kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
2,619,265 | df=test
for c in df.columns:
if df[c].dtype=='object':
lbl = LabelEncoder()
df[c]=df[c].fillna('N')
lbl.fit(list(df[c].values))
df[c] = lbl.transform(df[c].values)
test=df<drop_column> | model.compile(loss='categorical_crossentropy',
optimizer=optimizers.Adamax(lr=0.01, beta_1=0.49, beta_2=0.999),
metrics=['accuracy'] ) | Digit Recognizer |
2,619,265 | target = train['target']
data = train.drop(['target','id'],axis=1 )<split> | batch_size = 32
epochs = 100
time_id = time.strftime("%Y-%m-%d_%H-%M-%S")
best_model_filename = 'mnist-inception-best-' + time_id + '.hdf5'
pre_train_weights = model.get_layer('conv_1' ).get_weights() [0]
pre_train_weights = pre_train_weights.transpose(3, 2, 0, 1)
annealer = CosineAnneal(max_lr=0.014, min_lr=0.003, T=5, T_mul=1, decay_rate=0.99)
chkpt = keras.callbacks.ModelCheckpoint(best_model_filename, monitor='val_acc',
save_best_only=True, verbose=False)
datagen = ImageDataGenerator(
width_shift_range=2,
height_shift_range=2,
preprocessing_function=lambda x: elastic_transform(x, alpha_range=[8, 10], sigma=3)
)
history = model.fit_generator(
datagen.flow(X_train, y_train_smooth, batch_size=batch_size, shuffle=True),
epochs=epochs,
steps_per_epoch=(len(y_train)- 1)// batch_size + 1,
validation_data=(X_val, y_val),
callbacks=[annealer, chkpt]
) | Digit Recognizer |
2,619,265 | def objective(trial,data=data,target=target):
train_x, test_x, train_y, test_y = train_test_split(data, target, test_size=0.2,random_state=42)
param = {
'objective': trial.suggest_categorical('objective',['reg:tweedie']),
'tree_method': trial.suggest_categorical('tree_method',['hist']),
'lambda': trial.suggest_loguniform('lambda',1e-3,10.0),
'alpha': trial.suggest_loguniform('alpha',1e-3,10.0),
'colsample_bytree': trial.suggest_categorical('colsample_bytree', [0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]),
'subsample': trial.suggest_categorical('subsample', [0.4,0.5,0.6,0.7,0.8,1.0]),
'learning_rate': trial.suggest_categorical('learning_rate', [0.008,0.01,0.012,0.014,0.016,0.018,0.02]),
'n_estimators': trial.suggest_categorical('n_estimators', [1000,2000,4000,8000]),
'max_depth': trial.suggest_categorical('max_depth', [5,7,9,11,13,15,17,20]),
'random_state': trial.suggest_categorical('random_state', [24,48,2020]),
'min_child_weight': trial.suggest_int('min_child_weight', 1,300),
'use_label_encoder': trial.suggest_categorical('use_label_encoder',[False])
}
model = xgb.XGBRegressor(**param)
model.fit(train_x,train_y,eval_set=[(test_x,test_y)],early_stopping_rounds=100,verbose=False)
preds = model.predict(test_x)
rmse = mean_squared_error(test_y, preds,squared=False)
return rmse<train_model> | model = keras.models.load_model(best_model_filename)
evaluate_model(model, X_val, y_val, log=history.history, pre_train_weights=pre_train_weights ) | Digit Recognizer |
2,619,265 | study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=16)
print('Number of finished trials:', len(study.trials))
print('Best trial:', study.best_trial.params )<create_dataframe> | test_data = np.loadtxt('.. /input/test.csv', dtype=int, delimiter=',', skiprows=1 ) | Digit Recognizer |
2,619,265 | study.trials_dataframe()<find_best_params> | test_scores = model.predict(test_images)
test_predictions = np.argmax(test_scores, axis=1 ) | Digit Recognizer |
2,619,265 | Best_trial=study.best_trial.params
print(Best_trial )<load_from_csv> | header = 'ImageId,Label'
submission = np.stack(( range(1, 28001), test_predictions), axis=1)
np.savetxt('submission-' + time_id + '.csv', submission, fmt='%i', delimiter=',', header=header, comments='' ) | Digit Recognizer |
8,497,709 | sample = pd.read_csv(".. /input/tabular-playground-series-feb-2021/sample_submission.csv")
print(sample.shape )<find_best_model_class> | class SnapshotEnsemble(Callback):
__snapshot_name_fmt = "snapshot_%d.hdf5"
def __init__(self, n_models, n_epochs_per_model, lr_max, verbose=1):
self.n_epochs_per_model = n_epochs_per_model
self.n_models = n_models
self.n_epochs_total = self.n_models * self.n_epochs_per_model
self.lr_max = lr_max
self.verbose = verbose
self.lrs = []
def cosine_annealing(self, epoch):
cos_inner =(math.pi *(epoch % self.n_epochs_per_model)) / self.n_epochs_per_model
return self.lr_max / 2 *(math.cos(cos_inner)+ 1)
def on_epoch_begin(self, epoch, logs={}):
lr = self.cosine_annealing(epoch)
backend.set_value(self.model.optimizer.lr, lr)
self.lrs.append(lr)
def on_epoch_end(self, epoch, logs={}):
if(epoch + 1)% self.n_epochs_per_model == 0:
filename = self.__snapshot_name_fmt %(( epoch + 1)// self.n_epochs_per_model)
self.model.save(filename)
if self.verbose:
print('Epoch %d: snapshot saved to %s' %(epoch, filename))
def load_ensemble(self):
models = []
for i in range(self.n_models):
models.append(load_model(self.__snapshot_name_fmt %(i + 1)))
return models
| Digit Recognizer |
8,497,709 | preds = np.zeros(( sample.shape[0]))
kf = KFold(n_splits=5,random_state=48,shuffle=True)
for trn_idx, test_idx in kf.split(train[columns],target):
X_tr,X_val=train[columns].iloc[trn_idx],train[columns].iloc[test_idx]
y_tr,y_val=target.iloc[trn_idx],target.iloc[test_idx]
model = xgb.XGBRegressor(**Best_trial)
model.fit(X_tr,y_tr,eval_set=[(X_val,y_val)],early_stopping_rounds=100,verbose=False)
preds+=model.predict(test[columns])/kf.n_splits
rmse=mean_squared_error(y_val, model.predict(X_val),squared=False)
print(rmse )<save_to_csv> | path = '/kaggle/input/digit-recognizer/'
train = pd.read_csv(path + 'train.csv')
test = pd.read_csv(path + 'test.csv')
target = train['label']
train.drop(columns=['label'], inplace=True)
im_size = 28
train = train.to_numpy().reshape(( -1, im_size, im_size, 1))
test = test.to_numpy().reshape(( -1, im_size, im_size, 1))
train = train / 255
test = test / 255
train.shape, test.shape | Digit Recognizer |
8,497,709 | subm = sample
subm['target'] = preds
subm.to_csv('submission.csv',index=False)
subm<load_from_csv> | target = to_categorical(target)
x_train, x_test, y_train, y_test = train_test_split(train, target, test_size=0.2, random_state=289)
x_train.shape, x_test.shape | Digit Recognizer |
8,497,709 | warnings.filterwarnings("ignore")
data = pd.read_csv(".. /input/tabular-playground-series-feb-2021/train.csv")
test = pd.read_csv(".. /input/tabular-playground-series-feb-2021/test.csv")
<load_from_csv> | model = Sequential()
model.add(Conv2D(16, 3, activation='relu', padding='same', input_shape=(im_size, im_size, 1)))
model.add(Dropout(0.5))
model.add(Conv2D(16, 3, activation='relu', padding='same'))
model.add(Dropout(0.5))
model.add(Conv2D(16, 5, activation='relu', padding='same'))
model.add(MaxPooling2D())
model.add(Conv2D(32, 3, activation='relu', padding='same'))
model.add(Dropout(0.5))
model.add(Conv2D(32, 3, activation='relu', padding='same'))
model.add(Dropout(0.5))
model.add(Conv2D(32, 5, activation='relu', padding='same'))
model.add(MaxPooling2D())
model.add(Conv2D(64, 3, activation='relu', padding='same'))
model.add(Dropout(0.5))
