kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
20,482,624 | test = pd.read_csv('.. /input/ranzcr-clip-catheter-line-classification/sample_submission.csv')
test['file_path'] = test.StudyInstanceUID.apply(lambda x: os.path.join('.. /input/ranzcr-clip-catheter-line-classification/test', f'{x}.jpg'))
target_cols = test.iloc[:, 1:12].columns.tolist()
test_dataset = RANZCRDataset(test, 'test', transform=transforms_test)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=24 )<choose_model_class> | history = model.fit(datagen.flow(Xtrain, ytrain, batch_size=100), validation_data=(Xvalid, yvalid), epochs = 100, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
20,482,624 | submit = False
if submit:
test_preds = []
for i in range(len(enet_type)) :
if enet_type[i] == 'resnet200d':
print('resnet200d loaded')
model = RANZCRResNet200D(enet_type[i], out_dim=len(target_cols))
model = model.to(device)
model.load_state_dict(torch.load(model_path[i], map_location='cuda:0'))
if tta:
test_preds += [tta_inference_func(test_loader)]
else:
test_preds += [inference_func(test_loader)]
submission = pd.read_csv('.. /input/ranzcr-clip-catheter-line-classification/sample_submission.csv')
submission[target_cols] = np.mean(test_preds, axis=0)
submission.to_csv('submission.csv', index=False)
else:
pd.read_csv('.. /input/ranzcr-clip-catheter-line-classification/sample_submission.csv' ).to_csv('submission.csv', index=False )<load_from_csv> | ypred = model.predict(test_data)
for i in range(ypred.shape[0]):
pred = ypred[i, :]
ypred[i, 0] = list(pred ).index(pred.max() ) | Digit Recognizer |
20,482,624 | <load_from_csv><EOS> | submission = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv')
submission.iloc[:, 1] = ypred[:, 0].astype(np.int)
submission.to_csv('submission.csv', index=False ) | Digit Recognizer |
20,343,341 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<set_options> | !pip install efficientnet tensorflow_addons > /dev/null | Digit Recognizer |
20,343,341 | if torch.cuda.is_available() :
map_location=lambda storage, loc: storage.cuda()
else:
map_location='cpu'<set_options> | %matplotlib inline
| Digit Recognizer |
20,343,341 | if torch.cuda.is_available() :
device= 'cuda'
else:
device='cpu'
print(device )<categorify> | train = pd.read_csv(".. /input/digit-recognizer/train.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv" ) | Digit Recognizer |
20,343,341 | def get_transforms() :
return Compose([
Resize(IMAGE_SIZE, IMAGE_SIZE),
Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
ToTensorV2()
] )<choose_model_class> | X_train = X_train / 255.0
test = test / 255.0 | Digit Recognizer |
20,343,341 | class ResNet200D(nn.Module):
def __init__(self, model_name='resnet200d'):
super().__init__()
self.model = timm.create_model(model_name, pretrained=False)
n_features = self.model.fc.in_features
self.model.global_pool = nn.Identity()
self.model.fc = nn.Identity()
self.pooling = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(n_features, 11)
def forward(self, x):
bs = x.size(0)
features = self.model(x)
pooled_features = self.pooling(features ).view(bs, -1)
output = self.fc(pooled_features)
return output<categorify> | X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1 ) | Digit Recognizer |
20,343,341 | def inference(models, test_loader, device):
tk0 = tqdm(enumerate(test_loader), total=len(test_loader))
probs = []
for i,(images)in tk0:
images = images.to(device)
avg_preds = []
for model in models:
with torch.no_grad() :
y_preds1 = model(images)
y_preds2 = model(images.flip(-1))
y_preds =(y_preds1.sigmoid().to('cpu' ).numpy() + y_preds2.sigmoid().to('cpu' ).numpy())/ 2
avg_preds.append(y_preds)
avg_preds = np.mean(avg_preds, axis=0)
probs.append(avg_preds)
probs = np.concatenate(probs)
return probs<define_variables> | Y_train = tf.keras.utils.to_categorical(Y_train, num_classes = 10 ) | Digit Recognizer |
20,343,341 | MODEL_PATH = '.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold4_cv954.pth'
MODEL_PATH957 = '.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold3_cv957.pth'<choose_model_class> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=0 ) | Digit Recognizer |
20,343,341 | model = ResNet200D()
model.load_state_dict(torch.load(MODEL_PATH,map_location=map_location),strict=False)
model.eval()
models = [model.to(device)]
model957 = ResNet200D()
model957.load_state_dict(torch.load(MODEL_PATH957,map_location=map_location),strict=False)
model957.eval()
models957 = [model957.to(device)]<load_from_csv> | efficientnet_size = 7
weights = "imagenet"
size = 56 | Digit Recognizer |
20,343,341 | test = pd.read_csv('.. /input/ranzcr-clip-catheter-line-classification/sample_submission.csv')
test_dataset = TestDataset(test, transform=get_transforms())
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False,
num_workers=4 , pin_memory=True)
predictions = inference(models, test_loader, device)
predictions957 = inference(models957, test_loader, device)
<save_to_csv> | model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(filters = 3, kernel_size = 1, padding = 'Same',
activation ='relu', input_shape =(size,size,1)))
model.add(getattr(efn, f"EfficientNetB{efficientnet_size}" )(
weights=weights, include_top=False, input_shape=(size, size, 3)))
model.add(tf.keras.layers.GlobalAveragePooling2D())
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(10, activation = "softmax")) | Digit Recognizer |
20,343,341 | target_cols = test.iloc[:, 1:12].columns.tolist()
test[target_cols] =(predictions + predictions957)/2
test[['StudyInstanceUID'] + target_cols].to_csv('submission.csv', index=False)
test.head()<import_modules> | optimizer = tf.keras.optimizers.Adam(lr=0.0001 ) | Digit Recognizer |
20,343,341 |
<define_variables> | model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
20,343,341 | AUTO = tf.data.experimental.AUTOTUNE
DIM = 600
IMAGE_SIZE=[DIM,DIM]
BATCH_SIZE = 8
DATA_PATH = ".. /input/ranzcr-clip-catheter-line-classification/"
OUTPUT_PATH = "./"<install_modules> | tf.random.set_seed(0)
history = model.fit(X_train,
Y_train,
epochs=10,
batch_size=128,
validation_data=(X_val, Y_val),
