kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
7,034,662 | output = pd.DataFrame({"id":test_data.id, "target":preds})
output.to_csv('submission.csv', index=False )<train_model> | learn.load('stage-1'); | Digit Recognizer |
7,034,662 | print('Finish!' )<set_options> | learn.unfreeze()
learn.lr_find() | Digit Recognizer |
7,034,662 | warnings.filterwarnings('ignore')
RANDOM_SEED = 123<load_from_csv> | %%time
learn.fit_one_cycle(35, max_lr=slice(1e-5, 0.02/10)) | Digit Recognizer |
7,034,662 | train = pd.read_csv("/kaggle/input/tabular-playground-series-jan-2021/train.csv")
test = pd.read_csv("/kaggle/input/tabular-playground-series-jan-2021/test.csv")
sample = pd.read_csv("/kaggle/input/tabular-playground-series-jan-2021/sample_submission.csv" )<feature_engineering> | learn.save('stage-2' ) | Digit Recognizer |
7,034,662 | train['magic1'] = train['cont10']/train['cont11']
train['magic2'] = train['cont11']/train['cont10']
train['magic3'] = train['cont1']/train['cont7']
train['magic4'] = train['cont7']/train['cont1']
train['magic5'] = train['cont4']/train['cont6']
test['magic1'] = test['cont10']/test['cont11']
test['magic2'] = test['cont11']/test['cont10']
test['magic3'] = test['cont1']/test['cont7']
test['magic4'] = test['cont7']/test['cont1']
test['magic5'] = test['cont4']/test['cont6']<prepare_x_and_y> | interp = ClassificationInterpretation.from_learner(learn ) | Digit Recognizer |
7,034,662 | train = train.drop('id', axis=1)
test = test.drop('id', axis=1)
X = train.drop('target', axis=1)
y = train.target<choose_model_class> | def make_submission_file(
learner,
filename=f'submission_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}.csv',
preds=None
):
if preds is None:
preds, _ = learner.get_preds(ds_type=DatasetType.Test)
preds = np.argmax(preds, 1)
test_index = []
num = len(learn.data.test_ds)
for i in range(num):
test_index.append(str(learner.data.test_ds.items[i] ).split('/')[-1])
df =(pd.DataFrame(data={"Label": preds, "Filename": test_index})
.sort_values(by='Filename')
.drop('Filename', axis=1)
.assign(ImageId = range(1, len(preds)+ 1))
.reset_index(drop=True)
.reindex(columns=['ImageId', 'Label']))
df.to_csv(filename, index=False)
print(f'Saved predictions as {filename}.' ) | Digit Recognizer |
7,034,662 | cat = CatBoostRegressor(iterations=1000 )<compute_train_metric> | make_submission_file(learn, filename="resnet18-fine-tuned.csv" ) | Digit Recognizer |
7,034,662 | model = [cat]
for mod in model:
score = cross_val_score(mod, X, y, cv=3, scoring="neg_root_mean_squared_error", n_jobs=-1)
print("CAT RMSE Mean Score: ", np.mean(score))<compute_train_metric> | most_unsure = DatasetFormatter.from_most_unsure(learn ) | Digit Recognizer |
7,034,662 | model = [cat]
for mod in model:
score = cross_val_score(mod, X, y, cv=10, scoring="neg_root_mean_squared_error", n_jobs=-1)
print("CAT RMSE Mean Score: ", np.mean(score))<choose_model_class> | err1 = 1 - 0.99442
err2 = 1 - 0.99571
print(f'Human in the loop improvement: {100*(err1-err2)/err1}%' ) | Digit Recognizer |
3,975,332 | lgbm = lightgbm.LGBMRegressor(random_state=RANDOM_SEED, n_jobs=-1, metric= 'rmse' )<compute_train_metric> | train_df = pd.read_csv('.. /input/train.csv')
test_df = pd.read_csv('.. /input/test.csv')
print(train_df.shape, test_df.shape ) | Digit Recognizer |
3,975,332 | model = [lgbm]
for mod in model:
score = cross_val_score(mod, X, y, cv=3, scoring="neg_root_mean_squared_error", n_jobs=-1)
print("LGBM RMSE Mean Score: ", np.mean(score))<compute_train_metric> | train_df['label'].value_counts(sort=False ) | Digit Recognizer |
3,975,332 | model = [lgbm]
for mod in model:
score = cross_val_score(mod, X, y, cv=10, scoring="neg_root_mean_squared_error", n_jobs=-1)
print("LGBM RMSE Mean Score: ", np.mean(score))<choose_model_class> | train_X = train_df.drop(['label'], axis=1 ).values
train_Y = train_df['label'].values
test_X = test_df.values
print(train_X.shape, train_Y.shape, test_X.shape ) | Digit Recognizer |
3,975,332 | xgbr = XGBRegressor(random_state=RANDOM_SEED )<compute_train_metric> | n_x = 28
train_X_digit = train_X.reshape(( -1, n_x, n_x, 1))
test_X_digit = test_X.reshape(( -1, n_x, n_x, 1))
print(train_X_digit.shape, test_X_digit.shape)
train_X_digit = train_X_digit / 255.
test_X_digit = test_X_digit / 255.
onehot_labels = to_categorical(train_Y)
print(onehot_labels.shape)
print(train_Y[181], onehot_labels[181])
plt.figure(figsize=(1,1))
plt.imshow(train_X[181].reshape(( 28,28)) ,cmap=plt.cm.binary)
plt.show() | Digit Recognizer |
3,975,332 | model = [xgbr]
for mod in model:
score = cross_val_score(mod, X, y, cv=3, scoring="neg_root_mean_squared_error", n_jobs=-1)
print("XGB RMSE Mean Score: ", np.mean(score))<create_dataframe> | data_augment = ImageDataGenerator(rotation_range=10, zoom_range=0.1,
width_shift_range=0.1, height_shift_range=0.1 ) | Digit Recognizer |
3,975,332 | dtrain = lightgbm.Dataset(data=X, label=y)
def hyp_lgbm(num_leaves, feature_fraction, bagging_fraction, max_depth, min_split_gain, min_child_weight, learning_rate):
params = {'application':'regression','num_iterations': 5000,
'early_stopping_round':100, 'metric':'rmse'}
params["num_leaves"] = int(round(num_leaves))
params['feature_fraction'] = max(min(feature_fraction, 1), 0)
params['bagging_fraction'] = max(min(bagging_fraction, 1), 0)
params['max_depth'] = int(round(max_depth))
params['min_split_gain'] = min_split_gain
params['min_child_weight'] = min_child_weight
params['learning_rate'] = learning_rate
cv_result = lightgbm.cv(params, dtrain, nfold=3,
seed=RANDOM_SEED, stratified=False,
verbose_eval =None, metrics=['rmse'])
return -np.min(cv_result['rmse-mean'] )<define_search_space> | model = models.Sequential()
model.add(layers.Conv2D(32, kernel_size=5, padding='same', activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D(pool_size=(2,2)))
model.add(layers.Dropout(rate=0.4))
model.add(layers.Conv2D(64, kernel_size=5, activation='relu'))
model.add(layers.MaxPooling2D(pool_size=(2,2)))
model.add(layers.Dropout(rate=0.4))
model.add(layers.Conv2D(128, kernel_size=3, activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dropout(rate=0.4))
model.add(layers.Dense(10, activation='softmax'))
model.summary() | Digit Recognizer |
3,975,332 | pds = {
'num_leaves':(5, 50),
'feature_fraction':(0.2, 1),
'bagging_fraction':(0.2, 1),
'max_depth':(2, 20),
'min_split_gain':(0.001, 0.1),
'min_child_weight':(10, 50),
'learning_rate':(0.01, 0.5),
}<init_hyperparams> | model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'] ) | Digit Recognizer |
3,975,332 | def cat_hyp(depth, bagging_temperature, l2_leaf_reg, learning_rate):
params = {"iterations": 100,
"loss_function": "RMSE",
"verbose": False}
params["depth"] = int(round(depth))
params["bagging_temperature"] = bagging_temperature
params["learning_rate"] = learning_rate
params["l2_leaf_reg"] = l2_leaf_reg
cat_feat = []
cv_dataset = cgb.Pool(data=X,
label=y,
cat_features=cat_feat)
scores = cgb.cv(cv_dataset,
params,
fold_count=3)
return -np.min(scores['test-RMSE-mean'] )<define_search_space> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy',patience=3,factor=0.5,min_lr=0.00001,
verbose=1 ) | Digit Recognizer |
3,975,332 | pds = {'depth':(4, 10),
'bagging_temperature':(0.1,10),
'l2_leaf_reg':(0.1, 10),
