kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
11,978,455 | x1=0
x2=0
print("Classifying Kaggle's 'test.csv' using KNN where K=1 and MNIST 70k images.. ")
for i in range(0,28000):
for j in range(0,70000):
if np.absolute(X_test[i,:]-mnist_image[j,:] ).sum() ==0:
predictions[i]=mnist_label[j]
if i%1000==0:
print(" %d images classified perfectly"%(i),end="")
if j<60000:
x1+=1
else:
x2+=1
break
if x1+x2==28000:
print(" 28000 images classified perfectly.")
print("All 28000 images are contained in MNIST.npz Dataset.")
print("%d images are in MNIST.npz train and %d images are in MNIST.npz test"%(x1,x2))<define_variables> | class MNISTDataset(Dataset):
def __init__(self, feature, target=None, transform=None):
self.X = feature
self.y = target
self.transform = transform
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
if self.transform is not None:
return self.transform(self.X[idx]), self.y[idx]
elif self.y is None:
return [self.X[idx]]
return self.X[idx], self.y[idx] | Digit Recognizer |
11,978,455 | final_pred = predictions[0:28000]<prepare_output> | data_transform = transforms.Compose([
transforms.ToPILImage() ,
transforms.RandomAffine(degrees=45, translate=(0.1, 0.1), scale=(0.8, 1.2)) ,
transforms.ToTensor() ])
train_set = MNISTDataset(featuresTrain.float() , targetsTrain, transform=data_transform)
validate_set = MNISTDataset(featuresValidation.float() , targetsValidation)
test_set = MNISTDataset(Test.float() ) | Digit Recognizer |
11,978,455 | my_submission = pd.DataFrame({'ImageId':np.arange(28000),'Label':final_pred.squeeze().astype(np.int)})
my_submission.head()<feature_engineering> | train_set = torch.utils.data.TensorDataset(featuresTrain.float() , targetsTrain)
validate_set = torch.utils.data.TensorDataset(featuresValidation.float() , targetsValidation)
test_set = torch.utils.data.TensorDataset(Test.float() ) | Digit Recognizer |
11,978,455 | my_submission["ImageId"]=my_submission["ImageId"]+1<save_to_csv> | train_loader = torch.utils.data.DataLoader(train_set, batch_size = batch_size, shuffle = True)
validate_loader = torch.utils.data.DataLoader(validate_set, batch_size = batch_size, shuffle = False)
test_loader = torch.utils.data.DataLoader(test_set, batch_size = batch_size, shuffle = False ) | Digit Recognizer |
11,978,455 | my_submission.to_csv('best_submission.csv', index=False )<install_modules> | class CNNModel(nn.Module):
def __init__(self):
super(CNNModel, self ).__init__()
self.cnn = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2),
nn.Dropout(0.25),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Dropout(0.25))
self.classifier = nn.Sequential(nn.Linear(576, 256),
nn.Dropout(0.5),
nn.Linear(256, 10))
def forward(self, x):
x = self.cnn(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x | Digit Recognizer |
11,978,455 | ! pip install.. /input/mlcollection/ml_collections-0.1.0-py3-none-any.whl<import_modules> | model = CNNModel()
optimizer = optim.RMSprop(model.parameters() , lr=0.001, alpha=0.9)
criterion = nn.CrossEntropyLoss()
lr_reduction = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=3, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0.00001)
if torch.cuda.is_available() :
model = model.cuda()
criterion = criterion.cuda() | Digit Recognizer |
11,978,455 | from glob import glob
from sklearn.model_selection import GroupKFold, StratifiedKFold
import cv2
from skimage import io
import torch
from torch import nn
import os
from datetime import datetime
import time
import random
import cv2
import torchvision
from torchvision import transforms
import pandas as pd
import numpy as np
from tqdm import tqdm
from fastai.vision.all import *
import matplotlib.pyplot as plt
from torch.utils.data import Dataset,DataLoader
from torch.utils.data.sampler import SequentialSampler, RandomSampler
from torch.cuda.amp import autocast, GradScaler
import sklearn
import warnings
import joblib
from sklearn.metrics import roc_auc_score, log_loss
from sklearn import metrics
import warnings
import cv2
import pydicom
import timm
from scipy.ndimage.interpolation import zoom
from sklearn.metrics import log_loss
<init_hyperparams> | count = 0
loss_list = []
iteration_list = []
average_training_accuracy = []
average_validation_accuracy = []
average_training_loss = []
average_validation_loss = [] | Digit Recognizer |
11,978,455 | CFG = {
'fold_num': 5,
'seed': 719,
'model_arch': 'resnext101_ibn_a',
'model_arch_eff':'tf_efficientnet_b4_ns',
'img_size': 512,
'epochs': 10,
'train_bs': 32,
'valid_bs': 32,
'lr': 1e-4,
'num_workers': 4,
'accum_iter': 1,
'verbose_step': 1,
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
'tta': 4,
}
ckpt_paths = ['.. /input/tf-efficientnet-b4-ns-fold-0-8-089533/tf_efficientnet_b4_ns_fold_0_4_0.89299',
'.. /input/tf-efficientnet-b4-ns-fold-0-8-089533/tf_efficientnet_b4_ns_fold_0_6_0.89065',
'.. /input/tf-efficientnet-b4-ns-fold-0-8-089533/tf_efficientnet_b4_ns_fold_0_8_0.89533',
'.. /input/tf-efficientnet-b4-ns-fold-0-8-089533/tf_efficientnet_b4_ns_fold_0_9_0.88995'
]
ckpt_paths = [
'.. /input/resnext101-ibn-a-01-22-10-05-bit-ls015-896/resnext101_ibn_a_fold_0_6_0.88435',
'.. /input/resnext101-ibn-a-01-22-10-05-bit-ls015-896/resnext101_ibn_a_fold_0_7_0.89299',
'.. /input/resnext101-ibn-a-01-22-10-05-bit-ls015-896/resnext101_ibn_a_fold_0_8_0.88995',
'.. /input/resnext101-ibn-a-01-22-10-05-bit-ls015-896/resnext101_ibn_a_fold_0_9_0.89603']
ckpt_weights = [1,1,1,1]
ckpt_dir = '.. /input/resnext101-ibn-a-01-26-01-27-bit-ema-5folds'
ckpt_paths = [os.path.join(ckpt_dir, sub_path)for sub_path in os.listdir(ckpt_dir)if not ckpt_dir.endswith('.txt')]
ckpt_paths = ['.. /input/resnext101-ibn-a-01-26-01-27-bit-ema-5folds/resnext101_ibn_a_fold_0_9_0.89439',
'.. /input/resnext101-ibn-a-01-26-01-27-bit-ema-5folds/resnext101_ibn_a_fold_0_19_0.89393',
'.. /input/resnext101-ibn-a-01-26-01-27-bit-ema-5folds/resnext101_ibn_a_fold_1_9_0.89603',
'.. /input/resnext101-ibn-a-01-26-01-27-bit-ema-5folds/resnext101_ibn_a_fold_1_8_0.89486',
'.. /input/resnext101-ibn-a-01-26-01-27-bit-ema-5folds/resnext101_ibn_a_fold_2_9_0.88759',
'.. /input/resnext101-ibn-a-01-26-01-27-bit-ema-5folds/resnext101_ibn_a_fold_2_17_0.88619',
'.. /input/resnext101-ibn-a-01-26-01-27-bit-ema-5folds/resnext101_ibn_a_fold_3_16_0.89928',
'.. /input/resnext101-ibn-a-01-26-01-27-bit-ema-5folds/resnext101_ibn_a_fold_3_19_0.89904',
'.. /input/resnext101-ibn-a-01-26-01-27-bit-ema-5folds/resnext101_ibn_a_fold_4_18_0.89857',
'.. /input/resnext101-ibn-a-01-26-01-27-bit-ema-5folds/resnext101_ibn_a_fold_4_9_0.89787',
]
ckpt_paths = [
'.. /input/vit-convert-tta-seed719/vit__1920-fold0_checkpoint-17.pth',
'.. /input/vit-convert-tta-seed719/vit__1920-fold1_checkpoint-14.pth',
'.. /input/vit-convert-tta-seed719/vit__1920-fold2_checkpoint-16.pth',
'.. /input/vit-convert-tta-seed719/vit__1920-fold3_checkpoint-8.pth',
'.. /input/vit-convert-tta-seed719/vit__1920-fold4_checkpoint-9.pth',
'.. /input/alldata-ema-resnext101-ibn-a/resnext101_ibn_a_fold_0_11_0.89603',
'.. /input/alldata-ema-resnext101-ibn-a/resnext101_ibn_a_fold_1_10_0.89369',
'.. /input/alldata-ema-resnext101-ibn-a/resnext101_ibn_a_fold_2_13_0.88899',
'.. /input/alldata-ema-resnext101-ibn-a/resnext101_ibn_a_fold_3_12_0.89834',
'.. /input/alldata-ema-resnext101-ibn-a/resnext101_ibn_a_fold_4_11_0.89741',
'.. /input/alldata-ema-resnext101-32x4d-swsl-adam-02-05-17-28/resnext101_32x4d_swsl_fold_0_12_0.89369',
'.. /input/alldata-ema-resnext101-32x4d-swsl-adam-02-05-17-28/resnext101_32x4d_swsl_fold_1_12_0.89416',
'.. /input/alldata-ema-resnext101-32x4d-swsl-adam-02-05-17-28/resnext101_32x4d_swsl_fold_2_8_0.89203',
'.. /input/alldata-ema-resnext101-32x4d-swsl-adam-02-05-17-28/resnext101_32x4d_swsl_fold_3_12_0.90115',
'.. /input/alldata-ema-resnext101-32x4d-swsl-adam-02-05-17-28/resnext101_32x4d_swsl_fold_4_14_0.89530',
]
model_names = [
'vit',
'vit',
'vit',
'vit',
'vit',
'resnext101_ibn_a',
'resnext101_ibn_a',
'resnext101_ibn_a',
'resnext101_ibn_a',
'resnext101_ibn_a',
'resnext101',
'resnext101',
'resnext101',
'resnext101',
'resnext101',
]
assert len(model_names)== len(ckpt_paths)
print(len(ckpt_paths))
ckpt_weights = [1 for i in range(len(ckpt_paths)) ]
print(ckpt_paths)
model_wts={}
model_wts['vit']=0.6582084173812914
model_wts['resnext101']=0.16946139705016672
model_wts['resnext101_ibn_a']=0.6465801475470692
<load_from_csv> | def train(epoch):
global count
model.train()
for batch_idx,(data, target)in enumerate(train_loader):
data, target = Variable(data), Variable(target)
if torch.cuda.is_available() :
data = data.cuda()
target = target.cuda()
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if(batch_idx + 1)% 100 == 0:
loss_list.append(loss.item())
iteration_list.append(count)
count += 1
| Digit Recognizer |
11,978,455 | train = pd.read_csv('.. /input/cassava-leaf-disease-classification/train.csv')
train.head()<count_values> | def evaluate(data_loader, validate=False):
model.eval()
loss = 0
correct = 0
for data, target in data_loader:
data, target = Variable(data), Variable(target)
if torch.cuda.is_available() :
data = data.cuda()
target = target.cuda()
output = model(data)
loss += F.cross_entropy(output, target, size_average=False ).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
loss /= len(data_loader.dataset)
accuracy = 100.* correct / len(data_loader.dataset)
if not validate:
lr_reduction.step(loss)
average_training_accuracy.append(accuracy)
average_training_loss.append(loss)
else:
average_validation_accuracy.append(accuracy)
average_validation_loss.append(loss)
'.format(loss, correct, len(data_loader.dataset), accuracy)) | Digit Recognizer |
11,978,455 | train.label.value_counts()<load_from_csv> | def prediciton(data_loader):
model.eval()
test_pred = torch.LongTensor()
for i, data in enumerate(data_loader):
data = Variable(data[0])
if torch.cuda.is_available() :
data = data.cuda()
output = model(data)
pred = output.cpu().data.max(1, keepdim=True)[1]
test_pred = torch.cat(( test_pred, pred), dim=0)
return test_pred
test_pred = prediciton(test_loader ) | Digit Recognizer |