) | Digit Recognizer |
20,343,341 | !pip install.. /input/kerasapplications/keras-applications-master/
package_path = '.. /input/efficientnetmaster/efficientnet-master/'
sys.path.append(package_path)
<define_variables> | pred = model.predict_classes(test ) | Digit Recognizer |
20,343,341 | TEST_FILENAMES = tf.io.gfile.glob('.. /input/ranzcr-clip-catheter-line-classification/test_tfrecords/*.tfrec')
print(TEST_FILENAMES )<categorify> | submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv" ) | Digit Recognizer |
20,343,341 | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.image.resize(image, [DIM, DIM])
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
'image': tf.io.FixedLenFeature([], tf.string),
'StudyInstanceUID': tf.io.FixedLenFeature([], tf.string)
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['StudyInstanceUID']
return image, idnum
def load_dataset(filenames, labeled = True, ordered = False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads = AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_unlabeled_tfrecord, num_parallel_calls = AUTO)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n)
NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES )<load_pretrained> | submission["Label"] = pred | Digit Recognizer |
20,343,341 | models1=[]
for filename in glob.glob('.. /input/eff7trained/*best.h5'):
model = tf.keras.models.load_model(filename, custom_objects = None)
models1.append(model)
<predict_on_test> | submission.to_csv("submission.csv",index=False ) | Digit Recognizer |
18,487,180 | test_ds = get_test_dataset(ordered=True)
test_images_ds = test_ds.map(lambda image, idnum: image)
labels = ['ETT - Abnormal', 'ETT - Borderline',
'ETT - Normal', 'NGT - Abnormal', 'NGT - Borderline',
'NGT - Incompletely Imaged', 'NGT - Normal', 'CVC - Abnormal',
'CVC - Borderline', 'CVC - Normal', 'Swan Ganz Catheter Present']
mean =(models1[0].predict(test_images_ds)
+models1[1].predict(test_images_ds)
+models1[2].predict(test_images_ds)
+models1[3].predict(test_images_ds)
+models1[4].predict(test_images_ds)) /5.0<categorify> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
test = pd.read_csv('.. /input/digit-recognizer/test.csv' ) | Digit Recognizer |
18,487,180 | test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U' )<save_to_csv> | x_train = train.drop('label', axis=1)/255.0
y_label = train['label'].values
x_test = test/255.0 | Digit Recognizer |
18,487,180 | submission = pd.DataFrame(mean, columns = labels)
submission.insert(0, "StudyInstanceUID", test_ids, False)
submission['StudyInstanceUID'] = submission['StudyInstanceUID'].apply(lambda x: x.rstrip(".jpg"))
submission.to_csv('submission.csv', index=False )<train_model> | datagen = ImageDataGenerator(
rotation_range=15,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
) | Digit Recognizer |
18,487,180 | print("Done" )<define_variables> | import tensorflow as tf | Digit Recognizer |
18,487,180 | batch_size = 1
image_size = 512
tta = True
submit = True
enet_type = ['resnet200d'] * 5
model_path = ['.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold0_cv953.pth',
'.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold1_cv955.pth',
'.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold2_cv955.pth',
'.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold3_cv957.pth',
'.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold4_cv954.pth']<set_options> | class ResidualUnit(tf.keras.layers.Layer):
def __init__(self, filters, strides=1, activation='relu', **kwargs):
super().__init__(**kwargs)
self.activation = tf.keras.activations.get(activation)
self.main_layers = [
tf.keras.layers.Conv2D(filters, 3, strides=strides, padding='SAME', use_bias=False),
tf.keras.layers.BatchNormalization() ,
self.activation,
tf.keras.layers.Conv2D(filters, 3, strides=1, padding='SAME', use_bias=False),
tf.keras.layers.BatchNormalization() ,
self.activation,
tf.keras.layers.Conv2D(filters, 3, strides=1, padding='SAME', use_bias=False),
tf.keras.layers.BatchNormalization() ,
]
self.skip_layers = []
if strides > 1:
self.skip_layers = [
tf.keras.layers.Conv2D(filters, 1, strides=strides, padding='SAME', use_bias=False),
tf.keras.layers.BatchNormalization() ,
]
def call(self, inputs):
Z = inputs
for layer in self.main_layers:
Z=layer(Z)
skip_Z = inputs
for layer in self.skip_layers:
skip_Z = layer(skip_Z)
return self.activation(Z +skip_Z ) | Digit Recognizer |
18,487,180 | sys.path.append('.. /input/pytorch-image-models/pytorch-image-models-master')
sys.path.append('.. /input/timm-pytorch-image-models/pytorch-image-models-master')
DEBUG = False
%matplotlib inline
device = torch.device('cuda')if not DEBUG else torch.device('cpu' )<choose_model_class> | model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(64,(7,7), input_shape=(28, 28, 1), padding='SAME'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D(2, 2))
prev_filters = 64
for filters in [64]*2 + [128]*2 + [256]*2:
print(filters)
strides = 1 if filters == prev_filters else 2
model.add(ResidualUnit(filters, strides=strides))
prev_filters = filters
model.add(tf.keras.layers.GlobalAvgPool2D())
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dropout(0.5*0.5))
model.add(tf.keras.layers.Dense(int(filters/2), activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax')) | Digit Recognizer |
18,487,180 | class RANZCRResNet200D(nn.Module):
def __init__(self, model_name='resnet200d', out_dim=11, pretrained=False):
super().__init__()
self.model = timm.create_model(model_name, pretrained=False)
n_features = self.model.fc.in_features
self.model.global_pool = nn.Identity()
self.model.fc = nn.Identity()
self.pooling = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(n_features, out_dim)
def forward(self, x):
bs = x.size(0)
features = self.model(x)
pooled_features = self.pooling(features ).view(bs, -1)
output = self.fc(pooled_features)
return output<concatenate> | model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['acc'])
checkpoint = ModelCheckpoint(
filepath=f'resnet-{int(time.time())}.dhf5',
monitor='loss',
save_best_only=True
)
