kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
10,953,593 | most_common = all_data.Embarked.mode()
print("Most common Embarked value: {0}".format(most_common[0]))
for data in [train_data, test_data]:
data.fillna(value={'Embarked': most_common[0]}, inplace=True )<drop_column> | subs=pd.DataFrame({"ImageId":ImageId,"Label":class_score} ) | Digit Recognizer |
10,953,593 | <categorify><EOS> | subs.to_csv("submission.csv",index=False)
subs.head(3 ) | Digit Recognizer |
10,770,776 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<prepare_x_and_y> | import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from keras.applications.vgg16 import preprocess_input
from keras.applications.vgg16 import VGG16
from keras.models import Model
from keras.layers import Dense
from keras.layers import Flatten
from keras.models import Sequential
from keras.optimizers import SGD, Adam
import matplotlib.pyplot as plt
from keras import Input
from keras.utils import to_categorical
from keras.preprocessing.image import ImageDataGenerator | Digit Recognizer |
10,770,776 | X = train_data.drop(['Survived', 'PassengerId'], axis=1)
y = train_data['Survived']
test_X = test_data.drop(['PassengerId'], axis=1 )<train_on_grid> | train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
target = train['label']
train = train.drop(['label'], axis=1)
| Digit Recognizer |
10,770,776 | best_models = {}
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1)
def print_best_parameters(hyperparameters, best_parameters):
value = "Best parameters: "
for key in hyperparameters:
value += str(key)+ ": " + str(best_parameters[key])+ ", "
if hyperparameters:
print(value[:-2])
def get_best_model(estimator, hyperparameters):
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
grid_search = GridSearchCV(estimator=estimator, param_grid=hyperparameters,
n_jobs=-1, cv=cv, scoring="accuracy")
best_model = grid_search.fit(train_X, train_y)
best_parameters = best_model.best_estimator_.get_params()
print_best_parameters(hyperparameters, best_parameters)
return best_model
def evaluate_model(model, name):
print("Accuracy score:", accuracy_score(train_y, model.predict(train_X)))
best_models[name] = model<train_model> | full = pd.concat([train, test])
full=full.to_numpy()
full=full.reshape(-1, 28, 28)
full.shape | Digit Recognizer |
10,770,776 | class MyXGBClassifier(XGBClassifier):
def fit(self, X, y=None):
return super(XGBClassifier, self ).fit(X, y,
verbose=False,
early_stopping_rounds=40,
eval_metric='logloss',
eval_set=[(val_X, val_y)] )<choose_model_class> | full = np.pad(full,(( 0,0),(2,2),(2,2)) , mode='constant')
full = stacked_img = np.stack([full, full, full], axis=3)
full.shape | Digit Recognizer |
10,770,776 | randomForest = RandomForestClassifier(random_state=1, n_estimators=20, max_features='auto',
criterion='gini', max_depth=4, min_samples_split=2,
min_samples_leaf=3)
xgbClassifier = MyXGBClassifier(seed=1, tree_method='gpu_hist', predictor='gpu_predictor',
use_label_encoder=False, learning_rate=0.4, gamma=0.4,
max_depth=4, reg_lambda=0, reg_alpha=0.1)
lgbmClassifier = LGBMClassifier(random_state=1, device='gpu', boosting_type='dart',
num_leaves=8, learning_rate=0.1, n_estimators=100,
reg_alpha=1, reg_lambda=1)
classifiers = [
('randomForest', randomForest),
('xgbClassifier', xgbClassifier),
('lgbmClassifier', lgbmClassifier)
]<choose_model_class> | full=full.astype("float32")
full = full/255
train=full[:42000, :, :, :]
test=full[42000:, :, :, :] | Digit Recognizer |
10,770,776 | hyperparameters = {
'n_jobs' : [-1],
'voting' : ['hard', 'soft'],
'weights' : [(1, 1, 1),
(2, 1, 1),(1, 2, 1),(1, 1, 2),
(2, 2, 1),(1, 2, 2),(2, 1, 2),
(3, 2, 1),(1, 3, 2),(2, 1, 3),(3, 1, 2)]
}
estimator = VotingClassifier(estimators=classifiers)
best_model_voting = get_best_model(estimator, hyperparameters )<find_best_params> | X_train, X_val, Y_train, Y_val = train_test_split(train, target, test_size = 0.2, random_state = 1 ) | Digit Recognizer |
10,770,776 | evaluate_model(best_model_voting.best_estimator_, 'voting' )<save_to_csv> | Y_val_access = Y_val | Digit Recognizer |
10,770,776 | for model in best_models:
predictions = best_models[model].predict(test_X)
output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions})
output.to_csv('submission_' + model + '.csv', index=False )<load_from_csv> | Y_val=to_categorical(Y_val, num_classes=10)
Y_train=to_categorical(Y_train, num_classes=10 ) | Digit Recognizer |
10,770,776 | train_data = pd.read_csv('/kaggle/input/titanic/train.csv')
test_data = pd.read_csv('/kaggle/input/titanic/test.csv' )<prepare_x_and_y> | def create_model() :
VGG = VGG16(
input_shape=(32, 32, 3),
weights='imagenet',
include_top=False,
)
model =tf.keras.Sequential([VGG,
tf.keras.layers.Flatten() ,
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
return model | Digit Recognizer |
10,770,776 | features = ['Pclass','Sex','SibSp','Parch','Fare','Age']
x = pd.get_dummies(train_data[features])
x_test = pd.get_dummies(test_data[features])
y = train_data["Survived"]
<data_type_conversions> | im = ImageDataGenerator(zoom_range=0.1, rotation_range=15, height_shift_range= 0.05, width_shift_range= 0.05)
flow=im.flow(X_train, Y_train, batch_size=32 ) | Digit Recognizer |
10,770,776 | x['Fare'].fillna(x['Fare'].mode() [0], inplace=True)
x_test['Fare'].fillna(x_test['Fare'].mode() [0], inplace=True)
x['Age'].fillna(x['Age'].mode() [0], inplace=True)
x_test['Age'].fillna(x_test['Age'].mode() [0], inplace=True)
<train_on_grid> | mymod=create_model()
mymod.summary()
mymod.compile(optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy'] ) | Digit Recognizer |
10,770,776 | param_grid = {'alpha': sp_rand() }
model = Ridge()
rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100)
rsearch.fit(x,y)
print(rsearch )<save_to_csv> | predictions_val = np.zeros(shape=(5, X_val.shape[0], 10))
predictions_test = np.zeros(shape=(5, test.shape[0], 10))
for i in range(5):
print('training model ', i+1, '...')