11,978,455 | submission = pd.read_csv('.. /input/cassava-leaf-disease-classification/sample_submission.csv')
submission.head()<categorify> | out_df = pd.DataFrame(np.c_[np.arange(1, len(test_set)+1)[:,None], test_pred.numpy() ],
columns=['ImageId', 'Label'])
out_df.head() | Digit Recognizer |
11,978,455 | <import_modules><EOS> | out_df.to_csv('submission.csv', index=False ) | Digit Recognizer |
13,819,614 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class> | import torch
import torchvision
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
import copy
import time | Digit Recognizer |
13,819,614 | class CassvaImgClassifier(nn.Module):
def __init__(self, model_arch, n_class, pretrained=False):
super().__init__()
self.model = timm.create_model(model_arch, pretrained=pretrained)
n_features = self.model.classifier.in_features
self.model.classifier = nn.Linear(n_features, n_class)
def forward(self, x):
x = self.model(x)
return x<choose_model_class> | torch.backends.cudnn.enabled | Digit Recognizer |
13,819,614 | class IBNResnextCassava(nn.Module):
def __init__(self, arch='resnext101_ibn_a', n_class=5, pre=False):
super().__init__()
m = resnext101_ibn_a()
self.enc = nn.Sequential(*list(m.children())[:-2])
nc = list(m.children())[-1].in_features
self.head = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Flatten() ,
nn.Linear(2048, n_class)
)
def forward(self, x):
x = self.enc(x)
x = self.head(x)
return x<feature_engineering> | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device ) | Digit Recognizer |
13,819,614 | class MishFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x * torch.tanh(F.softplus(x))
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_variables[0]
sigmoid = torch.sigmoid(x)
tanh_sp = torch.tanh(F.softplus(x))
return grad_output *(tanh_sp + x * sigmoid *(1 - tanh_sp * tanh_sp))
class Mish(nn.Module):
def forward(self, x):
return MishFunction.apply(x)
def to_Mish(model):
for child_name, child in model.named_children() :
if isinstance(child, nn.ReLU):
setattr(model, child_name, Mish())
else:
to_Mish(child)
def _resnext(url, block, layers, pretrained, progress, **kwargs):
model = ResNet(block, layers, **kwargs)
return model
<define_variables> | Num_CNN = 12
n_epochs = 25
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 100
random_seed = 121
torch.manual_seed(random_seed)
kaggle_input_data = "/kaggle/input/digit-recognizer/train.csv"
kaggle_input_validation = "/kaggle/input/digit-recognizer/test.csv"
kaggle_model_path = "/kaggle/working/model_id_%d.pth"
kaggle_optimizer_path = "/kaggle/working/optimizer_id_%d.pth"
prediction_path = "/kaggle/working/predictions_essemble.csv" | Digit Recognizer |
13,819,614 | semi_weakly_supervised_model_urls = {
'resnet18': 'https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth',
'resnet50': 'https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth',
'resnext50_32x4d': 'https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth',
'resnext101_32x4d': 'https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth',
'resnext101_32x8d': 'https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth',
'resnext101_32x16d':'https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth',
}
class ResnextCassava(nn.Module):
def __init__(self, arch='resnext101_32x4d', n_class=5, pretrained=False):
super().__init__()
m = _resnext(semi_weakly_supervised_model_urls[arch], Bottleneck, [3, 4, 23, 3], False,
progress=False,groups=32,width_per_group=4)
self.enc = nn.Sequential(*list(m.children())[:-2])
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.logit = nn.Linear(2048,n_class)
def forward(self, x):
x = self.enc(x)
x =(self.avg_pool(x)+ self.max_pool(x)).squeeze(-1 ).squeeze(-1)
x = self.logit(x)
return x
<choose_model_class> | class Dataset(torch.utils.data.Dataset):
def __init__(self, dataframe):
self.labels = dataframe["label"].to_numpy()
self.dataframe = dataframe.loc[:,dataframe.columns != "label"]
def __len__(self):
return self.dataframe.shape[0]
def __getitem__(self, index):
X = torch.from_numpy(self.dataframe.iloc[index].values.reshape(1,28,28)).float()
y = self.labels[index]
return X,y | Digit Recognizer |
13,819,614 | class CassvaImgClassifier(nn.Module):
def __init__(self, model_arch, n_class, pretrained=False):
super().__init__()
self.model = create_model(model_arch, pretrained=pretrained)
n_features = self.model.classifier.in_features
self.model.classifier = nn.Linear(n_features, n_class)
def forward(self, x):
x = self.model(x)
return x
class IBN_CUSTOM1(nn.Module):
def __init__(self, arch='resnext101_ibn_a', n_class=5, pretrained=True):
super().__init__()
m = se_resnet101_ibn_a(pretrained=pretrained)
self.enc = nn.Sequential(*list(m.children())[:-2])
self.head = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Flatten() ,
nn.Linear(2048, n_class)
)
def forward(self, x):
x = self.enc(x)
x = self.head(x)
return x
def get_model(model_name, device='cuda'):
if 'efficientnet' in model_name:
model = CassvaImgClassifier(model_name, 5, pretrained=False ).to(device)
elif model_name == 'ibn50a':
model = resnet50_ibn_a(pretrained=False ).to(device)
model.avgpool = nn.AdaptiveAvgPool2d(1)
model.fc = nn.Linear(2048, train.label.nunique())
elif model_name == 'ibnse50a':
model = se_resnet50_ibn_a(pretrained=False ).to(device)
model.avgpool = nn.AdaptiveAvgPool2d(1)
model.fc = nn.Linear(2048, train.label.nunique())
elif model_name == 'resnext101_ibn_a':
model = IBNResnextCassava(arch=model_name)
elif model_name == 'se50_softlabel':
model = se_resnext50_32x4d(pretrained=None ).to(device)
elif model_name == 'resnext101':
model = ResnextCassava(pretrained=False ).to(device)
elif model_name == 'b4':
b4_model = timm.create_model('tf_efficientnet_b4_ns', pretrained=False)
model=timm_class(b4_model,n=5 ).to(device)
elif model_name == 'vit':
CONFIGS = {
'ViT-B_16': configs.get_b16_config() ,
'ViT-B_32': configs.get_b32_config() ,
'ViT-L_16': configs.get_l16_config() ,
'ViT-L_32': configs.get_l32_config() ,
'ViT-H_14': configs.get_h14_config() ,
'testing': configs.get_testing() ,
}
config = CONFIGS["ViT-B_16"]
model = VisionTransformer(config, CFG['img_size'], zero_head=True, num_classes=5 ).to(device)
elif model_name == 'se_resnet101_ibn_a':
model = IBN_CUSTOM1(pretrained=False ).to(device)
model = model.to(device)
return model
<install_modules> | df_input = pd.read_csv(kaggle_input_data)
df_validation = pd.read_csv(kaggle_input_validation)
df_train, df_test = train_test_split(df_input, test_size = 0.01)
training_set = Dataset(df_train)
training_generator = torch.utils.data.DataLoader(training_set, batch_size = batch_size_train,
shuffle = True)
test_set = Dataset(df_test)
test_generator = torch.utils.data.DataLoader(test_set, batch_size = batch_size_test,
shuffle = True)
kaggle_validation_set = torch.from_numpy(df_validation.to_numpy() ).view(
df_validation.shape[0],-1,28,28 ).float() | Digit Recognizer |
13,819,614 | ! pip install.. /input/mlcollection/ml_collections-0.1.0-py3-none-any.whl<feature_engineering> | import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler | Digit Recognizer |
13,819,614 | class AdaptiveConcatPool2d(nn.Module):
"Layer that concats `AdaptiveAvgPool2d` and `AdaptiveMaxPool2d`"
def __init__(self, size=None):
super().__init__()
self.size = size or 1
self.ap = nn.AdaptiveAvgPool2d(self.size)
self.mp = nn.AdaptiveMaxPool2d(self.size)
def forward(self, x): return torch.cat([self.mp(x), self.ap(x)], 1 )<init_hyperparams> | class Net(nn.Module):
def __init__(self):
super(Net, self ).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.batchnorm1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 32, kernel_size=3)
self.batchnorm2 = nn.BatchNorm2d(32)
self.conv3 = nn.Conv2d(32, 32, kernel_size=2, stride = 2)
self.batchnorm3 = nn.BatchNorm2d(32)
self.conv4 = nn.Conv2d(32, 64, kernel_size=5)
self.batchnorm4 = nn.BatchNorm2d(64)
self.conv5 = nn.Conv2d(64, 64, kernel_size=2, stride = 2)
self.batchnorm5 = nn.BatchNorm2d(64)
self.conv5_drop = nn.Dropout2d()
self.fc1 = nn.Linear(1024, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.batchnorm1(F.relu(self.conv1(x)))
x = self.batchnorm2(F.relu(self.conv2(x)))
x = self.batchnorm3(F.relu(self.conv3(x)))
x = self.batchnorm4(F.relu(self.conv4(x)))
x = self.batchnorm5(F.relu(self.conv5(x)))
x = self.conv5_drop(x)
x = x.view(-1, 1024)
x = F.relu(self.fc1(x))
x = F.log_softmax(self.fc2(x), dim=1)
return x | Digit Recognizer |
13,819,614 | if __name__ == '__main__':
VALID = False
test_num = len(os.listdir('.. /input/cassava-leaf-disease-classification/test_images'))
print('test_num:', test_num)
seed_everything(CFG['seed'])
folds = StratifiedKFold(n_splits=CFG['fold_num'], shuffle=True, random_state=CFG['seed'] ).split(np.arange(train.shape[0]), train.label.values)
for fold,(trn_idx, val_idx)in enumerate(folds):
if fold > 0:
break
print('Inference fold {} started'.format(fold))
valid_ = train.loc[val_idx,:].reset_index(drop=True)
valid_ds = CassavaDataset(valid_, '.. /input/cassava-leaf-disease-classification/train_images/', transforms=get_inference_transforms() , output_label=False)
test = pd.DataFrame()
test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/'))
test_ds = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_inference_transforms() , output_label=False)
val_loader = torch.utils.data.DataLoader(
valid_ds,
batch_size=CFG['valid_bs'],
num_workers=CFG['num_workers'],
shuffle=False,
pin_memory=False,
)
tst_loader = torch.utils.data.DataLoader(
test_ds,
batch_size=CFG['valid_bs'],
num_workers=CFG['num_workers'],
shuffle=False,
pin_memory=False,
)
device = torch.device(CFG['device'])
val_preds = []
tst_preds = []
for i in range(len(ckpt_paths)) :
ckpt_path = ckpt_paths[i]
model = get_model(model_names[i], device)
if model_names[i] == 'se_resnet101_ibn_a':
model.load_state_dict(torch.load(ckpt_path)['state_dict'])
else:
model.load_state_dict(torch.load(ckpt_path,map_location=device))
with torch.no_grad() :
for _ in range(CFG['tta']):
if VALID:
if test_num == 1:
