kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
13,441,242
<create_dataframe><EOS>
submissions = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv") submissions['Label'] = results submissions.to_csv('submission.csv', index = False )
Digit Recognizer
13,088,098
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<find_best_params>
def set_seeds(offset): np.random.seed(100+offset) return(100+offset) tempseed = set_seeds(0) image_width = 28 image_height = 28 batch_size = 256 no_epochs = 40 no_classes = 10 ensemble_size = 1 validation_split = 0.2 verbosity = 1 base_filters = 256
Digit Recognizer
13,088,098
for fold in range(1,n_folds+1): print(f"Running on fold {fold}") model=create_model() model.load_state_dict(torch.load(f"fold{fold}Best.pt")) model.to(device) model.eval() for i,image in enumerate(tqdm.tqdm(TestSet)) : image=torch.unsqueeze(image,0 ).to(device) outputs=model(image) model_outputs[i]+=outputs.detach() [0]<load_from_csv>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") finaltest = pd.read_csv(".. /input/digit-recognizer/test.csv") train['label'].value_counts(normalize=False )
Digit Recognizer
13,088,098
submission_df=pd.read_csv(".. /input/digit-recognizer/sample_submission.csv" )<feature_engineering>
datagen = ImageDataGenerator( rotation_range=35, width_shift_range=0.3, height_shift_range=0.2, shear_range=0.3, zoom_range=0.2, validation_split=validation_split, horizontal_flip=False, )
Digit Recognizer
13,088,098
submission_df["Label"]=np.argmax(model_outputs.cpu().numpy() ,1 )<save_to_csv>
trainlabels = train['label'] trainimages = train.drop(['label'], axis = 1) trainimages = trainimages.values.reshape(-1, image_width, image_height, 1) trainimages = trainimages.astype('float32') trainimages = trainimages/255 testset = finaltest.values.reshape(-1, image_width, image_height, 1) testset = testset.astype('float32') testset = testset/255
Digit Recognizer
13,088,098
submission_df.to_csv("submission.csv", index=False )<load_from_csv>
x_train, x_test, y_train, y_test = train_test_split(trainimages, trainlabels, test_size = validation_split )
Digit Recognizer
13,088,098
pd.read_csv("submission.csv" )<import_modules>
train_generator = datagen.flow(x_train, y_train, batch_size=batch_size, shuffle=True, subset='training') val_generator = datagen.flow(x_test, y_test, batch_size=batch_size, subset='validation')
Digit Recognizer
13,088,098
for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) <load_from_csv>
models = list() for i in range(ensemble_size): model = Sequential() model.add(Conv2D(filters =(int(base_filters/8)) , kernel_size =(7,7), padding = 'Same', activation = 'relu', input_shape =(image_width, image_height, 1))) model.add(Conv2D(filters =(base_filters/8), kernel_size =(7,7), padding = 'Same', activation = 'relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size =(2,2), strides =(2,2))) model.add(Dropout(0.25, seed=tempseed)) model.add(Conv2D(filters =(base_filters/4), kernel_size =(5,5), padding = 'Same', activation = 'relu')) model.add(Conv2D(filters =(base_filters/4), kernel_size =(5,5), padding = 'Same', activation = 'relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size =(2,2), strides =(2,2))) model.add(Dropout(0.25, seed=tempseed)) model.add(Conv2D(filters =(base_filters/2), kernel_size =(3,3), padding = 'Same', activation = 'relu')) model.add(Conv2D(filters =(base_filters/2), kernel_size =(3,3), padding = 'Same', activation = 'relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size =(2,2), strides =(2,2))) model.add(Dropout(0.25, seed=tempseed)) model.add(Conv2D(filters =(base_filters), kernel_size =(3,3), padding = 'Same', activation = 'relu')) model.add(Conv2D(filters =(base_filters), kernel_size =(3,3), padding = 'Same', activation = 'relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size =(2,2), strides =(2,2))) model.add(Dropout(0.25, seed=tempseed)) model.add(Flatten()) model.add(Dense(base_filters, activation = "relu")) model.add(Dense(base_filters/2, activation = "relu")) model.add(Dense(no_classes, activation = "softmax")) models.insert(i, model) models[0].summary()
Digit Recognizer
13,088,098
np.random.seed(1) df_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") df_train = df_train.iloc[np.random.permutation(len(df_train)) ]<prepare_x_and_y>
optimizer = Adam(lr=0.0005, decay=1e-9 )
Digit Recognizer
13,088,098
