kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
4,081,536
train_user_df.secs_elapsed.fillna(-1,inplace=True) train_user_df.action.fillna(-1,inplace=True) train_user_df.iloc[:,-11:]=train_user_df.iloc[:,-11:].fillna(-1) train_user_df['secs_elapsed']=train_user_df['secs_elapsed'].astype('int64') train_user_df['action']=train_user_df['action'].astype('int64' )<data_type_conversions>
x_train,x_val,y_train,y_val=train_test_split(x,y,test_size=0.1,random_state=0 )
Digit Recognizer
4,081,536
test_user_df.secs_elapsed.fillna(-1,inplace=True) test_user_df.action.fillna(-1,inplace=True) test_user_df.iloc[:,-11:]=test_user_df.iloc[:,-11:].fillna(-1) test_user_df['secs_elapsed']=test_user_df['secs_elapsed'].astype('int64') test_user_df['action']=test_user_df['action'].astype('int64' )<count_missing_values>
x_train=x_train.values y_train=y_train.values x_val=x_val.values y_val=y_val.values x_test=x_test.values
Digit Recognizer
4,081,536
train_user_df.isnull().sum() /train_user_df.shape[0] *100<define_variables>
x_train=x_train.reshape(37800,28,28,1) x_val=x_val.reshape(4200,28,28,1) x_test=x_test.reshape(28000,28,28,1 )
Digit Recognizer
4,081,536
categorical_cols=[cname for cname in train_user_df.columns if cname not in ['id','date_account_created','date_first_booking','first_device_type','first_browser', 'timestamp_first_active','country_destination'] and train_user_df[cname].dtype == "object"] numerical_cols=[cname for cname in train_user_df.columns if cname not in ['id','date_account_created','date_first_booking','first_device_type','first_browser', 'timestamp_first_active','country_destination'] and train_user_df[cname].dtype != "object"] print("Categorical_cols - ",categorical_cols) print("Numerical_cols - ",numerical_cols )<categorify>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
4,081,536
categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant')) , ('onehot', OneHotEncoder(handle_unknown='ignore')) ]) numerical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant')) ]) preprocessor = ColumnTransformer( transformers=[ ('cat', categorical_transformer, categorical_cols), ('num', numerical_transformer, numerical_cols) ] )<drop_column>
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta() , metrics=['accuracy'] )
Digit Recognizer
4,081,536
test_id = test_user_df.id test_X = test_user_df.drop(['id'], axis='columns' )<categorify>
model.fit(x_train, y_train, batch_size=128, epochs=15, verbose=1, validation_data=(x_val, y_val))
Digit Recognizer
4,081,536
labels = train_user_df.country_destination le = LabelEncoder() train_y = le.fit_transform(labels )<drop_column>
pred=model.predict(x_test,verbose=0) new_pred = [np.argmax(y, axis=None, out=None)for y in pred] output=pd.DataFrame({'ImageId':sub['ImageId'],'Label':new_pred}) output.to_csv('Digit_recognizer.csv', index=False )
Digit Recognizer
1,029,364
train_X = train_user_df.drop(['id','country_destination'], axis='columns' )<find_best_model_class>
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv")
Digit Recognizer
1,029,364
def cross_validation_with_ndcg(pipe, X, y, scorer, cv=5): skf = StratifiedKFold(n_splits=cv, shuffle=True, random_state=100) scores = [] for train_index, holdout_index in skf.split(X, y): X_train, X_test = X.iloc[train_index], X.iloc[holdout_index] y_train, y_test = y[train_index], y[holdout_index] pipe.fit(X_train, y_train) predict = pipe.predict_proba(X_test) y_test = pd.get_dummies(y_test ).to_numpy() score = scorer(y_test, predict) scores.append(round(score, 6)) print(f'{len(scores)} / {cv} DONE!', end='\r') return scores<choose_model_class>
label = np.array(train.iloc[:,0],np.str) data = np.array(train.iloc[:,1:],np.float32) label_test = np.array([]) data_test = np.array(test.iloc[:,:],np.float32)
Digit Recognizer
1,029,364
n_estimaters_param=[50, 100, 200] max_depth_param=[3,4,5] learning_rate_param=[0.1,0.2] params = [(x, y, z)for x in learning_rate_param for y in n_estimaters_param for z in max_depth_param] result_list=[] for learning_rates,n_estimaters, max_depth in params: xg_model_ = XGBClassifier(max_depth=max_depth,learning_rate=learning_rates, n_estimators=n_estimaters,verbosity=0, objective='multi:softprob',n_jobs=-1) search_pipe = Pipeline([ ('customproccess',Custom_Proccess()), ('preprocessor', preprocessor), ("model", xg_model_) ]) print(f'learning_rate: {learning_rates}, n_estimaters: {n_estimaters}, max_depth: {max_depth}') scores = cross_validation_with_ndcg(search_pipe, train_X, train_y, ndcg_score) result_list.append([learning_rates,n_estimaters,max_depth,np.mean(scores)] )<prepare_output>
data = data.reshape(data.shape[0],28,28,1) data_test = data_test.reshape(data_test.shape[0],28,28,1) data = data/255 data_test = data_test/255
Digit Recognizer
1,029,364
result_df=pd.DataFrame(result_list,columns=['learning_rate','n_estimator','max_depth','mean_score']) result_df.sort_values(by='mean_score',ascending=False ).head(5 )<train_model>
print("Before conding") print(label[:10]) labels = np_utils.to_categorical(label,10) print("Encoded Data") print(labels[:10] )
Digit Recognizer
1,029,364
xg_model = XGBClassifier(max_depth=5,learning_rate=0.1, n_estimators=200,verbosity=0,objective='multi:softprob',n_jobs=-1) pipe = Pipeline([ ('customproccess',Custom_Proccess()), ('preprocessor', preprocessor), ("model", xg_model) ]) pipe.fit(train_X, train_y) predict = pipe.predict_proba(test_X )<feature_engineering>
def model_generator(dropout=[0.25],denses=[512,10],activation="relu"): model = Sequential() model.add(Conv2D(filters=32,kernel_size=3,padding='same', activation='relu', input_shape=(28, 28,1))) model.add(Conv2D(filters=32, kernel_size=3, border_mode='same', activation='relu')) model.add(MaxPool2D(pool_size=3)) model.add(Dropout(0.20)) model.add(Conv2D(filters=64,kernel_size=3,padding='same', activation='relu')) model.add(Conv2D(filters=64, kernel_size=3, border_mode='same', activation='relu')) model.add(MaxPool2D(pool_size=2)) model.add(Dropout(0.25)) model.add(Conv2D(filters=128, kernel_size=3, border_mode='same', activation='relu')) model.add(MaxPool2D(pool_size=2)) model.add(Dropout(0.20)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(10)) model.add(Activation('softmax')) model.summary() return model
Digit Recognizer
1,029,364
ids = [] cts = [] for i in range(len(test_id)) : idx = test_id[i] ids += [idx] * 5 cts += le.inverse_transform(np.argsort(predict[i])[::-1])[:5].tolist()<save_to_csv>
def model_generator2(dropout=[0.25],denses=[512,10],activation="relu"): model = Sequential() model.add(Conv2D(filters=16,kernel_size=2,padding='same', activation='relu', input_shape=(28, 28,1))) model.add(MaxPool2D(pool_size=2)) model.add(Dropout(0.20)) model.add(Conv2D(filters=32, kernel_size=2, border_mode='same', activation='relu')) model.add(MaxPool2D(pool_size=2)) model.add(Dropout(0.20)) model.add(Conv2D(filters=64,kernel_size=2,padding='same', activation='relu')) model.add(MaxPool2D(pool_size=2)) model.add(Dropout(0.15)) model.add(Flatten()) model.add(Dense(512, name='aux_output')) model.add(Activation('relu')) model.add(Dropout(0.4)) model.add(Dense(10, name='aux_output2')) model.add(Activation('softmax')) model.summary() return model
Digit Recognizer
1,029,364
sub_df = pd.DataFrame(np.column_stack(( ids, cts)) , columns=['id', 'country']) sub_df.to_csv('sub-03.csv',index=False )<load_from_csv>
def model_fit(model,batch_size=64,epochs=10): optimizer = Adam(lr=0.0001) model.compile(loss="categorical_crossentropy",optimizer=optimizer,metrics=['accuracy']) checkpointer = ModelCheckpoint(filepath='mnist.model.best', verbose=1, monitor='val_loss', save_best_only=True) training = model.fit(data, labels,batch_size=batch_size, epochs=epochs,validation_split=0.25, callbacks=[checkpointer],verbose=1, shuffle=True) return training
Digit Recognizer
1,029,364
train = pd.read_csv('.. /input/airbnb-recruiting-new-user-bookings/train_users_2.csv.zip') age_gender = pd.read_csv('.. /input/airbnb-recruiting-new-user-bookings/age_gender_bkts.csv.zip') countries_df = pd.read_csv('.. /input/airbnb-recruiting-new-user-bookings/countries.csv.zip') session_df = pd.read_csv('.. /input/airbnb-recruiting-new-user-bookings/sessions.csv.zip') test = pd.read_csv('.. /input/airbnb-recruiting-new-user-bookings/test_users.csv.zip') print('train shape: ', train.shape) print('test shape: ', test.shape) print('age_gender_bkts: ', age_gender.shape) print('countries: ', countries_df.shape) print('session: ', session_df.shape )<categorify>
