kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
21,648,756
input_word_ids = layers.Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") input_mask = layers.Input(shape=(max_len,), dtype=tf.int32, name="input_mask") segment_ids = layers.Input(shape=(max_len,), dtype=tf.int32, name="segment_ids") _, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) clf_output = sequence_output[:, 0, :] out = layers.Dense(1, activation='sigmoid' )(clf_output) model = models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=out) model.compile(optimizers.Adam(lr=1e-5), loss='binary_crossentropy', metrics=['accuracy']) model.summary()<train_model>
df_train=pd.read_csv('.. /input/digit-recognizer/train.csv') df_test=pd.read_csv('.. /input/digit-recognizer/test.csv') print([df_train.shape,df_test.shape]) print(df_train.iloc[265,1:].values.reshape(28,28)[:,10] )
Digit Recognizer
21,648,756
checkpoint = ModelCheckpoint('model.h5', monitor='val_loss', save_best_only=True) train_history = model.fit( train_input, train_labels, validation_split=0.2, epochs=3, callbacks=[checkpoint], batch_size=16 )<predict_on_test>
images=['%s%s'%('pixel',pixel_no)for pixel_no in range(0,784)] x_train=df_train[images].values/255. x_train=x_train.reshape(-1,28,28,1) y_train=df_train['label'].values x_test_out=df_test[images].values/255. x_test_out=x_test_out.reshape(-1,28,28,1 )
Digit Recognizer
21,648,756
model.load_weights('model.h5') test_pred = model.predict(test_input )<save_to_csv>
num_classes=10; img_size,img_size2=28,96 N=df_train.shape[0]; n=int (.1*N) shuffle_ids=np.arange(N) np.random.RandomState(123 ).shuffle(shuffle_ids) x_train=x_train[shuffle_ids]; y_train=y_train[shuffle_ids] x_test,x_valid,x_train=\ x_train[:n],x_train[n:2*n],x_train[2*n:] y_test,y_valid,y_train=\ y_train[:n],y_train[n:2*n],y_train[2*n:] df=pd.DataFrame( [[x_train.shape,x_valid.shape,x_test.shape], [x_train.dtype,x_valid.dtype,x_test.dtype], [y_train.shape,y_valid.shape,y_test.shape], [y_train.dtype,y_valid.dtype,y_test.dtype]], columns=['train','valid','test'], index=['image shape','image type','label shape','label type']) df
Digit Recognizer
21,648,756
submission['target'] = test_pred.round().astype(int) submission.to_csv('submission.csv', index=False )<import_modules>
def model() : model=tf.keras.Sequential() model.add(tkl.Input(shape=(28,28,1))) model.add(tkl.BatchNormalization()) model.add(tkl.Conv2D(28,(5,5),padding='same')) model.add(tkl.LeakyReLU(alpha=.02)) model.add(tkl.MaxPooling2D(pool_size=(2,2))) model.add(tkl.Dropout (.2)) model.add(tkl.Conv2D(96,(5,5),padding='same')) model.add(tkl.LeakyReLU(alpha=.02)) model.add(tkl.MaxPooling2D(strides=(2,2))) model.add(tkl.Dropout (.2)) model.add(tkl.Conv2D(128,(5,5))) model.add(tkl.LeakyReLU(alpha=.02)) model.add(tkl.MaxPooling2D(strides=(2,2))) model.add(tkl.Dropout (.2)) model.add(tkl.GlobalMaxPooling2D()) model.add(tkl.Dense(1024)) model.add(tkl.LeakyReLU(alpha=.02)) model.add(tkl.Dropout (.5)) model.add(tkl.Dense(num_classes,activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='nadam', metrics=['sparse_categorical_accuracy']) return model
Digit Recognizer
21,648,756
import pandas as pd<import_modules>
cnn_model=model() checkpointer=tkc.ModelCheckpoint( filepath='/tmp/checkpoint',verbose=2,save_weights_only=True, monitor='val_sparse_categorical_accuracy',mode='max',save_best_only=True) lr_reduction=tkc.ReduceLROnPlateau( monitor='val_loss',patience=15,verbose=2,factor=.8) early_stopping=tkc.EarlyStopping( monitor='val_loss',patience=75,verbose=2) history=cnn_model.fit( x_train,y_train,epochs=120,batch_size=128, verbose=2,validation_data=(x_valid,y_valid), callbacks=[checkpointer,lr_reduction,early_stopping] )
Digit Recognizer
21,648,756
import pandas as pd<load_from_csv>
cnn_model.load_weights('/tmp/checkpoint') scores=cnn_model.evaluate(x_test,y_test,verbose=0 )
Digit Recognizer
21,648,756
train_df = pd.read_csv(".. /input/nlp-getting-started/train.csv") test_df = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') gt_df = pd.read_csv(".. /input/disasters-on-social-media/socialmedia-disaster-tweets-DFE.csv" )<data_type_conversions>
steps,epochs=int(len(x_train)/128),10 datagen=ImageDataGenerator( featurewise_center=True, featurewise_std_normalization=True, zoom_range=.2,shear_range=.2,rotation_range=30, height_shift_range=.2,width_shift_range=.2) datagen.fit(x_train) history=cnn_model.\ fit(datagen.flow(x_train,y_train,batch_size=128), steps_per_epoch=steps,epochs=epochs,verbose=2, validation_data=datagen.flow(x_valid,y_valid,batch_size=16), callbacks=[checkpointer,lr_reduction,early_stopping] )
Digit Recognizer
21,648,756
gt_df = gt_df[['choose_one', 'text']] gt_df['target'] =(gt_df['choose_one']=='Relevant' ).astype(int) gt_df['id'] = gt_df.index gt_df<merge>
cnn_model.load_weights('/tmp/checkpoint') scores=cnn_model.evaluate(x_test,y_test,verbose=0 )
Digit Recognizer
21,648,756
merged_df = pd.merge(test_df, gt_df, on='id') merged_df<save_to_csv>
predict_y_test_out=cnn_model.predict(x_test_out) predict_y_test_out=predict_y_test_out.argmax(axis=-1 )
Digit Recognizer
21,648,756
subm_df.to_csv('submission.csv', index=False )<install_modules>
submission=pd.DataFrame( {'ImageId':range(1,len(predict_y_test_out)+1), 'Label':predict_y_test_out}) print(submission[0:15].T) submission.to_csv('kaggle_digits_cnn.csv',index=False )
Digit Recognizer
21,648,756
! pip install tf-models-official==2.4.0 -q ! pip install tensorflow-gpu==2.4.1 -q ! pip install tensorflow-text==2.4.1 -q ! python -m spacy download en_core_web_sm -q ! pip install dataprep | grep -v 'already satisfied'<set_options>
os.environ['TFHUB_MODEL_LOAD_FORMAT']='COMPRESSED' model=th.load('https://tfhub.dev/captain-pool/esrgan-tf2/1') func=model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY] func.inputs[0].set_shape([1,img_size2//4,img_size2//4,3]) converter=tf.lite.TFLiteConverter.from_concrete_functions([func]) converter.optimizations=[tf.lite.Optimize.DEFAULT] tflite_model=converter.convert() with tf.io.gfile.GFile('ESRGAN.tflite','wb')as f: f.write(tflite_model) esrgan_model_path='./ESRGAN.tflite'
Digit Recognizer
21,648,756
np.set_printoptions(precision=4) warnings.filterwarnings('ignore' )<import_modules>
N3=10000; n3=int (.1*N3) x_train3=x_train[:N3]; y_train3=y_train[:N3] x_valid3=x_valid[:n3]; y_valid3=y_valid[:n3] x_test3=x_test[:n3]; y_test3=y_test[:n3] x_train3=tf.repeat(x_train3,3,axis=3 ).numpy() x_valid3=tf.repeat(x_valid3,3,axis=3 ).numpy() x_test3=tf.repeat(x_test3,3,axis=3 ).numpy() x_test3.shape,x_test3.mean()
Digit Recognizer
21,648,756
tf.__version__<define_variables>
def bicubic_resize(imgs,img_size=img_size2): bicubic=tf.image.resize( imgs*255,[img_size,img_size],tf.image.ResizeMethod.BICUBIC) bicubic_contrast=tf.image.adjust_contrast(bicubic,.8) bicubic_contrast=tf.cast(bicubic_contrast,tf.uint8) return bicubic_contrast.numpy() /255
Digit Recognizer
21,648,756
random.seed(319) np.random.seed(319) tf.random.set_seed(319 )<load_from_csv>
x_train3=bicubic_resize(x_train3) x_valid3=bicubic_resize(x_valid3) x_test3=bicubic_resize(x_test3) x_test3.shape,x_test3.mean()
Digit Recognizer
21,648,756
train_full = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test_full = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') print('Training Set Shape = {}'.format(train_full.shape)) print('Training Set Memory Usage = {:.2f}MB'.format(train_full.memory_usage().sum() /2**20)) print('Test Set Shape = {}'.format(test_full.shape)) print('Test Set Memory Usage = {:.2f}MB'.format(test_full.memory_usage().sum() /2**20))<load_from_csv>
