kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
11,333,538 | seed_everything(42)
label_df = pd.read_csv(label_path)
if 'fold' not in label_df.columns:
skf = StratifiedKFold(n_splits=5, shuffle=True)
label_df.loc[:, 'fold'] = 0
for fold_num,(train_index, val_index)in enumerate(skf.split(X=label_df.index, y=label_df.label.values)) :
label_df.loc[label_df.iloc[val_index].index, 'fold'] = fold_num
if do_predict:
infer = pl.Trainer(gpus=1)
oof_dict = {'image_id': [], 'label': [], 'fold': []}
for fold_num in range(n_folds):
val_df = label_df[label_df.fold == fold_num]
test_dataset = TestDataset(img_dir, val_df, img_size=cfg.img_size)
test_dataloader = DataLoader(test_dataset,
batch_size=cfg.batch_size,
num_workers=4,
shuffle=False)
state_dict = get_state_dict_from_checkpoint(log_dir, fold_num)
model = LitTester(cfg.network, state_dict)
pred = infer.test(model, test_dataloaders=test_dataloader, verbose=False)[0]
oof_dict['image_id'].extend(val_df.image_id.values)
oof_dict['label'].extend(pred['prob'].tolist())
oof_dict['fold'].extend([fold_num] * len(pred['prob']))
pred_df = pd.DataFrame(oof_dict)
pred_df.to_csv('oof.csv', index=False)
else:
pred_df = pd.read_csv(os.path.join(log_dir, 'oof.csv'))<load_from_csv> | results = np.zeros(( test_X.shape[0],10))
for j in range(nets):
results = results + model[j].predict(test_X)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("StratifiedKFold_10_batch100_double_val_loss.csv",index=False ) | Digit Recognizer |
11,333,538 | if do_submit:
sub = pd.read_csv('.. /input/cassava-leaf-disease-classification/sample_submission.csv')
infer = pl.Trainer(gpus=1)
test_dataset = TestDataset('.. /input/cassava-leaf-disease-classification/test_images',
sub,
img_size=cfg.img_size)
test_dataloader = DataLoader(test_dataset,
batch_size=cfg.batch_size,
num_workers=4,
shuffle=False)
preds = []
for fold_num in range(n_folds):
state_dict = get_state_dict_from_checkpoint(log_dir, fold_num)
model = LitTester(cfg.network, state_dict)
pred = infer.test(model, test_dataloaders=test_dataloader, verbose=False)[0]
preds.append(pred['prob'])
sub['label'] = np.argmax(np.mean(preds, axis=0), axis=1)
sub.to_csv(os.path.join(os.getcwd() , 'submission.csv'), index=False )<sort_values> | show_test_digits(range(500,530)) | Digit Recognizer |
11,298,742 | label_df = label_df.sort_values(by='image_id', ascending=1)
pred_df = pred_df.sort_values(by='image_id', ascending=1)
ids, labels = label_df.image_id.values, label_df.label.values
preds = np.array([literal_eval(pred)if isinstance(pred, str)else pred for pred in pred_df.label.values])
print(f'total {len(ids)} images')
print(f'prediction shape: {preds.shape}, label shape: {labels.shape}' )<define_variables> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
test = pd.read_csv('.. /input/digit-recognizer/test.csv' ) | Digit Recognizer |
11,298,742 | s = labels
psx = preds
K = len(np.unique(s))
thresholds = [np.mean(psx[:,k][s == k])for k in range(K)]
thresholds = np.asarray(thresholds)
confident_joint = np.zeros(( K, K), dtype = int)
for i, row in enumerate(psx):
s_label = s[i]
confident_bins = row >= thresholds - 1e-6
num_confident_bins = sum(confident_bins)
if num_confident_bins == 1:
confident_joint[s_label][np.argmax(confident_bins)] += 1
elif num_confident_bins > 1:
confident_joint[s_label][np.argmax(row)] += 1
confident_joint = cleanlab.latent_estimation.calibrate_confident_joint(
confident_joint, s)
cleanlab.util.print_joint_matrix(confident_joint)
MIN_NUM_PER_CLASS = 5
prune_count_matrix = cleanlab.pruning.keep_at_least_n_per_class(
prune_count_matrix=confident_joint.T,
n=MIN_NUM_PER_CLASS,
)
s_counts = np.bincount(s)
noise_masks_per_class = []
for k in range(K):
noise_mask = np.zeros(len(psx), dtype=bool)
psx_k = psx[:, k]
if s_counts[k] > MIN_NUM_PER_CLASS:
for j in range(K):
if k != j:
num2prune = prune_count_matrix[k][j]
if num2prune > 0:
margin = psx_k - psx[:, j]
s_filter = s == j
threshold = -np.partition(
-margin[s_filter], num2prune - 1
)[num2prune - 1]
noise_mask = noise_mask |(s_filter &(margin >= threshold))
noise_masks_per_class.append(noise_mask)
else:
noise_masks_per_class.append(np.zeros(len(s), dtype=bool))
label_errors_bool = np.stack(noise_masks_per_class ).any(axis=0)
for i, pred_label in enumerate(psx.argmax(axis=1)) :
if label_errors_bool[i] and np.all(pred_label == s[i]):
label_errors_bool[i] = False
label_errors_idx = np.arange(len(s)) [label_errors_bool]
self_confidence = np.array(
[np.mean(psx[i][s[i]])for i in label_errors_idx]
)
margin = self_confidence - psx[label_errors_bool].max(axis=1)
label_errors_idx = label_errors_idx[np.argsort(margin)]<feature_engineering> | X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255 | Digit Recognizer |
11,298,742 | total_idx = np.arange(len(ids))
clean_idx = np.array([idx for idx in total_idx if idx not in label_errors_idx])
guesses = np.stack(noise_masks_per_class ).argmax(axis=0)
guesses[clean_idx] = labels[clean_idx]
clean_ids = ids[clean_idx]
clean_labels = labels[clean_idx]
clean_guesses = guesses[clean_idx]
noisy_ids = ids[label_errors_idx]
noisy_labels = labels[label_errors_idx]
noisy_guesses = guesses[label_errors_idx]
print(f'[clean ratio] \t {len(clean_idx)/ len(total_idx)* 100:.2f}%')
print(f'[noise ratio] \t {len(noisy_ids)/ len(total_idx)* 100:.2f}%' )<prepare_output> | y_train = train.pop("label")
y_train = y_train.values
print(y_train.shape)
y_train = to_categorical(y_train, num_classes=10)
print(y_train.shape)
print(y_train[0] ) | Digit Recognizer |
11,298,742 | all_data = pd.DataFrame({'image_id': ids,
'given_label': labels,
'guess_label': guesses})
all_data['is_noisy'] =(all_data.given_label != all_data.guess_label)
all_data['max_prob'] = preds.max(axis=1 )<define_variables> | import tensorflow as tf | Digit Recognizer |
11,298,742 | class_colors = np.array(['
num2class = [f'{idx}-{elem}' for idx, elem in enumerate(num2class)]<install_modules> | def squeeze_excite_block(filters,input):
se = tf.keras.layers.GlobalAveragePooling2D()(input)
se = tf.keras.layers.Reshape(( 1, filters))(se)
se = tf.keras.layers.Dense(filters//16, activation='relu' )(se)
se = tf.keras.layers.Dense(filters, activation='sigmoid' )(se)
se = tf.keras.layers.multiply([input, se])
return se | Digit Recognizer |
11,298,742 | !pip install -U -q.. /input/resnest/resnest-0.0.5-py3-none-any.whl<import_modules> | def make_model() :
s = tf.keras.Input(shape=X_train.shape[1:])
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(s)
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(x)
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = squeeze_excite_block(32,x)
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(x)
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(x)
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = squeeze_excite_block(32,x)
x = tf.keras.layers.AveragePooling2D(2 )(x)
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(x)
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(x)
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = squeeze_excite_block(32,x)
x = tf.keras.layers.AveragePooling2D(2 )(x)
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(x)
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(x)
x = tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same' )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = squeeze_excite_block(32,x)
x = tf.keras.layers.AveragePooling2D(2 )(x)
x = tf.keras.layers.concatenate([tf.keras.layers.GlobalMaxPooling2D()(x),
tf.keras.layers.GlobalAveragePooling2D()(x)])
x = tf.keras.layers.Dense(10,activation='softmax',use_bias=False,
kernel_regularizer=tf.keras.regularizers.l1(0.00025))(x)
return tf.keras.Model(inputs=s, outputs=x ) | Digit Recognizer |