model.add(Conv2D(64, 3, activation='relu', padding='same'))
model.add(Dropout(0.5))
model.add(Conv2D(64, 5, activation='relu', padding='same'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.summary()
model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['acc']
) | Digit Recognizer |
8,497,709 | train = pd.read_csv(DATA / "train.csv")
test = pd.read_csv(DATA / "test.csv")
smpl_sub = pd.read_csv(DATA / "sample_submission.csv")
print("train: {}, test: {}, sample sub: {}".format(
train.shape, test.shape, smpl_sub.shape
))<prepare_output> | imagegen = ImageDataGenerator(
rotation_range=15,
width_shift_range=0.2,
height_shift_range=0.2,
zoom_range=0.2
) | Digit Recognizer |
8,497,709 | data.set_index("id",inplace=True)
test.set_index("id",inplace=True )<compute_test_metric> | se_callback = SnapshotEnsemble(n_models=7, n_epochs_per_model=50, lr_max=.001)
history = model.fit_generator(
imagegen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train)/ 32,
epochs=se_callback.n_epochs_total,
verbose=0,
callbacks=[se_callback],
validation_data=(x_test, y_test)
) | Digit Recognizer |
8,497,709 | def rmse(y_true, y_pred):
return np.sqrt(np.mean(( y_true - y_pred)** 2))<categorify> | def predict(models, data, weights=None):
if weights is None:
weights = [1 /(len(models)) ] * len(models)
pred = np.zeros(( data.shape[0], 10))
for i, model in enumerate(models):
pred += model.predict(data)* weights[i]
return pred
def evaluate(preds, weights=None):
if weights is None:
weights = [1 / len(preds)] * len(preds)
y_pred = np.zeros(( y_test.shape[0], 10))
for i, pred in enumerate(preds):
y_pred += pred * weights[i]
y_pred = np.argmax(y_pred, axis=1)
y_true = np.argmax(y_test, axis=1)
return accuracy_score(y_true, y_pred)
models = se_callback.load_ensemble()
preds = []
for i, model in enumerate(models):
pred = predict([model], x_test)
preds.append(pred)
score = evaluate([pred])
print(f'model {i + 1}: accuracy = {score:.4f}')
ensemble_score = evaluate(preds)
print(f'ensemble: accuracy = {ensemble_score:.4f}' ) | Digit Recognizer |
8,497,709 | def enc_scl_pipe(X_train, y_train, X_test, enc_method, scaler = StandardScaler()):
X_train_encoded = X_train.copy()
X_test_encoded= X_test.copy()
feature_to_encode = X_train.columns[X_train.dtypes == 'O'].tolist()
if enc_method == 'label':
for feat in feature_to_encode:
lbEncoder = LabelEncoder()
lbEncoder.fit(X_train[feat])
X_train_encoded[feat] = lbEncoder.transform(X_train[feat])
X_test_encoded[feat] = lbEncoder.transform(X_test[feat])
elif enc_method == 'glmm':
GLMMEncoder = ce.glmm.GLMMEncoder(verbose =0 ,binomial_target=False)
GLMMEncoder.fit(X_train[feature_to_encode],y_train)
X_train_encoded[feature_to_encode] = GLMMEncoder.transform(X_train[feature_to_encode])
X_test_encoded[feature_to_encode] = GLMMEncoder.transform(X_test[feature_to_encode])
else:
raise 'No encoding method stated'
scaler.fit(X_train_encoded)
X_train_scaled = pd.DataFrame(scaler.transform(X_train_encoded), columns=X_train_encoded.columns, index=X_train_encoded.index)
X_test_scaled = pd.DataFrame(scaler.transform(X_test_encoded), columns=X_test_encoded.columns, index=X_test_encoded.index)
return X_train_scaled, X_test_scaled, feature_to_encode<compute_train_metric> | best_score = ensemble_score
best_weights = None
no_improvements = 0
while no_improvements < 5000:
new_weights = np.random.uniform(size=(len(models),))
new_weights /= new_weights.sum()
new_score = evaluate(preds, new_weights)
if new_score > best_score:
no_improvements = 0
best_score = new_score
best_weights = new_weights
print(f'improvement: {best_score:.4f}')
else:
no_improvements += 1
print(f'best weights are {best_weights}' ) | Digit Recognizer |
8,497,709 | <init_hyperparams><EOS> | pred = predict(models, test, best_weights)
res = pd.DataFrame()
res['ImageId'] = np.arange(test.shape[0])+ 1
res['Label'] = np.argmax(pred, axis=1)
res.to_csv('submission.csv', index=False)
res.head(15 ) | Digit Recognizer |
3,266,938 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering> | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from keras.models import Sequential
from keras.layers import Conv2D, Lambda, MaxPooling2D
from keras.layers import Dense, Dropout, Flatten
from keras.layers.normalization import BatchNormalization
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
| Digit Recognizer |
3,266,938 | def feature_engineering(data):
new_data = data.copy()
new_data['cat2p6'] = new_data['cat2'] + new_data['cat6']
new_data['cat6p1'] = new_data['cat6'] + new_data['cat1']
new_data['cat2p1'] = new_data['cat2'] + new_data['cat1']
new_data['cont0p8'] = new_data['cont0']*new_data['cont8']
new_data['cont0p5'] = new_data['cont0']*new_data['cont5']
new_data['cont11p8'] = new_data['cont11']*new_data['cont8']
return new_data
new_train = feature_engineering(train)
new_test = feature_engineering(test)
print(new_train.shape)
print(new_test.shape )<compute_train_metric> | train = pd.read_csv('.. /input/train.csv')
test = pd.read_csv('.. /input/test.csv')
sub = pd.read_csv('.. /input/sample_submission.csv')
print("Data are Ready!!" ) | Digit Recognizer |
3,266,938 | print("lgb base CV scores label")
model = lgb.LGBMRegressor(**lgb_params_base)
lgb_train_oof, lgb_test_preds, lgb_all_scores = kfold_CV_pipe(train, target, test, model,enc_method = 'label', columns = train.columns)
oof_score = rmse(target, lgb_train_oof)
print(f"lgb oof score: {oof_score:.6f}")
print("---------------------------------------------------------------")
print("lgb base CV scores glmm")
model = lgb.LGBMRegressor(**lgb_params_base)
lgb_train_oof, lgb_test_preds, lgb_all_scores = kfold_CV_pipe(train, target, test, model,enc_method = 'glmm' ,columns = train.columns)
oof_score = rmse(target, lgb_train_oof)
print(f"lgb oof score: {oof_score:.6f}")
print("---------------------------------------------------------------")
print("lgb base new features CV scores")
model = lgb.LGBMRegressor(**lgb_params_base)
lgb_train_oof, lgb_test_preds, lgb_all_scores = kfold_CV_pipe(new_train, target, new_test, model,enc_method = 'glmm', columns = new_train.columns)
oof_score = rmse(target, lgb_train_oof)
print(f"lgb oof score: {oof_score:.6f}" )<compute_train_metric> | print(f"Training data size is {train.shape}
Testing data size is {test.shape}" ) | Digit Recognizer |
3,266,938 | print("---------------------------------------------------------------")
print("===============================================================")
print("---------------------------------------------------------------")
print("lgb1 CV scores")
model = lgb.LGBMRegressor(**lgb_params)
lgb1_train_oof, lgb1_test_preds, lgb1_all_scores = kfold_CV_pipe(train, target, test, model,enc_method = 'glmm', columns = train.columns)
oof_score = rmse(target, lgb1_train_oof)
print(f"lgb1 oof score: {oof_score:.6f}")
print("---------------------------------------------------------------")
print("===============================================================")
print("---------------------------------------------------------------")
