question_slug
stringlengths
3
77
title
stringlengths
1
183
slug
stringlengths
12
45
summary
stringlengths
1
160
author
stringlengths
2
30
certification
stringclasses
2 values
created_at
stringdate
2013-10-25 17:32:12
2025-04-12 09:38:24
updated_at
stringdate
2013-10-25 17:32:12
2025-04-12 09:38:24
hit_count
int64
0
10.6M
has_video
bool
2 classes
content
stringlengths
4
576k
upvotes
int64
0
11.5k
downvotes
int64
0
358
tags
stringlengths
2
193
comments
int64
0
2.56k
sum-of-floored-pairs
Prefix array sum of frequencies
prefix-array-sum-of-frequencies-by-manav-u0ag
\nclass Solution {\n long long mod = 1e9 + 7;\npublic:\n int sumOfFlooredPairs(vector<int>& nums) {\n vector<long long> freq(1e5 + 1, 0);\n
manav1811kumar
NORMAL
2021-09-09T18:31:21.990839+00:00
2021-09-09T18:31:21.990871+00:00
244
false
```\nclass Solution {\n long long mod = 1e9 + 7;\npublic:\n int sumOfFlooredPairs(vector<int>& nums) {\n vector<long long> freq(1e5 + 1, 0);\n long long sum = 0;\n int max_number = 1;\n for (int &n: nums) {\n freq[n] += 1;\n max_number = max(max_number, n);\n }\n \n vector<long long> freqSum(1e5 + 1, 0);\n for (int i = 1;i <= max_number; i++) \n {\n freqSum[i] = freqSum[i - 1] + freq[i];\n }\n \n \n for (int i = 1;i <= max_number;i = i + 1)\n {\n if (freq[i] == 0)\n continue;\n int j = i;\n for (;j <= max_number;j = j + i) \n {\n long long div = j/i;\n long long total_cases = freqSum[j - 1] - freqSum[j - i];\n long long value = ((freq[i] * total_cases * (div - 1))%mod + (freq[i] * freq[j] * div)%mod)%mod;\n sum = (sum + value)%mod;\n }\n \n if (max_number%i) {\n long long div = max_number/i;\n long long total_cases = freqSum[max_number] - freqSum[j - i];\n sum = (sum + (freq[i] * total_cases * div)%mod)%mod;\n }\n cout << endl;\n }\n \n return sum;\n }\n};\n```\n\nPlease let me know in comments if something is not clear in my code, Happy to share
0
0
[]
0
sum-of-floored-pairs
A simple, easy to understand solution using prefix sum
a-simple-easy-to-understand-solution-usi-yy2n
\nclass Solution {\npublic:\n int sumOfFlooredPairs(vector<int>& nums) {\n long mod = 1000000007;\n long sum = 0;\n \n int mx = I
harshitgupta526
NORMAL
2021-08-26T17:06:13.537926+00:00
2021-08-26T17:07:24.589839+00:00
304
false
```\nclass Solution {\npublic:\n int sumOfFlooredPairs(vector<int>& nums) {\n long mod = 1000000007;\n long sum = 0;\n \n int mx = INT_MIN;\n for(int i=0; i<nums.size(); i++)\n mx = max(mx, nums[i]);\n\n vector<int> freq(mx+1);\n for(int num : nums)\n freq[num]++;\n for(int i=1; i<=mx; i++ )\n freq[i] += freq[i-1];\n \n unordered_set<int> uniqueNumbers;\n for(int num:nums)\n uniqueNumbers.insert(num);\n for(int num : uniqueNumbers)\n {\n int i=2;\n long tempSum = 0;\n while(num*i <=mx)\n {\n int sameFloor = freq[num*i-1]-freq[num*(i-1)-1];\n long sameFloorSum = (sameFloor * (i-1)) % mod;\n tempSum = (tempSum + sameFloorSum) % mod;\n i++;\n }\n int sameFloor = freq[mx]-freq[num*(i-1)-1];\n long sameFloorSum = (sameFloor * (i-1)) % mod;\n tempSum = (tempSum + sameFloorSum) % mod;\n sum = (sum + (tempSum * (freq[num] - freq[num-1]))%mod)%mod;\n }\n return (int)sum;\n\n }\n};\n```
0
0
[]
0
sum-of-floored-pairs
beat 100% javascript
beat-100-javascript-by-zsjzsj-rhbd
js\n/**\n * @param {number[]} nums\n * @return {number}\n */\n// [2,5,9]\n// Runtime: 212 ms, faster than 100.00% of JavaScript online submissions for Sum of Fl
zsjzsj
NORMAL
2021-08-14T11:46:10.675455+00:00
2021-08-14T11:46:10.675482+00:00
146
false