sample_size = df_train.shape[0] validation_size = int(df_train.shape[0] * 0.1) train_x = np.asarray(df_train.iloc[:sample_size - validation_size:, 1:] ).reshape([sample_size - validation_size, 28, 28, 1]) train_y = np.asarray(df_train.iloc[:sample_size - validation_size:, 0] ).reshape([sample_size - validation_size, 1]) val_x = np.asarray(df_train.iloc[sample_size - validation_size:,1:] ).reshape([validation_size,28,28,1]) val_y = np.asarray(df_train.iloc[sample_size - validation_size:, 0] ).reshape([validation_size, 1] )<load_from_csv>
for i in range(len(models)) : models[i].compile(optimizer = optimizer, loss = "sparse_categorical_crossentropy", metrics = ["accuracy"] )
Digit Recognizer
13,088,098
df_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") test_x = np.asarray(df_test.iloc[:, :] ).reshape([-1, 28, 28, 1] )<feature_engineering>
learning_rate_reduction = ReduceLROnPlateau(monitor = 'val_accuracy', patience = 3, verbose = 1, factor = 0.25, min_lr = 0.0000001 )
Digit Recognizer
13,088,098
train_x = train_x/255 val_x = val_x/255 test_x = test_x/255<choose_model_class>
callbacks = [learning_rate_reduction]
Digit Recognizer
13,088,098
model = models.Sequential()<choose_model_class>
histories = list() for i in range(len(models)) : tempseed = set_seeds(i) histories.insert(i, models[i].fit_generator( train_generator, epochs = no_epochs, verbose = 1, validation_data = val_generator, callbacks = [callbacks] ))
Digit Recognizer
13,088,098
<choose_model_class><EOS>
predictions = np.zeros(( testset.shape[0],10)) for i in range(ensemble_size): predictions = predictions + models[i].predict(testset) finalpredictions = np.argmax(predictions, axis = 1) submissions = {'ImageID':list(range(1, len(finalpredictions)+ 1)) ,'Label': finalpredictions} submission_df = pd.DataFrame(submissions ).astype('int') submission_df.head() submission_df.to_csv('submission.csv', index=False )
Digit Recognizer
14,272,089
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<train_model>
import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf
Digit Recognizer
14,272,089
epochs = 20 batch_size = 256 history_1 = model.fit(train_x, train_y, batch_size = batch_size, epochs = epochs, validation_data =(val_x, val_y))<compute_train_metric>
mnist = pd.read_csv("/kaggle/input/digit-recognizer/train.csv" )
Digit Recognizer
14,272,089
val_p = np.argmax(model.predict(val_x), axis = 1) error = 0 confusion_matrix = np.zeros([10, 10]) for i in range(val_x.shape[0]): confusion_matrix[val_y[i], val_p[i]] += 1 if val_y[i] != val_p[i]: error += 1 print("Confusion Matrix: ", confusion_matrix) print(" Errors in validation set: ", error) print(" Error Persentage: ",(error * 100)/ val_p.shape[0]) print(" Accuracy: ", 100 -(error * 100)/ val_p.shape[0]) print(" Validation set Shape: ", val_p.shape[0] )<train_model>
y = mnist.iloc[:, 0].values X = mnist.iloc[:, 1:].values
Digit Recognizer
14,272,089
datagen = ImageDataGenerator( featurewise_center = False, samplewise_center = False, featurewise_std_normalization = False, samplewise_std_normalization = False, zca_whitening = False, rotation_range = 10, zoom_range = 0.1, width_shift_range = 0.1, height_shift_range = 0.1, horizontal_flip = False, vertical_flip = False) datagen.fit(train_x )<choose_model_class>
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1 , random_state = 0 )
Digit Recognizer
14,272,089
lrr = ReduceLROnPlateau(monitor = 'val_accuracy', patience = 2, verbose = 1, factor = 0.5, min_lr = 0.00001 )<train_model>
X_train = X_train.reshape(-1, 28, 28, 1 ).astype('float32')/ 255.0 X_test = X_test.reshape(-1, 28, 28, 1 ).astype('float32')/ 255.0
Digit Recognizer
14,272,089
epochs = 30 history_2 = model.fit_generator(datagen.flow(train_x, train_y, batch_size = batch_size), steps_per_epoch = int(train_x.shape[0]/batch_size)+ 1, epochs = epochs, validation_data =(val_x, val_y), callbacks = [lrr]) <compute_train_metric>
y_train = tf.keras.utils.to_categorical(y_train) y_test = tf.keras.utils.to_categorical(y_test )
Digit Recognizer
14,272,089
val_p = np.argmax(model.predict(val_x), axis = 1) error = 0 confusion_matrix = np.zeros([10, 10]) for i in range(val_x.shape[0]): confusion_matrix[val_y[i], val_p[i]] += 1 if val_y[i] != val_p[i]: error += 1 print("Confusion Matrix: ", confusion_matrix) print(" Errors in validation set: ", error) print(" Error Persentage: ",(error * 100)/ val_p.shape[0]) print(" Accuracy: ", 100 -(error * 100)/ val_p.shape[0]) print(" Validation set Shape: ", val_p.shape[0] )<predict_on_test>