model1 = model_generator(dropout=[0.25],denses=[128,10],activation="relu") training = model_fit(model1,batch_size=128,epochs=100 )
Digit Recognizer
1,029,364
def glimpse(df, maxvals=10, maxlen=110): print('Shape: ', df.shape) def pad(y): max_len = max([len(x)for x in y]) return [x.ljust(max_len)for x in y] toprnt = pad(df.columns.tolist()) toprnt = pad([toprnt[i] + ' ' + str(df.iloc[:,i].dtype)for i in range(df.shape[1])]) num_nas = [df.iloc[:,i].isnull().sum() for i in range(df.shape[1])] num_nas_ratio = [int(round(x*100/df.shape[0])) for x in num_nas] num_nas_str = [str(x)+ '(' + str(y)+ '%)' for x,y in zip(num_nas, num_nas_ratio)] max_len = max([len(x)for x in num_nas_str]) num_nas_str = [x.rjust(max_len)for x in num_nas_str] toprnt = [x + ' ' + y + ' NAs' for x,y in zip(toprnt, num_nas_str)] toprnt = [x + ' : ' for x in toprnt] toprnt = [toprnt[i] + ', '.join([str(y)for y in df.iloc[:min([maxvals,df.shape[0]]), i]])for i in range(df.shape[1])] toprnt = [x[:min(maxlen, len(x)) ] for x in toprnt] for x in toprnt: print(x )<count_values>
def scoring(model): model.load_weights('mnist.model.best') score = model.evaluate(data[:2000], labels[:2000], verbose=0) accuracy = 100*score[1] print('Test accuracy: %.4f%%' % accuracy) label_test = model.predict_classes(data_test) print("Sample of the prdiction",label_test[:10]) return label_test
Digit Recognizer
1,029,364
train.first_affiliate_tracked.value_counts()<count_values>
label_test = scoring(model1 )
Digit Recognizer
1,029,364
<count_duplicates><EOS>
np.savetxt("submission.csv", np.dstack(( np.arange(1, label_test.size+1),label_test)) [0],"%d,%d",header="ImageId,Label",comments="" )
Digit Recognizer
1,278,424
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<count_values>
%matplotlib inline np.random.seed() sns.set(style='white', context='notebook', palette='deep') print("Done" )
Digit Recognizer
1,278,424
train['gender'].value_counts()<feature_engineering>
dataset = pd.read_csv(".. /input/train.csv") competition_dataset = pd.read_csv(".. /input/test.csv") dataset.describe
Digit Recognizer
1,278,424
train['age'] = train['age'].apply(lambda x: 122 if x > 122 else x) train['age'] = train['age'].apply(lambda x: 18 if x < 18 else x )<feature_engineering>
del dataset print("Done" )
Digit Recognizer
1,278,424
test['age'] = test['age'].apply(lambda x: 122 if x > 122 else x) test['age'] = test['age'].apply(lambda x: 18 if x < 18 else x )<count_values>
label = to_categorical(label, num_classes = 10) feature = feature / 255.0 competition_dataset = competition_dataset / 255.0 print("Done" )
Digit Recognizer
1,278,424
train['signup_flow'].value_counts()<count_values>
feature_train, feature_val, label_train, label_val = train_test_split(feature, label, test_size = 0.1, stratify=label )
Digit Recognizer
1,278,424
train['signup_method'].value_counts()<count_duplicates>
model_1 = Sequential() model_1.add(Dense(200, activation = "relu", input_shape =(784,))) model_1.add(Dense(100, activation = "relu")) model_1.add(Dense(60, activation = "relu")) model_1.add(Dense(30, activation = "relu")) model_1.add(Dense(10, activation = "softmax")) optimizer = optimizers.SGD(lr=0.03, clipnorm=5.) model_1.compile(optimizer= optimizer , loss = "categorical_crossentropy", metrics=["accuracy"]) print(model_1.summary() )
Digit Recognizer
1,278,424
train[train.duplicated() ]<count_values>
history = model_1.fit(feature_train, label_train, batch_size = 100, epochs = 8, validation_data =(feature_val, label_val), verbose = 1)
Digit Recognizer
1,278,424
session_df['device_type'].value_counts()<count_values>
feature_train, feature_val, label_train, label_val = train_test_split(feature, label, test_size = 0.1, stratify=label )
Digit Recognizer
1,278,424
session_df['action_detail'].value_counts() [:10]<filter>
model_2 = Sequential() model_2.add(Conv2D(filters = 4, kernel_size =(5,5), strides = 1, padding = 'Same', activation ='relu', input_shape =(28,28,1))) model_2.add(Conv2D(filters = 8, kernel_size =(4,4), strides = 2, padding = 'Same', activation ='relu')) model_2.add(Conv2D(filters = 12, kernel_size =(4,4), strides = 2, padding = 'Same', activation ='relu')) model_2.add(Flatten()) model_2.add(Dense(200, activation = "relu")) model_2.add(Dense(10, activation = "softmax")) optimizer = optimizers.SGD(lr=0.03, clipnorm=5.) model_2.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"]) print(model_2.summary())
Digit Recognizer
1,278,424
view_search_time = session_df[session_df.action_detail == 'view_search_results'] view_search_time<drop_column>
history = model_2.fit(feature_train, label_train, batch_size = 100, epochs = 16, validation_data =(feature_val, label_val), verbose = 1)
Digit Recognizer
1,278,424
labels = train['country_destination'] train.drop('country_destination', inplace = True, axis = 1 )<concatenate>
datagen = ImageDataGenerator( rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, horizontal_flip=False, vertical_flip=False) datagen.fit(feature_train) print("Done" )
Digit Recognizer
1,278,424
data = pd.concat(( train, test), axis=0, ignore_index=True) data = data.drop(['id', 'date_first_booking'], axis=1 )<categorify>
model_3 = Sequential() model_3.add(Conv2D(filters = 6, kernel_size =(6,6), strides = 1, padding = 'Same', activation ='relu', input_shape =(28,28,1))) model_3.add(Conv2D(filters = 12, kernel_size =(5,5), strides = 2, padding = 'Same', activation ='relu')) model_3.add(Conv2D(filters = 24, kernel_size =(4,4), strides = 2, padding = 'Same', activation ='relu')) model_3.add(Flatten()) model_3.add(Dense(200, activation = "relu")) model_3.add(Dropout(0.40)) model_3.add(Dense(10, activation = "softmax")) model_3.compile(optimizer = 'adam' , loss = "categorical_crossentropy", metrics=["accuracy"]) print(model_3.summary() )
Digit Recognizer
1,278,424
cat_features = ['gender', 'signup_method', 'signup_flow', 'language', 'affiliate_channel', 'affiliate_provider', 'first_affiliate_tracked', 'signup_app', 'first_device_type', 'first_browser'] for f in cat_features: data_dummy = pd.get_dummies(data[f], prefix=f) data.drop([f], axis=1, inplace = True) data = pd.concat(( data, data_dummy), axis=1 )<import_modules>
history = model_3.fit(datagen.flow(feature_train,label_train, batch_size=100), epochs = 8, validation_data =(feature_val, label_val), verbose = 2 )
Digit Recognizer
1,278,424
from datetime import datetime from sklearn.preprocessing import LabelEncoder<data_type_conversions>
model_4 = Sequential() model_4.add(Conv2D(filters = 32, kernel_size =(5,5), strides = 1, padding = 'Same', activation ='relu', input_shape =(28,28,1))) model_4.add(BatchNormalization()) model_4.add(Conv2D(filters = 32, kernel_size =(5,5), strides = 1, padding = 'Same', activation ='relu')) model_4.add(BatchNormalization()) model_4.add(Dropout(0.4)) model_4.add(Conv2D(filters = 64, kernel_size =(3,3), strides = 2, padding = 'Same', activation ='relu')) model_4.add(BatchNormalization()) model_4.add(Conv2D(filters = 64, kernel_size =(3,3), strides = 2, padding = 'Same', activation ='relu')) model_4.add(BatchNormalization()) model_4.add(Dropout(0.4)) model_4.add(Flatten()) model_4.add(Dense(256, activation = "relu")) model_4.add(Dropout(0.4)) model_4.add(Dense(10, activation = "softmax")) optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) model_4.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"]) learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) print(model_4.summary() )
Digit Recognizer
1,278,424
data['date_account_created'] = pd.to_datetime(data['date_account_created'] )<feature_engineering>
history = model_4.fit(datagen.flow(feature_train,label_train, batch_size=100), epochs = 35, validation_data =(feature_val, label_val), verbose = 2, callbacks=[learning_rate_reduction] )
Digit Recognizer
1,278,424
data['ac_year'] = data['date_account_created'].dt.year data['ac_month'] = data['date_account_created'].dt.month data['ac_day'] = data['date_account_created'].dt.day<drop_column>
results = model_4.predict(competition_dataset) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
1,278,424
<data_type_conversions><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("submission_MNIST.csv",index=False)
Digit Recognizer
797,209
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering>
%matplotlib inline
Digit Recognizer
797,209
data['ts_fa_year'] = data['timestamp_first_active'].dt.year data['ts_fa_month'] = data['timestamp_first_active'].dt.month data['ts_fa_day'] = data['timestamp_first_active'].dt.day<drop_column>