```js\n/**\n * @param {number[]} nums\n * @return {number}\n */\n// [2,5,9]\n// Runtime: 212 ms, faster than 100.00% of JavaScript online submissions for Sum of Floored Pairs.\n// Memory Usage: 51.6 MB, less than 50.00% of JavaScript online submissions for Sum of Floored Pairs.\n// 1 <= nums[i] <= 10^5\nexport default (nums) => {\n const MODULUS = 1000000007;\n // const MAX = 100000;\n let MAX = 0;\n for (let i = 0; i < nums.length; i++) {\n MAX = Math.max(MAX, nums[i]);\n }\n const counts = new Array(MAX + 1).fill(0);\n\n for (let num of nums) {\n // \u8868\u793Acounts[i] \u8868\u793Ai\u6709\u591A\u5C11\u4E2A\u6570\n ++counts[num];\n }\n\n for (let i = 1; i <= MAX; ++i) {\n // \u5347\u7EA7\u6210\u524D\u7F00\u548C\uFF0C\u8868\u793A\u5C0F\u4E8E\u7B49\u4E8Ei\u7684\u6709\u591A\u5C11\u4E2A\u6570\n counts[i] += counts[i - 1];\n }\n\n let total = 0;\n // \u5F53floor(x/y) y\u7B49\u4E8Ei\u7684\u65F6\u5019\uFF0C\u6709\u591A\u5C11\u4E2Ax\n for (let i = 1; i <= MAX; ++i) {\n // \u5728\u8FD9\u4E2A\u8303\u56F4\u5B58\u5728i\n if (counts[i] > counts[i - 1]) {\n let sum = 0;\n // \u5728floor\uFF08x/y\uFF09\u7B49\u4E8Ej\u7684\u65F6\u5019\uFF0C\u6709\u591A\u5C11\u4E2Ax\n for (let j = 1; i * j <= MAX; ++j) {\n // \n const lower = i * j - 1;\n const upper = i * (j + 1) - 1;\n let maxCount = counts[Math.min(upper, MAX)]\n ? counts[Math.min(upper, MAX)]\n : 0;\n // counts[Math.min(upper, MAX)] - counts[lower]\n sum += (maxCount - counts[lower]) * j;\n }\n //\n total = (total + (sum % MODULUS) * (counts[i] - counts[i - 1])) % MODULUS;\n }\n }\n return total;\n};\n\n```
0
0
[]
0
sum-of-floored-pairs
Prefix sum of frequency counts
prefix-sum-of-frequency-counts-by-ojha11-sf4j
\n#define ll long long int\nconst int mod=1e9+7;\nclass Solution {\npublic:\n int sumOfFlooredPairs(vector<int>& a) {\n ll i,n=a.size(),j,mx=-1;\n
ojha1111pk
NORMAL
2021-07-22T15:07:01.690725+00:00
2021-07-22T15:07:01.690769+00:00
363
false
```\n#define ll long long int\nconst int mod=1e9+7;\nclass Solution {\npublic:\n int sumOfFlooredPairs(vector<int>& a) {\n ll i,n=a.size(),j,mx=-1;\n \n for(i=0;i<n;i++)\n if(mx<a[i])\n mx=a[i];\n \n bool vis[mx+10];\n memset(vis,0,sizeof(vis));\n \n ll mxx=mx<<2;\n \n ll f[10+mxx],pf[10+mxx];\n memset(f,0,sizeof(f));\n \n for(i=0;i<n;i++)\n f[a[i]]++;\n \n pf[0]=f[0];\n for(i=1;i<10+mxx;i++)\n pf[i]=pf[i-1]+f[i];\n \n ll ans=0;\n \n for(j=0;j<n;j++){\n i=a[j];\n if(vis[i])\n continue;\n \n vis[i]=1;\n ll left=i-1,right=2*i-1,mf=1;\n ll cntl=pf[left],cntr=pf[right];\n \n while(left<=mx){\n ans=(ans+(mf*(f[i]*(cntr-cntl))%mod)%mod)%mod;\n \n left+=i;\n right+=i;\n \n cntl=pf[left];\n cntr=pf[right];\n \n mf++;\n }\n }\n \n return ans;\n }\n};\n```
0
3
['C', 'Prefix Sum', 'C++']
0
sum-of-floored-pairs
Python3 Binary Search And Sort
python3-binary-search-and-sort-by-true-d-mvoi
\nclass Solution:\n def sumOfFlooredPairs(self, nums):\n counter = Counter(nums)\n nums.sort()\n res = 0\n for n, c in counter.it
true-detective
NORMAL
2021-07-13T18:00:57.472165+00:00
2021-07-13T18:01:51.652520+00:00
231
false
```\nclass Solution:\n def sumOfFlooredPairs(self, nums):\n counter = Counter(nums)\n nums.sort()\n res = 0\n for n, c in counter.items():\n multiplier, idx, last_idx = 1, -1, 1\n while idx < len(nums):\n idx = bisect.bisect_left(nums, n*multiplier)\n res += (idx - last_idx) * (multiplier-1) * c\n multiplier += 1\n last_idx = idx\n \n return res % 1_000_000_007\n```
0
0
[]
0
sum-of-floored-pairs
Binary search C++
binary-search-c-by-bombera-dhdb
Not very efficient. But could be accepted.\nUsing binary search.\n\nclass Solution {\npublic:\n int sumOfFlooredPairs(vector<int>& nums) {\n int n = n
bombera
NORMAL
2021-06-13T01:56:40.287382+00:00
2021-06-13T01:57:26.643273+00:00
406
false