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.8**x)
callbacks = [checkpoint, annealer] | Digit Recognizer |
18,487,180 | transforms_test = albumentations.Compose([
Resize(image_size, image_size),
Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
ToTensorV2()
] )<load_from_csv> | batch_size = 64
history = model.fit(datagen.flow(X_train, y_label, batch_size=batch_size),
epochs = 30,
verbose = 1, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=callbacks, ) | Digit Recognizer |
18,487,180 | test = pd.read_csv('.. /input/ranzcr-clip-catheter-line-classification/sample_submission.csv')
test['file_path'] = test.StudyInstanceUID.apply(lambda x: os.path.join('.. /input/ranzcr-clip-catheter-line-classification/test', f'{x}.jpg'))
target_cols = test.iloc[:, 1:12].columns.tolist()
test_dataset = RANZCRDataset(test, 'test', transform=transforms_test)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=24 )<choose_model_class> | model.evaluate(X_train, y_label ) | Digit Recognizer |
18,487,180 | if submit:
test_preds_1 = []
for i in range(len(enet_type)) :
if enet_type[i] == 'resnet200d':
print('resnet200d loaded')
model = RANZCRResNet200D(enet_type[i], out_dim=len(target_cols))
model = model.to(device)
model.load_state_dict(torch.load(model_path[i], map_location='cuda:0'))
if tta:
test_preds_1 += [tta_inference_func(test_loader)]
else:
test_preds_1 += [inference_func(test_loader)]<load_from_csv> | def predict_proba(X, model, num_samples):
preds = [model(X, training=True)for _ in range(num_samples)]
return np.stack(preds ).mean(axis=0)
def predict_class(X, model, num_samples):
proba_preds = predict_proba(X, model, num_samples)
return np.argmax(proba_preds, axis=1 ) | Digit Recognizer |
18,487,180 | submission = pd.read_csv('.. /input/ranzcr-clip-catheter-line-classification/sample_submission.csv')
submission[target_cols] = np.mean(test_preds_1, axis=0 )<import_modules> | y_pred = predict_class(X_test, model, 10 ) | Digit Recognizer |
18,487,180 | from pathlib import Path
import random
from scipy.sparse import coo_matrix
import gc
from joblib import Parallel, delayed
import typing as tp
from torch.utils import data<define_variables> | res = pd.DataFrame(y_pred, columns=['Label'])
res.index = res.index + 1
res.index.rename('ImageId', inplace=True)
res.to_csv('res.csv' ) | Digit Recognizer |
18,487,180 | ROOT = Path.cwd().parent
INPUT = ROOT / "input"
OUTPUT = ROOT / "output"
DATA = INPUT / "ranzcr-clip-catheter-line-classification"
TRAIN = DATA / "train"
TEST = DATA / "test"
TRAINED_MODEL = INPUT / "ranzcr-clip-weights-for-multi-head-model-v2"
TMP = ROOT / "tmp"
TMP.mkdir(exist_ok=True)
RANDAM_SEED = 1086
N_CLASSES = 11
FOLDS = [0, 1, 2, 3, 4]
N_FOLD = len(FOLDS)
IMAGE_SIZE =(512, 512)
CONVERT_TO_RANK = False
FAST_COMMIT = False
CLASSES = [
'ETT - Abnormal',
'ETT - Borderline',
'ETT - Normal',
'NGT - Abnormal',
'NGT - Borderline',
'NGT - Incompletely Imaged',
'NGT - Normal',
'CVC - Abnormal',
'CVC - Borderline',
'CVC - Normal',
'Swan Ganz Catheter Present'
]<load_from_csv> | successive_outputs = [layer.output for layer in model.layers[0:]]
visualization_model = tf.keras.models.Model(inputs = model.input, outputs = successive_outputs)
img = random.choice(X_train)
plt.imshow(img, cmap=plt.cm.binary)
plt.show() | Digit Recognizer |
18,487,180 | for p in DATA.iterdir() :
print(p.name)
train = pd.read_csv(DATA / "train.csv")
smpl_sub = pd.read_csv(DATA / "sample_submission.csv" )<split> | successive_feature_maps = visualization_model.predict(img)
layer_names = [layer.name for layer in model.layers]
for layer_name, feature_map in zip(layer_names, successive_feature_maps):
if len(feature_map.shape)== 4:
n_features = feature_map.shape[-1]
size = feature_map.shape[1]
pic_num_per_row = n_features // 8 + 1
display_grid_arr = []
display_grid = np.zeros(( size, size * pic_num_per_row))
for i in range(n_features):
if i>0 and(i % pic_num_per_row == 0 or i == n_features):
display_grid_arr.append(display_grid)
display_grid = np.zeros(( size, size * pic_num_per_row))
index = i % pic_num_per_row
x = feature_map[0, :, :, i]
x -= x.mean()
x /= x.std()
x *= 64
x += 128
x = np.clip(x, 0, 255 ).astype('uint8')
display_grid[:, index * size :(index + 1)* size] = x
row_num = len(display_grid_arr)
scale = 200./ n_features
fig, axes = plt.subplots(row_num, 1, figsize=(scale * pic_num_per_row, scale * row_num))
fig.suptitle(layer_name, fontsize=40)
for i in range(row_num):
axes[i].imshow(display_grid_arr[i], aspect='auto', cmap='viridis' ) | Digit Recognizer |
18,487,180 | if FAST_COMMIT and len(smpl_sub)== 3582:
smpl_sub = smpl_sub.iloc[:64 * 3].reset_index(drop=True )<categorify> | y_pred = model.predict_classes(X_train ) | Digit Recognizer |
18,487,180 | def multi_label_stratified_group_k_fold(label_arr: np.array, gid_arr: np.array, n_fold: int, seed: int=42):
np.random.seed(seed)
random.seed(seed)
start_time = time.time()
n_train, n_class = label_arr.shape
gid_unique = sorted(set(gid_arr))
n_group = len(gid_unique)
gid2aid = dict(zip(gid_unique, range(n_group)))
aid_arr = np.vectorize(lambda x: gid2aid[x] )(gid_arr)
cnts_by_class = label_arr.sum(axis=0)
col, row = np.array(sorted(enumerate(aid_arr), key=lambda x: x[1])).T
cnts_by_group = coo_matrix(
(np.ones(len(label_arr)) ,(row, col))
).dot(coo_matrix(label_arr)).toarray().astype(int)
del col
del row
cnts_by_fold = np.zeros(( n_fold, n_class), int)
groups_by_fold = [[] for fid in range(n_fold)]
group_and_cnts = list(enumerate(cnts_by_group))
np.random.shuffle(group_and_cnts)
print("finished preparation", time.time() - start_time)
for aid, cnt_by_g in sorted(group_and_cnts, key=lambda x: -np.std(x[1])) :
best_fold = None
min_eval = None
for fid in range(n_fold):
cnts_by_fold[fid] += cnt_by_g
fold_eval =(cnts_by_fold / cnts_by_class ).std(axis=0 ).mean()
cnts_by_fold[fid] -= cnt_by_g
if min_eval is None or fold_eval < min_eval:
min_eval = fold_eval
best_fold = fid
cnts_by_fold[best_fold] += cnt_by_g
groups_by_fold[best_fold].append(aid)
print("finished assignment.", time.time() - start_time)
gc.collect()
idx_arr = np.arange(n_train)
for fid in range(n_fold):