11,298,742 | HorizontalFlip, VerticalFlip, Transpose, RandomResizedCrop, Compose, Normalize, ShiftScaleRotate, CenterCrop, Resize, RandomResizedCrop
)
<import_modules> | model=make_model()
model.compile(optimizer=optimizers.Adam(lr=0.0001), loss='categorical_crossentropy',metrics=['accuracy'])
model.summary() | Digit Recognizer |
11,298,742 | import timm<init_hyperparams> | model.fit(x=X_train, y=y_train, batch_size=32, epochs=15 ) | Digit Recognizer |
11,298,742 | CFG = {
'seed': 1337,
'img_size': 512,
'bs': 32,
'num_workers': 4,
'tta': 4,
}<load_from_csv> | pred = model.predict(X_test,verbose=1)
predictions = pred.argmax(axis=-1 ) | Digit Recognizer |
11,298,742 | submission = pd.read_csv('.. /input/cassava-leaf-disease-classification/sample_submission.csv')
submission.head()<set_options> | sub = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv')
submission = sub['ImageId'] | Digit Recognizer |
11,298,742 | def seed_everything(seed: int):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False<normalization> | pred = pd.DataFrame(data=predictions ,columns=["Label"])
DT = pd.merge(submission , pred, on=None, left_index= True,
right_index=True)
DT.head() | Digit Recognizer |
11,298,742 | def get_img(path):
return cv2.imread(path)[:, :, ::-1]<define_variables> | DT.to_csv('submission.csv',index = False ) | Digit Recognizer |
11,869,267 | seed_everything(CFG['seed'] )<categorify> | from tensorflow.keras.layers import Dense, Flatten, Dropout, Conv2D, MaxPool2D, BatchNormalization, AvgPool2D
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.utils import to_categorical
from sklearn.metrics import confusion_matrix
from tensorflow.random import set_seed
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns | Digit Recognizer |
11,869,267 | class CassavaDataset(Dataset):
def __init__(self, df, data_root, transforms=None):
super().__init__()
self.df = df.reset_index(drop=True ).copy()
self.transforms = transforms
self.data_root = data_root
def __len__(self):
return self.df.shape[0]
def __getitem__(self, index: int):
img = get_img(f"{self.data_root}/{self.df.iloc[index]['image_id']}")
if self.transforms:
img = self.transforms(image=img)['image']
return img<feature_engineering> | df_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
df_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ) | Digit Recognizer |
11,869,267 | class CassvaClassifierV1(nn.Module):
def __init__(self, n_classes: int = 5, dropout: float =.5):
super().__init__()
self.backbone = resnest50_fast_4s2x40d(pretrained=False)
self.pool = nn.AdaptiveAvgPool2d(1)
self.dropout = nn.Dropout(p=dropout)
self.emb_size: int = 2048
self.classifier = nn.Linear(self.emb_size, n_classes)
def cnn_feature_extractor(self, x):
x = self.backbone.conv1(x)
x = self.backbone.bn1(x)
x = self.backbone.relu(x)
x = self.backbone.maxpool(x)
x1 = self.backbone.layer1(x)
x2 = self.backbone.layer2(x1)
x3 = self.backbone.layer3(x2)
x4 = self.backbone.layer4(x3)
return x4
def forward(self, x):
x = self.cnn_feature_extractor(x)
x = self.pool(x)
x = self.dropout(x)
x = x.view(-1, self.emb_size)
x = self.classifier(x)
return x<choose_model_class> | np.random.seed(42)
set_seed(42 ) | Digit Recognizer |
11,869,267 | class CassvaClassifierV2(nn.Module):
def __init__(self, n_classes: int = 5):
super().__init__()
self.model = timm.create_model('tf_efficientnet_b4_ns', pretrained=False)
self.model.classifier = nn.Linear(self.model.classifier.in_features, n_classes)
def forward(self, x):
return self.model(x )<choose_model_class> | def doSubmission(y_pred):
test_Id = np.arange(1, y_pred.size+1, dtype=np.int)
pred_dict = {"ImageId": test_Id, "Label": y_pred}
df = pd.DataFrame(pred_dict)
df.to_csv("sample_submission.csv", index=False, index_label=False ) | Digit Recognizer |
11,869,267 | class CassvaClassifierV3(nn.Module):
def __init__(self, n_classes: int = 5):
super().__init__()
self.model = timm.create_model('tf_efficientnet_b3_ns', pretrained=False)
self.model.classifier = nn.Linear(self.model.classifier.in_features, n_classes)
def forward(self, x):
return self.model(x )<predict_on_test> | y = df_train.label.to_numpy()
X = df_train.drop(columns=["label"] ).to_numpy()
X = X / 255.0 | Digit Recognizer |
11,869,267 | def inference_one_epoch(model, data_loader, device):
model.eval()
image_preds_all = []
for imgs in data_loader:
image_preds = model(imgs.to(device ).float())
image_preds_all += [torch.softmax(image_preds, 1 ).cpu().numpy() ]
return np.concatenate(image_preds_all, axis=0 )<set_options> | X_totrain = X.reshape(X.shape[0], 28, 28, 1 ) | Digit Recognizer |
11,869,267 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )<define_variables> | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y)
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1 ) | Digit Recognizer |
11,869,267 | def get_models(model_paths, recipe: str):
models = []
for model_path in model_paths:
model_name: str = model_path.split('/')[-1]
n_folds: int = int([x[-1] for x in model_name.split('-')if x.startswith('fold')][0])
n_epochs: int = int([x[6:] for x in model_name.split('-')if x.startswith('epochs')][0])
if not model_name.startswith(recipe):
continue
if model_name.startswith('resnest50_fast_4s2x40d-fmix-cutmix-'):
model = CassvaClassifierV1().to(device)
elif model_name.startswith('resnest50_fast_4s2x40d-cutmix-fmix-'):
model = CassvaClassifierV1().to(device)
elif model_name.startswith('resnest50_fast_4s2x40d-fcl-'):
model = CassvaClassifierV1().to(device)
elif model_name.startswith('effnetb4-fcl-'):
model = CassvaClassifierV2().to(device)
elif model_name.startswith('effnetb3-cutmix-scce-'):
model = CassvaClassifierV3().to(device)
elif model_name.startswith('effnetb4-cutmix-fmix-'):
model = CassvaClassifierV2().to(device)
elif model_name.startswith('effnetb4-pseudo-cutmix-fmix-'):
model = CassvaClassifierV2().to(device)
else:
continue
print(f'[+] load {model_name}')
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
models.append(model)
return models<create_dataframe> | y_cat = to_categorical(y, 10)
y_train_cat = to_categorical(y_train, 10)
y_test_cat = to_categorical(y_test, 10 ) | Digit Recognizer |
11,869,267 | test = pd.DataFrame()
test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/'))
test_ds = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_inference_transforms())
tst_loader = torch.utils.data.DataLoader(
test_ds,
batch_size=CFG['bs'],
num_workers=CFG['num_workers'],
shuffle=False,
pin_memory=True
)<define_variables> | test = df_test.to_numpy(np.float64)
test = test.reshape(test.shape[0], 28, 28, 1)
test /= 255.0 | Digit Recognizer |
11,869,267 | recipe_list = [
'effnetb4-cutmix-fmix-',
'effnetb4-fcl-',
'resnest50_fast_4s2x40d-cutmix-fmix-',
'resnest50_fast_4s2x40d-fcl-',
'resnest50_fast_4s2x40d-fmix-cutmix-',
]<feature_engineering> | def convNeuralNetwork() :
cnn = Sequential()
cnn.add(Conv2D(filters=6, kernel_size=(5, 5), strides=(1, 1),
input_shape=(28, 28, 1), activation="tanh", padding="same"))
cnn.add(BatchNormalization())
cnn.add(AvgPool2D(pool_size=(2, 2), strides=(1, 1), padding="same"))
cnn.add(Dropout(0.2))
cnn.add(Conv2D(16, kernel_size=(5, 5), strides=(1, 1),
activation="tanh", padding="same"))
cnn.add(BatchNormalization())
cnn.add(AvgPool2D(pool_size=(2, 2), strides=(2, 2), padding="same"))
cnn.add(Dropout(0.2))
cnn.add(Conv2D(120, kernel_size=(5, 5), strides=(1, 1),
activation="tanh", padding="same"))
cnn.add(AvgPool2D(pool_size=(2, 2), strides=(2, 2), padding="same"))
cnn.add(Dropout(0.2))
cnn.add(Flatten())
cnn.add(Dense(units=84, activation="tanh"))
cnn.add(Dropout(0.2))
cnn.add(Dense(units=10, activation="softmax"))
cnn.compile(optimizer="SGD", loss="categorical_crossentropy",
metrics=["accuracy"])