Not very efficient. But could be accepted.\nUsing binary search.\n```\nclass Solution {\npublic:\n int sumOfFlooredPairs(vector<int>& nums) {\n int n = nums.size(), mod = 1e9 + 7;\n sort(nums.begin(), nums.end());\n \n long long ret = 0;\n for(int i = 0; i < n;) {\n auto nit = upper_bound(nums.begin(), nums.end(), nums[i]);\n long long cnt = (nit - nums.begin()) - i;\n ret += cnt * (cnt - 1);\n ret %= mod;\n \n int p = nums[i] + nums[i], index = (nit - nums.begin() - 1);\n while(true) {\n auto it = upper_bound(nums.begin(), nums.end(), p - 1);\n if (it == nums.end()) {\n ret += (nums.size() - index) * (p / nums[i] - 1) * cnt;\n ret %= mod;\n break;\n }\n ret += ((it - nums.begin()) - index) * (p / nums[i] - 1) * cnt;\n ret %= mod;\n p += nums[i];\n index = (it - nums.begin());\n }\n i += cnt;\n }\n return ret;\n }\n};\n```
0
1
[]
0
sum-of-floored-pairs
Brutal force on binary search to get each range of the multiplication
brutal-force-on-binary-search-to-get-eac-qoqq
scala\n def sumOfFlooredPairs(nums: Array[Int]): Int = {\n val len = nums.length\n if (len == 1) return 1\n import scala.collection.mutable.HashMap\n
qiuqiushasha
NORMAL
2021-05-31T20:33:20.271835+00:00
2021-05-31T20:33:20.271877+00:00
169
false
```scala\n def sumOfFlooredPairs(nums: Array[Int]): Int = {\n val len = nums.length\n if (len == 1) return 1\n import scala.collection.mutable.HashMap\n val cache = new HashMap[Int, Long]\n nums.sortInPlaceWith(_ <= _)\n val total = nums.reduce(_ + _).toLong\n\n def f(v: Int, k: Int): Int = {\n val target = v * (k + 1) - 1\n var start, mid = 0\n var end = len - 1\n var res = -1\n while (start <= end) {\n mid = (start + end) / 2\n if (nums(mid) <= target) {\n res = Math.max(res, mid)\n start = mid + 1\n } else {\n end = mid - 1\n }\n }\n if (target > nums(len - 1) + v) Integer.MAX_VALUE else res\n }\n\n (nums\n .map(curr => {\n cache.getOrElse(\n curr, {\n var tmp = 0L\n var last = -1\n var k = 0\n var next = f(curr, k)\n while (next != last || next != Integer.MAX_VALUE) {\n if (next != Integer.MAX_VALUE)\n tmp += (next - last) * k\n last = next\n k += 1\n next = f(curr, k)\n }\n cache.put(curr, tmp)\n tmp\n }\n )\n })\n .sum % (Math.pow(10, 9) + 7)).toInt\n\n }\n```
0
0
[]
0
sum-of-floored-pairs
Java Binary Search
java-binary-search-by-bigbeautymei-cxxp
\nclass Solution {\n int MOD = 1000000007;\n public int sumOfFlooredPairs(int[] nums) {\n Arrays.sort(nums);\n int n=nums.length,max = nums[
bigbeautymei
NORMAL
2021-05-28T22:57:31.302405+00:00
2021-05-28T22:57:31.302449+00:00
234
false
```\nclass Solution {\n int MOD = 1000000007;\n public int sumOfFlooredPairs(int[] nums) {\n Arrays.sort(nums);\n int n=nums.length,max = nums[n-1];\n long res=0;\n \n int count=1;\n for(int i=0;i<n;i++){\n int num = nums[i];\n if(i<n-1&&nums[i+1]==nums[i]){\n count++;\n }else{\n long sum = count;\n int index = i+1;\n for(int k=1;k<=(max/num)+1;k++){\n int newIndex = binarySearch(nums,index,n-1,k*num);\n //System.out.println(k+" "+newIndex+" "+index);\n sum += (newIndex-index)*(k-1);\n index = newIndex;\n }\n res = (res+(sum%MOD)*count)%MOD;\n count=1;\n }\n \n }\n //res+=count*count;\n return (int)res;\n }\n \n // first large or equal than\n public int binarySearch(int[] nums, int left, int right, int target){\n int l = left, r = right;\n while(l<=r){\n int mid = l+(r-l)/2;\n if(nums[mid]>=target){\n r = mid-1;\n }else{\n l = mid+1;\n }\n }\n return l;\n }\n}\n```
0
0
[]
0
sum-of-floored-pairs
Prefix sum only , and some minor optimizations to get it in O(nlogn)
prefix-sum-only-and-some-minor-optimizat-23m5
\nclass Solution {\npublic:\n int maxn=1e5+1;\n int sumOfFlooredPairs(vector<int>& nums) {\n // return 0; \n vector<long long> v(2*maxn+1);\
rb003
NORMAL
2021-05-23T17:14:12.582529+00:00
2021-05-23T17:14:12.582576+00:00
190
false
```\nclass Solution {\npublic:\n int maxn=1e5+1;\n int sumOfFlooredPairs(vector<int>& nums) {\n // return 0; \n vector<long long> v(2*maxn+1);\n long long sum=0, mod=(1e9+7);\n int mxm=0; \n int n=nums.size();\n for(int x: nums) ++v[x], mxm= max(mxm, x);\n for(int i=1;i<=2*maxn; i++) v[i]+=v[i-1];\n set<int> set1(nums.begin(), nums.end());\n for(int x: set1){\n int l=x, r=x*2 -1;\n long long res=1; \n long long sum1=0; \n while( l<=mxm ){\n sum1 = ( sum1 + res*(v[r]- v[l-1]) )% mod;\n l+= x, r+= x; \n res++ ; \n }\n sum1= (sum1 * (v[x]-v[x-1]))%mod;\n sum = (sum + sum1) %mod; \n }\n return sum ; \n }\n};\n```\n
