kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
14,584,011
for num in range(0,6): questions_df["tags"+str(num)] = questions_df["tags"].apply(lambda row: gettags(row,num)) le = LabelEncoder() le.fit(np.unique(questions_df['tags'+str(num)].values)) questions_df['tags'+str(num)]=questions_df[['tags'+str(num)]].apply(le.transform) questions_df_dict = { 'tags0': 'int8', 'tags1': 'int8', 'tags2': 'int8', 'tags3': 'int8', 'tags4': 'int8', 'tags5': 'int8', } questions_df = questions_df.astype(questions_df_dict) questions_df.drop(columns=['tags'], inplace=True) questions_df['part_bundle_id']=questions_df['part']*100000+questions_df['bundle_id'] questions_df.part_bundle_id=questions_df.part_bundle_id.astype('int32') questions_df.rename(columns={'question_id':'content_id'}, inplace=True) questions_df = pd.merge(questions_df, content_explation_agg, on='content_id', how='left',right_index=True) del content_explation_agg questions_df['content_correctness'] = questions_df['content_id'].map(content_agg['sum'] / content_agg['count']) questions_df.content_correctness=questions_df.content_correctness.astype('float16') questions_df['content_correctness_std'] = questions_df['content_id'].map(content_agg['var']) questions_df.content_correctness_std=questions_df.content_correctness_std.astype('float16') questions_df['content_uncorrect_count'] = questions_df['content_id'].map(content_agg['count']-content_agg['sum'] ).astype('int32') questions_df['content_correct_count'] = questions_df['content_id'].map(content_agg['sum'] ).astype('int32') questions_df['content_elapsed_time_mean'] = questions_df['content_id'].map(content_elapsed_time_agg['mean']) questions_df.content_elapsed_time_mean=questions_df.content_elapsed_time_mean.astype('float16') questions_df['content_had_explanation_mean'] = questions_df['content_id'].map(content_had_explanation_agg['mean']) questions_df.content_had_explanation_mean=questions_df.content_had_explanation_mean.astype('float16') del content_elapsed_time_agg del content_had_explanation_agg gc.collect() <categorify>
Digit Recognizer
14,584,011
part_agg = questions_df.groupby('part')['content_correctness'].agg(['mean', 'var']) questions_df['part_correctness_mean'] = questions_df['part'].map(part_agg['mean']) questions_df['part_correctness_std'] = questions_df['part'].map(part_agg['var']) questions_df.part_correctness_mean=questions_df.part_correctness_mean.astype('float16') questions_df.part_correctness_std=questions_df.part_correctness_std.astype('float16') part_agg = questions_df.groupby('part')['content_uncorrect_count'].agg(['sum']) questions_df['part_uncor_count'] = questions_df['part'].map(part_agg['sum'] ).astype('int32') part_agg = questions_df.groupby('part')['content_correct_count'].agg(['sum']) questions_df['part_cor_count'] = questions_df['part'].map(part_agg['sum'] ).astype('int32') bundle_agg = questions_df.groupby('bundle_id')['content_correctness'].agg(['mean']) questions_df['bundle_correctness_mean'] = questions_df['bundle_id'].map(bundle_agg['mean']) questions_df.bundle_correctness_mean=questions_df.bundle_correctness_mean.astype('float16') <drop_column>
count_network = 5 size_for_network = X_train.shape[0] // count_network X_train_list = [] X_valid_list = [] Y_train_list = [] Y_valid_list = [] for i in range(count_network): X_train_list.append(X_train[i * size_for_network :(i + 1)* size_for_network]) Y_train_list.append(Y_train[i * size_for_network :(i + 1)* size_for_network]) X_valid_list.append( np.concatenate(( X_train[0 * size_for_network : i * size_for_network], X_train[(i + 1)* size_for_network : count_network * size_for_network])) ) Y_valid_list.append( np.concatenate(( Y_train[0 * size_for_network : i * size_for_network], Y_train[(i + 1)* size_for_network : count_network * size_for_network])) )
Digit Recognizer
14,584,011
del content_agg del bundle_agg del part_agg gc.collect() <define_variables>
def build_model(lr): model = models.Sequential() model.add(Conv2D(96, 3, activation='relu', padding='same', input_shape=(28, 28, 1))) model.add(BatchNormalization()) model.add(SpatialDropout2D(0.4)) model.add(MaxPooling2D(( 2, 2))) model.add(Conv2D(160, 3, activation='relu', padding='same')) model.add(BatchNormalization()) model.add(SpatialDropout2D(0.4)) model.add(MaxPooling2D(( 2, 2))) model.add(Conv2D(256, 3, activation='relu', padding='same')) model.add(BatchNormalization()) model.add(SpatialDropout2D(0.4)) model.add(MaxPooling2D(( 2, 2))) model.add(Conv2D(128, 3, activation='relu', padding='same')) model.add(BatchNormalization()) model.add(SpatialDropout2D(0.4)) model.add(MaxPooling2D(( 2, 2))) model.add(Conv2D(64, 3, activation='relu', padding='same')) model.add(BatchNormalization()) model.add(SpatialDropout2D(0.4)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(96, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=optimizers.Adam(lr=lr), loss='categorical_crossentropy', metrics=['categorical_accuracy']) return model
Digit Recognizer
14,584,011
features_dict = { 'timestamp':'float16', 'user_interaction_count':'int16', 'user_interaction_timestamp_mean':'float32', 'lagtime':'float32', 'lagtime2':'float32', 'lagtime3':'float32', 'content_id':'int16', 'task_container_id':'int16', 'user_lecture_sum':'int16', 'user_lecture_lv':'float16', 'prior_question_elapsed_time':'float32', 'delta_prior_question_elapsed_time':'int32', 'user_correctness':'float16', 'user_uncorrect_count':'int16', 'user_correct_count':'int16', 'content_correctness_std':'float16', 'content_correct_count':'int32', 'content_uncorrect_count':'int32', 'content_elapsed_time_mean':'float16', 'content_had_explanation_mean':'float16', 'content_explation_false_mean':'float16', 'content_explation_true_mean':'float16', 'task_container_correctness':'float16', 'task_container_std':'float16', 'task_container_cor_count':'int32', 'task_container_uncor_count':'int32', 'attempt_no':'int8', 'part':'int8', 'part_correctness_mean':'float16', 'part_correctness_std':'float16', 'part_uncor_count':'int32', 'part_cor_count':'int32', 'tags0': 'int8', 'tags1': 'int8', 'tags2': 'int8', 'tags3': 'int8', 'tags4': 'int8', 'tags5': 'int8', 'part_bundle_id':'int32', 'content_sub_bundle':'int8', 'prior_question_had_explanation':'int8', 'explanation_mean':'float16', 'explanation_false_count':'int16', 'explanation_true_count':'int16', } categorical_columns= [ 'content_id', 'task_container_id', 'part', 'tags0', 'tags1', 'tags2', 'tags3', 'tags4', 'tags5', 'part_bundle_id', 'content_sub_bundle', 'prior_question_had_explanation', ] features=list(features_dict.keys()) <init_hyperparams>
list_models = [build_model(lr=1e-2)for _ in range(count_network)] list_history = [] for i in range(count_network): checkpoint_path = f'bestmodel{i + 1}.hdf5' checkpoint = ModelCheckpoint(checkpoint_path, monitor='val_categorical_accuracy', verbose=0, save_best_only=True, mode='max') scheduler = LearningRateScheduler(lambda epoch, lr: lr * 0.99, verbose=0) early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=50, mode='min', verbose=0) tqdm_callback = tfa.callbacks.TQDMProgressBar(leave_epoch_progress=False, leave_overall_progress=True, show_epoch_progress=False, show_overall_progress=True) callbacks_list = [ checkpoint, scheduler, tqdm_callback, early_stop ] print(f'Training {i + 1} network' + ' ' + '-' * 80) history = list_models[i].fit_generator(datagener.flow(X_train_list[i], Y_train_list[i], batch_size=50), epochs=350, steps_per_epoch=X_train_list[i].shape[0] // 50, callbacks=callbacks_list, verbose=0, validation_data=(X_valid_list[i], Y_valid_list[i])) list_history.append(history )
Digit Recognizer
14,584,011