print("lgb2 CV scores")
model = lgb.LGBMRegressor(**lgb_params_2)
lgb2_train_oof, lgb2_test_preds, lgb2_all_scores = kfold_CV_pipe(train, target, test, model,enc_method = 'glmm', columns = train.columns)
oof_score = rmse(target, lgb2_train_oof)
print(f"lgb2 oof score: {oof_score:.6f}")
print("---------------------------------------------------------------")
print("===============================================================")
print("---------------------------------------------------------------")
print("xgb CV scores")
model = xgb.XGBRegressor(**xgb_params)
xgb_train_oof, xgb_test_preds, xgb_all_scores = kfold_CV_pipe(train, target, test, model,enc_method = 'glmm', columns = train.columns)
oof_score = rmse(target, xgb_train_oof)
print(f"xgb oof score: {oof_score:.6f}" )<save_to_csv> | X = train.drop(['label'], 1 ).values
y = train['label'].values
test_x = test.values | Digit Recognizer |
3,266,938 | sub = smpl_sub.copy()
sub['target'] = lgb1_test_preds
sub.to_csv("lgb1_submission.csv", index=False)
<save_to_csv> | X = X / 255.0
test_x = test_x / 255.0 | Digit Recognizer |
3,266,938 | sub = smpl_sub.copy()
sub['target'] = lgb2_test_preds
sub.to_csv("lgb2_submission.csv", index=False )<save_to_csv> | y = to_categorical(y)
print(f"Label size {y.shape}" ) | Digit Recognizer |
3,266,938 | sub = smpl_sub.copy()
sub['target'] = xgb_test_preds
sub.to_csv("xgb_submission.csv", index=False )<save_to_csv> | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0 ) | Digit Recognizer |
3,266,938 | weights = [0.2, 0.4, 0.4]
oof_pred_wavg = weights[0]*lgb1_train_oof + weights[1]*lgb2_train_oof + weights[2]*xgb_train_oof
oof_score_wavg = rmse(target, oof_pred_wavg)
print(f"oof score weighted avg: {oof_score_wavg:.6f}")
test_pred_wavg = weights[0]*lgb1_test_preds + weights[1]*lgb2_test_preds + weights[2]*xgb_test_preds
sub = smpl_sub.copy()
sub['target'] = test_pred_wavg
sub.to_csv("wavg_submission.csv", index=False )<import_modules> | mean = np.mean(X_train)
std = np.std(X_train)
def standardize(x):
return(x-mean)/std | Digit Recognizer |
3,266,938 | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import optuna
from lightgbm import LGBMRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split,KFold
from sklearn.preprocessing import LabelEncoder<load_from_csv> | epochs = 50
batch_size = 64 | Digit Recognizer |
3,266,938 | train=pd.read_csv('.. /input/tabular-playground-series-feb-2021/train.csv')
test=pd.read_csv('.. /input/tabular-playground-series-feb-2021/test.csv' )<categorify> | model=Sequential()
model.add(Conv2D(filters=64, kernel_size =(3,3), activation="relu", input_shape=(28,28,1)))
model.add(Conv2D(filters=64, kernel_size =(3,3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Conv2D(filters=128, kernel_size =(3,3), activation="relu"))
model.add(Conv2D(filters=128, kernel_size =(3,3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Conv2D(filters=256, kernel_size =(3,3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(BatchNormalization())
model.add(Dense(512,activation="relu"))
model.add(Dense(10,activation="softmax"))
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"] ) | Digit Recognizer |
3,266,938 | cat_var=[f'cat{i}' for i in range(10)]
cont_var=[f'cont{i}' for i in range(14)]
columns=[ col for col in train.columns.tolist() if col not in ['id','target']]
for cat in cat_var:
le = LabelEncoder()
train[cat]=le.fit_transform(train[cat])
test[cat]=le.transform(test[cat] )<prepare_x_and_y> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
train_gen = datagen.flow(X_train, y_train, batch_size=batch_size)
test_gen = datagen.flow(X_test, y_test, batch_size=batch_size ) | Digit Recognizer |
3,266,938 | X=train[columns]
y=train.target<init_hyperparams> | history = model.fit_generator(train_gen,
epochs = epochs,
steps_per_epoch = X_train.shape[0] // batch_size,
validation_data = test_gen,
validation_steps = X_test.shape[0] // batch_size ) | Digit Recognizer |
3,266,938 | lgb_params={'random_state': 2021,
'metric': 'rmse',
'n_estimators': 30000,
'n_jobs': -1,
'cat_feature': [x for x in range(len(cat_var)) ],
'bagging_seed': 2021,
'feature_fraction_seed': 2021,
'learning_rate': 0.003899156646724397,
'max_depth': 99,
'num_leaves': 63,
'reg_alpha': 9.562925363678952,
'reg_lambda': 9.355810045480153,
'colsample_bytree': 0.2256038826485174,
'min_child_samples': 290,
'subsample_freq': 1,
'subsample': 0.8805303688019942,
'max_bin': 882,
'min_data_per_group': 127,
'cat_smooth': 96,
'cat_l2': 19
}<init_hyperparams> | y_pred = model.predict(X_test)
X_test__ = X_test.reshape(X_test.shape[0], 28, 28)
fig, axis = plt.subplots(4, 4, figsize=(12, 14))
for i, ax in enumerate(axis.flat):
ax.imshow(X_test__[i], cmap='binary')
ax.set(title = f"Real Number is {y_test[i].argmax() }
Predict Number is {y_pred[i].argmax() }"); | Digit Recognizer |
3,266,938 | f1= 0.6547870667136243
f2= 2.6711351556035487
f3= 20
f4= 49
f5= 2<train_model> | pred = model.predict_classes(test_x, verbose=1 ) | Digit Recognizer |
3,266,938 | %%time
kf=KFold(n_splits=5,random_state=48,shuffle=True)
preds = np.zeros(test.shape[0])
rmse=[]
i=0
for idx_train,idx_test in kf.split(X,y):
X_train,X_test=X.iloc[idx_train],X.iloc[idx_test]
y_train,y_test=y.iloc[idx_train],y.iloc[idx_test]
model=LGBMRegressor(**lgb_params)
model.fit(X_train,y_train,eval_set=(X_test,y_test),early_stopping_rounds=300,verbose=False,eval_metric='rmse')
predictions=model.predict(X_test,num_iteration=model.best_iteration_)
rmse.append(mean_squared_error(y_test,predictions,squared=False))
print('First Round:')
print(f'RMSE {rmse[i]}')
rmse_tuned=[]
params = lgb_params.copy()
for t in range(1,17):
if t >2:
params['reg_lambda'] *= f1
params['reg_alpha'] += f2
params['num_leaves'] += f3
params['min_child_samples'] -= f4
params['cat_smooth'] -= f5
params['learning_rate']=0.003
if params['min_child_samples']<1:
params['min_child_samples']=1
if t>11:
params['learning_rate']=0.001
model=LGBMRegressor(**params ).fit(X_train,y_train,eval_set=(X_test,y_test),eval_metric='rmse',early_stopping_rounds=200,verbose=False,init_model=model)
predictions=model.predict(X_test, num_iteration= model.best_iteration_)
rmse_tuned.append(mean_squared_error(y_test,predictions,squared=False))
print(f'RMSE tuned {t}: {rmse_tuned[t-1]}')
print(f'Improvement of {rmse[i]-rmse_tuned[t-1]}')
preds+=model.predict(test[columns],num_iteration=model.best_iteration_)/kf.n_splits
i+=1<save_to_csv> | sub['Label'] = pred
sub.to_csv("CNN_keras_sub.csv", index=False)
sub.head() | Digit Recognizer |
4,385,369 | test['target']=preds
test=test[['id','target']]
test.to_csv('submission.csv',index=False )<import_modules> | from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels | Digit Recognizer |
4,385,369 | import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error
from lightgbm import LGBMRegressor<load_from_csv> | from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.optimizers import RMSprop, Adam
from keras.preprocessing.image import ImageDataGenerator | Digit Recognizer |