'learning_rate':(0.1, 0.2)
}<train_on_grid> | X_dev = train_X_digit[:5000]
rem_X_train = train_X_digit[5000:]
print(X_dev.shape, rem_X_train.shape)
Y_dev = onehot_labels[:5000]
rem_Y_train = onehot_labels[5000:]
print(Y_dev.shape, rem_Y_train.shape ) | Digit Recognizer |
3,975,332 | dtrain = xgb.DMatrix(X, y, feature_names=X.columns.values)
def hyp_xgb(max_depth, subsample, colsample_bytree,min_child_weight, gamma, learning_rate):
params = {
'objective': 'reg:squarederror',
'eval_metric':'rmse',
'nthread':-1
}
params['max_depth'] = int(round(max_depth))
params['subsample'] = max(min(subsample, 1), 0)
params['colsample_bytree'] = max(min(colsample_bytree, 1), 0)
params['min_child_weight'] = int(min_child_weight)
params['gamma'] = max(gamma, 0)
params['learning_rate'] = learning_rate
scores = xgb.cv(params, dtrain, num_boost_round=500,verbose_eval=False,
early_stopping_rounds=10, nfold=3)
return -scores['test-rmse-mean'].iloc[-1]<define_search_space> | epochs = 30
batch_size = 128
history = model.fit_generator(data_augment.flow(rem_X_train, rem_Y_train, batch_size=batch_size),
epochs=epochs, steps_per_epoch=rem_X_train.shape[0]//batch_size,
validation_data=(X_dev, Y_dev), callbacks=[learning_rate_reduction] ) | Digit Recognizer |
3,975,332 | pds ={
'min_child_weight':(3, 20),
'gamma':(0, 5),
'subsample':(0.7, 1),
'colsample_bytree':(0.1, 1),
'max_depth':(3, 10),
'learning_rate':(0.01, 0.5)
}<import_modules> | pred_dev = model.predict(X_dev)
pred_dev_labels = np.argmax(pred_dev, axis=1 ) | Digit Recognizer |
3,975,332 | from sklearn.ensemble import StackingRegressor
from sklearn.linear_model import LinearRegression<init_hyperparams> | result = pd.DataFrame(train_Y[:5000], columns=['Y_dev'])
result['Y_pred'] = pred_dev_labels
result['correct'] = result['Y_dev'] - result['Y_pred']
errors = result[result['correct'] != 0]
error_list = errors.index
print('Number of errors is ', len(errors))
print('The indices are ', error_list ) | Digit Recognizer |
3,975,332 | param_lgbm = {
'bagging_fraction': 0.973905385549851,
'feature_fraction': 0.2945585590881137,
'learning_rate': 0.03750332268701348,
'max_depth': int(7.66),
'min_child_weight': int(41.36),
'min_split_gain': 0.04033836353603582,
'num_leaves': int(46.42),
'application':'regression',
'num_iterations': 5000,
'metric': 'rmse'
}
param_cat = {
'bagging_temperature': 0.31768713094131684,
'depth': int(8.03),
'l2_leaf_reg': 1.3525686450404295,
'learning_rate': 0.2,
'iterations': 100,
'loss_function': 'RMSE',
'verbose': False
}
param_xgb = {
'colsample_bytree': 0.8119098377889549,
'gamma': 2.244423418642122,
'learning_rate': 0.015800631696721114,
'max_depth': int(9.846),
'min_child_weight': int(15.664),
'subsample': 0.82345,
'objective': 'reg:squarederror',
'eval_metric':'rmse',
'num_boost_roun' : 500
}<import_modules> | predictions = model.predict(test_X_digit)
print(predictions.shape ) | Digit Recognizer |
3,975,332 | from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor, GradientBoostingRegressor
from sklearn.neural_network import MLPRegressor
from sklearn import svm
import lightgbm<define_search_model> | predicted_labels = np.argmax(predictions, axis=1 ) | Digit Recognizer |
3,975,332 | <train_model><EOS> | result = pd.read_csv('.. /input/sample_submission.csv')
result['Label'] = predicted_labels
result.to_csv('submission.csv', index=False ) | Digit Recognizer |
3,048,669 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<save_to_csv> | random.seed(42)
init_notebook_mode(connected=True)
| Digit Recognizer |
3,048,669 | sample['target'] = y_pred
sample.to_csv("submission.csv", index=False )<import_modules> | df_train = pd.read_csv('.. /input/train.csv')
df_comp = pd.read_csv('.. /input/test.csv' ) | Digit Recognizer |
3,048,669 | import pandas as pd
import numpy as np
import datetime
import gc
import os
import random
import time
import warnings
import pandas as pd
import numpy as np
import lightgbm as lgb
import xgboost
import catboost
import seaborn as sns
from pandas import DataFrame
from sklearn.metrics import roc_auc_score, f1_score, precision_recall_curve, auc
from sklearn.model_selection import StratifiedKFold, train_test_split, KFold
import matplotlib.pyplot as plt
from sklearn.preprocessing import KBinsDiscretizer, OneHotEncoder
from statsmodels.gam.tests.test_gam import sigmoid
from tqdm import tqdm
<load_from_csv> | df_train.isnull().sum().sum() | Digit Recognizer |
3,048,669 | train = pd.read_csv('/kaggle/input/tabular-playground-series-jan-2021/train.csv')
test = pd.read_csv('/kaggle/input/tabular-playground-series-jan-2021/test.csv')
train.shape,test.shape<init_hyperparams> | from sklearn.model_selection import train_test_split | Digit Recognizer |
3,048,669 | label = 'target'
seed = 0
local_test = True
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
seed_everything(seed)
params = {
'objective': 'regression',
'boosting_type': 'gbdt',
'metric': 'rmse',
'n_jobs': -1,
'learning_rate': 0.006,
'num_leaves': 2 ** 8,
'max_depth': 8,
'tree_learner': 'serial',
'colsample_bytree': 0.8,
'subsample_freq': 1,
'subsample': 0.8,
'max_bin': 255,
'verbose': -1,
'seed': seed,
}
base_features = [x for x in train.columns if 'cont' in x]
remove_features = [label,'id']<define_variables> | from sklearn.model_selection import train_test_split | Digit Recognizer |
3,048,669 | def make_test(new_features):
features = base_features + new_features
oof_predictions = np.zeros(len(train))
final_predictions = np.zeros(len(test))
cv = KFold(n_splits=10,shuffle=True,random_state=seed)
if local_test:
n_estimators=1000
else:
n_estimators = 10000
lgb = LGBMRegressor(**params,n_estimators=n_estimators,device='GPU')
for n,(trn_id,val_id)in enumerate(cv.split(train[features],train[label])) :
print(f"===== training fold {n+1} =====")
trn_x,trn_y = train.loc[trn_id,features],train.loc[trn_id,label]
val_x,val_y = train.loc[val_id,features],train.loc[val_id,label]
lgb.fit(trn_x,trn_y,eval_set=[(val_x,val_y)],early_stopping_rounds=100,verbose=-1)
oof_predictions[val_id] = lgb.predict(val_x)
final_predictions += lgb.predict(test[features])/ cv.n_splits
mse_score = np.sqrt(mean_squared_error(y_true=val_y,y_pred=oof_predictions[val_id]))
del trn_x,trn_y,val_x,val_y
gc.collect()
cur_mse_score = np.sqrt(mean_squared_error(y_true=train[label],y_pred=oof_predictions))
cur_mae_score = mean_absolute_error(y_true=train[label],y_pred=oof_predictions)
print(f"global mse score {cur_mse_score}")
print(f"global mae score {cur_mae_score}")
print(f"diff with previous version {score[0] - cur_mse_score}")
print(f"diff with previous version {score[1] - cur_mae_score}")
if not local_test:
test[label] = final_predictions
test[['id',label]].to_csv(f'sub_{np.round(cur_mse_score,4)}.csv',index=False)
return [cur_mse_score,cur_mae_score]<define_variables> | Y = df_train.label
X = df_train.drop('label', axis=1)
X = X / 255
X_comp = df_comp / 255
X_train, X_cross, Y_train, Y_cross = train_test_split(X, Y,test_size=0.1, random_state=42)
X_valid, X_test, Y_valid, Y_test = train_test_split(X_cross, Y_cross, test_size=0.5, random_state=42 ) | Digit Recognizer |
3,048,669 | local_test=False
score = [0.6970820000536615, 0.5829603998473519]
make_test([] )<import_modules> | from keras.models import Sequential, load_model