val_preds += [ckpt_weights[i]/sum(ckpt_weights)/CFG['tta']*inference_one_epoch(model, val_loader, device)]
tst_preds += [
inference_one_epoch(model, tst_loader, device)*model_wts[model_names[i]]]
del model
torch.cuda.empty_cache()
if VALID:
if test_num == 1:
val_preds = np.mean(val_preds, axis=0)
tst_preds = np.mean(tst_preds, axis=0)*3
if VALID:
if test_num == 1:
print('fold {} validation loss = {:.5f}'.format(fold, log_loss(valid_.label.values, val_preds)))
print('fold {} validation accuracy = {:.5f}'.format(fold,(valid_.label.values==np.argmax(val_preds, axis=1)).mean()))
cm = confusion_matrix(valid_.label.values, np.argmax(val_preds, axis=1), labels=[0, 1, 2, 3, 4])
print('cm')
print(cm)
sns.set()
f, ax=plt.subplots()
sns.heatmap(cm,annot=True,ax=ax)
ax.set_title('confusion matrix')
ax.set_xlabel('predict')
ax.set_ylabel('true')
<feature_engineering> | train_losses = []
train_counter = []
test_losses = []
test_counter = [i*len(training_generator.dataset)for i in range(n_epochs + 1)]
log_interval = len(training_generator)
network_list = []
prediction_tensor = torch.zeros(kaggle_validation_set.shape[0],10 ) | Digit Recognizer |
13,819,614 | test['label'] = np.argmax(tst_preds, axis=1)
test.head()<save_to_csv> | def train(epoch, network, scheduler, network_id, device):
start_time = time.time()
network.train()
for batch_idx,(data, target)in enumerate(training_generator):
data = data.to(device)
target = target.to(device)
optimizer.zero_grad()
output = network(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
print('CNN : {},\t Train Epoch: {} \tLoss: {:.6f},\t runtime: {:.2f}'.format(
network_id,
epoch, loss.item() , time.time() -start_time))
train_losses.append(loss.item())
train_counter.append(epoch)
torch.save(network.state_dict() , kaggle_model_path%network_id)
torch.save(optimizer.state_dict() ,kaggle_optimizer_path%network_id)
scheduler.step()
def test(network):
network.eval()
test_loss = 0
correct = 0
with torch.no_grad() :
for data, target in test_generator:
data = data.to(device)
target = target.to(device)
output = network(data)
test_loss += F.nll_loss(output, target, reduction="sum" ).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_generator.dataset)
test_losses.append(test_loss)
print('
Test set: Avg.loss: {:.4f}, Accuracy: {}/{}({:.5f}%)
'.format(
test_loss, correct, len(test_generator.dataset),
100.* correct / len(test_generator.dataset)))
def validation(network, validation_tensor, prediction_tensor):
with torch.no_grad() :
output = network(validation_tensor)
prediction_tensor = prediction_tensor + output
return prediction_tensor
def initialise_network(device):
network = Net().to(device)
optimizer = optim.SGD(network.parameters() , lr=learning_rate, momentum = momentum)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.95)
return network, optimizer, exp_lr_scheduler | Digit Recognizer |
13,819,614 | test.to_csv('submission.csv', index=False )<install_modules> | validation_tensor = kaggle_validation_set.to(device)
prediction_tensor = prediction_tensor.to(device)
for id_net in range(1, Num_CNN+1):
network, optimizer, scheduler = initialise_network(device)
for epoch in range(1, n_epochs+1):
train(epoch, network, scheduler, id_net, device)
test(network)
prediction_tensor = validation(network, validation_tensor, prediction_tensor)
network_list.append(copy.deepcopy(network)) | Digit Recognizer |
13,819,614 | !pip install -q '/kaggle/input/birdcall-identification-submission-custom/Keras_Applications-1.0.8-py3-none-any.whl'
!pip install -q '/kaggle/input/birdcall-identification-submission-custom/efficientnet-1.1.0-py3-none-any.whl'<import_modules> | output_df = prediction_tensor.max(1)[1].to("cpu")
output_df = pd.DataFrame(output_df.numpy() , columns = ["Label"])
output_df.index.name = "ImageId"
output_df.index = output_df.index + 1 | Digit Recognizer |
13,819,614 | import numpy as np
import pandas as pd
import tensorflow as tf
import efficientnet.tfkeras as efn
import matplotlib.pyplot as plt
from tqdm.notebook import tqdm<define_search_space> | output_df.to_csv(prediction_path ) | Digit Recognizer |
11,437,677 | IMG_HEIGHT = 600
IMG_WIDTH = 800
IMG_SIZE = 600
IMG_TARGET_SIZE = 512
N_CHANNELS = 3
N_LABELS = 5
N_FOLDS = 5
BATCH_SIZE = 16
AUTO = tf.data.experimental.AUTOTUNE
IMAGENET_MEAN = tf.constant([0.485, 0.456, 0.406], dtype=tf.float32)
IMAGENET_STD = tf.constant([0.229, 0.224, 0.225], dtype=tf.float32 )<choose_model_class> | df = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
df2 = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
print(df.shape)
print(df2.shape ) | Digit Recognizer |
11,437,677 | def get_model(fold):
tf.keras.backend.clear_session()
net = efn.EfficientNetB4(
include_top=False,
weights=None,
input_shape=(IMG_TARGET_SIZE, IMG_TARGET_SIZE, N_CHANNELS),
)
for layer in reversed(net.layers):
if isinstance(layer, tf.keras.layers.BatchNormalization):
layer.trainable = False
else:
layer.trainable = True
model = tf.keras.Sequential([
net,
tf.keras.layers.Dropout(0.45),
tf.keras.layers.GlobalAveragePooling2D() ,
tf.keras.layers.Dropout(0.45),
tf.keras.layers.Dense(N_LABELS, activation='softmax', dtype=tf.float32),
])
model.load_weights(f'/kaggle/input/cassava-leaf-disease-prediction/model_fold_{fold}_weights.h5')
return model<normalization> | scaler = MinMaxScaler()
x = scaler.fit_transform(x)
x | Digit Recognizer |
11,437,677 | @tf.function
def decode_tfrecord_test(file_path):
image = tf.io.read_file(file_path)
image = tf.io.decode_jpeg(image)
image = tf.reshape(image, [IMG_HEIGHT, IMG_WIDTH, N_CHANNELS])
image = tf.cast(image, tf.float32)
image_id = tf.strings.split(file_path, '/')[-1]
return image, image_id<define_variables> | x1 = np.array(df2)
x1 = scaler.fit_transform(x1)
x1 = x1.reshape(( 28000,28,28,1))
x1.shape
| Digit Recognizer |
11,437,677 | def get_test_dataset() :
ignore_order = tf.data.Options()
ignore_order.experimental_deterministic = False
test_dataset = tf.data.Dataset.list_files('/kaggle/input/cassava-leaf-disease-classification/test_images/*.jpg')
test_dataset = test_dataset.with_options(ignore_order)
test_dataset = test_dataset.map(decode_tfrecord_test, num_parallel_calls=AUTO)
test_dataset = test_dataset.batch(BATCH_SIZE)
test_dataset = test_dataset.prefetch(AUTO)
return test_dataset<categorify> | y = np.array(y)
enc = OneHotEncoder(sparse=False)
y= y.reshape(( -1,1))
y = enc.fit_transform(y)
y.shape | Digit Recognizer |
11,437,677 | def show_first_test_batch() :
imgs, imgs_ids = next(iter(get_test_dataset()))
img = imgs[0].numpy().astype(np.float32)
print(f'imgs.shape: {imgs.shape}, imgs.dtype: {imgs.dtype}, imgs_ids.shape: {imgs_ids.shape}, imgs_ids.dtype: {imgs_ids.dtype}')
print('img mean: {:.3f}, img std {:.3f}, img min: {:.3f}, img max: {:.3f}'.format(img.mean() , img.std() , img.min() , img.max()))
print(f'imgs_id: {imgs_ids[0]}')
img += abs(img.min())
img /= img.max()
plt.imshow(img)
plt.show()
show_first_test_batch()<predict_on_test> | x_train,x_test,y_train,y_test = tts(x,y,test_size = 0.2, random_state=42)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape ) | Digit Recognizer |
11,437,677 | submission = pd.DataFrame(columns=['image_id', 'label'])
preds_dict = dict()
for fold in range(N_FOLDS):
model = get_model(fold)
for idx,(imgs, image_ids)in tqdm(enumerate(get_test_dataset())) :
for img, image_id in zip(imgs, image_ids.numpy().astype(str)) :
pred = predict_tta(model, img)
if image_id in preds_dict:
preds_dict[image_id] += pred
else:
preds_dict[image_id] = pred
for idx,(image_id, preds)in enumerate(preds_dict.items()):
if idx is 0:
print(f'image {image_id} predictions:{preds}')
label = np.argmax(preds)
submission = submission.append({ 'image_id': image_id, 'label': label }, ignore_index=True)
submission.to_csv('./submission.csv', index=False )<import_modules> | import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau | Digit Recognizer |
11,437,677 | import numpy as np
import pandas as pd
import os
<install_modules> | model = keras.Sequential()
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))
model.summary() | Digit Recognizer |
11,437,677 | !pip install timm --no-index --find-links=file:///kaggle/input/timm-package/<install_modules> | callbacks = [
keras.callbacks.EarlyStopping(
monitor='val_loss',
min_delta=1e-5,
patience=25,
verbose=1)
] | Digit Recognizer |
11,437,677 | !pip install albumentations --no-index --find-links=file:///kaggle/input/albumentationspackage/<import_modules> | predictions=model.predict(x1)
pre=predictions.argmax(axis=-1 ) | Digit Recognizer |
11,437,677 | import sys
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Parameter
import os
import cv2
import timm<import_modules> | submission = pd.Series(pre,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),submission],axis = 1)
submission.to_csv("final_submission_v1.csv",index=False)
submission.head() | Digit Recognizer |
11,232,489 | import albumentations as A<normalization> | from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras import layers, Sequential, optimizers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt | Digit Recognizer |
11,232,489 | def gem(x, p=3, eps=1e-5):
return F.avg_pool2d(x.clamp(min=eps ).pow(p),(x.size(-2), x.size(-1)) ).pow(1./p)
class GeM(nn.Module):
def __init__(self, p=3, eps=1e-5):
super(GeM, self ).__init__()
self.p = Parameter(torch.ones(1)* p)
self.eps = eps
def forward(self, x):
return gem(x, p=self.p, eps=self.eps)
def __repr__(self):
return self.__class__.__name__ + '(' + 'p=' + '{:.4f}'.format(self.p.data.tolist() [0])+ ', ' + 'eps=' + str(
self.eps)+ ')'<choose_model_class> | print("GPUs Available: ", tf.config.experimental.list_physical_devices('GPU')) | Digit Recognizer |
11,232,489 | class Net(nn.Module):
def __init__(self, num_classes=5):
super().__init__()
self.model = timm.create_model('seresnext50_32x4d', pretrained=False)
self._avg_pooling = nn.AdaptiveAvgPool2d(1)
self.dropout=nn.Dropout(0.5)
self._fc = nn.Linear(2048 , num_classes, bias=True)
def forward(self, inputs):
input_iid = inputs
input_iid=input_iid/255.