4,385,369 | train = pd.read_csv(".. /input/tabular-playground-series-feb-2021/train.csv")
test = pd.read_csv(".. /input/tabular-playground-series-feb-2021/test.csv" )<define_variables> | df = pd.read_csv('.. /input/train.csv')
| Digit Recognizer |
4,385,369 | category_features = [
"cat0", "cat1", "cat2", "cat3", "cat4", "cat5", "cat6", "cat7",
"cat8", "cat9"
]
continous_features = [
"cont0", "cont1", "cont2", "cont3", "cont4",
"cont5", "cont6", "cont7", "cont8", "cont9", "cont10",
"cont11", "cont12", "cont13"
]
all_features = category_features + continous_features
<categorify> | test_df = pd.read_csv('.. /input/test.csv' ) | Digit Recognizer |
4,385,369 | for feature in category_features:
encoder = LabelEncoder()
encoder.fit(train[feature])
train[feature] = pd.Series(encoder.transform(train[feature]), dtype="category")
test[feature] = pd.Series(encoder.transform(test[feature]), dtype="category" )<init_hyperparams> | Y = df['label']
X = df.drop(['label'], axis = 1 ) | Digit Recognizer |
4,385,369 | PARAMS = {
'objective': 'regression',
'metric': 'rmse',
'boosting': 'gbdt',
'num_iterations': 5000,
'learning_rate': 0.02,
'num_leaves': 15,
'min_data_in_leaf': 1000,
'feature_fraction': 0.3,
'lambda_l2': 0.001
}
<prepare_x_and_y> | X = X / 255.0
X = X.values.reshape(-1,28,28,1)
Y = np.array(Y)
Y = to_categorical(Y, num_classes = 10 ) | Digit Recognizer |
4,385,369 | PARAMS_KFOLD = PARAMS.copy()
PARAMS_KFOLD.update({
'early_stopping_round': 500
})
def rmse_kfold(parameters, n_fold):
kfold = KFold(n_splits=n_fold)
rmse_kfold = np.zeros(n_fold)
for index,(train_index, validation_index)in enumerate(kfold.split(train)) :
X_train, X_validation = train[all_features].iloc[train_index], train[all_features].iloc[validation_index]
y_train, y_validation = train['target'].iloc[train_index], train['target'].iloc[validation_index]
model = LGBMRegressor(**parameters)
model.fit(X_train, y_train,
eval_set = [(X_validation, y_validation)],
verbose = -1)
pred_validation = model.predict(X_validation)
rmse_kfold[index] = mean_squared_error(y_validation, pred_validation, squared=False)
rmse_average = np.average(rmse_kfold)
return rmse_average<define_search_space> | X_train, X_test, Y_train, Y_test = train_test_split(X, Y, stratify = Y, random_state = 31, test_size = 0.2 ) | Digit Recognizer |
4,385,369 | num_leaves_range = [2**3-1, 2**4-1, 2**5-1, 2**6-1]
min_data_in_leaf_range = [2000, 1000, 500, 250]
feature_fraction_range = [0.3]
N_FOLD = 10
rmse_grid_search = []
for num_leaves in num_leaves_range:
for min_data_in_leaf in min_data_in_leaf_range:
for feature_fraction in feature_fraction_range:
params = PARAMS_KFOLD.copy()
params.update({
'num_leaves': num_leaves,
'min_data_in_leaf': min_data_in_leaf,
'feature_fraction': feature_fraction
})
rmse = rmse_kfold(params, N_FOLD)
rmse_grid_search.append(( rmse, params))
print("parameters " + str(params))
print("rmse: " + str(rmse))<find_best_params> | model = Sequential() | Digit Recognizer |
4,385,369 | PARAMS_OPTIMIZED = sorted(rmse_grid_search, key=lambda o1: o1[0])[0][1]<train_model> | model.add(Conv2D(32,(5,5),padding = 'Same',activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(64,(3,3), padding = 'same', activation = 'relu'))
model.add(MaxPool2D(pool_size =(2,2)))
model.add(Dropout(0.2))
model.add(Conv2D(128,(3,3), padding = 'same', activation = 'relu'))
model.add(MaxPool2D(pool_size =(2,2)))
model.add(Dropout(0.2))
model.add(Conv2D(64,(3,3), padding = 'same', activation = 'relu'))
model.add(MaxPool2D(pool_size =(2,2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(256, activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation = 'softmax'))
| Digit Recognizer |
4,385,369 | PARAMS_PRED = PARAMS_OPTIMIZED.copy()
PARAMS_PRED.pop('early_stopping_round', None)
print('parameters for final model ' + str(PARAMS_PRED))
model = LGBMRegressor(**PARAMS_PRED)
model.fit(train[all_features], train['target'] )<save_to_csv> | datagen = ImageDataGenerator(featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
zca_epsilon=1e-06,
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
brightness_range=None,
shear_range=0.1,
zoom_range=0.15,
channel_shift_range=0.0,
fill_mode='nearest',
cval=0.0,
horizontal_flip=False,
vertical_flip=False,
rescale=None,
preprocessing_function=None,
data_format=None, validation_split=0.0, dtype=None ) | Digit Recognizer |
4,385,369 | pred = model.predict(test[all_features])
submission = pd.DataFrame({'id': test['id'], 'target': pred})
submission.to_csv('submission.csv', index=False )<load_from_csv> | datagen.fit(X_train ) | Digit Recognizer |
4,385,369 | train_df = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2021/train.csv')
test_df = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2021/test.csv')
<filter> | model.compile(optimizer = "Nadam", loss = "categorical_crossentropy", metrics = ["accuracy"] ) | Digit Recognizer |
4,385,369 |
<concatenate> | max_epochs = 30
batch_size = 256 | Digit Recognizer |
4,385,369 | df = pd.concat([train_df.drop(['target','id'],axis=1),test_df.drop(['id'],axis=1)],axis=0)
df.head()<count_missing_values> | history = model.fit_generator(datagen.flow(X_train, Y_train, batch_size = batch_size),
epochs = max_epochs, verbose = 1, validation_data =(X_test, Y_test),
steps_per_epoch=X_train.shape[0] // batch_size ) | Digit Recognizer |
4,385,369 | df.isnull().sum()<string_transform> | test_df = test_df / 255.0
test_arr = test_df.values.reshape(-1,28,28,1 ) | Digit Recognizer |
4,385,369 | def divideFeatures(df):
numerical_features = df.select_dtypes(include=[np.number])
categorical_features = df.select_dtypes(include=[np.object])
return numerical_features, categorical_features<feature_engineering> | Y_pred_arr = model.predict(test_arr ) | Digit Recognizer |
4,385,369 | cont_features, cat_features =divideFeatures(df )<import_modules> | Y_pred_arr = np.argmax(Y_pred_arr, axis = 1 ) | Digit Recognizer |
4,385,369 | <categorify><EOS> | results = pd.Series(Y_pred_arr,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_datagen.csv",index=False ) | Digit Recognizer |
1,349,231 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<categorify> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv")
Y_train = train["label"]
X_train = train.drop(labels = ["label"],axis = 1)
X_train = X_train / 255.0
X_test = test / 255.0
X_train = X_train.values.reshape(-1,28,28,1)
X_test = X_test.values.reshape(-1,28,28,1)
Y_train = to_categorical(Y_train, num_classes = 10)
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x, verbose=0)
styles=[':','-.','--','-',':','-.','--','-',':','-.','--','-'] | Digit Recognizer |
1,349,231 | def lencode(df):
for i in df.columns:
for k in cat_features.columns:
if i ==k:
df[i]= le.fit_transform(df[i])
<prepare_x_and_y> | nets = 3
model = [0] *nets
for j in range(3):
model[j] = Sequential()
model[j].add(Conv2D(24,kernel_size=5,padding='same',activation='relu',
input_shape=(28,28,1)))
model[j].add(MaxPool2D())
if j>0:
