kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
11,955,886
np.allclose(out.iloc[:,0].values, out2.iloc[:,0].values, atol=0.01 )<define_variables>
print("Highest Validation Accuracy so far : {}%".format(round(100*max(history.history['val_accuracy']), 2)) )
Digit Recognizer
11,955,886
rows = 32 columns = 40 batch_size = 100 epochs = 50 base_path = root_path + "/working/models" if not os.path.exists(base_path): os.makedirs(base_path) train_size = train_set.shape[0] validation_size = validation_set.shape[0] steps_per_epoch = train_size//batch_size lr = 1e-3 tensorboard_dir=base_path + "/logs" tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=tensorboard_dir) checkpoint_filepath = os.path.join(base_path, 'cp-{epoch:04d}.ckpt') checkpoint_callback = keras.callbacks.ModelCheckpoint( filepath= checkpoint_filepath, save_best_only=True, save_weights_only=True, monitor='val_acc', mode='max', verbose=1) reduce_lr_callback = keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=1e-5, vebose=1) earlystop_callback = keras.callbacks.EarlyStopping( monitor="val_loss", min_delta=1e-3, patience=5, verbose=1) optimizer = keras.optimizers.Adam(learning_rate = lr) loss_fn = keras.losses.SparseCategoricalCrossentropy() acc_metric = keras.metrics.SparseCategoricalAccuracy() model = build_model(len(classes_map),(rows, columns, 1)) model.compile(optimizer = optimizer, loss = loss_fn, metrics= [acc_metric]) model.summary()<define_variables>
modelacc.sort(reverse=True) modelacc
Digit Recognizer
11,955,886
<train_model>
pred=model.predict([test]) soln=[] for i in range(len(pred)) : soln.append(np.argmax(pred[i]))
Digit Recognizer
11,955,886
history = model.fit(train_datagen, steps_per_epoch= steps_per_epoch, epochs = epochs, validation_data = validation_datagen, validation_steps = validation_size//batch_size, callbacks=[earlystop_callback, reduce_lr_callback, checkpoint_callback, tensorboard_callback], use_multiprocessing=True )<set_options>
final = pd.DataFrame() final['ImageId']=[i+1 for i in test_x.index] final['Label']=soln final.to_csv('mnistcnn.csv', index=False )
Digit Recognizer
12,060,595
shutil.rmtree(train_path) gc.collect()<load_pretrained>
%matplotlib inline if torch.cuda.is_available() : torch.backends.cudnn.deterministic = True
Digit Recognizer
12,060,595
if not os.path.exists(root_path + '/working/test/'): os.makedirs(root_path + '/working/test/') Archive(root_path + '/input/tensorflow-speech-recognition-challenge/test.7z' ).extractall(root_path + '/working') test_path = root_path + '/working/test'<predict_on_test>
train_df = pd.read_csv(".. /input/digit-recognizer/train.csv") test_df = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
12,060,595
test_data,test_labels,_ = get_image_list(test_path) test_data = test_data[0] test_labels = test_labels[0] test_datagen = data_generator(test_data, test_labels, batch_size, None) test_size = len(test_data) test_steps = np.ceil(test_size /(batch_size)) y_pred = model.predict_generator(test_datagen, steps = test_steps, verbose=1 )<prepare_output>
train_df.iloc[:,1:]
Digit Recognizer
12,060,595
y_labs = np.argmax(y_pred, axis=1 )<define_variables>
class MNISTDataset(Dataset): def __init__(self, dataframe, transform = transforms.Compose([transforms.ToPILImage() , transforms.ToTensor() , transforms.Normalize(mean=(0.5,), std=(0.5,)) ]) ): df = dataframe self.n_pixels = 784 if len(df.columns)== self.n_pixels: self.X = df.values.reshape(( -1,28,28)).astype(np.uint8)[:,:,:,None] self.y = None else: self.X = df.iloc[:,1:].values.reshape(( -1,28,28)).astype(np.uint8)[:,:,:,None] self.y = torch.from_numpy(df.iloc[:,0].values) self.transform = transform def __len__(self): return len(self.X) def __getitem__(self, idx): if self.y is not None: return self.transform(self.X[idx]), self.y[idx] else: return self.transform(self.X[idx] )
Digit Recognizer
12,060,595
inv_map = inv_map = {v: k for k, v in classes_map.items() }<normalization>
class MNISTResNet(ResNet): def __init__(self): super().__init__(BasicBlock, [2, 2, 2, 2], num_classes=10) self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=1, padding=3,bias=False) model = MNISTResNet() print(model )
Digit Recognizer
12,060,595
train_audio_sample = test_data[16] x,sr = librosa.load(train_audio_sample, sr = 16000) ipd.Audio(x, rate=sr )<normalization>
def train(train_loader, model, criterion, optimizer, epoch): model.train() loss_train = 0 for batch_idx,(data, target)in enumerate(train_loader): if torch.cuda.is_available() : data = data.cuda() target = target.cuda() output = model(data) loss = criterion(output, target) optimizer.zero_grad() loss.backward() optimizer.step() if(batch_idx + 1)% 100 == 0: print('Train Epoch: {} [{}/{}({:.0f}%)]\tLoss: {:.6f}'.format( epoch,(batch_idx + 1)* len(data), len(train_loader.dataset), 100.*(batch_idx + 1)/ len(train_loader), loss.data.item()))
Digit Recognizer
12,060,595
train_audio_sample = test_data[100] x,sr = librosa.load(train_audio_sample, sr = 16000) ipd.Audio(x, rate=sr )<normalization>
def validate(val_loader, model, criterion): model.eval() loss = 0 correct = 0 for _,(data, target)in enumerate(val_loader): if torch.cuda.is_available() : data = data.cuda() target = target.cuda() output = model(data) loss += criterion(output, target ).data.item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).cpu().sum() loss /= len(val_loader.dataset) print(' On Val set Average loss: {:.4f}, Accuracy: {}/{}({:.3f}%) '.format( loss, correct, len(val_loader.dataset), 100.0 * float(correct)/ len(val_loader.dataset)))
Digit Recognizer
12,060,595
train_audio_sample = test_data[1001] x,sr = librosa.load(train_audio_sample, sr = 16000) ipd.Audio(x, rate=sr )<filter>