bs = input_iid.size(0)
x = self.model.forward_features(input_iid)
fm = self._avg_pooling(x)
fm = fm.view(bs, -1)
feature=self.dropout(fm)
x = self._fc(feature)
return x<create_dataframe> | raw_csv = "/kaggle/input/digit-recognizer/train.csv"
test_csv = "/kaggle/input/digit-recognizer/test.csv" | Digit Recognizer |
11,232,489 | class DatasetTest() :
def __init__(self, test_data_dir):
self.ds = self.get_list(test_data_dir)
self.root_dir = test_data_dir
self.val_trans=A.Compose([A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.ColorJitter(brightness=0.1, contrast=0.2, saturation=0.2, hue=0.00, always_apply=False, p=1.0),
A.RandomCrop(height= 600, width = 600,always_apply=True, p=1.0)]
)
def get_list(self, dir):
pic_list = os.listdir(dir)
return pic_list
def __len__(self):
return len(self.ds)
def preprocess_func(self, image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image1=self.val_trans(image=image)['image']
image2=self.val_trans(image=image)['image']
image3=self.val_trans(image=image)['image']
image4=self.val_trans(image=image)['image']
image5=self.val_trans(image=image)['image']
image6=self.val_trans(image=image)['image']
image7=self.val_trans(image=image)['image']
image8=self.val_trans(image=image)['image']
image_batch = np.stack([image1,
image2,
image3,
image4,
image5,
image6,
image7,
image8
])
image_batch = np.transpose(image_batch, axes=[0, 3, 1, 2])
return image, image_batch
def __getitem__(self, item):
fname = self.ds[item]
image_path = os.path.join(self.root_dir, fname)
image = cv2.imread(image_path, -1)
image,float_image = self.preprocess_func(image)
return fname, image,float_image<predict_on_test> | raw_df = pd.read_csv(raw_csv)
test_df = pd.read_csv(test_csv ) | Digit Recognizer |
11,232,489 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
kaggle_root = '/kaggle/input'
model_dir = os.path.join(kaggle_root, 'cassva-models-se50-640')
weights = [os.path.join(model_dir, f)for f in os.listdir(model_dir)]
test_datadir= os.path.join(kaggle_root, 'cassava-leaf-disease-classification/test_images')
dataiter=DatasetTest(test_datadir)
def predict_with_model(model,weights):
merge_res_dict = {}
for j, weight in enumerate(weights):
model.load_state_dict(torch.load(weight, map_location=device), strict=False)
model.eval()
cur_result=pd.DataFrame(columns=['image_id','label'])
len_data = len(dataiter)
image_ids=[]
precictions=[]
for i in range(len(dataiter)) :
print('weight {}: data {}/{}'.format(j, i+1, len_data))
fname,_,float_image=dataiter.__getitem__(i)
input=torch.from_numpy(float_image ).to(device ).float()
with torch.no_grad() :
output=model(input)
output=torch.nn.functional.softmax(output,dim=-1)
output=output.cpu().numpy()
output=np.mean(output,axis=0)
image_ids.append(fname)
label=np.argmax(output)
precictions.append(label)
if fname not in merge_res_dict:
merge_res_dict[fname] = output
else:
merge_res_dict[fname] += output
merge_result = pd.DataFrame(columns=['image_id','label'])
precictions = []
for fname in merge_res_dict:
label = np.argmax(merge_res_dict[fname])
precictions.append(label)
merge_result['image_id'] = image_ids
merge_result['label'] = precictions
merge_result.to_csv('submission.csv',index=False)
model=Net().to(device)
predict_with_model(model,weights )<define_variables> | def get_image_and_label(data_frame):
IMGs = data_frame.drop(["label"], axis=1 ).values if 'label' in data_frame.columns else data_frame.values
IMGs = np.array([image.reshape(( 28, 28)) for image in IMGs])
IMGs = np.expand_dims(IMGs, axis=3)
labels = data_frame['label'].values if 'label' in data_frame.columns else None
return IMGs, labels | Digit Recognizer |
11,232,489 | package_path = '.. /input/pytorch-image-models/pytorch-image-models-master'
sys.path.append(package_path )<set_options> | raw_IMGs, raw_labels = get_image_and_label(raw_df)
test_IMGs, _ = get_image_and_label(test_df ) | Digit Recognizer |
11,232,489 | warnings.filterwarnings("ignore")
<init_hyperparams> | classes = len(set(raw_labels))
classes | Digit Recognizer |
11,232,489 | CFG = {
'fold_num': 5,
'seed': 719,
'model_arch': 'tf_efficientnet_b4_ns',
'img_size': 512,
'epochs': 10,
'train_bs': 32,
'valid_bs': 32,
'lr': 1e-4,
'num_workers': 4,
'accum_iter': 1,
'verbose_step': 1,
'device': 'cuda:0',
'tta': 3,
'used_epochs': [6,7,8,9],
'weights': [1,1,1,1]
}<load_from_csv> | raw_labels = to_categorical(raw_labels, num_classes=classes)
raw_labels | Digit Recognizer |
11,232,489 | train = pd.read_csv('.. /input/cassava-leaf-disease-classification/train.csv')
train.head(10 )<count_values> | train_IMGs, validation_IMGs, trian_labels, validation_labels = train_test_split(raw_IMGs, raw_labels, test_size=0.1, random_state=42 ) | Digit Recognizer |
11,232,489 | train.label.value_counts()<load_from_csv> | model = Sequential([
layers.Conv2D(32,(3,3), activation="relu", input_shape=(28,28,1)) ,
layers.BatchNormalization() ,
layers.MaxPooling2D(( 2,2)) ,
layers.Conv2D(64,(3,3), activation="relu"),
layers.BatchNormalization() ,
layers.MaxPooling2D(( 2,2)) ,
layers.Conv2D(128,(3,3), activation="relu"),
layers.BatchNormalization() ,
layers.Flatten() ,
layers.Dense(1024, activation="relu"),
layers.Dropout(0.2),
layers.Dense(256, activation="relu"),
layers.Dropout(0.2),
layers.Dense(64, activation="relu"),
layers.Dropout(0.2),
layers.Dense(32, activation="relu"),
layers.Dropout(0.2),
layers.Dense(16, activation="relu"),
layers.Dropout(0.2),
layers.Dense(int(classes), activation="softmax")
] ) | Digit Recognizer |
11,232,489 | submission = pd.read_csv('.. /input/cassava-leaf-disease-classification/sample_submission.csv')
submission.head()<set_options> | model.compile(loss="categorical_crossentropy",
optimizer=optimizers.Adam(learning_rate=1e-4),
metrics=['accuracy'] ) | Digit Recognizer |
11,232,489 | def seeder(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def get_img(path):
im_bgr = cv2.imread(path)
im_rgb = im_bgr[:, :, ::-1]
return im_rgb
<load_pretrained> | train_datagen = ImageDataGenerator(
rescale=1/255,
rotation_range=20,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.1,
shear_range=0.1
)
validation_datagen = ImageDataGenerator(rescale=1/255)
test_datagen = ImageDataGenerator(rescale=1/255 ) | Digit Recognizer |
11,232,489 | img = get_img('.. /input/cassava-leaf-disease-classification/train_images/1000015157.jpg')
plt.figure(figsize=(15,15))
plt.imshow(img)
plt.show()<categorify> | train_generator = train_datagen.flow(train_IMGs, trian_labels, batch_size=32)
validation_generator = train_datagen.flow(validation_IMGs, validation_labels, batch_size=32)
test_generator = test_datagen.flow(test_IMGs, batch_size=32, shuffle=False ) | Digit Recognizer |
11,232,489 | class CassavaDataset(Dataset):
def __init__(self,df,data_root,transforms=None,output_label=True):
super(CassavaDataset ).__init__()
self.df=df.reset_index().copy()
self.data_root=data_root
self.transforms=transforms
self.output_label=output_label
def __len__(self):
return self.df.shape[0]
def __getitem__(self,index:int):
if self.output_label == True:
label=self.iloc[index]["label"]
path = "{}/{}".format(self.data_root, self.df.iloc[index]['image_id'])
img=get_img(path)
if self.transforms:
img=self.transforms(image=img)["image"]
if self.output_label == True:
return img,torch.tensor(label,dtype=torch.double)
else:
return img
<categorify> | history = model.fit_generator(train_generator, epochs=100, validation_data=validation_generator, verbose=1 ) | Digit Recognizer |
11,232,489 | HorizontalFlip, VerticalFlip, IAAPerspective, ShiftScaleRotate, CLAHE, RandomRotate90,
Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue,
IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, MedianBlur, IAAPiecewiseAffine, RandomResizedCrop,
IAASharpen, IAAEmboss, RandomBrightnessContrast, Flip, OneOf, Compose, Normalize, Cutout, CoarseDropout, ShiftScaleRotate, CenterCrop, Resize
)
def get_train_transforms() :
return Compose([
RandomResizedCrop(CFG['img_size'], CFG['img_size']),
Transpose(p=0.5),
HorizontalFlip(p=0.5),
VerticalFlip(p=0.5),
ShiftScaleRotate(p=0.5),
HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5),
RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0),
CoarseDropout(p=0.5),
Cutout(p=0.5),
ToTensorV2(p=1.0),
], p=1.)
def get_valid_transforms() :
return Compose([
CenterCrop(CFG['img_size'], CFG['img_size'], p=1.) ,
Resize(CFG['img_size'], CFG['img_size']),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0),
ToTensorV2(p=1.0),
], p=1.)