model[j].add(Conv2D(48,kernel_size=5,padding='same',activation='relu'))
model[j].add(MaxPool2D())
if j>1:
model[j].add(Conv2D(64,kernel_size=5,padding='same',activation='relu'))
model[j].add(MaxPool2D(padding='same'))
model[j].add(Flatten())
model[j].add(Dense(256, activation='relu'))
model[j].add(Dense(10, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
1,349,231 | X_train = df[:300000]
Xf_test = df[300000:]
y = train_df['target']<split> | X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size = 0.333)
history = [0] * nets
names = ["(C-P)x1","(C-P)x2","(C-P)x3"]
epochs = 20
for j in range(nets):
history[j] = model[j].fit(X_train2,Y_train2, batch_size=80, epochs = epochs,
validation_data =(X_val2,Y_val2), callbacks=[annealer], verbose=0)
print("CNN {0}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format(
names[j],epochs,max(history[j].history['acc']),max(history[j].history['val_acc'])) ) | Digit Recognizer |
1,349,231 | X_train, X_test, y_train, y_test = train_test_split(X_train, y, test_size=0.1, random_state=42 )<choose_model_class> | nets = 6
model = [0] *nets
for j in range(6):
model[j] = Sequential()
model[j].add(Conv2D(j*8+8,kernel_size=5,activation='relu',input_shape=(28,28,1)))
model[j].add(MaxPool2D())
model[j].add(Conv2D(j*16+16,kernel_size=5,activation='relu'))
model[j].add(MaxPool2D())
model[j].add(Flatten())
model[j].add(Dense(256, activation='relu'))
model[j].add(Dense(10, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
1,349,231 | linear = LinearRegression()
random = RandomForestRegressor(n_estimators=100,random_state=42,n_jobs=-1,max_features=4)
<choose_model_class> | X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size = 0.333)
history = [0] * nets
names = ["8 maps","16 maps","24 maps","32 maps","48 maps","64 maps"]
epochs = 20
for j in range(nets):
history[j] = model[j].fit(X_train2,Y_train2, batch_size=80, epochs = epochs,
validation_data =(X_val2,Y_val2), callbacks=[annealer], verbose=0)
print("CNN {0}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format(
names[j],epochs,max(history[j].history['acc']),max(history[j].history['val_acc'])) ) | Digit Recognizer |
1,349,231 | xgbr = xgb.XGBRegressor(tree_method='gpu_hist')
<find_best_params> | nets = 8
model = [0] *nets
for j in range(8):
model[j] = Sequential()
model[j].add(Conv2D(32,kernel_size=5,activation='relu',input_shape=(28,28,1)))
model[j].add(MaxPool2D())
model[j].add(Conv2D(64,kernel_size=5,activation='relu'))
model[j].add(MaxPool2D())
model[j].add(Flatten())
if j>0:
model[j].add(Dense(2**(j+4), activation='relu'))
model[j].add(Dense(10, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
1,349,231 | def objective(trial):
params = {
'random_state': 0,
'n_estimators': trial.suggest_categorical('n_estimators', [10000]),
'max_depth': trial.suggest_int('max_depth', 3, 8),
'learning_rate': trial.suggest_float('learning_rate', 0.001, 1.0),
'reg_lambda': trial.suggest_float('reg_lambda', 0.0, 10),
'reg_alpha': trial.suggest_float('reg_alpha', 0.0, 10),
'gamma': trial.suggest_float('gamma', 0.0, 10),
'subsample': trial.suggest_categorical('subsample', [0.8, 0.9, 1.0]),
'colsample_bytree': trial.suggest_categorical('colsample_bytree', [0.1, 0.2, 0.3, 0.4, 0.5]),
'tree_method':'gpu_hist'
}
model = xgb.XGBRegressor(**params)
model.fit(X_train, y_train, eval_set=[(X_test,y_test)], early_stopping_rounds=1000, verbose=0)
y_pred = model.predict(X_test)
rmse = mean_squared_error(y_test, y_pred, squared=False)
return rmse<find_best_params> | X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size = 0.333)
history = [0] * nets
names = ["0N","32N","64N","128N","256N","512N","1024N","2048N"]
epochs = 20
for j in range(nets):
history[j] = model[j].fit(X_train2,Y_train2, batch_size=80, epochs = epochs,
validation_data =(X_val2,Y_val2), callbacks=[annealer], verbose=0)
print("CNN {0}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format(
names[j],epochs,max(history[j].history['acc']),max(history[j].history['val_acc'])) ) | Digit Recognizer |
1,349,231 | %%time
study = optuna.create_study(direction='minimize',sampler=optuna.samplers.TPESampler(seed=0))
study.optimize(objective, n_trials=100)
print('Number of finished trials:', len(study.trials))
print('Best parameters:', study.best_trial.params)
print('Best RMSE:', study.best_trial.value )<train_model> | nets = 8
model = [0] *nets
for j in range(8):
model[j] = Sequential()
model[j].add(Conv2D(32,kernel_size=5,activation='relu',input_shape=(28,28,1)))
model[j].add(MaxPool2D())
model[j].add(Dropout(j*0.1))
model[j].add(Conv2D(64,kernel_size=5,activation='relu'))
model[j].add(MaxPool2D())
model[j].add(Dropout(j*0.1))
model[j].add(Flatten())
model[j].add(Dense(128, activation='relu'))
model[j].add(Dropout(j*0.1))
model[j].add(Dense(10, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
1,349,231 | params = study.best_params
params['random_state'] = 0
params['n_estimators'] = 10000
params['tree_method'] = 'gpu_hist'
model3 = xgb.XGBRegressor(**params)
model3.fit(X_train,y_train,eval_set=[(X_test, y_test)],early_stopping_rounds=1000,verbose=2)
<train_model> | X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size = 0.333)
history = [0] * nets
names = ["D=0","D=0.1","D=0.2","D=0.3","D=0.4","D=0.5","D=0.6","D=0.7"]
epochs = 30
for j in range(nets):
history[j] = model[j].fit(X_train2,Y_train2, batch_size=80, epochs = epochs,
validation_data =(X_val2,Y_val2), callbacks=[annealer], verbose=0)
print("CNN {0}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format(
names[j],epochs,max(history[j].history['acc']),max(history[j].history['val_acc'])) ) | Digit Recognizer |
1,349,231 | model = make_pipeline(linear)
model.fit(X_train,y_train)
model2 = make_pipeline(xgbr)
model2.fit(X_train,y_train )<choose_model_class> | nets = 5
model = [0] *nets
j=0
model[j] = Sequential()
model[j].add(Conv2D(32,kernel_size=5,activation='relu',input_shape=(28,28,1)))
model[j].add(MaxPool2D())
model[j].add(Dropout(0.4))
model[j].add(Conv2D(64,kernel_size=5,activation='relu'))
model[j].add(MaxPool2D())
model[j].add(Dropout(0.4))
model[j].add(Flatten())
model[j].add(Dense(128, activation='relu'))
model[j].add(Dropout(0.4))
model[j].add(Dense(10, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
j=1
model[j] = Sequential()
model[j].add(Conv2D(32,kernel_size=3,activation='relu',input_shape=(28,28,1)))
model[j].add(Conv2D(32,kernel_size=3,activation='relu'))
model[j].add(MaxPool2D())
model[j].add(Dropout(0.4))
model[j].add(Conv2D(64,kernel_size=3,activation='relu'))
model[j].add(Conv2D(64,kernel_size=3,activation='relu'))
model[j].add(MaxPool2D())
model[j].add(Dropout(0.4))
model[j].add(Flatten())
model[j].add(Dense(128, activation='relu'))
model[j].add(Dropout(0.4))
model[j].add(Dense(10, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
j=2
model[j] = Sequential()
model[j].add(Conv2D(32,kernel_size=5,activation='relu',input_shape=(28,28,1)))
model[j].add(Conv2D(32,kernel_size=5,strides=2,padding='same',activation='relu'))
model[j].add(Dropout(0.4))