return cnn | Digit Recognizer |
11,869,267 | preds = []
with torch.no_grad() :
for recipe in recipe_list:
models = get_models(model_paths, recipe)
preds_per_recipe = np.mean(
[
np.mean([inference_one_epoch(model, tst_loader, device)for _ in range(CFG['tta'])], axis=0)
for model in models
], axis=0
)
preds.append(preds_per_recipe)
del models<define_variables> | early_stopping = EarlyStopping(monitor="val_loss", patience=4, verbose=1,
restore_best_weights=True)
lr_reducer = ReduceLROnPlateau(monitor="val_loss", factor=0.1, patience=3,
verbose=1)
cnn = convNeuralNetwork()
cnn_hist = cnn.fit(X_train, y_train_cat, validation_data=(X_test, y_test_cat),
epochs=100, batch_size=16, callbacks=[early_stopping, lr_reducer] ) | Digit Recognizer |
11,869,267 | tst_preds = weights[0] * preds[0] + weights[1] * preds[1] + weights[2] * preds[2] + weights[3] * preds[3] + weights[4] * preds[4]
<feature_engineering> | early_stopping = EarlyStopping(monitor="loss", patience=4, restore_best_weights=True, verbose=1)
model_checkpoint = ModelCheckpoint(filepath="./", monitor="loss", verbose=1,
save_best_only=True, save_weights_only=True)
lr_reducer = ReduceLROnPlateau(monitor="loss", factor=0.1, patience=3,
verbose=1)
model= convNeuralNetwork()
model_hist = model.fit(X_totrain, y_cat, epochs=100, batch_size=16,
callbacks=[early_stopping, lr_reducer, model_checkpoint] ) | Digit Recognizer |
11,869,267 | <save_to_csv><EOS> | y_pred = model.predict(test ).argmax(1)
doSubmission(y_pred ) | Digit Recognizer |
11,792,160 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<install_modules> | mnist_test = pd.read_csv(".. /input/mnist-in-csv/mnist_test.csv")
mnist_train = pd.read_csv(".. /input/mnist-in-csv/mnist_train.csv" ) | Digit Recognizer |
11,792,160 | !pip install.. /input/validators
!cp -R.. /input/vit-keras/vit_keras./<import_modules> | sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv")
train = pd.read_csv(".. /input/digit-recognizer/train.csv" ) | Digit Recognizer |
11,792,160 | Flatten,GlobalAveragePooling2D,BatchNormalization, Activation
print(tf.__version__ )<find_best_params> | test['dataset'] = 'test' | Digit Recognizer |
11,792,160 | try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
print(f'Running on TPU {tpu.master() }')
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
AUTO = tf.data.experimental.AUTOTUNE
REPLICAS = strategy.num_replicas_in_sync
print(f'REPLICAS: {REPLICAS}' )<define_variables> | train['dataset'] = 'train' | Digit Recognizer |
11,792,160 | SEED = 100
DEBUG = False
WANDB = False
VALIDATION_SIZE = 0.2
BATCH_SIZE = 8 *REPLICAS
LEARNING_RATE = 3e-5 * REPLICAS
EPOCHS=40
MODEL_NAME = "VitL16"
N_FOLDS = 5
TTA = False
N_TTA = 3
T_1 = 0.2
T_2 = 1.2
SMOOTH_FRACTION = 0.01
N_ITER = 5
HEIGHT = 512
WIDTH = 512
HEIGHT_RS = 512
WIDTH_RS = 512
CHANNELS = 3
N_CLASSES = 5
MODEL_SAVE_PATH = ""
if DEBUG:
EPOCHS = 2
<normalization> | dataset = pd.concat([train.drop('label', axis=1), test] ).reset_index() | Digit Recognizer |
11,792,160 | def transform_rotation(image, height, rotation):
DIM = height
XDIM = DIM%2
rotation = rotation * tf.random.uniform([1],dtype='float32')
rotation = math.pi * rotation / 180.
c1 = tf.math.cos(rotation)
s1 = tf.math.sin(rotation)
one = tf.constant([1],dtype='float32')
zero = tf.constant([0],dtype='float32')
rotation_matrix = tf.reshape(tf.concat([c1,s1,zero, -s1,c1,zero, zero,zero,one],axis=0),[3,3])
x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM)
y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM])
z = tf.ones([DIM*DIM],dtype='int32')
idx = tf.stack([x,y,z])
idx2 = K.dot(rotation_matrix,tf.cast(idx,dtype='float32'))
idx2 = K.cast(idx2,dtype='int32')
idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2)
idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]])
d = tf.gather_nd(image, tf.transpose(idx3))
return tf.reshape(d,[DIM,DIM,3])
def transform_shear(image, height, shear):
DIM = height
XDIM = DIM%2
shear = shear * tf.random.uniform([1],dtype='float32')
shear = math.pi * shear / 180.
one = tf.constant([1],dtype='float32')
zero = tf.constant([0],dtype='float32')
c2 = tf.math.cos(shear)
s2 = tf.math.sin(shear)
shear_matrix = tf.reshape(tf.concat([one,s2,zero, zero,c2,zero, zero,zero,one],axis=0),[3,3])
x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM)
y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM])
z = tf.ones([DIM*DIM],dtype='int32')
idx = tf.stack([x,y,z])
idx2 = K.dot(shear_matrix,tf.cast(idx,dtype='float32'))
idx2 = K.cast(idx2,dtype='int32')
idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2)
idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]])
d = tf.gather_nd(image, tf.transpose(idx3))
return tf.reshape(d,[DIM,DIM,3])
def data_augment_cutout(image, min_mask_size=(int(HEIGHT *.1), int(HEIGHT *.1)) ,
max_mask_size=(int(HEIGHT *.125), int(HEIGHT *.125))):
p_cutout = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
if p_cutout >.85:
n_cutout = tf.random.uniform([], 10, 15, dtype=tf.int32)
image = random_cutout(image, HEIGHT, WIDTH,
min_mask_size=min_mask_size, max_mask_size=max_mask_size, k=n_cutout)
elif p_cutout >.6:
n_cutout = tf.random.uniform([], 5, 10, dtype=tf.int32)
image = random_cutout(image, HEIGHT, WIDTH,
min_mask_size=min_mask_size, max_mask_size=max_mask_size, k=n_cutout)
elif p_cutout >.25:
n_cutout = tf.random.uniform([], 2, 5, dtype=tf.int32)
image = random_cutout(image, HEIGHT, WIDTH,
min_mask_size=min_mask_size, max_mask_size=max_mask_size, k=n_cutout)
else:
image = random_cutout(image, HEIGHT, WIDTH,
min_mask_size=min_mask_size, max_mask_size=max_mask_size, k=1)
return image
def random_cutout(image, height, width, channels=3, min_mask_size=(10, 10), max_mask_size=(80, 80), k=1):
assert height > min_mask_size[0]
assert width > min_mask_size[1]
assert height > max_mask_size[0]
assert width > max_mask_size[1]
for i in range(k):
mask_height = tf.random.uniform(shape=[], minval=min_mask_size[0], maxval=max_mask_size[0], dtype=tf.int32)
mask_width = tf.random.uniform(shape=[], minval=min_mask_size[1], maxval=max_mask_size[1], dtype=tf.int32)
pad_h = height - mask_height
pad_top = tf.random.uniform(shape=[], minval=0, maxval=pad_h, dtype=tf.int32)
pad_bottom = pad_h - pad_top
pad_w = width - mask_width
pad_left = tf.random.uniform(shape=[], minval=0, maxval=pad_w, dtype=tf.int32)
pad_right = pad_w - pad_left
cutout_area = tf.zeros(shape=[mask_height, mask_width, channels], dtype=tf.uint8)
cutout_mask = tf.pad([cutout_area], [[0,0],[pad_top, pad_bottom], [pad_left, pad_right], [0,0]], constant_values=1)
cutout_mask = tf.squeeze(cutout_mask, axis=0)
image = tf.multiply(tf.cast(image, tf.float32), tf.cast(cutout_mask, tf.float32))
return image<define_search_space> | mnist = pd.concat([mnist_train, mnist_test] ).reset_index(drop=True)
labels = mnist['label'].values
mnist.drop('label', axis=1, inplace=True)
mnist.columns = cols | Digit Recognizer |
11,792,160 | def data_augment(image, label):
p_rotation = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
p_spatial = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
p_rotate = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
p_pixel_1 = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
p_pixel_2 = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
p_pixel_3 = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
p_shear = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
p_crop = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
p_cutout = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
flip_left = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
flip_right = tf.random.uniform([], 0, 1.0, dtype=tf.float32)
if p_rotation >.2:
if p_rotation >.6:
image = transform_rotation(image, HEIGHT, rotation=10.)