flag_lgbm=True clfs = list() params = { 'num_leaves': 200, 'max_bin':450, 'feature_fraction': 0.52, 'bagging_fraction': 0.52, 'objective': 'binary', 'learning_rate': 0.05, "boosting_type": "gbdt", "metric": 'auc', } trains=list() valids=list() num=1 for i in range(0,num): train_df_clf=train_df[1200*10000:2*1200*10000] print('sample end') del train_df users=train_df_clf['user_id'].drop_duplicates() users=users.sample(frac=0.08) users_df=pd.DataFrame() users_df['user_id']=users.values valid_df_newuser = pd.merge(train_df_clf, users_df, on=['user_id'], how='inner',right_index=True) del users_df del users gc.collect() train_df_clf.drop(valid_df_newuser.index, inplace=True) print('pd.merge(train_df_clf, questions_df)') train_df_clf = pd.merge(train_df_clf, questions_df, on='content_id', how='left',right_index=True) valid_df_newuser = pd.merge(valid_df_newuser, questions_df, on='content_id', how='left',right_index=True) print('valid_df') valid_df=train_df_clf.sample(frac=0.1) train_df_clf.drop(valid_df.index, inplace=True) valid_df = valid_df.append(valid_df_newuser) del valid_df_newuser gc.collect() trains.append(train_df_clf) valids.append(valid_df) print('train_df_clf length:',len(train_df_clf)) print('valid_df length:',len(valid_df))<drop_column>
for i in range(count_network): list_models[i].load_weights(f'bestmodel{i + 1}.hdf5') print(f'Model №{i + 1}') _, acc = list_models[i].evaluate(X_train_list[i], Y_train_list[i]) _, acc2 = list_models[i].evaluate(X_valid_list[i], Y_valid_list[i]) print()
Digit Recognizer
14,584,011
del train_df_clf del valid_df gc.collect()<prepare_x_and_y>
def get_predict(models, data, method_voting='soft', count_classes=10): if method_voting == 'soft': for_test = np.zeros(( data.shape[0], count_classes)) for i in range(len(models)) : for_test += models[i].predict(data) return np.argmax(for_test, axis=1) elif method_voting == 'hard': for_test = np.zeros(( data.shape[0], len(models))) for i in range(len(models)) : for_test[:, i] += models[i].predict_classes(data) return np.int32(mode(for_test, axis=1)[0].T.flatten() )
Digit Recognizer
14,584,011
for i in range(0,num): X_train_np = trains[i][features].values.astype(np.float32) X_valid_np = valids[i][features].values.astype(np.float32) tr_data = lgb.Dataset(X_train_np, label=trains[i][target], feature_name=list(features)) va_data = lgb.Dataset(X_valid_np, label=valids[i][target], feature_name=list(features)) del trains del valids del X_train_np del X_valid_np gc.collect() model = lgb.train( params, tr_data, num_boost_round=5000, valid_sets=[tr_data, va_data], early_stopping_rounds=50, feature_name=features, categorical_feature=categorical_columns, verbose_eval=50 ) clfs.append(model) fig,ax = plt.subplots(figsize=(15,15)) lgb.plot_importance(model, ax=ax,importance_type='gain',max_num_features=50) plt.show() del tr_data del va_data gc.collect() <import_modules>
submit = pd.DataFrame(get_predict(list_models, X_test), columns=['Label'], index=pd.read_csv('.. /input/digit-recognizer/sample_submission.csv')['ImageId']) submit2 = pd.DataFrame(get_predict(list_models, X_test, method_voting='hard'), columns=['Label'], index=pd.read_csv('.. /input/digit-recognizer/sample_submission.csv')['ImageId']) submit.index.name = 'ImageId' submit.to_csv('submittion.csv') submit2.index.name = 'ImageId' submit2.to_csv('submittion2.csv' )
Digit Recognizer
14,584,011
<choose_model_class><EOS>
comparison = submit.join(submit2, lsuffix='_1', rsuffix='_2') comparison.loc[~(comparison['Label_1'] == comparison['Label_2'])]
Digit Recognizer
13,709,795
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<data_type_conversions>
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.preprocessing.image import ImageDataGenerator from keras.utils import to_categorical from keras.models import Sequential, load_model from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D, BatchNormalization from keras.optimizers import Adam from keras.callbacks import LearningRateScheduler from keras.callbacks import EarlyStopping
Digit Recognizer
13,709,795
del user_agg gc.collect() task_container_sum_dict = task_container_agg['sum'].astype('int32' ).to_dict(defaultdict(int)) task_container_count_dict = task_container_agg['count'].astype('int32' ).to_dict(defaultdict(int)) task_container_std_dict = task_container_agg['var'].astype('float16' ).to_dict(defaultdict(int)) explanation_sum_dict = explanation_agg['sum'].astype('int16' ).to_dict(defaultdict(int)) explanation_count_dict = explanation_agg['count'].astype('int16' ).to_dict(defaultdict(int)) del task_container_agg del explanation_agg gc.collect()<data_type_conversions>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv') df = train.copy() df_test = test.copy()
Digit Recognizer
13,709,795
user_lecture_sum_dict = user_lecture_agg['sum'].astype('int16' ).to_dict(defaultdict(int)) user_lecture_count_dict = user_lecture_agg['count'].astype('int16' ).to_dict(defaultdict(int)) del user_lecture_agg gc.collect()<categorify>
df.isnull().any().sum()
Digit Recognizer
13,709,795
max_timestamp_u_dict=max_timestamp_u.set_index('user_id' ).to_dict() max_timestamp_u_dict2=max_timestamp_u2.set_index('user_id' ).to_dict() max_timestamp_u_dict3=max_timestamp_u3.set_index('user_id' ).to_dict() user_prior_question_elapsed_time_dict=user_prior_question_elapsed_time.set_index('user_id' ).to_dict() del max_timestamp_u del max_timestamp_u2 del max_timestamp_u3 del user_prior_question_elapsed_time gc.collect()<categorify>
df_test.isnull().any().sum()
Digit Recognizer
13,709,795
attempt_no_sum_dict = attempt_no_agg['sum'].to_dict(defaultdict(int)) del attempt_no_agg gc.collect() <feature_engineering>
seed = 3141 np.random.seed(seed )
Digit Recognizer
13,709,795
def get_max_attempt(user_id,content_id): k =(user_id,content_id) if k in attempt_no_sum_dict.keys() : attempt_no_sum_dict[k]+=1 return attempt_no_sum_dict[k] attempt_no_sum_dict[k] = 1 return attempt_no_sum_dict[k] <split>
X = train.iloc[:,1:] Y = train.iloc[:,0] x_train , x_test , y_train , y_test = train_test_split(X, Y , test_size=0.1, random_state=seed )
Digit Recognizer
13,709,795
env = riiideducation.make_env() iter_test = env.iter_test() prior_test_df = None prev_test_df1 = None N=[0.4,0.6]<groupby>
x_train = x_train.values.reshape(-1, 28, 28, 1) x_test = x_test.values.reshape(-1, 28, 28, 1) df_test=df_test.values.reshape(-1,28,28,1 )
Digit Recognizer
13,709,795
%%time for(test_df, sample_prediction_df)in iter_test: test_df1=test_df.copy() if(prev_test_df1 is not None): prev_test_df1['answered_correctly'] = eval(test_df1['prior_group_answers_correct'].iloc[0]) prev_test_df1 = prev_test_df1[prev_test_df1.content_type_id == False] prev_group = prev_test_df1[['user_id', 'content_id', 'answered_correctly']].groupby('user_id' ).apply(lambda r:( r['content_id'].values, r['answered_correctly'].values)) for prev_user_id in prev_group.index: if prev_user_id in group.index: group[prev_user_id] =( np.append(group[prev_user_id][0], prev_group[prev_user_id][0])[-MAX_SEQ:], np.append(group[prev_user_id][1], prev_group[prev_user_id][1])[-MAX_SEQ:] ) else: group[prev_user_id] =( prev_group[prev_user_id][0], prev_group[prev_user_id][1] ) prev_test_df1 = test_df1.copy() test_df1 = test_df1[test_df1.content_type_id == False] test_dataset = TestDataset(group, test_df1, skills) test_dataloader = DataLoader(test_dataset, batch_size=51200, shuffle=False) outs = [] for item in test_dataloader: x = item[0].to(device ).long() target_id = item[1].to(device ).long() with torch.no_grad() : output, att_weight = nn_model(x, target_id) outs.extend(torch.sigmoid(output)[:, -1].view(-1 ).data.cpu().numpy()) if prior_test_df is not None: prior_test_df[target] = eval(test_df['prior_group_answers_correct'].iloc[0]) prior_test_df = prior_test_df[prior_test_df[target] != -1].reset_index(drop=True) prior_test_df['prior_question_had_explanation'].fillna(False, inplace=True) prior_test_df.prior_question_had_explanation=prior_test_df.prior_question_had_explanation.astype('int8') user_ids = prior_test_df['user_id'].values targets = prior_test_df[target].values for user_id, answered_correctly in zip(user_ids,targets): user_sum_dict[user_id] += answered_correctly user_count_dict[user_id] += 1 prior_test_df = test_df.copy() question_len=len(test_df[test_df['content_type_id'] == 0]) test_df['prior_question_had_explanation'].fillna(False, inplace=True) test_df.prior_question_had_explanation=test_df.prior_question_had_explanation.astype('int8') test_df['prior_question_elapsed_time'].fillna(prior_question_elapsed_time_mean, inplace=True) user_lecture_sum = np.zeros(question_len, dtype=np.int16) user_lecture_count = np.zeros(question_len, dtype=np.int16) user_sum = np.zeros(question_len, dtype=np.int16) user_count = np.zeros(question_len, dtype=np.int16) task_container_sum = np.zeros(question_len, dtype=np.int32) task_container_count = np.zeros(question_len, dtype=np.int32) task_container_std = np.zeros(question_len, dtype=np.float16) explanation_sum = np.zeros(question_len, dtype=np.int32) explanation_count = np.zeros(question_len, dtype=np.int32) delta_prior_question_elapsed_time = np.zeros(question_len, dtype=np.int32) attempt_no_count = np.zeros(question_len, dtype=np.int16) lagtime = np.zeros(question_len, dtype=np.float32) lagtime2 = np.zeros(question_len, dtype=np.float32) lagtime3 = np.zeros(question_len, dtype=np.float32) i=0 for j,(user_id,prior_question_had_explanation,content_type_id,prior_question_elapsed_time,timestamp, content_id,task_container_id)in enumerate(zip(test_df['user_id'].values,test_df['prior_question_had_explanation'].values,test_df['content_type_id'].values,test_df['prior_question_elapsed_time'].values,test_df['timestamp'].values, test_df['content_id'].values, test_df['task_container_id'].values)) : user_lecture_sum_dict[user_id] += content_type_id user_lecture_count_dict[user_id] += 1 if(content_type_id==1): x=1 if(content_type_id==0): user_lecture_sum[i] = user_lecture_sum_dict[user_id] user_lecture_count[i] = user_lecture_count_dict[user_id] user_sum[i] = user_sum_dict[user_id] user_count[i] = user_count_dict[user_id] task_container_sum[i] = task_container_sum_dict[task_container_id] task_container_count[i] = task_container_count_dict[task_container_id] task_container_std[i]=task_container_std_dict[task_container_id] explanation_sum_dict[user_id] += prior_question_had_explanation explanation_count_dict[user_id] += 1 explanation_sum[i] = explanation_sum_dict[user_id] explanation_count[i] = explanation_count_dict[user_id] if user_id in max_timestamp_u_dict['max_time_stamp'].keys() : lagtime[i]=timestamp-max_timestamp_u_dict['max_time_stamp'][user_id] if(max_timestamp_u_dict2['max_time_stamp2'][user_id]==lagtime_mean2): lagtime2[i]=lagtime_mean2 lagtime3[i]=lagtime_mean3 else: lagtime2[i]=timestamp-max_timestamp_u_dict2['max_time_stamp2'][user_id] if(max_timestamp_u_dict3['max_time_stamp3'][user_id]==lagtime_mean3): lagtime3[i]=lagtime_mean3 else: lagtime3[i]=timestamp-max_timestamp_u_dict3['max_time_stamp3'][user_id] max_timestamp_u_dict3['max_time_stamp3'][user_id]=max_timestamp_u_dict2['max_time_stamp2'][user_id] max_timestamp_u_dict2['max_time_stamp2'][user_id]=max_timestamp_u_dict['max_time_stamp'][user_id] max_timestamp_u_dict['max_time_stamp'][user_id]=timestamp else: lagtime[i]=lagtime_mean max_timestamp_u_dict['max_time_stamp'].update({user_id:timestamp}) lagtime2[i]=lagtime_mean2 max_timestamp_u_dict2['max_time_stamp2'].update({user_id:lagtime_mean2}) lagtime3[i]=lagtime_mean3 max_timestamp_u_dict3['max_time_stamp3'].update({user_id:lagtime_mean3}) if user_id in user_prior_question_elapsed_time_dict['prior_question_elapsed_time'].keys() : delta_prior_question_elapsed_time[i]=prior_question_elapsed_time-user_prior_question_elapsed_time_dict['prior_question_elapsed_time'][user_id] user_prior_question_elapsed_time_dict['prior_question_elapsed_time'][user_id]=prior_question_elapsed_time else: delta_prior_question_elapsed_time[i]=delta_prior_question_elapsed_time_mean user_prior_question_elapsed_time_dict['prior_question_elapsed_time'].update({user_id:prior_question_elapsed_time}) i=i+1 test_df = test_df[test_df['content_type_id'] == 0].reset_index(drop=True) test_df=test_df.merge(questions_df.loc[questions_df.index.isin(test_df['content_id'])], how='left', on='content_id', right_index=True) test_df['user_lecture_lv'] = user_lecture_sum / user_lecture_count test_df['user_lecture_sum'] = user_lecture_sum test_df['user_interaction_count'] = user_lecture_count test_df['user_interaction_timestamp_mean'] = test_df['timestamp']/user_lecture_count test_df['user_correctness'] = user_sum / user_count test_df['user_uncorrect_count'] =user_count-user_sum test_df['user_correct_count'] =user_sum test_df['task_container_correctness'] = task_container_sum / task_container_count test_df['task_container_cor_count'] = task_container_sum test_df['task_container_uncor_count'] =task_container_count-task_container_sum test_df['task_container_std'] = task_container_std test_df['explanation_mean'] = explanation_sum / explanation_count test_df['explanation_true_count'] = explanation_sum test_df['explanation_false_count'] = explanation_count-explanation_sum test_df['delta_prior_question_elapsed_time'] = delta_prior_question_elapsed_time test_df["attempt_no"] = test_df[["user_id", "content_id"]].apply(lambda row: get_max_attempt(row["user_id"], row["content_id"]), axis=1) test_df["lagtime"]=lagtime test_df["lagtime2"]=lagtime2 test_df["lagtime3"]=lagtime3 test_df['timestamp']=test_df['timestamp']/(1000*3600) test_df.timestamp=test_df.timestamp.astype('float16') test_df['lagtime']=test_df['lagtime']/(1000*3600) test_df.lagtime=test_df.lagtime.astype('float32') test_df['lagtime2']=test_df['lagtime2']/(1000*3600) test_df.lagtime2=test_df.lagtime2.astype('float32') test_df['lagtime3']=test_df['lagtime3']/(1000*3600) test_df.lagtime3=test_df.lagtime3.astype('float32') test_df['user_interaction_timestamp_mean']=test_df['user_interaction_timestamp_mean']/(1000*3600) test_df.user_interaction_timestamp_mean=test_df.user_interaction_timestamp_mean.astype('float32') test_df['user_correctness'].fillna(0.67, inplace=True) sub_preds = np.zeros(test_df.shape[0]) for i, model in enumerate(clfs, 1): test_preds = model.predict(test_df[features]) sub_preds += test_preds o2=sub_preds / len(clfs) test_df[target]=0.5*np.array(outs)+0.5*np.array(o2) env.predict(test_df[['row_id', target]]) <install_modules>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False )
Digit Recognizer
13,709,795
!pip install --quiet /kaggle/input/kerasapplications !pip install --quiet /kaggle/input/efficientnet-git<set_options>
x_train = x_train.astype("float32")/255 x_test = x_test.astype("float32")/255 df_test = df_test.astype("float32")/255
Digit Recognizer
13,709,795
def seed_everything(seed=0): random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) os.environ['TF_DETERMINISTIC_OPS'] = '1' seed = 0 seed_everything(seed) warnings.filterwarnings('ignore' )<define_variables>
datagen.fit(x_train )
Digit Recognizer
13,709,795
BATCH_SIZE = 16 * REPLICAS HEIGHT = 512 WIDTH = 512 CHANNELS = 3 N_CLASSES = 5 TTA_STEPS = 5<normalization>
y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) print(y_train[0] )
Digit Recognizer
13,709,795
def data_augment(image, label): p_spatial = tf.random.uniform([], 0, 1.0, dtype=tf.float32) p_rotate = tf.random.uniform([], 0, 1.0, dtype=tf.float32) p_pixel_1 = tf.random.uniform([], 0, 1.0, dtype=tf.float32) p_pixel_2 = tf.random.uniform([], 0, 1.0, dtype=tf.float32) p_crop = tf.random.uniform([], 0, 1.0, dtype=tf.float32) image = tf.image.random_flip_left_right(image) image = tf.image.random_flip_up_down(image) if p_spatial >.75: image = tf.image.transpose(image) if p_rotate >.75: image = tf.image.rot90(image, k=3) elif p_rotate >.5: image = tf.image.rot90(image, k=2) elif p_rotate >.25: image = tf.image.rot90(image, k=1) if p_crop >.6: if p_crop >.9: image = tf.image.central_crop(image, central_fraction=.5) elif p_crop >.8: image = tf.image.central_crop(image, central_fraction=.6) elif p_crop >.7: image = tf.image.central_crop(image, central_fraction=.7) else: image = tf.image.central_crop(image, central_fraction=.8) elif p_crop >.3: crop_size = tf.random.uniform([], int(HEIGHT*.6), HEIGHT, dtype=tf.int32) image = tf.image.random_crop(image, size=[crop_size, crop_size, CHANNELS]) return image, label<normalization>