def get_inference_transforms() :
return Compose([
RandomResizedCrop(CFG['img_size'], CFG['img_size']),
Transpose(p=0.5),
HorizontalFlip(p=0.5),
VerticalFlip(p=0.5),
HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5),
RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0),
ToTensorV2(p=1.0),
], p=1.)<choose_model_class> | model.evaluate(validation_IMGs, validation_labels ) | Digit Recognizer |
11,232,489 | class CassvaImgClassifier(nn.Module):
def __init__(self, model_arch, n_class, pretrained=False):
super().__init__()
self.model = timm.create_model(model_arch, pretrained=pretrained)
n_features = self.model.classifier.in_features
self.model.classifier = nn.Linear(n_features, n_class)
def forward(self, x):
x = self.model(x)
return x<feature_engineering> | accuracy = history.history["accuracy"]
val_accuracy = history.history["val_accuracy"]
loss = history.history["loss"]
val_loss = history.history["val_loss"]
epochs = range(len(accuracy)) | Digit Recognizer |
11,232,489 | if __name__ == "__main__":
seeder(CFG["seed"])
folds = StratifiedKFold(n_splits=CFG['fold_num'] ).split(np.arange(train.shape[0]), train.label.values)
for fold,(trn_idx, val_idx)in enumerate(folds):
if fold > 0:
break
print('Inference fold {} started'.format(fold))
test = pd.DataFrame()
test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/'))
test_ds = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_inference_transforms() , output_label=False)
valid_ = train.loc[val_idx,:].reset_index(drop=True)
valid_ds = CassavaDataset(valid_, '.. /input/cassava-leaf-disease-classification/train_images/', transforms=get_inference_transforms() , output_label=False)
val_loader = torch.utils.data.DataLoader(
valid_ds,
batch_size=CFG['valid_bs'],
num_workers=CFG['num_workers'],
shuffle=False,
pin_memory=False,
)
tst_loader = torch.utils.data.DataLoader(
test_ds,
batch_size=CFG['valid_bs'],
num_workers=CFG['num_workers'],
shuffle=False,
pin_memory=False,
)
device = torch.device(CFG['device'])
model = CassvaImgClassifier(CFG['model_arch'], train.label.nunique() ).to(device)
val_preds = []
tst_preds = []
for i, epoch in enumerate([1]):
model.load_state_dict(torch.load(".. /input/aashika-cassava/tf_efficientnet_b4_ns_fold_0_9"))
with torch.no_grad() :
for _ in range(CFG["tta"]):
val_preds += [CFG['weights'][i]/sum(CFG['weights'])/CFG['tta']*inference_one_epoch(model, val_loader, device)]
tst_preds += [CFG['weights'][i]/sum(CFG['weights'])/CFG['tta']*inference_one_epoch(model, tst_loader, device)]
val_preds = np.mean(val_preds, axis=0)
tst_preds = np.mean(tst_preds, axis=0)
print('fold {} validation loss = {:.5f}'.format(fold, log_loss(valid_.label.values, val_preds)))
print('fold {} validation accuracy = {:.5f}'.format(fold,(valid_.label.values==np.argmax(val_preds, axis=1)).mean()))
del model
torch.cuda.empty_cache()
<feature_engineering> | pred_labels = model.predict_generator(test_generator ) | Digit Recognizer |
11,232,489 | test['label'] = np.argmax(tst_preds, axis=1)
test.head()<save_to_csv> | pred_labels = np.argmax(pred_labels, axis=-1)
pred_labels | Digit Recognizer |
11,232,489 | test.to_csv('submission.csv', index=False )<import_modules> | my_submission = pd.DataFrame({'ImageId': test_df.index + 1, 'Label': pred_labels})
my_submission.head() | Digit Recognizer |
11,232,489 | <install_modules><EOS> | my_submission.to_csv('submission.csv', index=False ) | Digit Recognizer |
11,265,589 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<import_modules> | %matplotlib inline
| Digit Recognizer |
11,265,589 | HorizontalFlip, VerticalFlip, IAAPerspective, ShiftScaleRotate, CLAHE, RandomRotate90,
Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue,
IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, MedianBlur, IAAPiecewiseAffine, RandomResizedCrop,
IAASharpen, IAAEmboss, RandomBrightnessContrast, Flip, OneOf, Compose, Normalize, Cutout, CoarseDropout,
ShiftScaleRotate, CenterCrop, Resize
)
HorizontalFlip, VerticalFlip, IAAPerspective, ShiftScaleRotate, CLAHE, RandomRotate90,
Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue,
IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, MedianBlur, IAAPiecewiseAffine, RandomResizedCrop,
IAASharpen, IAAEmboss, RandomBrightnessContrast, Flip, OneOf, Compose, Normalize, Cutout, CoarseDropout,
ShiftScaleRotate, CenterCrop, Resize
)
def get_train_transforms() :
return Compose([
RandomResizedCrop(CFG['img_size'], CFG['img_size']),
Transpose(p=0.5),
HorizontalFlip(p=0.5),
VerticalFlip(p=0.5),
ShiftScaleRotate(p=0.5),
HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5),
RandomBrightnessContrast(brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=0.5),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0),
CoarseDropout(p=0.5),
Cutout(p=0.5),
ToTensorV2(p=1.0),
], p=1.)
train = pd.read_csv('.. /input/cassava-leaf-disease-classification/train.csv')
def get_valid_transforms() :
return Compose([
CenterCrop(CFG['img_size'], CFG['img_size'], p=1.) ,
Resize(CFG['img_size'], CFG['img_size']),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0),
ToTensorV2(p=1.0),
], p=1.)
def rand_bbox(size, lam):
W = size[0]
H = size[1]
cut_rat = np.sqrt(1.- lam)
cut_w = np.int(W * cut_rat)
cut_h = np.int(H * cut_rat)
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def get_inference_transforms() :
return Compose([
RandomResizedCrop(CFG['img_size'], CFG['img_size']),
Transpose(p=0.5),
HorizontalFlip(p=0.5),
VerticalFlip(p=0.5),
HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5),
RandomBrightnessContrast(brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=0.5),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0),
ToTensorV2(p=1.0),
], p=1.)
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
CFG = {
'fold_num': 5,
'seed': 719,
'model_arch': 'tf_efficientnet_b4_ns',
'img_size': 512,
'epochs': 10,
'train_bs': 32,
'valid_bs': 32,
'lr': 1e-4,
'num_workers': 4,
'accum_iter': 1,
'verbose_step': 1,
'device': 'cuda:0',
'tta': 3,
'used_epochs': [25,26,27,28,29],
'weights': [1,1,1,1]
}
class CassavaNet(nn.Module):
def __init__(self):
super().__init__()
backbone = timm.create_model('tf_efficientnet_b4_ns', pretrained=False)
n_features = backbone.classifier.in_features
self.backbone = nn.Sequential(*backbone.children())[:-3]
self.classifier = nn.Linear(n_features, 5)
self.pool = nn.AdaptiveAvgPool2d(( 1, 1))
def forward_features(self, x):
x = self.backbone(x)
return x
def forward(self, x):
feats = self.forward_features(x)
x = self.pool(feats ).view(x.size(0), -1)
x = self.classifier(x)
return x, feats
class CassavaDataset(Dataset):
def __init__(self, df, data_root,
transforms=None,
output_label=True,
one_hot_label=False,
do_fmix=False,
fmix_params={
'alpha': 1.,
'decay_power': 3.,
'shape':(CFG['img_size'], CFG['img_size']),
'max_soft': True,
'reformulate': False
},
do_cutmix=False,
cutmix_params={
'alpha': 1,
}
):
super().__init__()
self.df = df.reset_index(drop=True ).copy()
self.transforms = transforms
self.data_root = data_root
self.do_fmix = do_fmix
self.fmix_params = fmix_params
self.do_cutmix = do_cutmix
self.cutmix_params = cutmix_params
self.output_label = output_label
self.one_hot_label = one_hot_label
if output_label == True:
self.labels = self.df['label'].values
if one_hot_label is True:
self.labels = np.eye(self.df['label'].max() + 1)[self.labels]
def __len__(self):
return self.df.shape[0]
def __getitem__(self, index: int):
if self.output_label:
target = self.labels[index]
img = get_img("{}/{}".format(self.data_root, self.df.loc[index]['image_id']))
if self.transforms:
img = self.transforms(image=img)['image']
if self.do_fmix and np.random.uniform(0., 1., size=1)[0] > 0.5:
with torch.no_grad() :
lam = np.clip(np.random.beta(self.fmix_params['alpha'], self.fmix_params['alpha']), 0.6, 0.7)
mask = make_low_freq_image(self.fmix_params['decay_power'], self.fmix_params['shape'])
mask = binarise_mask(mask, lam, self.fmix_params['shape'], self.fmix_params['max_soft'])
fmix_ix = np.random.choice(self.df.index, size=1)[0]
fmix_img = get_img("{}/{}".format(self.data_root, self.df.iloc[fmix_ix]['image_id']))
if self.transforms:
fmix_img = self.transforms(image=fmix_img)['image']
mask_torch = torch.from_numpy(mask)
img = mask_torch * img +(1.- mask_torch)* fmix_img
rate = mask.sum() / CFG['img_size'] / CFG['img_size']
target = rate * target +(1.- rate)* self.labels[fmix_ix]
if self.do_cutmix and np.random.uniform(0., 1., size=1)[0] > 0.5:
with torch.no_grad() :
cmix_ix = np.random.choice(self.df.index, size=1)[0]
cmix_img = get_img("{}/{}".format(self.data_root, self.df.iloc[cmix_ix]['image_id']))
if self.transforms:
cmix_img = self.transforms(image=cmix_img)['image']
lam = np.clip(np.random.beta(self.cutmix_params['alpha'], self.cutmix_params['alpha']), 0.3, 0.4)
bbx1, bby1, bbx2, bby2 = rand_bbox(( CFG['img_size'], CFG['img_size']), lam)
img[:, bbx1:bbx2, bby1:bby2] = cmix_img[:, bbx1:bbx2, bby1:bby2]
rate = 1 -(( bbx2 - bbx1)*(bby2 - bby1)/(CFG['img_size'] * CFG['img_size']))
target = rate * target +(1.- rate)* self.labels[cmix_ix]
if self.output_label == True:
return img, target
else:
return img
def inference_one_epoch(model, data_loader, device):
model.eval()
image_preds_all = []
pbar = tqdm(enumerate(data_loader), total=len(data_loader))
for step,(imgs)in pbar:
imgs = imgs.to(device ).float()
image_preds= model(imgs)
image_preds_all += [torch.softmax(image_preds, 1 ).detach().cpu().numpy() ]
image_preds_all = np.concatenate(image_preds_all, axis=0)
return image_preds_all
def get_img(path):
im_bgr = cv2.imread(path)
im_rgb = im_bgr[:, :, ::-1]
return im_rgb
class CassvaImgClassifier(nn.Module):
def __init__(self, model_arch, n_class, pretrained=False):
super().__init__()
self.model = timm.create_model(model_arch, pretrained=pretrained)
n_features = self.model.classifier.in_features