val_groups = groups_by_fold[fid]
val_indexs_bool = np.isin(aid_arr, val_groups)
train_indexs = idx_arr[~val_indexs_bool]
val_indexs = idx_arr[val_indexs_bool]
print("[fold {}]".format(fid), end=" ")
print("n_group:(train, val)=({}, {})".format(n_group - len(val_groups), len(val_groups)) , end=" ")
print("n_sample:(train, val)=({}, {})".format(len(train_indexs), len(val_indexs)))
yield train_indexs, val_indexs<concatenate> | from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score | Digit Recognizer |
18,487,180 | label_arr = train[CLASSES].values
group_id = train.PatientID.values
train_val_indexs = list(
multi_label_stratified_group_k_fold(label_arr, group_id, N_FOLD, RANDAM_SEED))<feature_engineering> | conf_max = confusion_matrix(y_label, y_pred)
conf_max | Digit Recognizer |
18,487,180 | train["fold"] = -1
for fold_id,(trn_idx, val_idx)in enumerate(train_val_indexs):
train.loc[val_idx, "fold"] = fold_id
train.groupby("fold")[CLASSES].sum()<train_model> | diff_num = 5 | Digit Recognizer |
18,487,180 | <choose_model_class><EOS> | a_1d = norm_conf_max.flatten()
idx_1d = a_1d.argsort() [-diff_num:]
x_idx, y_idx = np.unravel_index(idx_1d, norm_conf_max.shape)
print(x_idx, y_idx ) | Digit Recognizer |
18,555,598 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class> | import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Flatten,Dense,Dropout
import matplotlib.pyplot as plt
import keras
from keras.utils.np_utils import to_categorical | Digit Recognizer |
18,555,598 | class MultiHeadResNet200D(nn.Module):
def __init__(
self, out_dims_head: tp.List[int]=[3, 4, 3, 1], pretrained=False
):
self.base_name = "resnet200d_320"
self.n_heads = len(out_dims_head)
super(MultiHeadResNet200D, self ).__init__()
base_model = timm.create_model(
self.base_name, num_classes=sum(out_dims_head), pretrained=False)
in_features = base_model.num_features
if pretrained:
pretrained_model_path = '.. /input/startingpointschestx/resnet200d_320_chestx.pth'
state_dict = dict()
for k, v in torch.load(pretrained_model_path, map_location='cpu')["model"].items() :
if k[:6] == "model.":
k = k.replace("model.", "")
state_dict[k] = v
base_model.load_state_dict(state_dict)
base_model.reset_classifier(0, '')
self.backbone = base_model
for i, out_dim in enumerate(out_dims_head):
layer_name = f"head_{i}"
layer = nn.Sequential(
SpatialAttentionBlock(in_features, [64, 32, 16, 1]),
nn.AdaptiveAvgPool2d(output_size=1),
nn.Flatten(start_dim=1),
nn.Linear(in_features, in_features),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(in_features, out_dim))
setattr(self, layer_name, layer)
def forward(self, x):
h = self.backbone(x)
hs = [
getattr(self, f"head_{i}" )(h)for i in range(self.n_heads)]
y = torch.cat(hs, axis=1)
return y
m = MultiHeadResNet200D([3, 4, 3, 1], False)
m = m.eval()
x = torch.rand(1, 3, 256, 256)
with torch.no_grad() :
y = m(x)
print("[forward test]")
print("input:\t{}
output:\t{}".format(x.shape, y.shape))
del m; del x; del y
gc.collect()<categorify> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
test = pd.read_csv('.. /input/digit-recognizer/test.csv')
test1 = test.copy() | Digit Recognizer |
18,555,598 | class LabeledImageDataset(data.Dataset):
def __init__(
self,
file_list: tp.List[
tp.Tuple[tp.Union[str, Path], tp.Union[int, float, np.ndarray]]],
transform_list: tp.List[tp.Dict],
):
self.file_list = file_list
self.transform = ImageTransformForCls(transform_list)
def __len__(self):
return len(self.file_list)
def __getitem__(self, index):
img_path, label = self.file_list[index]
img = self._read_image_as_array(img_path)
img, label = self.transform(( img, label))
return img, label
def _read_image_as_array(self, path: str):
img_arr = cv2.imread(str(path))
img_arr = cv2.cvtColor(img_arr, cv2.COLOR_BGR2RGB)
return img_arr<create_dataframe> | x_train=train.drop(['label'],1)
y_train=train['label']
x_train=x_train.values.reshape(-1,28,28,1)
test=test.values.reshape(-1,28,28,1)
x_train=x_train/255
test=test/255
| Digit Recognizer |
18,555,598 | def get_dataloaders_for_inference(
file_list: tp.List[tp.List], batch_size=64,
):
dataset = LabeledImageDataset(
file_list,
transform_list=[
["Normalize", {
"always_apply": True, "max_pixel_value": 255.0,
"mean": ["0.4887381077884414"], "std": ["0.23064819430546407"]}],
["ToTensorV2", {"always_apply": True}],
])
loader = data.DataLoader(
dataset,
batch_size=batch_size, shuffle=False,
num_workers=2, pin_memory=True,
drop_last=False)
return loader<categorify> | model=models.Sequential([
Conv2D(32,(5,5), activation='relu' , input_shape=(28,28,1)) ,
MaxPooling2D(pool_size=(2,2)) ,
Conv2D(64,(5,5), activation ='relu'),
MaxPooling2D(pool_size=(2,2)) ,
Dropout(0.25),
Conv2D(64,(3,3), activation ='relu'),
MaxPooling2D(pool_size=(2,2)) ,
Dropout(0.25),
Flatten() ,
Dense(64, activation='relu'),
Dense(10, activation='softmax')
] ) | Digit Recognizer |
18,555,598 | class ImageTransformBase:
def __init__(self, data_augmentations: tp.List[tp.Tuple[str, tp.Dict]]):
augmentations_list = [
self._get_augmentation(aug_name )(**params)
for aug_name, params in data_augmentations]
self.data_aug = albumentations.Compose(augmentations_list)
def __call__(self, pair: tp.Tuple[np.ndarray])-> tp.Tuple[np.ndarray]:
raise NotImplementedError
def _get_augmentation(self, aug_name: str)-> tp.Tuple[ImageOnlyTransform, DualTransform]:
if hasattr(albumentations, aug_name):
return getattr(albumentations, aug_name)
else:
return eval(aug_name)
class ImageTransformForCls(ImageTransformBase):
def __init__(self, data_augmentations: tp.List[tp.Tuple[str, tp.Dict]]):
super(ImageTransformForCls, self ).__init__(data_augmentations)
def __call__(self, in_arrs: tp.Tuple[np.ndarray])-> tp.Tuple[np.ndarray]:
img, label = in_arrs
augmented = self.data_aug(image=img)
img = augmented["image"]
return img, label<load_pretrained> | model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
model.fit(x_train, y_train, epochs=60, batch_size=64 ) | Digit Recognizer |
18,555,598 | def load_setting_file(path: str):
with open(path)as f:
settings = yaml.safe_load(f)
return settings
def set_random_seed(seed: int = 42, deterministic: bool = False):