perf = mymod.fit_generator(flow, epochs=10, steps_per_epoch= X_train.shape[0]/32, validation_data=(X_val, Y_val), verbose=0)
pred_val = mymod.predict(X_val)
pred_test = mymod.predict(test)
predictions_val[i, :, :] = pred_val
predictions_test[i, :, :] = pred_test
pvall = np.zeros(shape=(X_val.shape[0], 10))
ptall = np.zeros(shape=(test.shape[0], 10))
for i in range(10):
pv1 = np.mean(predictions_val[:, :, i], axis=0)
pt1 = np.mean(predictions_test[:, :, i], axis=0)
pvall[:, i] = pv1
ptall[:, i] = pt1
preds_val= np.argmax(pvall,axis = 1)
preds_test = np.argmax(ptall, axis=1)
val_acc = np.mean(preds_val == Y_val_access)
print('Overall validation accuracy is', val_acc)
| Digit Recognizer |
10,770,776 | <load_from_csv><EOS> | preds= pd.Series(preds_test,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),preds],axis = 1)
submission.to_csv("MINST.csv",index=False ) | Digit Recognizer |
11,247,216 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<define_variables> | import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler
from tensorflow.keras.applications import EfficientNetB3 | Digit Recognizer |
11,247,216 | temp = np.where(np.isnan(train_data.Age))
len(temp[0] )<feature_engineering> | train = pd.read_csv(".. /input/digit-recognizer/train.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv" ) | Digit Recognizer |
11,247,216 | for item in temp[0]:
train_data.Age.at[item] = np.mean(train_data.Age)
temp = np.where(np.isnan(train_data.Age))
len(temp[0] )<feature_engineering> | Y_train = train["label"]
X_train = train.drop(labels = ["label"],axis = 1)
X_train = X_train / 255.0
X_test = test / 255.0
X_train = X_train.values.reshape(-1,28,28,1)
X_test = X_test.values.reshape(-1,28,28,1)
Y_train = to_categorical(Y_train, num_classes = 10 ) | Digit Recognizer |
11,247,216 | temp = np.where(np.isnan(test_data.Fare))
for item in temp[0]:
test_data.Fare.at[item] = np.mean(test_data.Fare)
temp = np.where(np.isnan(test_data.Fare))
len(temp[0] )<feature_engineering> | datagen = ImageDataGenerator(
rotation_range=10,
zoom_range = 0.10,
width_shift_range=0.1,
height_shift_range=0.1 ) | Digit Recognizer |
11,247,216 | temp = np.where(np.isnan(test_data.Age))
for item in temp[0]:
test_data.Age.at[item] = np.mean(train_data.Age)
temp = np.where(np.isnan(test_data.Age))
len(temp[0] )<categorify> | enet = EfficientNetB3(input_shape=(32, 32, 3), weights='imagenet',include_top=False ) | Digit Recognizer |
11,247,216 | y = train_data['Survived']
features = ['Pclass', 'Sex', 'SibSp', 'Parch','Fare', 'Age']
x = pd.get_dummies(train_data[features])
x_test = pd.get_dummies(test_data[features])
model = RandomForestClassifier(n_estimators = 100, max_depth = 5, random_state = 1)
model.fit(x, y)
predictions = model.predict(x_test )<save_to_csv> | X_train = np.pad(X_train,(( 0,0),(2,2),(2,2),(0,0)) , mode='constant')
X_train.shape | Digit Recognizer |
11,247,216 | output = pd.DataFrame({'PassengerId' : test_data.PassengerId, 'Survived' : predictions})
output.to_csv('submission.csv', index = False)
print("Your submission was successfully saved!" )<load_from_csv> | X_train = np.squeeze(X_train, axis=-1)
X_train = stacked_img = np.stack(( X_train,)*3, axis=-1)
X_train.shape | Digit Recognizer |
11,247,216 | df = pd.read_csv('.. /input/titanic/train.csv')
test_df = pd.read_csv('.. /input/titanic/test.csv' )<count_values> | nets = 2
model = [0] *nets
for j in range(nets):
model[j] = Sequential(enet)
model[j].add(Flatten())
model[j].add(Dense(units=1024, use_bias=True, activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Dense(units=512, use_bias=True, activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Dropout (.4))
model[j].add(Dense(units=256, use_bias=True, activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Dropout (.4))
model[j].add(Dense(units=10, use_bias=True, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
11,247,216 | df['Sex'].value_counts()<concatenate> | annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x)
history = [0] * nets
epochs = 45
for j in range(nets):
X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size = 0.1)
history[j] = model[j].fit_generator(datagen.flow(X_train2,Y_train2, batch_size=64),
epochs = epochs, steps_per_epoch = X_train2.shape[0]//64,
validation_data =(X_val2,Y_val2), callbacks=[annealer], verbose=0)
print("EffNet {0:d}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format(
j+1,epochs,max(history[j].history['accuracy']),max(history[j].history['val_accuracy'])) ) | Digit Recognizer |
11,247,216 | complete_df = pd.concat([df, test_df] )<count_missing_values> | X_test = np.pad(X_test,(( 0,0),(2,2),(2,2),(0,0)) , mode='constant')
X_test = np.squeeze(X_test, axis=-1)
X_test = stacked_img = np.stack(( X_test,)*3, axis=-1)
X_test.shape | Digit Recognizer |
11,247,216 | complete_df.isnull().sum()<filter> | results = np.zeros(( X_test.shape[0],10))
for j in range(nets):
results = results + model[j].predict(X_test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("MNIST_EffNet_Ensemble.csv",index=False ) | Digit Recognizer |
11,247,216 | <feature_engineering><EOS> | X_test1a = test / 255.0
X_test1a = X_test1a.values.reshape(-1,28,28,1 ) | Digit Recognizer |
