kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
10,345,485
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean') for col in continious_features: imp_mean.fit(train_set[col].values.reshape(-1,1)) train_set[col] = imp_mean.transform(train_set[col].values.reshape(-1,1)) test_set[col] = imp_mean.transform(test_set[col].values.reshape(-1,1)) train_set[col] = np.log(train_set[col] + 1) test_set[col] = np.log(test_set[col] + 1 )<count_missing_values>
pred = model.predict_classes(test_x, verbose=1 )
Digit Recognizer
10,345,485
train_set[norminal_features].isnull().sum()<count_missing_values>
sub['Label'] = pred sub.to_csv("sub.csv", index=False) sub.head()
Digit Recognizer
12,686,477
test_set[norminal_features].isnull().sum()<data_type_conversions>
import time import torch import matplotlib.pyplot as plt from torch import nn, optim from torchvision import transforms from torch.utils.data import TensorDataset, DataLoader
Digit Recognizer
12,686,477
for col in norminal_features: train_set[col] = train_set[col].astype(str) test_set[col] = test_set[col].astype(str) train_set[col] = train_set[col].fillna('Unknown') test_set[col] = test_set[col].fillna('Unknown' )<categorify>
epochs = 50 batch_size = 32 lr = 1e-3 momentum = 0.9 weight_decay = 1e-4 train_ratio = 0.8 device = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
Digit Recognizer
12,686,477
ohe = OneHotEncoder(handle_unknown = "ignore", sparse=False) ohe_train_set = pd.DataFrame(ohe.fit_transform(train_set[norminal_features])) ohe_test_set= pd.DataFrame(ohe.transform(test_set[norminal_features])) ohe_train_set.index = train_set.index ohe_test_set.index = test_set.index<drop_column>
train_df = np.array(pd.read_csv('/kaggle/input/digit-recognizer/train.csv')) imgs = train_df[:,1:].reshape(-1, 28, 28) labels = train_df[:,0] imgs = np.expand_dims(imgs, axis=1)/ 255.0 num_train = int(imgs.shape[0] * train_ratio) train_imgs = imgs[:num_train] train_labels = labels[:num_train] val_imgs = imgs[num_train:] val_labels = labels[num_train:] train_dataset = TensorDataset(torch.tensor(train_imgs, dtype=torch.float), torch.tensor(train_labels)) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, pin_memory=True) val_dataset = TensorDataset(torch.tensor(val_imgs, dtype=torch.float), torch.tensor(val_labels)) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, pin_memory=True)
Digit Recognizer
12,686,477
train_set = train_set.drop(norminal_features, axis = 1) test_set = test_set.drop(norminal_features, axis = 1 )<concatenate>
def conv_cell(cin, cout, k, s, p=None): if not p: p =(k-1)// 2 cell = nn.Sequential() cell.add_module('conv', nn.Conv2d(in_channels=cin, out_channels=cout, kernel_size=k, stride=s, padding=p, bias=False)) cell.add_module('bn', nn.BatchNorm2d(cout)) cell.add_module('act', nn.ReLU()) return cell net = nn.Sequential( conv_cell(1, 32, 3, 2), conv_cell(32, 32, 3, 1), conv_cell(32, 32, 3, 1), conv_cell(32, 64, 3, 2), conv_cell(64, 64, 3, 1), conv_cell(64, 64, 3, 1), nn.AdaptiveAvgPool2d(1), nn.Flatten() , nn.Linear(64, 10) ) print(net) net = net.to(device )
Digit Recognizer
12,686,477
train_base = train_set.copy() test_base = test_set.copy() train_set = pd.concat([train_set, ohe_train_set], axis=1) test_set = pd.concat([test_set, ohe_test_set], axis =1 )<count_missing_values>
loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters() , lr=lr, momentum=momentum, weight_decay=weight_decay )
Digit Recognizer
12,686,477
test_set[discrete_features].isnull().sum()<count_missing_values>
def accuracy(dataloader, net): total = 0 correct = 0 with torch.no_grad() : for data in dataloader: inputs, labels = data[0].to(device), data[1].to(device) outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct +=(predicted == labels ).sum().item() return correct/total
Digit Recognizer
12,686,477
train_set[discrete_features].isnull().sum() test_set[discrete_features].isnull().sum() for col in discrete_features: test_set[col] = test_set[col].fillna(0 )<drop_column>
best = 0 train_losses = [] train_accuracies = [] val_accuracies = [] for epoch in range(epochs): tic = time.time() epoch_loss = 0 for i, data in enumerate(train_loader): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = loss_fn(outputs, labels) loss.backward() optimizer.step() epoch_loss += loss.item() if i % 100 == 99: print("[Epoch {}/{} Batch {}] lr: {}, loss: {:.4f}".format( epoch+1, epochs, i+1, optimizer.param_groups[0]['lr'], epoch_loss/(i+1))) toc = time.time() train_acc = accuracy(train_loader, net) val_acc = accuracy(val_loader, net) print("Epoch {}, time: {:.2f}s, train accuracy: {:.4f}, val accuracy: {:.4f}".format( epoch+1, toc-tic, train_acc, val_acc)) print('-'*30) train_losses.append(epoch_loss/(i+1)) train_accuracies.append(train_acc) val_accuracies.append(val_acc) if val_acc > best: best = val_acc torch.save(net.state_dict() , 'mnist_best.pt') torch.save(net.state_dict() , 'mnist_last.pt') print("Training complete.Best validation accuracy:", best )
Digit Recognizer
12,686,477
correlation_features = corr_cols.append(corr_cols_small ).drop('SalePrice' )<drop_column>
test_df = np.array(pd.read_csv('/kaggle/input/digit-recognizer/test.csv')) test_imgs = test_df.reshape(-1, 28, 28) test_imgs = np.expand_dims(test_imgs, axis=1)/ 255.0 test_dataset = TensorDataset(torch.tensor(test_imgs, dtype=torch.float)) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) net.load_state_dict(torch.load('mnist_best.pt')) net.eval() test_results = [] for data in test_loader: inputs = data[0].to(device) outputs = net(inputs) _, predicted = torch.max(outputs.data, axis=1) test_results.extend(predicted.tolist() )
Digit Recognizer
12,686,477
<define_variables><EOS>
num_test = len(test_results) test_df = pd.DataFrame(np.vstack(( np.arange(1, num_test+1), np.array(test_results)) ).T, columns=['ImageId', 'Label']) test_df.to_csv('submission.csv', index=False )
Digit Recognizer
12,354,348
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<split>