train_transforms = transforms.Compose( [transforms.ToPILImage() , transforms.ToTensor() , transforms.Normalize(mean=(0.5,), std=(0.5,)) ]) val_test_transforms = transforms.Compose( [transforms.ToPILImage() , transforms.ToTensor() , transforms.Normalize(mean=(0.5,), std=(0.5,)) ] )
Digit Recognizer
12,060,595
inv_map[y_labs[1001]]<set_options>
total_epoches = 20 step_size = 5 base_lr = 0.01 batch_size = 64 optimizer = optim.Adam(model.parameters() , lr=base_lr) criterion = nn.CrossEntropyLoss() exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=0.1) if torch.cuda.is_available() : model = model.cuda() criterion = criterion.cuda()
Digit Recognizer
12,060,595
shutil.rmtree(test_path )<save_to_csv>
def split_dataframe(dataframe=None, fraction=0.9, rand_seed=1): df_1 = dataframe.sample(frac=fraction, random_state=rand_seed) df_2 = dataframe.drop(df_1.index) return df_1, df_2
Digit Recognizer
12,060,595
my_submission = pd.DataFrame({'fname': test_data, 'label': [inv_map[x] for x in y_labs]}) my_submission.to_csv('submission.csv', index=False )<set_options>
for epoch in range(total_epoches): print(" Train Epoch {}: lr = {}".format(epoch, exp_lr_scheduler.get_lr() [0])) train_df_new, val_df = split_dataframe(dataframe=train_df, fraction=0.9, rand_seed=epoch) train_dataset = MNISTDataset(train_df_new, transform=train_transforms) val_dataset = MNISTDataset(val_df, transform=val_test_transforms) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False) train(train_loader=train_loader, model=model, criterion=criterion, optimizer=optimizer, epoch=epoch) validate(val_loader=val_loader, model=model, criterion=criterion) exp_lr_scheduler.step()
Digit Recognizer
12,060,595
for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) <load_from_csv>
def prediciton(test_loader, model): model.eval() test_pred = torch.LongTensor() for i, data in enumerate(test_loader): if torch.cuda.is_available() : data = data.cuda() output = model(data) pred = output.cpu().data.max(1, keepdim=True)[1] test_pred = torch.cat(( test_pred, pred), dim=0) return test_pred
Digit Recognizer
12,060,595
train = pd.read_csv('/kaggle/input/restaurant-revenue-prediction/train.csv.zip') test = pd.read_csv('/kaggle/input/restaurant-revenue-prediction/test.csv.zip') train_Id = train.Id test_Id = test.Id train.drop('Id', axis=1, inplace=True) test.drop('Id', axis=1, inplace=True )<set_options>
test_batch_size = 64 test_dataset = MNISTDataset(test_df, transform=val_test_transforms) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=test_batch_size, shuffle=False) test_pred = prediciton(test_loader, model) test_pred_df = pd.DataFrame(np.c_[np.arange(1, len(test_dataset)+1), test_pred.numpy() ], columns=['ImageId', 'Label']) print(test_pred_df.head() )
Digit Recognizer
12,060,595
pd.options.display.max_columns = None pd.options.display.max_rows = 80 pd.options.display.float_format = '{:.2f}'.format %matplotlib inline warnings.filterwarnings('ignore') %matplotlib inline<data_type_conversions>
def create_download_link(df, title = "Download CSV file", filename = "data.csv"): csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()) payload = b64.decode() html = '<a download="{filename}" href="data:text/csv;base64,{payload}" target="_blank">{title}</a>' html = html.format(payload=payload,title=title,filename=filename) return HTML(html) create_download_link(test_pred_df, filename="submission.csv" )
Digit Recognizer
12,060,595
train['pd_date'] = pd.to_datetime(train['Open Date'], format='%m/%d/%Y') train['Open_Year'] = train['pd_date'].dt.strftime('%Y') train['Open_Month'] = train['pd_date'].dt.strftime('%m') train["Open Date"] = pd.to_datetime(train["Open Date"]) train["Day"] = train["Open Date"].apply(lambda x:x.day) train["kijun"] = "2015-04-27" train["kijun"] = pd.to_datetime(train["kijun"]) train["BusinessPeriod"] =(train["kijun"] - train["Open Date"] ).apply(lambda x: x.days) train = train.drop('kijun', axis=1) train = train.drop('pd_date',axis=1) train = train.drop('Open Date',axis=1 )<data_type_conversions>
test_pred_df.to_csv('submission.csv', index=False )
Digit Recognizer
12,061,993
test['pd_date'] = pd.to_datetime(test['Open Date'], format='%m/%d/%Y') test['Open_Year'] = test['pd_date'].dt.strftime('%Y') test['Open_Month'] = test['pd_date'].dt.strftime('%m') test["Open Date"] = pd.to_datetime(test["Open Date"]) test["Day"] = test["Open Date"].apply(lambda x:x.day) test["kijun"] = "2015-04-27" test["kijun"] = pd.to_datetime(test["kijun"]) test["BusinessPeriod"] =(test["kijun"] - test["Open Date"] ).apply(lambda x: x.days) test = test.drop('kijun', axis=1) test = test.drop('pd_date',axis=1) test = test.drop('Open Date',axis=1 )<count_values>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
12,061,993
train.dtypes.value_counts()<count_unique_values>
from sklearn.model_selection import train_test_split
Digit Recognizer
12,061,993
train.nunique(axis=0 )<define_variables>
from sklearn.model_selection import train_test_split
Digit Recognizer
12,061,993
print(f'categorical variables: {cats}') print(f'numerical variables: {nums}' )<define_variables>
X = train.drop('label',axis=1) y = train['label']
Digit Recognizer
12,061,993
nominal_list =cats num_list = nums <drop_column>
X = X/255 test = test/255
Digit Recognizer
12,061,993
train = train.drop('Open_Month',axis=1) test= test.drop('Open_Month',axis=1) nominal_list.remove('Open_Month' )<feature_engineering>
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Dense, Flatten from tensorflow.keras.callbacks import EarlyStopping
Digit Recognizer
12,061,993