model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32,(3, 3), activation = 'relu', padding = 'same', input_shape =(28, 28, 1)) , tf.keras.layers.Conv2D(32,(3, 3), activation = 'relu', padding = 'same'), tf.keras.layers.BatchNormalization() , tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Dropout(0.2), tf.keras.layers.Conv2D(64,(3, 3), activation = 'relu', padding = 'same'), tf.keras.layers.Conv2D(64,(3, 3), activation = 'relu', padding = 'same'), tf.keras.layers.BatchNormalization() , tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Dropout(0.2), tf.keras.layers.Conv2D(128,(3, 3), activation = 'relu', padding = 'same'), tf.keras.layers.Conv2D(128,(3, 3), activation = 'relu', padding = 'same'), tf.keras.layers.BatchNormalization() , tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Dropout(0.2), tf.keras.layers.Flatten() , tf.keras.layers.Dense(512, activation = 'relu'), tf.keras.layers.BatchNormalization() , tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(256, activation = 'relu'), tf.keras.layers.BatchNormalization() , tf.keras.layers.Dropout(0.35), tf.keras.layers.Dense(10, activation = 'softmax') ] )
Digit Recognizer
14,272,089
test_y = np.argmax(model.predict(test_x), axis = 1 )<save_to_csv>
model.compile(optimizer = Adam(lr = 1e-3), loss = 'categorical_crossentropy', metrics = ['accuracy'] )
Digit Recognizer
14,272,089
df_submission = pd.DataFrame([df_test.index + 1, test_y], ["ImageId", "Label"] ).transpose() df_submission.to_csv("MySubmission.csv", index = False )<choose_model_class>
datagen = ImageDataGenerator( rotation_range= 10, zoom_range = 0.1, width_shift_range = 0.1, height_shift_range = 0.1 ) datagen.fit(X_train )
Digit Recognizer
14,272,089
tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect() tpu_strategy = tf.distribute.experimental.TPUStrategy(tpu) <load_from_csv>
train_generator = datagen.flow(X_train, y_train, batch_size = 64) validation_generator = datagen.flow(X_test, y_test, batch_size = 64 )
Digit Recognizer
14,272,089
train_dataframe=pd.read_csv(".. /input/digit-recognizer/train.csv") test_dataframe=pd.read_csv(".. /input/digit-recognizer/test.csv" )<count_values>
learning_rate_reduction = ReduceLROnPlateau(monitor = 'val_loss', patience = 3, verbose = 1, factor = 0.5, min_lr = 1e-6) model_checkpoint = ModelCheckpoint('./best_model.hdf5',monitor = 'val_loss', mode = "min", verbose = 1, save_best_model = True )
Digit Recognizer
14,272,089
train_dataframe['label'].value_counts()<data_type_conversions>
history = model.fit_generator( train_generator, steps_per_epoch = X_train.shape[0] // 64, epochs = 50, validation_data = validation_generator, validation_steps = X_test.shape[0] // 64, callbacks = [learning_rate_reduction, model_checkpoint] )
Digit Recognizer
14,272,089
train_label = train_dataframe.label.to_numpy() train_image=train_dataframe.to_numpy() [0:,1:].reshape(42000,28,28,1) test_image = test_dataframe.to_numpy().reshape(28000,28,28,1 )<data_type_conversions>
model = load_model("./best_model.hdf5" )
Digit Recognizer
14,272,089
train_image = train_image.astype(float)/ 255.0 test_image = test_image.astype(float)/ 255.0<choose_model_class>
model.evaluate(X_test, y_test, verbose = 1 )
Digit Recognizer
14,272,089
with tpu_strategy.scope() : model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(64,(3,3), activation='relu',padding = 'Same', input_shape=(28, 28, 1)) , tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(128,(3,3), activation='relu',padding = 'Same'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(256,(3,3), activation='relu',padding = 'Same'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Flatten() , tf.keras.layers.Dense(1024, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation='softmax') ]) optimizer = Adam(learning_rate=0.001) model.compile(loss=SparseCategoricalCrossentropy(from_logits=True), optimizer = optimizer, metrics=['accuracy']) epochs = 50 batch_size = 16<split>
test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ).values test = test.reshape(-1, 28, 28, 1 ).astype('float32')/ 255.0 y_pred = model.predict(test ).argmax(axis=1) y_pred.shape
Digit Recognizer
14,272,089
x_train,x_val,y_train,y_val=train_test_split(train_image,train_label,test_size=0.2,random_state=42 )<train_model>
submission = pd.DataFrame({'ImageId': np.arange(1, 28001), 'Label': y_pred}) submission.to_csv("submission.csv", index = False) print("Your submission was successfully saved!" )
Digit Recognizer
14,189,071
history = model.fit(x_train,y_train,batch_size=64,epochs=15,validation_data=(x_val,y_val),shuffle=True )<predict_on_test>
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Flatten,Dropout,Conv2D,MaxPooling2D, BatchNormalization from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import EarlyStopping, Callback from keras.optimizers import Adam from sklearn.model_selection import train_test_split import sklearn.metrics as metrics import random import matplotlib.pyplot as plt import seaborn as sns