from keras.layers import Dense, Conv2D, MaxPool2D, Dropout, Flatten
from keras.utils import plot_model, to_categorical
from keras.utils.vis_utils import model_to_dot
from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import confusion_matrix, accuracy_score | Digit Recognizer |
3,048,669 | import os
import joblib
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score, cross_val_predict,RandomizedSearchCV, KFold
from lightgbm import LGBMRegressor
from xgboost import XGBRegressor
from catboost import CatBoostRegressor
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
import optuna<load_from_csv> | X_train = X_train.values.reshape(X_train.shape[0],28,28,1)
X_valid = X_valid.values.reshape(X_valid.shape[0],28,28,1)
X_test = X_test.values.reshape(X_test.shape[0],28,28,1)
X_comp = X_comp.values.reshape(X_comp.shape[0],28,28,1)
Y_train = to_categorical(Y_train)
Y_valid = to_categorical(Y_valid)
Y_test = to_categorical(Y_test ) | Digit Recognizer |
3,048,669 | train_df = pd.read_csv('/kaggle/input/tabular-playground-series-jan-2021/train.csv')
test_df = pd.read_csv('/kaggle/input/tabular-playground-series-jan-2021/test.csv')
submission = pd.read_csv('/kaggle/input/tabular-playground-series-jan-2021/sample_submission.csv' )<prepare_x_and_y> | datagen = ImageDataGenerator(height_shift_range=0.1,
width_shift_range=0.1,
rotation_range=10,
zoom_range=0.1,
fill_mode='constant',
cval=0
)
datagen.fit(X_train ) | Digit Recognizer |
3,048,669 | features = [feature for feature in train_df.columns if feature not in ['id', 'target']]
X_train = train_df[features]
y_train = train_df['target']
X_test = test_df[features]<count_missing_values> | model = Sequential()
droprate = 0.175
model.add(Conv2D(kernel_size=(2,2), filters=128, strides=(1,1), padding='same',activation='relu', input_shape=(28,28,1)))
model.add(Conv2D(kernel_size=(2,2), filters=128, strides=(1,1), padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(droprate))
model.add(Dense(10, activation='softmax'))
model1 = model
model1.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) | Digit Recognizer |
3,048,669 | print('Missing value in train dataset:', sum(train_df.isnull().sum()))
print('Missing value in test dataset:', sum(test_df.isnull().sum()))<choose_model_class> | epochsN = 25
batch_sizeN = 63
history1 = model1.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_sizeN), validation_data=(X_valid, Y_valid), steps_per_epoch=len(X_train)/batch_sizeN, epochs=epochsN, verbose=2 ) | Digit Recognizer |
3,048,669 | cv = KFold(n_splits=5, shuffle=True, random_state=42 )<compute_train_metric> | model1.evaluate(X_test, Y_test, verbose=0 ) | Digit Recognizer |
3,048,669 | %%time
lin_reg = LinearRegression()
scores = cross_val_score(lin_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=cv, n_jobs=-1)
lin_rmse_scores = np.sqrt(-scores)
print('Linear Regression performance:', lin_rmse_scores )<compute_train_metric> | model1.save('model_1.h5' ) | Digit Recognizer |
3,048,669 | %%time
tree_reg = DecisionTreeRegressor(random_state=42)
scores = cross_val_score(tree_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=cv, n_jobs=-1)
tree_rmse_scores = np.sqrt(-scores)
print('Decision Tree Regressor performance:', tree_rmse_scores )<compute_train_metric> | del model
model = Sequential()
droprate = 0.15
model.add(Conv2D(kernel_size=(2,2), filters=128, strides=(1,1), padding='same',activation='relu', input_shape=(28,28,1)))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(2,2), filters=32, strides=(1,1), padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(droprate))
model.add(Dense(10, activation='softmax'))
model2 = model
model2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) | Digit Recognizer |
3,048,669 | %%time
forest_reg = RandomForestRegressor(random_state=42, n_jobs=-1)
scores = cross_val_score(forest_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=cv, n_jobs=-1)
forest_rmse_scores = np.sqrt(-scores)
print('Random Forest performance:', forest_rmse_scores )<compute_train_metric> | epochsN = 35
batch_sizeN = 63
history2 = model2.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_sizeN), validation_data=(X_valid, Y_valid), steps_per_epoch=len(X_train)/batch_sizeN, epochs=epochsN, verbose=2 ) | Digit Recognizer |
3,048,669 | %%time
lgbm_reg = LGBMRegressor(random_state=42)
scores = cross_val_score(lgbm_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=cv, n_jobs=-1)
lgbm_rmse_scores = np.sqrt(-scores)
print('LGBM performance:', lgbm_rmse_scores )<compute_train_metric> | model2.evaluate(X_test, Y_test, verbose=0 ) | Digit Recognizer |
3,048,669 | %%time
xgb_reg = XGBRegressor(random_state=42)
scores = cross_val_score(xgb_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=cv, n_jobs=-1)
xgb_rmse_scores = np.sqrt(-scores)
print('XGBoost performance:', xgb_rmse_scores )<compute_train_metric> | model2.save('model_2.h5' ) | Digit Recognizer |
3,048,669 | %%time
cb_reg = CatBoostRegressor(random_state=42, verbose=False)
scores = cross_val_score(cb_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=cv, n_jobs=-1)
cb_rmse_scores = np.sqrt(-scores)
print('CatBoost performance:', cb_rmse_scores )<compute_train_metric> | del model
model = Sequential()
droprate = 0.2
model.add(Conv2D(kernel_size=(2,2), filters=128, strides=(1,1), padding='same',activation='relu', input_shape=(28,28,1)))
model.add(Conv2D(kernel_size=(2,2), filters=128, strides=(1,1), padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(2,2), filters=32, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=32, strides=(1,1), padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(droprate))
model.add(Dense(10, activation='softmax'))
model3 = model
model3.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) | Digit Recognizer |
3,048,669 | %%time
ab_reg = AdaBoostRegressor(random_state=42)
scores = cross_val_score(ab_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=cv, n_jobs=-1)
ab_rmse_scores = np.sqrt(-scores)
print('AdaBoost performance:', ab_rmse_scores )<choose_model_class> | epochsN = 40
batch_sizeN = 63
history3 = model3.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_sizeN), validation_data=(X_valid, Y_valid), steps_per_epoch=len(X_train)/batch_sizeN, epochs=epochsN, verbose=2 ) | Digit Recognizer |
3,048,669 | def build_and_compile_model(norm):
model = keras.Sequential([
norm,
layers.Dense(64, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(1)])
model.compile(loss='mean_squared_error',
optimizer=tf.keras.optimizers.Adam(0.001))
return model<train_model> | model3.evaluate(X_test, Y_test, verbose=0 ) | Digit Recognizer |
3,048,669 | %%time
normalizer = preprocessing.Normalization()
normalizer.adapt(np.array(X_train))
dnn_model = build_and_compile_model(normalizer)
history = dnn_model.fit(X_train, y_train, validation_split=0.2,
verbose=0, epochs=100 )<predict_on_test> | model3.save('model_3.h5' ) | Digit Recognizer |
3,048,669 | %%time
lin_reg = LinearRegression()
y_predict = cross_val_predict(lin_reg, X_train, y_train, cv=cv, n_jobs=-1 )<predict_on_test> | del model
model = Sequential()
droprate = 0.20
model.add(Conv2D(kernel_size=(2,2), filters=128, strides=(1,1), padding='same',activation='relu', input_shape=(28,28,1)))