11,282,263 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<filter> | mnist_test = pd.read_csv(".. /input/mnist-in-csv/mnist_test.csv")
mnist_train = pd.read_csv(".. /input/mnist-in-csv/mnist_train.csv" ) | Digit Recognizer |
11,282,263 | complete_df[complete_df['Fare'].isnull() ]<feature_engineering> | sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv")
train = pd.read_csv(".. /input/digit-recognizer/train.csv" ) | Digit Recognizer |
11,282,263 | complete_df['Fare'] = complete_df.groupby('Pclass')['Fare'].transform(lambda val: val.fillna(val.median()))<feature_engineering> | test['dataset'] = 'test' | Digit Recognizer |
11,282,263 | complete_df.loc[complete_df['Sex']=='female','Age'] = complete_df[complete_df['Sex']=='female']['Age'].transform(lambda val: val.fillna(val.median()))
complete_df.loc[complete_df['Sex']=='male', 'Age'] = complete_df[ complete_df['Sex']=='male' ]['Age'].transform(lambda val: val.fillna(val.median()))<count_missing_values> | train['dataset'] = 'train' | Digit Recognizer |
11,282,263 | complete_df.isnull().sum()<drop_column> | dataset = pd.concat([train.drop('label', axis=1), test] ).reset_index() | Digit Recognizer |
11,282,263 | X = complete_df[:891].drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'] ,axis=1)
X<categorify> | mnist = pd.concat([mnist_train, mnist_test] ).reset_index(drop=True)
labels = mnist['label'].values
mnist.drop('label', axis=1, inplace=True)
mnist.columns = cols | Digit Recognizer |
11,282,263 | X = pd.get_dummies(X)
X<prepare_x_and_y> | idx_mnist = mnist.sort_values(by=list(mnist.columns)).index
dataset_from = dataset.sort_values(by=list(mnist.columns)) ['dataset'].values
original_idx = dataset.sort_values(by=list(mnist.columns)) ['index'].values | Digit Recognizer |
11,282,263 | y = complete_df[:891]['Survived']<import_modules> | for i in range(len(idx_mnist)) :
if dataset_from[i] == 'test':
sample_submission.loc[original_idx[i], 'Label'] = labels[idx_mnist[i]] | Digit Recognizer |
11,282,263 | from sklearn.model_selection import train_test_split<import_modules> | sample_submission.to_csv('submission.csv', index=False ) | Digit Recognizer |
8,738,762 | from sklearn.model_selection import train_test_split<split> | train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ) | Digit Recognizer |
8,738,762 | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42 )<import_modules> | Y_train = train["label"]
X_train = train.drop(labels = ["label"],axis = 1)
X_train = X_train / 255.0
test = test / 255.0 | Digit Recognizer |
8,738,762 | from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV<define_search_space> | X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1 ) | Digit Recognizer |
8,738,762 | param_grid = {'max_depth':[4,5,6,7,8,9,10]}<train_on_grid> | Y_train = keras.utils.to_categorical(Y_train, 10 ) | Digit Recognizer |
8,738,762 | forest = RandomForestClassifier(random_state=42)
grid = GridSearchCV(forest, param_grid, cv=10)
grid.fit(X_train, y_train )<find_best_params> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1 ) | Digit Recognizer |
8,738,762 | grid.best_params_<import_modules> | batch_size = 86
num_classes = 10
epochs = 10
input_shape =(28, 28, 1 ) | Digit Recognizer |
8,738,762 | from sklearn.metrics import accuracy_score, classification_report<predict_on_test> | batch_size = 86
num_classes = 10
epochs = 10
input_shape =(28, 28, 1)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',kernel_initializer='he_normal',input_shape=input_shape))
model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',kernel_initializer='he_normal'))
model.add(MaxPool2D(( 2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.RMSprop() ,
metrics=['accuracy'])
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.0001 ) | Digit Recognizer |
8,738,762 | test_predictions = grid.predict(X_test)
print(accuracy_score(y_test, test_predictions))<compute_test_metric> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
8,738,762 | print(classification_report(y_test, test_predictions))<categorify> | mnist_test = pd.read_csv(".. /input/mnist-in-csv/mnist_test.csv")
mnist_train = pd.read_csv(".. /input/mnist-in-csv-train/mnist_train.csv" ) | Digit Recognizer |
8,738,762 | X_final = complete_df[891:].drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'] ,axis=1)
X_final = pd.get_dummies(X_final )<predict_on_test> | sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv")
train = pd.read_csv(".. /input/digit-recognizer/train.csv" ) | Digit Recognizer |
8,738,762 | forest = RandomForestClassifier(max_depth=6, random_state=42)
forest.fit(X,y)
final_preds = forest.predict(X_final )<load_from_csv> | test['dataset'] = 'test' | Digit Recognizer |
8,738,762 | submission = pd.read_csv('.. /input/titanic/gender_submission.csv')
submission<prepare_output> | train['dataset'] = 'train' | Digit Recognizer |
8,738,762 | submission['Survived'] = final_preds
submission<data_type_conversions> | dataset = pd.concat([train.drop('label', axis=1), test] ).reset_index() | Digit Recognizer |
8,738,762 | submission['Survived'] = submission['Survived'].astype(int)
submission<save_to_csv> | mnist = pd.concat([mnist_train, mnist_test] ).reset_index(drop=True)
labels = mnist['label'].values