random.seed(seed)
np.random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = deterministic
def run_inference_loop(stgs, model, loader, device):
model.to(device)
model.eval()
pred_list = []
with torch.no_grad() :
for x, t in tqdm(loader):
y = model(x.to(device))
pred_list.append(y.sigmoid().detach().cpu().numpy())
pred_arr = np.concatenate(pred_list)
del pred_list
return pred_arr<set_options> | y_test = model.predict(test)
y_test = np.argmax(y_test, axis = 1)
index_list = []
for i in list(test1.index):
index_list.append(i+1)
submission_df = pd.DataFrame({
"ImageId": index_list,
"Label": y_test
})
submission_df.to_csv("submission_cnn.csv", index = False ) | Digit Recognizer |
18,243,332 | if not torch.cuda.is_available() :
device = torch.device("cpu")
else:
device = torch.device("cuda")
print(device )<load_pretrained> | import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from keras.utils.np_utils import to_categorical | Digit Recognizer |
18,243,332 | model_dir = TRAINED_MODEL
test_dir = TEST_RESIZED
test_file_list = [
(test_dir / f"{img_id}.png", [-1] * 11)
for img_id in smpl_sub["StudyInstanceUID"].values]
test_loader = get_dataloaders_for_inference(test_file_list, batch_size=64)
test_preds_arr = np.zeros(( N_FOLD, len(smpl_sub), N_CLASSES))
for fold_id in FOLDS:
print(f"[fold {fold_id}]")
stgs = load_setting_file(model_dir / f"fold{fold_id}" / "settings.yml")
stgs["model"]["params"]["pretrained"] = False
model = MultiHeadResNet200D(**stgs["model"]["params"])
model_path = model_dir / f"best_model_fold{fold_id}.pth"
model.load_state_dict(torch.load(model_path, map_location=device))
test_pred = run_inference_loop(stgs, model, test_loader, device)
test_preds_arr[fold_id] = test_pred
del model
torch.cuda.empty_cache()
gc.collect()<prepare_output> | train=pd.read_csv('.. /input/digit-recognizer/train.csv')
test=pd.read_csv('.. /input/digit-recognizer/test.csv' ) | Digit Recognizer |
18,243,332 | sub = smpl_sub.copy()
sub[CLASSES] = test_preds_arr.mean(axis=0 )<prepare_output> | x_train=train.drop(['label'],1)
y_train=train['label'] | Digit Recognizer |
18,243,332 | Final_Submission = smpl_sub.copy()
Final_Submission[CLASSES] =.50 * sub[CLASSES] +.50 * submission[CLASSES]<save_to_csv> | x_train=np.array(x_train)
test=np.array(test ) | Digit Recognizer |
18,243,332 | Final_Submission.to_csv("submission.csv", index=False )<set_options> | x_train=x_train/255
test=test/255 | Digit Recognizer |
18,243,332 | sys.path.append('.. /input/pytorch-images-seresnet')
warnings.filterwarnings('ignore')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )<define_variables> | target=x_train.reshape(-1,28,28,1)
test=test.reshape(-1,28,28,1)
y_train=np.array(y_train)
label=to_categorical(y_train)
label.shape | Digit Recognizer |
18,243,332 | IMAGE_SIZE = 640
BATCH_SIZE = 128
TEST_PATH = '.. /input/ranzcr-clip-catheter-line-classification/test'
MODEL_PATH = '.. /input/resnet200d-public/resnet200d_320_CV9632.pth'<load_from_csv> | from keras.models import Sequential
from keras.layers import Conv2D,MaxPooling2D,Flatten,Dense,Dropout | Digit Recognizer |
18,243,332 | test = pd.read_csv('.. /input/ranzcr-clip-catheter-line-classification/sample_submission.csv' )<categorify> | model=Sequential([
Conv2D(32,(5,5), activation='relu' , input_shape=(28,28,1)) ,
MaxPooling2D(pool_size=(2,2)) ,
Conv2D(64,(5,5), activation ='relu'),
MaxPooling2D(pool_size=(2,2)) ,
Dropout(0.25),
Conv2D(64,(3,3), activation ='relu'),
MaxPooling2D(pool_size=(2,2)) ,
Dropout(0.25),
Flatten() ,
Dense(64, activation='relu'),
Dense(10, activation='softmax')
] ) | Digit Recognizer |
18,243,332 | def get_transforms() :
return Compose([
Resize(IMAGE_SIZE, IMAGE_SIZE),
Normalize(
),
ToTensorV2() ,
] )<choose_model_class> | model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'] ) | Digit Recognizer |
18,243,332 | class ResNet200D(nn.Module):
def __init__(self, model_name='resnet200d_320'):
super().__init__()
self.model = timm.create_model(model_name, pretrained=False)
n_features = self.model.fc.in_features
self.model.global_pool = nn.Identity()
self.model.fc = nn.Identity()
self.pooling = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(n_features, 11)
def forward(self, x):
bs = x.size(0)
features = self.model(x)
pooled_features = self.pooling(features ).view(bs, -1)
output = self.fc(pooled_features)
return output<categorify> | model.fit(target,label,epochs=40,batch_size=64 ) | Digit Recognizer |
18,243,332 | def inference(models, test_loader, device):
tk0 = tqdm(enumerate(test_loader), total=len(test_loader))
probs = []
for i,(images)in tk0:
images = images.to(device)
avg_preds = []
for model in models:
with torch.no_grad() :
y_preds1 = model(images)
y_preds2 = model(images.flip(-1))
y_preds =(y_preds1.sigmoid().to('cpu' ).numpy() + y_preds2.sigmoid().to('cpu' ).numpy())/ 2
avg_preds.append(y_preds)
avg_preds = np.mean(avg_preds, axis=0)
probs.append(avg_preds)
probs = np.concatenate(probs)
return probs<choose_model_class> | Y_pred = model.predict(test)
Y_pred_classes = np.argmax(Y_pred,axis = 1 ) | Digit Recognizer |
18,243,332 | model = ResNet200D()
model.load_state_dict(torch.load(MODEL_PATH)['model'])
model.eval()
models = [model.to(device)]<load_pretrained> | submission_data = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv' ) | Digit Recognizer |
18,243,332 | test_dataset = TestDataset(test, transform=get_transforms())
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False,
num_workers=4 , pin_memory=True)
predictions = inference(models, test_loader, device )<save_to_csv> | submission_data['Label']=Y_pred_classes | Digit Recognizer |
18,243,332 | target_cols = test.iloc[:, 1:12].columns.tolist()
test[target_cols] = predictions
test[['StudyInstanceUID'] + target_cols].to_csv('submission.csv', index=False)
test.head()<define_variables> | submission_data.to_csv('submit.csv' ,index=False ) | Digit Recognizer |
18,243,332 | batch_size = 1
image_size = 512
tta = True
submit = True
enet_type = ['resnet200d'] * 5
model_path = ['.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold0_cv953.pth',