mean_revenue_per_city = train[['City', 'revenue']].groupby('City', as_index=False ).mean() mean_revenue_per_city.head() mean_revenue_per_city['revenue'] = mean_revenue_per_city['revenue'].apply(lambda x: int(x/1e6)) mean_revenue_per_city mean_dict = dict(zip(mean_revenue_per_city.City, mean_revenue_per_city.revenue)) mean_dict<count_values>
early_stop = EarlyStopping(monitor='accuracy',mode='max',min_delta=0.005,verbose=7,patience=5 )
Digit Recognizer
12,061,993
l1_l2_and = set(city_train_list)& set(city_test_list) print(l1_l2_and) print(len(l1_l2_and))<concatenate>
model = Sequential() model.add(Conv2D(64, 3, activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(( 2, 2))) model.add(Dropout(0.5)) model.add(Conv2D(32, 3, activation='relu')) model.add(MaxPooling2D(( 2, 2))) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(128,activation='relu')) model.add(Dense(10,activation='softmax')) model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'] )
Digit Recognizer
12,061,993
len(set(city_test_list ).difference(city_train_list))<concatenate>
model.fit(X,y, epochs=1000, callbacks=[early_stop] )
Digit Recognizer
12,061,993
len(set(city_train_list ).difference(city_test_list))<predict_on_test>
predictions = model.predict_classes(test )
Digit Recognizer
12,061,993
def adjust_cities(full_full_data, train, k): relevant_pvars = ["P1", "P2", "P11", "P19", "P20", "P23","P30"] train = train.loc[:, relevant_pvars] kmeans = cluster.KMeans(n_clusters=k) kmeans.fit(train) full_data['City_Cluster'] = kmeans.predict(full_data.loc[:, relevant_pvars]) return full_data<concatenate>
df = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv' )
Digit Recognizer
12,061,993
num_train = train.shape[0] num_test = test.shape[0] print(num_train, num_test) full_data = pd.concat([train, test], ignore_index=True )<drop_column>
df['Label'] = predictions
Digit Recognizer
12,061,993
full_data = adjust_cities(full_data, train, 20) full_data full_data = full_data.drop(['City'], axis=1 )<train_model>
df.to_csv('submission.csv',line_terminator='\r ', index=False )
Digit Recognizer
12,001,799
train = full_data[:num_train] test = full_data[num_train:] print("Train :",train.shape) print("Test:",test.shape) test<feature_engineering>
import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Conv2D, MaxPool2D, Flatten, BatchNormalization, Dropout from keras.callbacks import EarlyStopping, ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import itertools
Digit Recognizer
12,001,799
mean_revenue_per_city = train[['City_Cluster', 'revenue']].groupby('City_Cluster', as_index=False ).mean() mean_revenue_per_city.head() mean_revenue_per_city['revenue'] = mean_revenue_per_city['revenue'].apply(lambda x: int(x/1e6)) mean_revenue_per_city mean_dict = dict(zip(mean_revenue_per_city.City_Cluster, mean_revenue_per_city.revenue)) mean_dict<create_dataframe>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
12,001,799
city_rev = [] for i in full_data['City_Cluster']: for key, value in mean_dict.items() : if i == key: city_rev.append(value) df_city_rev = pd.DataFrame({'city_rev':city_rev}) full_data = pd.concat([full_data,df_city_rev],axis=1) full_data.head nominal_list.extend(['City_Cluster']) nominal_list.remove('City' )<categorify>
X_train = train.iloc[:,1:] y_train = train.iloc[:,0]
Digit Recognizer
12,001,799
le = LabelEncoder() le_count = 0 for i in range(len(nominal_list)) : if len(list(full_data[nominal_list[i]].unique())) <= 2: le.fit(full_data[nominal_list[i]]) full_data[nominal_list[i]] = le.transform(full_data[nominal_list[i]]) le_count += 1 print('%d columns were label encoded.' % le_count )<categorify>
X_train = X_train.values.reshape(-1, 28, 28, 1)/255. test = test.values.reshape(-1, 28, 28, 1)/255. y_train = to_categorical(y_train, 10 )
Digit Recognizer
12,001,799
full_data = pd.get_dummies(full_data) print('full_dataing Features shape: ', full_data.shape )<randomize_order>
random_seed = 0 X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=random_seed )
Digit Recognizer
12,001,799
def tukey_outliers(x): q1 = np.percentile(x,25) q3 = np.percentile(x,75) iqr = q3-q1 min_range = q1 - iqr*1.5 max_range = q3 + iqr*1.5 outliers = x[(x<min_range)|(x>max_range)] return outliers<sort_values>
datagen = ImageDataGenerator( rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1 )
Digit Recognizer
12,001,799
skewed_data = train[num_list].apply(lambda x: skew(x)).sort_values(ascending=False) skewed_data[:10]<train_model>
model = Sequential() model.add(Conv2D(32,(5,5), padding='same', input_shape=X_train.shape[1:], activation='relu')) model.add(Conv2D(32,(5,5), padding='same', activation='relu')) model.add(MaxPool2D(2,2)) model.add(Conv2D(64,(3,3), padding='same', activation='relu')) model.add(Conv2D(64,(3,3), padding='same', activation='relu')) model.add(MaxPool2D(2,2)) model.add(Conv2D(64,(3,3), padding='same', activation='relu')) model.add(Conv2D(64,(3,3), padding='same', activation='relu')) model.add(MaxPool2D(2,2)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.summary()
Digit Recognizer
12,001,799
train = full_data[:num_train] test = full_data[num_train:] print("Train :",train.shape) print("Test:",test.shape )<train_model>
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
12,001,799
( X_train, X_test, y_train, y_test)= train_test_split(train_X, train_y , test_size = 0.3 , random_state = 0) print("X_train: "+str(X_train.shape)) print("X_test: "+str(X_test.shape)) print("y_train: "+str(y_train.shape)) print("y_test: "+str(y_test.shape))<import_modules>
EPOCHS = 20 BATCH_SIZE = 20 callback_list = [ ReduceLROnPlateau(monitor='val_loss', factor=0.25, patience=1, verbose=1, mode='auto', min_delta=0.0001) ] history = model.fit(datagen.flow(X_train, y_train, batch_size=BATCH_SIZE), epochs=EPOCHS, callbacks=callback_list, validation_data=(X_val, y_val), steps_per_epoch=X_train.shape[0] // BATCH_SIZE )