model = Sequential() model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=1, padding='same', data_format='channels_last', input_shape=(28,28,1))) model.add(BatchNormalization()) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=1, padding='same', data_format='channels_last')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=2, padding='valid')) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', strides=1, padding='same', data_format='channels_last')) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding='same', activation='relu', data_format='channels_last')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), padding='valid', strides=2)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Dense(1024, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
13,709,795
def transform_rotation(image, height, rotation): DIM = height XDIM = DIM%2 rotation = rotation * tf.random.uniform([1],dtype='float32') rotation = math.pi * rotation / 180. c1 = tf.math.cos(rotation) s1 = tf.math.sin(rotation) one = tf.constant([1],dtype='float32') zero = tf.constant([0],dtype='float32') rotation_matrix = tf.reshape(tf.concat([c1,s1,zero, -s1,c1,zero, zero,zero,one],axis=0),[3,3]) x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM) y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM]) z = tf.ones([DIM*DIM],dtype='int32') idx = tf.stack([x,y,z]) idx2 = K.dot(rotation_matrix,tf.cast(idx,dtype='float32')) idx2 = K.cast(idx2,dtype='int32') idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2) idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]]) d = tf.gather_nd(image, tf.transpose(idx3)) return tf.reshape(d,[DIM,DIM,3]) def transform_shear(image, height, shear): DIM = height XDIM = DIM%2 shear = shear * tf.random.uniform([1],dtype='float32') shear = math.pi * shear / 180. one = tf.constant([1],dtype='float32') zero = tf.constant([0],dtype='float32') c2 = tf.math.cos(shear) s2 = tf.math.sin(shear) shear_matrix = tf.reshape(tf.concat([one,s2,zero, zero,c2,zero, zero,zero,one],axis=0),[3,3]) x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM) y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM]) z = tf.ones([DIM*DIM],dtype='int32') idx = tf.stack([x,y,z]) idx2 = K.dot(shear_matrix,tf.cast(idx,dtype='float32')) idx2 = K.cast(idx2,dtype='int32') idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2) idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]]) d = tf.gather_nd(image, tf.transpose(idx3)) return tf.reshape(d,[DIM,DIM,3] )<choose_model_class>
optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999 )
Digit Recognizer
13,709,795
def model_fn(input_shape, N_CLASSES): inputs = L.Input(shape=input_shape, name='input_image') base_model = efn.EfficientNetB4(input_tensor=inputs, include_top=False, weights=None, pooling='avg') x = L.Dropout (.5 )(base_model.output) output = L.Dense(N_CLASSES, activation='softmax', name='output' )(x) model = Model(inputs=inputs, outputs=output) return model with strategy.scope() : model = model_fn(( None, None, CHANNELS), N_CLASSES) model.summary()<predict_on_test>
model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
13,709,795
files_path = f'{database_base_path}test_images/' test_size = len(os.listdir(files_path)) test_preds = np.zeros(( test_size, N_CLASSES)) for model_path in model_path_list: print(model_path) K.clear_session() model.load_weights(model_path) if TTA_STEPS > 0: test_ds = get_dataset(files_path, tta=True ).repeat() ct_steps = TTA_STEPS *(( test_size/BATCH_SIZE)+ 1) preds = model.predict(test_ds, steps=ct_steps, verbose=1)[:(test_size * TTA_STEPS)] preds = np.mean(preds.reshape(test_size, TTA_STEPS, N_CLASSES, order='F'), axis=1) test_preds += preds / len(model_path_list) else: test_ds = get_dataset(files_path, tta=False) x_test = test_ds.map(lambda image, image_name: image) test_preds += model.predict(x_test)/ len(model_path_list) test_preds = np.argmax(test_preds, axis=-1) test_names_ds = get_dataset(files_path) image_names = [img_name.numpy().decode('utf-8')for img, img_name in iter(test_names_ds.unbatch())]<save_to_csv>
reduce_lr = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x )
Digit Recognizer
13,709,795
submission = pd.DataFrame({'image_id': image_names, 'label': test_preds}) submission.to_csv('submission.csv', index=False) display(submission.head() )<define_variables>
decays = [(lambda x: 1e-3 * 0.9 ** x )(x)for x in range(10)] i=1 for lr in decays: print("Epoch " + str(i)+" Learning Rate: " + str(lr)) i+=1
Digit Recognizer
13,709,795
tez_path = '.. /input/tez-lib/' effnet_path = '.. /input/efficientnet-pytorch/' sys.path.append(tez_path) sys.path.append(effnet_path) <feature_engineering>
early_stopping = EarlyStopping( min_delta=0.001, patience=20, restore_best_weights=True, )
Digit Recognizer
13,709,795
class LeafModel(tez.Model): def __init__(self, num_classes): super().__init__() self.effnet = EfficientNet.from_name("efficientnet-b4") self.dropout = nn.Dropout(0.1) self.out = nn.Linear(1792, num_classes) self.step_scheduler_after = "epoch" def forward(self, image, targets=None): batch_size, _, _, _ = image.shape x = self.effnet.extract_features(image) x = F.adaptive_avg_pool2d(x, 1 ).reshape(batch_size, -1) outputs = self.out(self.dropout(x)) return outputs, None, None<set_options>
batch_size = 64 epochs = 50
Digit Recognizer
13,709,795
test_aug = albumentations.Compose([ albumentations.RandomResizedCrop(256, 256), albumentations.Transpose(p=0.5), albumentations.HorizontalFlip(p=0.5), albumentations.VerticalFlip(p=0.5), albumentations.HueSaturationValue( hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5 ), albumentations.RandomBrightnessContrast( brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5 ), albumentations.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0 ) ], p=1.) <load_from_csv>
history = model.fit_generator(datagen.flow(x_train, y_train, batch_size = batch_size), epochs = epochs, validation_data =(x_test, y_test), verbose=1, steps_per_epoch=x_train.shape[0] // batch_size, callbacks = [reduce_lr] )
Digit Recognizer
13,709,795
dfx = pd.read_csv(".. /input/cassava-leaf-disease-classification/sample_submission.csv") image_path = ".. /input/cassava-leaf-disease-classification/test_images/" test_image_paths = [os.path.join(image_path, x)for x in dfx.image_id.values] test_targets = dfx.label.values test_dataset = ImageDataset( image_paths=test_image_paths, targets=test_targets, augmentations=test_aug, ) <load_from_csv>
import matplotlib.pyplot as plt
Digit Recognizer
13,709,795
<predict_on_test><EOS>
pred_digits_test = np.argmax(model.predict(df_test),axis=1) image_id_test = [] for i in range(len(pred_digits_test)) : image_id_test.append(i+1) d = {'ImageId':image_id_test,'Label':pred_digits_test} answer = pd.DataFrame(d) answer.to_csv('answer.csv',index=False )
Digit Recognizer
13,706,409
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<save_to_csv>
%matplotlib inline %load_ext autoreload %autoreload 2
Digit Recognizer
13,706,409
final_preds = final_preds.argmax(axis=1) dfx.label = final_preds dfx.to_csv("submission.csv", index=False )<save_to_csv>
train_data = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test_data = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )
Digit Recognizer
13,706,409
df = pd.read_csv('/kaggle/input/finalsub3/finalsub2.csv') df.to_csv('submission.csv', index=False )<set_options>
print("Training Data : ") train_data.head(3 ).iloc[:,:17]
Digit Recognizer
13,706,409
warnings.filterwarnings("ignore" )<load_from_csv>
train_data_norm = train_data.iloc[:, 1:] / 255.0 test_data_norm = test_data / 255.0
Digit Recognizer
13,706,409
train_data = pd.read_csv('/kaggle/input/pubg-finish-placement-prediction/train_V2.csv') test_data = pd.read_csv('/kaggle/input/pubg-finish-placement-prediction/test_V2.csv') train_data.describe().drop('count' ).T<filter>
num_examples_train = train_data.shape[0] num_examples_test = test_data.shape[0] n_h = 32 n_w = 32 n_c = 3
Digit Recognizer
13,706,409
train_data[train_data['winPlacePerc'].isnull() ]<feature_engineering>
Train_input_images = np.zeros(( num_examples_train, n_h, n_w, n_c)) Test_input_images = np.zeros(( num_examples_test, n_h, n_w, n_c))