0
0
[]
0
sum-of-floored-pairs
Python3 - thinking process
python3-thinking-process-by-yunqu-cxup
At the first glance, I would just sort all the elements in order, then iterate for each element nums[i]: increment a factor j from 1, binary search the left bou
yunqu
NORMAL
2021-05-20T02:01:18.185424+00:00
2021-05-20T02:02:54.150761+00:00
227
false
At the first glance, I would just sort all the elements in order, then iterate for each element `nums[i]`: increment a factor `j` from 1, binary search the left boundary of `j * nums[i]`, and the right boundary of `(1 + j) * nums[i] - 1`. This is because all the elements in this range will contribute `j` to the final answer. \nThis approach passed almost all the test cases, but got a TLE for a long repeated test case.\n\n**TLE**\n```python\nclass Solution:\n def sumOfFlooredPairs(self, nums: List[int]) -> int:\n MOD = 10**9 + 7\n nums.sort()\n n = len(nums)\n maxi = max(nums)\n ans = 0\n for i in range(n):\n j = 1\n while j * nums[i] <= maxi:\n left = bisect.bisect_left(nums, j * nums[i])\n right = bisect.bisect_right(nums, (j + 1) * nums[i] - 1)\n ans += j * (right - left)\n j += 1\n return ans % MOD\n```\n\nSo it looks like we should just keep the freqency of the elements, instead of the original nums array. But how do we get how many elements are in the range of `j * nums[i]` to `(1 + j) * nums[i] - 1`? We need some other ways to get all the elements in that range. \n\nAlso, notice that binary search is very time consuming. If we could cache those bounary results, we should not need to do binary searches. We can use prefix array to memorize the number of elements smaller than a particular element. In this way, we can use a simple array access O(1) as opposed to binary search O(log(n)) to quickly figure out\n\n1. how many elements are smaller than `(1 + j) * nums[i] - 1`; and\n2. how many elements smaller than `j * nums[i]` as well). \n\nTake the difference between the above 2 cases, we know how many elements are within that range. \n\nIn the actual implementation, we did it in the reverse way - for each `num` we count how many elements are greater than `j * nums[i]`, since the last group of elements (with the biggest valid `j`) always contribute the most `count[num]` to the answer.\n\n**Final solution**\n```python\nclass Solution:\n def sumOfFlooredPairs(self, nums: List[int]) -> int:\n MOD = 10**9 + 7\n count = Counter(nums)\n n = len(nums)\n maxi = max(nums)\n ans = 0\n \n prefix = [0]\n for i in range(1, maxi + 1):\n prefix += prefix[-1] + count[i],\n\n for num in set(nums):\n for i in range(num, maxi + 1, num):\n ans += count[num] * (prefix[-1] - prefix[i-1])\n return ans % MOD\n```
0
0
[]
0
sum-of-floored-pairs
Python Solution
python-solution-by-tarun-mdvu
\nclass Solution:\n def sumOfFlooredPairs(self, nums: List[int]) -> int:\n maxx, ans=max(nums), 0\n counts=[0]*((maxx*2)+1)\n for i in n
tarun_____
NORMAL
2021-05-16T12:40:54.426807+00:00
2021-05-16T12:40:54.426850+00:00
125
false
```\nclass Solution:\n def sumOfFlooredPairs(self, nums: List[int]) -> int:\n maxx, ans=max(nums), 0\n counts=[0]*((maxx*2)+1)\n for i in nums: counts[i]+=1\n for i in range(1, len(counts)): counts[i]+=counts[i-1]\n for num in nums:\n l,r,tba=num, (num*2)-1,1\n while l<=maxx:\n ans+=tba*(counts[r]-counts[l-1])\n tba+=1\n l+=num\n r+=num\n return ans%1000000007\n```
0
0
[]
0
sum-of-floored-pairs
[C++] | Upper_bound + Basic Maths
c-upper_bound-basic-maths-by-valorant_19-vryo