def esrgantf2_superresolution( img,super_size=img_size2,model_path=esrgan_model_path): if img.mean() <1.: img=img*255. lr=tf.image.resize(img,[super_size//4,super_size//4]) lr=tf.expand_dims(lr.numpy() [:,:,:3],axis=0) lr=tf.cast(lr,tf.float32) interpreter=tf.lite.Interpreter(model_path=model_path) interpreter.allocate_tensors() input_details=interpreter.get_input_details() output_details=interpreter.get_output_details() interpreter.set_tensor(input_details[0]['index'],lr) interpreter.invoke() output_data=interpreter.get_tensor(output_details[0]['index']) sr=tf.squeeze(output_data,axis=0) sr=tf.clip_by_value(sr,0,255) sr=tf.round(sr); sr=tf.cast(sr,tf.uint8) lr=tf.cast(tf.squeeze(lr,axis=0),tf.uint8) return lr,sr
Digit Recognizer
21,648,756
df_train = pd.read_csv("/kaggle/input/disastertweet-prepared2/train_prepared.csv") df_test = pd.read_csv("/kaggle/input/disastertweet-prepared2/test_prepared.csv" )<drop_column>
for i in range(5): lr,sr=esrgantf2_superresolution( tf.repeat(x_train[i],3,axis=2 ).numpy()) low2superbicubic_imgs( tf.repeat(x_train[i],3,axis=2 ).numpy() ,lr,sr )
Digit Recognizer
21,648,756
train_full = clean_text(train_full,'keyword') test_full = clean_text(test_full, 'keyword' )<feature_engineering>
def premodel(pix,den,mh,lbl,activ,loss): model=tf.keras.Sequential([ tkl.Input(( pix,pix,3),name='input'), th.KerasLayer(mh,trainable=True), tkl.Flatten() , tkl.Dense(den,activation='relu'), tkl.Dropout(rate=.5), tkl.Dense(lbl,activation=activ)]) model.compile(optimizer='nadam',loss=loss, metrics=['sparse_categorical_accuracy']) return model def cb(fw): early_stopping=tkc.EarlyStopping( monitor='val_loss',patience=10,verbose=2) checkpointer=tkc.ModelCheckpoint( filepath=fw,verbose=2,save_weights_only=True, monitor='val_sparse_categorical_accuracy', mode='max',save_best_only=True) lr_reduction=tkc.ReduceLROnPlateau( monitor='val_loss',verbose=2,patience=5,factor=.8) return [checkpointer,early_stopping,lr_reduction]
Digit Recognizer
21,648,756
df_train['keyword'] = train_full['keyword'] df_test['keyword'] = test_full['keyword']<load_pretrained>
fw='/tmp/checkpoint' handle_base='mobilenet_v2_100_%d'%img_size2 mhandle='https://tfhub.dev/google/imagenet/{}/classification/4'\ .format(handle_base) hub_model=premodel(img_size2,1024,mhandle,num_classes, 'softmax','sparse_categorical_crossentropy') history=hub_model.fit(x=x_train3,y=y_train3,batch_size=128, epochs=20,callbacks=cb(fw),verbose=0, validation_data=(x_valid3,y_valid3))
Digit Recognizer
21,648,756
nlp_spacy = spacy.load('en_core_web_sm') sentence_enc = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4' )<categorify>
hub_model.load_weights('/tmp/checkpoint') hub_model.evaluate(x_test3,y_test3,verbose=0 )
Digit Recognizer
21,052,731
def extract_keywords(text): potential_keywords = [] TOP_KEYWORD = -1 pos_tag = ['ADJ', 'NOUN', 'PROPN'] doc = nlp_spacy(text) for i in doc: if i.pos_ in pos_tag: potential_keywords.append(i.text) document_embed = sentence_enc([text]) potential_embed = sentence_enc(potential_keywords) vector_distances = cosine_similarity(document_embed, potential_embed) keyword = [potential_keywords[i] for i in vector_distances.argsort() [0][TOP_KEYWORD:]] return keyword def keyword_filler(keyword, text): if pd.isnull(keyword): try: keyword = extract_keywords(text)[0] except: keyword = '' return keyword<data_type_conversions>
%matplotlib inline sns.set(style='white', context='notebook', palette='deep' )
Digit Recognizer
21,052,731
df_train.keyword = pd.DataFrame(list(map(keyword_filler, df_train.keyword, df_train.text)) ).astype(str) df_test.keyword = pd.DataFrame(list(map(keyword_filler, df_test.keyword, df_test.text)) ).astype(str) print('Null Training Keywords => ', df_train['keyword'].isnull().any()) print('Null Test Keywords => ', df_test['keyword'].isnull().any() )<split>
df_train = pd.read_csv(".. /input/digit-recognizer/train.csv") df_test = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
21,052,731
X_train, X_val, y_train, y_val = train_test_split(df_train[['text','keyword']], df_train.target, test_size=0.2, random_state=42) X_train.shape, X_val.shape<create_dataframe>
X_train = np.array(df_train.drop(['label'], axis=1), dtype="float32")/ 255.0 X_train = X_train.reshape(-1, 28, 28, 1) Y_train = to_categorical(df_train['label'], num_classes = 10) X_test = np.array(df_test, dtype="float32")/ 255.0 X_test = X_test.reshape(-1, 28, 28, 1 )
Digit Recognizer
21,052,731
train_ds = tf.data.Dataset.from_tensor_slices(( dict(X_train), y_train)) val_ds = tf.data.Dataset.from_tensor_slices(( dict(X_val), y_val)) test_ds = tf.data.Dataset.from_tensor_slices(dict(df_test[['text','keyword']]))<categorify>
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.05, random_state=34 )
Digit Recognizer
21,052,731
AUTOTUNE = tf.data.experimental.AUTOTUNE BUFFER_SIZE = 1000 BATCH_SIZE = 32 RANDOM_SEED = 319 def configure_dataset(dataset, shuffle=False, test=False): if shuffle: dataset = dataset.cache() \ .shuffle(BUFFER_SIZE, seed=RANDOM_SEED, reshuffle_each_iteration=True)\ .batch(BATCH_SIZE, drop_remainder=True)\ .prefetch(AUTOTUNE) elif test: dataset = dataset.cache() \ .batch(BATCH_SIZE, drop_remainder=False)\ .prefetch(AUTOTUNE) else: dataset = dataset.cache() \ .batch(BATCH_SIZE, drop_remainder=True)\ .prefetch(AUTOTUNE) return dataset<create_dataframe>
model = Sequential() model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(BatchNormalization()) model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
21,052,731
a3 = configure_dataset(train_ds, shuffle=True) dict3 = [] for elem in a3: dict3.append(elem[0]['text'][0]) dict3[:10]<prepare_x_and_y>
datagen = ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
21,052,731
train_ds = configure_dataset(train_ds, shuffle=True) val_ds = configure_dataset(val_ds) test_ds = configure_dataset(test_ds, test=True )<train_model>
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"]) learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
21,052,731
del X_train, X_val, y_train, y_val, df_train, df_test, train_full, test_full<define_variables>
epochs=50 batch_size=128 history = model.fit(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size, callbacks=[learning_rate_reduction] )
Digit Recognizer
21,052,731
bert_encoder_path = "https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4" bert_preprocessor_path = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3" keyword_embedding_path = "https://tfhub.dev/google/nnlm-en-dim128-with-normalization/2"<load_pretrained>
Y_pred = model.predict(X_val) Y_pred_classes = np.argmax(Y_pred,axis = 1) Y_true = np.argmax(Y_val,axis = 1 )
Digit Recognizer
21,052,731
bert_encoder = hub.KerasLayer(bert_encoder_path, trainable=True, name="BERT_Encoder") bert_preprocessor = hub.KerasLayer(bert_preprocessor_path, name="BERT_Preprocessor") nnlm_embed = hub.KerasLayer(keyword_embedding_path, name="NNLM_Embedding" )<categorify>
errors =(Y_pred_classes - Y_true != 0) Y_pred_classes_errors = Y_pred_classes[errors] Y_pred_errors = Y_pred[errors] Y_true_errors = Y_true[errors] X_val_errors = X_val[errors]
Digit Recognizer
21,052,731
kernel_initializer = tf.keras.initializers.GlorotNormal(seed=319) def create_model() : text_input = Input(shape=() , dtype=tf.string, name="text") encoder_inputs = bert_preprocessor(text_input) encoder_outputs = bert_encoder(encoder_inputs) pooled_output = encoder_outputs["pooled_output"] bert_branch = Dropout(0.1, seed=319, name="BERT_Dropout" )(pooled_output) keyword_input = Input(shape=() , dtype=tf.string, name='keyword') keyword_embed = nnlm_embed(keyword_input) keyword_flat = Flatten(name="Keyword_Flatten" )(keyword_embed) keyword_dense1 = Dense(128, activation='relu', kernel_initializer=kernel_initializer, kernel_regularizer=regularizers.l2(1e-4), name="Keyword_Dense1" )(keyword_flat) keyword_branch1 = Dropout(0.5, seed=319, name='Keyword_dropout1' )(keyword_dense1) keyword_dense2 = Dense(128, activation='relu', kernel_initializer=kernel_initializer, kernel_regularizer=regularizers.l2(1e-4), name="Keyword_Dense2" )(keyword_branch1) keyword_branch2 = Dropout(0.5, seed=319, name='Keyword_dropout2' )(keyword_dense2) keyword_dense3 = Dense(128, activation='relu', kernel_initializer=kernel_initializer, kernel_regularizer=regularizers.l2(1e-4), name="Keyword_Dense3" )(keyword_branch2) keyword_branch3 = Dropout(0.5, seed=319, name='Keyword_dropout3' )(keyword_dense3) merge = concatenate([bert_branch, keyword_branch3], name="Concatenate") dense = Dense(128, activation='relu', kernel_initializer=kernel_initializer, kernel_regularizer=regularizers.l2(1e-4), name="Merged_Dense" )(merge) dropout = Dropout(0.5, seed=319, name="Merged_Dropout" )(dense) clf = Dense(1, activation="sigmoid", kernel_initializer=kernel_initializer, name="Classifier" )(dropout) return Model([text_input, keyword_input], clf, name="BERT_Classifier" )<init_hyperparams>