'.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold1_cv955.pth',
'.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold2_cv955.pth',
'.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold3_cv957.pth',
'.. /input/resnet200d-baseline-benchmark-public/resnet200d_fold4_cv954.pth']
fast_sub = False
fast_sub_path = '.. /input/xxxxxx/your_submission.csv'<set_options> | def test_output(i):
plt.imshow(x_train[i],cmap='gray')
predicted=np.argmax(model.predict(target[i].reshape(-1,28,28,1)))
actual=np.argmax(label[i])
plt.xlabel(f'predicted= {predicted} Actual= {actual}' ) | Digit Recognizer |
18,243,332 | sys.path.append('.. /input/pytorch-image-models/pytorch-image-models-master')
sys.path.append('.. /input/timm-pytorch-image-models/pytorch-image-models-master')
DEBUG = False
%matplotlib inline
device = torch.device('cuda')if not DEBUG else torch.device('cpu' )<choose_model_class> | from PIL import Image, ImageGrab | Digit Recognizer |
18,243,332 | class RANZCRResNet200D(nn.Module):
def __init__(self, model_name='resnet200d', out_dim=11, pretrained=False):
super().__init__()
self.model = timm.create_model(model_name, pretrained=False)
n_features = self.model.fc.in_features
self.model.global_pool = nn.Identity()
self.model.fc = nn.Identity()
self.pooling = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(n_features, out_dim)
def forward(self, x):
bs = x.size(0)
features = self.model(x)
pooled_features = self.pooling(features ).view(bs, -1)
output = self.fc(pooled_features)
return output<concatenate> | def predict_digit1(img):
img = Image.open(img)
plt.imshow(img)
img = img.convert('L', dither=Image.NONE)
img = img.resize(( 28,28))
img = np.array(img)
img=np.invert(img)
predicted=np.argmax(model.predict(img.reshape(-1,28,28,1)))
plt.xlabel(f'Predicted= {predicted}' ) | Digit Recognizer |
18,243,332 | transforms_test = albumentations.Compose([
Resize(image_size, image_size),
Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
ToTensorV2()
] )<load_from_csv> | predict_digit1('.. /input/temporary/Images/images.jfif' ) | Digit Recognizer |
18,243,332 | test = pd.read_csv('.. /input/ranzcr-clip-catheter-line-classification/sample_submission.csv')
test['file_path'] = test.StudyInstanceUID.apply(lambda x: os.path.join('.. /input/ranzcr-clip-catheter-line-classification/test', f'{x}.jpg'))
target_cols = test.iloc[:, 1:12].columns.tolist()
test_dataset = RANZCRDataset(test, 'test', transform=transforms_test)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=24 )<choose_model_class> | predict_digit1('.. /input/temporary/Images/download.png' ) | Digit Recognizer |
18,243,332 | if submit:
test_preds = []
for i in range(len(enet_type)) :
if enet_type[i] == 'resnet200d':
print('resnet200d loaded')
model = RANZCRResNet200D(enet_type[i], out_dim=len(target_cols))
model = model.to(device)
model.load_state_dict(torch.load(model_path[i], map_location='cuda:0'))
if tta:
test_preds += [tta_inference_func(test_loader)]
else:
test_preds += [inference_func(test_loader)]
submission = pd.read_csv('.. /input/ranzcr-clip-catheter-line-classification/sample_submission.csv')
submission[target_cols] = np.mean(test_preds, axis=0)
submission.to_csv('submission.csv', index=False)
else:
pd.read_csv('.. /input/ranzcr-clip-catheter-line-classification/sample_submission.csv' ).to_csv('submission.csv', index=False )<load_from_csv> | predict_digit1('.. /input/temporary/Images/531-5314816_handwritten-1-number-9-hand-written-png-transparent.png' ) | Digit Recognizer |
18,243,332 | <categorify><EOS> | predict_digit1('.. /input/temporary/Images/1.jpg' ) | Digit Recognizer |
20,287,499 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_from_csv> | import numpy as np
import pandas as pd
import os
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
import pandas as pd
import matplotlib.pyplot as plt | Digit Recognizer |
20,287,499 |
dfx = pd.read_csv('.. /input/cassava-leaf-disease-classification/train.csv')
df_train, df_valid = model_selection.train_test_split(dfx, test_size=0.1, random_state=42, stratify=dfx.label.values)
_train = df_train.reset_index(drop=True)
df_valid = df_valid.reset_index(drop=True)
image_path = ".. /input/cassava-leaf-disease-classification/train_images/"
train_image_paths = [os.path.join(image_path, x)for x in df_train.image_id.values]
valid_image_paths = [os.path.join(image_path, x)for x in df_valid.image_id.values]
train_targets = df_train.label.values
valid_targets = df_valid.label.values<create_dataframe> | train = np.loadtxt(open('/kaggle/input/digit-recognizer/train.csv', 'r'), delimiter=',', skiprows=1, dtype='float32')
test = np.loadtxt(open('/kaggle/input/digit-recognizer/test.csv', 'r'), delimiter=',', skiprows=1, dtype='float32')
train_images = train[:, 1:].reshape(( train.shape[0], 28, 28, 1)) / 255.0
train_labels = train[:, 0].astype(np.uint8)
test_images = test.reshape(( test.shape[0], 28, 28, 1)) / 255.0 | Digit Recognizer |
20,287,499 |
cassava_train = CassavaDataset(train_image_paths, train_targets, 'train')
cassava_test = CassavaDataset(valid_image_paths, valid_targets, 'test')
batch_size = 16
train_loader = DataLoader(cassava_train, batch_size=batch_size, shuffle=False, num_workers=2)
test_loader = DataLoader(cassava_test, batch_size=batch_size, shuffle=False, num_workers=2 )<compute_train_metric> | augmentation_layer = tf.keras.Sequential([
tf.keras.layers.experimental.preprocessing.RandomRotation(0.1, input_shape=(28, 28, 1)) ,
tf.keras.layers.experimental.preprocessing.RandomZoom(( 0.2, 0.2)) ,
] ) | Digit Recognizer |
20,287,499 |
class AverageMeter:
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)) :
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1 ).expand_as(pred))
return [correct[:k].reshape(-1 ).float().sum(0)* 100./ batch_size for k in topk]<train_model> | for i in range(5):
new_img = augmentation_layer(train_images[np.random.randint(train_images.shape[0])] ).numpy()
plt.imshow(new_img.reshape(( 28, 28)))
plt.show() | Digit Recognizer |
20,287,499 |
def train_epoch(model, loader, device, loss_func, optimizer, scheduler):
model.train()
summary_loss = AverageMeter()