Digit Recognizer
12,001,799
<choose_model_class><EOS>
results = model.predict(test) results = np.argmax(results, axis=1) results = pd.Series(results, name='Label') submission = pd.concat([pd.Series(range(1,28001), name='ImageID'), results], axis=1) submission.to_csv('submission.csv', index=False )
Digit Recognizer
11,983,532
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<sort_values>
pd.set_option('display.max_rows', 1000) warnings.filterwarnings("ignore") dftrain = pd.read_csv('.. /input/digit-recognizer/train.csv') dftest = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
11,983,532
print(cv_res.sort_values(ascending=False, by='CrossValMeans'))<train_model>
IMG_SIZE = 28 x_train = dftrain.iloc[:,1:] x_train = x_train.values.reshape(-1, IMG_SIZE, IMG_SIZE, 1) y_train = dftrain.iloc[:,0] x_test = dftest x_test = x_test.values.reshape(-1, IMG_SIZE, IMG_SIZE, 1) x_train = x_train/255.0 x_test = x_test/255.0
Digit Recognizer
11,983,532
def objective(trial): params = { 'alpha': trial.suggest_loguniform("alpha", 0.1, 5), 'fit_intercept': trial.suggest_categorical('fit_intercept', [True, False]), 'normalize': trial.suggest_categorical('normalize', [True, False]), } reg = Ridge(**params) reg.fit(X_train, y_train) y_pred = reg.predict(X_test) mae = mean_absolute_error(y_test, y_pred) return mae <find_best_params>
X_train, X_val, y_train, y_val = train_test_split(x_train, y_train, test_size = 0.1, random_state = 42) datagen = ImageDataGenerator( rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1) datagen.fit(X_train )
Digit Recognizer
11,983,532
study = optuna.create_study() study.optimize(objective, n_trials=100) print(f'best score: {study.best_value:.4f}, best params: {study.best_params}' )<find_best_model_class>
earlystopping = EarlyStopping(monitor ="val_accuracy", mode = 'auto', patience = 30, restore_best_weights = True) model = Sequential() model.add(Conv2D(128,(3, 3), input_shape = x_train.shape[1:])) model.add(BatchNormalization()) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2), padding='same')) model.add(Conv2D(512,(3, 3))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), padding='same')) model.add(Flatten()) model.add(Dense(512)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
11,983,532
params = {'alpha': 1.7927096237808111, 'fit_intercept': True, 'normalize': True} reg = Ridge(**params) reg.fit(X_train, y_train) prediction_log = reg.predict(test_X) prediction =np.exp(prediction_log) print(prediction )<save_to_csv>
plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True )
Digit Recognizer
11,983,532
submission = pd.DataFrame({"Id":test_Id, "Prediction":prediction}) submission.to_csv("submission.csv", index=False )<load_from_csv>
model.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) EPOCHS = 1000 BATCH_SIZE=64 history = model.fit(datagen.flow(X_train, y_train), epochs=EPOCHS, batch_size=BATCH_SIZE, validation_data=(X_val, y_val), callbacks=[earlystopping] )
Digit Recognizer
11,983,532
df = pd.read_csv('/kaggle/input/restaurant-revenue-prediction/train.csv.zip') df.shape<load_from_csv>
print("Max.Validation Accuracy: {}%".format(round(100*max(history.history['val_accuracy']), 2)) )
Digit Recognizer
11,983,532
test_data = pd.read_csv('/kaggle/input/restaurant-revenue-prediction/test.csv.zip') test_data.shape<count_missing_values>
predictions = model.predict([x_test]) solutions = [] for i in range(len(predictions)) : solutions.append(np.argmax(predictions[i]))
Digit Recognizer
11,983,532
df.sum().isnull()<feature_engineering>
final = pd.DataFrame() final['ImageId']=[i+1 for i in dftest.index] final['Label']=solutions final.to_csv('submission.csv', index=False )
Digit Recognizer
11,828,766
test_data.loc[test_data['Type']=='MB', 'Type'] = 'DT'<data_type_conversions>
sample_sub = '.. /input/digit-recognizer/sample_submission.csv' test = '.. /input/digit-recognizer/test.csv' train = '.. /input/digit-recognizer/train.csv'
Digit Recognizer
11,828,766
df['Open Date'] = pd.to_datetime(df['Open Date']) test_data['Open Date'] = pd.to_datetime(test_data['Open Date'] )<drop_column>
%matplotlib inline
Digit Recognizer
11,828,766
df.drop('Id',axis=1,inplace=True) df.drop('City', axis=1, inplace = True) test_data.drop('City', axis = 1, inplace = True) df.head()<feature_engineering>
train_data = pd.read_csv(train) test_data = pd.read_csv(test )
Digit Recognizer
11,828,766
launch_date = datetime.datetime(2015, 3, 23) df['Days Open'] =(launch_date - df['Open Date'] ).dt.days / 1000 test_data['Days Open'] =(launch_date - test_data['Open Date'] ).dt.days / 1000 df.drop('Open Date', axis=1, inplace=True) test_data.drop('Open Date', axis=1, inplace=True )<categorify>
y_train = train_data ['label'] X_train = train_data.drop(labels = ["label"], axis = 1) X_test = test_data
Digit Recognizer
11,828,766
columnsToEncode = df.select_dtypes(include=[object] ).columns df = pd.get_dummies(df, columns=columnsToEncode, drop_first=False) test_data = pd.get_dummies(test_data, columns=columnsToEncode, drop_first=False )<split>
X_train = X_train/255 X_test = X_test/255
Digit Recognizer
11,828,766
df['revenue'] = np.log1p(df['revenue']) X, y = df.drop('revenue', axis=1), df['revenue'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42 )<train_model>
y_train = to_categorical(y_train, num_classes = 10 )
Digit Recognizer
11,828,766
clf = LinearRegression().fit(X_train, y_train) clf.score(X_train, y_train )<train_on_grid>
datagen = ImageDataGenerator( rotation_range = 10, zoom_range = 0.1, width_shift_range = 0.1, height_shift_range = 0.1 )
Digit Recognizer
11,828,766