self.model.classifier = nn.Linear(n_features, n_class)
def forward(self, x):
x = self.model(x)
return x
if __name__ == '__main__':
seed_everything(CFG['seed'])
folds = StratifiedKFold(n_splits=CFG['fold_num'] ).split(np.arange(train.shape[0]), train.label.values)
for fold,(trn_idx, val_idx)in enumerate(folds):
if fold > 0:
break
print('Inference fold {} started'.format(fold))
valid_ = train.loc[val_idx, :].reset_index(drop=True)
valid_ds = CassavaDataset(valid_, '.. /input/cassava-leaf-disease-classification/train_images/',
transforms=get_inference_transforms() , output_label=False)
test = pd.DataFrame()
test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/'))
test_ds = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/',
transforms=get_inference_transforms() , output_label=False)
tst_loader = torch.utils.data.DataLoader(
test_ds,
batch_size=CFG['valid_bs'],
num_workers=CFG['num_workers'],
shuffle=False,
pin_memory=False,
)
device = torch.device(CFG['device'])
model = CassvaImgClassifier(CFG['model_arch'], train.label.nunique() ).to(device)
tst_preds = []
for i in [1]:
for epoch in [1,2,3,4,5,6,7,8,9]:
ckpt=torch.load('.. /input/model-comined/tf_efficientnet_b4_ns_fold_{}_{}.pth'.format(i,epoch),map_location={'cuda:1':'cuda:0'})
ckpt_model_dict = OrderedDict([(k[7:],v)if 'module.' in k else(k,v)for k, v in ckpt.items() ])
model.load_state_dict(ckpt_model_dict)
with torch.no_grad() :
tst_preds += [inference_one_epoch(model, tst_loader,device)]
tst_preds = np.mean(tst_preds, axis=0)
del model
torch.cuda.empty_cache()
test['label'] = np.argmax(tst_preds, axis=1)
test.head()
test.to_csv('submission.csv', index=False)
print(test)
<import_modules> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
test = pd.read_csv('.. /input/digit-recognizer/test.csv' ) | Digit Recognizer |
11,265,589 | package_path = '.. /input/pytorch-image-models/pytorch-image-models-master'
train = pd.read_csv('.. /input/cassava-leaf-disease-classification/train.csv')
submission = pd.read_csv('.. /input/cassava-leaf-disease-classification/sample_submission.csv' )<init_hyperparams> | Y_train=train['label']
X_train = train.drop(labels = ["label"],axis = 1)
Y_train.value_counts() | Digit Recognizer |
11,265,589 | CFG = {
'normalize_mean':[0.42984136, 0.49624753, 0.3129598],
'normalize_std':[0.21417203, 0.21910103, 0.19542212],
'device': 'cuda:0',
'fold_num': 5,
'seed': 42,
'valid_bs': 32,
'num_workers': 4,
'model_arch': ['tf_efficientnet_b4_ns',
'tf_efficientnet_b4_ns',
'tf_efficientnet_b4_ns',
'tf_efficientnet_b4_ns',
'tf_efficientnet_b4_ns',
],
'img_size': 512,
'tta': 3,
'fold_list':[0],
'used_epochs': [".. /input/train3012/tf_efficientnet_b4_ns_3012_fold_0_14",
".. /input/train3012/tf_efficientnet_b4_ns_3012_fold_1_14",
".. /input/train3012/tf_efficientnet_b4_ns_3012_fold_2_14",
".. /input/train3012/tf_efficientnet_b4_ns_3012_fold_3_9",
".. /input/train3012/tf_efficientnet_b4_ns_3012_fold_4_12"],
'weights': [1,1,1,1,1],
}<set_options> | X_train = X_train / 255
test = test / 255 | Digit Recognizer |
11,265,589 | def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.cuda.manual_seed_all(seed)
def get_img(path):
im_bgr = cv2.imread(path)
im_rgb = im_bgr[:, :, ::-1]
return im_rgb<categorify> | print("The shape of the labels before One Hot Encoding",Y_train.shape)
Y_train = to_categorical(Y_train, num_classes = 10)
print("The shape of the labels after One Hot Encoding",Y_train.shape ) | Digit Recognizer |
11,265,589 | class CassavaDataset(Dataset):
def __init__(
self, df, data_root, transforms=None, output_label=True
):
super().__init__()
self.df = df.reset_index(drop=True ).copy()
self.transforms = transforms
self.data_root = data_root
self.output_label = output_label
def __len__(self):
return self.df.shape[0]
def __getitem__(self, index: int):
if self.output_label:
target = self.df.iloc[index]['label']
path = "{}/{}".format(self.data_root, self.df.iloc[index]['image_id'])
img = get_img(path)
if self.transforms:
img = self.transforms(image=img)['image']
if self.output_label == True:
return img, target
else:
return img<normalization> | random_seed = 2
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.3, random_state=random_seed ) | Digit Recognizer |
11,265,589 | HorizontalFlip, VerticalFlip, IAAPerspective, ShiftScaleRotate, CLAHE, RandomRotate90,
Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue,
IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, MedianBlur, IAAPiecewiseAffine, RandomResizedCrop,
IAASharpen, IAAEmboss, RandomBrightnessContrast, Flip, OneOf, Compose, Normalize, Cutout, CoarseDropout, ShiftScaleRotate, CenterCrop, Resize,
RandomCrop
)
def get_inference_transforms() :
return Compose([
RandomCrop(512, 512),
Transpose(p=0.5),
HorizontalFlip(p=0.5),
VerticalFlip(p=0.5),
HueSaturationValue(hue_shift_limit=10, sat_shift_limit=10, val_shift_limit=10, p=0.5),
RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5),
Normalize(mean=CFG["normalize_mean"], std=CFG["normalize_std"], max_pixel_value=255.0, p=1.0),
ToTensorV2(p=1.0),
], p=1.)
def get_inference_transforms_vit384() :
return Compose([
RandomCrop(384, 384),
Transpose(p=0.5),
HorizontalFlip(p=0.5),
VerticalFlip(p=0.5),
HueSaturationValue(hue_shift_limit=10, sat_shift_limit=10, val_shift_limit=10, p=0.5),
RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5),
Normalize(mean=CFG["normalize_mean"], std=CFG["normalize_std"], max_pixel_value=255.0, p=1.0),
ToTensorV2(p=1.0),
], p=1.)
<choose_model_class> | datagen = ImageDataGenerator(zoom_range = 0.1, width_shift_range = 0.1, height_shift_range = 0.1, rotation_range = 10 ) | Digit Recognizer |
11,265,589 | class CassvaImgClassifier(nn.Module):
def __init__(self, model_arch, n_class, pretrained=False):
super().__init__()
self.model = timm.create_model(model_arch, pretrained=pretrained, num_classes=5)
def forward(self, x):
x = self.model(x)
return x<create_dataframe> | model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(3, 3), activation = 'relu', input_shape =(28, 28, 1)))
model.add(BatchNormalization())
model.add(Conv2D(filters = 32, kernel_size =(3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 32, kernel_size =(5, 5), activation = 'relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(strides =(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size =(3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size =(5, 5), activation = 'relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(strides =(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(1024, activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation = 'softmax')) | Digit Recognizer |
11,265,589 | seed_everything(CFG['seed'])
tst_preds = []
device = torch.device(CFG['device'])
test = pd.DataFrame()
test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/'))
for i, sub_model in enumerate(CFG['used_epochs']):
if "vit" not in sub_model:
test_ds = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_inference_transforms() , output_label=False)
else:
test_ds = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_inference_transforms_vit384() , output_label=False)
tst_loader = torch.utils.data.DataLoader(
test_ds,
batch_size=CFG['valid_bs'],
num_workers=CFG['num_workers'],
shuffle=False,
pin_memory=True,
)
model = CassvaImgClassifier(CFG['model_arch'][i], train.label.nunique() ).to(device)
model.load_state_dict(torch.load(sub_model, map_location=CFG['device']))
print(sub_model)
with torch.no_grad() :
for tta_ in range(CFG['tta']):
tst_preds += [CFG['weights'][i]/sum(CFG['weights'])/CFG['tta']*inference_one_epoch(model, tst_loader, device)]
tst_preds = np.sum(tst_preds, axis=0)
del model
torch.cuda.empty_cache()<save_to_csv> | model.compile(optimizer='adam',metrics=['accuracy'],loss='categorical_crossentropy' ) | Digit Recognizer |
11,265,589 | test['label'] = np.argmax(tst_preds, axis=1)
test.to_csv('submission.csv', index=False )<install_modules> | reduction_lr = ReduceLROnPlateau(monitor='val_accuracy',patience=2, verbose=1, factor=0.2, min_lr=0.00001 ) | Digit Recognizer |
11,265,589 | !mkdir -p /tmp/pip/cache/
!cp.. /input/omegaconf/PyYAML-5.4b2-cp38-cp38-manylinux1_x86_64.whl /tmp/pip/cache/
!cp.. /input/omegaconf/omegaconf-2.0.5-py3-none-any.whl /tmp/pip/cache/
!cp.. /input/omegaconf/typing_extensions-3.7.4.3-py3-none-any.whl /tmp/pip/cache/
!pip install --no-index --find-links /tmp/pip/cache/ omegaconf > /dev/null<set_options> | hist = model.fit_generator(datagen.flow(X_train,Y_train,batch_size=32),epochs=20,validation_data =(X_val,Y_val),callbacks=[reduction_lr] ) | Digit Recognizer |
11,265,589 | sys.path.append('.. /input/timm-pytorch-image-models/pytorch-image-models-master')
sys.path.append(".. /input/cleanlab/")
warnings.filterwarnings('ignore')
<set_options> | final_loss, final_acc = model.evaluate(X_val, Y_val, verbose=0)
print("Final loss: {0:.4f}, final accuracy: {1:.4f}".format(final_loss, final_acc)) | Digit Recognizer |
11,265,589 | mean, std =(0.485, 0.456, 0.406),(0.229, 0.224, 0.225)
def get_transforms(img_size=(512, 512)) :
transformations = Compose([
PadIfNeeded(min_height=img_size[0], min_width=img_size[1]),
CenterCrop(img_size[0], img_size[1]),
Normalize(mean=mean, std=std, max_pixel_value=255.0, p=1.0),
ToTensorV2(p=1.0),
], p=1.0)
return transformations<choose_model_class> | y_pred = model.predict(X_val, batch_size = 64)
y_pred = np.argmax(y_pred,axis = 1)
y_pred = pd.Series(y_pred,name="Label")
y_pred | Digit Recognizer |
11,265,589 | def create_model(model_name: str,
pretrained: bool,
num_classes: int,
in_chans: int):
model = timm.create_model(model_name=model_name,
pretrained=pretrained,
num_classes=num_classes,
in_chans=in_chans)
return model<load_pretrained> | y_pred1 = model.predict(test, batch_size = 64)
y_pred1 = np.argmax(y_pred1,axis = 1)