summary_acc = AverageMeter()
start = time.time()
n = len(loader)
for batch in tqdm(loader):
images, labels = batch
images = images.to(device)
labels = labels.to(device)
out = model(images)
loss = loss_func(out, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()
with torch.no_grad() :
acc = accuracy(out, labels)[0]
summary_loss.update(loss.detach().item() , batch_size)
summary_acc.update(acc.detach().item() , batch_size)
train_time = str(datetime.timedelta(seconds=time.time() - start))
print('Train loss: {:.5f} - Train acc: {:.2f}% - time: {}'.format(summary_loss.avg,
summary_acc.avg,
train_time))
return summary_loss, summary_acc<set_options> | model = Sequential([
tf.keras.layers.Input(( 28, 28, 1)) ,
augmentation_layer,
Conv2D(32, 3, activation='relu', padding="same"),
MaxPooling2D(2),
Conv2D(64, 3, activation='relu', padding="same"),
MaxPooling2D(2),
Conv2D(64, 3, activation='relu', padding="same"),
MaxPooling2D(2),
Flatten() ,
Dropout(0.3),
Dense(128, activation='relu'),
Dropout(0.3),
Dense(10, activation='softmax')
] ) | Digit Recognizer |
20,287,499 |
resnet = timm.create_model('resnext50_32x4d', pretrained=True)
num_ftrs = resnet.fc.in_features
resnet.fc = nn.Linear(num_ftrs, 5)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
resnet.to(device )<choose_model_class> | model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
) | Digit Recognizer |
20,287,499 |
num_epochs = 1
best_acc = 0
best_epoch = 0
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(resnet.parameters() , lr=0.01, momentum=0.9)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.2, patience=2, verbose=True, eps=1e-6)
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch + 1, num_epochs))
train_loss, train_acc = train_epoch(resnet, train_loader, device, criterion, optimizer, scheduler)
val_loss, val_acc = validate_epoch(resnet, test_loader, device, criterion)
scheduler.step(val_loss.avg)
if val_acc.avg > best_acc:
best_acc = val_acc.avg
best_epoch = epoch
if epoch == 9:
print('Saving model...')
PATH = './timm_resnext_epoch{}_384.pth'.format(epoch + 1)
torch.save(resnet.state_dict() ,PATH )<choose_model_class> | history = model.fit(train_images, train_labels, epochs=100 ) | Digit Recognizer |
20,287,499 |
num_epochs = 10
best_acc = 0
best_epoch = 0
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(xception.parameters() , lr=0.01, momentum=0.9)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.2, patience=2, verbose=True, eps=1e-6)
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch + 1, num_epochs))
train_loss, train_acc = train_epoch(xception, train_loader, device, criterion, optimizer, scheduler)
val_loss, val_acc = validate_epoch(xception, test_loader, device, criterion)
scheduler.step(val_loss.avg)
if val_acc.avg > best_acc:
best_acc = val_acc.avg
best_epoch = epoch
if epoch == 9:
print('Saving model...')
PATH = './timm_xception_epoch{}_384.pth'.format(epoch + 1)
torch.save(xception.state_dict() ,PATH )<find_best_params> | predition_model = tf.keras.Sequential()
for layer in model.layers:
if layer != augmentation_layer:
predition_model.add(layer)
predition_model.compile(loss="sparse_categorical_crossentropy", optimizer="adam" ) | Digit Recognizer |
20,287,499 |
PATH = './timm_resnext_epoch10_384.pth'
resnet = timm.create_model('resnext50_32x4d', pretrained=False)
num_ftrs = resnet.fc.in_features
resnet.fc = nn.Linear(num_ftrs, 5)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
resnet.to(device)
resnet.load_state_dict(torch.load(PATH))
resnet.eval()<load_from_csv> | test_labels = np.argmax(predition_model.predict(test_images), axis=-1)
print(test_labels.shape ) | Digit Recognizer |
20,287,499 |
submission_df = pd.read_csv('.. /input/cassava-leaf-disease-classification/sample_submission.csv')
submission_df.head()<normalization> | image_ids = np.arange(1, test_labels.shape[0]+1)
result = np.concatenate(( image_ids.reshape(image_ids.shape[0], 1), test_labels.reshape(test_labels.shape[0], 1)) , axis=1)
df = pd.DataFrame(result, columns=["ImageId", "Label"], dtype='int')
df.to_csv("submission.csv", index=False ) | Digit Recognizer |
20,119,647 |
input_size = 384
stats =([0.4914, 0.4822, 0.4465], [0.247, 0.243, 0.261])
trans1 = transforms.Compose([transforms.Resize(( input_size, input_size)) ,
transforms.Pad(8, padding_mode='reflect'),
transforms.ToTensor() ,
transforms.Normalize(*stats)])
trans2 = transforms.Compose([transforms.Resize(( input_size, input_size)) ,
transforms.RandomHorizontalFlip(p=0.3),
transforms.RandomResizedCrop(input_size),
transforms.ToTensor() ,
transforms.Normalize(*stats)])
trans3 = transforms.Compose([transforms.Resize(( input_size, input_size)) ,
transforms.RandomVerticalFlip(p=0.3),
transforms.RandomResizedCrop(input_size),
transforms.ToTensor() ,
transforms.Normalize(*stats)])
trans4 = transforms.Compose([transforms.Resize(( input_size, input_size)) ,
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomVerticalFlip(p=0.5),
transforms.RandomResizedCrop(input_size),
transforms.ToTensor() ,
transforms.Normalize(*stats)])
transs = [trans1, trans2, trans3, trans4]<prepare_x_and_y> | %matplotlib inline
np.random.seed(2)
sns.set(style='white', context='notebook', palette='deep' ) | Digit Recognizer |
20,119,647 |
test_path = '/kaggle/input/cassava-leaf-disease-classification/test_images/'
test_images = os.listdir(test_path)
train_image_paths = [os.path.join(test_path, x)for x in test_images]
y_preds = []
y2_preds = []
p = 0
for i in test_images:
res = []
image = Image.open(f'/kaggle/input/cassava-leaf-disease-classification/test_images/{i}')
input_size = 384
outs = torch.Tensor(np.zeros(( len(transs), 5)))
outs2 = torch.Tensor(np.zeros(( len(transs), 5)))
k = 0
for trans in transs:
img = trans(image)
img = img.reshape(1, img.shape[0], img.shape[1], img.shape[2])
img = Variable(img.to(device))
out = resnet(img)
out2= xception(img)
outs[k,:] = 4*out
outs2[k,:] = 5*out2
k += 1
out = outs.mean(axis=0)
out2 = outs2.mean(axis=0)
res.append(out2)
mean = torch.mean(torch.stack(res), dim = 0)
_, predicted = torch.max(out2.data, 0)