Digit Recognizer
14,189,071
val_pred = model.predict(x_val )<prepare_output>
print(tf.config.list_physical_devices('GPU'),'//',tf.test.is_built_with_cuda() )
Digit Recognizer
14,189,071
val_pred1 = np.argmax(val_pred, axis=1 )<predict_on_test>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv') train.head()
Digit Recognizer
14,189,071
predictions = model.predict(test_image )<prepare_output>
print('Nº of missing values in train set: ', train.isnull().any().sum()) print() print('Nº of missing values in test set: ', test.isnull().any().sum() )
Digit Recognizer
14,189,071
submission = pd.DataFrame({'ImageId' : range(1,28001), 'Label' : list(subs)}) submission.head(10) submission.shape<save_to_csv>
X = np.array(train.drop('label',axis=1)) / 255. X = X.reshape(( -1,28,28,1)) y = np.array(train['label'] )
Digit Recognizer
14,189,071
submission.to_csv("submission1.csv", index = False )<set_options>
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2) print('X_train: ' + str(train_X.shape)) print('Y_train: ' + str(train_y.shape)) print('X_test: ' + str(test_X.shape)) print('Y_test: ' + str(test_y.shape))
Digit Recognizer
14,189,071
!nvidia-smi<set_options>
batch_size = 128 epochs = 110 epochs_to_wait_to_improve = 10 num_classes = max(pd.unique(train['label'])) +1 seed = 7 random.seed(seed )
Digit Recognizer
14,189,071
%matplotlib inline sns.set(style='white', context='notebook', palette='deep') np.random.seed(2 )<load_from_csv>
datagen = ImageDataGenerator( rotation_range=12, width_shift_range=0.11, height_shift_range=0.11, shear_range=0.15, zoom_range = 0.09, validation_split=0.3, horizontal_flip=False, vertical_flip=False )
Digit Recognizer
14,189,071
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv' )<prepare_x_and_y>
train_generator = datagen.flow(train_X, train_y, batch_size=batch_size, shuffle=True, subset='training') val_generator = datagen.flow(test_X, test_y, batch_size=batch_size, subset='validation' )
Digit Recognizer
14,189,071
y_train = train["label"] X_train = train.drop(labels=["label"], axis = 1 )<train_model>
model = Sequential() model.add(Conv2D(32, kernel_size =(3,3), input_shape=(28, 28, 1), padding = 'Same', activation='relu')) model.add(Conv2D(64, kernel_size =(3,3), padding = 'Same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=1, padding='valid')) model.add(Dropout(0.25)) model.add(Conv2D(64, kernel_size =(3,3), padding = 'Same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=1, padding='valid')) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.20)) model.add(Dense(128, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.35)) model.add(Dense(num_classes, activation='softmax'))
Digit Recognizer
14,189,071
( X_train1, y_train1),(X_test1, y_test1)= mnist.load_data() X_train1 = np.concatenate([X_train1, X_test1], axis=0) y_train1 = np.concatenate([y_train1, y_test1], axis=0) X_train1 = X_train1.reshape(-1, 28*28 )<feature_engineering>
class myCallback(Callback): def on_epoch_end(self, epoch, logs={}): if(logs.get('accuracy')>0.999): print(" Reached 99.9% accuracy so cancelling training!") self.model.stop_training = True mycallback = myCallback() early_stopping_callback = EarlyStopping(monitor='val_loss', patience=epochs_to_wait_to_improve, verbose = 2, restore_best_weights=True) optimizer = Adam(lr=0.001, beta_1=0.9) model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
14,189,071
X_train = X_train/255. X_train1 = X_train1/255. test = test/255 .<concatenate>
history = model.fit(train_generator, epochs=epochs, validation_data=val_generator, callbacks=[mycallback,early_stopping_callback] )
Digit Recognizer
14,189,071
X_train = np.concatenate(( X_train.values, X_train1)) y_train = np.concatenate(( y_train, y_train1))<categorify>
test_loss, test_acc = model.evaluate(test_X, test_y, verbose=5) print(' Test accuracy:', test_acc)
Digit Recognizer
14,189,071
y_train = to_categorical(y_train, num_classes = 10 )<split>
metrics.classification_report(val_trues, val_preds )
Digit Recognizer
14,189,071
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size = 0.1, random_state = 2 )<train_model>
test_pred = np.array(test/255.) test_pred = test_pred.reshape(( -1,28,28,1)) test_predictions = model.predict_classes(test_pred )
Digit Recognizer
14,189,071
print(f"Training shape {X_train.shape} Validation shape {X_val.shape}" )<choose_model_class>
sub_df = {'ImageId':list(range(1, len(test_predictions)+ 1)) ,'Label': test_predictions} submission = pd.DataFrame(sub_df ).astype('int') submission.head() submission.to_csv('submission.csv', index=False )