def load_train_data(split=.0): with open('.. /input/digit-recognizer/train.csv')as file: data = np.asarray([x.replace(' ', '' ).split(',')for x in file.readlines() [1:]]) train_data = data.astype('float32')[:, 1:].reshape(( len(data), 28, 28, 1)) train_labels = to_categorical(data[:, 0]) indices = np.arange(len(data)) np.random.shuffle(indices) train_data = train_data[indices] train_labels = train_labels[indices] if split >.0: stop = int(len(data)* split) val_data = train_data[:stop] val_labels = train_labels[:stop] train_data = train_data[stop:] train_labels = train_labels[stop:] return(train_data, train_labels),(val_data, val_labels) else: return(train_data, train_labels) def load_test_data() : with open('.. /input/digit-recognizer/test.csv')as file: data = np.asarray([x.replace(' ', '' ).split(',')for x in file.readlines() [1:]]) test_data = data.astype('float32' ).reshape(( data.shape[0], 28, 28, 1)) / 255 return test_data def get_model() : model = models.Sequential() model.add(layers.Conv2D(32,(3, 3), use_bias=False, padding='Same', input_shape=(28, 28, 1))) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.Conv2D(32,(3, 3), use_bias=False, padding='Same')) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.MaxPooling2D(( 2, 2))) model.add(layers.Dropout (.4)) model.add(layers.Conv2D(64,(3, 3), use_bias=False, padding='Same')) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.Conv2D(64,(3, 3), use_bias=False, padding='Same')) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.MaxPooling2D(( 2, 2))) model.add(layers.Dropout (.4)) model.add(layers.Conv2D(128,(3, 3), use_bias=False, padding='Same')) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.Conv2D(128,(3, 3), use_bias=False, padding='Same')) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.Conv2D(128,(3, 3), use_bias=False, padding='Same')) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.MaxPooling2D(( 2, 2))) model.add(layers.Dropout (.4)) model.add(layers.Flatten()) model.add(layers.Dense(512, use_bias=False)) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.Dropout (.4)) model.add(layers.Dense(10, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def plot_losses(history): train_loss = history.history.get('loss') val_loss = history.history.get('val_loss', None) train_acc = history.history.get('accuracy') val_acc = history.history.get('val_accuracy', None) epochs = np.arange(len(train_loss)) + 1 plt.figure(figsize=(10, 4)) plt.subplot(121) plt.plot(epochs, train_loss, color='blue', label='Training loss') if val_loss: plt.plot(epochs, val_loss, color='red', label='Validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.grid() plt.subplot(122) plt.plot(epochs, train_acc, color='blue', label='Training acc') if val_acc: plt.plot(epochs, val_acc, color='red', label='Validation acc') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.grid() plt.show() def confirm_submission(predict): data = [f'{n + 1},{x} ' for n, x in enumerate(predict)] with open('submission.csv', 'w')as file: file.write('ImageID,Label ') for line in data: file.write(line)
Digit Recognizer
12,354,348
train_x, val_x, train_y, val_y = train_test_split(train, target, train_size = 0.8, random_state = RANDOM_STATE )<normalization>
( train_data, train_labels),(val_data, val_labels)= load_train_data(split=.2) batch_size = 64 train_gen = ImageDataGenerator( rescale=1./255, rotation_range=10, zoom_range=.1, width_shift_range=.1, height_shift_range=.1, fill_mode='nearest' ).flow( train_data, train_labels, batch_size=batch_size) val_gen = ImageDataGenerator( rescale=1./255 ).flow( val_data, val_labels, batch_size=batch_size) model = get_model() history = model.fit(train_gen, steps_per_epoch=len(train_data)// batch_size, validation_data=val_gen, validation_steps=len(val_data)// batch_size, epochs=100) plot_losses(history)
Digit Recognizer
12,354,348
std_scaler = StandardScaler() std_scaler.fit(train_x) train_x = std_scaler.transform(train_x) val_x = std_scaler.transform(val_x) test_set = std_scaler.transform(test_set) <define_variables>
train_data, train_labels = load_train_data() batch_size = 64 train_gen = ImageDataGenerator( rescale=1./255, rotation_range=10, zoom_range=.1, width_shift_range=.1, height_shift_range=.1, fill_mode='nearest' ).flow( train_data, train_labels, batch_size=batch_size) model = get_model() history = model.fit(train_gen, steps_per_epoch=len(train_data)// batch_size, epochs=100) model.save('mnist.h5') plot_losses(history )
Digit Recognizer
12,354,348
<split><EOS>
test_data = load_test_data() model = models.load_model('mnist.h5') predict = np.argmax(model.predict(test_data), axis=1) confirm_submission(predict )
Digit Recognizer
13,111,649
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<normalization>
import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg import os
Digit Recognizer
13,111,649
std_scaler_base = StandardScaler() std_scaler_base.fit(train_x_base) train_x_base = std_scaler_base.transform(train_x_base) val_x_base = std_scaler_base.transform(val_x_base )<train_model>
train_input = ".. /input/digit-recognizer/train.csv" test_input = ".. /input/digit-recognizer/test.csv" train_dataset = pd.read_csv(train_input) test_dataset = pd.read_csv(test_input )
Digit Recognizer
13,111,649
logreg = LinearRegression() start_time = time.time() logreg.fit(train_x_base, train_y_base) time_lapse = time.time() - start_time model_type.append('LogReg Baseline') model_train_time.append(time_lapse) time_lapse <predict_on_test>
train_labels = tf.keras.utils.to_categorical(train_dataset.pop("label"))
Digit Recognizer
13,111,649
logreg_pred_train = logreg.predict(train_x_base) logreg_train_rmse = evaluation_metric(logreg_pred_train, train_y_base) model_rmse_train.append(logreg_train_rmse) logreg_train_rmse<predict_on_test>
train_dataset = np.array(train_dataset.values.reshape(-1, 28, 28, 1)) test_dataset = np.array(test_dataset.values.reshape(-1, 28, 28, 1))
Digit Recognizer
13,111,649
start_time = time.time() logreg_pred_val = logreg.predict(val_x_base) time_lapse = time.time() - start_time model_pred_time.append(time_lapse )<compute_test_metric>
train_dataset = train_dataset / 255.0 test_dataset = test_dataset / 255.0
Digit Recognizer
13,111,649
%time logreg_val_rmse = evaluation_metric(logreg_pred_val, val_y_base )<concatenate>
checkpoint_path = "logs/checkpoints/"
Digit Recognizer
13,111,649
model_rmse_val.append(logreg_val_rmse) logreg_val_rmse<create_dataframe>