Digit Recognizer
13,706,409
mapper = lambda x: 'solo' if('solo'in x)else 'duo' if('duo' in x)or('crash'in x)else 'squad' train_data['matchType'] = train_data['matchType'].apply(mapper) match_type_counts=train_data.groupby('matchId')['matchType'].first().value_counts().sort_values(ascending=False )<concatenate>
for example in range(num_examples_train): Train_input_images[example,:28,:28,0] = train_data.iloc[example, 1:].values.reshape(28,28) Train_input_images[example,:28,:28,1] = train_data.iloc[example, 1:].values.reshape(28,28) Train_input_images[example,:28,:28,2] = train_data.iloc[example, 1:].values.reshape(28,28) for example in range(num_examples_test): Test_input_images[example,:28,:28,0] = test_data.iloc[example, :].values.reshape(28,28) Test_input_images[example,:28,:28,1] = test_data.iloc[example, :].values.reshape(28,28) Test_input_images[example,:28,:28,2] = test_data.iloc[example, :].values.reshape(28,28 )
Digit Recognizer
13,706,409
all_data = train_data.append(test_data, sort=False ).reset_index(drop=True) del train_data, test_data gc.collect()<feature_engineering>
for example in range(num_examples_train): Train_input_images[example] = cv2.resize(Train_input_images[example],(n_h, n_w)) for example in range(num_examples_test): Test_input_images[example] = cv2.resize(Test_input_images[example],(n_h, n_w))
Digit Recognizer
13,706,409
match = all_data.groupby('matchId') all_data['killsPerc'] = match['kills'].rank(pct=True ).values all_data['killPlacePerc'] = match['killPlace'].rank(pct=True ).values all_data['walkDistancePerc'] = match['walkDistance'].rank(pct=True ).values all_data['walkPerc_killsPerc'] = all_data['walkDistancePerc'] / all_data['killsPerc'] all_data['_totalDistance'] = all_data['rideDistance'] + all_data['walkDistance'] + all_data['swimDistance']<data_type_conversions>
Train_labels = np.array(train_data.iloc[:, 0] )
Digit Recognizer
13,706,409
def fillInf(df, val): numcols = df.select_dtypes(include='number' ).columns cols = numcols[numcols != 'winPlacePerc'] df[df == np.Inf] = np.NaN df[df == np.NINF] = np.NaN for c in cols: df[c].fillna(val, inplace=True )<feature_engineering>
image_generator = ImageDataGenerator( rotation_range=27, width_shift_range=0.3, shear_range=0.2, zoom_range=0.2, horizontal_flip=False, samplewise_center=True, samplewise_std_normalization=True ) validation_datagen = ImageDataGenerator()
Digit Recognizer
13,706,409
all_data['_healthItems'] = all_data['heals'] + all_data['boosts'] all_data['_headshotKillRate'] = all_data['headshotKills'] / all_data['kills'] all_data['_killPlaceOverMaxPlace'] = all_data['killPlace'] / all_data['maxPlace'] all_data['_killsOverWalkDistance'] = all_data['kills'] / all_data['walkDistance']<drop_column>
pretrained_model = keras.applications.resnet50.ResNet50(input_shape=(n_h, n_w, n_c), include_top=False, weights='imagenet') model = keras.Sequential([ pretrained_model, keras.layers.Flatten() , keras.layers.Dense(units=60, activation='relu'), keras.layers.Dense(units=10, activation='softmax') ] )
Digit Recognizer
13,706,409
all_data.drop(['boosts','heals','killStreaks','DBNOs'], axis=1, inplace=True) all_data.drop(['headshotKills','roadKills','vehicleDestroys'], axis=1, inplace=True) all_data.drop(['rideDistance','swimDistance','matchDuration'], axis=1, inplace=True) all_data.drop(['rankPoints','killPoints','winPoints'], axis=1, inplace=True )<groupby>
Optimizer = 'RMSprop' model.compile(optimizer=Optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
13,706,409
match = all_data.groupby(['matchId']) group = all_data.groupby(['matchId','groupId','matchType']) agg_col = list(all_data.columns) exclude_agg_col = ['Id','matchId','groupId','matchType','maxPlace','numGroups','winPlacePerc'] for c in exclude_agg_col: agg_col.remove(c) sum_col = ['kills','killPlace','damageDealt','walkDistance','_healthItems']<merge>
train_images, dev_images, train_labels, dev_labels = train_test_split(Train_input_images, Train_labels, test_size=0.1, train_size=0.9, shuffle=True, random_state=44) test_images = Test_input_images
Digit Recognizer
13,706,409
minKills = all_data.sort_values(['matchId','groupId','kills','killPlace'] ).groupby( ['matchId','groupId','kills'] ).first().reset_index().copy() for n in np.arange(4): c = 'kills_' + str(n)+ '_Place' nKills =(minKills['kills'] == n) minKills.loc[nKills, c] = minKills[nKills].groupby(['matchId'])['killPlace'].rank().values match_data = pd.merge(match_data, minKills[nKills][['matchId','groupId',c]], how='left') del minKills, nKills match_data = reduce_mem_usage(match_data )<merge>
train_datagen = ImageDataGenerator( rotation_range=27, width_shift_range=0.3, height_shift_range=0.2, shear_range=0.3, zoom_range=0.2, horizontal_flip=False) validation_datagen = ImageDataGenerator()
Digit Recognizer
13,706,409
all_data = pd.merge(all_data, match_data) del match_data gc.collect() all_data['enemy.players'] = all_data['m.players'] - all_data['players'] for c in sum_col: all_data['p.max_msum.' + c] = all_data['max.' + c] / all_data['m.sum.' + c] all_data['p.max_mmax.' + c] = all_data['max.' + c] / all_data['m.max.' + c] all_data.drop(['m.sum.' + c, 'm.max.' + c], axis=1, inplace=True) fillInf(all_data, 0 )<merge>
class myCallback(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if(logs.get('accuracy')> 0.999999): print("Stop training!") self.model.stop_training = True
Digit Recognizer
13,706,409
match = all_data.groupby('matchId') matchRank = match[numcols].rank(pct=True ).rename(columns=lambda s: 'rank.' + s) all_data = reduce_mem_usage(pd.concat([all_data, matchRank], axis=1)) rank_col = matchRank.columns del matchRank gc.collect() match = all_data.groupby('matchId') matchRank = match[rank_col].max().rename(columns=lambda s: 'max.' + s ).reset_index() all_data = pd.merge(all_data, matchRank) for c in numcols: all_data['rank.' + c] = all_data['rank.' + c] / all_data['max.rank.' + c] all_data.drop(['max.rank.' + c], axis=1, inplace=True) del matchRank gc.collect()<merge>
EPOCHS = 5 batch_size = 212 history = model.fit_generator(train_datagen.flow(train_images,train_labels, batch_size=batch_size), steps_per_epoch=train_images.shape[0] / batch_size, epochs=EPOCHS, validation_data=validation_datagen.flow(dev_images,dev_labels, batch_size=batch_size), validation_steps=dev_images.shape[0] / batch_size, callbacks=[callbacks] )
Digit Recognizer
13,706,409
killMinorRank = all_data[['matchId','min.kills','max.killPlace']].copy() group = killMinorRank.groupby(['matchId','min.kills']) killMinorRank['rank.minor.maxKillPlace'] = group.rank(pct=True ).values all_data = pd.merge(all_data, killMinorRank) killMinorRank = all_data[['matchId','max.kills','min.killPlace']].copy() group = killMinorRank.groupby(['matchId','max.kills']) killMinorRank['rank.minor.minKillPlace'] = group.rank(pct=True ).values all_data = pd.merge(all_data, killMinorRank) del killMinorRank gc.collect()<count_unique_values>
submission = pd.read_csv('.. /input/digit-recognizer-submission/submission.csv') submission.to_csv('digit_submission.csv', index=False )
Digit Recognizer
13,706,409
constant_column = [col for col in all_data.columns if all_data[col].nunique() == 1] all_data.drop(constant_column, axis=1, inplace=True )<feature_engineering>
mnist_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") mnist_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )
Digit Recognizer
13,706,409
all_data['matchType'] = all_data['matchType'].apply(mapper) all_data = pd.concat([all_data, pd.get_dummies(all_data['matchType'])], axis=1) all_data.drop(['matchType'], axis=1, inplace=True) all_data['matchId'] = all_data['matchId'].apply(lambda x: int(x,16)) all_data['groupId'] = all_data['groupId'].apply(lambda x: int(x,16))<count_missing_values>
mnist_train_data = mnist_train.loc[:, "pixel0":] mnist_train_label = mnist_train.loc[:, "label"] mnist_train_data = mnist_train_data/255.0 mnist_test = mnist_test/255.0
Digit Recognizer
13,706,409
null_cnt = all_data.isnull().sum().sort_values()<categorify>