Digit Recognizer
14,208,528
model = Sequential() model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(BatchNormalization()) model.add(Conv2D(128,(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(256, kernel_size=(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512,(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(BatchNormalization()) model.add(Dense(256)) model.add(BatchNormalization()) model.add(Dense(128)) model.add(BatchNormalization()) model.add(Dense(10, activation='softmax'))<save_to_csv>
import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from keras.utils import to_categorical from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.callbacks import LearningRateScheduler
Digit Recognizer
14,208,528
plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=True) Image('model.png' )<choose_model_class>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
14,208,528
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"] )<choose_model_class>
X_train=X_train/255.0 test=test/255.0
Digit Recognizer
14,208,528
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.2, min_lr=0.00001) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=15) checkpoint = ModelCheckpoint(filepath='model.h5', monitor='val_loss', mode='min', save_best_only=True, save_weights_only=True )<choose_model_class>
X_train = X_train.values.reshape(-1, 28, 28, 1) test = test.values.reshape(-1, 28, 28, 1 )
Digit Recognizer
14,208,528
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range=0.1, width_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )<define_variables>
x_train,x_test,y_train,y_test = train_test_split(X_train,Y_train,test_size=0.2 )
Digit Recognizer
14,208,528
epochs = 50 batch_size = 128<train_model>
data_gen = ImageDataGenerator( rotation_range=12, width_shift_range=0.12, height_shift_range=0.12, shear_range=0.12, validation_split=0.2, )
Digit Recognizer
14,208,528
history = model.fit_generator(datagen.flow(X_train, y_train, batch_size=batch_size), epochs=epochs, validation_data=(X_val, y_val), verbose=2, steps_per_epoch=X_train.shape[0]//batch_size, callbacks=[learning_rate_reduction, es, checkpoint] )<predict_on_test>
data_gen.fit(x_train) data_gen.fit(x_test )
Digit Recognizer
14,208,528
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )<save_to_csv>
y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10 )
Digit Recognizer
14,208,528
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("submission.csv",index=False )<import_modules>
model = Sequential() model.add(Conv2D(filters=16, kernel_size=(3, 3), activation="relu", input_shape=(28,28,1))) model.add(Dropout(0.25)) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu')) model.add(Dropout(0.25)) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
14,208,528
from matplotlib import pyplot as plt import os import scipy import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras import seaborn as sns from sklearn.model_selection import train_test_split import cv2<load_from_csv>
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
14,208,528
main_path = r".. /input/digit-recognizer" train_df = pd.read_csv(os.path.join(main_path, "train.csv")) test_df = pd.read_csv(os.path.join(main_path, "test.csv"))<prepare_x_and_y>
batch_size = 64 epochs = 15 history = model.fit_generator(data_gen.flow(x_train, y_train, batch_size = batch_size), epochs = epochs, validation_data =(x_test, y_test), verbose=1, steps_per_epoch=x_train.shape[0] // batch_size, )
Digit Recognizer
14,208,528
x_train = train_df.drop(labels=["label"], axis=1) y_train = train_df["label"] y_train.head()<categorify>
pred = np.argmax(model.predict(test), axis=1) sub_df = {'ImageId':list(range(1, len(test)+ 1)) ,'Label':pred} submission = pd.DataFrame(sub_df ).astype('int') submission.head()
Digit Recognizer
14,208,528
x_train = x_train.to_numpy() / 255.0 x_test = test_df.to_numpy() / 255.0 x_train = x_train.reshape(-1, 28, 28, 1) x_test = x_test.reshape(-1, 28, 28, 1) y_train = to_categorical(y_train) plt.imshow(x_train[125, :, :, :] )<split>
submission.to_csv('submission.csv', index=False )
Digit Recognizer
14,208,528
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.15, random_state=2) datagen = ImageDataGenerator( rotation_range=27, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.3, zoom_range=0.2 )<choose_model_class>
submission.to_csv('submission.csv', index=False )
Digit Recognizer
14,085,919