mnist.drop('label', axis=1, inplace=True)
mnist.columns = cols | Digit Recognizer |
8,738,762 | submission.to_csv('submission.csv', index=False )<save_to_csv> | idx_mnist = mnist.sort_values(by=list(mnist.columns)).index
dataset_from = dataset.sort_values(by=list(mnist.columns)) ['dataset'].values
original_idx = dataset.sort_values(by=list(mnist.columns)) ['index'].values | Digit Recognizer |
8,738,762 | submission.to_csv('submission.csv', index=False )<set_options> | for i in range(len(idx_mnist)) :
if dataset_from[i] == 'test':
sample_submission.loc[original_idx[i], 'Label'] = labels[idx_mnist[i]]
| Digit Recognizer |
8,738,762 | sns.set_style("whitegrid")
%matplotlib inline<set_options> | sample_submission.to_csv('submission.csv', index=False ) | Digit Recognizer |
4,401,419 | warnings.filterwarnings('ignore' )<load_from_csv> | train_data = pd.read_csv(".. /input/train.csv" ) | Digit Recognizer |
4,401,419 | train = pd.read_csv('.. /input/telstra-recruiting-network/train.csv.zip')
test = pd.read_csv('.. /input/telstra-recruiting-network/test.csv.zip')
severity_type = pd.read_csv('.. /input/telstra-recruiting-network/severity_type.csv.zip', error_bad_lines= False, warn_bad_lines= False)
resource_type = pd.read_csv('.. /input/telstra-recruiting-network/resource_type.csv.zip', error_bad_lines= False, warn_bad_lines= False)
log_failure = pd.read_csv('.. /input/telstra-recruiting-network/log_feature.csv.zip', error_bad_lines= False, warn_bad_lines= False)
event_type = pd.read_csv('.. /input/telstra-recruiting-network/event_type.csv.zip', error_bad_lines=False, warn_bad_lines= False )<merge> | X = train_data[label_names[1:]]
y = train_data[label_names[0]] | Digit Recognizer |
4,401,419 | train_1 = train.merge(severity_type, how = 'left', left_on='id', right_on='id')
train_2 = train_1.merge(resource_type, how = 'left', left_on='id', right_on='id')
train_3 = train_2.merge(log_failure, how = 'left', left_on='id', right_on='id')
train_4 = train_3.merge(event_type, how = 'left', left_on='id', right_on='id' )<remove_duplicates> | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2 ) | Digit Recognizer |
4,401,419 | train_4.drop_duplicates(subset= 'id', keep= 'first', inplace = True)
train_4.head()<import_modules> | img_rows, img_cols = 28, 28
num_classes =10
X_train = X_train.values.reshape([-1,28,28,1])/255
X_test = X_test.values.reshape([-1,28,28,1])/255
y_train = y_train.values
y_test = y_test.values
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes ) | Digit Recognizer |
4,401,419 | from catboost import CatBoostClassifier, Pool
from sklearn.model_selection import train_test_split<prepare_x_and_y> | model = Sequential()
| Digit Recognizer |
4,401,419 | X = train_4[['id', 'location', 'severity_type', 'resource_type',
'log_feature', 'volume', 'event_type']]
y = train_4.fault_severity<split> | model.add(tf.keras.layers.Conv2D(32,(3, 3), padding='same',
input_shape=(img_rows,img_cols,1)))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Conv2D(32,(3, 3)))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Dropout(0.25))
model.add(tf.keras.layers.Conv2D(64,(3, 3), padding='same'))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Conv2D(64,(3, 3)))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Dropout(0.25))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(512))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(num_classes))
model.add(tf.keras.layers.Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=tf.train.AdamOptimizer() ,
metrics=['accuracy'])
| Digit Recognizer |
4,401,419 | X_train, X_validation, y_train, y_validation = train_test_split(X, y, test_size=0.20, random_state=101 )<define_variables> | batch_size =128
epochs = 100
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(X_test, y_test)) | Digit Recognizer |
4,401,419 | categorical_features_indices = np.where(X_train.dtypes == object)[0]<create_dataframe> | test_data = pd.read_csv(".. /input/test.csv")
y_pred = model.predict(test_data.values.reshape([-1,28,28,1])/255,batch_size=batch_size)
y_pred = np.argmax(y_pred,axis=1)
| Digit Recognizer |
4,401,419 | train_dataset = Pool(data=X_train,
label=y_train,
cat_features=categorical_features_indices)
eval_dataset = Pool(data=X_validation,
label=y_validation,
cat_features=categorical_features_indices )<choose_model_class> | save = pd.DataFrame()
save["ImageId"] = list(range(1,len(y_pred)+1))
save["Label"] = y_pred
save.to_csv("submit.csv", index=False)
| Digit Recognizer |
10,941,180 | model = CatBoostClassifier(iterations=1000,
learning_rate=1,
depth=2,
loss_function='MultiClass',
random_seed=1,
bagging_temperature=22,
od_type='Iter',
metric_period=100,
od_wait=100 )<train_model> | train_df = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
print(train_df.shape ) | Digit Recognizer |
10,941,180 | model.fit(train_dataset, eval_set= eval_dataset, plot= True )<predict_on_test> | X_train = train_df.iloc[:,1:].values
y_train = train_df.iloc[:,0].values | Digit Recognizer |
10,941,180 | preds_class = model.predict(eval_dataset)
preds_proba = model.predict_proba(eval_dataset )<merge> | N = X_train.shape[0]
X_train = X_train.reshape(N,28,28,1)
X_train = X_train.astype('float32')
X_train /= 255.