model.add(Conv2D(kernel_size=(2,2), filters=128, strides=(1,1), padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(2,2), filters=32, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=32, strides=(1,1), padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(2,2), filters=16, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=16, strides=(1,1), padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(droprate))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(droprate))
model.add(Dense(10, activation='softmax'))
model4 = model
model4.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) | Digit Recognizer |
3,048,669 | %%time
tree_reg = DecisionTreeRegressor(random_state=42)
y_predict = cross_val_predict(tree_reg, X_train, y_train, cv=cv, n_jobs=-1 )<predict_on_test> | epochsN = 90
batch_sizeN = 63
history4 = model4.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_sizeN), validation_data=(X_valid, Y_valid), steps_per_epoch=len(X_train)/batch_sizeN, epochs=epochsN, verbose=2 ) | Digit Recognizer |
3,048,669 | %%time
forest_reg = RandomForestRegressor(random_state=42, n_jobs=-1)
y_predict = cross_val_predict(forest_reg, X_train, y_train, cv=cv, n_jobs=-1 )<predict_on_test> | model4.evaluate(X_test, Y_test, verbose=0 ) | Digit Recognizer |
3,048,669 | %%time
lgbm_reg = LGBMRegressor(random_state=42)
y_predict = cross_val_predict(lgbm_reg, X_train, y_train, cv=cv, n_jobs=-1 )<predict_on_test> | model4.save('model_4.h5' ) | Digit Recognizer |
3,048,669 | %%time
xgb_reg = XGBRegressor(random_state=42)
y_predict = cross_val_predict(xgb_reg, X_train, y_train, cv=cv, n_jobs=-1 )<predict_on_test> | del model
model = Sequential()
droprate = 0.1
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu', input_shape=(28,28,1)))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(2,2), padding='valid',activation='relu'))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(2,2), filters=32, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=32, strides=(2,2), padding='valid',activation='relu'))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(2,2), filters=16, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(3,3), filters=16, strides=(2,2), padding='valid',activation='relu'))
model.add(Flatten())
model.add(Dropout(droprate))
model.add(Dense(128, activation='relu'))
model.add(Dropout(droprate))
model.add(Dense(10, activation='softmax'))
model5 = model
model5.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) | Digit Recognizer |
3,048,669 | %%time
cb_reg = CatBoostRegressor(random_state=42, verbose=False)
y_predict = cross_val_predict(cb_reg, X_train, y_train, cv=cv, n_jobs=-1 )<predict_on_test> | epochsN = 90
batch_sizeN = 63
history5 = model5.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_sizeN), validation_data=(X_valid, Y_valid), steps_per_epoch=len(X_train)/batch_sizeN, epochs=epochsN, verbose=2 ) | Digit Recognizer |
3,048,669 | %%time
ab_reg = AdaBoostRegressor(random_state=42)
y_predict = cross_val_predict(ab_reg, X_train, y_train, cv=cv, n_jobs=-1 )<compute_train_metric> | model5.evaluate(X_test, Y_test, verbose=0 ) | Digit Recognizer |
3,048,669 | def objective(trial):
params = {
'random_state': 42,
'max_depth': trial.suggest_int('max_depth', 1, 14),
'learning_rate': trial.suggest_float('learning_rate', 0.01, 1.0)
}
lgbm_reg = LGBMRegressor()
lgbm_reg.set_params(**params)
scores = cross_val_score(lgbm_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=cv, n_jobs=-1)
rmse = np.sqrt(-scores)
return np.mean(rmse )<find_best_params> | model5.save('model_5.h5' ) | Digit Recognizer |
3,048,669 | study = optuna.create_study(direction = 'minimize')
study.optimize(objective, n_trials = 1)
best_params = study.best_trial.params<compute_train_metric> | del model
model = Sequential()
droprate = 0.15
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu', input_shape=(28,28,1)))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(2,2), padding='valid',activation='relu'))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(2,2), filters=32, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=32, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=32, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=16, strides=(2,2), padding='valid',activation='relu'))
model.add(Flatten())
model.add(Dropout(droprate))
model.add(Dense(256, activation='relu'))
model.add(Dropout(droprate))
model.add(Dense(10, activation='softmax'))
model6 = model
model6.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) | Digit Recognizer |
3,048,669 | %%time
lgbm_reg = LGBMRegressor()
lgbm_reg.set_params(**best_params)
scores = cross_val_score(lgbm_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=cv, n_jobs=-1)
lgbm_rmse_scores = np.sqrt(-scores)
print('LGBM performance:', lgbm_rmse_scores )<compute_train_metric> | epochsN = 45
batch_sizeN = 63
history6 = model6.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_sizeN), validation_data=(X_valid, Y_valid), steps_per_epoch=len(X_train)/batch_sizeN, epochs=epochsN, verbose=2 ) | Digit Recognizer |
3,048,669 | def objective(trial):
params = {
'random_state': 42,
'max_depth': trial.suggest_int('max_depth', 1, 14),
'eta': trial.suggest_float('eta', 0.01, 1.0),
}
xgb_reg = XGBRegressor()
xgb_reg.set_params(**params)
scores = cross_val_score(xgb_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=cv, n_jobs=-1)
rmse = np.sqrt(-scores)
return np.mean(rmse )<find_best_params> | model6.evaluate(X_test, Y_test, verbose=0 ) | Digit Recognizer |
3,048,669 | study = optuna.create_study(direction = 'minimize')
study.optimize(objective, n_trials = 1)
best_params = study.best_trial.params<compute_train_metric> | model6.save('model_6.h5' ) | Digit Recognizer |
3,048,669 | %%time
xgb_reg = XGBRegressor()
xgb_reg.set_params(**best_params)
scores = cross_val_score(xgb_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=cv, n_jobs=-1)
xgb_rmse_scores = np.sqrt(-scores)
print('XGBoost performance:', xgb_rmse_scores )<feature_engineering> | del model
model = Sequential()
droprate = 0.35
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu', input_shape=(28,28,1)))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=64, strides=(2,2), padding='valid',activation='relu'))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(3,3), filters=128, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(3,3), filters=128, strides=(1,1), padding='same',activation='relu'))
model.add(Conv2D(kernel_size=(2,2), filters=128, strides=(2,2), padding='valid',activation='relu'))
model.add(Dropout(droprate))
model.add(Conv2D(kernel_size=(3,3), filters=256, strides=(1,1), padding='valid',activation='relu'))
model.add(Conv2D(kernel_size=(3,3), filters=256, strides=(1,1), padding='valid',activation='relu'))
model.add(Conv2D(kernel_size=(3,3), filters=256, strides=(2,2), padding='valid',activation='relu'))
model.add(Dropout(droprate))
model.add(Flatten())
model.add(Dense(10, activation='softmax'))
model7 = model
model7.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) | Digit Recognizer |
3,048,669 | X_train['below8'] = np.where(y_train < 8, 1, 0 )<compute_train_metric> | epochsN = 60
batch_sizeN = 63