Y_pred_errors_prob = np.max(Y_pred_errors,axis = 1) true_prob_errors = np.diagonal(np.take(Y_pred_errors, Y_true_errors, axis=1)) delta_pred_true_errors = Y_pred_errors_prob - true_prob_errors sorted_dela_errors = np.argsort(delta_pred_true_errors) most_important_errors = sorted_dela_errors[-6:] display_errors(most_important_errors, X_val_errors, Y_pred_classes_errors, Y_true_errors )
Digit Recognizer
21,052,731
EPOCHS = 3 LEARNING_RATE = 5e-5 STEPS_PER_EPOCH = int(train_ds.unbatch().cardinality().numpy() / BATCH_SIZE) VAL_STEPS = int(val_ds.unbatch().cardinality().numpy() / BATCH_SIZE) TRAIN_STEPS = STEPS_PER_EPOCH * EPOCHS WARMUP_STEPS = int(TRAIN_STEPS * 0.1) adamw_optimizer = create_optimizer( init_lr=LEARNING_RATE, num_train_steps=TRAIN_STEPS, num_warmup_steps=WARMUP_STEPS, optimizer_type='adamw' )<train_model>
results = model.predict(X_test) results = np.argmax(results, axis = 1) results = pd.Series(results, name="Label" )
Digit Recognizer
21,052,731
<save_to_csv><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"), results],axis = 1) submission.to_csv("submission.csv",index=False )
Digit Recognizer
12,297,004
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<compute_test_metric>
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from keras.utils import to_categorical from keras.models import Sequential, load_model from keras.layers import Conv2D, Dense, Flatten, MaxPool2D, Dropout from keras.optimizers import Adam from keras.callbacks import LearningRateScheduler, EarlyStopping, ModelCheckpoint from keras.wrappers.scikit_learn import KerasClassifier from sklearn.model_selection import RandomizedSearchCV
Digit Recognizer
12,297,004
submission(bert_classifier, test_ds )<load_from_url>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') print(train.head()) test = pd.read_csv('.. /input/digit-recognizer/test.csv') print(test.head() )
Digit Recognizer
12,297,004
!wget --quiet https://raw.githubusercontent.com/tensorflow/models/master/official/nlp/bert/tokenization.py <define_variables>
X_train = train.drop(labels = ['label'], axis = 1) y_train = train.label del train
Digit Recognizer
12,297,004
SEED = 1002 def seed_everything(seed): np.random.seed(seed) tf.random.set_seed(seed) seed_everything(SEED )<load_from_csv>
X_train = X_train / 255.0 test = test / 255.0
Digit Recognizer
12,297,004
train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv") submission = pd.read_csv("/kaggle/input/nlp-getting-started/sample_submission.csv") for i, val in enumerate(train.iloc[:2]["text"].to_list()): print("Tweet {}: {}".format(i+1, val))<categorify>
y_train = to_categorical(y_train, num_classes = 10 )
Digit Recognizer
12,297,004
def bert_encode(texts, tokenizer, max_len=512): all_tokens = [] all_masks = [] all_segments = [] for text in texts: text = tokenizer.tokenize(text) text = text[:max_len-2] input_sequence = ["[CLS]"] + text + ["[SEP]"] pad_len = max_len - len(input_sequence) tokens = tokenizer.convert_tokens_to_ids(input_sequence) tokens += [0] * pad_len pad_masks = [1] * len(input_sequence)+ [0] * pad_len segment_ids = [0] * max_len all_tokens.append(tokens) all_masks.append(pad_masks) all_segments.append(segment_ids) return np.array(all_tokens), np.array(all_masks), np.array(all_segments )<choose_model_class>
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size = 0.1, random_state = 10, stratify = y_train )
Digit Recognizer
12,297,004
def build_model(bert_layer, max_len=512): input_word_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") input_mask = Input(shape=(max_len,), dtype=tf.int32, name="input_mask") segment_ids = Input(shape=(max_len,), dtype=tf.int32, name="segment_ids") _, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) clf_output = sequence_output[:, 0, :] out = Dense(1, activation='sigmoid' )(clf_output) model = Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=out) model.compile(Adam(learning_rate=1e-5), loss='binary_crossentropy', metrics=['accuracy']) return model<choose_model_class>
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x, verbose = 0) nets = 3 model = [0] * nets for i in range(nets): model[i] = Sequential() model[i].add(Conv2D(filters = 32, kernel_size = 5, padding = 'same', activation = 'relu', input_shape =(28, 28, 1))) model[i].add(MaxPool2D()) if i > 0: model[i].add(Conv2D(filters = 48, kernel_size = 5, padding = 'same', activation = 'relu')) model[i].add(MaxPool2D()) if i > 1: model[i].add(Conv2D(filters = 64, kernel_size = 5, padding = 'same', activation = 'relu')) model[i].add(MaxPool2D(padding = 'same')) model[i].add(Flatten()) model[i].add(Dense(256, activation = 'relu')) model[i].add(Dense(10, activation = 'softmax')) model[i].compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy']) history = [0] * nets names = ['CNN-1', 'CNN-2', 'CNN-3'] epochs = 20 for i in range(nets): history[i] = model[i].fit(X_train, y_train, batch_size = 100, epochs = epochs, validation_data =(X_val, y_val), callbacks = [annealer], verbose = 0) print('{0}: Epochs = {1: d}, Train accuracy = {2:.5f}, Validation accuracy = {3:.5f}'.format(names[i], epochs, max(history[i].history['accuracy']), max(history[i].history['val_accuracy'])))
Digit Recognizer
12,297,004
module_url = "https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1" bert_layer = hub.KerasLayer(module_url, trainable=True )<categorify>
nets = 7 model = [0] * nets for i in range(nets): model[i] = Sequential() model[i].add(Conv2D(i*8+8, kernel_size = 5, padding = 'same', activation = 'relu', input_shape =(28, 28, 1))) model[i].add(MaxPool2D()) model[i].add(Conv2D(i*16+16, kernel_size = 5, padding = 'same', activation = 'relu')) model[i].add(MaxPool2D()) model[i].add(Flatten()) model[i].add(Dense(256, activation = 'relu')) model[i].add(Dense(10, activation = 'softmax')) model[i].compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy']) history = [0] * nets names = [] for i in range(nets): names.append(i*8+8) for i in range(nets): history[i] = model[i].fit(X_train, y_train, batch_size = 100, epochs = epochs, validation_data =(X_val, y_val), callbacks = [annealer], verbose = 0) print('CNN {0: d} maps: Epochs = {1: d}, Train accuracy = {2:.5f}, Validation accuracy = {3:.5f}'.format(names[i], epochs, max(history[i].history['accuracy']), max(history[i].history['val_accuracy'])) )
Digit Recognizer
12,297,004
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() tokenizer = tokenization.FullTokenizer(vocab_file, do_lower_case) train_input = bert_encode(train.text.values, tokenizer, max_len=160) test_input = bert_encode(test.text.values, tokenizer, max_len=160) train_labels = train.target.values<train_model>
nets = 8 model = [0] * nets for i in range(nets): model[i] = Sequential() model[i].add(Conv2D(48, kernel_size = 5, padding = 'same', activation = 'relu', input_shape =(28, 28, 1))) model[i].add(MaxPool2D()) model[i].add(Conv2D(96, kernel_size = 5, activation = 'relu')) model[i].add(MaxPool2D()) model[i].add(Flatten()) if i>0: model[i].add(Dense(2**(i+4), activation = 'relu')) model[i].add(Dense(10, activation = 'softmax')) model[i].compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy']) history = [0] * nets names = [0] for i in range(nets - 1): names.append(2**(i+5)) for i in range(nets): history[i] = model[i].fit(X_train, y_train, batch_size = 100, epochs = epochs, validation_data =(X_val, y_val), callbacks = [annealer], verbose = 0) print('CNN {0: d}N: Epochs {1: d}, Training accuracy {2:.5f}, Validation accuracy {3:.5f}'.format(names[i], epochs, max(history[i].history['accuracy']), max(history[i].history['val_accuracy'])) )