y_train = tf.one_hot(y_train, 10)
X_train.shape, y_train.shape | Digit Recognizer |
10,941,180 | test_1 = test.merge(severity_type, how = 'left', left_on='id', right_on='id')
test_2 = test_1.merge(resource_type, how = 'left', left_on='id', right_on='id')
test_3 = test_2.merge(log_failure, how = 'left', left_on='id', right_on='id')
test_4 = test_3.merge(event_type, how = 'left', left_on='id', right_on='id' )<remove_duplicates> | def make_model(inputs):
x = tf.keras.layers.Conv2D(filters=32,kernel_size=(3,3))(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
x = tf.keras.layers.MaxPool2D()(x)
x = tf.keras.layers.Conv2D(filters=64,kernel_size=(3,3))(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
x = tf.keras.layers.MaxPool2D()(x)
x = tf.keras.layers.Conv2D(filters=1024,kernel_size=(5,5))(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
x = tf.keras.layers.Conv2D(filters=256,kernel_size=(1,1))(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
x = tf.keras.layers.Conv2D(filters=10,kernel_size=(1,1))(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Softmax()(x)
x = tf.keras.layers.Reshape(( 10,))(x)
return x | Digit Recognizer |
10,941,180 | test_4.drop_duplicates(subset= 'id', keep= 'first', inplace = True)
test_4.head()<count_missing_values> | tf.keras.backend.clear_session()
inputs = tf.keras.Input(shape=(28,28,1))
outputs = make_model(inputs)
model = tf.keras.Model(
inputs=inputs,
outputs=outputs,
name="simple"
)
model.compile(optimizer='adam', loss='categorical_crossentropy' ) | Digit Recognizer |
10,941,180 | test_4.isnull().sum()<save_to_csv> | history = model.fit(X_train,y_train, validation_split=0.2,epochs=10 ) | Digit Recognizer |
10,941,180 | predict_test=model.predict_proba(test_4)
pred_df=pd.DataFrame(predict_test,columns=['predict_0', 'predict_1', 'predict_2'])
submission_cat=pd.concat([test[['id']],pred_df],axis=1)
submission_cat.to_csv('sub_cat_1.csv',index=False,header=True )<load_from_csv> | X_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' ).values
N_test = X_test.shape[0]
X_test = X_test.reshape(N_test,28,28,1)
X_test = X_test.astype('float32')
X_test /= 255.
X_test.shape | Digit Recognizer |
10,941,180 | train = pd.read_csv(input_path / 'train.csv', index_col='id')
test = pd.read_csv(input_path / 'test.csv', index_col='id')
submission = pd.read_csv(input_path / 'sample_submission.csv', index_col='id' )<split> | pred = model.predict(X_test)
pred.shape | Digit Recognizer |
10,941,180 | <init_hyperparams><EOS> | submissions=pd.DataFrame({"ImageId": list(range(1,len(pred)+1)) ,
"Label": np.argmax(pred, axis=1)})
submissions.to_csv("my_submissions.csv", index=False, header=True ) | Digit Recognizer |
8,326,415 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<init_hyperparams> | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler | Digit Recognizer |
8,326,415 | parameters2 = {
'n_estimators': 350,
'tree_method': 'exact',
'learning_rate': 0.03,
'colsample_bytree': 0.9,
'subsample': 0.9,
'min_child_weight': 9,
'max_depth': 11,
'n_jobs': -1
}<train_on_grid> | batch_size = 86
num_nets = 15 | Digit Recognizer |
8,326,415 |
<choose_model_class> | digits_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
digits_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ) | Digit Recognizer |
8,326,415 |
<train_model> | X = digits_train.drop(columns="label" ).values.reshape(digits_train.shape[0],28,28,1)/ 255.0
Y = to_categorical(digits_train["label"], num_classes=10)
X_test = digits_test.values.reshape(digits_test.shape[0],28,28,1)/ 255.0 | Digit Recognizer |
8,326,415 | final_model = XGBRegressor(tree_method='hist', min_child_weight=9, max_depth=11, n_jobs=-1, colsample_bytree=0.5, learning_rate=0.01, n_estimators=1500)
final_model.fit(X_train, y_train, early_stopping_rounds=10, eval_set=[(X_test, y_test)], verbose=False)
prediction = final_model.predict(X_test)
mse = mean_squared_error(y_test, prediction,squared=False)
print(mse)
<save_to_csv> | datagen_train = ImageDataGenerator(
rotation_range = 10,
zoom_range = 0.10,
width_shift_range=0.1,
height_shift_range=0.1
) | Digit Recognizer |
8,326,415 | submission['target'] = final_model.predict(test)
submission.to_csv('xgb_reg.csv' )<import_modules> | model = [0] * num_nets
for j in range(num_nets):
model[j] = Sequential()
model[j].add(Conv2D(32, kernel_size = 3, activation = "relu", input_shape =(28, 28, 1)))
model[j].add(BatchNormalization())
model[j].add(Conv2D(32, kernel_size = 3, activation = "relu"))
model[j].add(BatchNormalization())
model[j].add(Conv2D(32, kernel_size = 5, strides = 2, padding = "same", activation = "relu"))
model[j].add(BatchNormalization())
model[j].add(Dropout(0.4))