else:
image = transform_rotation(image, HEIGHT, rotation=-10.)
if flip_left>0.5:
image = tf.image.random_flip_left_right(image)
if flip_right>0.5 :
image = tf.image.random_flip_up_down(image)
image = tf.image.resize(image, size=[HEIGHT, WIDTH])
return image, label<define_variables> | idx_mnist = mnist.sort_values(by=list(mnist.columns)).index
dataset_from = dataset.sort_values(by=list(mnist.columns)) ['dataset'].values
original_idx = dataset.sort_values(by=list(mnist.columns)) ['index'].values | Digit Recognizer |
11,792,160 | copyfile(src = ".. /input/bitempered-logistic-loss-tensorflow-v2/bi_tempered_loss.py", dst = ".. /working/loss.py")
<compute_train_metric> | for i in range(len(idx_mnist)) :
if dataset_from[i] == 'test':
sample_submission.loc[original_idx[i], 'Label'] = labels[idx_mnist[i]] | Digit Recognizer |
11,792,160 | <choose_model_class><EOS> | sample_submission.to_csv('submission.csv', index=False ) | Digit Recognizer |
11,762,664 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<define_variables> | %matplotlib inline
np.random.seed(2)
sns.set(style='white', context='notebook', palette='deep' ) | Digit Recognizer |
11,762,664 | files_path = '.. /input/cassava-leaf-disease-classification/test_images'
TEST_FILENAMES = tf.io.gfile.glob('.. /input/cassava-leaf-disease-classification/test_tfrecords/*')
model_path_list = [
'.. /input/cassava-leaf-vit-models/ViTB16_best_fold_0__v3_.h5',
'.. /input/cassava-leaf-vit-models/ViTB16_best_fold_0_v4_.h5',
'.. /input/cassava-leaf-vit-models/ViTB16_best_fold_1_v4_.h5',
'.. /input/cassava-leaf-vit-models/ViTB16_best_fold_2_v4_.h5',
'.. /input/cassava-leaf-vit-models/ViTB16_best_fold_3_v4_.h5'
]
test_preds = np.zeros(( len(os.listdir(files_path)) , N_CLASSES))
for idx, model_path in enumerate(model_path_list):
print("Model: ", model_path)
tf.keras.backend.clear_session()
model = get_vit_model('imagenet21k')
model.load_weights(model_path)
if TTA:
for step in range(N_TTA):
print(f"TTA step: {step+1}/{N_TTA}")
test_ds = get_dataset(TEST_FILENAMES, labeled=False, ordered=True, augment = True)
x_test = test_ds.map(lambda image, image_name: image)
test_preds += model.predict(x_test)
else:
test_ds = get_dataset(TEST_FILENAMES, labeled=False, ordered=True)
x_test = test_ds.map(lambda image, image_name: image)
test_preds += model.predict(x_test )<save_to_csv> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" ) | Digit Recognizer |
11,762,664 | test_preds = np.argmax(test_preds, axis=-1)
image_names = [img_name.numpy().decode('utf-8')for img, img_name in iter(test_ds.unbatch())]
submission = pd.DataFrame({'image_id': image_names, 'label': test_preds})
submission.to_csv('submission.csv', index=False)
display(submission.head() )<train_model> | X_train = X_train / 255.0
test = test / 255.0 | Digit Recognizer |
11,762,664 | print(f'Training path:{__training_path}
Test path:{__test_path}' )<install_modules> | Y_train = to_categorical(Y_train, num_classes = 10 ) | Digit Recognizer |
11,762,664 | !{sys.executable} -m pip install --upgrade scikit-learn=="0.24.2"<import_modules> | random_seed = 2 | Digit Recognizer |
11,762,664 | import sklearn; sklearn.show_versions()<load_from_csv> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=random_seed ) | Digit Recognizer |
11,762,664 | def __load__data(__training_path, __test_path, concat=False):
__train_dataset = pd.read_csv(__training_path, delimiter=',')
__test_dataset = pd.read_csv(__test_path, delimiter=',')
return __train_dataset, __test_dataset
__train_dataset, __test_dataset = __load__data(__training_path, __test_path, concat=True)
__train_dataset.head()<define_variables> | nets = 5
model = [0] *nets
for j in range(nets):
model[j] = Sequential()
model[j].add(Conv2D(32, kernel_size = 3, padding='same', activation='relu', input_shape =(28, 28, 1)))
model[j].add(BatchNormalization())
model[j].add(Conv2D(32, kernel_size = 3, padding='same', activation='relu'))
model[j].add(BatchNormalization())
model[j].add(MaxPooling2D(pool_size=(2, 2)))
model[j].add(Dropout(0.4))
model[j].add(Conv2D(64, kernel_size = 3, padding='same', activation='relu'))
model[j].add(BatchNormalization())
model[j].add(Conv2D(64, kernel_size = 5, padding='same', activation='relu'))
model[j].add(BatchNormalization())
model[j].add(MaxPooling2D(pool_size=(2, 2)))
model[j].add(Dropout(0.25))
model[j].add(Conv2D(128, kernel_size = 4, padding='same', activation='relu'))
model[j].add(BatchNormalization())
model[j].add(MaxPooling2D(pool_size=(2, 2)))
model[j].add(Flatten())
model[j].add(Dense(128, activation='relu'))
model[j].add(Dropout(0.7))
model[j].add(Dense(10, activation='softmax'))
model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
11,762,664 | __test_dataset_submission_columns = __test_dataset['Id']<drop_column> | Digit Recognizer |
|
11,762,664 | __train_dataset.drop(['Descript', 'Resolution'], axis=1, inplace=True )<feature_engineering> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.3,
shear_range = 0.2,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
11,762,664 | _DATE_COLUMNS = ['Dates']
for _col in _DATE_COLUMNS:
train_date_col = pd.to_datetime(__train_dataset[_col], errors='coerce')
__train_dataset["year"] = train_date_col.dt.year
__train_dataset["month"] = train_date_col.dt.month
__train_dataset["day"] = train_date_col.dt.day
__train_dataset.drop(_col, axis=1, inplace=True)
test_date_col = pd.to_datetime(__test_dataset[_col], errors='coerce')
__test_dataset["year"] = test_date_col.dt.year
__test_dataset["month"] = test_date_col.dt.month
__test_dataset["day"] = test_date_col.dt.day
__test_dataset.drop(_col, axis=1, inplace=True )<categorify> | annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x)
history = [0] * nets
epochs = 25
for j in range(nets):
X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size = 0.1)
history[j] = model[j].fit_generator(datagen.flow(X_train2,Y_train2, batch_size=32),
epochs = epochs, steps_per_epoch = X_train2.shape[0]//32, verbose = 2,
validation_data =(X_val2,Y_val2), callbacks=[annealer])
print("CNN {0:d}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format(
j+1,epochs,max(history[j].history['accuracy']),max(history[j].history['val_accuracy'])) ) | Digit Recognizer |
11,762,664 | __feature_train = __train_dataset.drop(['Category'], axis=1)
__target_train =__train_dataset['Category']
__feature_test = __test_dataset.drop(['Id'], axis=1)
_CATEGORICAL_COLS = ['Address', 'PdDistrict', 'DayOfWeek']
__col_indices = [__feature_train.columns.get_loc(col)for col in _CATEGORICAL_COLS]
_ohe = OneHotEncoder(handle_unknown='ignore')