Digit Recognizer
12,297,004
checkpoint = ModelCheckpoint('model.h5', monitor='val_accuracy', save_best_only=True) train_history = model.fit( train_input, train_labels, validation_split=0.1, epochs=3, callbacks=[checkpoint], batch_size=16 )<save_to_csv>
nets = 8 model = [0] * nets names = [] for i, n in enumerate(range(8)) : names.append(f'{n*10}%') for i in range(nets): model[i] = Sequential() model[i].add(Conv2D(48, kernel_size = 5, padding = 'same', activation = 'relu', input_shape =(28, 28, 1))) model[i].add(MaxPool2D()) model[i].add(Dropout(i*0.1)) model[i].add(Conv2D(96, kernel_size = 5, activation = 'relu')) model[i].add(MaxPool2D()) model[i].add(Dropout(i*0.1)) model[i].add(Flatten()) model[i].add(Dense(256, activation = 'relu')) model[i].add(Dropout(i*0.1)) model[i].add(Dense(10, activation = 'sigmoid')) model[i].compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy']) history = [0] * nets for i in range(nets): history[i] = model[i].fit(X_train, y_train, batch_size = 100, epochs = epochs, validation_data =(X_val, y_val), callbacks = [annealer], verbose = 0) print('CNN Dropouts = {0}: Epochs = {1: d}, Training accuracy = {2:.5f}, Validation accuracy = {3:.5f}'.format(names[i], epochs, max(history[i].history['accuracy']), max(history[i].history['val_accuracy'])) )
Digit Recognizer
12,297,004
test_pred = model.predict(test_input) submission['target'] = test_pred.round().astype(int) submission.to_csv('submission.csv', index=False )<load_from_csv>
def create_model(optimizer = 'adam', activation = 'relu'): model = Sequential() model.add(Conv2D(48, kernel_size = 5, padding = 'same', activation = activation, input_shape =(28, 28, 1))) model.add(MaxPool2D()) model.add(Dropout(0.4)) model.add(Conv2D(96, kernel_size = 5, activation = activation)) model.add(MaxPool2D()) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense(256, activation = activation)) model.add(Dropout(0.4)) model.add(Dense(10, activation = 'sigmoid')) model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['accuracy']) return model model = KerasClassifier(build_fn = create_model) params = dict(optimizer = ['sgd', 'adam'], activation = ['relu', 'tanh'], batch_size = [50, 100, 150, 200], epochs = [10, 20, 30, 50]) random_search = RandomizedSearchCV(model, param_distributions = params, cv = 3, n_iter = 10) random_search_results = random_search.fit(X_train, y_train, validation_data =(X_val, y_val))
Digit Recognizer
12,297,004
items = pd.read_csv('.. /input/items.csv') shops = pd.read_csv('.. /input/shops.csv') cats = pd.read_csv('.. /input/item_categories.csv') train = pd.read_csv('.. /input/sales_train.csv') test = pd.read_csv('.. /input/test.csv' ).set_index('ID' )<filter>
print('Best: {0: 5f} using {1}'.format(random_search_results.best_score_, random_search_results.best_params_))
Digit Recognizer
12,297,004
train = train[train.item_price<100000] train = train[train.item_cnt_day<1001]<feature_engineering>
early_stopping = EarlyStopping(monitor = 'val_loss', patience = 5, verbose = 0, restore_best_weights = True) annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x, verbose = 0) model_checkpoint = ModelCheckpoint('Digit_Recognizer.hdf5', monitor='val_accuracy', verbose=1, save_best_only=True, mode='max') cnn = create_model(optimizer = 'adam', activation = 'relu') results = cnn.fit(X_train, y_train, validation_data =(X_val, y_val), batch_size = 50, epochs = 30, callbacks = [early_stopping, model_checkpoint, annealer] )
Digit Recognizer
12,297,004
<feature_engineering><EOS>
model = load_model('Digit_Recognizer.hdf5') model.evaluate(X_val, y_val) pred = model.predict(test) pred = np.argmax(pred, axis=1) pred = pd.Series(pred,name="Label") result = pd.concat([pd.Series(range(1,28001),name = "ImageId"),pred],axis = 1) result.to_csv("./digit_recognizer.csv",index=False )
Digit Recognizer
12,275,253
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<categorify>
%run.. /input/python-recipes/dhtml.py %run.. /input/python-recipes/load_kaggle_digits.py %run.. /input/python-recipes/classify_kaggle_digits.py dhtml('Data Processing' )
Digit Recognizer
12,275,253
shops.loc[shops.shop_name == 'Сергиев Посад ТЦ "7Я"', 'shop_name'] = 'СергиевПосад ТЦ "7Я"' shops['city'] = shops['shop_name'].str.split(' ' ).map(lambda x: x[0]) shops.loc[shops.city == '!Якутск', 'city'] = 'Якутск' shops['city_code'] = LabelEncoder().fit_transform(shops['city']) shops = shops[['shop_id','city_code']] cats['split'] = cats['item_category_name'].str.split('-') cats['type'] = cats['split'].map(lambda x: x[0].strip()) cats['type_code'] = LabelEncoder().fit_transform(cats['type']) cats['subtype'] = cats['split'].map(lambda x: x[1].strip() if len(x)> 1 else x[0].strip()) cats['subtype_code'] = LabelEncoder().fit_transform(cats['subtype']) cats = cats[['item_category_id','type_code', 'subtype_code']] items.drop(['item_name'], axis=1, inplace=True )<concatenate>
k=.75; cmap='Pastel1_r' x_train,y_train,x_valid,y_valid,x_test,y_test,\ test_images,num_classes=\ load_kaggle_digits(k,cmap )
Digit Recognizer
12,275,253
len(list(set(test.item_id)- set(test.item_id ).intersection(set(train.item_id)))) , len(list(set(test.item_id))), len(test )<data_type_conversions>
num_test=100 model_evaluation(cnn_model,x_test,y_test, weights,color,num_test )
Digit Recognizer
12,275,253
<feature_engineering><EOS>
cnn_model.load_weights(weights) predict_test_labels=\ cnn_model.predict_classes(test_images) submission=pd.DataFrame( {'ImageId':range(1,len(predict_test_labels)+1), 'Label':predict_test_labels}) submission.to_csv('kaggle_digits.csv',index=False) fig=pl.figure(figsize=(10,6)) for i in range(15): ax=fig.add_subplot(3,5,i+1,xticks=[],yticks=[]) ax.imshow(test_images[i].reshape(28,28), cmap=pl.get_cmap('Pastel1')) ax.set_title('%d'%submission['Label'][i], fontsize=10) pl.show()
Digit Recognizer
12,120,426
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<merge>
random_seed = 2 %matplotlib inline np.random.seed(2) sns.set(style='white', context='notebook', palette='deep' )
Digit Recognizer
12,120,426
ts = time.time() group = train.groupby(['date_block_num','shop_id','item_id'] ).agg({'item_cnt_day': ['sum']}) group.columns = ['item_cnt_month'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=cols, how='left') matrix['item_cnt_month'] =(matrix['item_cnt_month'] .fillna(0) .clip(0,20) .astype(np.float16)) time.time() - ts<data_type_conversions>
X = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv") Y = X["label"] X.drop("label",axis = 1, inplace = True)
Digit Recognizer
12,120,426
test['date_block_num'] = 34 test['date_block_num'] = test['date_block_num'].astype(np.int8) test['shop_id'] = test['shop_id'].astype(np.int8) test['item_id'] = test['item_id'].astype(np.int16 )<concatenate>
np.sum(X.isnull().any() )
Digit Recognizer
12,120,426
ts = time.time() matrix = pd.concat([matrix, test], ignore_index=True, sort=False, keys=cols) matrix.fillna(0, inplace=True) time.time() - ts<data_type_conversions>
sum(test.isnull().any() )
Digit Recognizer
12,120,426
ts = time.time() matrix = pd.merge(matrix, shops, on=['shop_id'], how='left') matrix = pd.merge(matrix, items, on=['item_id'], how='left') matrix = pd.merge(matrix, cats, on=['item_category_id'], how='left') matrix['city_code'] = matrix['city_code'].astype(np.int8) matrix['item_category_id'] = matrix['item_category_id'].astype(np.int8) matrix['type_code'] = matrix['type_code'].astype(np.int8) matrix['subtype_code'] = matrix['subtype_code'].astype(np.int8) time.time() - ts<merge>