model[j].add(Conv2D(64,kernel_size=5,activation='relu'))
model[j].add(Conv2D(64,kernel_size=5,strides=2,padding='same',activation='relu'))
model[j].add(Dropout(0.4))
model[j].add(Flatten())
model[j].add(Dense(128, activation='relu'))
model[j].add(Dropout(0.4))
model[j].add(Dense(10, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
j=3
model[j] = Sequential()
model[j].add(Conv2D(32,kernel_size=3,activation='relu',input_shape=(28,28,1)))
model[j].add(BatchNormalization())
model[j].add(Conv2D(32,kernel_size=3,activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Conv2D(32,kernel_size=5,strides=2,padding='same',activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Dropout(0.4))
model[j].add(Conv2D(64,kernel_size=3,activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Conv2D(64,kernel_size=3,activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Conv2D(64,kernel_size=5,strides=2,padding='same',activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Dropout(0.4))
model[j].add(Flatten())
model[j].add(Dense(128, activation='relu'))
model[j].add(Dropout(0.4))
model[j].add(Dense(10, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
1,349,231 | models ={'linear':model}
models['xgbr'] = model2
models['optuna_xbg'] =model3<compute_test_metric> | j=4
model[j] = Sequential()
model[j].add(Conv2D(32,kernel_size=3,activation='relu',input_shape=(28,28,1)))
model[j].add(BatchNormalization())
model[j].add(Conv2D(32,kernel_size=3,activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Conv2D(32,kernel_size=5,strides=2,padding='same',activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Dropout(0.4))
model[j].add(Conv2D(64,kernel_size=3,activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Conv2D(64,kernel_size=3,activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Conv2D(64,kernel_size=5,strides=2,padding='same',activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Dropout(0.4))
model[j].add(Flatten())
model[j].add(Dense(128, activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Dropout(0.4))
model[j].add(Dense(10, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
1,349,231 | def rmse(y_test,y_pred):
rmse= np.sqrt(mean_squared_error(y_test,y_pred))
return rmse
<find_best_model_class> | X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size = 0.2)
history = [0] * nets
names = ["basic","32C3-32C3","32C5S2","both+BN","both+BN+DA"]
epochs = 35
for j in range(nets-1):
history[j] = model[j].fit(X_train2,Y_train2, batch_size=64, epochs = epochs,
validation_data =(X_val2,Y_val2), callbacks=[annealer], verbose=0)
print("CNN {0}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format(
names[j],epochs,max(history[j].history['acc']),max(history[j].history['val_acc'])))
datagen = ImageDataGenerator(
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1)
j = nets-1
history[j] = model[j].fit_generator(datagen.flow(X_train2,Y_train2, batch_size=64),
epochs = epochs, steps_per_epoch = X_train2.shape[0]//64,
validation_data =(X_val2,Y_val2), callbacks=[annealer], verbose=0)
print("CNN {0}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format(
names[j],epochs,max(history[j].history['acc']),max(history[j].history['val_acc'])) ) | Digit Recognizer |
1,349,231 | def cross_val_rmse(model):
model =clone(model)
five_fold = KFold(n_splits=5)
rmse_val =[]
for tr_ind,val_ind in five_fold.split(X_train):
model.fit(X_train.iloc[tr_ind,:],y.iloc[tr_ind])
rmse_val.append(rmse(y.iloc[val_ind],model.predict(X_train.iloc[val_ind,:])))
return np.mean(rmse_val )<compute_test_metric> | annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 **(x+epochs))
model[4].fit_generator(datagen.flow(X_train,Y_train, batch_size=64), epochs = 25,
steps_per_epoch = X_train.shape[0]//64, callbacks=[annealer], verbose=0)
results = model[4].predict(X_test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("MNIST-CNN.csv",index=False ) | Digit Recognizer |
10,844,943 | y_pred = model3.predict(X_test)
y_pred =np.round(y_pred,6)
print('min',y_pred.min())
print('max',y_pred.max())
RMSE = np.sqrt(mean_squared_error(y_test,y_pred))
print('RMSE',RMSE)
print(y_pred.tolist() )<predict_on_test> | import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Input, Conv2D, Dense, Activation, Flatten, Dropout, GlobalMaxPooling2D, GlobalAveragePooling2D, MaxPooling2D, AveragePooling2D, BatchNormalization, LeakyReLU, Concatenate
from tensorflow.keras.models import Sequential, Model, load_model
from tensorflow.keras.utils import to_categorical
from tensorflow.keras import regularizers, optimizers
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint | Digit Recognizer |
10,844,943 | ys_pred =model3.predict(Xf_test)
ys_pred =np.round(ys_pred,6)
ys_pred.tolist()<save_to_csv> | train = pd.read_csv(".. /input/digit-recognizer/train.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv" ) | Digit Recognizer |
10,844,943 | sub = pd.DataFrame({'id':test_df.id,'target':ys_pred})
sub.to_csv('TPS.csv',index=False)
sub.head()<create_dataframe> | X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size = 0.1, random_state=1337 ) | Digit Recognizer |
10,844,943 | %matplotlib inline
dfk = pd.DataFrame({
'Kernel ID': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U'],
'Score': [ 0.84362, 0.84358, 0.84352, 0.84318, 0.84310, 0.84303, 0.84266, 0.84251, 0.84245, 0.84243, 0.84233, 0.84229, 0.84221, 0.84220, 0.84209, 0.84207, 0.84202, 0.84200, 0.84199, 0.84198, 0.84193],
'File Path': ['.. /input/feb84362/FEB84362.csv', '.. /input/feb84358/FEB84358.csv', '.. /input/feb84352/FEB84352.csv', '.. /input/feb84318/FEB84318.csv', '.. /input/feb84310/FEB84310.csv', '.. /input/feb84303/FEB84303.csv', '.. /input/feb84266/FEB84266.csv', '.. /input/feb84251/FEB84251.csv', '.. /input/feb84245/FEB84245.csv', '.. /input/feb84243/FEB84243.csv', '.. /input/feb84233/FEB84233.csv' , '.. /input/feb84229/FEB84229.csv', '.. /input/feb84221/FEB84221.csv', '.. /input/feb84220/FEB84220.csv', '.. /input/feb84209/FEB84209.csv', '.. /input/feb84207/FEB84207.csv', '.. /input/feb84202/FEB84202.csv', '.. /input/feb84200/FEB84200.csv', '.. /input/feb84199/FEB84199.csv', '.. /input/feb84198/FEB84198.csv', '.. /input/feb84193/FEB84193.csv']
})
dfk<categorify> | rlr = ReduceLROnPlateau(monitor='accuracy', mode = 'max', factor=0.5, min_lr=1e-7, verbose = 1, patience=5)
es = EarlyStopping(monitor='accuracy', mode='max', verbose = 1, patience=50)
mc = ModelCheckpoint('cnn_best_model.h5', monitor='accuracy', mode='max', verbose = 1, save_best_only=True ) | Digit Recognizer |
10,844,943 | def generate(main, support, coeff):
g = main.copy()
for i in main.columns[1:]:
res = []
lm, Is = [], []
lm = main[i].tolist()
ls = support[i].tolist()
for j in range(len(main)) :
res.append(( lm[j] * coeff)+(ls[j] *(1.- coeff)))
g[i] = res
return g
<load_from_csv> | def build_model(lr = 0, mt = 0, dr = 0):
model = Sequential(name = 'cnn_mnist')
model.add(Conv2D(filters = 32, kernel_size =(3,3), padding = 'Same', activation ='relu', input_shape =(28,28,1)))
model.add(BatchNormalization())