\nclass Solution {\npublic:\n int mod = 1e9+7;\n int sumOfFlooredPairs(vector<int>& nums) {\n sort(nums.begin(),nums.end());\n int res=0;\n
valorant_19
NORMAL
2021-05-16T10:21:40.826632+00:00
2021-05-17T08:43:34.073884+00:00
123
false
```\nclass Solution {\npublic:\n int mod = 1e9+7;\n int sumOfFlooredPairs(vector<int>& nums) {\n sort(nums.begin(),nums.end());\n int res=0;\n for(int i=0;i<nums.size();i++)\n {\n int prev_index=0,val=-1,cnt=1;\n while(1)\n {\n val++;\n int curr_index = upper_bound(nums.begin()+prev_index,nums.end(),(cnt*nums[i]-1))-nums.begin();\n res = (res % mod + (val * (curr_index - prev_index)) % mod) % mod;\n prev_index = curr_index,cnt++;\n if(curr_index==nums.size())\n break;\n }\n }\n return res;\n }\n};\n```
0
1
['C']
0
sum-of-floored-pairs
C++ Binary Search + Sieve Approach
c-binary-search-sieve-approach-by-yuvraj-r78n
\n\n\nint sumOfFlooredPairs(vector<int>& nums) {\n long long ans = 0;\n long long mod = 1000000007;\n \n sort(nums.begin(),nums.end(
yuvrajpuyam
NORMAL
2021-05-15T20:13:47.025286+00:00
2021-05-15T20:13:47.025317+00:00
124
false
\n\n```\nint sumOfFlooredPairs(vector<int>& nums) {\n long long ans = 0;\n long long mod = 1000000007;\n \n sort(nums.begin(),nums.end());\n \n int n = nums.size();\n long long curans = 0;\n for(int i = 0 ; i < n; ++i){\n int prev = i;\n int jump = 2;\n if(i > 0 and nums[i] == nums[i-1]) { // If similar value add precomputed value.\n ans += curans;\n continue;\n }\n curans = 0;\n while(true){\n auto cur = lower_bound(nums.begin(),nums.end(),nums[i]*jump) - nums.begin(); \n \n curans =( curans + ((cur-prev)%mod)*((jump-1)%mod))%mod;\n prev = cur;\n jump++;\n if(cur == n) break;\n }\n ans = (ans + curans)%mod;\n }\n return (int) ans;\n }\n```
0
0
['Binary Search']
0
sum-of-floored-pairs
[Python3] Prefix Sum [O(n log n)] using sets to take care of duplicates
python3-prefix-sum-on-log-n-using-sets-t-nrbi
\nclass Solution:\n def sumOfFlooredPairs(self, nums: List[int]) -> int:\n \n maximum = 10**5+1\n freq = [0]*(maximum)\n mx = num
rajat499
NORMAL
2021-05-15T18:46:01.873412+00:00
2021-05-15T18:49:41.944641+00:00
82
false
```\nclass Solution:\n def sumOfFlooredPairs(self, nums: List[int]) -> int:\n \n maximum = 10**5+1\n freq = [0]*(maximum)\n mx = nums[0]\n for n in nums:\n freq[n] += 1\n mx = max(mx, n)\n\n mod = 10**9 + 7\n for i in range(1, maximum):\n freq[i] += freq[i-1]\n\n res = 0\n\n done = set()\n for n in nums:\n if n in done:\n continue\n done.add(n)\n l, r = n, 2*n-1\n i = 1\n sum = 0\n while(l<=mx):\n sum = (sum + i*(freq[min(r, mx)] - freq[l-1]))%mod\n i += 1\n l += n\n r += n\n res = (res + sum*(freq[n]-freq[n-1]))%mod\n return res\n```
0
0
[]
0
calculate-digit-sum-of-a-string
✅✅C++ || Easy Solution || 0ms || Faster
c-easy-solution-0ms-faster-by-himanshu_5-yfkc
\'\'\'\nclass Solution {\npublic:\n\n string digitSum(string s, int k) {\n string ans;\n while(1){\n \n if(s.length()<=k)
himanshu_52
NORMAL
2022-04-17T04:06:34.006181+00:00
2022-04-17T04:06:34.006211+00:00
4,654
false
\'\'\'\nclass Solution {\npublic:\n\n string digitSum(string s, int k) {\n string ans;\n while(1){\n \n if(s.length()<=k) return s;\n \n int sum=0;\n for(int i=0;i<s.size();i++){\n if(i!=0 and i%k==0){\n ans+=to_string(sum);\n sum=0;\n }\n sum+=(s[i]-\'0\');\n }//end of for\n \n ans+=to_string(sum);\n s=ans;\n ans="";\n \n }//end of while\n }\n};\n\n\'\'\'\n\nPlease Upvote if you like the Solution.\n\uD83D\uDE42
47
1
['String', 'C']
6
calculate-digit-sum-of-a-string
Recursive Java Solution, 11 lines
recursive-java-solution-11-lines-by-clim-i23c
```java\n public String digitSum(String s, int k){\n if(s.length() <= k)\n return s;\n StringBuilder r = new StringBuilder();\n
climberig
NORMAL
2022-04-17T04:45:57.159823+00:00
2022-04-17T04:47:46.383254+00:00
1,776