def get_model(optim, loss): model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax")) model.compile(optimizer= optim, loss=loss, metrics=['accuracy']) return model def normalize(X, Y = None): X = X / 255.0 X = X.values.reshape(-1,28,28,1) if Y is not None: Y = Y.values.reshape(-1,1) return X,Y def get_samples(X, Y, encoder, val_size = 0.9): X_train, X_val, y_train, y_val = train_test_split(X, Y, test_size = val_size, random_state=42, stratify= Y) X_train = np.vstack([X_train,X_train,X_train]) y_train = np.concatenate([y_train, y_train, y_train]) idx = np.arange(0, X_train.shape[0]) np.random.shuffle(idx) X_train = X_train[idx,:] y_train = y_train[idx] X_train = X_train.reshape(-1,28,28,1) X_val = X_val.reshape(-1,28,28,1) y_train = encoder.transform(y_train ).todense() y_val = encoder.transform(y_val ).todense() return X_train,X_val,y_train,y_val
Digit Recognizer
12,120,426
def lag_feature(df, lags, col): tmp = df[['date_block_num','shop_id','item_id',col]] for i in lags: shifted = tmp.copy() shifted.columns = ['date_block_num','shop_id','item_id', col+'_lag_'+str(i)] shifted['date_block_num'] += i df = pd.merge(df, shifted, on=['date_block_num','shop_id','item_id'], how='left') return df<merge>
X_train,Y_train = normalize(X,Y) X_test,_ = normalize(test) encoder = OneHotEncoder() encoder.fit(Y_train )
Digit Recognizer
12,120,426
ts = time.time() group = matrix.groupby(['date_block_num'] ).agg({'item_cnt_month': ['mean']}) group.columns = [ 'date_avg_item_cnt' ] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num'], how='left') matrix['date_avg_item_cnt'] = matrix['date_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], 'date_avg_item_cnt') matrix.drop(['date_avg_item_cnt'], axis=1, inplace=True) time.time() - ts<merge>
data_generator = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False)
Digit Recognizer
12,120,426
ts = time.time() group = matrix.groupby(['date_block_num', 'item_id'] ).agg({'item_cnt_month': ['mean']}) group.columns = [ 'date_item_avg_item_cnt' ] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num','item_id'], how='left') matrix['date_item_avg_item_cnt'] = matrix['date_item_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1,2,3,6,12], 'date_item_avg_item_cnt') matrix.drop(['date_item_avg_item_cnt'], axis=1, inplace=True) time.time() - ts<merge>
EPOCHS = 50 BATCH_SIZE = 20 ENSEMBLES = 7 results = np.zeros(( test.shape[0],10)) histories = [] models = [] callback_list = [ ReduceLROnPlateau(monitor='val_loss', factor=0.25, min_lr=0.00001, patience=2, verbose=1), EarlyStopping(monitor='val_loss', min_delta=0.0001, patience=3, verbose=1) ] optimizer = Adam(learning_rate=0.001) loss_fn = CategoricalCrossentropy()
Digit Recognizer
12,120,426
ts = time.time() group = matrix.groupby(['date_block_num', 'shop_id'] ).agg({'item_cnt_month': ['mean']}) group.columns = [ 'date_shop_avg_item_cnt' ] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num','shop_id'], how='left') matrix['date_shop_avg_item_cnt'] = matrix['date_shop_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1,2,3,6,12], 'date_shop_avg_item_cnt') matrix.drop(['date_shop_avg_item_cnt'], axis=1, inplace=True) time.time() - ts<merge>
for i in range(ENSEMBLES): X_train_tmp, X_val, y_train_tmp, y_val = get_samples(X_train, Y_train, encoder) data_generator.fit(X_train_tmp) models.append(get_model(optimizer, loss_fn)) history = models[i].fit_generator(data_generator.flow(X_train_tmp, y_train_tmp, batch_size=BATCH_SIZE), epochs=EPOCHS, callbacks=[callback_list], validation_data=(X_val, y_val), steps_per_epoch=X_train_tmp.shape[0] // BATCH_SIZE, use_multiprocessing=True, verbose = 2) histories.append(history )
Digit Recognizer
12,120,426
ts = time.time() group = matrix.groupby(['date_block_num', 'item_category_id'] ).agg({'item_cnt_month': ['mean']}) group.columns = [ 'date_cat_avg_item_cnt' ] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num','item_category_id'], how='left') matrix['date_cat_avg_item_cnt'] = matrix['date_cat_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], 'date_cat_avg_item_cnt') matrix.drop(['date_cat_avg_item_cnt'], axis=1, inplace=True) time.time() - ts<merge>
results = np.zeros(( X_test.shape[0],10)) for i in range(ENSEMBLES): results = results + models[i].predict(X_test) results = np.argmax(results, axis = 1 )
Digit Recognizer
12,120,426
ts = time.time() group = matrix.groupby(['date_block_num', 'shop_id', 'item_category_id'] ).agg({'item_cnt_month': ['mean']}) group.columns = ['date_shop_cat_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'shop_id', 'item_category_id'], how='left') matrix['date_shop_cat_avg_item_cnt'] = matrix['date_shop_cat_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], 'date_shop_cat_avg_item_cnt') matrix.drop(['date_shop_cat_avg_item_cnt'], axis=1, inplace=True) time.time() - ts<merge>
submission = pd.DataFrame({"ImageID": range(1,len(results)+1), "Label": results}) submission.to_csv('submission.csv', index=False )
Digit Recognizer
11,955,886
ts = time.time() group = matrix.groupby(['date_block_num', 'shop_id', 'type_code'] ).agg({'item_cnt_month': ['mean']}) group.columns = ['date_shop_type_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'shop_id', 'type_code'], how='left') matrix['date_shop_type_avg_item_cnt'] = matrix['date_shop_type_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], 'date_shop_type_avg_item_cnt') matrix.drop(['date_shop_type_avg_item_cnt'], axis=1, inplace=True) time.time() - ts<merge>
data_dir='/kaggle/input/digit-recognizer/'
Digit Recognizer
11,955,886
ts = time.time() group = matrix.groupby(['date_block_num', 'shop_id', 'subtype_code'] ).agg({'item_cnt_month': ['mean']}) group.columns = ['date_shop_subtype_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'shop_id', 'subtype_code'], how='left') matrix['date_shop_subtype_avg_item_cnt'] = matrix['date_shop_subtype_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], 'date_shop_subtype_avg_item_cnt') matrix.drop(['date_shop_subtype_avg_item_cnt'], axis=1, inplace=True) time.time() - ts<merge>
train=pd.read_csv(data_dir+'train.csv') test=pd.read_csv(data_dir+'test.csv' )
Digit Recognizer
11,955,886
ts = time.time() group = matrix.groupby(['date_block_num', 'city_code'] ).agg({'item_cnt_month': ['mean']}) group.columns = [ 'date_city_avg_item_cnt' ] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'city_code'], how='left') matrix['date_city_avg_item_cnt'] = matrix['date_city_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], 'date_city_avg_item_cnt') matrix.drop(['date_city_avg_item_cnt'], axis=1, inplace=True) time.time() - ts<merge>
train['label'].value_counts()
Digit Recognizer
11,955,886
ts = time.time() group = matrix.groupby(['date_block_num', 'item_id', 'city_code'] ).agg({'item_cnt_month': ['mean']}) group.columns = [ 'date_item_city_avg_item_cnt' ] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'item_id', 'city_code'], how='left') matrix['date_item_city_avg_item_cnt'] = matrix['date_item_city_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], 'date_item_city_avg_item_cnt') matrix.drop(['date_item_city_avg_item_cnt'], axis=1, inplace=True) time.time() - ts<merge>
train.isnull().sum()
Digit Recognizer
11,955,886
ts = time.time() group = matrix.groupby(['date_block_num', 'type_code'] ).agg({'item_cnt_month': ['mean']}) group.columns = [ 'date_type_avg_item_cnt' ] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'type_code'], how='left') matrix['date_type_avg_item_cnt'] = matrix['date_type_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], 'date_type_avg_item_cnt') matrix.drop(['date_type_avg_item_cnt'], axis=1, inplace=True) time.time() - ts<merge>
train.isnull().sum()
Digit Recognizer
11,955,886