standardized_scalar = StandardScaler() standardized_data = standardized_scalar.fit_transform(mnist_train_data) standardized_data.shape
Digit Recognizer
13,706,409
cols = [col for col in all_data.columns if col not in ['Id','matchId','groupId']] for i, t in all_data.loc[:, cols].dtypes.iteritems() : if t == object: all_data[i] = pd.factorize(all_data[i])[0] all_data = reduce_mem_usage(all_data )<prepare_x_and_y>
cov_matrix = np.matmul(standardized_data.T, standardized_data) cov_matrix.shape
Digit Recognizer
13,706,409
X_train = all_data[all_data['winPlacePerc'].notnull() ].reset_index(drop=True) X_test = all_data[all_data['winPlacePerc'].isnull() ].drop(['winPlacePerc'], axis=1 ).reset_index(drop=True) del all_data gc.collect() Y_train = X_train.pop('winPlacePerc') X_test_grp = X_test[['matchId','groupId']].copy() train_matchId = X_train['matchId'] X_train.drop(['matchId','groupId'], axis=1, inplace=True) X_test.drop(['matchId','groupId'], axis=1, inplace=True )<train_model>
lambdas, vectors = eigh(cov_matrix, eigvals=(782, 783)) vectors.shape
Digit Recognizer
13,706,409
params={'learning_rate': 0.05, 'objective':'mae', 'metric':'mae', 'num_leaves': 128, 'verbose': 1, 'random_state':42, 'bagging_fraction': 0.7, 'feature_fraction': 0.7 } reg = lgb.LGBMRegressor(**params, n_estimators=10000) reg.fit(X_train, Y_train) pred = reg.predict(X_test, num_iteration=reg.best_iteration_ )<concatenate>
new_coordinates = np.matmul(vectors, standardized_data.T) print(new_coordinates.shape) new_coordinates = np.vstack(( new_coordinates, mnist_train_label)).T
Digit Recognizer
13,706,409
X_test_grp['_nofit.winPlacePerc'] = pred group = X_test_grp.groupby(['matchId']) X_test_grp['winPlacePerc'] = pred X_test_grp['_rank.winPlacePerc'] = group['winPlacePerc'].rank(method='min') X_test = pd.concat([X_test, X_test_grp], axis=1 )<feature_engineering>
df_new = pd.DataFrame(new_coordinates, columns=["f1", "f2", "labels"]) df_new.head()
Digit Recognizer
13,706,409
fullgroup =(X_test['numGroups'] == X_test['maxPlace']) subset = X_test.loc[fullgroup] X_test.loc[fullgroup, 'winPlacePerc'] =(subset['_rank.winPlacePerc'].values - 1)/(subset['maxPlace'].values - 1) subset = X_test.loc[~fullgroup] gap = 1.0 /(subset['maxPlace'].values - 1) new_perc = np.around(subset['winPlacePerc'].values / gap)* gap X_test.loc[~fullgroup, 'winPlacePerc'] = new_perc X_test['winPlacePerc'] = X_test['winPlacePerc'].clip(lower=0,upper=1 )<feature_engineering>
pca = decomposition.PCA() pca.n_components = 2 pca_data = pca.fit_transform(standardized_data) pca_data.shape
Digit Recognizer
13,706,409
X_test.loc[X_test['maxPlace'] == 0, 'winPlacePerc'] = 0 X_test.loc[X_test['maxPlace'] == 1, 'winPlacePerc'] = 1 X_test.loc[(X_test['maxPlace'] > 1)&(X_test['numGroups'] == 1), 'winPlacePerc'] = 0<save_to_csv>
pca_data = np.vstack(( pca_data.T, mnist_train_label)).T
Digit Recognizer
13,706,409
test = pd.read_csv('/kaggle/input/pubg-finish-placement-prediction/test_V2.csv') test['matchId'] = test['matchId'].apply(lambda x: int(x,16)) test['groupId'] = test['groupId'].apply(lambda x: int(x,16)) submission = pd.merge(test, X_test[['matchId','groupId','winPlacePerc']]) submission = submission[['Id','winPlacePerc']] submission.to_csv("submission.csv", index=False )<set_options>
df_PCA = pd.DataFrame(new_coordinates, columns=["f1", "f2", "labels"]) df_PCA.head()
Digit Recognizer
13,706,409
warnings.filterwarnings('ignore') %matplotlib inline <load_from_csv>
mnist_train_data = np.array(mnist_train_data) mnist_train_label = np.array(mnist_train_label )
Digit Recognizer
13,706,409
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv') submission = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv' )<prepare_x_and_y>
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Lambda, Flatten, BatchNormalization from tensorflow.keras.layers import Conv2D, MaxPool2D, AvgPool2D from tensorflow.keras.optimizers import Adadelta from keras.utils.np_utils import to_categorical from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import ReduceLROnPlateau from tensorflow.keras.callbacks import LearningRateScheduler
Digit Recognizer
13,706,409
X_train = train.drop(['label'], axis=1) y_train = train['label']<feature_engineering>
nclasses = mnist_train_label.max() - mnist_train_label.min() + 1 mnist_train_label = to_categorical(mnist_train_label, num_classes = nclasses) print("Shape of ytrain after encoding: ", mnist_train_label.shape )
Digit Recognizer
13,706,409
X_train /= 255.0 test /= 255.0<train_model>
def build_model(input_shape=(28, 28, 1)) : model = Sequential() model.add(Conv2D(32, kernel_size = 3, activation='relu', input_shape = input_shape)) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 5, strides=2, padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(64, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 5, strides=2, padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(128, kernel_size = 4, activation='relu')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dropout(0.4)) model.add(Dense(10, activation='softmax')) return model def compile_model(model, optimizer='adam', loss='categorical_crossentropy'): model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"]) def train_model(model, train, test, epochs, split): history = model.fit(train, test, shuffle=True, epochs=epochs, validation_split=split) return history
Digit Recognizer
13,706,409
X_train1 = X_train.values.reshape(-1, 28, 28, 1) test = test.values.reshape(-1, 28, 28, 1 )<categorify>
cnn_model = build_model(( 28, 28, 1)) compile_model(cnn_model, 'adam', 'categorical_crossentropy') model_history = train_model(cnn_model, mnist_train_data, mnist_train_label, 80, 0.2 )
Digit Recognizer
13,706,409
y_train = to_categorical(y_train, num_classes=10 )<split>
predictions = cnn_model.predict(mnist_test_arr )
Digit Recognizer
13,706,409
X_train, X_val , y_train, y_val = train_test_split(X_train1, y_train, test_size=0.2 )<choose_model_class>
predictions_test = [] for i in predictions: predictions_test.append(np.argmax(i))
Digit Recognizer
13,706,409
model = keras.models.Sequential() model.add(keras.layers.Conv2D(filters = 64, kernel_size=(5,5), padding='same', activation='relu', input_shape=(28, 28, 1))) model.add(keras.layers.BatchNormalization()) model.add(keras.layers.Conv2D(filters = 64, kernel_size=(5,5), padding='same', activation='relu')) model.add(keras.layers.BatchNormalization()) model.add(keras.layers.MaxPool2D(pool_size=(2,2))) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Conv2D(filters = 64, kernel_size=(3,3), padding='same', activation='relu')) model.add(keras.layers.BatchNormalization()) model.add(keras.layers.Conv2D(filters = 64, kernel_size=(3,3), padding='same', activation='relu')) model.add(keras.layers.BatchNormalization()) model.add(keras.layers.MaxPool2D(pool_size=(2,2))) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(256, activation='relu')) model.add(keras.layers.BatchNormalization()) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(256, activation='relu')) model.add(keras.layers.BatchNormalization()) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(10, activation='softmax'))<choose_model_class>
submission = pd.DataFrame({ "ImageId": mnist_test.index+1, "Label": predictions_test }) submission.to_csv('my_first_submission.csv', index=False )
Digit Recognizer
13,706,409
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=["accuracy"] )<train_model>
import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras import models, layers, utils from tensorflow.keras import Sequential from sklearn.model_selection import train_test_split from tensorflow.keras.layers import Flatten, Dense, Conv2D, MaxPooling2D, MaxPool2D
Digit Recognizer
13,706,409
history = model.fit(X_train, y_train, epochs=25, validation_data=(X_val, y_val))<predict_on_test>
x_train, x_val, y_train, y_val = train_test_split(mnist_train_data, mnist_train_label, test_size = 0.2, random_state = 2 )
Digit Recognizer
13,706,409
y_pred = model.predict(test )<save_to_csv>