train = pd.read_csv(".. /input/train.csv" ).values test = pd.read_csv(".. /input/test.csv" ).values X_train = train[:, 1:].astype('float32') Y_train = train[:, 0].astype('int32') X_test = test[:, :].astype('float32' )
Digit Recognizer
797,209
data.drop('timestamp_first_active', inplace = True, axis = 1 )<categorify>
X_train = X_train/255. X_test = X_test/255. X_train = X_train.reshape(-1, 28, 28, 1) X_test = X_test.reshape(-1, 28, 28, 1) Y_train = to_categorical(Y_train, num_classes=10) X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size=0.15, random_state=23) datagen = ImageDataGenerator( rotation_range=10, zoom_range=0.15, width_shift_range=0.15, height_shift_range=0.15) datagen.fit(X_train )
Digit Recognizer
797,209
le = LabelEncoder() y = le.fit_transform(labels )<prepare_x_and_y>
model = Sequential() model.add(Conv2D(16, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1))) model.add(Conv2D(32, kernel_size=(3, 3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, kernel_size=(3, 3), padding='same', activation='relu')) model.add(Conv2D(64, kernel_size=(3, 3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(256, activation='relu')) model.add(Dense(128, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.compile(loss=categorical_crossentropy, optimizer=RMSprop(lr=1e-3), metrics=['accuracy'] )
Digit Recognizer
797,209
X = data[:train.shape[0]] X_test = data[train.shape[0]:]<train_model>
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=2) history = model.fit_generator(datagen.flow(X_train, Y_train, batch_size=70), epochs=20, validation_data=(X_val, Y_val), verbose=2, callbacks=[reduce_lr] )
Digit Recognizer
797,209
xgb = XGBClassifier(use_label_encoder=False) xgb.fit(X, y) <predict_on_test>
Y_val_pred = model.predict_classes(X_val) Y_val_true = np.argmax(Y_val, axis=1) print(confusion_matrix(Y_val_true, Y_val_pred))
Digit Recognizer
797,209
y_pred = xgb.predict_proba(X_test )<define_variables>
Y_test_pred = model.predict_classes(X_test) submission = pd.DataFrame({ 'ImageId': range(1, 28001), 'Label': Y_test_pred }) submission.to_csv("submission.csv", index=False )
Digit Recognizer
4,899,984
ids = [] countries = [] test_id = test['id']<categorify>
from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.optimizers import RMSprop,Adam from keras.preprocessing.image import ImageDataGenerator
Digit Recognizer
4,899,984
for i in range(len(test_id)) : idx = test_id[i] ids += [idx] * 5 countries += le.inverse_transform(np.argsort(y_pred[i])[::-1])[:5].tolist()<save_to_csv>
from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from mlxtend.plotting import plot_confusion_matrix
Digit Recognizer
4,899,984
submission = pd.DataFrame(np.column_stack(( ids, countries)) , columns=['id', 'country']) submission.to_csv('submission.csv',index=False )<set_options>
train_data = pd.read_csv('.. /input/train.csv') test_data = pd.read_csv('.. /input/test.csv' )
Digit Recognizer
4,899,984
pd.set_option('display.max_columns', 500) warnings.filterwarnings("ignore" )<load_from_csv>
X_train = train_data.copy() y_train = train_data['label'] del X_train['label'] X_test = test_data.copy() y_train = to_categorical(y_train, num_classes = 10 )
Digit Recognizer
4,899,984
%%time train_cudf = cudf.read_csv('/kaggle/input/jane-street-market-prediction/train.csv') train = train_cudf.to_pandas() del train_cudf features = pd.read_csv('.. /input/jane-street-market-prediction/features.csv') example_test = pd.read_csv('.. /input/jane-street-market-prediction/example_test.csv') sample_prediction_df = pd.read_csv('.. /input/jane-street-market-prediction/example_sample_submission.csv') print("Data is loaded!" )<count_missing_values>
X_train = X_train.astype('float32')/255 X_test = X_test.astype('float32')/255
Digit Recognizer
4,899,984
missing_values_count = train.isnull().sum() print(missing_values_count) total_cells = np.product(train.shape) total_missing = missing_values_count.sum() print("% of missing data = ",(total_missing/total_cells)* 100 )<prepare_x_and_y>
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size = 0.1, random_state=2020 )
Digit Recognizer
4,899,984
train = train[train['weight'] != 0] train = train.query('date > 85' ).reset_index(drop = True) train = train.astype({c: np.float32 for c in train.select_dtypes(include='float64' ).columns}) train['action'] =(( train['weight'].values * train['resp'].values)> 0 ).astype('int') train.fillna(train.mean() ,inplace=True) cols = [c for c in train.columns if 'feature' in c] X_train = train.loc[:, train.columns.str.contains('feature')] y_train = train.loc[:, 'action']<drop_column>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
4,899,984
del x, y, train, features, example_test, sample_prediction_df<import_modules>
optimizer = RMSprop(lr=0.001,rho=0.9, epsilon=1e-08, decay=0.0 )
Digit Recognizer
4,899,984
print("XGBoost version:", xgb.__version__ )<choose_model_class>
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
4,899,984
clf = xgb.XGBClassifier( n_estimators=500, max_depth=11, learning_rate=0.05, subsample=0.9, colsample_bytree=0.7, missing=-999, random_state=2020, tree_method='gpu_hist' )<train_model>
epochs = 50 batch_size = 378
Digit Recognizer
4,899,984
%time clf.fit(X_train, y_train )<predict_on_test>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
4,899,984
TRAINING = True start_time = time.time() if TRAINING: env = janestreet.make_env() th = 0.5 for(test_df, pred_df)in tqdm(env.iter_test()): if test_df['weight'].item() > 0: x_tt = test_df.loc[:, test_df.columns.str.contains('feature')].values if np.isnan(x_tt[:, 1:].sum()): x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:]) pred = clf.predict(x_tt) pred_df.action = np.where(pred >= th, 1, 0 ).astype(int) else: pred_df.action = 0 env.predict(pred_df) print(f"took: {time.time() - start_time} seconds" )<feature_engineering>
history = model.fit_generator(datagen.flow(X_train, y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val, y_val), steps_per_epoch=X_train.shape[0] // batch_size )
Digit Recognizer
4,899,984
train = pd.read_csv('.. /input/jane-street-market-prediction/train.csv') train = train.query('weight>0' ).reset_index(drop=True) train.fillna(train.median() ,inplace=True) train['feature_stock_id_sum'] = train['feature_41'] + train['feature_42'] + train['feature_43'] train['feature_1_2_cross'] = train['feature_1']/(train['feature_2']+1e-5) NUM_TRAIN_EXAMPLES = len(train )<feature_engineering>
y_test = model.predict(X_test )
Digit Recognizer
4,899,984
features = [c for c in train.columns if 'feature' in c] f_mean = np.nanmean(train[features[1:]].values,axis=0 )<define_variables>
y_test_classes = np.argmax(y_test, axis = 1 )
Digit Recognizer
4,899,984
PATH ='.. /input/neutralizing2' <define_variables>
num = range(1, len(y_test)+1) output = pd.DataFrame({'ImageId': num, 'Label': y_test_classes}) output.to_csv('submission.csv', index=False )
Digit Recognizer
4,899,984
<choose_model_class><EOS>
y_val_pred = model.predict(X_val )
Digit Recognizer
10,029,170
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering>
%matplotlib inline
Digit Recognizer
10,029,170
def set_all_seeds(seed): np.random.seed(seed) random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed )<normalization>
mnist_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") mnist_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )
Digit Recognizer
10,029,170
class NeutralizeTransform: def __init__(self,proportion=1.0): self.proportion = proportion def fit(self,X,y): self.lms = [] self.mean_exposure = np.mean(y,axis=0) self.y_shape = y.shape[-1] for x in X.T: scores = x.reshape(( -1,1)) exposures = y exposures = np.hstack(( exposures, np.array([np.mean(scores)] * len(exposures)).reshape(-1, 1))) transform = np.linalg.lstsq(exposures, scores, rcond=None)[0] self.lms.append(transform) def transform(self,X,y=None): out = [] for i,transform in enumerate(self.lms): x = X[:,i] scores = x.reshape(( -1,1)) exposures = np.repeat(self.mean_exposure,len(x),axis=0 ).reshape(( -1,self.y_shape)) exposures = np.concatenate([exposures,np.array([np.mean(scores)] * len(exposures)).reshape(( -1,1)) ],axis=1) correction = self.proportion * exposures.dot(transform) out.append(x - correction.ravel()) return np.asarray(out ).T def fit_transform(self,X,y): self.fit(X,y) return self.transform(X,y) <define_variables>
mnist_train.isna().any().any()
Digit Recognizer
10,029,170
TRAINING = False<categorify>