ts = time.time() group = matrix.groupby(['date_block_num', 'subtype_code'] ).agg({'item_cnt_month': ['mean']}) group.columns = [ 'date_subtype_avg_item_cnt' ] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'subtype_code'], how='left') matrix['date_subtype_avg_item_cnt'] = matrix['date_subtype_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], 'date_subtype_avg_item_cnt') matrix.drop(['date_subtype_avg_item_cnt'], axis=1, inplace=True) time.time() - ts<data_type_conversions>
features=[i for i in train.columns] k=0 for feature in features: if train[feature].isnull().sum() ==0: k=k+1 else: print('{0} has {1} null values'.format(feature,train[feature].isnull().sum())) if(k==train.shape[1]): print('no nan's in the train dataset,so proceed')
Digit Recognizer
11,955,886
ts = time.time() group = train.groupby(['item_id'] ).agg({'item_price': ['mean']}) group.columns = ['item_avg_item_price'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['item_id'], how='left') matrix['item_avg_item_price'] = matrix['item_avg_item_price'].astype(np.float16) group = train.groupby(['date_block_num','item_id'] ).agg({'item_price': ['mean']}) group.columns = ['date_item_avg_item_price'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num','item_id'], how='left') matrix['date_item_avg_item_price'] = matrix['date_item_avg_item_price'].astype(np.float16) lags = [1,2,3,4,5,6] matrix = lag_feature(matrix, lags, 'date_item_avg_item_price') for i in lags: matrix['delta_price_lag_'+str(i)] = \ (matrix['date_item_avg_item_price_lag_'+str(i)] - matrix['item_avg_item_price'])/ matrix['item_avg_item_price'] def select_trend(row): for i in lags: if row['delta_price_lag_'+str(i)]: return row['delta_price_lag_'+str(i)] return 0 matrix['delta_price_lag'] = matrix.apply(select_trend, axis=1) matrix['delta_price_lag'] = matrix['delta_price_lag'].astype(np.float16) matrix['delta_price_lag'].fillna(0, inplace=True) fetures_to_drop = ['item_avg_item_price', 'date_item_avg_item_price'] for i in lags: fetures_to_drop += ['date_item_avg_item_price_lag_'+str(i)] fetures_to_drop += ['delta_price_lag_'+str(i)] matrix.drop(fetures_to_drop, axis=1, inplace=True) time.time() - ts<merge>
features=[i for i in test.columns] k=0 for feature in features: if test[feature].isnull().sum() ==0: k=k+1 else: print('{0} has {1} null values'.format(feature,test[feature].isnull().sum())) if(k==test.shape[1]): print('no nan's in the test dataset,so proceed' )
Digit Recognizer
11,955,886
ts = time.time() group = train.groupby(['date_block_num','shop_id'] ).agg({'revenue': ['sum']}) group.columns = ['date_shop_revenue'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num','shop_id'], how='left') matrix['date_shop_revenue'] = matrix['date_shop_revenue'].astype(np.float32) group = group.groupby(['shop_id'] ).agg({'date_shop_revenue': ['mean']}) group.columns = ['shop_avg_revenue'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['shop_id'], how='left') matrix['shop_avg_revenue'] = matrix['shop_avg_revenue'].astype(np.float32) matrix['delta_revenue'] =(matrix['date_shop_revenue'] - matrix['shop_avg_revenue'])/ matrix['shop_avg_revenue'] matrix['delta_revenue'] = matrix['delta_revenue'].astype(np.float16) matrix = lag_feature(matrix, [1], 'delta_revenue') matrix.drop(['date_shop_revenue','shop_avg_revenue','delta_revenue'], axis=1, inplace=True) time.time() - ts<feature_engineering>
train_y=train['label'] train_x=train.drop('label',axis=1 )
Digit Recognizer
11,955,886
matrix['month'] = matrix['date_block_num'] % 12<categorify>
def image_printer(i,train_x): idx=i grid_data=train_x.iloc[idx].to_numpy().reshape(28,28 ).astype('uint8') plt.imshow(grid_data)
Digit Recognizer
11,955,886
days = pd.Series([31,28,31,30,31,30,31,31,30,31,30,31]) matrix['days'] = matrix['month'].map(days ).astype(np.int8 )<data_type_conversions>
label.value_counts()
Digit Recognizer
11,955,886
ts = time.time() cache = {} matrix['item_shop_last_sale'] = -1 matrix['item_shop_last_sale'] = matrix['item_shop_last_sale'].astype(np.int8) for idx, row in matrix.iterrows() : key = str(row.item_id)+' '+str(row.shop_id) if key not in cache: if row.item_cnt_month!=0: cache[key] = row.date_block_num else: last_date_block_num = cache[key] matrix.at[idx, 'item_shop_last_sale'] = row.date_block_num - last_date_block_num cache[key] = row.date_block_num time.time() - ts<data_type_conversions>
std_data=StandardScaler().fit_transform(data) print(np.mean(std_data)) print(np.std(std_data))
Digit Recognizer
11,955,886
ts = time.time() cache = {} matrix['item_last_sale'] = -1 matrix['item_last_sale'] = matrix['item_last_sale'].astype(np.int8) for idx, row in matrix.iterrows() : key = row.item_id if key not in cache: if row.item_cnt_month!=0: cache[key] = row.date_block_num else: last_date_block_num = cache[key] if row.date_block_num>last_date_block_num: matrix.at[idx, 'item_last_sale'] = row.date_block_num - last_date_block_num cache[key] = row.date_block_num time.time() - ts<feature_engineering>
temp_data=std_data covar_matrix=np.matmul(temp_data.T,temp_data) print(f'shape of covar matrix is {covar_matrix.shape}') print(f'shape of my data is {temp_data.shape}' )
Digit Recognizer
11,955,886
ts = time.time() matrix['item_shop_first_sale'] = matrix['date_block_num'] - matrix.groupby(['item_id','shop_id'])['date_block_num'].transform('min') matrix['item_first_sale'] = matrix['date_block_num'] - matrix.groupby('item_id')['date_block_num'].transform('min') time.time() - ts<filter>
eigh_values,eigh_vectors=eigh(covar_matrix,eigvals=(782,783)) print(f'shape of eigen vectors {eigh_vectors.shape}' )
Digit Recognizer
11,955,886
ts = time.time() matrix = matrix[matrix.date_block_num > 11] time.time() - ts<correct_missing_values>
pca_points=np.matmul(temp_data,eigh_vectors) print(f'shape of my pca points is {pca_points.shape}' )
Digit Recognizer
11,955,886
ts = time.time() def fill_na(df): for col in df.columns: if('_lag_' in col)&(df[col].isnull().any()): if('item_cnt' in col): df[col].fillna(0, inplace=True) return df matrix = fill_na(matrix) time.time() - ts<load_pretrained>
pca_data=np.vstack(( pca_points.T,label)).T print(f'shape of my pca data is {pca_data.shape}') pca_dataframe=pd.DataFrame(data=pca_data,columns=('1st Principal comp','2nd Principal comp','label')) print(pca_dataframe.head(10))
Digit Recognizer
11,955,886
matrix.to_pickle('data.pkl') del matrix del cache del group del items del shops del cats del train gc.collect() ;<load_pretrained>
pca=decomposition.PCA()
Digit Recognizer
11,955,886
data = pd.read_pickle('data.pkl' )<drop_column>
from sklearn.manifold import TSNE
Digit Recognizer
11,955,886
data = data[[ 'date_block_num', 'shop_id', 'item_id', 'item_cnt_month', 'city_code', 'item_category_id', 'type_code', 'subtype_code', 'item_cnt_month_lag_1', 'item_cnt_month_lag_2', 'item_cnt_month_lag_3', 'item_cnt_month_lag_6', 'item_cnt_month_lag_12', 'date_avg_item_cnt_lag_1', 'date_item_avg_item_cnt_lag_1', 'date_item_avg_item_cnt_lag_2', 'date_item_avg_item_cnt_lag_3', 'date_item_avg_item_cnt_lag_6', 'date_item_avg_item_cnt_lag_12', 'date_shop_avg_item_cnt_lag_1', 'date_shop_avg_item_cnt_lag_2', 'date_shop_avg_item_cnt_lag_3', 'date_shop_avg_item_cnt_lag_6', 'date_shop_avg_item_cnt_lag_12', 'date_cat_avg_item_cnt_lag_1', 'date_shop_cat_avg_item_cnt_lag_1', 'date_city_avg_item_cnt_lag_1', 'date_item_city_avg_item_cnt_lag_1', 'delta_price_lag', 'month', 'days', 'item_shop_last_sale', 'item_last_sale', 'item_shop_first_sale', 'item_first_sale', ]]<prepare_x_and_y>
temp_data1=std_data pca.n_components=450 pca_data=pca.fit_transform(temp_data1) pca_data_new=np.vstack(( pca_data1.T,label)).T new_data=pca_data
Digit Recognizer
11,955,886
X_train = data[data.date_block_num < 33].drop(['item_cnt_month'], axis=1) Y_train = data[data.date_block_num < 33]['item_cnt_month'] X_valid = data[data.date_block_num == 33].drop(['item_cnt_month'], axis=1) Y_valid = data[data.date_block_num == 33]['item_cnt_month'] X_test = data[data.date_block_num == 34].drop(['item_cnt_month'], axis=1 )<set_options>