model = Sequential() model.add(Conv2D(filters=64, kernel_size=(5,5), padding='same', activation='relu', input_shape=(28,28,1))) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(5,5), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Dense(10, activation='softmax')) model.summary()<choose_model_class>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') train.head()
Digit Recognizer
14,085,919
class myCallback(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if(logs.get('val_accuracy')> 0.9955): print("Stop training!") self.model.stop_training = True optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"]) reduce_lr = ReduceLROnPlateau( monitor='val_accuracy', patience=3, verbose=1, factor=0.5, min_lr=0.00001 ) epoch_end = myCallback() <train_model>
from keras.preprocessing.image import ImageDataGenerator from keras.utils.np_utils import to_categorical
Digit Recognizer
14,085,919
history = model.fit(datagen.flow(x_train, y_train, batch_size=256), epochs=200, validation_data=(x_val, y_val), verbose=1, steps_per_epoch=x_train.shape[0]/256, callbacks=[reduce_lr, epoch_end] )<save_to_csv>
Y_train = to_categorical(train['label'].values, 10) X_train =(train.loc[:, 'pixel0':] / 255 ).values X_train.shape, Y_train.shape
Digit Recognizer
14,085,919
results = model.predict(x_test) results = np.argmax(results, axis=1) submission = pd.read_csv(os.path.join(main_path, "sample_submission.csv")) image_id = range(1, x_test.shape[0]+1) submission = pd.DataFrame({'Imageid':image_id, 'Label':results}) submission.to_csv('cnn2_submission.csv', index=False )<set_options>
X_test =(test / 255 ).values
Digit Recognizer
14,085,919
%matplotlib inline <load_from_csv>
datagener = ImageDataGenerator( rotation_range=15, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1, )
Digit Recognizer
14,085,919
train = import_data('.. /input/digit-recognizer/train.csv') test = import_data('.. /input/digit-recognizer/test.csv') y_lab = train['label'] y = tf.keras.utils.to_categorical(y_lab) train.drop('label', axis=1, inplace=True )<prepare_x_and_y>
example = X_train[6].reshape(( 1, 28, 28, 1)) label = Y_train[6]
Digit Recognizer
14,085,919
train_df = np.array(train ).reshape(-1, 28, 28, 1) test_df = np.array(test ).reshape(-1, 28, 28, 1) del train del test del y_lab<data_type_conversions>
def lr_scheduler(epoch, lr): return lr * 0.99
Digit Recognizer
14,085,919
def change_size(image): img = array_to_img(image, scale=False) img = img.resize(( 75, 75)) img = img.convert(mode='RGB') arr = img_to_array(img) return arr.astype(np.float32 )<drop_column>
X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.2 )
Digit Recognizer
14,085,919
train_array = [change_size(img)for img in train_df] train = np.array(train_array) del train_array test_array = [change_size(img)for img in test_df] test = np.array(test_array) del test_array<randomize_order>
np.random.seed(42) tf.random.set_seed(42) model = models.Sequential() model.add(Conv2D(96, 3, activation='relu', padding='same', input_shape=(28, 28, 1))) model.add(BatchNormalization()) model.add(SpatialDropout2D(0.4)) model.add(MaxPooling2D(( 2, 2))) model.add(Conv2D(160, 3, activation='relu', padding='same')) model.add(BatchNormalization()) model.add(SpatialDropout2D(0.4)) model.add(MaxPooling2D(( 2, 2))) model.add(Conv2D(256, 3, activation='relu', padding='same')) model.add(BatchNormalization()) model.add(SpatialDropout2D(0.4)) model.add(MaxPooling2D(( 2, 2))) model.add(Conv2D(64, 3, activation='relu', padding='same')) model.add(BatchNormalization()) model.add(SpatialDropout2D(0.4)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(96, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=optimizers.Adam(lr=1e-2), loss='categorical_crossentropy', metrics=['categorical_accuracy']) checkpoint_path = 'bestmodel.hdf5' checkpoint = ModelCheckpoint(checkpoint_path, monitor='val_categorical_accuracy', verbose=0, save_best_only=True, mode='max') scheduler = LearningRateScheduler(lr_scheduler, verbose=0) early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=15, mode='min', verbose=0) tqdm_callback = tfa.callbacks.TQDMProgressBar(leave_epoch_progress=False, leave_overall_progress=True, show_epoch_progress=False, show_overall_progress=True) callbacks_list = [ checkpoint, scheduler, tqdm_callback, ] history = model.fit_generator(datagener.flow(X_train, Y_train, batch_size=150), epochs=225, steps_per_epoch=X_train.shape[0] // 150, callbacks=callbacks_list, verbose=1, validation_data=(X_valid, Y_valid))
Digit Recognizer
14,085,919