__ct = ColumnTransformer([("ohe", _ohe, __col_indices)], remainder = 'passthrough')
__feature_train = __ct.fit_transform(__feature_train)
__feature_test = __ct.transform(__feature_test )<train_on_grid> | results = np.zeros(( test.shape[0],10))
for j in range(nets):
results = results + model[j].predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("MNIST-CNN-ENSEMBLE.csv",index=False ) | Digit Recognizer |
11,541,596 | __model = CatBoostClassifier()
__model.fit(__feature_train, __target_train)
__y_pred = __model.predict_proba(__feature_test )<create_dataframe> | df = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
df2 = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
print(df.shape)
print(df2.shape ) | Digit Recognizer |
11,541,596 | submission = pd.DataFrame(columns=['Id'], data=__test_dataset_submission_columns)
submission = pd.concat([submission, pd.DataFrame(__y_pred, columns=["ARSON", "ASSAULT", "BAD CHECKS", "BRIBERY", "BURGLARY", "DISORDERLY CONDUCT",
"DRIVING UNDER THE INFLUENCE", "DRUG/NARCOTIC", "DRUNKENNESS", "EMBEZZLEMENT", "EXTORTION",
"FAMILY OFFENSES", "FORGERY/COUNTERFEITING", "FRAUD", "GAMBLING", "KIDNAPPING", "LARCENY/THEFT",
"LIQUOR LAWS", "LOITERING", "MISSING PERSON", "NON-CRIMINAL", "OTHER OFFENSES", "PORNOGRAPHY/OBSCENE MAT",
"PROSTITUTION", "RECOVERED VEHICLE", "ROBBERY", "RUNAWAY", "SECONDARY CODES", "SEX OFFENSES FORCIBLE",
"SEX OFFENSES NON FORCIBLE", "STOLEN PROPERTY", "SUICIDE", "SUSPICIOUS OCC", "TREA", "TRESPASS",
"VANDALISM", "VEHICLE THEFT", "WARRANTS", "WEAPON LAWS"])], axis=1)
submission.head()<save_to_csv> | x = np.array(df.drop('label',axis=1)) /255
y = np.array(df.label)
test = np.array(df2)/255
enc = OneHotEncoder(sparse=False)
y= y.reshape(( -1,1))
y = enc.fit_transform(y)
print(x.shape)
print(y.shape)
print(test.shape ) | Digit Recognizer |
11,541,596 | submission.to_csv("kaggle_submission.csv", index=False )<set_options> | x_train,x_test,y_train,y_test = tts(x_2d,y,test_size = 0.15, random_state=42)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape ) | Digit Recognizer |
11,541,596 | %matplotlib inline<load_from_csv> | import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from keras import applications
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler
from keras.callbacks import ReduceLROnPlateau | Digit Recognizer |
11,541,596 | train = pd.read_csv('/kaggle/input/sf-crime/train.csv.zip', parse_dates= ['Dates'])
test = pd.read_csv('/kaggle/input/sf-crime/test.csv.zip', parse_dates= ['Dates'], index_col = 'Id' )<concatenate> | model = Sequential()
model.add(Conv2D(32, kernel_size = 3, activation='relu', input_shape =(28, 28, 1)))
model.add(BatchNormalization())
model.add(Conv2D(32, kernel_size = 3, activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(32, kernel_size = 5, strides=2, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Conv2D(64, kernel_size = 3, activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(64, kernel_size = 3, activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(64, kernel_size = 5, strides=2, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Conv2D(128, kernel_size = 4, activation='relu'))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.summary()
| Digit Recognizer |
11,541,596 | x = list(test)
t_data= train[x]
join = pd.concat([t_data, test])
merge = join.copy()
<count_missing_values> | callbacks = [
keras.callbacks.EarlyStopping(
monitor='val_loss',
min_delta=1e-5,
patience=15,
verbose=1)
] | Digit Recognizer |
11,541,596 | t= train['Category']
merge.isnull().sum()<categorify> | model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(x_2d,y,batch_size=64,epochs=600,validation_data=(x_test,y_test))
| Digit Recognizer |
11,541,596 | LB = LabelEncoder()
tar = LB.fit_transform(t)
print(LB.classes_ )<feature_engineering> | scores = model.evaluate(x_test, y_test, verbose = 10)
print(scores ) | Digit Recognizer |
11,541,596 | date = pd.to_datetime(join['Dates'])
merge['Date'] = date.dt.date
merge['Year'] = date.dt.year
merge['Month'] = date.dt.month
merge['Day'] = date.dt.day
merge['Hour'] = date.dt.hour
merge.drop('Dates', axis = 1, inplace = True )<groupby> | predictions=model.predict(test_2d)
pre=predictions.argmax(axis=-1 ) | Digit Recognizer |
11,541,596 | <categorify><EOS> | submission = pd.Series(pre,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),submission],axis = 1)
submission.to_csv("final_submission_lenet5.csv",index=False)
submission.head() | Digit Recognizer |
11,054,002 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<drop_column> | np.random.seed(0)
sns.set(style='white', context='notebook', palette='deep')
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
| Digit Recognizer |
11,054,002 | merge.drop('PdDistrict', axis = 1, inplace = True )<categorify> | train = pd.read_csv(".. /input/digit-recognizer/train.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv" ) | Digit Recognizer |
11,054,002 | merge['DayWeek'] = lb.fit_transform(merge['DayOfWeek'])
merge[['DayOfWeek', 'DayWeek']].head(10 )<drop_column> | tmp = train["label"]
X_train, X_test, y_train, y_test = train_test_split(train.drop(labels=["label"],axis=1),
tmp,
test_size = 0.01,
random_state = 0 ) | Digit Recognizer |
11,054,002 | merge.drop('DayOfWeek', axis = 1, inplace = True )<feature_engineering> | y_train = to_categorical(y_train, num_classes = 10)
y_test = to_categorical(y_test, num_classes = 10)
plt.imshow(X_train[0][:,:,0],cmap='gray' ) | Digit Recognizer |
11,054,002 | merge['Block'] = merge['Address'].str.contains('block', case = False)
merge['ST'] = merge['Address'].str.contains('ST', case = False)
merge.drop('Address', axis = 1, inplace = True )<feature_engineering> | epochs = 30
batchsize = 16
steps_per_epoch = X_train.shape[0] / batchsize
learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy',
patience=3,
factor=0.5,
min_lr=0.00001)
dataset = ImageDataGenerator()
dataset.fit(X_train ) | Digit Recognizer |
11,054,002 | medX= merge[merge['X'] < -120.5]['X'].median()
medY = merge[merge['Y'] < 90]['Y'].median()
merge.loc[merge['X'] >= -120.5, 'X'] = medX
merge.loc[merge['Y'] >= 90, 'Y'] = medY<feature_engineering> | Digit Recognizer |
|
11,054,002 | merge['X+Y'] = merge['X'] + merge['Y']
merge['X-Y'] = merge['X'] - merge['Y']<drop_column> | Digit Recognizer |
|
11,054,002 | merge.drop('Date', axis = 1, inplace = True )<split> | Digit Recognizer |
|
11,054,002 | data_train = merge[:train.shape[0]]
data_test = merge[train.shape[0]:]<train_model> | Digit Recognizer |
|
11,054,002 | trains = lg.Dataset(data_train, label = tar, categorical_feature=['PdDis', 'DayWeek'])
params = {
'boosting':'gbdt',
'objective':'multiclass',
'num_class':39,