params_grid = { 'max_depth': [10, 30, 35, 50, 65, 75, 100], 'max_features': [.3,.4,.5,.6], 'min_samples_leaf': [3, 4, 5], 'min_samples_split': [8, 10, 12], 'n_estimators': [30, 50, 100, 200] } rf_regressor = RandomForestRegressor() rf_cv_regressor = GridSearchCV(rf_regressor, params_grid, scoring='neg_root_mean_squared_error', cv = 10, n_jobs = -1) rf_cv_regressor.fit(X_train, y_train) print('Best params {}'.format(rf_cv_regressor.best_params_)) print('Best score {}'.format(rf_cv_regressor.best_score_))<train_model>
model = Sequential() model.add(Conv2D(32,kernel_size=3, activation='relu', input_shape=(28,28,1))) model.add(BatchNormalization()) model.add(Conv2D(32,kernel_size=3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(32,kernel_size=5, strides=2, padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Conv2D(64, kernel_size=3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size=3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size=5, strides=2, padding='same' ,activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(128, activation ='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
11,828,766
rf_regressor = RandomForestRegressor(max_depth = 10, max_features = 0.6, min_samples_leaf = 3, min_samples_split = 8, n_estimators = 50) rf_regressor.fit(X_train, y_train )<compute_test_metric>
model.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"] )
Digit Recognizer
11,828,766
y_train_pred = rf_regressor.predict(X_train) y_pred = rf_regressor.predict(X_test) train_rmse = np.sqrt(mean_squared_error(y_train_pred, y_train)) test_rmse = np.sqrt(mean_squared_error(y_test, y_pred)) print(f'Train RMSE: {train_rmse:.4f}') print(f'Test RMSE: {test_rmse:.4f}' )<save_to_csv>
X_train, X_val, Y_train, Y_val = train_test_split(X_train, y_train, test_size = 0.2, random_state = 64 )
Digit Recognizer
11,828,766
submission = pd.DataFrame(columns=['Id','Prediction']) submission['Id'] = test_data['Id'] rf_pred = rf_regressor.predict(test_data.drop('Id', axis=1)) submission['Prediction'] = np.expm1(rf_pred) submission.to_csv('submission_rf.csv',index=False )<import_modules>
history = model.fit_generator(datagen.flow(X_train, Y_train, batch_size = 64), epochs = 50, steps_per_epoch = X_train.shape[0]//64, validation_data =(X_val, Y_val), verbose=1 )
Digit Recognizer
11,828,766
for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) <load_from_csv>
predictions = model.predict(X_test) predictions = np.argmax(predictions, axis = 1) predictions = pd.Series(predictions, name = "Label" )
Digit Recognizer
11,828,766
<prepare_x_and_y><EOS>
submission = pd.concat([pd.Series(range(1, 28001), name = "ImageId"), predictions], axis = 1) submission.to_csv("MNIST_top_CNN_submission.csv", index = False )
Digit Recognizer
11,950,572
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<train_on_grid>
import numpy import pandas import matplotlib.pyplot as plt from keras.utils import to_categorical from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import EarlyStopping
Digit Recognizer
11,950,572
model_grid = {'max_depth': [None, 8], 'min_samples_split': [4,9,16], 'min_samples_leaf':[1,4], 'max_features':['sqrt', 0.5, None]} type_model = ExtraTreesClassifier(n_estimators=25, random_state=SEED) grid = RandomizedSearchCV(type_model, model_grid, n_iter=10, cv=5, scoring="roc_auc") grid.fit(X, y) print("Best parameters for Type Model:") print(grid.best_params_) type_model.set_params(**grid.best_params_) type_model.fit(X, y) imputations = type_model.predict(tofill.drop(["T_FC", "T_IL", "revenue"], axis=1)) df.loc[(df.T_FC==0)&(df.T_IL==0), "T_FC"] = imputations df = df.drop(["T_IL"], axis=1) print("% labeled FC in the training set:"), df.T_FC.mean() print("% of imputed values labeled FC:"), np.mean(imputations )<categorify>
train_data = pandas.read_csv('.. /input/digit-recognizer/train.csv') test_data = pandas.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
11,950,572
print("Pre-binarizing columns:"), len(df.columns) for col in df.columns: if col[0] == 'P': print(col), len(df[col].unique()), "unique values" df = df.join(pd.get_dummies(df[col], prefix=col)) df = df.drop([col, df.columns[-1]], axis=1) print("Post-binarizing columns:"), len(df.columns )<prepare_x_and_y>
train_y = to_categorical(train_data["label"]) train_x = train_data.loc[:, train_data.columns != "label"] train_x /= 256
Digit Recognizer
11,950,572
train = df.loc[pd.notnull(df.revenue)] test = df.loc[pd.isnull(df.revenue)].drop(['revenue'], axis=1) y = train.revenue.apply(np.sqrt) X = train.drop(["revenue"], axis=1 )<train_on_grid>
callback = EarlyStopping(monitor='loss', patience=8, restore_best_weights=True )
Digit Recognizer
11,950,572
model_grid = [{'normalize': [True, False], 'alpha': np.logspace(0,10)}] model = Ridge() grid = GridSearchCV(model, model_grid, cv=LeaveOneOut() , scoring='neg_mean_squared_error') grid.fit(X, y) print("Best parameters set found on development set:") print(grid.best_params_) model.set_params(**grid.best_params_) model.fit(X, y )<save_to_csv>
model = Sequential() model.add(Conv2D(64,(3,3), activation='relu', input_shape=(28,28, 1))) model.add(MaxPooling2D(( 2,2))) model.add(Conv2D(64,(3,3), activation='relu')) model.add(MaxPooling2D(( 2,2))) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(256, activation='relu')) model.add(Dense(10, activation='sigmoid'))
Digit Recognizer
11,950,572
submission = pd.DataFrame(columns=['Prediction'],index=test.index, data=model.predict(test)) submission.Prediction = submission.Prediction.apply(np.square) submission.index.name='Id' submission.to_csv("TFI_Ridge.csv") submission.describe().astype(int )<set_options>
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] )
Digit Recognizer
11,950,572
