[i].add(BatchNormalization()) model[i].add(Conv2D(64,(3, 3), activation='relu')) model[i].add(BatchNormalization()) model[i].add(MaxPooling2D(( 2, 2), strides=2)) model[i].add(Flatten()) model[i].add(BatchNormalization()) model[i].add(Dense(256, activation='relu')) model[i].add(BatchNormalization()) model[i].add(Dropout(0.5)) model[i].add(Dense(10, activation='softmax')) model[i].compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) for i in range(num_models): t = time() X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.1, random_state=i) history = model[i].fit_generator(datagen.flow(X_train, y_train, batch_size=512), epochs=50, verbose=0, validation_data=(X_val, y_val)) print(history.history['val_accuracy'][-1], time() -t )
Digit Recognizer
9,303,840
pred_val = model.predict(X_val) print(accuracy_score(y_val, pred_val))<predict_on_test>
y_pred = np.zeros(( X_test.shape[0], 10)) for i in range(num_models): y_pred += model[i].predict(X_test, batch_size=512, verbose=1) y_pred = np.argmax(y_pred, axis=1) submissions = pd.DataFrame({'ImageId': list(range(1,len(y_pred)+1)) , 'Label': y_pred}) submissions.to_csv('submission.csv', index=False, header=True )
Digit Recognizer
9,303,840
<save_to_csv><EOS>
y_pred_val = np.zeros(( X_val.shape[0], 10)) for i in range(num_models): y_pred_val += model[i].predict(X_val, batch_size=512, verbose=1) y_pred_val = np.argmax(y_pred_val, axis=1) y_true_val = np.argmax(y_val, axis=1) print(classification_report(y_true_val, y_pred_val, digits=4))
Digit Recognizer
9,241,530
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<set_options>
%matplotlib inline
Digit Recognizer
9,241,530
warnings.filterwarnings('ignore' )<load_from_csv>
data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') print(data.shape )
Digit Recognizer
9,241,530
train = pd.read_csv('/kaggle/input/titanic/train.csv') test=pd.read_csv('/kaggle/input/titanic/test.csv') sub = pd.read_csv('/kaggle/input/titanic/gender_submission.csv' )<sort_values>
test_data = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') print(test_data.shape )
Digit Recognizer
9,241,530
train.isnull().sum().sort_values(ascending = False )<sort_values>
sample_submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') print(sample_submission.shape )
Digit Recognizer
9,241,530
test.isnull().sum().sort_values(ascending = False )<feature_engineering>
encoder = OneHotEncoder(sparse=False,categories='auto') yy = [[0],[1],[2],[3],[4],[5],[6],[7],[8],[9]] encoder.fit(yy) train_label = train_label.reshape(-1,1) val_label = val_label.reshape(-1,1) train_label = encoder.transform(train_label) val_label = encoder.transform(val_label) print('train_label shape: %s'%str(train_label.shape)) print('val_label shape: %s'%str(val_label.shape))
Digit Recognizer
9,241,530
train.loc[train.Cabin.notnull() ,'Cabin']=1 train.loc[train.Cabin.isnull() ,'Cabin']=0<feature_engineering>
import numpy as np import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.layers.normalization import BatchNormalization from keras.layers import LeakyReLU
Digit Recognizer
9,241,530
test.loc[test.Cabin.notnull() ,'Cabin']=1 test.loc[test.Cabin.isnull() ,'Cabin']=0<count_missing_values>
model = Sequential() model.add(Conv2D(32,(3, 3), activation='relu', input_shape=(28, 28, 1),padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(32,(3, 3), activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64,(3, 3), activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(64,(3, 3), activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(128, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(128, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(256, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(256, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu', name='my_dense')) model.add(Dropout(0.5)) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.summary()