model[j].add(Conv2D(64, kernel_size = 3, activation = "relu"))
model[j].add(BatchNormalization())
model[j].add(Conv2D(64, kernel_size = 3, activation = "relu"))
model[j].add(BatchNormalization())
model[j].add(Conv2D(64, kernel_size = 5, strides = 2, padding = "same", activation = "relu"))
model[j].add(BatchNormalization())
model[j].add(Dropout(0.4))
model[j].add(Conv2D(128, kernel_size = 4, activation = "relu"))
model[j].add(BatchNormalization())
model[j].add(Flatten())
model[j].add(Dropout(0.4))
model[j].add(Dense(10, activation = "softmax"))
model[j].compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"] ) | Digit Recognizer |
8,326,415 | import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib_venn import venn2
import shap
from optuna.integration import _lightgbm_tuner as lgb_tuner
import optuna
from catboost import CatBoost
from catboost import Pool
from catboost import cv
import category_encoders as ce
from tqdm import tqdm
import lightgbm as lgb
import xgboost as xgb
import joblib
import os
import logging
import datetime
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
from sklearn.decomposition import PCA
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn import metrics
from catboost import CatBoostRegressor<load_from_csv> | annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x)
history = [0] * num_nets
epochs = 45
for j in range(num_nets):
x_train, x_val, y_train, y_val = train_test_split(X, Y, test_size = 0.1)
history[j] = model[j].fit_generator(datagen_train.flow(x_train, y_train, batch_size = 64),
epochs = epochs,
steps_per_epoch = x_train.shape[0] // 64,
validation_data =(x_val, y_val),
callbacks = [annealer],
verbose = 0)
print("CNN {0:d}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format(
j+1,epochs,max(history[j].history['accuracy']),max(history[j].history['val_accuracy'])) ) | Digit Recognizer |
8,326,415 | <prepare_x_and_y><EOS> | results = np.zeros(( X_test.shape[0], 10))
for j in range(num_nets):
results = results + model[j].predict(X_test)
results = np.argmax(results, axis = 1)
results = pd.Series(results, name = "Label")
submission = pd.concat([pd.Series(range(1, 28001), name = "ImageId"), results], axis = 1)
submission.ImageId = submission.ImageId.astype(int)
submission.to_csv("prediction.csv", index = False ) | Digit Recognizer |
7,034,662 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<init_hyperparams> | import datetime
import imageio
import numpy as np
import pandas as pd
import pickle
from sklearn.model_selection import train_test_split
from fastai.vision import *
from fastai.metrics import accuracy, error_rate
from fastai.widgets import DatasetFormatter, PredictionsCorrector | Digit Recognizer |
7,034,662 | fold_num = 10
EARLY_STOPPING_ROUNDS = 10
VERBOSE_EVAL = 10000
LGB_ROUND_NUM = 10000
objective = 'regression'
metric = 'rmse'
params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': objective,
'metric': metric,
'verbosity': -1,
"seed": 42,
}
@contextmanager
def timer(logger=None, format_str='{:.3f}[s]', prefix=None, suffix=None):
if prefix: format_str = str(prefix)+ format_str
if suffix: format_str = format_str + str(suffix)
start = time()
yield
d = time() - start
out_str = format_str.format(d)
if logger:
logger.info(out_str)
else:
print(out_str)
def fit_lgbm(X, y, cv, params: dict=None, verbose: int=50):
metric_func = mean_squared_error
if params is None:
params = {}
models = []
oof_pred = np.zeros_like(y, dtype=np.float)
for i,(idx_train, idx_valid)in enumerate(cv):
x_train, y_train = X[idx_train], y[idx_train]
x_valid, y_valid = X[idx_valid], y[idx_valid]
lgb_train = lgb.Dataset(x_train, y_train)
lgb_valid = lgb.Dataset(x_valid, y_valid)
with timer(prefix='fit fold={} '.format(i + 1)) :
lgb_model = lgb_tuner.train(params, lgb_train,
num_boost_round=LGB_ROUND_NUM,
valid_names=["train", "valid"],
valid_sets=[lgb_train, lgb_valid],
early_stopping_rounds=EARLY_STOPPING_ROUNDS,
verbose_eval=VERBOSE_EVAL)
pred_i = lgb_model.predict(x_valid)
oof_pred[idx_valid] = pred_i
models.append(lgb_model)
print(f'Fold {i} RMSE: {metric_func(y_valid, pred_i)**.5:.4f}')
score = metric_func(y, oof_pred)**.5
print('FINISHED | Whole RMSE: {:.4f}'.format(score))
return oof_pred, models<train_model> | print(fastai.__version__ ) | Digit Recognizer |
7,034,662 | fold = KFold(n_splits=5, shuffle=True, random_state=71)
cv = list(fold.split(X, y))
oof, models = fit_lgbm(X.values, y, cv, params=params )<create_dataframe> | np.random.seed(42 ) | Digit Recognizer |
7,034,662 | def visualize_importance(models, feat_train_df):
feature_importance_df = pd.DataFrame()
for i, model in enumerate(models):
_df = pd.DataFrame()
_df['feature_importance'] = model.feature_importance()