model.add(Conv2D(filters = 32, kernel_size =(3,3), padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.3))
model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation ='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Flatten())
model.add(Dense(128, activation = "relu"))
model.add(Dropout(dr))
model.add(Dense(10, activation = "softmax"))
opt = optimizers.SGD(lr = lr, momentum = mt)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
return model | Digit Recognizer |
10,844,943 | support = pd.read_csv(dfk.iloc[0, 2])
for k in range(1, 6):
main = pd.read_csv(dfk.iloc[k, 2])
support = generate(main, support, 0.60)
sub1 = support<load_from_csv> | model = build_model(lr = 0.01, mt = 0.9, dr = 0.5 ) | Digit Recognizer |
10,844,943 | support = sub1
for k in range(6, 14):
main = pd.read_csv(dfk.iloc[k, 2])
support = generate(main, support, 0.50)
sub2 = support<compute_test_metric> | datagen = ImageDataGenerator(
rotation_range=15,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.1,
horizontal_flip=False,
vertical_flip=False
)
datagen.fit(X_train ) | Digit Recognizer |
10,844,943 | sub2 = comparison2(sub2, 10, 0.9970, 1.0000 )<load_from_csv> | model.fit_generator(datagen.flow(X_train, y_train, batch_size = 64),
validation_data =(X_valid, y_valid),
steps_per_epoch = X_train.shape[0] // 64,
epochs = 400, verbose = 2,
callbacks = [rlr, es, mc] ) | Digit Recognizer |
10,844,943 | <compute_test_metric><EOS> | saved_model = load_model('cnn_best_model.h5')
y_pred = saved_model.predict_classes(X_test, verbose=0)
submissions=pd.DataFrame({"ImageId": list(range(1, len(y_pred)+1)) ,
"Label": y_pred})
submissions.to_csv("submission.csv", index=False ) | Digit Recognizer |
10,594,850 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_from_csv> | import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_addons as tfa
import PIL
from sklearn.model_selection import train_test_split | Digit Recognizer |
10,594,850 | main = pd.read_csv(dfk.iloc[20, 2])
sub4 = generate(main, sub3, 0.60 )<compute_test_metric> | ROOT_DIR = '/kaggle/input/digit-recognizer'
train_df = pd.read_csv(os.path.join(ROOT_DIR, 'train.csv'))
test_df = pd.read_csv(os.path.join(ROOT_DIR, 'test.csv')) | Digit Recognizer |
10,594,850 | sub4 = comparison(sub4, 17, 0.9955, 0.9985 )<load_from_csv> | feature_train = train_df.to_numpy() [:,1:]
label_train = train_df.to_numpy() [:,0]
feature_test = test_df.to_numpy() | Digit Recognizer |
10,594,850 | original = pd.read_csv(".. /input/feb84186/FEB84186.csv")
sub5 = comparison5(sub4, original, 18, 1.0000, 0.9960)
<save_to_csv> | feature_train, feature_val, label_train, label_val = train_test_split(feature_train, label_train, test_size=0.2, stratify=label_train ) | Digit Recognizer |
10,594,850 | sub = sub5
sub.to_csv("submission.csv", index=False)
sub1.to_csv("submission1.csv", index=False)
sub2.to_csv("submission2.csv", index=False)
sub3.to_csv("submission3.csv", index=False)
sub4.to_csv("submission4.csv", index=False)
sub5.to_csv("submission5.csv", index=False)
!ls<set_options> | print('Train size: {}, validation size: {}'.format(len(label_train), len(label_val)) ) | Digit Recognizer |
10,594,850 | optuna.logging.set_verbosity(optuna.logging.CRITICAL )<load_from_csv> | train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(
rotation_range=25,
height_shift_range=3,
width_shift_range=3
) | Digit Recognizer |
10,594,850 | data = pd.read_csv('.. /input/tabular-playground-series-feb-2021/train.csv', index_col=0)
test = pd.read_csv('.. /input/tabular-playground-series-feb-2021/test.csv', index_col=0)
preds = data.columns[:-1]
target = data.columns[-1]<data_type_conversions> | BATCH_SIZE = 64
train_ds = train_datagen.flow(feature_train, label_train, batch_size=BATCH_SIZE)
val_ds = tf.data.Dataset.from_tensor_slices(( feature_val, label_val)).batch(BATCH_SIZE ).prefetch(1)
test_ds = tf.data.Dataset.from_tensor_slices(feature_test ).batch(BATCH_SIZE ).prefetch(1 ) | Digit Recognizer |
10,594,850 | cat_cols = [col for col in preds if 'cat' in col]
data[cat_cols] = data[cat_cols].astype('category')
test[cat_cols] = test[cat_cols].astype('category' )<train_model> | layers = [
tf.keras.layers.Conv2D(16, kernel_size=3, strides=1, padding='same', input_shape=(28,28,1)) ,
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.ReLU() ,
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(32, kernel_size=3, strides=1, padding='valid'),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.ReLU() ,
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(64, kernel_size=5, strides=1, padding='valid'),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.ReLU() ,
tf.keras.layers.Dropout(0.25),
tf.keras.layers.MaxPool2D(strides=2),
tf.keras.layers.Flatten() ,
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Dense(10, activation='softmax')
]
model = tf.keras.Sequential(layers=layers)
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(1e-3, decay_steps=3000, decay_rate=0.95)
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_ds, epochs=40, validation_data=val_ds ) | Digit Recognizer |
10,594,850 | <find_best_params><EOS> | pred_test = np.argmax(model.predict(test_ds), axis=1)
out_df = pd.DataFrame({'ImageId': np.arange(1, len(pred_test)+1), 'Label': pred_test})
out_df.to_csv('output.csv', index=False ) | Digit Recognizer |
10,475,153 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<find_best_score> | import itertools
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Flatten, Dense, Conv2D, Lambda, MaxPooling2D, Dropout, BatchNormalization
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split | Digit Recognizer |
10,475,153 | study.best_value<find_best_params> | train_df = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
test_df = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' ) | Digit Recognizer |
10,475,153 | best_params = study.best_params
best_params<prepare_x_and_y> | train_df.sample(frac=1)
cols = list(train_df.columns)
cols.remove('label')
X = train_df[cols]
Y = train_df['label']
X_train, X_dev, Y_train, Y_dev = train_test_split(X, Y, test_size=0.1, random_state=0)
X_test = test_df[cols] | Digit Recognizer |
10,475,153 | def objective(trial):
hyper_params = {
'num_leaves': trial.suggest_int('num_leaves', 1, 63),
'min_data_in_leaf': trial.suggest_int('min_data_in_leaf ', 1, 100)
}
scores = []
kf = KFold(5)
for i,(train_idx, test_idx)in enumerate(kf.split(data)) :
X_train = data.iloc[train_idx][preds]
y_train = data.iloc[train_idx][target]
X_test = data.iloc[test_idx][preds]
y_test = data.iloc[test_idx][target]
hyper_params.update(best_params)
estimator = LGBMRegressor(**hyper_params)
estimator.fit(X_train,
y_train,
eval_set=(X_test, y_test),
eval_metric='rmse',
verbose=0)
y_pred = estimator.predict(X_test)
rmse = mean_squared_error(y_test, y_pred, squared=False)
scores.append(rmse)
return np.mean(scores )<find_best_params> | X_train = X_train.values.reshape(-1, 28, 28)
X_dev = X_dev.values.reshape(-1, 28, 28)
X_test = X_test.values.reshape(-1, 28, 28 ) | Digit Recognizer |