def define_model() : model = Sequential() model.add(Conv2D(64,(3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(Conv2D(64,(3, 3), activation='relu')) model.add(MaxPooling2D(( 2, 2))) model.add(layers.BatchNormalization()) model.add(Conv2D(filters=128, kernel_size =(3,3), activation="relu")) model.add(Conv2D(filters=128, kernel_size =(3,3), activation="relu")) model.add(layers.MaxPooling2D(pool_size=(2,2))) model.add(layers.BatchNormalization()) model.add(Conv2D(filters=256, kernel_size=(3,3), activation="relu")) model.add(layers.MaxPooling2D(pool_size=(2,2))) model.add(Flatten()) model.add(layers.BatchNormalization()) model.add(Dense(256, activation='relu')) model.add(Dense(10, activation='softmax')) return model
Digit Recognizer
13,706,409
submission['Label'] = results submission.to_csv('submission.csv', index=False )<import_modules>
model = define_model() model.compile(optimizer="adam", loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
13,706,409
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from skimage import color from skimage import measure from skimage.filters import try_all_threshold from skimage.filters import threshold_otsu from skimage.filters import threshold_local import keras from keras import Sequential from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, BatchNormalization from keras.optimizers import Adam from keras.utils import to_categorical from keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint<load_from_csv>
model.fit(x_train, y_train , epochs=30 )
Digit Recognizer
13,706,409
df_train = pd.read_csv('.. /input/digit-recognizer/train.csv') df_test = pd.read_csv('.. /input/digit-recognizer/test.csv' )<prepare_x_and_y>
predictions = model.predict(mnist_test_arr )
Digit Recognizer
13,706,409
y_train = df_train['label'] X_train = df_train.drop('label', axis = 1) X_test = np.array(df_test )<categorify>
predictions_test = [] for i in predictions: predictions_test.append(np.argmax(i))
Digit Recognizer
13,706,409
y_train = to_categorical(y_train, num_classes = 10) y_train.shape<split>
submission = pd.DataFrame({ "ImageId": mnist_test.index+1, "Label": predictions_test }) submission.to_csv('my_second_submission.csv', index=False )
Digit Recognizer
13,663,724
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25, random_state=1 )<define_search_space>
def rotate_image(image, angle = 90, scale = 1.0): h, w = image.shape M = cv2.getRotationMatrix2D(( w/2, h/2), angle, scale) return cv2.warpAffine(image, M,(w, h))
Digit Recognizer
13,663,724
kernel_ =(5,5 )<choose_model_class>
data = np.loadtxt('/kaggle/input/digit-recognizer/train.csv', delimiter = ',', skiprows = 1 )
Digit Recognizer
13,663,724
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28, 28, 1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dense(256, activation = 'relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax")) model.summary()<define_variables>
y = data[:, 0] x = data[:, 1:].reshape(-1, 28, 28) x_train, x_cv, y_train, y_cv = train_test_split(x, y, test_size = 0.1) x_train_temp = x_train.copy() for angle in np.arange(-10, 15, 5): x_train = np.concatenate(( x_train, np.array([rotate_image(image, angle, scale = 1)for image in x_train_temp]))) x_train = x_train.reshape(-1, 28, 28, 1) x_cv = x_cv.reshape(-1, 28, 28, 1) y_train_temp = y_train.copy() for i in range(x_train.shape[0]//y_train_temp.shape[0] - 1): y_train = np.concatenate(( y_train, y_train_temp))
Digit Recognizer
13,663,724
aug = ImageDataGenerator( rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1) gen_train = aug.flow(X_train, y_train, batch_size=64) gen_val = aug.flow(X_val, y_val, batch_size=64 )<choose_model_class>
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')) )
Digit Recognizer
13,663,724
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] )<choose_model_class>
YaNet = Sequential(name = 'YaNet') YaNet.add(Conv2D(filters = 32, kernel_size =(5, 5), kernel_initializer = 'he_uniform', padding = 'same', activation = 'relu', input_shape =(28, 28, 1))) YaNet.add(BatchNormalization()) YaNet.add(Conv2D(filters = 32, kernel_size =(5, 5), kernel_initializer = 'he_uniform', padding = 'same', activation = 'relu')) YaNet.add(MaxPooling2D()) YaNet.add(BatchNormalization()) YaNet.add(Conv2D(filters = 64, kernel_size =(3, 3), kernel_initializer = 'he_uniform', padding = 'same', activation = 'relu')) YaNet.add(MaxPooling2D()) YaNet.add(BatchNormalization()) YaNet.add(Conv2D(filters = 128, kernel_size =(3, 3), kernel_initializer = 'he_uniform', padding = 'same', activation = 'relu')) YaNet.add(BatchNormalization()) YaNet.add(Conv2D(filters = 128, kernel_size =(3, 3), kernel_initializer = 'he_uniform', padding = 'same', activation = 'relu')) YaNet.add(MaxPooling2D()) YaNet.add(BatchNormalization()) YaNet.add(Flatten()) YaNet.add(Dense(units = 512, activation = 'relu')) YaNet.add(Dropout(0.5)) YaNet.add(BatchNormalization()) YaNet.add(Dense(units = 256, activation = 'relu')) YaNet.add(Dropout(0.5)) YaNet.add(BatchNormalization()) YaNet.add(Dense(units = 128, activation = 'relu')) YaNet.add(Dropout(0.5)) YaNet.add(BatchNormalization()) YaNet.add(Dense(units = 64, activation = 'relu')) YaNet.add(Dropout(0.5)) YaNet.add(BatchNormalization()) YaNet.add(Dense(units = 10, activation = 'softmax')) YaNet.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) YaNet.fit(x_train, y_train, epochs = 100, validation_data =(x_cv, y_cv), use_multiprocessing = True )
Digit Recognizer
13,663,724
checkpoint = tf.keras.callbacks.ModelCheckpoint("weights.hdf5", monitor='val_accuracy', verbose=1, save_best_only=True) reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=4, min_lr=0.00005, verbose=1) early_stop = tf.keras.callbacks.EarlyStopping(patience=5, restore_best_weights=True )<train_model>
x_test = np.loadtxt('/kaggle/input/digit-recognizer/test.csv', skiprows = 1, delimiter = ',') x_test = x_test.reshape(-1, 28, 28, 1 )
Digit Recognizer
13,663,724
<load_pretrained><EOS>
final_prediction = np.argmax(YaNet.predict(x_test), axis = 1) output = pd.DataFrame({'ImageId': np.arange(1, x_test.shape[0]+1), 'Label': final_prediction}) output.to_csv('my_submission.csv', index = False )
Digit Recognizer
13,128,051
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<predict_on_test>
import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import os import seaborn as sns import matplotlib.image as mpimg
Digit Recognizer
13,128,051
y_test = model.predict(X_test) y_pred = np.argmax(y_test, axis=1 )<save_to_csv>
train_input = ".. /input/digit-recognizer/train.csv" test_input = ".. /input/digit-recognizer/test.csv" train_dataset = pd.read_csv(train_input) test_dataset = pd.read_csv(test_input )
Digit Recognizer
13,128,051
output_csv = {"ImageId":[*range(1,1+len(y_pred)) ], "Label":y_pred} Y_pre = pd.DataFrame(output_csv) Y_pre.set_index("ImageId", drop=True, append=False, inplace=True) Y_pre.to_csv("/kaggle/working/submission.csv" )<import_modules>
train_labels = tf.keras.utils.to_categorical(train_dataset.pop("label"))
Digit Recognizer
13,128,051
import numpy as np import pandas as pd import os import torch import torch.nn as nn import torch.optim as optim from PIL import Image from matplotlib import pyplot as plt from torch.utils.data import Dataset,DataLoader from torchvision import transforms as T from torchvision import models import tqdm from sklearn.metrics import f1_score,roc_auc_score,accuracy_score,confusion_matrix<load_from_csv>
train_dataset = np.array(train_dataset.values.reshape(-1, 28, 28, 1)) test_dataset = np.array(test_dataset.values.reshape(-1, 28, 28, 1))
Digit Recognizer
13,128,051
train_df=pd.read_csv(".. /input/digit-recognizer/train.csv") test_df=pd.read_csv(".. /input/digit-recognizer/test.csv" )<categorify>
train_dataset = train_dataset/255.0 test_dataset = test_dataset/255.0
Digit Recognizer
13,128,051
def get_image(data_df,idx): return Image.fromarray(np.uint8(np.reshape(data_df.iloc[idx][data_df.columns[-784:]].to_numpy() ,(28,28)))).convert('RGB') <categorify>
checkpoint_path = "logs/checkpoints/"
Digit Recognizer
13,128,051