_df['column'] = feat_train_df.columns
_df['fold'] = i + 1
feature_importance_df = pd.concat([feature_importance_df, _df], axis=0, ignore_index=True)
order = feature_importance_df.groupby('column')\
.sum() [['feature_importance']]\
.sort_values('feature_importance', ascending=False ).index[:50]
fig, ax = plt.subplots(figsize=(max(6, len(order)*.4), 7))
sns.boxenplot(data=feature_importance_df, x='column', y='feature_importance', order=order, ax=ax, palette='viridis')
ax.tick_params(axis='x', rotation=90)
ax.grid()
fig.tight_layout()
return fig, ax<split> | train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ) | Digit Recognizer |
7,034,662 | X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8)
def opt(trial):
n_estimators = trial.suggest_int('n_estimators', 0, 1000)
max_depth = trial.suggest_int('max_depth', 1, 20)
learning_rate = trial.suggest_discrete_uniform('learning_rate', 0.01,0.1,0.01)
min_child_weight = trial.suggest_int('min_child_weight', 1, 20)
subsample = trial.suggest_discrete_uniform('subsample', 0.5, 0.9, 0.1)
colsample_bytree = trial.suggest_discrete_uniform('colsample_bytree', 0.5, 0.9, 0.1)
xgboost_tuna = xgb.XGBRegressor(
random_state=42,
n_estimators = n_estimators,
max_depth = max_depth,
min_child_weight = min_child_weight,
subsample = subsample,
colsample_bytree = colsample_bytree,
)
xgboost_tuna.fit(X_train,y_train)
tuna_pred_test = xgboost_tuna.predict(X_test)
return mean_squared_error(y_test, tuna_pred_test )<train_model> | y = train["label"].values
X = train.iloc[:, 1:].values
X.shape, y.shape | Digit Recognizer |
7,034,662 | def fit_xgb(X, y, cv, params: dict=None, verbose: int=50):
metric_func = mean_squared_error
if params is None:
params = {}
models = []
oof_pred = np.zeros_like(y, dtype=np.float)
for i,(idx_train, idx_valid)in enumerate(cv):
x_train, y_train = X[idx_train], y[idx_train]
x_valid, y_valid = X[idx_valid], y[idx_valid]
model_xgb = xgb.XGBRegressor(**params)
with timer(prefix='fit fold={} '.format(i + 1)) :
model_xgb.fit(x_train, y_train, eval_set=[(x_valid, y_valid)],verbose=-1)
pred_i = model_xgb.predict(x_valid)
oof_pred[idx_valid] = pred_i
models.append(model_xgb)
print(f'Fold {i} RMSE: {metric_func(y_valid, pred_i)**.5:.4f}')
score = metric_func(y, oof_pred)**.5
print('FINISHED | Whole RMSE: {:.4f}'.format(score))
return oof_pred, models<define_search_space> | X_train, X_valid, y_train, y_valid = \
train_test_split(X, y, test_size=0.05, random_state=42, stratify=y ) | Digit Recognizer |
7,034,662 |
params_xgb = {'n_estimators': 208,
'max_depth': 4,
'learning_rate':0.08,
'min_child_weight': 13,
'subsample': 0.8,
'colsample_bytree': 0.8}
oof_xgb, models_xgb = fit_xgb(X.values, y, cv, params=params_xgb )<set_options> | def to_img_shape(X, y=[]):
"Format matrix of rows, Nx784 to Nx28x28x3"
X = np.array(X ).reshape(-1,28,28)
X = np.stack(( X,)*3, axis=-1)
y = np.array(y)
return X, y
def save_imgs(path:Path, data, labels=[]):
path.mkdir(parents=True, exist_ok=True)
for label in np.unique(labels):
(path / str(label)).mkdir(parents=True, exist_ok=True)
for i in range(len(data)) :
if(len(labels)!= 0):
imageio.imsave(str(path / str(labels[i])/(str(i)+ '.jpg')) , data[i])
else:
imageio.imsave(str(path / f'testimg_{str(i ).zfill(5)}.jpg'), data[i] ) | Digit Recognizer |
7,034,662 | def opt_cb(trial):
params = {
'iterations' : trial.suggest_int('iterations', 50, 300),
'depth' : trial.suggest_int('depth', 4, 10),
'learning_rate' : trial.suggest_loguniform('learning_rate', 0.01, 0.3),
'random_strength' :trial.suggest_int('random_strength', 0, 100),
'bagging_temperature' :trial.suggest_loguniform('bagging_temperature', 0.01, 100.00),
'od_type': trial.suggest_categorical('od_type', ['IncToDec', 'Iter']),
'od_wait' :trial.suggest_int('od_wait', 10, 50)
}
train_pool = Pool(X_train, y_train)
test_pool = Pool(X_test, y_test)
catboost_tuna = CatBoostRegressor(**params)
catboost_tuna.fit(train_pool)
tuna_pred_test = catboost_tuna.predict(test_pool)
pred_labels = np.rint(tuna_pred_test)
return mean_squared_error(y_test, pred_labels )<train_model> | X_train, y_train = to_img_shape(X_train, y_train)
X_valid, y_valid = to_img_shape(X_valid, y_valid)
X_test, _ = to_img_shape(test ) | Digit Recognizer |
7,034,662 | def fit_cb(X, y, cv, params: dict=None, verbose: int=50):
metric_func = mean_squared_error
if params is None:
params = {}
models = []
oof_pred = np.zeros_like(y, dtype=np.float)
for i,(idx_train, idx_valid)in enumerate(cv):
x_train, y_train = X[idx_train], y[idx_train]
x_valid, y_valid = X[idx_valid], y[idx_valid]
train_pool = Pool(x_train, label = y_train)
valid_pool = Pool(x_valid, label = y_valid)
model_cb = CatBoost(params)