history7 = model7.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_sizeN), validation_data=(X_valid, Y_valid), steps_per_epoch=len(X_train)/batch_sizeN, epochs=epochsN, verbose=2 ) | Digit Recognizer |
3,048,669 | %%time
cb_reg = CatBoostRegressor(random_state=42, verbose=False)
scores = cross_val_score(cb_reg, X_train, y_train, scoring='neg_mean_squared_error', cv=5)
cb_rmse_scores = np.sqrt(-scores)
print('CatBoost performance:', cb_rmse_scores )<import_modules> | model7.evaluate(X_test, Y_test, verbose=0 ) | Digit Recognizer |
3,048,669 | import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from xgboost import XGBRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error<load_from_csv> | model7.save('model_7.h5' ) | Digit Recognizer |
3,048,669 | train = pd.read_csv('.. /input/tabular-playground-series-jan-2021/train.csv', index_col='id')
test = pd.read_csv('.. /input/tabular-playground-series-jan-2021/test.csv', index_col='id' )<set_options> | trained_models = [model1, model2, model3, model4, model5, model6, model7] | Digit Recognizer |
3,048,669 | plt.style.use('ggplot')
plt.rcParams['axes.titlesize'] = 16
plt.rcParams['axes.labelsize'] = 12
plt.rcParams['xtick.labelsize'] = 'large'<count_missing_values> | acc_scores = pd.Series()
for num, model in enumerate(trained_models):
acc_scores.loc['Model ' + str(num + 1)] = accuracy_score(np.argmax(Y_test, axis=1), np.argmax(model.predict(X_test), axis=1)) | Digit Recognizer |
3,048,669 | print('Missing values on the train data:', train.isnull().sum().sum())
print('Missing values on the test data:', test.isnull().sum().sum() )<count_duplicates> | def summing_classifier(data, model_list):
total_pred_prob = model_list[0].predict(data)
for model in model_list[1:]:
total_pred_prob += model.predict(data)
return np.argmax(total_pred_prob, axis=1 ) | Digit Recognizer |
3,048,669 | print('Duplicated rows on the train data:', train.duplicated().sum())
print('Duplicated rows on the test data:', test.duplicated().sum() )<define_variables> | acc_scores.loc['Summing Classifier'] = accuracy_score(np.argmax(Y_test, axis=1), summing_classifier(X_test, trained_models))
acc_scores.loc['Summing Classifier'] | Digit Recognizer |
3,048,669 | q1 = train.quantile(0.25)
q3 = train.quantile(0.75)
iqr = q3 - q1
mask =(train >=(q1 - 1.5*iqr)) &(train <= q3 + 1.5*iqr)
train = train[mask.apply(all, axis=1)]
print('Train set without outliers shape:', train.shape )<split> | def voting_classifier(data, model_list):
pred_list = np.argmax(model_list[0].predict(data), axis=1 ).reshape(( 1,len(data)))
for model in model_list[1:]:
pred_list = np.append(pred_list, [np.argmax(model.predict(data), axis=1)], axis=0)
return np.array(list(map(lambda x: np.bincount(x ).argmax() , pred_list.T)) ) | Digit Recognizer |
3,048,669 | X_train, X_val, y_train, y_val = train_test_split(train[predictors],
train[target],
test_size = 0.2,
random_state=2021 )<choose_model_class> | acc_scores.loc['Voting Classifier'] = accuracy_score(np.argmax(Y_test, axis=1), voting_classifier(X_test, trained_models))
acc_scores.loc['Voting Classifier'] | Digit Recognizer |
3,048,669 | model = XGBRegressor(objective='reg:squarederror',
booster = "gbtree",
eval_metric = "rmse",
tree_method = "gpu_hist",
n_estimators = 1000,
learning_rate = 0.04,
eta = 0.1,
max_depth = 7,
subsample=0.85,
colsample_bytree = 0.85,
colsample_bylevel = 0.8,
alpha = 0,
random_state = 2021 )<train_model> | best_model_results = pd.DataFrame({'Label' : np.argmax(trained_models[ind_best_model].predict(X_comp), axis=1)})
best_model_results = best_model_results.reset_index().rename(columns={'index' : 'ImageId'})
best_model_results['ImageId'] = best_model_results['ImageId'] + 1
best_model_results.to_csv('best_model_result_kaggle.csv', index=False ) | Digit Recognizer |
3,048,669 | %time model.fit(X_train, y_train )<predict_on_test> | esmbl_sum_results = pd.DataFrame({'Label' : summing_classifier(X_comp, trained_models)})
esmbl_sum_results = esmbl_sum_results.reset_index().rename(columns={'index' : 'ImageId'})
esmbl_sum_results['ImageId'] = esmbl_sum_results['ImageId'] + 1
esmbl_sum_results.to_csv('esmbl_sum_result_kaggle.csv', index=False ) | Digit Recognizer |
3,048,669 | <save_to_csv><EOS> | esmbl_vote_results = pd.DataFrame({'Label' : voting_classifier(X_comp, trained_models)})
esmbl_vote_results = esmbl_vote_results.reset_index().rename(columns={'index' : 'ImageId'})
esmbl_vote_results['ImageId'] = esmbl_vote_results['ImageId'] + 1
esmbl_vote_results.to_csv('esmbl_vote_result_kaggle.csv', index=False ) | Digit Recognizer |
3,050,804 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<set_options> | warnings.filterwarnings('ignore')
%matplotlib inline
seed = 5
np.random.seed(seed ) | Digit Recognizer |
3,050,804 | warnings.filterwarnings("ignore" )<load_from_csv> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv")
print(train.shape, test.shape)
train.tail() | Digit Recognizer |
3,050,804 | train_data = pd.read_csv(path+'train.csv')
test_data = pd.read_csv(path+'test.csv')
samp_subm = pd.read_csv(path+'sample_submission.csv' )<count_values> | X_train =(train.iloc[:,1:].values ).astype('float32')
y_train = train.iloc[:,0].values.astype('int32')
X_train = X_train.reshape(-1, 28, 28,1)
X_train = X_train / 255.0
print(X_train.shape , y_train.shape)
test = test.values.reshape(-1, 28, 28, 1)
test = test.astype(float)
test /= 255.0
print(test.shape ) | Digit Recognizer |
3,050,804 | print('Number train samples:', len(train_data.index))
print('Number test samples:', len(test_data.index))
print('Number features:', len(train_data.columns))<count_missing_values> | y_train= to_categorical(y_train)
num_classes = y_train.shape[1]
print("Number of classes: ",num_classes ) | Digit Recognizer |
3,050,804 | print('Missing values on the train data:', train_data.isnull().sum().sum())
print('Missing values on the test data:', test_data.isnull().sum().sum() )<train_model> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, y_train, test_size = 0.15, random_state=seed)
print("Shapes of train, validation dataset ")
print(X_train.shape , Y_train.shape)
print(X_val.shape , Y_val.shape ) | Digit Recognizer |
3,050,804 | pca = PCA().fit(train_data[train_data.columns[1:-1]])
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('No of components')
plt.ylabel('Cumulative explained variance')
plt.grid()
plt.show()<define_variables> | filters_1 = 32
filters_2 = 64
filters_3 = 128
model = models.Sequential()
model.add(conv.Convolution2D(filters_1,(3,3), activation="relu", input_shape=(28, 28, 1), border_mode='same'))
model.add(conv.Convolution2D(filters_1,(3,3), activation="relu", border_mode='same'))
model.add(conv.MaxPooling2D(strides=(2,2)))
model.add(conv.Convolution2D(filters_2,(3,3), activation="relu", border_mode='same'))
model.add(conv.Convolution2D(filters_2,(3,3), activation="relu", border_mode='same'))
model.add(conv.MaxPooling2D(strides=(2,2)))
model.add(core.Flatten())
model.add(core.Dropout(0.2))
model.add(core.Dense(128, activation="relu"))
model.add(core.Dense(10, activation="softmax"))
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.summary() | Digit Recognizer |
3,050,804 | features = ['cont'+str(i)for i in range(1, 15)]
no_features = ['id', 'target']<feature_engineering> | %%time
print("apply augumentation or data noisy...")