def get_random_eraser(p=0.5, s_l=0.02, s_h=0.4, r_1=0.3, r_2=1/0.3, v_l=0, v_h=255, pixel_level=False): def eraser(input_img): if input_img.ndim == 3: img_h, img_w, img_c = input_img.shape elif input_img.ndim == 2: img_h, img_w = input_img.shape p_1 = np.random.rand() if p_1 > p: return input_img while True: s = np.random.uniform(s_l, s_h)* img_h * img_w r = np.random.uniform(r_1, r_2) w = int(np.sqrt(s / r)) h = int(np.sqrt(s * r)) left = np.random.randint(0, img_w) top = np.random.randint(0, img_h) if left + w <= img_w and top + h <= img_h: break if pixel_level: if input_img.ndim == 3: c = np.random.uniform(v_l, v_h,(h, w, img_c)) if input_img.ndim == 2: c = np.random.uniform(v_l, v_h,(h, w)) else: c = np.random.uniform(v_l, v_h) input_img[top:top + h, left:left + w] = c return input_img return eraser<choose_model_class>
model.load_weights(checkpoint_path) print(model.evaluate(X_valid, Y_valid))
Digit Recognizer
14,085,919
image_gen = ImageDataGenerator(rescale=1./255, featurewise_center=False, preprocessing_function=get_random_eraser(v_l=0, v_h=1), samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zoom_range=0.1, rotation_range=10, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.3, validation_split=0.2) train_generator = image_gen.flow(train, y, batch_size=32, shuffle=True, subset='training', seed=42) valid_generator = image_gen.flow(train, y, batch_size=16, shuffle=True, subset='validation') del train_df del test_df del train<choose_model_class>
submit = pd.DataFrame(np.argmax(model.predict(X_test), axis=1), columns=['Label'], index=pd.read_csv('.. /input/digit-recognizer/sample_submission.csv')['ImageId']) submit.index.name = 'ImageId' submit.to_csv('submittion.csv' )
Digit Recognizer
14,051,573
model = Sequential() model.add(tf.keras.applications.resnet50.ResNet50(input_shape =(75, 75, 3), pooling = 'avg', include_top = False, weights = 'imagenet')) model.add(L.Flatten()) model.add(L.Dense(128, activation='relu')) model.add(L.Dense(10, activation='softmax')) model.compile(optimizer=RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0), loss='categorical_crossentropy', metrics=['accuracy']) learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) <load_pretrained>
seed = 42 np.random.seed(seed )
Digit Recognizer
14,051,573
for layer in model.layers[0].layers: if layer.name == 'conv5_block1_0_conv': break layer.trainable=False<train_model>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
14,051,573
history = model.fit(train_generator, validation_data=valid_generator, epochs=20, steps_per_epoch=train_generator.n//train_generator.batch_size, validation_steps=valid_generator.n//valid_generator.batch_size, callbacks=[learning_rate_reduction] )<feature_engineering>
train.isnull().any().sum()
Digit Recognizer
14,051,573
test = test/255<save_to_csv>
test.isnull().any().sum()
Digit Recognizer
14,051,573
res = model.predict(test[:]) output = pd.DataFrame({'ImageId':[ i+1 for i in range(len(res)) ], 'Label': [ xi.argmax() for xi in res]}) output.to_csv('submission_grid.csv', index=False )<set_options>
X = train.iloc[:, 1:] y = train.iloc[:, 0]
Digit Recognizer
14,051,573
warnings.filterwarnings("ignore") %matplotlib inline np.random.seed(2) sns.set(style='white', context='notebook', palette='deep' )<load_from_csv>
X = X.values.reshape(-1, 28, 28, 1) test = test.values.reshape(-1, 28, 28, 1 )
Digit Recognizer
14,051,573
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv') sub = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv') print("Data are Ready!!" )<train_model>
def normalize(arr): return(arr - np.mean(arr)) / np.std(arr )
Digit Recognizer
14,051,573
print(f"Training data size is {train.shape} Testing data size is {test.shape}" )<prepare_x_and_y>
X = normalize(X) test = normalize(test )
Digit Recognizer
14,051,573
Y_train = train["label"] X_train = train.drop(labels = ["label"], axis = 1 )<concatenate>
mean, std = np.mean(X), np.std(X) print('Mean: %.3f, Standard Deviation: %.3f' %(mean, std))
Digit Recognizer
14,051,573
( x_train1, y_train1),(x_test1, y_test1)= mnist.load_data() train1 = np.concatenate([x_train1, x_test1], axis=0) y_train1 = np.concatenate([y_train1, y_test1], axis=0) Y_train1 = y_train1 X_train1 = train1.reshape(-1, 28*28 )<feature_engineering>
datagen = ImageDataGenerator( rotation_range=20, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False )
Digit Recognizer
14,051,573
X_train = X_train / 255.0 test = test / 255.0 X_train1 = X_train1 / 255.0<concatenate>
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15 )
Digit Recognizer
14,051,573
X_train = np.concatenate(( X_train.values, X_train1)) Y_train = np.concatenate(( Y_train, Y_train1))<categorify>
datagen.fit(X_train )
Digit Recognizer
14,051,573
Y_train = to_categorical(Y_train, num_classes = 10 )<split>
y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10 )