model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(64,(3, 3), input_shape=(28, 28, 1), activation=tf.nn.relu, padding="SAME"), tf.keras.layers.MaxPooling2D() , tf.keras.layers.Conv2D(64,(3, 3), activation=tf.nn.relu, padding="SAME"), tf.keras.layers.MaxPooling2D() , tf.keras.layers.Dropout(0.5), tf.keras.layers.Conv2D(128,(3, 3), activation=tf.nn.relu, padding="SAME"), tf.keras.layers.MaxPooling2D() , tf.keras.layers.BatchNormalization() , tf.keras.layers.Conv2D(128,(3, 3), activation=tf.nn.relu, padding="SAME"), tf.keras.layers.MaxPooling2D() , tf.keras.layers.BatchNormalization() , tf.keras.layers.Flatten() , tf.keras.layers.Dense(128, activation=tf.nn.relu), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation="softmax") ]) epochs=50 callbacks = [ tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, monitor="accuracy", save_best_only=True, save_weights_only=True), tf.keras.callbacks.EarlyStopping(monitor="accuracy", patience=15) ] model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) history = model.fit(train_dataset, train_labels, epochs=epochs, callbacks=callbacks, batch_size=64 )
Digit Recognizer
13,111,649
result = pd.DataFrame( { 'feature': model_type, 'train time': model_train_time, 'validation prediction time':model_pred_time, 'rmse train':model_rmse_train, 'rmse validation':model_rmse_val } ) result.sort_values(by='rmse validation' )<split>
model.load_weights(checkpoint_path )
Digit Recognizer
13,111,649
train_x_corr, val_x_corr, train_y_corr, val_y_corr = train_test_split(train[correlation_features], target, train_size = 0.8, random_state = RANDOM_STATE) logreg_corr = LinearRegression() start_time = time.time() logreg_corr.fit(train_x_corr, train_y_corr) time_lapse = time.time() - start_time model_type.append('LogReg - Correlation Features') model_train_time.append(time_lapse) time_lapse<predict_on_test>
labels = [np.argmax(predict)for predict in model.predict(test_dataset)] df = pd.DataFrame({ "ImageId": list(range(1, len(test_dataset)+1)) , "Label": labels, } )
Digit Recognizer
13,111,649
logreg_corr_pred_train = logreg_corr.predict(train_x_corr) logreg_corr_train_rmse = evaluation_metric(logreg_corr_pred_train, train_y_corr) model_rmse_train.append(logreg_corr_train_rmse) logreg_corr_train_rmse<predict_on_test>
df.to_csv("submission.csv", index=False )
Digit Recognizer
13,111,649
<compute_train_metric><EOS>
model.save("model.h5" )
Digit Recognizer
14,439,479
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<create_dataframe>
%matplotlib inline
Digit Recognizer
14,439,479
result = pd.DataFrame( { 'feature': model_type, 'train time': model_train_time, 'validation prediction time':model_pred_time, 'rmse train':model_rmse_train, 'rmse validation':model_rmse_val } ) result.sort_values(by='rmse validation' )<compute_train_metric>
tf.__version__
Digit Recognizer
14,439,479
def make_mi_scores(train_data, target_data): mi_scores = mutual_info_regression(train_data, target_data) mi_scores = pd.Series(mi_scores, name="MI Scores", index=train.columns) mi_scores = mi_scores.sort_values(ascending=False) return mi_scores mi_scores = make_mi_scores(train_x, train_y) mi_scores<filter>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv') sub = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv' )
Digit Recognizer
14,439,479
mi_features = mi_scores[mi_scores > 0.1].index.values<split>
X = train.drop(['label'], axis=1 ).values y = train['label'].values
Digit Recognizer
14,439,479
train_x_mi, val_x_mi, train_y_mi, val_y_mi = train_test_split(train[mi_features], target, train_size = 0.8, random_state = RANDOM_STATE) logreg_mi = LinearRegression() start_time = time.time() logreg_mi.fit(train_x_mi, train_y_mi) time_lapse = time.time() - start_time model_type.append('LogReg - Mutual Information Features') model_train_time.append(time_lapse) time_lapse<predict_on_test>
train_X, val_X, train_y, val_y = train_test_split(X, y, test_size = 0.2 )
Digit Recognizer
14,439,479
logreg_mi_pred_train = logreg_mi.predict(train_x_mi) logreg_mi_train_rmse = evaluation_metric(logreg_mi_pred_train, train_y_mi) model_rmse_train.append(logreg_mi_train_rmse) logreg_mi_train_rmse<predict_on_test>
train_X = train_X.reshape(-1, 28, 28, 1 ).astype("float32")/255.0 val_X = val_X.reshape(-1, 28, 28, 1 ).astype("float32")/255.0 test = test.values.reshape(-1, 28, 28, 1 ).astype("float32")/255.0 train_y = tf.keras.utils.to_categorical(train_y) val_y = tf.keras.utils.to_categorical(val_y )
Digit Recognizer
14,439,479
start_time = time.time() logreg_mi_pred_val = logreg_mi.predict(val_x_mi) time_lapse = time.time() - start_time model_pred_time.append(time_lapse )<compute_train_metric>
! git clone https://github.com/bckenstler/CLR.git
Digit Recognizer
14,439,479
logreg_mi_val_rmse = evaluation_metric(logreg_mi_pred_val, val_y_mi) model_rmse_val.append(logreg_mi_val_rmse) logreg_mi_val_rmse<create_dataframe>
clr_triangular = CyclicLR(mode='triangular' )
Digit Recognizer
14,439,479
result = pd.DataFrame( { 'feature': model_type, 'train time': model_train_time, 'validation prediction time':model_pred_time, 'rmse train':model_rmse_train, 'rmse validation':model_rmse_val } ) result.sort_values(by='rmse validation' )<train_model>
class myCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if(logs.get('accuracy')>0.9999): print(" Reached 99.99% accuracy so cancelling training!") self.model.stop_training = True callbacks = myCallback() learning_rate_reduction = tf.keras.callbacks.ReduceLROnPlateau(monitor = 'val_loss', patience = 3, verbose = 1, factor = 0.5, min_lr = 1e-6 )
Digit Recognizer
14,439,479
lreg = Lasso(random_state = RANDOM_STATE) start_time = time.time() lreg.fit(train_x, train_y) time_lapse = time.time() - start_time model_type.append('Lasso') model_train_time.append(time_lapse) time_lapse<predict_on_test>
IMG_SIZE = 28 BATCH_SIZE = 64 AUTOTUNE = tf.data.experimental.AUTOTUNE num_classes = 10 def augment(image_label, seed): image, label = image_label image = tf.image.resize_with_crop_or_pad( image, IMG_SIZE + 6, IMG_SIZE + 6 ) new_seed = tf.random.experimental.stateless_split(seed, num=1)[0,:] image = tf.image.stateless_random_crop( image, size=(BATCH_SIZE, IMG_SIZE, IMG_SIZE, 1), seed=seed ) image = tf.image.stateless_random_brightness( image, max_delta=0.5, seed=new_seed ) image = tf.clip_by_value( image, 0, 1) return image, label def create_train_val(train_ds, val_ds): train_ds =( train_ds .shuffle(1000) .map(f, num_parallel_calls=AUTOTUNE) .prefetch(AUTOTUNE) ) val_ds =( val_ds .prefetch(AUTOTUNE) ) return train_ds, val_ds def create_model(train_ds, val_ds, epochs): model = tf.keras.Sequential([ layers.Conv2D(32,(3, 3), activation = 'relu', padding = 'same', input_shape=(28,28,1)) , layers.Conv2D(32,(3, 3), activation = 'relu', padding = 'same'), layers.BatchNormalization() , layers.MaxPooling2D(2, 2), layers.Dropout(0.2), layers.Conv2D(64,(3, 3), activation = 'relu', padding = 