false
```java\n public String digitSum(String s, int k){\n if(s.length() <= k)\n return s;\n StringBuilder r = new StringBuilder();\n for(int i = 1, sum = 0; i <= s.length(); i++){\n sum += s.charAt(i - 1) - \'0\';\n if(i % k == 0 || i == s.length()){\n r.append(sum);\n sum = 0;\n }\n }\n return digitSum(r.toString(), k);\n }
28
1
['Java']
2
calculate-digit-sum-of-a-string
Simple Java Solution with comments for understanding
simple-java-solution-with-comments-for-u-s4p4
\nclass Solution {\n public String digitSum(String s, int k) {\n while(s.length()>k){\n String ns=""; // replace the old string with update
m0rnings8ar
NORMAL
2022-04-17T04:01:12.375485+00:00
2022-04-17T04:01:12.375530+00:00
3,576
false
```\nclass Solution {\n public String digitSum(String s, int k) {\n while(s.length()>k){\n String ns=""; // replace the old string with updated one\n for(int i=0;i<s.length();i+=k){\n String t=s.substring(i,Math.min(i+k,s.length())); // form the string of k size\n int sum=0;\n for(int l=0;l<t.length();l++){ // to find the character sum of string t\n sum+=t.charAt(l)-\'0\';\n }\n ns+="" + sum; //update the string with sum of k size string character \n }\n s=ns; //update the old string with updated one\n }\n return s;\n }\n}\n```\nUpvote if it\'s helpful
28
0
['Array', 'String', 'Java']
5
calculate-digit-sum-of-a-string
Python3 elegant pythonic clean and easy to understand
python3-elegant-pythonic-clean-and-easy-10z68
Simple while loop and slicing to repeat 3 set process and aggregation\n\n\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n while len(s
tallicia
NORMAL
2022-04-17T04:08:29.165074+00:00
2022-04-17T04:24:37.637935+00:00
2,666
false
Simple while loop and slicing to repeat 3 set process and aggregation\n\n```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n while len(s) > k:\n set_3 = [s[i:i+k] for i in range(0, len(s), k)]\n s = \'\'\n for e in set_3:\n val = 0\n for n in e:\n val += int(n)\n s += str(val)\n return s\n```\n\ncan be condensed and more pythonic:\n\n```\n while len(s) > k:\n set_3 = [s[i:i+k] for i in range(0, len(s), k)]\n s = \'\'\n for e in set_3:\n s += str(sum([int(n) for n in e]))\n return s\n```
19
0
['Python', 'Python3']
4
calculate-digit-sum-of-a-string
Accumulate
accumulate-by-votrubac-pokz
C++\ncpp\nstring digitSum(string s, int k) {\n while(s.size() > k) {\n string s1;\n for (int i = 0; i < s.size(); i += k)\n s1 += to
votrubac
NORMAL
2022-04-17T04:28:19.407169+00:00
2022-04-17T04:28:19.407195+00:00
2,314
false
**C++**\n```cpp\nstring digitSum(string s, int k) {\n while(s.size() > k) {\n string s1;\n for (int i = 0; i < s.size(); i += k)\n s1 += to_string(accumulate(begin(s) + i, begin(s) + min((int)s.size(), i + k), 0, \n [](int n, char ch){ return n + ch - \'0\'; }));\n swap(s1, s);\n }\n return s;\n}\n```
18
0
['C']
5
calculate-digit-sum-of-a-string
C++ Easy to understand (Single loop and recursive)
c-easy-to-understand-single-loop-and-rec-tw9e
\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n \n if(s.length()<=k)\n return s;\n \n string ans=""
NeerajSati
NORMAL
2022-04-17T04:04:37.988280+00:00
2022-04-17T04:17:57.159056+00:00
1,905
false
```\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n \n if(s.length()<=k)\n return s;\n \n string ans="";\n int sum=0,temp=k;\n int len = s.length();\n for(int i=0;i<len;i++){\n sum += (s[i] -\'0\');\n temp--;\n if(temp==0){\n ans+= to_string(sum);\n temp=k;\n sum=0;\n }\n }\n if(temp!=k){\n ans+= to_string(sum);\n }\n if(ans.length()>k)\n ans = digitSum(ans,k);\n return ans;\n }\n};\n```
17
0
['String', 'C']
4
calculate-digit-sum-of-a-string
A Concise JavaScript Solution
a-concise-javascript-solution-by-curfeu-7m8z
\nvar digitSum = function(s, k) {\n while (s.length > k) {\n let newString = "";\n for (let i = 0; i < s.length; i += k)\n newString