plt.style.use("seaborn-whitegrid") plt.rc("figure", autolayout=True) plt.rc( "axes", labelweight="bold", labelsize="large", titleweight="bold", titlesize=14, titlepad=10, ) warnings.filterwarnings('ignore' )<load_from_csv>
datagen = ImageDataGenerator( rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1 ) datagen.fit(train_x )
Digit Recognizer
11,950,572
def load_data() : data_dir = Path(".. /input/house-prices-advanced-regression-techniques/") df_train = pd.read_csv(data_dir / "train.csv", index_col="Id") df_test = pd.read_csv(data_dir / "test.csv", index_col="Id") df = pd.concat([df_train, df_test]) df = clean(df) df = encode(df) df = impute(df) df_train = df.loc[df_train.index, :] df_test = df.loc[df_test.index, :] return df_train, df_test<load_from_csv>
history = model.fit(datagen.flow(train_x, train_y, batch_size=32), epochs=80, callbacks=[callback] )
Digit Recognizer
11,950,572
data_dir = Path(".. /input/house-prices-advanced-regression-techniques/") df = pd.read_csv(data_dir / "train.csv", index_col="Id") df.Exterior2nd.unique()<feature_engineering>
test_data /= 256 test_x = test_data.values.reshape(-1, 28, 28, 1) y_pred = model.predict(test_x) y_pred = numpy.argmax(y_pred, axis=1) y_pred = pandas.Series(y_pred,name='Label') submission = pandas.concat([pandas.Series(range(1, 28001), name='ImageId'), y_pred], axis=1 )
Digit Recognizer
11,950,572
def clean(df): df["Exterior2nd"] = df["Exterior2nd"].replace({"Brk Cmn": "BrkComm"}) df["GarageYrBlt"] = df["GarageYrBlt"].where(df.GarageYrBlt <= 2010, df.YearBuilt) df.rename(columns={ "1stFlrSF": "FirstFlrSF", "2ndFlrSF": "SecondFlrSF", "3SsnPorch": "Threeseasonporch", },inplace=True ) return df<define_variables>
submission.to_csv('my_submission.csv', index=False )
Digit Recognizer
11,870,532
features_nom = [ "MSSubClass", "MSZoning", "Street", "Alley", "LandContour", "LotConfig", "Neighborhood", "Condition1", "Condition2", "BldgType", "HouseStyle", "RoofStyle", "RoofMatl", "Exterior1st", "Exterior2nd", "MasVnrType", "Foundation", "Heating", "CentralAir", "GarageType", "MiscFeature", "SaleType", "SaleCondition" ] five_levels = ["Po", "Fa", "TA", "Gd", "Ex"] ten_levels = list(range(10)) ordered_levels = { "OverallQual": ten_levels, "OverallCond": ten_levels, "ExterQual": five_levels, "ExterCond": five_levels, "BsmtQual": five_levels, "BsmtCond": five_levels, "HeatingQC": five_levels, "KitchenQual": five_levels, "FireplaceQu": five_levels, "GarageQual": five_levels, "GarageCond": five_levels, "PoolQC": five_levels, "LotShape": ["Reg", "IR1", "IR2", "IR3"], "LandSlope": ["Sev", "Mod", "Gtl"], "BsmtExposure": ["No", "Mn", "Av", "Gd"], "BsmtFinType1": ["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"], "BsmtFinType2": ["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"], "Functional": ["Sal", "Sev", "Maj1", "Maj2", "Mod", "Min2", "Min1", "Typ"], "GarageFinish": ["Unf", "RFn", "Fin"], "PavedDrive": ["N", "P", "Y"], "Utilities": ["NoSeWa", "NoSewr", "AllPub"], "CentralAir": ["N", "Y"], "Electrical": ["Mix", "FuseP", "FuseF", "FuseA", "SBrkr"], "Fence": ["MnWw", "GdWo", "MnPrv", "GdPrv"] } ordered_levels = {key: ["None"] + value for key, value in ordered_levels.items() } def encode(df): for name in features_nom: df[name] = df[name].astype("category") if "None" not in df[name].cat.categories: df[name].cat.add_categories("None", inplace=True) for name, levels in ordered_levels.items() : df[name] = df[name].astype(CategoricalDtype(levels, ordered=True)) return df<categorify>
X_train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') X_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') print('Shape of the training data: ', X_train.shape) print('Shape of the test data: ', X_test.shape )
Digit Recognizer
11,870,532
def impute(df): for name in df.select_dtypes("number"): df[name] = df[name].fillna(0) for name in df.select_dtypes("category"): df[name] = df[name].fillna("None") return df<split>
y_train = X_train['label'] X_train.drop(labels = ['label'], axis=1, inplace=True )
Digit Recognizer
11,870,532
df_train, df_test = load_data()<compute_train_metric>
print('Null values in training data: ',X_train.isna().any().sum()) print('Null values in test data: ',X_test.isna().any().sum()) X_train = X_train / 255.0 X_test = X_test / 255.0
Digit Recognizer
11,870,532
def score_dataset(X, y, model=XGBRegressor()): for colname in X.select_dtypes(["category"]): X[colname] = X[colname].cat.codes log_y = np.log(y) score = cross_val_score( model, X, log_y, cv=5, scoring="neg_mean_squared_error" ) score = -1 * score.mean() score = np.sqrt(score) return score<compute_test_metric>
y_train = to_categorical(y_train, num_classes=10 )
Digit Recognizer
11,870,532
X = df_train.copy() y = X.pop("SalePrice") baseline_score = score_dataset(X, y) print(f"Baseline score: {baseline_score:.5f} RMSLE" )<prepare_x_and_y>
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size = 0.1 )
Digit Recognizer
11,870,532
X = df_train.copy() y = X.pop("SalePrice") mi_scores = make_mi_scores(X, y) mi_scores.head()<drop_column>
model = keras.models.Sequential([layers.Conv2D(32,(3,3), activation="relu",padding='same', input_shape=(28,28,1)) , layers.MaxPooling2D(2,2), layers.Dropout(0.25), layers.Conv2D(64,(3,3), activation="relu",padding='same'), layers.MaxPooling2D(2,2), layers.Dropout(0.25), layers.Flatten() , layers.BatchNormalization() , layers.Dense(128, activation="elu", kernel_initializer="he_normal"), layers.BatchNormalization() , layers.Dense(32, activation="elu", kernel_initializer="he_normal"), layers.BatchNormalization() , layers.Dense(10, activation="softmax")]) model.summary()
Digit Recognizer
11,870,532
def drop_uninformative(df, mi_scores): return df.loc[:, mi_scores > 0.0]<create_dataframe>