'same'), layers.Conv2D(64,(3, 3), activation = 'relu', padding = 'same'), layers.BatchNormalization() , layers.MaxPooling2D(2, 2), layers.Dropout(0.2), layers.Conv2D(128,(3, 3), activation = 'relu', padding = 'same'), layers.Conv2D(128,(3, 3), activation = 'relu', padding = 'same'), layers.BatchNormalization() , layers.MaxPooling2D(2, 2), layers.Dropout(0.2), layers.Flatten() , layers.Dense(512, activation = 'relu'), layers.BatchNormalization() , layers.Dropout(0.2), layers.Dense(256, activation = 'relu'), layers.BatchNormalization() , layers.Dropout(0.35), layers.Dense(10, activation = 'softmax') ]) model.compile(optimizer=Adam(0.1), loss=tf.keras.losses.CategoricalCrossentropy() , metrics=['accuracy']) print(model.summary()) return model rng = tf.random.Generator.from_seed(123, alg='philox') def f(x, y): seed = rng.make_seeds(2)[0] image, label = augment(( x, y), seed) return image, label train_ds = tf.data.Dataset.from_tensor_slices(( train_X, train_y)).batch(BATCH_SIZE) val_ds = tf.data.Dataset.from_tensor_slices(( val_X, val_y)).batch(BATCH_SIZE) test_ds = tf.data.Dataset.from_tensor_slices(( test)).batch(BATCH_SIZE) train_ds, val_ds = create_train_val(train_ds, val_ds) cnn_model = create_model(train_ds, val_ds, 100 )
Digit Recognizer
14,439,479
lreg_pred_train = lreg.predict(train_x) lreg_pred_train_rmse = evaluation_metric(lreg_pred_train, train_y) model_rmse_train.append(lreg_pred_train_rmse) lreg_pred_train_rmse<predict_on_test>
startTime = timeit.default_timer() history = cnn_model.fit( train_ds, steps_per_epoch = train_X.shape[0] // BATCH_SIZE, epochs = 50, validation_data = val_ds, validation_steps = val_X.shape[0] // BATCH_SIZE, callbacks = [callbacks, learning_rate_reduction] ) elapsedTime = timeit.default_timer() - startTime print("Time taken for the Network to train : ",elapsedTime )
Digit Recognizer
14,439,479
start_time = time.time() lreg_pred = lreg.predict(val_x) time_lapse = time.time() - start_time model_pred_time.append(time_lapse )<compute_test_metric>
startTime = timeit.default_timer() history = cnn_model.fit( train_ds, steps_per_epoch = train_X.shape[0] // BATCH_SIZE, epochs = 50, validation_data = val_ds, validation_steps = val_X.shape[0] // BATCH_SIZE, callbacks = [clr_triangular] ) elapsedTime = timeit.default_timer() - startTime print("Time taken for the Network to train : ",elapsedTime )
Digit Recognizer
14,439,479
lreg_rmse = evaluation_metric(lreg_pred, val_y) model_rmse_val.append(lreg_rmse) lreg_rmse<create_dataframe>
prediction = cnn_model.predict(test ).argmax(axis=1) sub['Label'] = prediction sub.to_csv("MNIST_sub_cnn1.csv", index=False) sub.head()
Digit Recognizer
14,184,820
result = pd.DataFrame( { 'feature': model_type, 'train time': model_train_time, 'validation prediction time':model_pred_time, 'rmse train':model_rmse_train, 'rmse validation':model_rmse_val } ) result.sort_values(by='rmse validation' )<train_model>
np.random.seed(42) torch.random.seed = 42
Digit Recognizer
14,184,820
rfr=RandomForestRegressor(max_features=0.4, n_estimators=1000, random_state=RANDOM_STATE) start_time = time.time() rfr.fit(train_x, train_y) time_lapse = time.time() - start_time model_type.append('Random Forest') model_train_time.append(time_lapse) time_lapse<predict_on_test>
train_df = pd.read_csv(dirname+'/train.csv') test_df = pd.read_csv(dirname + '/test.csv') train_df.head()
Digit Recognizer
14,184,820
rfr_pred_train = rfr.predict(train_x) rfr_pred_train_rmse = evaluation_metric(rfr_pred_train, train_y) model_rmse_train.append(rfr_pred_train_rmse) rfr_pred_train_rmse<predict_on_test>
train = train_df.to_numpy() test = test_df.to_numpy()
Digit Recognizer
14,184,820
start_time = time.time() rfr_pred_val = rfr.predict(val_x) time_lapse = time.time() - start_time model_pred_time.append(time_lapse) <compute_test_metric>
@Transform def get_label(a): return a[0] @Transform def get_x(a): return a[-28*28:] @Transform def nums_to_tensor(a): return TensorImageBW(torch.from_numpy(a ).view(1,28,28))
Digit Recognizer
14,184,820
rfr_rmse = evaluation_metric(rfr_pred_val, val_y) model_rmse_val.append(rfr_rmse) rfr_rmse<create_dataframe>
x_tfms = [get_x,nums_to_tensor, ] y_tfms = [get_label, Categorize] cut = int(len(train)*0.8) splits = [list(range(cut)) , list(range(cut,len(train)-1)) ] bs = 128
Digit Recognizer
14,184,820
result = pd.DataFrame( { 'feature': model_type, 'train time': model_train_time, 'validation prediction time':model_pred_time, 'rmse train':model_rmse_train, 'rmse validation':model_rmse_val } ) result.sort_values(by='rmse validation' )<train_model>
dsets = Datasets(train,[x_tfms, y_tfms], splits = splits) dls = dsets.dataloaders(bs=bs, after_batch=[IntToFloatTensor() ,*aug_transforms(do_flip=False,batch=True,), Normalize.from_stats(*mnist_stats)] )
Digit Recognizer
14,184,820
mnet = MLPRegressor(hidden_layer_sizes=(200,200,100, 100, 50, 25), activation = 'logistic', alpha = 0.001, max_iter = 1000, early_stopping = True, random_state = RANDOM_STATE) start_time = time.time() mnet.fit(train_x, train_y) time_lapse = time.time() - start_time model_type.append('Neural Net') model_train_time.append(time_lapse) time_lapse <predict_on_test>
test_dl =dls.test_dl(test )
Digit Recognizer
14,184,820
mnet_pred_train = mnet.predict(train_x) mnet_pred_train_rmse = evaluation_metric(mnet_pred_train, train_y) model_rmse_train.append(mnet_pred_train_rmse) mnet_pred_train_rmse<predict_on_test>
model = xresnet18(c_in=1,n_out=10, sa=True, act_cls=Mish )
Digit Recognizer
14,184,820
start_time = time.time() mnet_pred_val = mnet.predict(val_x) time_lapse = time.time() - start_time model_pred_time.append(time_lapse )<compute_test_metric>
learn = Learner(dls,model, loss_func=CrossEntropyLossFlat() , metrics=accuracy, )
Digit Recognizer
14,184,820
mnet_rmse = evaluation_metric(mnet_pred_val, val_y) model_rmse_val.append(mnet_rmse) mnet_rmse<create_dataframe>
lr_min, lr_steep = learn.lr_find() ;lr_min, lr_steep
Digit Recognizer
14,184,820
result = pd.DataFrame( { 'feature': model_type, 'train time': model_train_time, 'validation prediction time':model_pred_time, 'rmse train':model_rmse_train, 'rmse validation':model_rmse_val } ) result.sort_values(by='rmse validation' )<train_model>
learn.fit_one_cycle(20,lr_min )
Digit Recognizer
14,184,820