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train)
print("training started...")
epochs = 15
batch_size = 128
checkpoint = ModelCheckpoint('model-best-trained.h5', verbose=0, monitor='loss',save_best_only=True, mode='auto')
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=5, verbose=1, factor=0.5, min_lr=0.00001)
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
verbose = 1, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction,checkpoint])
print("training finished!" ) | Digit Recognizer |
3,050,804 | train_data['mean'] = train_data[features].mean(axis=1)
train_data['std'] = train_data[features].std(axis=1)
train_data['max'] = train_data[features].max(axis=1)
train_data['min'] = train_data[features].min(axis=1)
train_data['sum'] = train_data[features].sum(axis=1)
test_data['mean'] = test_data[features].mean(axis=1)
test_data['std'] = test_data[features].std(axis=1)
test_data['max'] = test_data[features].max(axis=1)
test_data['min'] = test_data[features].min(axis=1)
test_data['sum'] = test_data[features].sum(axis=1 )<prepare_x_and_y> | print("Running prediction test.... ")
predictions = model.predict_classes(test,verbose=1)
print("done" ) | Digit Recognizer |
3,050,804 | <predict_on_test><EOS> | np.savetxt('digits-mnist-cnn-3.csv', np.c_[range(1,len(predictions)+1),predictions], delimiter=',', header = 'ImageId,Label', comments = '', fmt='%d')
print("saved prediction to file")
sub = pd.read_csv("digits-mnist-cnn-3.csv")
sub.tail(10 ) | Digit Recognizer |
1,079,802 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<count_values> | %matplotlib inline | Digit Recognizer |
1,079,802 | print('Number of outliers:', len(train_data)-mask.sum() )<split> | from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import keras | Digit Recognizer |
1,079,802 | X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.2, random_state=2021 )<choose_model_class> | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" ) | Digit Recognizer |
1,079,802 | model = XGBRegressor(objective='reg:squarederror',
booster = "gbtree",
eval_metric = "rmse",
tree_method = "gpu_hist",
n_estimators = 600,
learning_rate = 0.04,
eta = 0.1,
max_depth = 7,
subsample=0.85,
colsample_bytree = 0.85,
colsample_bylevel = 0.8,
alpha = 0,
random_state = 2021)
model.fit(X_train, y_train)
y_val_pred = model.predict(X_val)
print('Score validation data:', np.sqrt(mean_squared_error(y_val, y_val_pred)) )<predict_on_test> | Y_train = train["label"]
X_train = train.drop(labels = ["label"],axis = 1)
| Digit Recognizer |
1,079,802 | y_test = model.predict(X_test )<prepare_output> | X_train = X_train / 255.0
test = test / 255.0 | Digit Recognizer |
1,079,802 | output = samp_subm.copy()
output['target'] = y_test<save_to_csv> | Y_train = to_categorical(Y_train, num_classes = 10 ) | Digit Recognizer |
1,079,802 | output.to_csv('submission.csv', index=False )<import_modules> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1 ) | Digit Recognizer |
1,079,802 | import os
import sys
import math
import pickle
import psutil
import random
import json
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import riiideducation<define_variables> | model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(5,5),activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 32, kernel_size =(5,5),activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3),activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax")) | Digit Recognizer |
1,079,802 | seed = 0
random.seed(seed)
torch.random.manual_seed(seed)
n_workers = os.cpu_count()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
cfg_path = '/kaggle/input/riiid-mydata/cfg.json'
train_path = '/kaggle/input/riiid-mydata/train.pkl'
tag_path = '/kaggle/input/riiid-mydata/tags.csv'
states_path = '/kaggle/input/riiid-mydata/states.pickle'
model_path = '/kaggle/input/riiid-mydata/AIKT_08-12_17-21.pt'
B = 512
MAX_LEN = 128
N_LEVELS = 21
MAX_LAG = 30 * 7 * 24 * 60
N_LAYERS = 1
D_MODEL = 256
IS_LITE = True<choose_model_class> | model.compile(optimizer = 'adam' , loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
1,079,802 | class FFN(nn.Module):
def __init__(self, d_model, dropout=0.0):
super().__init__()
self.lr1 = nn.Linear(d_model, d_model)
self.relu = nn.ReLU()
self.lr2 = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.lr1(x)
x = self.relu(x)
x = self.dropout(x)
x = self.lr2(x)
return x
class AIKTMultiheadAttention(nn.Module):
def __init__(self, d_model, n_heads=8, d_qkv=None, use_proj=True, dropout=0.1):
super().__init__()
if d_qkv is None or not use_proj:
assert d_model % n_heads == 0
d_qkv = d_model // n_heads
d_inner = d_qkv * n_heads
self.scale = d_model **(-0.5)
if use_proj:
self.Q = nn.Linear(d_model, d_inner)
self.K = nn.Linear(d_model, d_inner)
self.V = nn.Linear(d_model, d_inner)
self.out_proj = nn.Linear(d_inner, d_model)
else:
self.Q = self.K = self.V = self.out_proj = lambda x: x
self.reshape_for_attn = lambda x: x.reshape(*x.shape[:-1], n_heads, d_qkv)
self.recover_from_attn = lambda x: x.reshape(*x.shape[:-2], d_inner)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, attn_mask=None, rel_pos_embd=None):
query, key, value =(
self.reshape_for_attn(query),
self.reshape_for_attn(key),
self.reshape_for_attn(value)
)
attn_scores = torch.einsum('ibnd,jbnd->ijbn',(query, key)) * self.scale
if rel_pos_embd is not None:
attn_scores += rel_pos_embd
if attn_mask is not None:
assert attn_mask.dtype == torch.bool, 'Only bool type is supported for masks.'