curfeu
NORMAL
2022-04-17T17:28:20.672024+00:00
2022-04-17T17:44:12.237340+00:00
729
false
```\nvar digitSum = function(s, k) {\n while (s.length > k) {\n let newString = "";\n for (let i = 0; i < s.length; i += k)\n newString += s.substring(i, i + k).split("").reduce((acc, val) => acc + (+val), 0);\n \n s = newString;\n }\n \n return s;\n};\n```
14
0
['JavaScript']
2
calculate-digit-sum-of-a-string
2243. Calculate Digit Sum of a String, Time complexity: O(N^2), Space complexity: O(N)
2243-calculate-digit-sum-of-a-string-tim-ofp5
IntuitionApproachComplexity Time complexity: O(N^2) Space complexity: O(N) Code
richardmantikwang
NORMAL
2024-12-21T02:31:05.461035+00:00
2024-12-21T02:31:05.461035+00:00
250
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: O(N^2) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: O(N) <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```python3 [] class Solution: def digitSum(self, s, k): len_s = len(s) while (len_s > k): new_s = '' start_index = 0 end_pos = start_index + k while (start_index < len_s): substr = s[start_index:end_pos] sum_digits = sum([int(d) for d in list(substr)]) new_s += str(sum_digits) start_index += k end_pos += k s = new_s len_s = len(s) return s ```
11
0
['Python3']
0
calculate-digit-sum-of-a-string
Python 6line code || 98.60 %Beats || Simple Code
python-6line-code-9860-beats-simple-code-7fed
If you got help from this,... Plz Upvote .. it encourage me\n# Code\nShort Way:\n\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n whil
vvivekyadav
NORMAL
2023-09-27T13:38:00.018577+00:00
2023-09-27T13:38:00.018600+00:00
506
false
**If you got help from this,... Plz Upvote .. it encourage me**\n# Code\nShort Way:\n```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n while len(s) > k:\n new_s = \'\'\n for i in range(0,len(s), k):\n new_s += str(sum(int(d) for d in s[i:i+k]))\n s = new_s \n return s\n\n \n```\n.\nSame Approach but long way to understand.\n```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n while len(s) > k:\n new_s = \'\'\n for i in range(0,len(s), k):\n temp = 0\n for d in s[i:i+k]:\n temp += int(d)\n \n new_s += str(temp)\n\n s = new_s\n \n return s\n```
7
0
['String', 'Python', 'Python3']
1
calculate-digit-sum-of-a-string
C++ solution
c-solution-by-navneetkchy-povx
\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n while ((int) s.size() > k) {\n int sum = 0;\n string t = "";\
navneetkchy
NORMAL
2022-04-17T04:05:13.458210+00:00
2022-04-17T04:05:13.458247+00:00
998
false
```\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n while ((int) s.size() > k) {\n int sum = 0;\n string t = "";\n int count = 0;\n for (int i = 0; i < (int) s.size(); i++) {\n sum += (s[i] - \'0\');\n ++count;\n if (count == k) {\n t += to_string(sum);\n sum = 0;\n count = 0;\n }\n }\n if (count > 0) {\n t += to_string(sum);\n }\n s = t;\n }\n return s;\n }\n};\n```
7
0
[]
2
calculate-digit-sum-of-a-string
✅ [C] || 100% Fast Solution || Beginner-Friendly
c-100-fast-solution-beginner-friendly-by-qws5
\nchar * digitSum(char * s, int k) {\n int cur = 0;\n int sum = 0;\n for (int i = 0; strlen(s) > k; i++) {\n if (i != 0 && i % k == 0 || i == st
bezlant
NORMAL
2022-04-17T04:03:04.730845+00:00
2022-04-17T04:07:45.261889+00:00
516
false
```\nchar * digitSum(char * s, int k) {\n int cur = 0;\n int sum = 0;\n for (int i = 0; strlen(s) > k; i++) {\n if (i != 0 && i % k == 0 || i == strlen(s)) {\n char buff[16];\n sprintf(buff, "%d", sum);\n for (int i = 0; buff[i]; i++, cur++)\n s[cur] = buff[i];\n sum = 0;\n }\n if (i == strlen(s)) { \n s[cur] = \'\\0\';\n cur = 0;\n i = 0;\n }\n sum += s[i] - \'0\';\n }\n \n return s;\n}\n```\n\n**If this was helpful, don\'t hesitate to upvote! :)**\nHave a nice day!