params = {'n_estimators': 1000, 'max_depth': 5, 'min_samples_split': 6, 'learning_rate': 0.01, 'loss': 'ls', 'max_features':0.25, 'random_state':RANDOM_STATE} gbm = GradientBoostingRegressor(**params) start_time = time.time() gbm.fit(train_x, train_y) time_lapse = time.time() - start_time model_type.append('Gradient Boosting') model_train_time.append(time_lapse) time_lapse<predict_on_test>
learn.save('20epoch_Xresnet18-sa' )
Digit Recognizer
14,184,820
gbm_pred_train = gbm.predict(train_x) gbm_pred_train_rmse = evaluation_metric(gbm_pred_train, train_y) model_rmse_train.append(gbm_pred_train_rmse) gbm_pred_train_rmse<predict_on_test>
learn = learn.load('20epoch_Xresnet18-sa' )
Digit Recognizer
14,184,820
start_time = time.time() gbm_pred_val = gbm.predict(val_x) time_lapse = time.time() - start_time model_pred_time.append(time_lapse )<compute_test_metric>
learn.fit_one_cycle(2,lr_min/50 )
Digit Recognizer
14,184,820
gbm_rmse = evaluation_metric(gbm_pred_val, val_y) model_rmse_val.append(gbm_rmse) gbm_rmse<create_dataframe>
learn.save('20+2epoch_Xresnet18-sa' )
Digit Recognizer
14,184,820
result = pd.DataFrame( { 'feature': model_type, 'train time': model_train_time, 'validation prediction time':model_pred_time, 'rmse train':model_rmse_train, 'rmse validation':model_rmse_val } ) result.sort_values(by='rmse validation' )<train_model>
preds,targets = learn.tta() accuracy(preds,targets )
Digit Recognizer
14,184,820
param = {'n_estimators': 1000, 'max_depth': 5, 'learning_rate': 0.01, 'random_state':RANDOM_STATE} xgb = XGBRegressor(**param) start_time = time.time() xgb.fit(train_x, train_y, eval_set=[(train_x, train_y),(val_x, val_y)], early_stopping_rounds = 5, eval_metric = 'rmse') time_lapse = time.time() - start_time model_type.append('XGBoost') model_train_time.append(time_lapse) time_lapse<predict_on_test>
preds,_ = learn.tta(dl=test_dl )
Digit Recognizer
14,184,820
xgb_pred_train = xgb.predict(train_x) xgb_pred_train_rmse = evaluation_metric(xgb_pred_train, train_y) model_rmse_train.append(xgb_pred_train_rmse) xgb_pred_train_rmse<predict_on_test>
class_preds =np.argmax(preds,axis=1) pred_submission = [dls.vocab[i] for i in class_preds]
Digit Recognizer
14,184,820
<compute_test_metric><EOS>
submission = pd.read_csv(dirname+'/sample_submission.csv') submission['Label']=pred_submission submission.to_csv('submission.csv',index=False )
Digit Recognizer
13,630,920
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<create_dataframe>
%matplotlib inline
Digit Recognizer
13,630,920
result = pd.DataFrame( { 'feature': model_type, 'train time': model_train_time, 'validation prediction time':model_pred_time, 'rmse train':model_rmse_train, 'rmse validation':model_rmse_val } ) result.sort_values(by='rmse validation' )<predict_on_test>
train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('Training on CPU...') else: print('Training on GPU...')
Digit Recognizer
13,630,920
test_pred = gbm.predict(test_set) test_result = pd.DataFrame( { 'Id': test_set_Id, 'SalePrice': np.exp(test_pred), } )<save_to_csv>
device = torch.device('cuda:0' )
Digit Recognizer
13,630,920
test_result.to_csv('submission_gbm.csv', index=False )<load_from_csv>
df_train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') df_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
13,630,920
p_train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') p_test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv' )<feature_engineering>
df_train.isna().any().any()
Digit Recognizer
13,630,920
def create_new_columns(dataset): dataset['total_square_footage'] = dataset['TotalBsmtSF'] + dataset['GrLivArea'] dataset['remodelling_done'] = dataset.apply(lambda x: verify_remodelling(x['YearRemodAdd'], x['YearBuilt']), axis=1) dataset['selling_season'] = dataset.apply(lambda x: selling_period(x['MoSold']), axis=1) dataset['total_area_of_house'] = dataset['TotalBsmtSF'] + dataset['1stFlrSF'] + dataset['2ndFlrSF'] dataset['age_of_building'] = dataset['YearBuilt'].apply(lambda x: pd.datetime.now().year - x) return dataset def map_ordinal_features(dataset): for col in ordinal_cat_features: dataset[col] = dataset[col].map(ordinal_ranking) dataset[col] = dataset[col].fillna(0) return dataset def log_continious(dataset): imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean') for col in continious_features: imp_mean.fit(dataset[col].values.reshape(-1,1)) dataset[col] = imp_mean.transform(dataset[col].values.reshape(-1,1)) dataset[col] = np.log(dataset[col] + 1) return dataset def nominal_one_hot(dataset): for col in norminal_features: dataset[col] = dataset[col].astype(str) dataset[col] = dataset[col].fillna('Unknown') return dataset def discrete_fill(dataset): for col in discrete_features: dataset[col] = dataset[col].fillna(0) return dataset def target_feature(train): target = np.log(train['SalePrice'] + 1) return target<feature_engineering>
train_data = df_train.drop('label',axis=1 ).values
Digit Recognizer
13,630,920
target = target_feature(p_train )<categorify>
train_data = train_data/255.0 df_test = df_test/255.0
Digit Recognizer
13,630,920
pipes = Pipeline(steps = [('new_columns', FunctionTransformer(create_new_columns)) , ('continious_cleanup', FunctionTransformer(log_continious)) , ('nominal_filling', FunctionTransformer(nominal_one_hot)) , ('discrete_filling',FunctionTransformer(discrete_fill)) , ('ordinal_cleanup', FunctionTransformer(map_ordinal_features)) , ]) pipes.fit(p_train )<categorify>
mask = np.random.rand(len(df_train)) < 0.8 df_val = df_train[~mask] df_train = df_train[mask] print('Train size: ', df_train.shape) print('Val size: ', df_val.shape) print('Test size: ', df_test.shape) df_train.head()
Digit Recognizer
13,630,920
p_train = pipes.transform(p_train )<categorify>
class DatasetMNIST(torch.utils.data.Dataset): def __init__(self, data, transform=None): self.data = data self.transform = transform def __len__(self): return len(self.data) def __getitem__(self, index): item = self.data.iloc[index] image = item[1:].values.astype(np.uint8 ).reshape(( 28, 28)) label = item[0] if self.transform is not None: image = self.transform(image) return image, label
Digit Recognizer
13,630,920
p_test = pipes.transform(p_test )<split>
train_transform = transforms.Compose( [ transforms.ToPILImage() , transforms.ToTensor() , transforms.Normalize(mean=train_data.mean() , std=train_data.std()), ]) val_transform = transforms.Compose( [ transforms.ToPILImage() , transforms.ToTensor() , transforms.Normalize(mean=train_data.mean() , std=train_data.std()), ]) test_transform = val_transform
Digit Recognizer
13,630,920