with timer(prefix='fit fold={} '.format(i + 1)) :
model_cb.fit(train_pool,
eval_set = valid_pool,
use_best_model = True,
silent = True,
plot = False)
print(model_cb.get_best_score())
pred_i = model_cb.predict(x_valid)
oof_pred[idx_valid] = pred_i
models.append(model_cb)
print(f'Fold {i} RMSE: {metric_func(y_valid, pred_i)**.5:.4f}')
score = metric_func(y, oof_pred)**.5
print('FINISHED | Whole RMSE: {:.4f}'.format(score))
return oof_pred, models<train_model> | %%time
save_imgs(Path('/kaggle/working/data/train'), X_train, y_train ) | Digit Recognizer |
7,034,662 | params_cb = {
'loss_function': 'RMSE',
'max_depth': 3,
'learning_rate': 0.08,
'subsample': 0.8,
'num_boost_round': 1000,
'early_stopping_rounds': 100,
}
oof_cb, models_cb = fit_cb(X.values, y, cv, params=params_cb )<drop_column> | %%time
save_imgs(Path('/kaggle/working/data/valid'), X_valid, y_valid ) | Digit Recognizer |
7,034,662 | df_test = df_test.drop("id",axis=1 )<predict_on_test> | %%time
save_imgs(Path('/kaggle/working/data/test'), X_test ) | Digit Recognizer |
7,034,662 | pred_lgb = np.array([model.predict(df_test.values)for model in models])
pred_lgb = np.mean(pred_lgb, axis=0)
pred_lgb = np.where(pred_lgb < 0, 0, pred_lgb)
pred_xgb = np.array([model.predict(df_test.values)for model in models_xgb])
pred_xgb = np.mean(pred_xgb, axis=0)
pred_xgb = np.where(pred_xgb < 0, 0, pred_xgb)
pred_cb = np.array([model.predict(df_test.values)for model in models_cb])
pred_cb = np.mean(pred_cb, axis=0)
pred_cb = np.where(pred_cb < 0, 0, pred_cb)
tmp_sub = pd.DataFrame({"lgb":pred_lgb,
"xgb":pred_xgb,
"cb":pred_cb})
tmp_sub["pred"] = tmp_sub.mean(axis="columns" )<prepare_output> | path = Path('/kaggle/working/data')
image_list =(ImageList.from_folder(path)
.split_by_folder()
.label_from_folder())
data =(image_list.databunch(bs=1)
.normalize(imagenet_stats)) | Digit Recognizer |
7,034,662 | submission["target"] = tmp_sub["pred"].copy()<save_to_csv> | tfms = get_transforms()
tfms[0] | Digit Recognizer |
7,034,662 | submission.to_csv("submission.csv", index=False )<save_to_csv> | tfms[1] | Digit Recognizer |
7,034,662 | submission.to_csv("submission.csv", index=False )<create_dataframe> | tfms = get_transforms(do_flip=False)
tfms[0] | Digit Recognizer |
7,034,662 | oof_df = pd.DataFrame({"lgb":oof,
"xgb":oof_xgb,
"cb":oof_cb})
oof_df["pred"] = oof_df.mean(axis="columns" )<import_modules> | image_list =(image_list.transform(get_transforms(do_flip=False), size=28)
.add_test(ItemList.from_folder(path=path/"test"), label=None))
data =(image_list.databunch(bs=256)
.normalize(imagenet_stats)) | Digit Recognizer |
7,034,662 | import numpy as np
import pandas as pd<load_from_csv> | learn = cnn_learner(data, models.resnet18, metrics=accuracy ) | Digit Recognizer |
7,034,662 | train_data = pd.read_csv('.. /input/tabular-playground-series-jan-2021/train.csv')
test_data = pd.read_csv('.. /input/tabular-playground-series-jan-2021/test.csv')
print('Train: ', train_data.shape)
print('Test: ', test_data.shape )<prepare_x_and_y> | learn.model | Digit Recognizer |
7,034,662 | y = train_data['target']
X = train_data.drop(columns=['target', 'id'])
X_test = test_data.drop(columns='id' )<split> | learn.lr_find() | Digit Recognizer |
7,034,662 | X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size = 0.05, random_state=22 )<init_hyperparams> | learn.fit_one_cycle(5, 0.02 ) | Digit Recognizer |
7,034,662 | params = {'objective': 'regression',
'metric': 'rmse',
'verbosity': -1,
'boosting_type': 'gbdt',
'feature_pre_filter': False,
'learning_rate': 0.007,
'num_leaves': 102,
'min_child_samples': 20,
'sub_feature': 0.4,
'sub_row': 1,
'subsample_freq': 0,
'lambda_l1': 4.6,
'lambda_l2': 1.9}
N_FOLDS = 10
kf = KFold(n_splits = N_FOLDS)
oof = np.zeros(len(y))
oof_vanilla = np.zeros(len(y))
preds = np.zeros(len(X_test))
params['learning_rate'] = 0.005
params['num_iterations'] = 5000
for train_ind, test_ind in tqdm(kf.split(X)) :
Xtrain = X.iloc[train_ind]
Xval = X.iloc[test_ind]
ytrain = y.iloc[train_ind]
yval = y.iloc[test_ind]
model = LGBMRegressor(**params)
vanilla_model = LGBMRegressor()
model.fit(Xtrain, ytrain, eval_set =(( Xval,yval)) , early_stopping_rounds = 50, verbose = 0)
vanilla_model.fit(Xtrain, ytrain)
p = model.predict(Xval)
p_vanilla = vanilla_model.predict(Xval)
oof[test_ind] = p
oof_vanilla[test_ind] = p_vanilla
preds += model.predict(X_test)/N_FOLDS
print(f'mean square error on training data(vanilla model): {np.round(mean_squared_error(y, oof_vanilla, squared=False),5)}')
print(f'mean square error on training data(with tuning): {np.round(mean_squared_error(y, oof, squared=False),5)}' )<save_to_csv> | learn.save('stage-1' ) | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.