assert attn_mask.ndim == 2, 'Only 2D attention mask is supported'
assert attn_mask.shape == attn_scores.shape[:2], 'Incorrect mask shape: {}.Expect: {}'.format(attn_mask.shape, attn_scores.shape[:2])
mask = torch.zeros_like(attn_mask, dtype=torch.float)
mask.masked_fill_(attn_mask, float('-inf'))
mask = mask.view(*mask.shape, 1, 1)
attn_scores += mask
attn_weights = torch.softmax(attn_scores, dim=1)
attn_weights = self.dropout(attn_weights)
out = torch.einsum('ijbn,jbnd->ibnd',(attn_weights, value))
out = self.recover_from_attn(out)
out = self.out_proj(out)
attn_weights = attn_weights.mean(-1 ).permute(-1, 0, 1)
return out, attn_weights
class AIKTModel(nn.Module):
def __init__(
self, n_exercises, n_levels, max_lag, n_layers, d_model,
n_heads=8, is_lite=True, dropout=0.1, lmda=1
):
super().__init__()
self.exercise_embd = nn.Embedding(n_exercises, d_model)
self.rate_to_level = lambda p: torch.round(p *(n_levels - 1)).long()
self.level_embd = nn.Embedding(n_levels, d_model)
self.correct_embd = nn.Embedding(2, d_model)
self.max_lag = max_lag
self.n_lag_buckets = 2 * math.ceil(math.log(max_lag))
self.rel_lag_embd = nn.Embedding(self.n_lag_buckets, n_heads)
self.lmda = lmda
self.enc = nn.ModuleList([
nn.ModuleList([
AIKTMultiheadAttention(d_model, n_heads, use_proj=not is_lite, dropout=dropout),
None if is_lite else nn.LayerNorm(d_model),
None if is_lite else FFN(d_model, dropout=dropout),
None if is_lite else nn.LayerNorm(d_model)
])for _ in range(n_layers)
])
self.dec = nn.ModuleList([
nn.ModuleList([
AIKTMultiheadAttention(d_model, n_heads, use_proj=not is_lite, dropout=dropout),
None if is_lite else nn.LayerNorm(d_model),
None if is_lite else FFN(d_model, dropout=dropout),
None if is_lite else nn.LayerNorm(d_model)
])for _ in range(n_layers)
])
self.is_lite = is_lite
self.predict = nn.Linear(d_model, 1)
self.dropout = nn.Dropout(dropout)
def lag_to_bucket(self, lag_time):
n_exact = self.n_lag_buckets // 2
acc_lag_time = torch.cumsum(lag_time, dim=-1 ).unsqueeze(-1)
rel_lag_time = torch.clamp(
acc_lag_time - acc_lag_time.transpose(-1, -2), min=0, max=self.max_lag
)
rel_lag_time = torch.cat(
[rel_lag_time[:, :, :1], rel_lag_time[:, :, :-1]], dim=-1
)
buckets_for_long_lag = n_exact - 1 + torch.ceil(
torch.log(rel_lag_time / n_exact)/ math.log(self.max_lag / n_exact)*(self.n_lag_buckets - n_exact)
)
buckets = torch.where(rel_lag_time < n_exact, rel_lag_time, buckets_for_long_lag.long())
return buckets.permute(1, 2, 0)
def forward(self, e, c, r, lt, attn_mask=None):
src = self.exercise_embd(e)
src = src.transpose(0, 1)
enc_attn_weights = []
for self_attn, ln1, ffn, ln2 in self.enc:
out, attn_weights = self_attn(src, src, src, attn_mask=attn_mask)
if self.is_lite:
src = self.dropout(out)
else:
src = ln1(src + self.dropout(out))
out = ffn(src)
src = ln2(src + self.dropout(out))
enc_attn_weights.append(attn_weights)
kc = src.transpose(0, 1)
src = kc + self.correct_embd(c)
src = F.pad(src[:, :-1, :], [0, 0, 1, 0] ).transpose(0, 1)
tgt = self.exercise_embd(e)+ self.level_embd(self.rate_to_level(r))
tgt = tgt.transpose(0, 1)
rel_pos_embd = self.rel_lag_embd(self.lag_to_bucket(lt))
dec_attn_weights = []
for cross_attn, ln1, ffn, ln2 in self.dec:
out, attn_weights = cross_attn(tgt, src, src, attn_mask=attn_mask, rel_pos_embd=rel_pos_embd)
if self.is_lite:
tgt = self.dropout(out)
else:
tgt = ln1(tgt + self.dropout(out))
out = ffn(tgt)
tgt = ln2(tgt + self.dropout(out))
dec_attn_weights.append(attn_weights)
tgt = tgt.transpose(0, 1)
logit = self.predict(tgt)
return logit.squeeze(-1),(enc_attn_weights, dec_attn_weights )<load_from_csv> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 ) | Digit Recognizer |
1,079,802 | class KaggleOnlineDataset(Dataset):
def __init__(self, train_path, tag_path, states_path, n_exercises, cols, max_len):
super().__init__()
self.df = pd.read_pickle(train_path)
self.test_df = None
tag_df = pd.read_csv(tag_path, usecols=['exercise_id', 'bundle_id', 'part', 'correct_rate', 'frequency'])
assert np.all(tag_df['exercise_id'].values == np.arange(n_exercises))
self.parts, self.correct_rate, self.frequency = tag_df[['part', 'correct_rate', 'frequency']].values.T
self.lag_info = pickle.load(open(states_path, 'rb'))
self.n_exercises = n_exercises
self.cols = cols
self.max_len = max_len
def __len__(self):
assert self.test_df is not None, 'Please call update() first'
return len(self.test_df)
def __getitem__(self, idx):
new_observation = self.test_df.iloc[idx]
user_id = new_observation['user_id']
new_data = {col: np.array([new_observation.get(col, 0)])for col in self.cols}
if user_id in self.df.index:
old_items = self.df[user_id]
old_len = min(len(old_items[0]), self.max_len - 1)
data = {key: np.append(old_item[-old_len:], new_data[key])for key, old_item in zip(self.cols, old_items)}
else:
old_len = 0
data = new_data
seq_len = old_len + 1
data['part'] = self.parts[data['exercise_id']]
data['correct_rate'] = self.correct_rate[data['exercise_id']]
dtype_map = {key: int for key in self.cols + ['part']}
dtype_map['correct_rate'] = float
data = KaggleOnlineDataset._postpad_and_asdtype(data, self.max_len - seq_len, dtype_map)
data['valid_len'] = np.array([seq_len], dtype=int)
return data
@staticmethod
def _postpad_and_asdtype(data, pad, dtype_map):
return {
key: np.pad(item, [[0, pad]] ).astype(dtype_map[key])for key, item in data.items()
}
def update(self, test_df):
if self.test_df is not None and psutil.virtual_memory().percent < 90:
prev_df = self.test_df
prev_df['correct'] = np.array(eval(test_df.iloc[0]['prior_group_answers_correct'])) [self.was_exercise]
user_df = prev_df.groupby('user_id' ).apply(lambda udf: tuple(udf[col].values for col in self.cols))
for user_id, new_items in user_df.iteritems() :
if user_id in self.df.index:
self.df[user_id] = tuple(map(
lambda old_item, new_item: np.append(old_item, new_item)[-min(self.max_len, len(old_item)+ 1):],
self.df[user_id],
new_items
))
else:
self.df[user_id] = tuple(new_item for new_item in new_items)
is_exercise =(test_df['content_type_id'] == 0)
test_df = test_df[is_exercise]
test_df = test_df.rename(columns={'content_id': 'exercise_id', 'prior_question_elapsed_time': 'prior_elapsed'})
test_df['prior_elapsed'] = test_df['prior_elapsed'].fillna(0 ).astype(int)
lag = self._compute_new_lag(test_df)
test_df['lag'] = np.where(
np.logical_and(0 < lag, lag < 60 * 1000), 1, np.round(lag /(1000 * 60))
).astype(int)
prior_elapsed = test_df['prior_elapsed'].values
test_df['prior_elapsed'] = np.where(
np.logical_and(0 < prior_elapsed, prior_elapsed < 1000), 1, np.round(prior_elapsed / 1000)