Digit Recognizer
14,051,573
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=2 )<choose_model_class>
model = Sequential() model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=1, padding='same', data_format='channels_last', input_shape=(28,28,1))) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=1, padding='valid')) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=1, padding='same', data_format='channels_last')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=1, padding='valid')) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=1, padding='same', data_format='channels_last', input_shape=(28,28,1))) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=1, padding='valid')) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=1, padding='same', data_format='channels_last')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=1, padding='valid')) model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(BatchNormalization()) model.add(Dense(512, activation='relu')) model.add(BatchNormalization()) model.add(Dense(10, activation='softmax'))
Digit Recognizer
14,051,573
model = Sequential() model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(BatchNormalization()) model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Dense(10, activation = "softmax"))<choose_model_class>
optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999 )
Digit Recognizer
14,051,573
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0 )<choose_model_class>
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['categorical_accuracy'] )
Digit Recognizer
14,051,573
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] )<choose_model_class>
reduce_lr = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x )
Digit Recognizer
14,051,573
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )<define_variables>
batch_size = 64 epochs = 50
Digit Recognizer
14,051,573
epochs = 50 batch_size = 128<define_variables>
history = model.fit_generator(datagen.flow(X_train, y_train, batch_size = batch_size), epochs = epochs, validation_data =(X_test, y_test), verbose=1, steps_per_epoch=X_train.shape[0] // batch_size, callbacks = [reduce_lr] )
Digit Recognizer
14,051,573
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) train_gen = datagen.flow(X_train,Y_train, batch_size=batch_size )<train_model>
preds = np.argmax(model.predict(test), axis=1) sub_df = {'ImageId':list(range(1, len(test)+ 1)) ,'Label':preds} submission = pd.DataFrame(sub_df ).astype('int') submission.head()
Digit Recognizer
14,051,573
history = model.fit(train_gen, epochs = epochs,validation_data =(X_val,Y_val), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[learning_rate_reduction], validation_steps = X_val.shape[0] // batch_size )<compute_test_metric>
submission.to_csv('submission.csv', index=False )
Digit Recognizer
14,051,573
<compute_train_metric><EOS>
submission.to_csv('submission.csv', index=False )
Digit Recognizer
11,978,455
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<predict_on_test>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
11,978,455
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )<save_to_csv>
train.isnull().sum().sum()
Digit Recognizer
11,978,455
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_submission.csv",index=False )<train_model>
labels = train["label"] pureimg_train = train.drop(labels = ["label"], axis = 1) del train
Digit Recognizer
11,978,455
( x_train1, y_train1),(x_test1, y_test1)= mnist.load_data() Y_train1 = y_train1 X_train1 = x_train1.reshape(-1, 28*28 )<load_from_csv>
norm_train = pureimg_train/255 norm_test = test/255
Digit Recognizer
11,978,455
train_data = pd.read_csv('.. /input/digit-recognizer/train.csv') test_data = pd.read_csv('.. /input/digit-recognizer/test.csv' )<prepare_x_and_y>
feature_train, feature_validate, target_train, target_validate = train_test_split(norm_train, labels, test_size = 0.1, random_state = 0)
Digit Recognizer
11,978,455
train_images = train_data.copy() train_images = train_images.values X_train = train_images[:,1:] y_train = train_images[:,0] X_test = test_data.values<define_variables>
Test = torch.from_numpy(norm_test.values.reshape(( -1,1,28,28))) featuresTrain = torch.from_numpy(feature_train.values.reshape(( -1,1,28,28))) targetsTrain = torch.from_numpy(target_train.values) featuresValidation = torch.from_numpy(feature_validate.values.reshape(( -1,1,28,28))) targetsValidation = torch.from_numpy(target_validate.values )
Digit Recognizer
11,978,455
predictions = np.zeros(( X_train.shape[0]))<find_best_params>
batch_size = 88
Digit Recognizer