Digit Recognizer
9,241,530
train.Cabin.isnull().sum()<count_missing_values>
datagen = ImageDataGenerator( rotation_range=15, width_shift_range=0.2, height_shift_range=0.2, shear_range = 15, horizontal_flip = False, zoom_range = 0.20 )
Digit Recognizer
9,241,530
test.Cabin.isnull().sum()<define_variables>
model.compile(loss='categorical_crossentropy',optimizer=Adam() ,metrics=['accuracy']) datagen.fit(train_image) history = model.fit_generator(datagen.flow(train_image,train_label, batch_size=32), epochs = 75, shuffle=True, validation_data =(val_image,val_label), verbose = 1, steps_per_epoch=train_image.shape[0] // 32 )
Digit Recognizer
9,241,530
def detect_outliers(df, n, features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col], 25) Q3 = np.percentile(df[col], 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outlier_list_col = df[(df[col] < Q1 - outlier_step)|(df[col] > Q3 + outlier_step)].index outlier_indices.extend(outlier_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list(key for key, value in outlier_indices.items() if value > n) return multiple_outliers<define_variables>
intermediate_output = intermediate_layer_model.predict(train_image) intermediate_output = pd.DataFrame(data=intermediate_output )
Digit Recognizer
9,241,530
outliers_to_drop = detect_outliers(train, 2, ['Age', 'SibSp', 'Parch', 'Fare']) print("The {} indices for the outliers to drop are: ".format(len(outliers_to_drop)) , outliers_to_drop )<filter>
val_data = intermediate_output[40000:]
Digit Recognizer
9,241,530
train.loc[outliers_to_drop, :]<drop_column>
submission_cnn = model.predict(test_image )
Digit Recognizer
9,241,530
print("Before: {} rows".format(len(train))) train = train.drop(outliers_to_drop, axis = 0 ).reset_index(drop = True) print("After: {} rows".format(len(train)) )<filter>
intermediate_test_output = intermediate_layer_model.predict(test_image) intermediate_test_output = pd.DataFrame(data=intermediate_test_output )
Digit Recognizer
9,241,530
outliers_to_drop_to_test = detect_outliers(test, 2, ['Age', 'SibSp', 'Parch', 'Fare'] )<filter>
xgbmodel = XGBClassifier(objective='multi:softprob', num_class= 10) xgbmodel.fit(intermediate_output, train_label1) xgbmodel.score(val_data, val_label1 )
Digit Recognizer
9,241,530
test.loc[outliers_to_drop_to_test, :]<count_values>
submission_xgb = xgbmodel.predict(intermediate_test_output )
Digit Recognizer
9,241,530
train['SibSp'].value_counts(dropna = False )<sort_values>
submission_cnn = submission_cnn.astype(int) submission_xgb = submission_xgb.astype(int)
Digit Recognizer
9,241,530
train[['SibSp', 'Survived']].groupby('SibSp', as_index = False ).mean().sort_values(by = 'Survived', ascending = False )<count_values>
submission_cnn label = np.argmax(submission_cnn,1) id_ = np.arange(0,label.shape[0]) label
Digit Recognizer
9,241,530
train['Parch'].value_counts(dropna = False )<sort_values>
final_sub = submission_xgb
Digit Recognizer
9,241,530
train[['Parch', 'Survived']].groupby('Parch', as_index = False ).mean().sort_values(by = 'Survived', ascending = False )<count_missing_values>
save = pd.DataFrame({'ImageId':sample_submission.ImageId,'label':final_sub}) print(save.head(10)) save.to_csv('submission.csv',index=False )
Digit Recognizer
9,241,530
train['Age'].isnull().sum()<count_missing_values>
%matplotlib inline
Digit Recognizer
9,241,530
train['Fare'].isnull().sum()<count_values>
data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') print(data.shape )
Digit Recognizer
9,241,530
train['Pclass'].value_counts(dropna = False )<sort_values>