from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import cross_val_score,cross_val_predict from sklearn.metrics import accuracy_score,confusion_matrix,classification_report from scipy.stats import uniform,truncnorm,randint
Digit Recognizer
11,955,886
del data gc.collect() ;<train_model>
clf=LogisticRegression(multi_class='multinomial',n_jobs=-1) cv_scores=cross_val_score(clf,new_data,label,cv=10) print(f'we can expect accuracy between {cv_scores.min() } and {cv_scores.max() } with avg accuracy of {cv_scores.mean() }' )
Digit Recognizer
11,955,886
ts = time.time() model = XGBRegressor( max_depth=8, n_estimators=1000, min_child_weight=300, colsample_bytree=0.8, subsample=0.8, eta=0.3, seed=42) model.fit( X_train, Y_train, eval_metric="rmse", eval_set=[(X_train, Y_train),(X_valid, Y_valid)], verbose=True, early_stopping_rounds = 10) time.time() - ts<save_to_csv>
class_pred=cross_val_predict(clf,new_data,label,cv=10) accLR=accuracy_score(label,class_pred) print(f'accuracy of our model is {accLR}') print(f' confusion matrix is ') print(confusion_matrix(label,class_pred)) print(f'classification report is ') print(classification_report(label,class_pred))
Digit Recognizer
11,955,886
Y_pred = model.predict(X_valid ).clip(0, 20) Y_test = model.predict(X_test ).clip(0, 20) submission = pd.DataFrame({ "ID": test.index, "item_cnt_month": Y_test }) submission.to_csv('xgb_submission.csv', index=False) pickle.dump(Y_pred, open('xgb_train.pickle', 'wb')) pickle.dump(Y_test, open('xgb_test.pickle', 'wb'))<define_variables>
for kernel in('poly','rbf'): clf=svm.SVC(kernel=kernel) cv_scores=cross_val_score(clf,new_data,label,n_jobs=-1,cv=10) print(f'accuracy of {kernel} kernel varies between {cv_scores.min() } and {cv_scores.max() } with mean {cv_scores.mean() }')
Digit Recognizer
11,955,886
<set_options>
for C in(1,10,100): clf=svm.SVC(kernel='rbf',C=C) cv_scores=cross_val_score(clf,new_data,label,n_jobs=-1,cv=10) print(f'accuracy of rbf kernel with C={C} varies between {cv_scores.min() } and {cv_scores.max() } with mean {cv_scores.mean() }')
Digit Recognizer
11,955,886
!pip install pyunpack !pip install patool os.environ["CUDA_VISIBLE_DEVICES"]='0,1' os.system('apt-get install p7zip') tf.random.set_seed(9) <import_modules>
for gamma in(0.001,0.01): clf=svm.SVC(kernel='rbf',C=10,gamma=gamma) cv_scores=cross_val_score(clf,new_data,label,n_jobs=-1,cv=10) print(f'accuracy of rbf kernel with C=10 and gamma={gamma} varies between {cv_scores.min() } and {cv_scores.max() } with mean {cv_scores.mean() }')
Digit Recognizer
11,955,886
tf.__version__<set_options>
clf=svm.SVC(kernel='rbf',C=10,gamma=0.001) cv_scores=cross_val_score(clf,new_data,label,n_jobs=-1,cv=10) print(f'accuracy of rbf kernel with C=10 and gamma= 0.001 varies between {cv_scores.min() } and {cv_scores.max() } with mean {cv_scores.mean() }' )
Digit Recognizer
11,955,886
device_lib.list_local_devices()<define_variables>
class_pred=cross_val_predict(clf,new_data,label,cv=10) accSVM=accuracy_score(label,class_pred) print(f'accuracy of our model is {accSVM}') print(f' confusion matrix is ') print(confusion_matrix(label,class_pred)) print(f'classification report is ') print(classification_report(label,class_pred))
Digit Recognizer
11,955,886
root_path = "/kaggle"<load_pretrained>
clf=KNeighborsClassifier(n_neighbors=5,n_jobs=-1) cv_score=cross_val_score(clf,new_data,label,cv=10) print(f' we can expect accuracy bwetween {cv_score.min() } and {cv_score.max() } with a mean of {cv_score.mean() }')
Digit Recognizer
11,955,886
if not os.path.exists(root_path + '/working/train/'): os.makedirs(root_path + '/working/train/') Archive(root_path + '/input/tensorflow-speech-recognition-challenge/train.7z' ).extractall(root_path + '/working') train_path = root_path + '/working/train/audio/'<load_pretrained>
class_pred=cross_val_predict(clf,new_data,label,cv=10) accKNN=accuracy_score(label,class_pred) print(f'accuracy of our model is {accKNN}') print(f' confusion matrix is ') print(confusion_matrix(label,class_pred)) print(f'classification report is ') print(classification_report(label,class_pred))
Digit Recognizer
11,955,886
train_audio_sample = os.path.join(train_path, "yes/0a7c2a8d_nohash_0.wav") x,sr = librosa.load(train_audio_sample, sr = 16000) ipd.Audio(x, rate=sr )<normalization>
clf=DecisionTreeClassifier(max_depth=best_n,random_state=0) cv_score=cross_val_score(clf,new_data,label,cv=10,scoring='accuracy',n_jobs=-1) print(f' with {best_n} as depth of trees we can expect accuracy bwetween {cv_score.min() } and {cv_score.max() } with a mean of {cv_score.mean() }' )
Digit Recognizer
11,955,886
mfccs = librosa.feature.mfcc(x, sr=sr, n_mfcc=40) scaler = StandardScaler() ee= scaler.fit_transform(mfccs.T) plt.figure(figsize=(14, 5)) librosa.display.specshow(ee.T )<categorify>
clf=DecisionTreeClassifier(max_depth=best_n,random_state=0) clf.fit(new_data,label )
Digit Recognizer
11,955,886
def pad_audio(samples, L): if len(samples)>= L: return samples else: return np.pad(samples, pad_width=(L - len(samples), 0), mode='constant', constant_values=(0, 0)) def chop_audio(samples, L=16000): while True: beg = np.random.randint(0, len(samples)- L) yield samples[beg: beg + L] def choose_background_generator(sound, backgrounds, max_alpha = 0.7): if backgrounds is None: return sound my_gen = backgrounds[np.random.randint(len(backgrounds)) ] background = next(my_gen)* np.random.uniform(0, max_alpha) augmented_data = sound + background augmented_data = augmented_data.astype(type(sound[0])) return augmented_data def random_shift(sound, shift_max = 0.2, sampling_rate = 16000): shift = np.random.randint(sampling_rate * shift_max) out = np.roll(sound, shift) if shift > 0: out[:shift] = 0 else: out[shift:] = 0 return out def random_change_pitch(x, sr=16000): pitch_factor = np.random.randint(1, 4) out = librosa.effects.pitch_shift(x, sr, pitch_factor) return out def random_speed_up(x): where = ["start", "end"][np.random.randint(0, 1)] speed_factor = np.random.uniform(0, 0.5) up = librosa.effects.time_stretch(x, 1 + speed_factor) up_len = up.shape[0] if where == "end": up = np.concatenate(( up, np.zeros(( x.shape[0] - up_len,)))) else: up = np.concatenate(( np.zeros(( x.shape[0] - up_len,)) , up)) return up def get_image_list(train_audio_path): classes = os.listdir(train_audio_path) classes = [thisclass for thisclass in classes if thisclass != '_background_noise_'] index = [i for i,j in enumerate(classes)] outlist = [] labels = [] for thisindex,thisclass in zip(index, classes): filelist = [f for f in os.listdir(os.path.join(train_audio_path, thisclass)) if f.endswith('.wav')] filelist = [os.path.join(train_audio_path, thisclass, x)for x in filelist] outlist.append(filelist) labels.append(np.full(len(filelist), fill_value= thisindex)) return outlist,labels,dict(zip(classes,index)) def split_train_test_stratified_shuffle(images_list, labels, train_size = 0.9): classes_size = [len(x)for x in images_list] classes_vector = [np.arange(x)for x in classes_size] total = np.sum(classes_size) total_train = [int(train_size * total * x)for x in classes_size / total] train_index = [np.random.choice(x,y,replace=False)for x,y in zip(classes_size,total_train)] validation_index = [np.setdiff1d(i,j)for i,j in zip(classes_vector,train_index)] train_set = [np.array(x)[idx] for x,idx in zip(images_list,train_index)] validation_set = [np.array(x)[idx] for x,idx in zip(images_list,validation_index)] train_labels = [np.array(x)[idx] for x,idx in zip(labels,train_index)] validation_labels = [np.array(x)[idx] for x,idx in zip(labels,validation_index)] train_set = np.array([element for array in train_set for element in array]) validation_set = np.array([element for array in validation_set for element in array]) train_labels = np.array([element for