mnist_train_data = mnist_train.loc[:, "pixel0":] mnist_train_label = mnist_train.loc[:, "label"] mnist_train_data = mnist_train_data/255.0 mnist_test = mnist_test/255.0
Digit Recognizer
10,029,170
%%time if TRAINING: mask = train[features].isna() train.fillna(0,inplace=True) for feature in features: nt = NeutralizeTransform(proportion=0.25) train[feature] = nt.fit_transform(train[feature].values.reshape(( -1,1)) , train['resp'].values.reshape(( -1,1))) pd.to_pickle(nt,f'NeutralizeTransform_{feature}.pkl') train[mask] = np.nan else: nts = [] for feature in features: nt = pd.read_pickle(f'{PATH}/NeutralizeTransform_{feature}.pkl') nts.append(nt )<set_options>
standardized_scalar = StandardScaler() standardized_data = standardized_scalar.fit_transform(mnist_train_data) standardized_data.shape
Digit Recognizer
10,029,170
gc.collect()<define_variables>
cov_matrix = np.matmul(standardized_data.T, standardized_data) cov_matrix.shape
Digit Recognizer
10,029,170
TRAINING = False<prepare_x_and_y>
lambdas, vectors = eigh(cov_matrix, eigvals=(782, 783)) vectors.shape
Digit Recognizer
10,029,170
X_tr = train.query('date<350')[features].values y_tr =(train.query('date<350')[resp_cols].values > 0 ).astype(int) X_val = train.query('date>400')[features].values y_val =(train.query('date>400')[resp_cols].values > 0 ).astype(int) del train gc.collect() if TRAINING: metric = {} for seed in [2020,1982]: set_all_seeds(seed) model = create_model(X_tr.shape[-1]) hist = model.fit(X_tr,y_tr, validation_data=(X_val,y_val), epochs=200, batch_size=8192, callbacks=[tf.keras.callbacks.EarlyStopping('val_binary_accuracy',mode='max',patience=20,restore_best_weights=True), tf.keras.callbacks.ReduceLROnPlateau('val_binary_accuracy',mode='max',patience=10,cooldown=5)]) model.save_weights(f'model_{seed}.tf') metric[seed] = max(hist.history['val_binary_accuracy']) tf.keras.backend.clear_session() print(metric) else: models = [] for seed in [2020,1982]: model = create_model(X_tr.shape[-1]) model.load_weights(f'{PATH}/model_{seed}.tf') model.call = tf.function(model.call, experimental_relax_shapes=True) models.append(model) <feature_engineering>
new_coordinates = np.matmul(vectors, standardized_data.T) print(new_coordinates.shape) new_coordinates = np.vstack(( new_coordinates, mnist_train_label)).T
Digit Recognizer
10,029,170
if not TRAINING: f = np.median env = janestreet.make_env() th = 0.495 for(test_df, pred_df)in tqdm(env.iter_test()): if test_df['weight'].values[0] > 0: test_df['feature_stock_id_sum'] = test_df['feature_41'] + test_df['feature_42'] + test_df['feature_43'] test_df['feature_1_2_cross'] = test_df['feature_1']/(test_df['feature_2']+1e-5) x_tt = test_df.loc[:, features].values if np.isnan(x_tt[:, 1:].sum()): x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:])* f_mean for i in range(len(nts)) : x_tt[:,i] = nts[i].transform(np.expand_dims(x_tt[:,i],0)) p = f(np.mean([model(x_tt,training=False ).numpy() for model in models],axis=0)) pred_df.action = np.where(p > th, 1, 0 ).astype(int) else: pred_df["action"].values[0] = 0 env.predict(pred_df )<import_modules>
df_new = pd.DataFrame(new_coordinates, columns=["f1", "f2", "labels"]) df_new.head()
Digit Recognizer
10,029,170
<load_from_csv>
pca = decomposition.PCA() pca.n_components = 2 pca_data = pca.fit_transform(standardized_data) pca_data.shape
Digit Recognizer
10,029,170
start_time = time.time() train = pd.read_csv('.. /input/jane-street-market-prediction/train.csv') print('Load in data successful!') print('-----------------------------------------------------------------------') time_passed_m = int(( time.time() - start_time)// 60) time_passed_s = int(( time.time() - start_time)% 60) print(f'Time usage: {time_passed_m}m.{time_passed_s}s.' )<define_variables>
pca_data = np.vstack(( pca_data.T, mnist_train_label)).T
Digit Recognizer
10,029,170
SEED = 42 np.random.seed(SEED) TRAINING_PGTS = True MANUAL_VALIDATING = False TRAINING = True print(f'TRAINING_PGTS = {TRAINING_PGTS} \ MANUAL_VALIDATING = {MANUAL_VALIDATING} \ TRAINING = {TRAINING}' )<prepare_x_and_y>
df_PCA = pd.DataFrame(new_coordinates, columns=["f1", "f2", "labels"]) df_PCA.head()
Digit Recognizer
10,029,170
train = train.query('date > 85' ).reset_index(drop = True) train = train[train['weight'] != 0] train.fillna(train.mean() , inplace=True) train['action'] =(( train['resp'].values)> 0 ).astype(int) features = [c for c in train.columns if 'feature' in c] f_mean = np.mean(train[features[1:]].values, axis=0) resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4'] X_train = train.loc[:, train.columns.str.contains('feature')] y_train = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T print(X_train.shape, y_train.shape) if MANUAL_VALIDATING: X_train_v = train[train['date'] <= 416] y_train_v = np.stack([(X_train_v[c] > 0 ).astype('int')for c in resp_cols] ).T X_train_v = X_train_v.loc[:, features].values X_test_v = train[train['date'] > 416] y_test_v = np.stack([(X_test_v[c] > 0 ).astype('int')for c in resp_cols] ).T X_test_v = X_test_v.loc[:, features].values print(X_test_v.shape, y_test_v.shape) print('Done data preprocessing!' )<define_search_model>
mnist_train_data = np.array(mnist_train_data) mnist_train_label = np.array(mnist_train_label )
Digit Recognizer
10,029,170
def create_mlp(num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate): inp = Input(shape=(num_columns,)) x = BatchNormalization()(inp) x = Dropout(dropout_rates[0] )(x) for i in range(len(hidden_units)) : x = Dense(hidden_units[i] )(x) x = BatchNormalization()(x) x = Activation(tf.keras.activations.swish )(x) x = Dropout(dropout_rates[i+1] )(x) x = Dense(num_labels )(x) out = Activation('sigmoid' )(x) model = tf.keras.models.Model(inputs=inp, outputs=out) model.compile( optimizer = tfa.optimizers.RectifiedAdam(learning_rate=learning_rate), loss = tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing), metrics = tf.keras.metrics.AUC(name='AUC') ) return model<import_modules>
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Lambda, Flatten, BatchNormalization from tensorflow.keras.layers import Conv2D, MaxPool2D, AvgPool2D from tensorflow.keras.optimizers import Adadelta from keras.utils.np_utils import to_categorical from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import ReduceLROnPlateau from tensorflow.keras.callbacks import LearningRateScheduler
Digit Recognizer
10,029,170
class PurgedGroupTimeSeriesSplit(_BaseKFold): @_deprecate_positional_args def __init__(self, n_splits=5, *, max_train_group_size=np.inf, max_test_group_size=np.inf, group_gap=None, verbose=False ): super().__init__(n_splits, shuffle=False, random_state=None) self.max_train_group_size = max_train_group_size self.group_gap = group_gap self.max_test_group_size = max_test_group_size self.verbose = verbose def split(self, X, y=None, groups=None): if groups is None: raise ValueError( "The 'groups' parameter should not be None") X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) n_splits = self.n_splits group_gap = self.group_gap max_test_group_size = self.max_test_group_size max_train_group_size = self.max_train_group_size n_folds = n_splits + 1 group_dict = {} u, ind = np.unique(groups, return_index=True) unique_groups = u[np.argsort(ind)] n_samples = _num_samples(X) n_groups = _num_samples(unique_groups) for idx in np.arange(n_samples): if(groups[idx] in group_dict): group_dict[groups[idx]].append(idx) else: group_dict[groups[idx]] = [idx] if n_folds > n_groups: raise ValueError( ("Cannot have number of folds={0} greater than" " the number of groups={1}" ).format(n_folds, n_groups)) group_test_size = min(n_groups // n_folds, max_test_group_size) group_test_starts = range(n_groups - n_splits * group_test_size, n_groups, group_test_size) for group_test_start in group_test_starts: train_array = [] test_array = [] group_st = max(0, group_test_start - group_gap - max_train_group_size) for train_group_idx in unique_groups[group_st:(group_test_start - group_gap)]: train_array_tmp = group_dict[train_group_idx] train_array = np.sort(np.unique( np.concatenate(( train_array, train_array_tmp)) , axis=None), axis=None) train_end = train_array.size for test_group_idx in unique_groups[group_test_start: group_test_start + group_test_size]: test_array_tmp = group_dict[test_group_idx] test_array = np.sort(np.unique( np.concatenate(( test_array, test_array_tmp)) , axis=None), axis=None) test_array = test_array[group_gap:] if self.verbose > 0: pass yield [int(i)for i in train_array], [int(i)for i in test_array]<prepare_x_and_y>