y_preds.append(predicted.item() )<create_dataframe> | train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ) | Digit Recognizer |
20,119,647 | df_sub = pd.DataFrame({'image_id': test_images, 'label': y_preds})
display(df_sub )<save_to_csv> | X_train = X_train / 255.0
test = test / 255.0 | Digit Recognizer |
20,119,647 | df_sub.to_csv('submission.csv', index=False )<install_modules> | Y_train=to_categorical(Y_train, num_classes=10 ) | Digit Recognizer |
20,119,647 | pip install cleantext<install_modules> | random_seed=2 | Digit Recognizer |
20,119,647 | pip install ktrain<set_options> | X_train,X_val,Y_train,Y_val = train_test_split(X_train,Y_train,test_size=0.1,random_state=random_seed ) | Digit Recognizer |
20,119,647 | warnings.filterwarnings("ignore" )<load_from_csv> | model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax")) | Digit Recognizer |
20,119,647 | df = pd.read_csv(".. /input/nlp-getting-started/train.csv")
display(df.head())
display(df.shape )<categorify> | optimizer = RMSprop(lr=0.001,rho=0.9,epsilon=1e-08,decay=0.0 ) | Digit Recognizer |
20,119,647 | l=len(df)
display(l)
cleanlist=[]
textlength=[]
for i in range(l):
ct=cleantext.clean(df.iloc[i,3], clean_all= True)
cleanlist.append(ct)
lct=len(ct)
textlength.append(lct)
<create_dataframe> | model.compile(optimizer=optimizer,loss="categorical_crossentropy",metrics=["accuracy"] ) | Digit Recognizer |
20,119,647 | df_clean=pd.DataFrame(cleanlist)
df_clean.columns=['cleantext']
frames=[df,df_clean]
newdf=pd.concat(frames, axis=1)
display(newdf )<train_model> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss',patience=3,verbose=1,factor=0.5,min_lr=0.00001 ) | Digit Recognizer |
20,119,647 | ( x_train, y_train),(x_test, y_test), preproc=text.texts_from_df(newdf, 'cleantext',label_columns=['target'],
maxlen=127,max_features=100000,
preprocess_mode='bert', val_pct=.1 )<train_model> | epochs=15
batch_size=86 | Digit Recognizer |
20,119,647 | model=text.text_classifier('bert',(x_train, y_train), preproc=preproc)
learner=ktrain.get_learner(model, train_data=(x_train, y_train),
val_data=(x_test, y_test),
batch_size=32 )<train_model> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
20,119,647 | learner.fit_onecycle(2e-5, 3)
predictor=ktrain.get_predictor(learner.model, preproc )<predict_on_test> | history = model.fit(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
20,119,647 | predictor.predict(['calm','earthquake'] )<load_from_csv> | results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
20,119,647 | <predict_on_test><EOS> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_datagen.csv",index=False ) | Digit Recognizer |
21,936,867 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<prepare_output> | import tensorflow as tf
import numpy as np
import pandas as pd
| Digit Recognizer |
21,936,867 | df_pred=pd.DataFrame(predlist)
df_pred.columns=['target']
frames=[df1,df_pred]
df2=pd.concat(frames, axis=1)
display(df2.head() )<feature_engineering> | training = pd.read_csv('.. /input/digit-recognizer/train.csv' ) | Digit Recognizer |
21,936,867 | df2.loc[df2['target']=='target','target']=1
df2.loc[df2['target']=='not_target','target']=0
display(df2['target'].mean())
df2=df2[['id','target']]
display(df2.shape)
display(df2.head() )<save_to_csv> | x_train, y_train = training.iloc[:, 1:], training.iloc[:, 0:1] | Digit Recognizer |
21,936,867 | df2.to_csv("submission.csv", index=False )<load_from_url> | x_train = x_train / 255 | Digit Recognizer |
21,936,867 | !wget --quiet https://raw.githubusercontent.com/tensorflow/models/master/official/nlp/bert/tokenization.py<import_modules> | model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=5, padding="same", activation="relu", input_shape=[28, 28, 1]))
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=5, padding="same", activation="relu"))
model.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding='valid'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=3, padding="same", activation="relu"))
model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=3, padding="same", activation="relu"))
model.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding='valid'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=256, activation='relu'))
model.add(tf.keras.layers.Dropout(0.4))
model.add(tf.keras.layers.Dense(units=10, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
model.summary() | Digit Recognizer |
21,936,867 | import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers, models, optimizers
from tensorflow.keras.callbacks import ModelCheckpoint<load_from_csv> | model.fit(x_train, y_train, epochs=15 ) | Digit Recognizer |
21,936,867 | train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv")
test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv")
submission = pd.read_csv("/kaggle/input/nlp-getting-started/sample_submission.csv" )<categorify> | test = pd.read_csv('.. /input/digit-recognizer/test.csv')
test = test / 255
test = test.values.reshape(-1, 28, 28, 1 ) | Digit Recognizer |
21,936,867 | def bert_encode(texts, tokenizer, max_len):
all_tokens = []
all_masks = []
all_segments = []
for text in texts:
text = tokenizer.tokenize(text)
text = text[:max_len-2]
input_sequence = ["[CLS]"] + text + ["[SEP]"]
pad_len = max_len - len(input_sequence)
tokens = tokenizer.convert_tokens_to_ids(input_sequence)
tokens += [0] * pad_len
pad_masks = [1] * len(input_sequence)+ [0] * pad_len
segment_ids = [0] * max_len
all_tokens.append(tokens)
all_masks.append(pad_masks)
all_segments.append(segment_ids)
return np.array(all_tokens), np.array(all_masks), np.array(all_segments )<data_type_conversions> | predictions = model.predict(test ) | Digit Recognizer |
21,936,867 | <categorify><EOS> | export = pd.DataFrame([np.argmax(prediction)for prediction in predictions])
export.index += 1
export = export.reset_index()
export.columns = ['ImageId', 'Label']
export.to_csv('submission.csv', index=False ) | Digit Recognizer |
21,648,756 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class> | from tensorflow.keras.preprocessing.image \
| Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.