optimizer = Adam(learning_rate=0.001, epsilon=1e-07) model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics=['accuracy']) earlyStopping = EarlyStopping(monitor='val_accuracy', patience=10, verbose=0, mode='auto') mcp = ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True, monitor='val_accuracy', mode='auto') reduce_lr_loss = ReduceLROnPlateau(monitor='val_accuracy', factor=0.1, patience=7, verbose=1, epsilon=1e-4, mode='auto' )
Digit Recognizer
11,870,532
X = df_train.copy() y = X.pop("SalePrice") X = drop_uninformative(X, mi_scores) score_dataset(X, y )<categorify>
datagen = ImageDataGenerator( rotation_range=5, width_shift_range=0.1, height_shift_range=0.1, shear_range=5, zoom_range=0.1) datagen.fit(X_train )
Digit Recognizer
11,870,532
def label_encode(df): X = df.copy() for colname in X.select_dtypes(["category"]): X[colname] = X[colname].cat.codes return X<categorify>
Batch_size=100 Epochs = 100 history = model.fit_generator(datagen.flow(X_train, y_train, batch_size=Batch_size), epochs = Epochs, validation_data =(X_val,y_val), verbose = 2, steps_per_epoch=X_train.shape[0]//Batch_size, callbacks = [earlyStopping, mcp, reduce_lr_loss] )
Digit Recognizer
11,870,532
def mathematical_transforms(df): X = pd.DataFrame() X["LivLotRatio"] = df.GrLivArea / df.LotArea X["Spaciousness"] =(df.FirstFlrSF + df.SecondFlrSF)/ df.TotRmsAbvGrd return X def interactions(df): X = pd.get_dummies(df.BldgType, prefix="Bldg") X = X.mul(df.GrLivArea, axis=0) return X def counts(df): X = pd.DataFrame() X["PorchTypes"] = df[[ "WoodDeckSF", "OpenPorchSF", "EnclosedPorch", "Threeseasonporch", "ScreenPorch" ]].gt(0.0 ).sum(axis=1) return X def break_down(df): X = pd.DataFrame() X["MSClass"] = df.MSSubClass.str.split("_", n=1, expand=True)[0] return X def group_transforms(df): X = pd.DataFrame() X["MedNhbdArea"] = df.groupby("Neighborhood")["GrLivArea"].transform("median") X["MedCondQual"] = df.groupby("OverallQual")["OverallCond"].transform("median") X["MedBsmt"] = df.groupby("BsmtQual")["TotalBsmtSF"].transform("median") return X<create_dataframe>
model.load_weights(filepath = '.mdl_wts.hdf5') scores = model.evaluate(X_val, y_val, callbacks = [earlyStopping, mcp, reduce_lr_loss] )
Digit Recognizer
11,870,532
def apply_pca(X, standardize=True): if standardize: X =(X - X.mean(axis=0)) / X.std(axis=0) pca = PCA() X_pca = pca.fit_transform(X) component_names = [f"PC{i+1}" for i in range(X_pca.shape[1])] X_pca = pd.DataFrame(X_pca, column=component_names) loadings = pd.DataFrame( pca.components_.T, columns=component_names, index=X.columns, ) return pca, X_pca, loadings def plot_variance(pca, width=8, dpi=100): fig, axs = plt.subplots(1, 2) n = pca.n_components_ grid = np.arange(1, n + 1) evr = pca.explained_variance_ratio_ axs[0].bar(grid, evr) axs[0].set( xlabel="Component", title="% Explained Variance", ylim=(0.0, 1.0) ) cv = np.cumsum(evr) axs[1].plot(np.r_[0, grid], np.r_[0, cv], "o-") axs[1].set( xlabel="Component", title="% Cumulative Variance", ylim=(0.0, 1.0) ) fig.set(figwidth=8, dpi=100) return axs<feature_engineering>
for layer in model.layers: if'conv' in layer.name: filters, biases = layer.get_weights() print('Layer: ', layer.name, filters.shape) print('Filter size:(', filters.shape[0], ',', filters.shape[1], ')') print('Channels in this layer: ', filters.shape[2]) print('Number of filters: ', filters.shape[3]) count = 1 plt.figure(figsize =(18, 4)) for i in range(filters.shape[3]): ax= plt.subplot(4, filters.shape[3]/4, count) ax.set_xticks([]) ax.set_yticks([]) plt.imshow(filters[:,:,0, i], cmap=plt.cm.binary) count+=1 plt.show()
Digit Recognizer
11,870,532
def pca_inspired(df): X = pd.DataFrame() X["Feature1"] = df.GrLivArea + df.TotalBsmtSF X["Feature2"] = df.YearRemodAdd * df.TotalBsmtSF return X def pca_components(df, features): X = df.loc[:, features] _, X_pca, _ = apply_pca(X) return X_pca pca_features = [ "GarageArea", "YearRemodAdd", "TotalBsmtSF", "GrLivArea", ]<create_dataframe>
print('total number of layers',len(model.layers))
Digit Recognizer
11,870,532
def indicate_outliers(df): X_new = pd.DataFrame() X_new["Outlier"] =(df.Neighborhood == "Edwards")&(df.SaleCondition == "Partial") return X_new<categorify>
layer_outputs = [layer.output for layer in model.layers[0:6]] activation_model = models.Model(inputs = model.input, outputs = layer_outputs )
Digit Recognizer
11,870,532
class CrossFoldEncoder: def __init__(self, encoder, **kwargs): self.encoder_ = encoder self.kwargs_ = kwargs self.cv_ = KFold(n_splits=5) def fit_transform(self, X, y, cols): self.fitted_encoders_ = [] self.cols_ = cols X_encoded = [] for idx_encode, idx_train in self.cv_.split(X): fitted_encoder = self.encoder_(cols=cols, **self.kwargs_) fitted_encoder.fit( X.iloc[idx_encode, :], y.iloc[idx_encode], ) X_encoded.append(fitted_encoder.transform(X.iloc[idx_train, :])[cols]) self.fitted_encoders_.append(fitted_encoder) X_encoded = pd.concat(X_encoded) X_encoded.columns = [name + "_encoded" for name in X_encoded.columns] return X_encoded def transform(self, X): X_encoded_list = [] for fitted_encoder in self.fitted_encoders_: X_encoded = fitted_encoder.transform(X) X_encoded_list.append(X_encoded[self.cols_]) X_encoded = reduce( lambda x, y: x.add(y, fill_value=0), X_encoded_list )/ len(X_encoded_list) X_encoded.columns = [name + "_encoded" for name in X_encoded.columns] return X_encoded<categorify>
img_tensor = X_test[4].reshape(-1, 28, 28, 1) activations = activation_model.predict(img_tensor )
Digit Recognizer
11,870,532
<prepare_x_and_y><EOS>
submissions = pd.DataFrame({"ImageId": list(range(1,len(test_pred)+1)) , "Label": test_pred}) submissions.to_csv("submission.csv", index=False, header=True )
Digit Recognizer
10,345,485
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<init_hyperparams>