test_data = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') print(test_data.shape )
Digit Recognizer
9,241,530
train[['Pclass', 'Survived']].groupby('Pclass', as_index = False ).mean().sort_values(by = 'Survived', ascending = False )<count_values>
sample_submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') print(sample_submission.shape )
Digit Recognizer
9,241,530
train['Sex'].value_counts(dropna = False )<sort_values>
encoder = OneHotEncoder(sparse=False,categories='auto') yy = [[0],[1],[2],[3],[4],[5],[6],[7],[8],[9]] encoder.fit(yy) train_label = train_label.reshape(-1,1) val_label = val_label.reshape(-1,1) train_label = encoder.transform(train_label) val_label = encoder.transform(val_label) print('train_label shape: %s'%str(train_label.shape)) print('val_label shape: %s'%str(val_label.shape))
Digit Recognizer
9,241,530
train[['Sex', 'Survived']].groupby('Sex', as_index = False ).mean().sort_values(by = 'Survived', ascending = False )<count_values>
import numpy as np import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.layers.normalization import BatchNormalization from keras.layers import LeakyReLU
Digit Recognizer
9,241,530
train['Embarked'].value_counts(dropna = False )<sort_values>
model = Sequential() model.add(Conv2D(32,(3, 3), activation='relu', input_shape=(28, 28, 1),padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(32,(3, 3), activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64,(3, 3), activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(64,(3, 3), activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(128, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(128, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(256, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(256, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu', name='my_dense')) model.add(Dropout(0.5)) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.summary()
Digit Recognizer
9,241,530
train[['Embarked', 'Survived']].groupby(['Embarked'], as_index = False ).mean().sort_values(by = 'Survived', ascending = False )<drop_column>
datagen = ImageDataGenerator( rotation_range=15, width_shift_range=0.2, height_shift_range=0.2, shear_range = 15, horizontal_flip = False, zoom_range = 0.20 )
Digit Recognizer
9,241,530
train = train.drop(['Ticket'], axis = 1) test = test.drop(['Ticket'], axis = 1 )<sort_values>
model.compile(loss='categorical_crossentropy',optimizer=Adam() ,metrics=['accuracy']) datagen.fit(train_image) history = model.fit_generator(datagen.flow(train_image,train_label, batch_size=32), epochs = 75, shuffle=True, validation_data =(val_image,val_label), verbose = 1, steps_per_epoch=train_image.shape[0] // 32 )
Digit Recognizer
9,241,530
train.isnull().sum().sort_values(ascending = False )<set_options>
intermediate_output = intermediate_layer_model.predict(train_image) intermediate_output = pd.DataFrame(data=intermediate_output )
Digit Recognizer
9,241,530
mode = train['Embarked'].dropna().mode() [0] mode<set_options>
val_data = intermediate_output[40000:]
Digit Recognizer
9,241,530
train['Embarked'].fillna(mode, inplace = True )<sort_values>
submission_cnn = model.predict(test_image )
Digit Recognizer
9,241,530
test.isnull().sum().sort_values(ascending = False )<correct_missing_values>
intermediate_test_output = intermediate_layer_model.predict(test_image) intermediate_test_output = pd.DataFrame(data=intermediate_test_output )
Digit Recognizer
9,241,530
test['Fare'].fillna(median, inplace = True )<concatenate>
xgbmodel = XGBClassifier(objective='multi:softprob', num_class= 10) xgbmodel.fit(intermediate_output, train_label1) xgbmodel.score(val_data, val_label1 )
Digit Recognizer
9,241,530
combine = pd.concat([train, test], axis = 0 ).reset_index(drop = True) combine.head()<sort_values>