array in train_labels for element in array]) validation_labels = np.array([element for array in validation_labels for element in array]) train_shuffle = np.random.permutation(len(train_set)) validation_shuffle = np.random.permutation(len(validation_set)) train_set = train_set[train_shuffle] validation_set = validation_set[validation_shuffle] train_labels = train_labels[train_shuffle] validation_labels = validation_labels[validation_shuffle] return train_set,train_labels,validation_set,validation_labels def preprocess_data(file, background_generator, target_sr = 16000, n_mfcc = 40, threshold = 0.7): x,sr = librosa.load(file, sr = target_sr) x = pad_audio(x, sr) if np.random.uniform(0, 1)> threshold: x = choose_background_generator(x, background_generator) if np.random.uniform(0, 1)> threshold: x = random_shift(x) if np.random.uniform(0, 1)> threshold: x = random_change_pitch(x) if np.random.uniform(0, 1)> threshold: x = random_speed_up(x) mfccs = librosa.feature.mfcc(x, sr=sr, n_mfcc=n_mfcc) mfccs = np.moveaxis(mfccs, 1, 0) scaler = StandardScaler() mfccs_scaled = scaler.fit_transform(mfccs) return mfccs_scaled.reshape(mfccs_scaled.shape[0], mfccs_scaled.shape[1], 1) class data_generator(Sequence): def __init__(self, x_set, y_set, batch_size, background_generator): self.x, self.y = x_set, y_set self.batch_size = batch_size self.background_generator = background_generator def __len__(self): return math.ceil(len(self.x)/ self.batch_size) def __getitem__(self, idx): idx_from = idx * self.batch_size idx_to =(idx + 1)* self.batch_size batch_x = self.x[idx_from:idx_to] batch_y = self.y[idx_from:idx_to] x = [preprocess_data(elem, self.background_generator)for elem in batch_x] y = batch_y return np.array(x), np.array(y) def build_model(n_classes, input_shape): model_input = keras.Input(shape=input_shape) img_1 = layers.Convolution2D(filters = 32, kernel_size =(3,3), padding = "same", activation=activations.relu )(model_input) img_1 = layers.MaxPooling2D(pool_size=(2, 2))(img_1) img_1 = layers.Convolution2D(filters = 64, kernel_size =(3,3), padding = "same", activation=activations.relu )(img_1) img_1 = layers.MaxPooling2D(pool_size=(2, 2))(img_1) img_1 = layers.Convolution2D(filters = 128, kernel_size =(3,3), padding = "same", activation=activations.relu )(img_1) img_1 = layers.MaxPooling2D(pool_size=(2, 2))(img_1) img_1 = layers.Convolution2D(filters = 256, kernel_size =(3,3), padding = "same", activation=activations.relu )(img_1) img_1 = layers.MaxPooling2D(pool_size=(2, 2))(img_1) img_1 = layers.Dropout(rate=0.25 )(img_1) img_1 = layers.Flatten()(img_1) img_1 = layers.Dense(128, activation=activations.relu )(img_1) img_1 = layers.Dropout(rate=0.5 )(img_1) model_output = layers.Dense(n_classes, activation=activations.softmax )(img_1) model = keras.Model(model_input, model_output) return model def multiclass_roc(y_test, y_pred, average="macro"): lb = LabelBinarizer() lb.fit(y_test) y_test = lb.transform(y_test) y_pred = lb.transform(y_pred) all_labels = np.unique(y_test) for(idx, c_label)in enumerate(all_labels): fpr, tpr, thresholds = roc_curve(y_test[:,idx].astype(int), y_pred[:,idx]) c_ax.plot(fpr, tpr, label = '%s(AUC:%0.2f)' %(c_label, auc(fpr, tpr))) c_ax.plot(fpr, fpr, 'b-', label = 'Random Guessing') return roc_auc_score(y_test, y_pred, average=average )<load_pretrained>
cn=['0','1','2','3','4','5','6','7','8','9'] dot_data = tree.export_graphviz(clf, out_file=None, class_names=cn, filled=True) graph = graphviz.Source(dot_data,format="png") graph
Digit Recognizer
11,955,886
wavfiles = glob.glob(os.path.join(train_path, "_background_noise_/*wav")) wavfiles = [librosa.load(elem, sr = 16000)[0] for elem in wavfiles] background_generator = [chop_audio(x)for x in wavfiles]<split>
class_pred=cross_val_predict(clf,new_data,label,cv=10) accDT=accuracy_score(label,class_pred) print(f'accuracy of our model is {accDT}') print(f' confusion matrix is ') print(confusion_matrix(label,class_pred)) print(f'classification report is ') print(classification_report(label,class_pred))
Digit Recognizer
11,955,886
images_list,labels,classes_map = get_image_list(train_path) train_set,train_labels,validation_set,validation_labels = split_train_test_stratified_shuffle(images_list,labels) train_datagen = data_generator(train_set, train_labels, 40, background_generator) validation_datagen = data_generator(validation_set, validation_labels,40, None )<normalization>
clf=RandomForestClassifier(n_estimators=600,max_depth=best_n,random_state=0,n_jobs=-1) cv_score=cross_val_score(clf,new_data,label,cv=10,scoring='accuracy',n_jobs=-1) print(f' with {best_n} as depth of trees and {600} as no of trees we can expect accuracy bwetween {cv_score.min() } and {cv_score.max() } with a mean of {cv_score.mean() }' )
Digit Recognizer
11,955,886
start_random = random_shift(x) ipd.Audio(start_random , rate=sr )<normalization>
class_pred=cross_val_predict(clf,new_data,label,cv=10) accRF=accuracy_score(label,class_pred) print(f'accuracy of our model is {accRF}') print(f' confusion matrix is ') print(confusion_matrix(label,class_pred)) print(f'classification report is ') print(classification_report(label,class_pred))
Digit Recognizer
11,955,886
higher_speed = random_speed_up(x) ipd.Audio(higher_speed , rate=sr )<normalization>
import tensorflow as tf import keras from keras import backend as k from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Activation, BatchNormalization from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.preprocessing.image import ImageDataGenerator from keras.utils import plot_model from keras.callbacks import EarlyStopping
Digit Recognizer
11,955,886
pitch_changed = random_change_pitch(x) ipd.Audio(pitch_changed, rate=sr )<define_variables>
test_x=test
Digit Recognizer
11,955,886
inv_map = {v: k for k, v in classes_map.items() } any_present=[i in validation_set for i in train_set] np.any(any_present )<count_unique_values>
img_cols=28 img_rows=28
Digit Recognizer
11,955,886
test1 = np.random.randint(10, 100, 10) validation_set[test1],[inv_map[int(i)] for i in validation_labels[test1]]<merge>
if k.image_data_format=='channels_first': train_x = train_x.values.reshape(train_x.shape[0], 1,img_cols,img_rows) test = test.values.reshape(test.shape[0], 1,img_cols,img_rows) train_x=train_x/255.0 test=test/255.0 input_shape =(1,img_cols,img_rows) else: train_x=train_x.values.reshape(train_x.shape[0],img_cols,img_rows,1) test=test.values.reshape(test.shape[0],img_cols,img_rows,1) train_x=train_x/255.0 test=test/255.0 input_shape =(img_cols,img_rows,1 )
Digit Recognizer
11,955,886
out2.join(out, lsuffix='_left', rsuffix='_right')[:5]<compute_test_metric>
earlystopping = EarlyStopping(monitor ="val_accuracy", mode = 'auto', patience = 10, restore_best_weights = True) modelacc = [] nfilters = [32, 64, 128,256] conv_layers = [1, 2, 3,4] dense_layers = [0, 1, 2,3] dp=0.5 for filters in nfilters: for conv_layer in conv_layers: for dense_layer in dense_layers: cnnsays = 'No of filters/feature maps: {} conv_layers: {} dense_layers: {} dropout: {}'.format(filters, conv_layer, dense_layer, dp) print(cnnsays) model = Sequential() model.add(Conv2D(filters,(3, 3), input_shape = input_shape)) model.add(BatchNormalization()) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(dp)) for i in range(conv_layer-1): model.add(Conv2D(filters,(3, 3),padding="same")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(dp)) model.add(Flatten()) for i in range(dense_layer): model.add(Dense(256)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(dp)) model.add(Dense(10, activation='softmax')) model.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) EPOCHS = 30 history = model.fit(train_x, train_y, epochs=EPOCHS, batch_size=32, validation_split=0.2, callbacks=[earlystopping]) modelacc.append([round(100*max(history.history['val_accuracy']), 2), cnnsays])
Digit Recognizer