nclasses = mnist_train_label.max() - mnist_train_label.min() + 1 mnist_train_label = to_categorical(mnist_train_label, num_classes = nclasses) print("Shape of ytrain after encoding: ", mnist_train_label.shape )
Digit Recognizer
10,029,170
n_samples = 2000 n_groups = 20 assert n_samples % n_groups == 0 idx = np.linspace(0, n_samples-1, num=n_samples) X_train_pgts = np.random.random(size=(n_samples, 5)) y_train_pgts = np.random.choice([0, 1], n_samples) groups = np.repeat(np.linspace(0, n_groups-1, num=n_groups), n_samples/n_groups) groups.shape<split>
def build_model(input_shape=(28, 28, 1)) : model = Sequential() model.add(Conv2D(32, kernel_size = 3, activation='relu', input_shape = input_shape)) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 5, strides=2, padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(64, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 5, strides=2, padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(128, kernel_size = 4, activation='relu')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dropout(0.4)) model.add(Dense(10, activation='softmax')) return model def compile_model(model, optimizer='adam', loss='categorical_crossentropy'): model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"]) def train_model(model, train, test, epochs, split): history = model.fit(train, test, shuffle=True, epochs=epochs, validation_split=split) return history
Digit Recognizer
10,029,170
FOLDS = 5 models = [] if TRAINING_PGTS: gkf = PurgedGroupTimeSeriesSplit(n_splits=FOLDS, group_gap=20) splits = list(gkf.split(y_train, groups=train['date'].values)) for fold,(train_indices, test_indices)in tqdm(enumerate(splits)) : X_train_pgts, X_test_pgts = X_train.iloc[train_indices, :], X_train.iloc[test_indices, :] y_train_pgts, y_test_pgts = y_train[train_indices], y_train[test_indices] tf.keras.backend.clear_session() model = create_mlp(len(features), 5, hidden_units, dropout_rates, label_smoothing, learning_rate) er = EarlyStopping(patience = 8, restore_best_weights = True, monitor = 'val_loss') ReduceLR = tf.keras.callbacks.ReduceLROnPlateau(monitor = 'val_loss', factor = 0.1, patience = 8, verbose = 1, mode = 'min') model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath = f'model3-1_{SEED}_{fold}.hdf5', save_weights_only = True, verbose = 0, monitor = 'val_loss', save_best_only = True) nn_callbacks = [er, ReduceLR, model_checkpoint_callback] model.fit(X_train_pgts, y_train_pgts, validation_data =(X_test_pgts, y_test_pgts), epochs = epochs[0], batch_size = batch_size[1], verbose=2, callbacks = nn_callbacks) models.append(model) else: for fold in tqdm(range(FOLDS)) : tf.keras.backend.clear_session() model = create_mlp(len(features), 5, hidden_units, dropout_rates, label_smoothing, learning_rate) model.load_weights(f'.. /input/js-model-v1/model4_{SEED}_{fold}.hdf5') models.append(model )<choose_model_class>
cnn_model = build_model(( 28, 28, 1)) compile_model(cnn_model, 'adam', 'categorical_crossentropy') model_history = train_model(cnn_model, mnist_train_data, mnist_train_label, 80, 0.2 )
Digit Recognizer
10,029,170
if MANUAL_VALIDATING: er = EarlyStopping(patience = 8, restore_best_weights = True, monitor = 'val_loss') ReduceLR = tf.keras.callbacks.ReduceLROnPlateau(monitor = 'val_loss', factor = 0.1, patience = 8, verbose = 1, mode = 'min') model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath = 'js_model_v4_weights.h5', save_weights_only = True, verbose = 0, monitor = 'val_loss', save_best_only = True) nn_callbacks = [er, ReduceLR, model_checkpoint_callback] clf = create_mlp(len(features), 5, hidden_units, dropout_rates, label_smoothing, learning_rate) history = clf.fit( X_train_v, y_train_v, epochs = epochs[0], batch_size = batch_size, verbose = 2, validation_data =(X_test_v, y_test_v), callbacks = nn_callbacks ) del X_train_v, y_train_v, X_test_v, y_test_v if TRAINING: tf.keras.backend.clear_session() tf.random.set_seed(SEED) clf = create_mlp(len(features), 5, hidden_units, dropout_rates, label_smoothing, learning_rate) clf.fit(X_train, y_train, epochs=epochs[0], batch_size=batch_size[1], verbose=2, ) clf.save_weights('js_model_v2-1_weights.h5') print('Training succeeded! ') else: clf = create_mlp(len(features), 5, hidden_units, dropout_rates, label_smoothing, learning_rate) clf.load_weights('.. /input/js-model-v1/model3-1_1111_9.hdf5') print('Loading succeeded! ') clf.summary() models.append(clf )<feature_engineering>
predictions = cnn_model.predict(mnist_test_arr )
Digit Recognizer
10,029,170
class JSMP_Dataset(Dataset): def __init__(self, file_path, window_size): self.file_path = file_path self.window_size = window_size train = pd.read_csv(file_path) train = train.query('date > 85' ).reset_index(drop = True) train.fillna(train.mean() ,inplace=True) train['action'] =(( train['resp'].values)> 0 ).astype(int) resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4'] self.features = [c for c in train.columns if "feature" in c] self.f_mean = np.mean(train[self.features[1:]].values,axis=0) self.X_train = train.loc[:, train.columns.str.contains('feature')].values self.y_train = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T self.X_train = torch.from_numpy(self.X_train ).float() self.y_train = torch.from_numpy(self.y_train ).float() del train gc.collect() def __len__(self): return len(self.X_train)- self.window_size def __getitem__(self, i): data = self.X_train[i:(i+ self.window_size), :] label = self.y_train[i + self.window_size - 1] return data, label<create_dataframe>
predictions_test = [] for i in predictions: predictions_test.append(np.argmax(i))
Digit Recognizer
10,029,170
window_size = 5 file_path = '/kaggle/input/jane-street-market-prediction/train.csv' ds = JSMP_Dataset(file_path, window_size )<normalization>
submission = pd.DataFrame({ "ImageId": mnist_test.index+1, "Label": predictions_test }) submission.to_csv('my_submission.csv', index=False )
Digit Recognizer
10,029,170
class Chomp1d(nn.Module): def __init__(self, chomp_size): super(Chomp1d, self ).__init__() self.chomp_size = chomp_size def forward(self, x): return x[:, :, :-self.chomp_size].contiguous() class TemporalBlock(nn.Module): def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2): super(TemporalBlock, self ).__init__() self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation)) self.chomp1 = Chomp1d(padding) self.relu1 = nn.ReLU() self.dropout1 = nn.Dropout(dropout) self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation)) self.chomp2 = Chomp1d(padding) self.relu2 = nn.ReLU() self.dropout2 = nn.Dropout(dropout) self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1, self.conv2, self.chomp2, self.relu2, self.dropout2) self.downsample = nn.Conv1d(n_inputs, n_outputs, 1)if n_inputs != n_outputs else None self.relu = nn.ReLU() self.init_weights() def init_weights(self): self.conv1.weight.data.normal_(0, 0.01) self.conv2.weight.data.normal_(0, 0.01) if self.downsample is not None: self.downsample.weight.data.normal_(0, 0.01) def forward(self, x): out = self.net(x) res = x if self.downsample is None else self.downsample(x) return self.relu(out + res) class TemporalConvNet(nn.Module): def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2): super(TemporalConvNet, self ).__init__() layers = [] num_levels = len(num_channels) for i in range(num_levels): dilation_size = 2 ** i in_channels = num_inputs if i == 0 else num_channels[i-1] out_channels = num_channels[i] layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size, padding=(kernel_size-1)* dilation_size, dropout=dropout)] self.network = nn.Sequential(*layers) def forward(self, x): return self.network(x )<choose_model_class>
%matplotlib inline
Digit Recognizer
10,029,170
class TCN(nn.Module): def __init__(self, input_size, output_size, num_channels, kernel_size, dropout): super(TCN, self ).__init__() self.tcn = TemporalConvNet(input_size, num_channels, kernel_size=kernel_size, dropout=dropout) self.fc1 = nn.Linear(130 * num_channels[-1], 128) self.dropout1 = nn.Dropout(dropout) self.batch_norm1 = nn.BatchNorm1d(128) self.LeakyReLU1 = nn.LeakyReLU(negative_slope=0.01, inplace=True) self.fc2 = nn.Linear(128, 128) self.dropout2 = nn.Dropout(dropout) self.batch_norm2 = nn.BatchNorm1d(128) self.LeakyReLU2 = nn.LeakyReLU(negative_slope=0.01, inplace=True) self.fc3 = nn.Linear(128, output_size) def forward(self, inputs): y1 = self.tcn(inputs) y1 = torch.flatten(y1, start_dim=1) y1 = self.fc1(y1) y1 = self.batch_norm1(y1) y1 = self.LeakyReLU1(y1) y1 = self.dropout1(y1) y1 = self.fc2(y1) y1 = self.batch_norm2(y1) y1 = self.LeakyReLU2(y1) y1 = self.dropout2(y1) o = self.fc3(y1) return torch.sigmoid(o )<find_best_params>