submission_xgb = xgbmodel.predict(intermediate_test_output )
Digit Recognizer
9,241,530
combine.isnull().sum().sort_values(ascending = False )<categorify>
submission_cnn = submission_cnn.astype(int) submission_xgb = submission_xgb.astype(int)
Digit Recognizer
9,241,530
combine['Sex'] = combine['Sex'].map({'male': 0, 'female': 1} )<filter>
submission_cnn label = np.argmax(submission_cnn,1) id_ = np.arange(0,label.shape[0]) label
Digit Recognizer
9,241,530
age_nan_indices = list(combine[combine['Age'].isnull() ].index) len(age_nan_indices )<define_variables>
final_sub = submission_xgb
Digit Recognizer
9,241,530
<count_missing_values><EOS>
save = pd.DataFrame({'ImageId':sample_submission.ImageId,'label':final_sub}) print(save.head(10)) save.to_csv('submission.csv',index=False )
Digit Recognizer
8,946,188
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering>
import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf
Digit Recognizer
8,946,188
train['Fare'] = train['Fare'].map(lambda x: np.log(x)if x > 0 else 0 )<feature_engineering>
train_data = pd.read_csv('.. /input/train.csv') train_y = train_data["label"] train_data.drop(["label"], axis=1, inplace=True) train_X = train_data train_X = train_X.values.reshape(-1, 28, 28, 1) train_y = train_y.values train_y = tf.keras.utils.to_categorical(train_y) train_X = train_X/255.00 test_X = pd.read_csv('.. /input/test.csv') test_X = test_X.values.reshape(-1,28,28,1) test_X = test_X / 255.0
Digit Recognizer
8,946,188
combine['Title'] = [name.split(',')[1].split('.')[0].strip() for name in combine['Name']] combine[['Name', 'Title']].head()<count_values>
model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, kernel_size =(3,3), padding = 'same', activation ='relu', input_shape =(28,28,1)) , tf.keras.layers.Conv2D(32, kernel_size =(3,3), padding = 'same', activation ='relu'), tf.keras.layers.Dropout(0.7), tf.keras.layers.Conv2D(32, kernel_size =(3,3), padding = 'same', activation ='relu'), tf.keras.layers.Conv2D(32, kernel_size =(3,3), padding = 'same', activation ='relu'), tf.keras.layers.MaxPool2D(pool_size=(2,2), strides=2), tf.keras.layers.Conv2D(32, kernel_size =(7,7), padding = 'same', activation ='relu'), tf.keras.layers.Conv2D(32, kernel_size =(7,7), padding = 'same', activation ='relu'), tf.keras.layers.MaxPool2D(pool_size=(2,2), strides=2), tf.keras.layers.Flatten() , tf.keras.layers.Dense(1024, activation = "relu"), tf.keras.layers.Dense(256, activation = "relu"), tf.keras.layers.Dense(10, activation = "softmax") ] )
Digit Recognizer
8,946,188
combine['Title'].value_counts()<count_unique_values>
datagen = tf.keras.preprocessing.image.ImageDataGenerator(rotation_range=43, zoom_range=0.24) datagen.fit(train_X) ln_fc = lambda x: 1e-3 * 0.99 ** x lrng_rt = tf.keras.callbacks.LearningRateScheduler(ln_fc) digitizer = model.fit_generator(datagen.flow(train_X, train_y, batch_size=1024), epochs=80, callbacks=[lrng_rt] )
Digit Recognizer
8,946,188
<categorify><EOS>
predictions = model.predict(test_X) predictions[354] pred = np.argmax(predictions, axis=1) plt.imshow(test_X[354][:,:,0],cmap='gray') plt.show() pred[354] pred_digits = pd.DataFrame({'ImageId': range(1,len(test_X)+1),'Label':pred }) pred_digits.to_csv("pre_digits.csv",index=False )
Digit Recognizer
8,655,915
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<sort_values>
%reload_ext autoreload %autoreload 2 %matplotlib inline
Digit Recognizer
8,655,915
combine[['Title', 'Survived']].groupby(['Title'], as_index = False ).mean().sort_values(by = 'Survived', ascending = False )<drop_column>
print(torch.cuda.is_available() , torch.backends.cudnn.enabled )
Digit Recognizer
8,655,915