'max_delta_step':0.9,
'min_data_in_leaf': 20,
'learning_rate': 0.4,
'max_bin': 480,
'num_leaves': 45,
'verbose' : 1
}
bst = lg.train(params, trains, 120 )<predict_on_test> | Digit Recognizer |
|
11,054,002 | prediction = bst.predict(data_test )<save_to_csv> | Digit Recognizer |
|
11,054,002 | result1 = pd.DataFrame(prediction, columns = LB.inverse_transform(np.linspace(0, 38, 39, dtype='int16')) ,index=data_test.index)
result1.head()
result1.to_csv('final_submission', index_label = 'Id' )<set_options> | Digit Recognizer |
|
11,054,002 | pd.set_option('max_colwidth', 40 )<feature_engineering> | model = Sequential()
model.add(Conv2D(32,kernel_size=3,padding='same',activation='relu',
input_shape=(28,28,1)))
model.add(Conv2D(32,kernel_size=3,padding='same',activation='relu',
input_shape=(28,28,1)))
model.add(MaxPool2D())
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(Conv2D(64,kernel_size=3,padding='same',activation='relu',
input_shape=(28,28,1)))
model.add(Conv2D(64,kernel_size=3,padding='same',activation='relu',
input_shape=(28,28,1)))
model.add(MaxPool2D())
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
| Digit Recognizer |
11,054,002 | MAX_LEN = 96
PATH = '.. /input/tf-roberta/'
tokenizer = tokenizers.ByteLevelBPETokenizer(
vocab_file=PATH+'vocab-roberta-base.json',
merges_file=PATH+'merges-roberta-base.txt',
lowercase=True,
add_prefix_space=True
)
EPOCHS = 3
BATCH_SIZE = 32
PAD_ID = 1
SEED = 88888
LABEL_SMOOTHING = 0.1
tf.random.set_seed(SEED)
np.random.seed(SEED)
sentiment_id = {'positive': 1313, 'negative': 2430, 'neutral': 7974}
train = pd.read_csv('.. /input/tweet-sentiment-extraction/train.csv' ).fillna('')
for k in range(train.shape[0]):
train.loc[k,'text'] = re.sub(r"(http|https|ftp|ftps)\:\/\/[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,3}(\/\S*)?", " ", train.loc[k,'text'])
train.loc[k,'text'] = re.sub(r'https?://\S+', ' ', train.loc[k,'text'])
train.loc[k,'text'] = re.sub(r"(www.[a-z.\/0-9]*)", " ", train.loc[k,'text'])
train.loc[k,'text'] = re.sub(' +', ' ', train.loc[k,'text'])
train.loc[k,'selected_text'] = re.sub(r"(http|https|ftp|ftps)\:\/\/[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,3}(\/\S*)?", " ", train.loc[k,'selected_text'])
train.loc[k,'selected_text'] = re.sub(r'https?://\S+', ' ', train.loc[k,'selected_text'])
train.loc[k,'selected_text'] = re.sub(r"(www.[a-z.\/0-9]*)", " ", train.loc[k,'selected_text'])
train.loc[k,'selected_text'] = re.sub(' +', ' ', train.loc[k,'selected_text'])
train.head()<feature_engineering> | print("-------------------------------------------------------------------")
print('my model')
history = model.fit_generator(augmented_dataset.flow(X_train,y_train,batch_size=batchsize),
epochs=epochs, validation_data=(X_test,y_test),
steps_per_epoch=X_train.shape[0]//batchsize,
callbacks=[learning_rate_reduction])
print("OuO")
fig, ax = plt.subplots(2,1)
ax[0].plot(history.history['loss'], color='b', label="Training loss")
legend = ax[0].legend(loc='best', shadow=True)
ax[1].plot(history.history['accuracy'], color='b', label="Training accuracy")
legend = ax[1].legend(loc='best', shadow=True ) | Digit Recognizer |
11,054,002 | test = pd.read_csv('.. /input/tweet-sentiment-extraction/test.csv' ).fillna('')
for k in range(test.shape[0]):
test.loc[k,'text'] = re.sub(r"(http|https|ftp|ftps)\:\/\/[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,3}(\/\S*)?", " ", test.loc[k,'text'])
test.loc[k,'text'] = re.sub(r'https?://\S+', ' ', test.loc[k,'text'])
test.loc[k,'text'] = re.sub(r"(www.[a-z.\/0-9]*)", " ", test.loc[k,'text'])
test.loc[k,'text'] = re.sub(' +', ' ', test.loc[k,'text'])
ct = test.shape[0]
input_ids_t = np.ones(( ct,MAX_LEN),dtype='int32')
attention_mask_t = np.zeros(( ct,MAX_LEN),dtype='int32')
token_type_ids_t = np.zeros(( ct,MAX_LEN),dtype='int32')
for k in range(test.shape[0]):
text1 = " "+" ".join(test.loc[k,'text'].split())
enc = tokenizer.encode(text1)
s_tok = sentiment_id[test.loc[k,'sentiment']]
input_ids_t[k,:len(enc.ids)+3] = [0, s_tok] + enc.ids + [2]
attention_mask_t[k,:len(enc.ids)+3] = 1<init_hyperparams> | predictions = model.predict(test)
pre_res = np.argmax(predictions,axis = 1)
res = pd.Series(pre_res,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),res],axis = 1)
submission.to_csv("mnist_submission.csv",index=False ) | Digit Recognizer |
10,881,722 | Dropout_new = 0.15
n_split = 5
lr = 3e-5<train_model> | train_data = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
test_data = pd.read_csv("/kaggle/input/digit-recognizer/test.csv")
train_data.head() | Digit Recognizer |
10,881,722 | def save_weights(model, dst_fn):
weights = model.get_weights()
with open(dst_fn, 'wb')as f:
pickle.dump(weights, f)
def load_weights(model, weight_fn):
with open(weight_fn, 'rb')as f:
weights = pickle.load(f)
model.set_weights(weights)
return model
def loss_fn(y_true, y_pred):
ll = tf.shape(y_pred)[1]
y_true = y_true[:, :ll]
loss = tf.keras.losses.categorical_crossentropy(y_true, y_pred,
from_logits=False, label_smoothing=LABEL_SMOOTHING)
loss = tf.reduce_mean(loss)
return loss
def build_model() :
ids = tf.keras.layers.Input(( MAX_LEN,), dtype=tf.int32)
att = tf.keras.layers.Input(( MAX_LEN,), dtype=tf.int32)
tok = tf.keras.layers.Input(( MAX_LEN,), dtype=tf.int32)
padding = tf.cast(tf.equal(ids, PAD_ID), tf.int32)
lens = MAX_LEN - tf.reduce_sum(padding, -1)
max_len = tf.reduce_max(lens)
ids_ = ids[:, :max_len]
att_ = att[:, :max_len]
tok_ = tok[:, :max_len]
config = RobertaConfig.from_pretrained(PATH+'config-roberta-base.json')
bert_model = TFRobertaModel.from_pretrained(PATH+'pretrained-roberta-base.h5',config=config)
x = bert_model(ids_,attention_mask=att_,token_type_ids=tok_)
x1 = tf.keras.layers.Dropout(Dropout_new )(x[0])
x1 = tf.keras.layers.Conv1D(768, 2,padding='same' )(x1)
x1 = tf.keras.layers.LeakyReLU()(x1)
x1 = tf.keras.layers.Conv1D(64, 2,padding='same' )(x1)
x1 = tf.keras.layers.Dense(1 )(x1)
x1 = tf.keras.layers.Flatten()(x1)
x1 = tf.keras.layers.Activation('softmax' )(x1)
x2 = tf.keras.layers.Dropout(Dropout_new )(x[0])
x2 = tf.keras.layers.Conv1D(768, 2,padding='same' )(x2)
x2 = tf.keras.layers.LeakyReLU()(x2)
x2 = tf.keras.layers.Conv1D(64, 2, padding='same' )(x2)
x2 = tf.keras.layers.Dense(1 )(x2)
x2 = tf.keras.layers.Flatten()(x2)
x2 = tf.keras.layers.Activation('softmax' )(x2)
model = tf.keras.models.Model(inputs=[ids, att, tok], outputs=[x1,x2])
optimizer = tf.keras.optimizers.Adam(learning_rate=lr)
model.compile(loss=loss_fn, optimizer=optimizer)
x1_padded = tf.pad(x1, [[0, 0], [0, MAX_LEN - max_len]], constant_values=0.)
x2_padded = tf.pad(x2, [[0, 0], [0, MAX_LEN - max_len]], constant_values=0.)