y_pred1 = pd.Series(y_pred1,name="Label")
y_pred1 | Digit Recognizer |
11,265,589 | <find_best_params><EOS> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),y_pred1],axis = 1)
submission.to_csv("submission.csv",index=False ) | Digit Recognizer |
11,342,302 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<define_search_space> | from matplotlib import pyplot as plt
import math, os, re, time, random
import numpy as np, pandas as pd, seaborn as sns
import tensorflow as tf
from sklearn.model_selection import train_test_split | Digit Recognizer |
11,342,302 | eff_b0_cfg_s =
eff_b0_cfg = OmegaConf.create(eff_b0_cfg_s )<define_variables> | rank_0_tensor = tf.constant(1)
print(rank_0_tensor); print('')
rank_1_tensor = tf.constant([1, 0, 0])
print(rank_1_tensor); print('')
rank_2_tensor = tf.constant([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
print(rank_2_tensor ) | Digit Recognizer |
11,342,302 | name = '14-10-36'
cfg = eff_b0_cfg
do_predict = True
do_submit = True
img_dir = '.. /input/cassava-leaf-disease-merged/train/'
label_path = '.. /input/cassava-leaf-disease-merged/merged.csv'
log_dir = os.path.join('.. /input/cassava-public-ckpt', name)
n_folds = len(glob(os.path.join(log_dir, 'checkpoints/*.ckpt')))
num2class = ["Cassava Bacterial Blight(CBB)", "Cassava Brown Streak Disease(CBSD)", "Cassava Green Mottle(CGM)", "Cassava Mosaic Disease(CMD)", "Healthy"]<feature_engineering> | rank_0_tensor = tf.constant(1, dtype = tf.float16)
print(rank_0_tensor); print('')
rank_1_tensor = tf.constant([1, 0, 0], dtype = tf.float32)
print(rank_1_tensor); print('')
rank_2_tensor = tf.constant([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]], dtype = tf.int32)
print(rank_2_tensor ) | Digit Recognizer |
11,342,302 | seed_everything(42)
label_df = pd.read_csv(label_path)
if 'fold' not in label_df.columns:
skf = StratifiedKFold(n_splits=5, shuffle=True)
label_df.loc[:, 'fold'] = 0
for fold_num,(train_index, val_index)in enumerate(skf.split(X=label_df.index, y=label_df.label.values)) :
label_df.loc[label_df.iloc[val_index].index, 'fold'] = fold_num
if do_predict:
infer = pl.Trainer(gpus=1)
oof_dict = {'image_id': [], 'label': [], 'fold': []}
for fold_num in range(n_folds):
val_df = label_df[label_df.fold == fold_num]
test_dataset = TestDataset(img_dir, val_df, img_size=cfg.img_size)
test_dataloader = DataLoader(test_dataset,
batch_size=cfg.batch_size,
num_workers=4,
shuffle=False)
state_dict = get_state_dict_from_checkpoint(log_dir, fold_num)
model = LitTester(cfg.network, state_dict)
pred = infer.test(model, test_dataloaders=test_dataloader, verbose=False)[0]
oof_dict['image_id'].extend(val_df.image_id.values)
oof_dict['label'].extend(pred['prob'].tolist())
oof_dict['fold'].extend([fold_num] * len(pred['prob']))
pred_df = pd.DataFrame(oof_dict)
pred_df.to_csv('oof.csv', index=False)
else:
pred_df = pd.read_csv(os.path.join(log_dir, 'oof.csv'))<load_from_csv> | print(type(rank_2_tensor.numpy()))
print(rank_2_tensor.numpy()); print('')
tensor_to_array = np.add(rank_2_tensor, 1)
print(type(tensor_to_array))
print(tensor_to_array); print('')
array_to_tensor = tf.add(rank_2_tensor.numpy() , 1)
print(array_to_tensor ) | Digit Recognizer |
11,342,302 | if do_submit:
sub = pd.read_csv('.. /input/cassava-leaf-disease-classification/sample_submission.csv')
infer = pl.Trainer(gpus=1)
test_dataset = TestDataset('.. /input/cassava-leaf-disease-classification/test_images',
sub,
img_size=cfg.img_size)
test_dataloader = DataLoader(test_dataset,
batch_size=cfg.batch_size,
num_workers=4,
shuffle=False)
preds = []
for fold_num in range(n_folds):
state_dict = get_state_dict_from_checkpoint(log_dir, fold_num)
model = LitTester(cfg.network, state_dict)
pred = infer.test(model, test_dataloaders=test_dataloader, verbose=False)[0]
preds.append(pred['prob'])
sub['label'] = np.argmax(np.mean(preds, axis=0), axis=1)
sub.to_csv(os.path.join(os.getcwd() , 'submission.csv'), index=False )<sort_values> | model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(256, activation='relu', input_shape =(784,)))
model.add(tf.keras.layers.Dense(128, activation='swish'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["categorical_accuracy"])
model.summary() | Digit Recognizer |
11,342,302 | label_df = label_df.sort_values(by='image_id', ascending=1)
pred_df = pred_df.sort_values(by='image_id', ascending=1)
ids, labels = label_df.image_id.values, label_df.label.values
preds = np.array([literal_eval(pred)if isinstance(pred, str)else pred for pred in pred_df.label.values])
print(f'total {len(ids)} images')
print(f'prediction shape: {preds.shape}, label shape: {labels.shape}' )<define_variables> | model = tf.keras.models.Sequential([
tf.keras.layers.Dense(256, activation = 'relu', input_shape =(784,)) ,
tf.keras.layers.Dense(128, activation = 'swish'),
tf.keras.layers.Dense(10, activation = 'softmax')
])
model.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["categorical_accuracy"])
model.summary() | Digit Recognizer |
11,342,302 | s = labels
psx = preds
K = len(np.unique(s))
thresholds = [np.mean(psx[:,k][s == k])for k in range(K)]
thresholds = np.asarray(thresholds)
confident_joint = np.zeros(( K, K), dtype = int)
for i, row in enumerate(psx):
s_label = s[i]
confident_bins = row >= thresholds - 1e-6
num_confident_bins = sum(confident_bins)
if num_confident_bins == 1:
confident_joint[s_label][np.argmax(confident_bins)] += 1
elif num_confident_bins > 1:
confident_joint[s_label][np.argmax(row)] += 1
confident_joint = cleanlab.latent_estimation.calibrate_confident_joint(
confident_joint, s)
cleanlab.util.print_joint_matrix(confident_joint)
MIN_NUM_PER_CLASS = 5
prune_count_matrix = cleanlab.pruning.keep_at_least_n_per_class(
prune_count_matrix=confident_joint.T,
n=MIN_NUM_PER_CLASS,
)
s_counts = np.bincount(s)
noise_masks_per_class = []
for k in range(K):
noise_mask = np.zeros(len(psx), dtype=bool)
psx_k = psx[:, k]
if s_counts[k] > MIN_NUM_PER_CLASS:
for j in range(K):
if k != j:
num2prune = prune_count_matrix[k][j]
if num2prune > 0:
margin = psx_k - psx[:, j]
s_filter = s == j
threshold = -np.partition(
-margin[s_filter], num2prune - 1
)[num2prune - 1]
noise_mask = noise_mask |(s_filter &(margin >= threshold))
noise_masks_per_class.append(noise_mask)
else:
noise_masks_per_class.append(np.zeros(len(s), dtype=bool))
label_errors_bool = np.stack(noise_masks_per_class ).any(axis=0)
for i, pred_label in enumerate(psx.argmax(axis=1)) :
if label_errors_bool[i] and np.all(pred_label == s[i]):
label_errors_bool[i] = False
label_errors_idx = np.arange(len(s)) [label_errors_bool]
self_confidence = np.array(
[np.mean(psx[i][s[i]])for i in label_errors_idx]
)
margin = self_confidence - psx[label_errors_bool].max(axis=1)
label_errors_idx = label_errors_idx[np.argsort(margin)]<feature_engineering> | inputs = tf.keras.Input(shape =(784,))
x = tf.keras.layers.Dense(256, activation = 'relu' )(inputs)
x = tf.keras.layers.Dense(128, activation = 'swish' )(x)
outputs = tf.keras.layers.Dense(10, activation = 'softmax' )(x)
model = tf.keras.Model(inputs = inputs, outputs = outputs)
model.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["categorical_accuracy"])
model.summary() | Digit Recognizer |
11,342,302 | total_idx = np.arange(len(ids))
clean_idx = np.array([idx for idx in total_idx if idx not in label_errors_idx])
guesses = np.stack(noise_masks_per_class ).argmax(axis=0)
guesses[clean_idx] = labels[clean_idx]
clean_ids = ids[clean_idx]
clean_labels = labels[clean_idx]
clean_guesses = guesses[clean_idx]
noisy_ids = ids[label_errors_idx]
noisy_labels = labels[label_errors_idx]
noisy_guesses = guesses[label_errors_idx]
print(f'[clean ratio] \t {len(clean_idx)/ len(total_idx)* 100:.2f}%')
print(f'[noise ratio] \t {len(noisy_ids)/ len(total_idx)* 100:.2f}%' )<prepare_output> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
test = pd.read_csv('.. /input/digit-recognizer/test.csv')
train.head() | Digit Recognizer |
11,342,302 | all_data = pd.DataFrame({'image_id': ids,
'given_label': labels,
'guess_label': guesses})
all_data['is_noisy'] =(all_data.given_label != all_data.guess_label)
all_data['max_prob'] = preds.max(axis=1 )<define_variables> | labels = train['label']
train = train.drop('label', axis = 1)
train = train / 255.0
test = test / 255.0 | Digit Recognizer |
11,342,302 | class_colors = np.array(['
num2class = [f'{idx}-{elem}' for idx, elem in enumerate(num2class)]<load_pretrained> | labels = tf.one_hot(labels, depth = 10 ).numpy() | Digit Recognizer |
11,342,302 | with open('.. /input/train-weights-optimization/best_weights.json', 'r')as f:
weights_dict = json.load(f)
weights_dict<load_pretrained> | datagen = tf.keras.preprocessing.image.ImageDataGenerator(
rotation_range = 20,
zoom_range = 0.1,
width_shift_range = 0.1,
height_shift_range = 0.1
) | Digit Recognizer |
11,342,302 | normal_configs = []
tta_configs = []
normal_model_dirs = []
tta_model_dirs = []
for model_dir in weights_dict.keys() :
assert len(glob.glob(f'{model_dir}/*.yml')) ==1
config_path = glob.glob(f'{model_dir}/*.yml')[0]
with open(config_path)as f:
config = yaml.load(f)
if 'valid_augmentation' in config['tag'].keys() :
tta_model_dirs.append(model_dir)
tta_configs.append(config)
else:
normal_model_dirs.append(model_dir)
normal_configs.append(config)
TRAIN_PATH = '.. /input/cassava-leaf-disease-classification/train_images'
TEST_PATH = '.. /input/cassava-leaf-disease-classification/test_images'
OUTPUT_DIR = './'<compute_test_metric> | EPOCHS = 45
BATCH_SIZE = 64
NUM_NETS = 25
VERBOSE = 0 | Digit Recognizer |
11,342,302 | def get_score(y_true, y_pred):
return accuracy_score(y_true, y_pred)
@contextmanager
def timer(name):
t0 = time.time()
LOGGER.info(f'[{name}] start')
yield
LOGGER.info(f'[{name}] done in {time.time() - t0:.0f} s.')