p_test_Id = p_test['Id'] p_train = p_train.drop(columns=['SalePrice', 'Id']) p_test = p_test.drop(columns = 'Id') p_train_x, p_val_x, p_train_y, p_val_y = train_test_split(p_train, target, train_size=0.8, test_size=0.2, random_state = RANDOM_STATE )<categorify>
train_dataset = DatasetMNIST(df_train, transform = train_transform) validation_dataset = DatasetMNIST(df_val, transform = val_transform) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16) validation_loader = torch.utils.data.DataLoader(dataset=validation_dataset, batch_size=16)
Digit Recognizer
13,630,920
categorical_transformer = OneHotEncoder(handle_unknown = "ignore", sparse=False) numeric_transformer = Pipeline(steps=[ ('scaler', StandardScaler())]) preprocessor = ColumnTransformer(remainder='passthrough', transformers=[ ('num', numeric_transformer, selector(dtype_exclude="object")) , ('cat', categorical_transformer, selector(dtype_include="object")) ] )<choose_model_class>
class CNN(nn.Module): def __init__(self): super(CNN,self ).__init__() self.conv1 = nn.Sequential( nn.Conv2d(1, 32, 3, padding=1), nn.ReLU() , nn.BatchNorm2d(32), nn.Conv2d(32, 32, 3, stride=2, padding=1), nn.ReLU() , nn.BatchNorm2d(32), nn.MaxPool2d(2, 2), nn.Dropout(0.25) ) self.conv2 = nn.Sequential( nn.Conv2d(32, 64, 3, padding=1), nn.ReLU() , nn.BatchNorm2d(64), nn.Conv2d(64, 64, 3, stride=2, padding=1), nn.ReLU() , nn.BatchNorm2d(64), nn.MaxPool2d(2, 2), nn.Dropout(0.25) ) self.conv3 = nn.Sequential( nn.Conv2d(64, 128, 3, padding=1), nn.ReLU() , nn.BatchNorm2d(128), nn.MaxPool2d(2, 2), nn.Dropout(0.25) ) self.fc = nn.Sequential( nn.Linear(128, 10), ) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = x.view(x.size(0), -1) return self.fc(x) model = CNN().to(device)
Digit Recognizer
13,630,920
params = {'n_estimators': 1000, 'max_depth': 5, 'min_samples_split': 6, 'learning_rate': 0.01, 'loss': 'ls', 'max_features':0.25, 'random_state':RANDOM_STATE} model_gbm = GradientBoostingRegressor(**params) gbm_pipeline = Pipeline(steps=[ ('preprocess', preprocessor), ('model', model_gbm) ]) gbm_pipeline.fit(p_train_x, p_train_y) gbm_preds = gbm_pipeline.predict(p_val_x) score = evaluation_metric(gbm_preds, p_val_y) print('RMSE:', score )<save_to_csv>
LEARNING_RATE = 0.001680 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters() , lr=LEARNING_RATE )
Digit Recognizer
13,630,920
p_test_gbm = gbm_pipeline.predict(p_test) test_result = pd.DataFrame( { 'Id': p_test_Id, 'SalePrice': np.exp(p_test_gbm), }) test_result.to_csv('pipeline_gbm.csv', index=False) <install_modules>
def train_model(model,train_loader, validation_loader, optimizer, n_epochs=100): N_test=len(validation_dataset) accuracy_list=[] loss_list=[] for epoch in range(n_epochs): for x, y in train_loader: x, y = x.to(device), y.to(device) model.train() optimizer.zero_grad() z = model(x) loss = criterion(z, y) loss.backward() optimizer.step() loss_list.append(loss.data) correct=0 for x_test, y_test in validation_loader: x_test,y_test = x_test.to(device), y_test.to(device) model.eval() z = model(x_test) _, yhat = torch.max(z.data, 1) correct +=(yhat == y_test ).sum().item() accuracy = correct / N_test accuracy_list.append(accuracy) return accuracy_list, loss_list
Digit Recognizer
13,630,920
!pip install.. /input/python-datatable/datatable-0.11.0-cp37-cp37m-manylinux2010_x86_64.whl > /dev/null 2>&1<set_options>
accuracy_list, loss_list=train_model(model=model,n_epochs=100,train_loader=train_loader,validation_loader=validation_loader,optimizer=optimizer )
Digit Recognizer
13,630,920
_ = np.seterr(divide='ignore', invalid='ignore') <define_variables>
print(accuracy_list, loss_list )
Digit Recognizer
13,630,920
data_types_dict = { 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id':'int8', 'task_container_id': 'int16', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'bool' } target = 'answered_correctly' <load_from_csv>
test_dataset = DatasetMNIST(df_test, transform = val_transform) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=16 )
Digit Recognizer
13,630,920
print('start read train data...') train_df = dt.fread('.. /input/riiid-test-answer-prediction/train.csv', columns=set(data_types_dict.keys())).to_pandas() <load_from_csv>
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") x_test = np.expand_dims(x_test, axis=1) x_test = torch.from_numpy(x_test ).float().to(device) x_test.type()
Digit Recognizer
13,630,920
lectures_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/lectures.csv') <categorify>
model.eval() with torch.no_grad() : ps = model(x_test) prediction = torch.argmax(ps, 1) print('Prediction',prediction )
Digit Recognizer
13,630,920
lectures_df['type_of'] = lectures_df['type_of'].replace('solving question', 'solving_question') lectures_df = pd.get_dummies(lectures_df, columns=['part', 'type_of']) part_lectures_columns = [column for column in lectures_df.columns if column.startswith('part')] types_of_lectures_columns = [column for column in lectures_df.columns if column.startswith('type_of_')] <merge>
df_export = pd.DataFrame(prediction.cpu().tolist() , columns = ['Label']) df_export['ImageId'] = df_export.index +1 df_export = df_export[['ImageId', 'Label']] df_export.head()
Digit Recognizer
13,630,920
train_lectures = train_df[train_df.content_type_id == True].merge(lectures_df, left_on='content_id', right_on='lecture_id', how='left') user_lecture_stats_part = train_lectures.groupby('user_id',as_index = False)[part_lectures_columns + types_of_lectures_columns].sum() <data_type_conversions>
df_export.to_csv('output.csv', index=False )
Digit Recognizer
14,296,580
lecturedata_types_dict = { 'user_id': 'int32', 'part_1': 'int8', 'part_2': 'int8', 'part_3': 'int8', 'part_4': 'int8', 'part_5': 'int8', 'part_6': 'int8', 'part_7': 'int8', 'type_of_concept': 'int8', 'type_of_intention': 'int8', 'type_of_solving_question': 'int8', 'type_of_starter': 'int8' } user_lecture_stats_part = user_lecture_stats_part.astype(lecturedata_types_dict) <data_type_conversions>
%matplotlib inline
Digit Recognizer
14,296,580
for column in user_lecture_stats_part.columns: if(column !='user_id'): user_lecture_stats_part[column] =(user_lecture_stats_part[column] > 0 ).astype('int8') user_lecture_stats_part.dtypes <drop_column>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
14,296,580
del(train_lectures) gc.collect() <data_type_conversions>
train_set = train.iloc[:,1:] label = train["label"]
Digit Recognizer
14,296,580