class TrainDataSet(Dataset): def __init__(self,data_df,transforms=T.ToTensor()): self.data_df=data_df self.transform=transforms def __len__(self): return self.data_df.shape[0] def __getitem__(self,idx): image=self.transform(get_image(self.data_df,idx)) label=torch.tensor(self.data_df.label.iloc[idx],dtype=torch.long) return image,label<categorify>
model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(64,(3, 3), input_shape=(28, 28, 1), activation=tf.nn.relu, padding="SAME"), tf.keras.layers.MaxPooling2D() , tf.keras.layers.Conv2D(64,(3, 3), activation=tf.nn.relu, padding="SAME"), tf.keras.layers.MaxPooling2D() , tf.keras.layers.Dropout(0.5), tf.keras.layers.Conv2D(128,(3, 3), activation=tf.nn.relu, padding="SAME"), tf.keras.layers.MaxPooling2D() , tf.keras.layers.BatchNormalization() , tf.keras.layers.Conv2D(128,(3, 3), activation=tf.nn.relu, padding="SAME"), tf.keras.layers.MaxPooling2D() , tf.keras.layers.BatchNormalization() , tf.keras.layers.Flatten() , tf.keras.layers.Dense(128, activation=tf.nn.relu), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation="softmax") ]) epochs=50 callbacks = [ tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, monitor="accuracy", save_best_only=True, save_weights_only=True), tf.keras.callbacks.EarlyStopping(monitor="accuracy", patience=15) ] model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) history = model.fit(train_dataset, train_labels, epochs=epochs, callbacks=callbacks, batch_size=64 )
Digit Recognizer
13,128,051
class TestDataSet(TrainDataSet): def __getitem__(self,idx): image=self.transform(get_image(self.data_df,idx)) return image<choose_model_class>
model.load_weights(checkpoint_path )
Digit Recognizer
13,128,051
def create_model() : model = models.resnet18(pretrained=True) num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 10) return model<categorify>
labels = [np.argmax(predict)for predict in model.predict(test_dataset)] df = pd.DataFrame({ "ImageId": list(range(1, len(test_dataset)+1)) , "Label": labels, } )
Digit Recognizer
13,128,051
transform=T.Compose([ T.Resize(( 256,256)) , T.ToTensor() , T.Normalize(( 0.485, 0.456, 0.406),(0.229, 0.224, 0.225)) ] )<choose_model_class>
df.to_csv("submission.csv", index=False )
Digit Recognizer
13,128,051
def train_once(model,dataloader,criterion,optimizer,device): total_loss=0 n_total=0 criterion.reduction="sum" model.train() for i,(images,labels)in enumerate(tqdm.tqdm(dataloader)) : optimizer.zero_grad() images=images.to(device) labels=labels.to(device) outputs=model(images) loss=criterion(outputs,labels) total_loss+=loss.item() n_total+=labels.shape[0] loss.backward() optimizer.step() return total_loss/n_total<choose_model_class>
model.save("model.h5" )
Digit Recognizer
13,441,242
class Validation_Metrics(object): def __init__(self,activation_func=nn.Softmax(dim=1)) : self.predictions=[] self.labels=[] self.activation_func=activation_func self.collapsed=False def update(self,model_outputs,labels): if not self.collapsed: self.predictions.append(self.activation_func(model_outputs ).detach()) self.labels.append(labels.detach()) else: raise ValueError('Error, one cannot add further values to a logger once it has been collapsed') def collapse(self): if self.collapsed: pass else: self.predictions=torch.cat(self.predictions ).cpu().numpy() self.labels=torch.cat(self.labels ).cpu().numpy() self.collapsed=True def Confusion_matrix(self): self.collapse() Confusion_matrix=np.zeros(10,10) pred=np.argmax(self.predictions,axis=1) labels=self.labels return confusion_matrix(labels,pred) def AUC(self): self.collapse() pred=self.predictions labels=np.zeros(pred.shape) labels[np.arange(label.shape[0]),self.labels]=1.0 aucs = [] for i in range(labels.shape[1]): aucs.append(roc_auc_score(labels[:, i], pred[:, i])) return aucs def F1_score(self): self.collapse() pred=np.argmax(self.predictions,axis=1) labels=self.labels return f1_score(labels, pred, average=None) def Accuracy(self): self.collapse() pred=np.argmax(self.predictions,axis=1) labels=self.labels return accuracy_score(labels, pred) <compute_train_metric>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv") print(train.shape) train.head()
Digit Recognizer
13,441,242
def val(model,dataloader,criterion,device): total_loss=0 n_total=0 criterion.reduction="sum" Metrics=Validation_Metrics() model.eval() with torch.no_grad() : for images,labels in tqdm.tqdm(dataloader): images=images.to(device) labels=labels.to(device) outputs=model(images) loss=criterion(outputs,labels) Metrics.update(outputs,labels) total_loss+=loss.item() n_total+=labels.shape[0] return total_loss/n_total,Metrics <define_variables>
x_train =(train.iloc[:,1:].values ).astype('float32') y_train = train.iloc[:,0].values.astype('int32') x_test = test.values.astype('float32' )
Digit Recognizer
13,441,242
n_folds=5<prepare_output>
x_train = x_train/255.0 x_test = x_test/255.0
Digit Recognizer
13,441,242
train_df.insert(1,"fold",np.random.randint(1,n_folds+1,size=train_df.shape[0]))<define_variables>
y_train = keras.utils.to_categorical(y_train, 10) X_train, X_val, Y_train, Y_val = train_test_split(X_train, y_train, test_size = 0.1, random_state = 42 )
Digit Recognizer
13,441,242
def Get_Train_Val_Set(fold_i,transform=transform): train_set=TrainDataSet(train_df[train_df.fold!=fold_i],transforms=transform) test_set=TrainDataSet(train_df[train_df.fold==fold_i],transforms=transform) return train_set, test_set<set_options>
batch_size = 64 epochs = 20 input_shape =(28, 28, 1 )
Digit Recognizer
13,441,242
USE_CUDA = torch.cuda.is_available() device = torch.device("cuda" if USE_CUDA else "cpu" )<choose_model_class>
model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',kernel_initializer='he_normal',input_shape=input_shape)) model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',kernel_initializer='he_normal')) model.add(MaxPool2D(( 2, 2))) model.add(Dropout(0.20)) model.add(Conv2D(64,(3, 3), activation='relu',padding='same',kernel_initializer='he_normal')) model.add(Conv2D(64,(3, 3), activation='relu',padding='same',kernel_initializer='he_normal')) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(128,(3, 3), activation='relu',padding='same',kernel_initializer='he_normal')) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
13,441,242
criterion=nn.CrossEntropyLoss() optimizer_name="Adam" optimizer_parameters={"lr":0.0001} epochs=1<choose_model_class>
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics = ['accuracy'] )
Digit Recognizer
13,441,242
def create_optimizer(model,optimizer_name,optimizer_parameters): if optimizer_name=="SGD": return optim.SGD(model.parameters() ,**optimizer_parameters) elif optimizer_name=="Adam": return optim.Adam(model.parameters() ,**optimizer_parameters )<load_pretrained>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=15, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False )
Digit Recognizer
13,441,242
Best_val_accuracy=0 for fold in range(1,n_folds+1): print(f"Training fold {fold}") model=create_model() model.to(device) optimizer=create_optimizer(model,optimizer_name,optimizer_parameters) TrainSet,ValSet=Get_Train_Val_Set(fold) TrainLoader=DataLoader(TrainSet, batch_size=256) ValLoader=DataLoader(ValSet, batch_size=1024) for epoch in range(epochs): train_loss=train_once(model,TrainLoader,criterion,optimizer,device) print(f"For epoch {epoch+1}, the Train Loss was: {train_loss}") val_loss,Metrics=val(model,ValLoader,criterion,device) print(f"The Val Loss was {val_loss}, and the val accuracy was {Metrics.Accuracy() }") if Metrics.Accuracy() >Best_val_accuracy: print("New Best, saving") torch.save(model.state_dict() ,f"fold{fold}Best.pt") <choose_model_class>
datagen.fit(X_train) model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), verbose = 1, steps_per_epoch = X_train.shape[0] // batch_size )
Digit Recognizer
13,441,242
optimizer=create_optimizer(model,optimizer,optimizer_parameters) optimizer<define_variables>
predictions = model.predict(X_test) results = np.argmax(predictions, axis = 1 )
Digit Recognizer