def seed_torch(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
<load_from_csv> | model = [0] * NUM_NETS
for j in range(NUM_NETS):
model[j] = tf.keras.models.Sequential()
model[j].add(tf.keras.layers.Conv2D(32, kernel_size = 3, activation = 'relu', input_shape =(28, 28, 1)))
model[j].add(tf.keras.layers.BatchNormalization())
model[j].add(tf.keras.layers.Conv2D(32, kernel_size = 3, activation = 'relu'))
model[j].add(tf.keras.layers.BatchNormalization())
model[j].add(tf.keras.layers.Conv2D(32, kernel_size = 5, strides = 2, padding = 'same', activation = 'relu'))
model[j].add(tf.keras.layers.BatchNormalization())
model[j].add(tf.keras.layers.Dropout(0.4))
model[j].add(tf.keras.layers.Conv2D(64, kernel_size = 3, activation = 'relu'))
model[j].add(tf.keras.layers.BatchNormalization())
model[j].add(tf.keras.layers.Conv2D(64, kernel_size = 3, activation = 'relu'))
model[j].add(tf.keras.layers.BatchNormalization())
model[j].add(tf.keras.layers.Conv2D(64, kernel_size = 5, strides = 2, padding = 'same', activation = 'relu'))
model[j].add(tf.keras.layers.BatchNormalization())
model[j].add(tf.keras.layers.Dropout(0.4))
model[j].add(tf.keras.layers.Conv2D(128, kernel_size = 4, activation = 'relu'))
model[j].add(tf.keras.layers.BatchNormalization())
model[j].add(tf.keras.layers.Flatten())
model[j].add(tf.keras.layers.Dropout(0.4))
model[j].add(tf.keras.layers.Dense(10, activation = 'softmax'))
model[j].compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["categorical_accuracy"] ) | Digit Recognizer |
11,342,302 | test = pd.read_csv('.. /input/cassava-leaf-disease-classification/sample_submission.csv')
test.head()<normalization> | lr_callback = tf.keras.callbacks.LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x)
history = [0] * NUM_NETS
for j in range(NUM_NETS):
X_train, X_val, y_train, y_val = train_test_split(train, labels, test_size = 0.1)
STEPS_PER_EPOCH = X_train.shape[0] // 64
history[j] = model[j].fit_generator(datagen.flow(X_train, y_train, batch_size = BATCH_SIZE),
epochs = EPOCHS, steps_per_epoch = STEPS_PER_EPOCH,
validation_data =(X_val, y_val), callbacks = [lr_callback],
verbose = VERBOSE)
print(f"CNN {j + 1}: Epochs={EPOCHS}, Train accuracy={max(history[j].history['categorical_accuracy'])}, Validation accuracy={max(history[j].history['val_categorical_accuracy'])}" ) | Digit Recognizer |
11,342,302 | class TestDataset(Dataset):
def __init__(self, df, transform=None):
self.df = df
self.file_names = df['image_id'].values
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
file_name = self.file_names[idx]
file_path = f'{TEST_PATH}/{file_name}'
image = cv2.imread(file_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if self.transform:
augmented = self.transform(image=image)
image = augmented['image']
return image
class TTADataset(Dataset):
def __init__(self, df, image_path, ttas):
self.df = df
self.file_names = df['image_id'].values
self.labels = df['label'].values
self.image_path = image_path
self.ttas = ttas
def __len__(self)-> int:
return len(self.df)
def __getitem__(self, idx):
file_name = self.file_names[idx]
file_path = f'{self.image_path}/{file_name}'
image = cv2.imread(file_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
imglist=[tta(image=image)['image'] for tta in self.ttas]
image=torch.stack(imglist)
label = torch.tensor(self.labels[idx] ).long()
return image, label<normalization> | preds = np.zeros(( test.shape[0],10))
for j in range(NUM_NETS):
preds += model[j].predict(test)/ NUM_NETS
probs = pd.DataFrame(preds)
probs.to_csv('ensemble_probs')
probs.columns = probs.columns.astype(str)
print(probs.columns)
probs.head() | Digit Recognizer |
11,342,302 | def _get_augmentations(aug_list, cfg):
process = []
for aug in aug_list:
if aug == 'Resize':
process.append(Resize(cfg['size'], cfg['size']))
elif aug == 'RandomResizedCrop':
process.append(RandomResizedCrop(cfg['size'], cfg['size']))
elif aug == 'CenterCrop':
process.append(CenterCrop(CFG['size'], CFG['size']))
elif aug == 'Transpose':
process.append(Transpose(p=0.5))
elif aug == 'HorizontalFlip':
process.append(HorizontalFlip(p=0.5))
elif aug == 'VerticalFlip':
process.append(VerticalFlip(p=0.5))
elif aug == 'ShiftScaleRotate':
process.append(ShiftScaleRotate(p=0.5))
elif aug == 'Normalize':
process.append(Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
))
else:
raise ValueError(f'{aug} is not suitable')
process.append(ToTensorV2())
return process<categorify> | submission = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv')
submission['Label'] = preds.argmax(axis = 1)
submission.to_csv("ensemble.csv", index = False)
submission.head(10 ) | Digit Recognizer |
11,342,302 | def get_transforms(*, aug_list, cfg):
return Compose(
_get_augmentations(aug_list, cfg)
)<choose_model_class> | prev_cnn_probs = pd.read_csv('.. /input/mnistsavedprobs/ensemble_probs')
prev_cnn_probs = prev_cnn_probs.drop('Unnamed: 0', axis = 1)
print(prev_cnn_probs.columns)
prev_cnn_probs.head() | Digit Recognizer |
11,342,302 | class CustomModel(nn.Module):
def __init__(self, model_name, target_size, pretrained=False):
super().__init__()
self.model = timm.create_model(model_name, pretrained=pretrained)
if hasattr(self.model, 'classifier'):
n_features = self.model.classifier.in_features
self.model.classifier = nn.Linear(n_features, target_size)
elif hasattr(self.model, 'fc'):
n_features = self.model.fc.in_features
self.model.fc = nn.Linear(n_features, target_size)
elif hasattr(self.model, 'head'):
n_features = self.model.head.in_features
self.model.head = nn.Linear(n_features, target_size)
def forward(self, x):
x = self.model(x)
return x<categorify> | new_probs = probs.add(prev_cnn_probs ).divide(2)
new_probs.head() | Digit Recognizer |
11,342,302 | <load_pretrained><EOS> | submission2 = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv')
submission2['Label'] = new_probs.values.argmax(axis = 1)
submission2.to_csv("ensemble2.csv", index = False)
submission2.head(10 ) | Digit Recognizer |
11,333,538 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<save_to_csv> | %matplotlib inline
| Digit Recognizer |
11,333,538 | predictions_list = []
model_dir_list = []
for config, model_dir in zip(normal_configs, normal_model_dirs):
predictions_list.append(main(config, model_dir))
model_dir_list.append(model_dir)
for config, model_dir in zip(tta_configs, tta_model_dirs):
predictions_list.append(main_tta(config, model_dir))
model_dir_list.append(model_dir)
<save_to_csv> | print(tf.version.VERSION ) | Digit Recognizer |
11,333,538 | predictions = np.zeros(predictions_list[0].shape, dtype=predictions_list[0].dtype)
for i, key in zip(range(len(predictions_list)) , model_dir_list):
predictions += predictions_list[i] * weights_dict[key]
test['label'] = predictions.argmax(1)
test[['image_id', 'label']].to_csv(OUTPUT_DIR+'submission.csv', index=False)
test.head()<install_modules> | train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ) | Digit Recognizer |
11,333,538 | !mkdir -p /tmp/pip/cache/
!cp.. /input/omegaconf/PyYAML-5.4b2-cp38-cp38-manylinux1_x86_64.whl /tmp/pip/cache/
!cp.. /input/omegaconf/omegaconf-2.0.5-py3-none-any.whl /tmp/pip/cache/
!cp.. /input/omegaconf/typing_extensions-3.7.4.3-py3-none-any.whl /tmp/pip/cache/
!pip install --no-index --find-links /tmp/pip/cache/ omegaconf > /dev/null<set_options> | train_X = train.loc[:, "pixel0":"pixel783"]
train_y = train.loc[:, "label"]
| Digit Recognizer |
11,333,538 | sys.path.append('.. /input/timm-pytorch-image-models/pytorch-image-models-master')
sys.path.append(".. /input/cleanlab/")
warnings.filterwarnings('ignore')
<set_options> | treshhold=0.1
train_X[train_X<treshhold]=0
test[test<treshhold]=0 | Digit Recognizer |
11,333,538 | mean, std =(0.485, 0.456, 0.406),(0.229, 0.224, 0.225)
def get_transforms(img_size=(512, 512)) :
transformations = Compose([
PadIfNeeded(min_height=img_size[0], min_width=img_size[1]),
CenterCrop(img_size[0], img_size[1]),
Normalize(mean=mean, std=std, max_pixel_value=255.0, p=1.0),
ToTensorV2(p=1.0),
], p=1.0)
return transformations<choose_model_class> | train_X = train_X / 255.0
test_X = test / 255.0
train_X = train_X.values.reshape(-1,28,28,1)
test_X = test_X.values.reshape(-1,28,28,1)
train_y = to_categorical(train_y, num_classes = 10 ) | Digit Recognizer |
11,333,538 | def create_model(model_name: str,
pretrained: bool,
num_classes: int,
in_chans: int):
model = timm.create_model(model_name=model_name,
pretrained=pretrained,
num_classes=num_classes,
in_chans=in_chans)
return model<load_pretrained> | def build_model(input_shape=(28, 28, 1)) :
model = Sequential()
model.add(Conv2D(32, kernel_size = 3, activation='swish', input_shape =(28, 28, 1)))
model.add(BatchNormalization())
model.add(Conv2D(32, kernel_size = 3, activation='swish'))
model.add(BatchNormalization())
model.add(Conv2D(32, kernel_size = 5, strides=2, padding='same', activation='swish'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(64, kernel_size = 3, activation='swish'))
model.add(BatchNormalization())
model.add(Conv2D(64, kernel_size = 3, activation='swish'))
model.add(BatchNormalization())
model.add(Conv2D(64, kernel_size = 5, strides=2, padding='same', activation='swish'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(128, kernel_size = 4, activation='swish'))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dropout(0.4))
model.add(Dense(10, activation='softmax'))
return model | Digit Recognizer |
11,333,538 | def get_state_dict_from_checkpoint(log_dir, fold_num):
ckpt_path = glob(os.path.join(log_dir, f'checkpoints/*fold{fold_num}*.ckpt')) [0]
state_dict = pl_load(ckpt_path, map_location='cpu')
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
did_distillation = False
state_dict = OrderedDict(( k.replace('model.', '')
if 'model.' in k else k, v)for k, v in
state_dict.items())
return state_dict<find_best_params> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False ) | Digit Recognizer |
11,333,538 | class LitTester(pl.LightningModule):
def __init__(self, network_cfg, state_dict):
super(LitTester, self ).__init__()
self.model = create_model(**network_cfg)
self.model.load_state_dict(state_dict)
self.model.eval()
def forward(self, x):
x = self.model(x)
return x
def test_step(self, batch, batch_idx):
score = torch.nn.functional.softmax(self(batch), dim=1)
score2 = torch.nn.functional.softmax(self(torch.flip(batch, [-1])) , dim=1)
score3 = torch.nn.functional.softmax(self(torch.flip(batch, [-2])) , dim=1)
out =(score + score2 + score3)/ 3.0
return {"pred": out}
def test_epoch_end(self, output_results):
all_outputs = torch.cat([out["pred"] for out in output_results], dim=0)
all_outputs = all_outputs.cpu().numpy()
return {'prob': all_outputs}<define_search_space> | learning_rate_reduction = ReduceLROnPlateau(monitor='accuracy',
patience=3,
verbose=1,
factor=0.8,
min_lr=0.001)
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x)
early_stop=EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1, mode='auto',
baseline=None, restore_best_weights=True ) | Digit Recognizer |
11,333,538 | eff_b0_cfg_s =
eff_b0_cfg = OmegaConf.create(eff_b0_cfg_s )<define_variables> | %%time
nets=10
model = [0] *nets
history = [0] * nets
skf = StratifiedKFold(n_splits=nets, shuffle = True, random_state=1)
skf.get_n_splits(train_X, train['label'])
print(skf)
number=0
for train_index, test_index in skf.split(train_X, train['label']):
print("SPLIT ",number," TRAIN index:", train_index, "TEST index:", test_index)
X_train, X_val = train_X[train_index], train_X[test_index]
y_train, y_val = train_y[train_index], train_y[test_index]
model[number]=build_model()
model[number].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
history[number] =model[number].fit(datagen.flow(X_train,y_train), epochs=100 ,validation_data =(X_val,y_val),
batch_size=100, verbose = 0,callbacks = [annealer,early_stop])
metrics=pd.DataFrame(history[number].history)
display(metrics)
number+=1 | Digit Recognizer |
11,333,538 | name = '14-10-36'
cfg = eff_b0_cfg
do_predict = True
do_submit = False
img_dir = '.. /input/cassava-leaf-disease-merged/train/'
label_path = '.. /input/cassava-leaf-disease-merged/merged.csv'
log_dir = os.path.join('.. /input/cassava-public-ckpt', name)
n_folds = len(glob(os.path.join(log_dir, 'checkpoints/*.ckpt')))
num2class = ["Cassava Bacterial Blight(CBB)", "Cassava Brown Streak Disease(CBSD)", "Cassava Green Mottle(CGM)", "Cassava Mosaic Disease(CMD)", "Healthy"]<feature_engineering> | for number in range(0,nets):
model[number].save("StratifiedKFold_10_batch100_double_val_loss_"+str(number)+".h5" ) | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.