padded_model = tf.keras.models.Model(inputs=[ids, att, tok], outputs=[x1_padded,x2_padded])
return model, padded_model<string_transform> | pd.get_dummies(train_data["label"] ).values | Digit Recognizer |
10,881,722 | def jaccard(str1, str2):
a = set(str1.lower().split())
b = set(str2.lower().split())
if(len(a)==0)&(len(b)==0): return 0.5
c = a.intersection(b)
return float(len(c)) /(len(a)+ len(b)- len(c))<define_variables> | train_data_labels = pd.get_dummies(train_data["label"] ).values
train_data_pixels =(train_data.iloc[:,1:].values)/255.0
test_data_pixels =(test_data.values)/255.0 | Digit Recognizer |
10,881,722 | ct = train.shape[0]
input_ids = np.ones(( ct,MAX_LEN),dtype='int32')
attention_mask = np.zeros(( ct,MAX_LEN),dtype='int32')
token_type_ids = np.zeros(( ct,MAX_LEN),dtype='int32')
start_tokens = np.zeros(( ct,MAX_LEN),dtype='int32')
end_tokens = np.zeros(( ct,MAX_LEN),dtype='int32')
for k in range(train.shape[0]):
text1 = " "+" ".join(train.loc[k,'text'].split())
text2 = " ".join(train.loc[k,'selected_text'].split())
idx = text1.find(text2)
chars = np.zeros(( len(text1)))
chars[idx:idx+len(text2)]=1
if text1[idx-1]==' ': chars[idx-1] = 1
enc = tokenizer.encode(text1)
offsets = []; idx=0
for t in enc.ids:
w = tokenizer.decode([t])
offsets.append(( idx,idx+len(w)))
idx += len(w)
toks = []
for i,(a,b)in enumerate(offsets):
sm = np.sum(chars[a:b])
if sm>0: toks.append(i)
s_tok = sentiment_id[train.loc[k,'sentiment']]
input_ids[k,:len(enc.ids)+3] = [0, s_tok] + enc.ids + [2]
attention_mask[k,:len(enc.ids)+3] = 1
if len(toks)>0:
start_tokens[k,toks[0]+2] = 1
end_tokens[k,toks[-1]+2] = 1<define_variables> | x_train,x_test,y_train,y_test = train_test_split(train_data_pixels,train_data_labels,test_size=0.2,random_state=42 ) | Digit Recognizer |
10,881,722 | %%time
jac = []; VER='v0'; DISPLAY=1
oof_start = np.zeros(( input_ids.shape[0],MAX_LEN))
oof_end = np.zeros(( input_ids.shape[0],MAX_LEN))
preds_start_train = np.zeros(( input_ids.shape[0],MAX_LEN))
preds_end_train = np.zeros(( input_ids.shape[0],MAX_LEN))
preds_start = np.zeros(( input_ids_t.shape[0],MAX_LEN))
preds_end = np.zeros(( input_ids_t.shape[0],MAX_LEN))
skf = StratifiedKFold(n_splits=n_split,shuffle=True,random_state=SEED)
for fold,(idxT,idxV)in enumerate(skf.split(input_ids,train.sentiment.values)) :
print('
print('
print('
K.clear_session()
model, padded_model = build_model()
inpT = [input_ids[idxT,], attention_mask[idxT,], token_type_ids[idxT,]]
targetT = [start_tokens[idxT,], end_tokens[idxT,]]
inpV = [input_ids[idxV,],attention_mask[idxV,],token_type_ids[idxV,]]
targetV = [start_tokens[idxV,], end_tokens[idxV,]]
shuffleV = np.int32(sorted(range(len(inpV[0])) , key=lambda k:(inpV[0][k] == PAD_ID ).sum() , reverse=True))
inpV = [arr[shuffleV] for arr in inpV]
targetV = [arr[shuffleV] for arr in targetV]
weight_fn = '%s-roberta-%i.h5'%(VER,fold)
for epoch in range(1, EPOCHS + 1):
shuffleT = np.int32(sorted(range(len(inpT[0])) , key=lambda k:(inpT[0][k] == PAD_ID ).sum() + np.random.randint(-3, 3), reverse=True))
num_batches = math.ceil(len(shuffleT)/ BATCH_SIZE)
batch_inds = np.random.permutation(num_batches)
shuffleT_ = []
for batch_ind in batch_inds:
shuffleT_.append(shuffleT[batch_ind * BATCH_SIZE:(batch_ind + 1)* BATCH_SIZE])
shuffleT = np.concatenate(shuffleT_)
inpT = [arr[shuffleT] for arr in inpT]
targetT = [arr[shuffleT] for arr in targetT]
model.fit(inpT, targetT,
epochs=epoch, initial_epoch=epoch - 1, batch_size=BATCH_SIZE, verbose=DISPLAY, callbacks=[],
validation_data=(inpV, targetV), shuffle=False)
save_weights(model, weight_fn)
print('Loading model...')
load_weights(model, weight_fn)
print('Predicting OOF...')
oof_start[idxV,],oof_end[idxV,] = padded_model.predict([input_ids[idxV,],attention_mask[idxV,],token_type_ids[idxV,]],verbose=DISPLAY)
print('Predicting all Train for Outlier analysis...')
preds_train = padded_model.predict([input_ids,attention_mask,token_type_ids],verbose=DISPLAY)
preds_start_train += preds_train[0]/skf.n_splits
preds_end_train += preds_train[1]/skf.n_splits
print('Predicting Test...')
preds = padded_model.predict([input_ids_t,attention_mask_t,token_type_ids_t],verbose=DISPLAY)
preds_start += preds[0]/skf.n_splits
preds_end += preds[1]/skf.n_splits
all = []
for k in idxV:
a = np.argmax(oof_start[k,])
b = np.argmax(oof_end[k,])
if a>b:
st = train.loc[k,'text']
else:
text1 = " "+" ".join(train.loc[k,'text'].split())
enc = tokenizer.encode(text1)
st = tokenizer.decode(enc.ids[a-2:b-1])
all.append(jaccard(st,train.loc[k,'selected_text']))
jac.append(np.mean(all))
print('>>>> FOLD %i Jaccard ='%(fold+1),np.mean(all))
print()<compute_test_metric> | def build_model() :
model = Sequential()
model.add(Input(shape=(28,28,1,)))
model.add(Conv2D(filters=64,kernel_size=(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(SpatialDropout2D(0.25))
model.add(Conv2D(filters=64,kernel_size=(6,6),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Conv2D(filters=64,kernel_size=(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(SpatialDropout2D(0.25))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters=128,kernel_size=(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(SpatialDropout2D(0.25))
model.add(Conv2D(filters=128,kernel_size=(6,6),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Conv2D(filters=128,kernel_size=(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(SpatialDropout2D(0.25))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters=256,kernel_size=(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(SpatialDropout2D(0.25))
model.add(Conv2D(filters=256,kernel_size=(6,6),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Conv2D(filters=256,kernel_size=(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(SpatialDropout2D(0.25))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2),padding="same"))
model.add(Dropout(0.25))
model.add(Conv2D(filters=32,kernel_size=(2,2),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(SpatialDropout2D(0.25))
model.add(Flatten())
model.add(Dense(256))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Dense(10))
model.add(Activation("softmax"))
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer = optimizer ,metrics=["accuracy"], loss = "categorical_crossentropy")
return model | Digit Recognizer |
10,881,722 | print('>>>> OVERALL 5Fold CV Jaccard =',np.mean(jac))
print(jac )<string_transform> | train_image_generator = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
zca_epsilon=1e-06,
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
brightness_range=None,
shear_range=0.1,
zoom_range=0.1,
channel_shift_range=0.0,
fill_mode="nearest",
cval=0.0,
horizontal_flip=False,
vertical_flip=False,
rescale=None,
preprocessing_function=None,
data_format=None,
validation_split=0.0,
dtype=None,
)
train_image_generator.fit(x_train ) | Digit Recognizer |
10,881,722 | all = []
for k in range(input_ids_t.shape[0]):
a = np.argmax(preds_start[k,])
b = np.argmax(preds_end[k,])
if a>b:
st = test.loc[k,'text']
else:
text1 = " "+" ".join(test.loc[k,'text'].split())
enc = tokenizer.encode(text1)
st = tokenizer.decode(enc.ids[a-2:b-1])
all.append(st )<save_to_csv> | callback_lr = ReduceLROnPlateau(monitor='val_acc',patience=2,factor=0.5,min_lr=0.00001,verbose=1)
epochs = 50
batch_size = 256
history = model.fit_generator(train_image_generator.flow(x_train,y_train, batch_size=batch_size),