mnist_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") mnist_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )
Digit Recognizer
10,029,170
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('use devise:', device) net1 = TCN(input_size=5, output_size=5, num_channels=[16, 8, 4, 2], kernel_size=2, dropout=0.5) net2 = TCN(input_size=5, output_size=5, num_channels=[16, 8, 4, 2], kernel_size=2, dropout=0.5) net1.load_state_dict(torch.load('/kaggle/input/jsmp-tcn-pytorch/best_accuracy_model.mdl', map_location=torch.device(device))) net2.load_state_dict(torch.load('/kaggle/input/jsmp-tcn-pytorch/best_loss_model.mdl', map_location=torch.device(device))) net1.eval() net2.eval()<feature_engineering>
mnist_train.isna().any().any()
Digit Recognizer
10,029,170
th = 0.5 env = janestreet.make_env() device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('use devise:', device) for i,(test_df, pred_df)in enumerate(env.iter_test()): x_tt = test_df.loc[:, ds.features].values if np.isnan(x_tt[:, 1:].sum()): x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:])* ds.f_mean if i == 0: x_window = x_tt.copy() elif i < window_size: x_window = np.concatenate([x_window, x_tt], axis=0) else: x_window = np.concatenate([x_window[1:, :], x_tt], axis=0) if i < window_size - 1: pred_df.action = 0 else: if test_df['weight'].item() > 0: inputs = torch.Tensor(x_window ).unsqueeze(0 ).to(device) outputs =(net1(inputs)+ net2(inputs)) / 2 pred =(torch.median(outputs, axis=1 ).values > th ).long() pred_df.action = pred.item() else: pred_df.action = 0 env.predict(pred_df )<import_modules>
mnist_train_data = mnist_train.loc[:, "pixel0":] mnist_train_label = mnist_train.loc[:, "label"] mnist_train_data = mnist_train_data/255.0 mnist_test = mnist_test/255.0
Digit Recognizer
10,029,170
import os import time import gc import random import numpy as np import pandas as pd from tqdm.notebook import tqdm import pathlib from sklearn.metrics import log_loss, roc_auc_score from sklearn.model_selection import KFold from sklearn.model_selection._split import _BaseKFold, indexable, _num_samples from sklearn.utils.validation import _deprecate_positional_args import tensorflow as tf from tensorflow import keras import tensorflow_addons as tfa from tensorflow.keras import layers<set_options>
standardized_scalar = StandardScaler() standardized_data = standardized_scalar.fit_transform(mnist_train_data) standardized_data.shape
Digit Recognizer
10,029,170
GPUs = tf.config.experimental.list_physical_devices(device_type='GPU') for gpu in GPUs: tf.config.experimental.set_memory_growth(gpu, True )<import_modules>
cov_matrix = np.matmul(standardized_data.T, standardized_data) cov_matrix.shape
Digit Recognizer
10,029,170
print('tensorflow_version_is',tf.__version__ )<define_variables>
lambdas, vectors = eigh(cov_matrix, eigvals=(782, 783)) vectors.shape
Digit Recognizer
10,029,170
SEED=42 def seed_everything(seed): random.seed(seed) np.random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) tf.random.set_seed(seed) seed_everything(seed=SEED )<load_from_disk>
new_coordinates = np.matmul(vectors, standardized_data.T) print(new_coordinates.shape) new_coordinates = np.vstack(( new_coordinates, mnist_train_label)).T
Digit Recognizer
10,029,170
%%time print('Loading data...') train = pd.read_feather('.. /input/janestreet-save-as-feather/train.feather') print('Done!' )<normalization>
df_new = pd.DataFrame(new_coordinates, columns=["f1", "f2", "labels"]) df_new.head()
Digit Recognizer
10,029,170
class Mish(tf.keras.layers.Layer): def __init__(self, **kwargs): super(Mish, self ).__init__(**kwargs) self.supports_masking = True def call(self, inputs): return inputs * K.tanh(K.softplus(inputs)) def get_config(self): base_config = super(Mish, self ).get_config() return dict(list(base_config.items())+ list(config.items())) def compute_output_shape(self, input_shape): return input_shape def mish(x): return tf.keras.layers.Lambda(lambda x: x*K.tanh(K.softplus(x)) )(x) tf.keras.utils.get_custom_objects().update({'mish': tf.keras.layers.Activation(mish)} )<data_type_conversions>
pca = decomposition.PCA() pca.n_components = 2 pca_data = pca.fit_transform(standardized_data) pca_data.shape
Digit Recognizer
10,029,170
train = train.query('date > 85' ).reset_index(drop = True) train = train.query('weight > 0' ).reset_index(drop = True) train.fillna(train.mean() ,inplace=True) base_features = [c for c in train.columns if "feature" in c] f_mean = np.mean(train[base_features[1:]].values,axis=0) train['action'] =(train['resp'] > 0 ).astype('int') train['action_1'] =(train['resp_1'] > 0 ).astype('int') train['action_2'] =(train['resp_2'] > 0 ).astype('int') train['action_3'] =(train['resp_3'] > 0 ).astype('int') train['action_4'] =(train['resp_4'] > 0 ).astype('int') def add_features(train_df): train_df['feature_cross_41_42_43'] = train_df['feature_41']+train_df['feature_42']+train_df['feature_43'] train_df['feature_cross_1_2'] = train_df['feature_1']/(train_df['feature_2']+2e-5) return train_df train = add_features(train) features = [c for c in train.columns if "feature" in c] target_cols = ['action', 'action_1', 'action_2', 'action_3', 'action_4'] X = train[features].values y = np.stack([(train[c] > 0 ).astype('int')for c in target_cols] ).T X.shape, y.shape<choose_model_class>
pca_data = np.vstack(( pca_data.T, mnist_train_label)).T
Digit Recognizer
10,029,170
def RestNet_(num_columns, num_labels, hidden_size, dropout_rate, label_smoothing, learning_rate): inp = layers.Input(shape=(num_columns,)) x = layers.BatchNormalization()(inp) x = layers.Dense(132 )(x) x = layers.LeakyReLU()(x) x = layers.Dropout(0.315 )(x) x1 = layers.Dense(hidden_size*1.2 )(x) x1 = layers.BatchNormalization()(x1) x1 = layers.Activation('mish' )(x1) x1 = layers.Dropout(dropout_rate )(x1) x = layers.concatenate([x, x1], axis=1) x2 = layers.Dense(hidden_size*1.1 )(x) x2 = layers.BatchNormalization(axis=1 )(x2) x2 = layers.Activation('mish' )(x2) x2 = layers.Dropout(dropout_rate )(x2) x = layers.concatenate([x1, x2], axis=1) x3 = layers.Dense(hidden_size*1.0 )(x) x3 = layers.BatchNormalization(axis=1 )(x3) x3 = layers.Activation('mish' )(x3) x3 = layers.Dropout(dropout_rate )(x3) x = layers.concatenate([x2, x3], axis=1) x4 = layers.Dense(hidden_size*0.9 )(x) x4 = layers.BatchNormalization(axis=1 )(x4) x4 = layers.Activation('mish' )(x4) x4 = layers.Dropout(dropout_rate )(x4) x = layers.concatenate([x3, x4], axis=1) x5 = layers.Dense(hidden_size*0.8 )(x) x5 = layers.BatchNormalization(axis=1 )(x5) x5 = layers.LeakyReLU()(x5) x5 = layers.Dropout(dropout_rate )(x5) x = layers.concatenate([x1, x3, x5], axis=1) x = layers.Dense(num_labels )(x) out = layers.Activation("sigmoid" )(x) model = tf.keras.models.Model(inputs=inp, outputs=out) model.compile(optimizer=tfa.optimizers.RectifiedAdam(learning_rate=learning_rate,weight_decay=1e-5), loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing), metrics=tf.keras.metrics.AUC(name="AUC") ) return model<choose_model_class>
df_PCA = pd.DataFrame(new_coordinates, columns=["f1", "f2", "labels"]) df_PCA.head()
Digit Recognizer
10,029,170
hidden_units = 256 dropout_rates = 0.3 label_smoothing = 5e-3 learning_rate = 1e-3 model = RestNet_(X.shape[1], y.shape[1], hidden_units, dropout_rates, label_smoothing, learning_rate) model.summary()<set_options>
mnist_train_data = np.array(mnist_train_data) mnist_train_label = np.array(mnist_train_label )
Digit Recognizer
10,029,170
del model gc.collect()<define_search_model>
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Lambda, Flatten, BatchNormalization from tensorflow.keras.layers import Conv2D, MaxPool2D, AvgPool2D from tensorflow.keras.optimizers import Adadelta from keras.utils.np_utils import to_categorical from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import ReduceLROnPlateau from tensorflow.keras.callbacks import LearningRateScheduler
Digit Recognizer
10,029,170