user_lecture_agg = train_df.groupby('user_id')['content_type_id'].agg(['sum', 'count']) user_lecture_agg=user_lecture_agg.astype('int16') <data_type_conversions>
norm_train_set = train_set / 255 norm_test_set = test / 255
Digit Recognizer
14,296,580
cum = train_df.groupby('user_id')['content_type_id'].agg(['cumsum', 'cumcount']) cum['cumcount']=cum['cumcount']+1 train_df['user_interaction_count'] = cum['cumcount'] train_df['user_interaction_timestamp_mean'] = train_df['timestamp']/cum['cumcount'] train_df['user_lecture_sum'] = cum['cumsum'] train_df['user_lecture_lv'] = cum['cumsum'] / cum['cumcount'] train_df.user_lecture_lv=train_df.user_lecture_lv.astype('float16') train_df.user_lecture_sum=train_df.user_lecture_sum.astype('int16') train_df.user_interaction_count=train_df.user_interaction_count.astype('int16') train_df['user_interaction_timestamp_mean']=train_df['user_interaction_timestamp_mean']/(1000*3600) train_df.user_interaction_timestamp_mean=train_df.user_interaction_timestamp_mean.astype('float32') <set_options>
X_train, X_validate, y_train, y_validate = train_test_split(norm_train_set, label, test_size = 0.1 )
Digit Recognizer
14,296,580
del cum gc.collect()<data_type_conversions>
X_train = torch.from_numpy(X_train.values.reshape(-1,1,28,28)) X_validate = torch.from_numpy(X_validate.values.reshape(-1,1,28,28)) testing_set = torch.from_numpy(norm_test_set.values.reshape(-1,1,28,28)) y_train = torch.from_numpy(y_train.values) y_validate = torch.from_numpy(y_validate.values )
Digit Recognizer
14,296,580
train_df['prior_question_had_explanation'].fillna(False, inplace=True) train_df = train_df.astype(data_types_dict) train_df = train_df[train_df[target] != -1].reset_index(drop=True) <groupby>
training_set = torch.utils.data.TensorDataset(X_train.float() , y_train) validating_set = torch.utils.data.TensorDataset(X_validate.float() , y_validate) testing_set = torch.utils.data.TensorDataset(testing_set.float() )
Digit Recognizer
14,296,580
content_explation_agg=train_df[["content_id","prior_question_had_explanation",target]].groupby(["content_id","prior_question_had_explanation"])[target].agg(['mean']) <data_type_conversions>
train_loader = DataLoader(training_set, shuffle=True, batch_size = 88) validate_loader = DataLoader(validating_set, shuffle=False, batch_size = 88) test_set = DataLoader(testing_set, shuffle=False, batch_size = 88 )
Digit Recognizer
14,296,580
content_explation_agg=content_explation_agg.unstack() content_explation_agg=content_explation_agg.reset_index() content_explation_agg.columns = ['content_id', 'content_explation_false_mean','content_explation_true_mean'] content_explation_agg.content_id=content_explation_agg.content_id.astype('int16') content_explation_agg.content_explation_false_mean=content_explation_agg.content_explation_false_mean.astype('float16') content_explation_agg.content_explation_true_mean=content_explation_agg.content_explation_true_mean.astype('float16') <data_type_conversions>
class CNN_DigitClassifier(nn.Module): def __init__(self): super(CNN_DigitClassifier, self ).__init__() self.features = nn.Sequential( nn.Conv2d(1, 32, 5), nn.ReLU(inplace=True), nn.Conv2d(32, 32, 5), nn.ReLU(inplace=True), nn.MaxPool2d(2,2), nn.Dropout(0.25), nn.Conv2d(32, 64, 3), nn.ReLU(inplace=True), nn.Conv2d(64, 64, 3), nn.ReLU(inplace=True), nn.MaxPool2d(2), nn.Dropout(0.25)) self.classification = nn.Sequential( nn.Linear(576, 256), nn.Dropout(0.25), nn.Linear(256, 10)) def forward(self, images): images = self.features(images) images = images.view(images.shape[0], -1) output = self.classification(images) return output
Digit Recognizer
14,296,580
train_df["attempt_no"] = 1 train_df.attempt_no=train_df.attempt_no.astype('int8') attempt_no_agg=train_df.groupby(["user_id","content_id"])["attempt_no"].agg(['sum'] ).astype('int8') train_df["attempt_no"] = train_df[["user_id","content_id",'attempt_no']].groupby(["user_id","content_id"])["attempt_no"].cumsum() attempt_no_agg=attempt_no_agg[attempt_no_agg['sum'] >1] <data_type_conversions>
model = CNN_DigitClassifier() optimizer = optim.RMSprop(model.parameters() , lr=0.001, alpha=0.9) criterion = nn.CrossEntropyLoss() lr_reduction = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=3, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0.00001) if torch.cuda.is_available() : model = model.cuda() criterion = criterion.cuda()
Digit Recognizer
14,296,580
print('start handle timestamp...') prior_question_elapsed_time_mean=train_df['prior_question_elapsed_time'].mean() train_df['prior_question_elapsed_time'].fillna(prior_question_elapsed_time_mean, inplace=True) <data_type_conversions>
count = 0 losses = [] iteration_list = [] training_accuracy = [] validation_accuracy = [] training_loss = [] validation_loss = []
Digit Recognizer
14,296,580
max_timestamp_u = train_df[['user_id','timestamp']].groupby(['user_id'] ).agg(['max'] ).reset_index() max_timestamp_u.columns = ['user_id', 'max_time_stamp'] max_timestamp_u.user_id=max_timestamp_u.user_id.astype('int32') train_df['lagtime'] = train_df.groupby('user_id')['timestamp'].shift() max_timestamp_u2 = train_df[['user_id','lagtime']].groupby(['user_id'] ).agg(['max'] ).reset_index() max_timestamp_u2.columns = ['user_id', 'max_time_stamp2'] max_timestamp_u2.user_id=max_timestamp_u2.user_id.astype('int32') train_df['lagtime']=train_df['timestamp']-train_df['lagtime'] lagtime_mean=train_df['lagtime'].mean() train_df['lagtime'].fillna(lagtime_mean, inplace=True) train_df['lagtime']=train_df['lagtime']/(1000*3600) train_df.lagtime=train_df.lagtime.astype('float32') <data_type_conversions>
def train(epoch): global count model.train() for batch_idx,(data, target)in enumerate(train_loader): data, target = Variable(data), Variable(target) if torch.cuda.is_available() : data = data.cuda() target = target.cuda() optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if(batch_idx + 1)% 100 == 0: losses.append(loss.item()) iteration_list.append(count) count += 1
Digit Recognizer
14,296,580
train_df['lagtime2'] = train_df.groupby('user_id')['timestamp'].shift(2) max_timestamp_u3 = train_df[['user_id','lagtime2']].groupby(['user_id'] ).agg(['max'] ).reset_index() max_timestamp_u3.columns = ['user_id', 'max_time_stamp3'] max_timestamp_u3.user_id=max_timestamp_u3.user_id.astype('int32') train_df['lagtime2']=train_df['timestamp']-train_df['lagtime2'] lagtime_mean2=train_df['lagtime2'].mean() train_df['lagtime2'].fillna(lagtime_mean2, inplace=True) train_df['lagtime2']=train_df['lagtime2']/(1000*3600) train_df.lagtime2=train_df.lagtime2.astype('float32') train_df['lagtime3'] = train_df.groupby('user_id')['timestamp'].shift(3) train_df['lagtime3']=train_df['timestamp']-train_df['lagtime3'] lagtime_mean3=train_df['lagtime3'].mean() train_df['lagtime3'].fillna(lagtime_mean3, inplace=True) train_df['lagtime3']=train_df['lagtime3']/(1000*3600) train_df.lagtime3=train_df.lagtime3.astype('float32') <feature_engineering>