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from keras.models import Sequential from keras.layers import Conv2D, Lambda, MaxPooling2D from keras.layers import Dense, Dropout, Flatten from keras.layers.normalization import BatchNormalization from keras.preprocessing.image import ImageDataGenerator from keras.utils.np_utils import to_categorical
Digit Recognizer
10,345,485
def objective(trial): xgb_params = dict( max_depth=trial.suggest_int("max_depth", 2, 10), learning_rate=trial.suggest_float("learning_rate", 1e-4, 1e-1, log=True), n_estimators=trial.suggest_int("n_estimators", 1000, 8000), min_child_weight=trial.suggest_int("min_child_weight", 1, 10), colsample_bytree=trial.suggest_float("colsample_bytree", 0.2, 1.0), subsample=trial.suggest_float("subsample", 0.2, 1.0), reg_alpha=trial.suggest_float("reg_alpha", 1e-4, 1e2, log=True), reg_lambda=trial.suggest_float("reg_lambda", 1e-4, 1e2, log=True), ) xgb = XGBRegressor(tree_method="gpu_hist", gpu_id=0, **xgb_params) return score_dataset(X_train, y_train, xgb) study = optuna.create_study(direction="minimize") study.optimize(objective, n_trials=20) xgb_params = study.best_params<save_to_csv>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') sub = pd.read_csv('.. /input/sample_submission.csv')
Digit Recognizer
10,345,485
X_train, X_test = create_features(df_train, df_test) y_train = df_train.loc[:, "SalePrice"] xgb = XGBRegressor(tree_method="gpu_hist", gpu_id=0, **xgb_params) xgb.fit(X_train, np.log(y)) predictions = np.exp(xgb.predict(X_test)) output = pd.DataFrame({'Id': X_test.index, 'SalePrice': predictions}) output.to_csv('my_submission.csv', index=False) print("Your submission was successfully saved!" )<import_modules>
print(f"Training data size is {train.shape} Testing data size is {test.shape}" )
Digit Recognizer
10,345,485
warnings.filterwarnings('ignore' )<compute_test_metric>
X = train.drop(['label'], 1 ).values y = train['label'].values test_x = test.values
Digit Recognizer
10,345,485
def evaluation_metric(predicted_value, actual_value)-> float: rmse = mean_squared_error(actual_value,predicted_value, squared=False) return rmse def verify_remodelling(remodelled_year:int, built_year:int): if remodelled_year > built_year: return True elif remodelled_year == built_year: return False else: return -1 def selling_period(month_sold: int)-> str: if month_sold >= 3 and month_sold <= 5: return 'spring' elif month_sold >= 6 and month_sold <= 8: return 'summer' elif month_sold >= 9 and month_sold <= 11: return 'autumn' else: return 'winter' RANDOM_STATE = 0<load_from_csv>
X = X / 255.0 test_x = test_x / 255.0
Digit Recognizer
10,345,485
train_set = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test_set = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv' )<feature_engineering>
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0 )
Digit Recognizer
10,345,485
train_set['total_square_footage'] = train_set['TotalBsmtSF'] + train_set['GrLivArea'] test_set['total_square_footage'] = test_set['TotalBsmtSF'] + test_set['GrLivArea'] train_set['remodelling_done'] = train_set.apply(lambda x: verify_remodelling(x['YearRemodAdd'], x['YearBuilt']), axis=1) test_set['remodelling_done'] = test_set.apply(lambda x: verify_remodelling(x['YearRemodAdd'], x['YearBuilt']), axis=1) train_set['selling_season'] = train_set.apply(lambda x: selling_period(x['MoSold']), axis=1) test_set['selling_season'] = test_set.apply(lambda x: selling_period(x['MoSold']), axis=1) train_set['total_area_of_house'] = train_set['TotalBsmtSF'] + train_set['1stFlrSF'] + train_set['2ndFlrSF'] test_set['total_area_of_house'] = test_set['TotalBsmtSF'] + test_set['1stFlrSF'] + test_set['2ndFlrSF'] train_set['age_of_building'] = train_set['YearBuilt'].apply(lambda x: pd.datetime.now().year - x) test_set['age_of_building'] = test_set['YearBuilt'].apply(lambda x: pd.datetime.now().year - x) <count_missing_values>
mean = np.mean(X_train) std = np.std(X_train) def standardize(x): return(x-mean)/std
Digit Recognizer
10,345,485
train_set[ordinal_cat_features].isnull().sum()<categorify>
epochs = 50 batch_size = 64
Digit Recognizer
10,345,485
for col in ordinal_cat_features: train_set[col] = train_set[col].map(ordinal_ranking) test_set[col] = test_set[col].map(ordinal_ranking) train_set[col] = train_set[col].fillna(0) test_set[col] = test_set[col].fillna(0 )<count_missing_values>
model=Sequential() model.add(Conv2D(filters=64, kernel_size =(3,3), activation="relu", input_shape=(28,28,1))) model.add(Conv2D(filters=64, kernel_size =(3,3), activation="relu")) model.add(MaxPooling2D(pool_size=(2,2))) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size =(3,3), activation="relu")) model.add(Conv2D(filters=128, kernel_size =(3,3), activation="relu")) model.add(MaxPooling2D(pool_size=(2,2))) model.add(BatchNormalization()) model.add(Conv2D(filters=256, kernel_size =(3,3), activation="relu")) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Flatten()) model.add(BatchNormalization()) model.add(Dense(512,activation="relu")) model.add(Dense(10,activation="softmax")) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"] )
Digit Recognizer
10,345,485
train_set[continious_features].isnull().sum()<count_missing_values>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) train_gen = datagen.flow(X_train, y_train, batch_size=batch_size) test_gen = datagen.flow(X_test, y_test, batch_size=batch_size )
Digit Recognizer
10,345,485
test_set[continious_features].isnull().sum()<feature_engineering>
history = model.fit_generator(train_gen, epochs = epochs, steps_per_epoch = X_train.shape[0] // batch_size, validation_data = test_gen, validation_steps = X_test.shape[0] // batch_size )
Digit Recognizer