class PurgedGroupTimeSeriesSplit(_BaseKFold): @_deprecate_positional_args def __init__(self, n_splits=5, *, max_train_group_size=np.inf, max_test_group_size=np.inf, group_gap=None, verbose=False ): super().__init__(n_splits, shuffle=False, random_state=None) self.max_train_group_size = max_train_group_size self.group_gap = group_gap self.max_test_group_size = max_test_group_size self.verbose = verbose def split(self, X, y=None, groups=None): if groups is None: raise ValueError( "The 'groups' parameter should not be None") X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) n_splits = self.n_splits group_gap = self.group_gap max_test_group_size = self.max_test_group_size max_train_group_size = self.max_train_group_size n_folds = n_splits + 1 group_dict = {} u, ind = np.unique(groups, return_index=True) unique_groups = u[np.argsort(ind)] n_samples = _num_samples(X) n_groups = _num_samples(unique_groups) for idx in np.arange(n_samples): if(groups[idx] in group_dict): group_dict[groups[idx]].append(idx) else: group_dict[groups[idx]] = [idx] if n_folds > n_groups: raise ValueError( ("Cannot have number of folds={0} greater than" " the number of groups={1}" ).format(n_folds, n_groups)) group_test_size = min(n_groups // n_folds, max_test_group_size) group_test_starts = range(n_groups - n_splits * group_test_size, n_groups, group_test_size) for group_test_start in group_test_starts: train_array = [] test_array = [] group_st = max(0, group_test_start - group_gap - max_train_group_size) for train_group_idx in unique_groups[group_st:(group_test_start - group_gap)]: train_array_tmp = group_dict[train_group_idx] train_array = np.sort(np.unique( np.concatenate(( train_array, train_array_tmp)) , axis=None), axis=None) train_end = train_array.size for test_group_idx in unique_groups[group_test_start: group_test_start + group_test_size]: test_array_tmp = group_dict[test_group_idx] test_array = np.sort(np.unique( np.concatenate(( test_array, test_array_tmp)) , axis=None), axis=None) test_array = test_array[group_gap:] if self.verbose > 0: pass yield [int(i)for i in train_array], [int(i)for i in test_array]<define_search_model>
nclasses = mnist_train_label.max() - mnist_train_label.min() + 1 mnist_train_label = to_categorical(mnist_train_label, num_classes = nclasses) print("Shape of ytrain after encoding: ", mnist_train_label.shape )
Digit Recognizer
10,029,170
NUM_FOLDS = 7 EPOCHS = 500 BATCH_SIZE = 6500 TRAINING = False CV = True if TRAINING: if CV: gkf = PurgedGroupTimeSeriesSplit(n_splits = NUM_FOLDS, group_gap=15) splits = list(gkf.split(y, groups=train['date'].values)) for fold,(train_indices, test_indices)in enumerate(splits): keras.backend.clear_session() reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_loss', verbose=1, factor=0.2, patience=12, mode='min') early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=25) checkpoint_callback = keras.callbacks.ModelCheckpoint( filepath='logs/BestVal_model_{}.h5'.format(fold), save_weights_only=True, monitor='val_AUC', mode='max', verbose=1, save_best_only=True) model = RestNet_(X.shape[1], y.shape[1], hidden_units, dropout_rates, label_smoothing, learning_rate) X_train, X_test = X[train_indices], X[test_indices] y_train, y_test = y[train_indices], y[test_indices] model.fit(X_train, y_train, validation_data=(X_test,y_test), epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks=[reduce_lr, early_stop, checkpoint_callback]) model.save_weights(f'logs/model_{SEED}_{fold}.h5') del model gc.collect() else: keras.backend.clear_session() model = RestNet_(len(features1), len(features2), y.shape[1], hidden_units, dropout_rates, label_smoothing, learning_rate) model.fit(X, y, epochs=EPOCHS, batch_size=BATCH_SIZE) model.save_weights(f'.logs/model_{SEED}_NONE.h5') else: SEED1=42 Full_models_42 = [] for fold in range(NUM_FOLDS): tf.keras.backend.clear_session() model1 = RestNet_(X.shape[1], y.shape[1], hidden_units, dropout_rates, label_smoothing, learning_rate) model1.load_weights(pathlib.Path(f'.. /input/drop0315/model_{SEED1}_{fold}.h5')) Full_models_42.append(model1) SEED2=73 Full_models_73 = [] for fold in range(NUM_FOLDS): tf.keras.backend.clear_session() model2 = RestNet_(X.shape[1], y.shape[1], hidden_units, dropout_rates, label_smoothing, learning_rate) model2.load_weights(pathlib.Path(f'.. /input/73cv7/model_{SEED2}_{fold}.h5')) Full_models_73.append(model2) SEED3=2021 Full_models_2021 = [] for fold in range(NUM_FOLDS): tf.keras.backend.clear_session() model3 = RestNet_(X.shape[1], y.shape[1], hidden_units, dropout_rates, label_smoothing, learning_rate) model3.load_weights(pathlib.Path(f'.. /input/2021cv7/model_{SEED3}_{fold}.h5')) Full_models_2021.append(model3) <categorify>
def build_model(input_shape=(28, 28, 1)) : model = Sequential() model.add(Conv2D(32, kernel_size = 3, activation='relu', input_shape = input_shape)) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 5, strides=2, padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(64, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 5, strides=2, padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(128, kernel_size = 4, activation='relu')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dropout(0.4)) model.add(Dense(10, activation='softmax')) return model def compile_model(model, optimizer='adam', loss='categorical_crossentropy'): model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"]) def train_model(model, train, test, epochs, split): history = model.fit(train, test, shuffle=True, epochs=epochs, validation_split=split) return history
Digit Recognizer
10,029,170
%%time class LiteModel: @classmethod def from_file(cls, model_path): return LiteModel(tf.lite.Interpreter(model_path=model_path)) @classmethod def from_keras_model(cls, kmodel): converter = tf.lite.TFLiteConverter.from_keras_model(kmodel) tflite_model = converter.convert() return LiteModel(tf.lite.Interpreter(model_content=tflite_model)) def __init__(self, interpreter): self.interpreter = interpreter self.interpreter.allocate_tensors() input_det = self.interpreter.get_input_details() [0] output_det = self.interpreter.get_output_details() [0] self.input_index = input_det["index"] self.output_index = output_det["index"] self.input_shape = input_det["shape"] self.output_shape = output_det["shape"] self.input_dtype = input_det["dtype"] self.output_dtype = output_det["dtype"] def predict(self, inp): inp = inp.astype(self.input_dtype) count = inp.shape[0] out = np.zeros(( count, self.output_shape[1]), dtype=self.output_dtype) for i in range(count): self.interpreter.set_tensor(self.input_index, inp[i:i+1]) self.interpreter.invoke() out[i] = self.interpreter.get_tensor(self.output_index)[0] return out def predict_single(self, inp): inp = np.array([inp], dtype=self.input_dtype) self.interpreter.set_tensor(self.input_index, inp) self.interpreter.invoke() out = self.interpreter.get_tensor(self.output_index) return out[0] tflite_models_42=[] for i in range(len(Full_models_42)) : tflite_model_ = LiteModel.from_keras_model(Full_models_42[i]) tflite_models_42.append(tflite_model_) tflite_models_73=[] for i in range(len(Full_models_73)) : tflite_model_ = LiteModel.from_keras_model(Full_models_73[i]) tflite_models_73.append(tflite_model_) tflite_models_2021=[] for i in range(len(Full_models_2021)) : tflite_model_ = LiteModel.from_keras_model(Full_models_2021[i]) tflite_models_2021.append(tflite_model_) print(len(tflite_models_42)+ len(tflite_models_73)+ len(tflite_models_2021))<define_search_space>
cnn_model = build_model(( 28, 28, 1)) compile_model(cnn_model, 'adam', 'categorical_crossentropy') model_history = train_model(cnn_model, mnist_train_data, mnist_train_label, 80, 0.2 )
Digit Recognizer
10,029,170
f = np.median th = 0.502 weight_model = [1,1,1,2,2,2]<feature_engineering>
predictions = cnn_model.predict(mnist_test_arr )
Digit Recognizer
10,029,170
env = janestreet.make_env() for(test_df, pred_df)in tqdm(env.iter_test()): if test_df['weight'].item() > 0: test_df_ = test_df.loc[:, base_features].values if np.isnan(test_df_[:, 1:].sum()): test_df_[:, 1:] = np.nan_to_num(test_df_[:, 1:])+ np.isnan(test_df_[:, 1:])* f_mean cross_41_42_43 = test_df_[:, 41] + test_df_[:, 42] + test_df_[:, 43] cross_1_2 = test_df_[:, 1] /(test_df_[:, 2] + 2e-5) x_tt = np.concatenate(( test_df_, np.array(cross_41_42_43 ).reshape(test_df_.shape[0], 1), np.array(cross_1_2 ).reshape(test_df_.shape[0], 1), ), axis=1) pred_42 = np.average([clf.predict(x_tt)for clf in tflite_models_42], axis=0, weights=np.array(weight_model)) pred_42 = f(pred_42) pred_73 = np.average([clf.predict(x_tt)for clf in tflite_models_73], axis=0, weights=np.array(weight_model)) pred_42 = f(pred_73) pred_2021 = np.average([clf.predict(x_tt)for clf in tflite_models_2021], axis=0, weights=np.array(weight_model)) pred_2021 = f(pred_2021) pred = pred_42*0.3 + pred_73*0.3 + pred_73*0.4 pred_df.action = np.where(pred >= th, 1, 0 ).astype(int) else: pred_df.action = 0 env.predict(pred_df )<set_options>