combine = combine.drop('Name', axis = 1) combine.head()<feature_engineering>
train_df = pd.read_csv(path/"train.csv") train_df.head()
Digit Recognizer
8,655,915
combine['Family_Size'] = combine['SibSp'] + combine['Parch'] + 1 combine[['SibSp', 'Parch', 'Family_Size']].head(10 )<sort_values>
test_df = pd.read_csv(path/"test.csv") test_df.head()
Digit Recognizer
8,655,915
combine[['Family_Size', 'Survived']].groupby('Family_Size', as_index = False ).mean().sort_values(by = 'Survived', ascending = False )<feature_engineering>
TRAIN = Path(".. /train") TEST = Path(".. /test" )
Digit Recognizer
8,655,915
combine['Alone'] = 0 combine.loc[combine['Family_Size'] == 1, 'Alone'] = 1<sort_values>
if os.path.isdir(TRAIN): print('Train directory has been created') else: print('Train directory creation failed.') if os.path.isdir(TEST): print('Test directory has been created') else: print('Test directory creation failed.' )
Digit Recognizer
8,655,915
combine[['Alone', 'Survived']].groupby('Alone', as_index = False ).mean().sort_values(by = 'Survived', ascending = False )<drop_column>
from PIL import Image
Digit Recognizer
8,655,915
combine = combine.drop(['SibSp', 'Parch', 'Family_Size'], axis = 1) combine.head()<feature_engineering>
def pix2img(pix_data, filepath): img_mat = pix_data.reshape(28,28) img_mat = img_mat.astype(np.uint8()) img_dat = Image.fromarray(img_mat) img_dat.save(filepath )
Digit Recognizer
8,655,915
combine['Minor'] = combine['Age'] <= 17 combine['Major'] = 1 - combine['Minor']<sort_values>
tfms = get_transforms(do_flip = False )
Digit Recognizer
8,655,915
combine[['Major', 'Survived']].groupby('Major', as_index = False ).mean().sort_values(by = 'Survived', ascending = False )<feature_engineering>
print('test : ',TEST) print('train: ', TRAIN) print(type(TEST))
Digit Recognizer
8,655,915
combine.loc[(combine['Age'] <= 17), 'Major'] = 0 combine.loc[(combine['Age'] > 17), 'Major'] = 1<drop_column>
path =(".. /train")
Digit Recognizer
8,655,915
combine = combine.drop(['Age', 'Minor'], axis = 1) combine.head()<categorify>
np.random.seed(42) data = ImageDataBunch.from_folder(path, train=".", test =(".. /test"), valid_pct=0.2, ds_tfms=get_transforms() , size=28, num_workers=0 ).normalize(imagenet_stats )
Digit Recognizer
8,655,915
combine = pd.get_dummies(combine, columns = ['Title']) combine = pd.get_dummies(combine, columns = ['Embarked'], prefix = 'Em') combine.head()<feature_engineering>
learn = cnn_learner(data, base_arch = models.resnet34, metrics = accuracy,model_dir="/tmp/models", callback_fns=ShowGraph )
Digit Recognizer
8,655,915
combine.loc[combine['Fare'] <= 1.56, 'Fare'] = 0 combine.loc[(combine['Fare'] > 1.56)&(combine['Fare'] <= 3.119), 'Fare'] = 1 combine.loc[(combine['Fare'] > 3.119)&(combine['Fare'] <= 4.679), 'Fare'] = 2 combine.loc[combine['Fare'] > 4.679, 'Fare'] = 3<data_type_conversions>
learn.fit_one_cycle(5, 1e-03 )
Digit Recognizer
8,655,915
combine['Fare'] = combine['Fare'].astype('int' )<drop_column>
learn.save('model1' )
Digit Recognizer
8,655,915
combine = combine.drop('Fare_Band', axis = 1 )<split>
learn.fit_one_cycle(5 , 1e-04 )
Digit Recognizer
8,655,915
train = combine[:len(train)] test = combine[len(train):]<drop_column>
learn.fit_one_cycle(5 , slice(1e-05,1e-04))
Digit Recognizer
8,655,915
train = train.drop('PassengerId', axis = 1) train.head()<data_type_conversions>
learn.fit_one_cycle(5 , slice(1e-06,1e-05))
Digit Recognizer
8,655,915
train['Survived'] = train['Survived'].astype('int') train.head()<drop_column>
np.random.seed(42) data = ImageDataBunch.from_folder(path, train=".", test =(".. /test"), valid_pct=0.2, ds_tfms=get_transforms() , size=69, num_workers=0 ).normalize(imagenet_stats) learn.data = data data.train_ds[0][0].shape
Digit Recognizer