def evaluate(data_loader, validate=False): model.eval() loss = 0 correct = 0 for data, target in data_loader: data, target = Variable(data), Variable(target) if torch.cuda.is_available() : data = data.cuda() target = target.cuda() output = model(data) loss += F.cross_entropy(output, target, size_average=False ).item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).cpu().sum() loss /= len(data_loader.dataset) accuracy = 100.* correct / len(data_loader.dataset) if not validate: lr_reduction.step(loss) training_accuracy.append(accuracy) training_loss.append(loss) else: validation_accuracy.append(accuracy) validation_loss.append(loss )
Digit Recognizer
14,296,580
train_df['timestamp']=train_df['timestamp']/(1000*3600) train_df.timestamp=train_df.timestamp.astype('float16') user_prior_question_elapsed_time = train_df[['user_id','prior_question_elapsed_time']].groupby(['user_id'] ).tail(1) user_prior_question_elapsed_time.columns = ['user_id', 'prior_question_elapsed_time'] train_df['delta_prior_question_elapsed_time'] = train_df.groupby('user_id')['prior_question_elapsed_time'].shift() train_df['delta_prior_question_elapsed_time']=train_df['prior_question_elapsed_time']-train_df['delta_prior_question_elapsed_time'] delta_prior_question_elapsed_time_mean=train_df['delta_prior_question_elapsed_time'].mean() train_df['delta_prior_question_elapsed_time'].fillna(delta_prior_question_elapsed_time_mean, inplace=True) train_df.delta_prior_question_elapsed_time=train_df.delta_prior_question_elapsed_time.astype('int32') train_df['lag'] = train_df.groupby('user_id')[target].shift() cum = train_df.groupby('user_id')['lag'].agg(['cumsum', 'cumcount']) user_agg = train_df.groupby('user_id')['lag'].agg(['sum', 'count'] ).astype('int16') cum['cumsum'].fillna(0, inplace=True) train_df['user_correctness'] = cum['cumsum'] / cum['cumcount'] train_df['user_correct_count'] = cum['cumsum'] train_df['user_uncorrect_count'] = cum['cumcount']-cum['cumsum'] train_df.drop(columns=['lag'], inplace=True) train_df['user_correctness'].fillna(0.67, inplace=True) train_df.user_correctness=train_df.user_correctness.astype('float16') train_df.user_correct_count=train_df.user_correct_count.astype('int16') train_df.user_uncorrect_count=train_df.user_uncorrect_count.astype('int16') del cum gc.collect() <data_type_conversions>
def prediction(data_loader): model.eval() test_pred = torch.LongTensor() for batch_idx, data in enumerate(data_loader): data = Variable(data[0]) if torch.cuda.is_available() : data = data.cuda() output = model(data) pred = output.cpu().data.max(1, keepdim=True)[1] test_pred = torch.cat(( test_pred, pred), dim=0) return test_pred
Digit Recognizer
14,296,580
train_df.prior_question_had_explanation=train_df.prior_question_had_explanation.astype('int8') explanation_agg = train_df.groupby('user_id')['prior_question_had_explanation'].agg(['sum', 'count']) explanation_agg=explanation_agg.astype('int16' )<data_type_conversions>
test_prediction = prediction(test_set )
Digit Recognizer
14,296,580
cum = train_df.groupby('user_id')['prior_question_had_explanation'].agg(['cumsum', 'cumcount']) cum['cumcount']=cum['cumcount']+1 train_df['explanation_mean'] = cum['cumsum'] / cum['cumcount'] train_df['explanation_true_count'] = cum['cumsum'] train_df['explanation_false_count'] = cum['cumcount']-cum['cumsum'] train_df.explanation_mean=train_df.explanation_mean.astype('float16') train_df.explanation_true_count=train_df.explanation_true_count.astype('int16') train_df.explanation_false_count=train_df.explanation_false_count.astype('int16') <set_options>
submission.to_csv("CNN_model_TPU_submission.csv", index = False )
Digit Recognizer
14,584,011
del cum gc.collect()<categorify>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') train.head()
Digit Recognizer
14,584,011
content_agg = train_df.groupby('content_id')[target].agg(['sum', 'count','var']) task_container_agg = train_df.groupby('task_container_id')[target].agg(['sum', 'count','var']) content_agg=content_agg.astype('float32') task_container_agg=task_container_agg.astype('float32' )<data_type_conversions>
Y_train = to_categorical(train['label'].values, 10) X_train =(train.loc[:, 'pixel0':] / 255 ).values X_train.shape, Y_train.shape
Digit Recognizer
14,584,011
train_df['task_container_uncor_count'] = train_df['task_container_id'].map(task_container_agg['count']-task_container_agg['sum'] ).astype('int32') train_df['task_container_cor_count'] = train_df['task_container_id'].map(task_container_agg['sum'] ).astype('int32') train_df['task_container_std'] = train_df['task_container_id'].map(task_container_agg['var'] ).astype('float16') train_df['task_container_correctness'] = train_df['task_container_id'].map(task_container_agg['sum'] / task_container_agg['count']) train_df.task_container_correctness=train_df.task_container_correctness.astype('float16') content_elapsed_time_agg=train_df.groupby('content_id')['prior_question_elapsed_time'].agg(['mean']) content_had_explanation_agg=train_df.groupby('content_id')['prior_question_had_explanation'].agg(['mean']) train_df.dtypes <load_from_csv>
X_test =(test / 255 ).values
Digit Recognizer
14,584,011
questions_df = pd.read_csv( '.. /input/riiid-test-answer-prediction/questions.csv', usecols=[0, 1,3,4], dtype={'question_id': 'int16','bundle_id': 'int16', 'part': 'int8','tags': 'str'} ) bundle_agg = questions_df.groupby('bundle_id')['question_id'].agg(['count']) questions_df['content_sub_bundle'] = questions_df['bundle_id'].map(bundle_agg['count'] ).astype('int8') questions_df['tags'].fillna('188', inplace=True) <string_transform>
datagener = ImageDataGenerator( rotation_range=15, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1, )
Digit Recognizer
14,584,011
def gettags(tags,num): tags_splits=tags.split(" ") result='' for t in tags_splits: x=int(t) if(x<32*(num+1)and x>=32*num): result=result+' '+t return result <categorify>
example = X_train[6].reshape(( 1, 28, 28, 1)) label = Y_train[6]
Digit Recognizer