predictions_test = [] for i in predictions: predictions_test.append(np.argmax(i))
Digit Recognizer
10,029,170
!mkdir cache<import_modules>
submission = pd.DataFrame({ "ImageId": mnist_test.index+1, "Label": predictions_test }) submission.to_csv('my_submission.csv', index=False )
Digit Recognizer
10,029,170
class PurgedGroupTimeSeriesSplit(_BaseKFold): @_deprecate_positional_args def __init__(self, n_splits=5, *, max_train_group_size=np.inf, max_test_group_size=np.inf, group_gap=None, verbose=False ): super().__init__(n_splits, shuffle=False, random_state=None) self.max_train_group_size = max_train_group_size self.group_gap = group_gap self.max_test_group_size = max_test_group_size self.verbose = verbose def split(self, X, y=None, groups=None): if groups is None: raise ValueError( "The 'groups' parameter should not be None") X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) n_splits = self.n_splits group_gap = self.group_gap max_test_group_size = self.max_test_group_size max_train_group_size = self.max_train_group_size n_folds = n_splits + 1 group_dict = {} u, ind = np.unique(groups, return_index=True) unique_groups = u[np.argsort(ind)] n_samples = _num_samples(X) n_groups = _num_samples(unique_groups) for idx in np.arange(n_samples): if(groups[idx] in group_dict): group_dict[groups[idx]].append(idx) else: group_dict[groups[idx]] = [idx] if n_folds > n_groups: raise ValueError( ("Cannot have number of folds={0} greater than" " the number of groups={1}" ).format(n_folds, n_groups)) group_test_size = min(n_groups // n_folds, max_test_group_size) group_test_starts = range(n_groups - n_splits * group_test_size, n_groups, group_test_size) for group_test_start in group_test_starts: train_array = [] test_array = [] group_st = max(0, group_test_start - group_gap - max_train_group_size) for train_group_idx in unique_groups[group_st:(group_test_start - group_gap)]: train_array_tmp = group_dict[train_group_idx] train_array = np.sort(np.unique( np.concatenate(( train_array, train_array_tmp)) , axis=None), axis=None) train_end = train_array.size for test_group_idx in unique_groups[group_test_start: group_test_start + group_test_size]: test_array_tmp = group_dict[test_group_idx] test_array = np.sort(np.unique( np.concatenate(( test_array, test_array_tmp)) , axis=None), axis=None) test_array = test_array[group_gap:] if self.verbose > 0: pass yield [int(i)for i in train_array], [int(i)for i in test_array] <import_modules>
%matplotlib inline
Digit Recognizer
10,029,170
class FinData(Dataset): def __init__(self, data, target, date, mode='train', transform=None, cache_dir=None, multi=False): self.data = data self.target = target self.mode = mode self.transform = transform self.cache_dir = cache_dir self.date = date self.multi = multi def __getitem__(self, index): if torch.is_tensor(index): index.to_list() if self.transform: return self.transform(self.data.iloc[index].values) else: if type(index)is list: if self.multi == False: sample = { 'target': torch.Tensor(self.target.iloc[index].values), 'data': torch.FloatTensor(self.data[index]), 'date': torch.Tensor(self.date.iloc[index].values) } elif self.multi == True: sample = { 'target': torch.Tensor(self.target[index]), 'data': torch.FloatTensor(self.data[index]), 'date': torch.Tensor(self.date.iloc[index].values) } else: if self.multi == False: sample = { 'target': torch.Tensor(self.target.iloc[index]), 'data': torch.FloatTensor(self.data[index]), 'date': torch.Tensor(self.date.iloc[index]) } elif self.multi == True: sample = { 'target': torch.Tensor(self.target[index]), 'data': torch.FloatTensor(self.data[index]), 'date': torch.Tensor(self.date.iloc[index]) } return sample def __len__(self): return len(self.data) def load_data(root_dir, mode, overide=None): if overide: data = dt.fread(overide ).to_pandas() elif mode == 'train': data = dt.fread(root_dir + 'train.csv' ).to_pandas() elif mode == 'test': data = dt.fread(root_dir + 'example_test.csv' ).to_pandas() elif mode == 'sub': data = dt.fread(root_dir + 'example_sample_submission.csv' ).to_pandas() return data def preprocess_data(data: pd.DataFrame, scale: bool = False, nn: bool = False, action: str = 'weight'): data = data.query('weight > 0' ).reset_index(drop=True) data = data.query('date > 85' ).reset_index(drop=True) if action == 'weight': data['action'] =( (data['weight'].values * data['resp'].values)> 0 ).astype('float32') if action == 'combined': data['action'] =( (data['resp'].values > 0)and(data['resp_1'].values > 0)and(data['resp_2'].values > 0)and( data['resp_3'].values > 0)and(data['resp_4'].values > 0)).astype('float32') if action == 'multi': resp_cols = ['resp', 'resp_1', 'resp_2', 'resp_3', 'resp_4'] for i in range(len(resp_cols)) : data['action_' + str(i)] =(data['weight'] * data[resp_cols[i]] > 0 ).astype('int') features = [col for col in data.columns if 'feature' in col] + ['weight'] date = data['date'] if action == 'multi': target = np.array([data['action_' + str(i)] for i in range(len(resp_cols)) ] ).T else: target = data['action'] data = data[features] if scale: scaler = StandardScaler() data = scaler.fit_transform(data) if not scale and nn: data = data.values return data, target, features, date def calc_data_mean(array, cache_dir=None, fold=None, train=True, mode='mean'): if train: if mode == 'mean': f_mean = np.nanmean(array, axis=0) if cache_dir and fold: np.save(f'{cache_dir}/f_{fold}_mean.npy', f_mean) elif cache_dir: np.save(f'{cache_dir}/f_mean.npy', f_mean) array = np.nan_to_num(array)+ np.isnan(array)* f_mean if mode == 'median': f_med = np.nanmedian(array, axis=0) if cache_dir and fold: np.save(f'{cache_dir}/f_{fold}_median.npy', f_med) elif cache_dir: np.save(f'{cache_dir}/f_median.npy', f_med) array = np.nan_to_num(array)+ np.isnan(array)* f_med if mode == 'zero': array = np.nan_to_num(array)+ np.isnan(array)* 0 if not train: if mode == 'mean': f_mean = np.load(f'{cache_dir}/f_mean.npy') array = np.nan_to_num(array)+ np.isnan(array)* f_mean if mode == 'median': f_med = np.load(f'{cache_dir}/f_med.npy') array = np.nan_to_num(array)+ np.isnan(array)* f_med if mode == 'zero': array = np.nan_to_num(array)+ np.isnan(array)* 0 return array def weighted_mean(scores, sizes): largest = np.max(sizes) weights = [size / largest for size in sizes] return np.average(scores, weights=weights) def create_dataloaders(dataset: Dataset, indexes: dict, batch_size): train_idx = indexes.get('train', None) val_idx = indexes.get('val', None) test_idx = indexes.get('test', None) dataloaders = {} if train_idx: train_set = Subset( dataset, train_idx) train_sampler = BatchSampler(SequentialSampler( train_set), batch_size=batch_size, drop_last=False) dataloaders['train'] = DataLoader( dataset, sampler=train_sampler, num_workers=10, pin_memory=True) if val_idx: val_set = Subset(dataset, val_idx) val_sampler = BatchSampler(SequentialSampler( val_set), batch_size=batch_size, drop_last=False) dataloaders['val'] = DataLoader( dataset, sampler=val_sampler, num_workers=10, pin_memory=True) if test_idx: test_set = Subset(dataset, test_idx) test_sampler = BatchSampler(SequentialSampler( test_set), batch_size=batch_size, drop_last=False) dataloaders['test'] = DataLoader( dataset, sampler=test_sampler, num_workers=10, pin_memory=True) return dataloaders def seed_everything(seed): random.seed(seed) torch.manual_seed(seed) np.random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def load_model(path, input_size, output_size, p, pl_lightning): if os.path.isdir(path): models = [] for file in os.listdir(path): if pl_lightning: model = Regressor.load_from_checkpoint(checkpoint_path=file, input_size=input_size, output_size=output_size, params=p) else: model = Regressor(input_size, output_size, params=p) model.load_state_dict(torch.load(f'{path}/{file}')) models.append(model) return models elif os.path.isfile(path): if pl_lightning: return Regressor.load_from_checkpoint(checkpoint_path=path, input_size=input_size, output_size=output_size, params=p) else: model = Regressor(input_size, output_size, params=p) model.load_state_dict(torch.load(path)) return model <choose_model_class>
mnist_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") mnist_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )
Digit Recognizer