10,475,153 | study = optuna.create_study(direction='minimize')
study.optimize(objective, timeout=3600*2.5 )<find_best_score> | X_train = np.expand_dims(X_train, axis=-1)/ 255
X_dev = np.expand_dims(X_dev, axis=-1)/ 255
X_test = np.expand_dims(X_test, axis=-1)/ 255 | Digit Recognizer |
10,475,153 | study.best_value<find_best_params> | def data_augmentation(x_data, y_data, batch_size):
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False
)
datagen.fit(x_data)
train_data = datagen.flow(x_data, y_data, batch_size=batch_size, shuffle=True)
return train_data | Digit Recognizer |
10,475,153 | best_params.update(study.best_params)
best_params<prepare_x_and_y> | BATCH_SIZE = 64
aug_train_data = data_augmentation(X_train, Y_train, BATCH_SIZE ) | Digit Recognizer |
10,475,153 | def objective(trial):
hyper_params = {
'bagging_freq': trial.suggest_int('bagging_freq', 1, 100),
'bagging_fraction': trial.suggest_float('bagging_fraction ', 0, 1.0),
'feature_fraction': trial.suggest_float('feature_fraction', 0, 1.0)
}
scores = []
kf = KFold(5)
for i,(train_idx, test_idx)in enumerate(kf.split(data)) :
X_train = data.iloc[train_idx][preds]
y_train = data.iloc[train_idx][target]
X_test = data.iloc[test_idx][preds]
y_test = data.iloc[test_idx][target]
hyper_params.update(best_params)
estimator = LGBMRegressor(**hyper_params)
estimator.fit(X_train,
y_train,
eval_set=(X_test, y_test),
eval_metric='rmse',
verbose=0)
y_pred = estimator.predict(X_test)
rmse = mean_squared_error(y_test, y_pred, squared=False)
scores.append(rmse)
return np.mean(scores )<find_best_params> | layers = [
Conv2D(filters=96, kernel_size=(11, 11), strides=2, activation='relu', input_shape=(28, 28, 1)) ,
MaxPooling2D(pool_size=(3, 3), strides=2),
Conv2D(filters=256, kernel_size=(5, 5), padding='same', activation='relu'),
Flatten() ,
Dense(9216, activation='relu'),
Dense(4096, activation='relu'),
Dense(4096, activation='relu'),
Dense(10, activation='softmax'),
] | Digit Recognizer |
10,475,153 | study = optuna.create_study(direction='minimize')
study.optimize(objective, timeout=3600*2 )<find_best_score> | model = Sequential(layers)
optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001)
model.compile(
optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
callbacks = [
tf.keras.callbacks.ReduceLROnPlateau(monitor="loss",factor=0.1, patience=2, min_lr=0.000001, verbose=1),
]
hist = model.fit(
aug_train_data,
steps_per_epoch=X_train.shape[0] // BATCH_SIZE,
batch_size=BATCH_SIZE,
validation_data=(X_dev, Y_dev),
epochs=50,
callbacks=callbacks
) | Digit Recognizer |
10,475,153 | study.best_value<find_best_params> | predictions = Y_pred
print(predictions[0])
print('Predicted digit is: ' + str(np.argmax(predictions[0])))
print('Accuracy is: ' + str(np.max(predictions[0] * 100)) + '%')
plt.imshow(X_dev[0].reshape(( 28, 28)) , cmap=plt.cm.binary ) | Digit Recognizer |
10,475,153 | best_params.update(study.best_params)
best_params<prepare_x_and_y> | predictions = model.predict(X_test ) | Digit Recognizer |
10,475,153 | def objective(trial):
hyper_params = {
'lambda_l1': trial.suggest_float('lambda_l1', 1E-12, 20, log=True),
'lambda_l2': trial.suggest_float('lambda_l2', 1E-12, 20, log=True)
}
scores = []
kf = KFold(5)
for i,(train_idx, test_idx)in enumerate(kf.split(data)) :
X_train = data.iloc[train_idx][preds]
y_train = data.iloc[train_idx][target]
X_test = data.iloc[test_idx][preds]
y_test = data.iloc[test_idx][target]
hyper_params.update(best_params)
estimator = LGBMRegressor(**hyper_params)
estimator.fit(X_train,
y_train,
eval_set=(X_test, y_test),
eval_metric='rmse',
verbose=0)
y_pred = estimator.predict(X_test)
rmse = mean_squared_error(y_test, y_pred, squared=False)
scores.append(rmse)
return np.mean(scores )<find_best_params> | submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv')
submission.head() | Digit Recognizer |
10,475,153 | study = optuna.create_study(direction='minimize')
study.optimize(objective, timeout=3600*2 )<find_best_score> | for i in submission.index:
submission['Label'][i] = np.argmax(predictions[i] ) | Digit Recognizer |
10,475,153 | study.best_value<find_best_params> | submission.to_csv("sample_submission.csv", index=False ) | Digit Recognizer |
10,475,153 | best_params.update(study.best_params)
best_params<train_model> | model.save('model')
model.save('model.h5' ) | Digit Recognizer |
9,877,165 | k = 10
test[target] = 0
scores = []
kf = KFold(k)
for i,(train_idx, test_idx)in enumerate(kf.split(data)) :
X_train = data.iloc[train_idx][preds]
y_train = data.iloc[train_idx][target]
X_test = data.iloc[test_idx][preds]
y_test = data.iloc[test_idx][target]
best_params['learning_rate'] = 0.005
best_params['n_estimators'] = 100000
estimator = LGBMRegressor(**best_params)
estimator.fit(X_train,
y_train,
eval_set=(X_test, y_test),
eval_metric='rmse',
early_stopping_rounds=1000,
verbose=1000)
y_pred = estimator.predict(X_test)
rmse = mean_squared_error(y_test, y_pred, squared=False)
scores.append(rmse)
test[target] += estimator.predict(test[preds])/ k
test[target].to_csv('submission.csv' )<compute_test_metric> | def l1_reg(weight_matrix):
return 0.01 * K.sum(K.abs(weight_matrix))
tf.keras.backend.clear_session()
| Digit Recognizer |
9,877,165 | print(f"Expected score: {np.mean(scores)}" )<load_from_csv> | NB_EPOCH = 40
BATCH_SIZE = 32
VERBOSE = 1
NB_CLASSES = 10
OPTIMIZER = Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0)
N_HIDDEN = 128
VALIDATION_SPLIT = 0.05
DROPOUT = 0.3
RESHAPED =(28, 28, 1 ) | Digit Recognizer |
9,877,165 | train = pd.read_csv(".. /input/titanic/train.csv")
test = pd.read_csv(".. /input/titanic/test.csv")
submission_df = pd.read_csv('/kaggle/input/titanic/gender_submission.csv' )<concatenate> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" ) | Digit Recognizer |
9,877,165 | df = pd.concat([train, test], axis=0)
df = df.set_index('PassengerId')
df.info()<drop_column> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" ) | Digit Recognizer |
9,877,165 | df = df.drop(['Name', 'Ticket', 'Cabin'], axis=1)
<drop_column> | x_train = train.drop(labels=["label"], axis=1)
x_train = x_train / 255.0
x_train = x_train.values.reshape(-1, 28, 28, 1)
y_train = train["label"]
y_train = np.array(to_categorical(y_train, num_classes=10))
x_test = test / 255.0
x_test = x_test.values.reshape(-1, 28, 28, 1)
print(x_train.shape, y_train.shape, x_test.shape ) | Digit Recognizer |
9,877,165 | df = df.drop('Fare', axis=1 )<categorify> | ( x_train_mnist, y_train_mnist),(x_val_mnist, y_val_mnist)= mnist.load_data()
x_train_mnist = np.concatenate(( x_train_mnist, x_val_mnist))
y_train_mnist = np.concatenate(( y_train_mnist, y_val_mnist))
x_train_mnist = x_train_mnist.reshape(( x_train_mnist.shape[0], 28, 28, 1))
X_train_mnist = x_train_mnist / 255
y_train_mnist = np.array(to_categorical(y_train_mnist.reshape(( y_train_mnist.shape[0], 1)) ,num_classes=10))
print(x_train_mnist.shape, y_train_mnist.shape ) | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.