epochs = epochs, validation_data =(x_test,y_test),
verbose = 1, steps_per_epoch=x_train.shape[0] // batch_size
, callbacks=[callback_lr] ) | Digit Recognizer |
10,881,722 | test['selected_text'] = all
test[['textID','selected_text']].to_csv('submission.csv',index=False)
test.sample(10 )<import_modules> | model.fit(x_test,y_test,epochs=10,batch_size=512,validation_data=(x_train,y_train),callbacks=[callback_lr] ) | Digit Recognizer |
10,881,722 | <load_from_csv><EOS> | ypred = model.predict(test_data_pixels)
ypred = ypred.argmax(-1)
subimageid = [x for x in range(1,len(test_data_pixels)+1)]
submission = pd.DataFrame({"ImageId":subimageid,"Label":ypred})
submission.to_csv("submission.csv",index=False ) | Digit Recognizer |
10,953,593 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<init_hyperparams> | %reload_ext autoreload
%autoreload 2 | Digit Recognizer |
10,953,593 | lgb_params = {
"objective" : "binary",
"metric" : "auc",
"boosting": 'gbdt',
"max_depth" : 1,
"num_leaves" : 13,
"learning_rate" : 0.03,
"bagging_freq": 5,
"bagging_fraction" : 0.4,
"feature_fraction" : 0.05,
"min_data_in_leaf": 80,
"min_sum_hessian_in_leaf": 10,
"tree_learner": "serial",
"boost_from_average": "false",
"bagging_seed" : 42,
"verbosity" : 1,
"seed": 42
}<train_model> | train=pd.read_csv(inputs/"train.csv")
train.head(3 ) | Digit Recognizer |
10,953,593 | folds = StratifiedKFold(n_splits=5, shuffle=True, random_state=44000)
oof = np.zeros(len(train))
predictions = np.zeros(len(test))
for fold_,(trn_idx, val_idx)in enumerate(folds.split(train.values, y.values)) :
print("Fold {}".format(fold_))
trn_data = lgb.Dataset(train.iloc[trn_idx], label=y.iloc[trn_idx])
val_data = lgb.Dataset(train.iloc[val_idx], label=y.iloc[val_idx])
num_round = 15000
clf = lgb.train(lgb_params, trn_data, num_round, valid_sets = [trn_data, val_data],
verbose_eval=1000, early_stopping_rounds = 200)
oof[val_idx] = clf.predict(train.iloc[val_idx], num_iteration=clf.best_iteration)
predictions += clf.predict(test, num_iteration=clf.best_iteration)/ folds.n_splits
print("CV score: {:<8.5f}".format(roc_auc_score(y, oof)) )<load_from_csv> | test=pd.read_csv(inputs/"test.csv")
test.head(3 ) | Digit Recognizer |
10,953,593 | sub_file = pd.read_csv('/kaggle/input/santander-customer-transaction-prediction/sample_submission.csv' )<merge> | tfms = get_transforms(do_flip=False)
tr=Path(".. /train")
te=Path(".. /test" ) | Digit Recognizer |
10,953,593 | sub = pd.DataFrame()
sub['ID_code'] = test_index
sub['target'] = predictions
final_sub = pd.merge(sub_file, sub, on='ID_code', how='left')[['ID_code', 'target_y']]
final_sub = final_sub.fillna(0 ).rename(columns={'target_y': 'target'})
final_sub<save_to_csv> | sorted(os.listdir(tr)) | Digit Recognizer |
10,953,593 | final_sub.to_csv('Finalsub.csv', index=False )<load_from_csv> | for index, row in train.iterrows() :
label,digit = row[0], row[1:]
filepath = tr/str(label)
filename = f"{index}.jpg"
digit = digit.values
digit = digit.reshape(28,28)
digit = digit.astype(np.uint8)
img = Image.fromarray(digit)
img.save(filepath/filename)
| Digit Recognizer |
10,953,593 | train_data = pd.read_csv('/kaggle/input/titanic/train.csv')
test_data = pd.read_csv('/kaggle/input/titanic/test.csv')
train_data['Age'].fillna(train_data['Age'].mean() , inplace=True)
test_data['Age'].fillna(test_data['Age'].mean() , inplace=True)
train_data['Fare'].fillna(train_data['Fare'].mean() , inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean() , inplace=True )<prepare_x_and_y> | for index, digit in test.iterrows() :
filepath = te
filename = f"{index}.jpg"
digit = digit.values
digit = digit.reshape(28,28)
digit = digit.astype(np.uint8)
img = Image.fromarray(digit)
img.save(filepath/filename ) | Digit Recognizer |
10,953,593 | features = ["Pclass", "Sex", "SibSp", "Parch", "Age", "Fare"]
train_y = train_data["Survived"]
train_x = pd.get_dummies(train_data[features])
test_x = pd.get_dummies(test_data[features] )<train_model> | data = ImageDataBunch.from_folder(path=".. /train",test=".. /test",ds_tfms=tfms, valid_pct=0.2,bs=32,size=24 ).normalize(imagenet_stats ) | Digit Recognizer |
10,953,593 | model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1)
model.fit(train_x, train_y)
test_y = model.predict(test_x )<save_to_csv> | data.show_batch(rows=3 ,figsize=(5,5)) | Digit Recognizer |
10,953,593 | output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': test_y})
output.to_csv('submission.csv', index=False )<import_modules> | learn = cnn_learner(data, models.resnet50, metrics=accuracy, model_dir = Path('.. /kaggle/input/ResNet-50'), callback_fns=ShowGraph ) | Digit Recognizer |
10,953,593 | import numpy as np
import pandas as pd
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.ensemble import VotingClassifier<load_from_csv> | learn.fit_one_cycle(5 ) | Digit Recognizer |
10,953,593 | train_data = pd.read_csv('.. /input/titanic/train.csv')
test_data = pd.read_csv('.. /input/titanic/test.csv' )<count_missing_values> | learn.save("501" ) | Digit Recognizer |
10,953,593 | missing_values = train_data.isna().any()
print('Columns which have missing values:
{0}'.format(missing_values[missing_values == True].index.tolist()))<count_missing_values> | learn.unfreeze()
learn.fit_one_cycle(5,max_lr=slice(1e-3,1e-1)) | Digit Recognizer |
10,953,593 | print("Percentage of missing values in `Age` column: {0:.2f}".format(100.*(train_data.Age.isna().sum() /len(train_data))))
print("Percentage of missing values in `Cabin` column: {0:.2f}".format(100.*(train_data.Cabin.isna().sum() /len(train_data))))
print("Percentage of missing values in `Embarked` column: {0:.2f}".format(100.*(train_data.Embarked.isna().sum() /len(train_data))))<count_duplicates> | learn.save("502" ) | Digit Recognizer |
10,953,593 | duplicates = train_data.duplicated().sum()
print('Duplicates in train data: {0}'.format(duplicates))<count_unique_values> | class_score,y=learn.get_preds(DatasetType.Test ) | Digit Recognizer |
10,953,593 | categorical = train_data.nunique().sort_values(ascending=True)
print('Categorical variables in train data:
{0}'.format(categorical))<drop_column> | probs= class_score[0].tolist()
[f"{index}: {probs[index]}" for index in range(len(probs)) ] | Digit Recognizer |
10,953,593 | for data in [train_data, test_data]:
data.drop(['Cabin'], axis=1, inplace=True)
data.drop(['Ticket', 'Fare'], axis=1, inplace=True )<drop_column> | class_score=np.argmax(class_score,axis=1 ) | Digit Recognizer |
10,953,593 | for data in [train_data, test_data]:
data['Title'] = data.Name.str.split(',' ).str[1].str.split('.' ).str[0].str.strip()
data['Woman_Or_Boy'] =(data.Title == 'Master')|(data.Sex == 'female')
data.drop('Title', axis=1, inplace=True)
data.drop('Name', axis=1, inplace=True )<categorify> | samplesub=pd.read_csv(inputs/"sample_submission.csv")
samplesub.head() | Digit Recognizer |
10,953,593 | label_encoder = LabelEncoder()
for data in [train_data, test_data]:
data['Sex'] = label_encoder.fit_transform(data['Sex'])
data['Woman_Or_Boy'] = label_encoder.fit_transform(data['Woman_Or_Boy'] )<categorify> | ImageId = [os.path.splitext(path)[0] for path in os.listdir(te)]
ImageId = [int(path)for path in ImageId]
ImageId = [ID+1 for ID in ImageId]
ImageId[:5] | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.