).astype(int)
test_df.reset_index(drop=True, inplace=True)
self.test_df = test_df
self.was_exercise = is_exercise.values
return test_df
def _update_correct_rate(self, prev_df):
exercise_df = prev_df.groupby('exercise_id' ).aggregate({'correct': [sum, len]})['correct']
n_correct = np.arange(self.n_exercises)
np.put(n_correct, exercise_df.index, exercise_df['sum'].values)
n_correct = n_correct + np.round(self.correct_rate * self.frequency)
more_frequency = np.arange(self.n_exercises)
np.put(more_frequency, exercise_df.index, exercise_df['len'].values)
self.frequency += more_frequency
correct_rate = n_correct / self.frequency
self.correct_rate = np.where(np.isfinite(correct_rate), correct_rate, 0.5)
def _compute_new_lag(self, df):
last_states, exercise_id_to_bundle, bundle_id_to_size = self.lag_info
lag = np.zeros(len(df))
for i,(user_id, curr_timestamp, curr_exercise_id, prior_elapsed)in enumerate(
df[['user_id', 'timestamp', 'exercise_id', 'prior_elapsed']].values
):
curr_bundle_id = exercise_id_to_bundle[curr_exercise_id]
last_state = last_states.get(user_id, None)
if last_state is None:
last_states[user_id] =(curr_timestamp, curr_bundle_id)
lag[i] = 0
else:
last_timestamp, last_bundle_id = last_state
if curr_bundle_id == last_bundle_id:
lag[i] = 0
else:
last_states[user_id] =(curr_timestamp, curr_bundle_id)
elapsed_offset = bundle_id_to_size[last_bundle_id] * prior_elapsed
lag[i] = curr_timestamp - last_timestamp - elapsed_offset
lag = np.clip(lag, a_min=0, a_max=None)
self.lag_info =(last_states, exercise_id_to_bundle, bundle_id_to_size)
return lag<categorify> | epochs = 40
batch_size = 80 | Digit Recognizer |
1,079,802 | def truncate_and_prepare_masks(items, valid_len, need_pad_mask=True, need_attn_mask=True):
max_len = valid_len.max()
device = max_len.device
out = [None if item is None else item[:, :max_len] for item in items]
pad_mask = torch.arange(max_len, device=device)>= valid_len if need_pad_mask else None
attn_mask = torch.triu(torch.ones(max_len, max_len), diagonal=1 ).to(device, torch.bool)if need_attn_mask else None
return out, pad_mask, attn_mask<load_pretrained> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train)
| Digit Recognizer |
1,079,802 | cfg = json.load(open(cfg_path, 'r'))
model = AIKTModel(cfg['n_exercises'], N_LEVELS, MAX_LAG, N_LAYERS, D_MODEL, is_lite=IS_LITE ).to(device)
model.load_state_dict(torch.load(model_path))
model.eval()
testset = KaggleOnlineDataset(train_path, tag_path, states_path, cfg['n_exercises'], cfg['cols'], MAX_LEN)
env = riiideducation.make_env()
iter_test = env.iter_test()
for test_df, _ in iter_test:
test_df = testset.update(test_df)
testloader = DataLoader(testset, batch_size=B, shuffle=False, num_workers=n_workers, drop_last=False)
outs = np.array([], dtype='float32')
for data in testloader:
valid_len = data['valid_len'].to(device, torch.long)
inputs, _, attn_mask = truncate_and_prepare_masks(
[
data['exercise_id'].to(device, torch.long),
data['correct'].to(device, torch.long),
data['correct_rate'].to(device, torch.float),
data['lag'].to(device, torch.long)
],
valid_len,
need_pad_mask=False
)
out, _ = model(*inputs, attn_mask=attn_mask)
out = torch.gather(out, 1, valid_len - 1 ).squeeze(-1)
outs = np.append(outs, torch.sigmoid(out ).detach().cpu().numpy())
test_df['answered_correctly'] = outs
env.predict(test_df[['row_id', 'answered_correctly']] )<load_from_csv> | history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
1,079,802 | session=pd.read_csv("/kaggle/input/airbnb-recruiting-new-user-bookings/sessions.csv.zip")
print(session.shape)
session.head()<load_from_csv> | results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
1,079,802 | train_user=pd.read_csv("/kaggle/input/airbnb-recruiting-new-user-bookings/train_users_2.csv.zip")
print(train_user.shape)
train_user.head()<load_from_csv> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_datagen.csv",index=False ) | Digit Recognizer |
4,081,536 | test_user=pd.read_csv("/kaggle/input/airbnb-recruiting-new-user-bookings/test_users.csv.zip")
print(test_user.shape)
test_user.head()<categorify> | train=pd.read_csv('.. /input/train.csv')
test=pd.read_csv('.. /input/test.csv')
sub=pd.read_csv('.. /input/sample_submission.csv' ) | Digit Recognizer |
4,081,536 | class Custom_Proccess(BaseEstimator, TransformerMixin):
def transform(self,X,y=None):
X.gender.replace('-unknown-', 'OTHER', inplace=True)
X['age'].fillna(-1,inplace=True)
X['timestamp_first_active']=X['timestamp_first_active'].apply(lambda s:datetime(year=int(str(s)[0:4]), month=int(str(s)[4:6]),
day=int(str(s)[6:8])).strftime('%Y-%m-%d'))
X['timestamp_first_active']=X['timestamp_first_active'].astype('datetime64[ns]')
X['age']=X['age'].astype('int64')
X['date_account_created']=X['date_account_created'].astype('datetime64[ns]')
X['dac_year']=X['date_account_created'].dt.year
X['dac_month']=X['date_account_created'].dt.month
X['dac_day']=X['date_account_created'].dt.day
X['tfa_year']=X['timestamp_first_active'].dt.year
X['tfa_month']=X['timestamp_first_active'].dt.month
X['tfa_day']=X['timestamp_first_active'].dt.day
X.signup_app.replace(['iOS','Android'],'SmartDevice',inplace=True)
X.drop(['date_first_booking','date_account_created','timestamp_first_active','first_device_type','first_browser'],axis=1,inplace=True)
return X
def fit(self, X, y=None, **fit_params):
return self<drop_column> | x=train.drop(['label'],axis=1)
x_test=test.copy() | Digit Recognizer |
4,081,536 | session.drop(['action_detail','device_type'],inplace=True,axis=1)
session.dropna(subset=['user_id','action'],inplace=True)
session.action_type=session.action_type.fillna('Other')
session.secs_elapsed=session.secs_elapsed.fillna(0 )<categorify> | x=x/255
x_test=x_test/255 | Digit Recognizer |
4,081,536 | session_group=session.groupby(['user_id','action_type'] ).agg({'action':'count','secs_elapsed':'sum'} ).reset_index()
session_df=pd.get_dummies(session_group,columns=['action_type'] ).groupby(['user_id'] ).sum().reset_index()
session_df.head()<merge> | y=train['label'] | Digit Recognizer |
4,081,536 | train_user_df=train_user.merge(session_df,left_on=['id'],
right_on=['user_id'],how='left' ).drop(['user_id'],axis=1 ).reset_index(drop=True)
train_user_df.shape<merge> | y=pd.Categorical(y ) | Digit Recognizer |
4,081,536 | test_user_df=test_user.merge(session_df,left_on=['id'],
right_on=['user_id'],how='left' ).drop(['user_id'],axis=1 ).reset_index(drop=True)
test_user_df.shape<data_type_conversions> | y=pd.get_dummies(y ) | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.