6
1
['C']
3
calculate-digit-sum-of-a-string
Simple Python Solution
simple-python-solution-by-ancoderr-m0nx
\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n def divideString(s: str, k: int) -> List[str]: # Utility function to return list of d
ancoderr
NORMAL
2022-04-17T04:02:57.382849+00:00
2022-04-17T04:19:31.060920+00:00
1,389
false
```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n def divideString(s: str, k: int) -> List[str]: # Utility function to return list of divided groups.\n l, n = [], len(s)\n for i in range(0, n, k):\n l.append(s[i:min(i + k, n)])\n return l\n while len(s)>k: # Till size of s is greater than k\n arr, temp = divideString(s, k), [] # arr is the list of divided groups, temp will be the list of group sums\n for group in arr: # Traverse the group and add its digits\n group_sum = 0\n for digit in group:\n group_sum += int(digit)\n temp.append(str(group_sum)) # Sum of digits of current group\n s = \'\'.join(temp) # s is replaced by the group digit sum for each group.\n return s\n```
6
0
['Python', 'Python3']
1
calculate-digit-sum-of-a-string
[Python 3] Convert string to list and use brute-force
python-3-convert-string-to-list-and-use-ln7tv
python3 []\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n s = list(map(int, s))\n while len(s) > k:\n tmp = []\n
yourick
NORMAL
2023-07-25T22:12:26.906410+00:00
2023-08-14T14:14:17.094272+00:00
393
false
```python3 []\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n s = list(map(int, s))\n while len(s) > k:\n tmp = []\n for i in range(0, len(s), k):\n S = sum(s[i:i+k])\n for d in (str(S)):\n tmp.append(int(d))\n s = tmp\n\n return \'\'.join(map(str, s))\n```
5
0
['Python', 'Python3']
0
calculate-digit-sum-of-a-string
Java Easy Consise
java-easy-consise-by-bharat194-cb83
\nclass Solution {\n public String digitSum(String s, int k) {\n while(s.length() > k) s = gen(s,k);\n return s;\n }\n public String gen(
bharat194
NORMAL
2022-04-17T18:37:45.871779+00:00
2022-04-17T18:37:45.871819+00:00
638
false
```\nclass Solution {\n public String digitSum(String s, int k) {\n while(s.length() > k) s = gen(s,k);\n return s;\n }\n public String gen(String s,int k){\n String res = "";\n for(int i=0;i < s.length();){\n int count = 0,num=0;\n while(i < s.length() && count++ < k) num += Character.getNumericValue(s.charAt(i++));\n res+=num;\n }\n return res;\n }\n}\n```
5
0
['Java']
1
calculate-digit-sum-of-a-string
JAVA SOLUTION RECURSION 🦘
java-solution-recursion-by-sulaymon-dev2-g0ri
\nclass Solution {\n public String digitSum(String s, int k) {\n return s.length() > k ? digitSum(new StringBuilder(s), k) : s;\n }\n\n public S
Sulaymon-Dev20
NORMAL
2022-09-01T10:42:33.721350+00:00
2022-09-01T10:42:33.721397+00:00
598
false
```\nclass Solution {\n public String digitSum(String s, int k) {\n return s.length() > k ? digitSum(new StringBuilder(s), k) : s;\n }\n\n public String digitSum(StringBuilder numbers, int k) {\n StringBuilder res = new StringBuilder(numbers.length() / k + 1);\n for (int i = 0, loop = 0, sum = 0; i < numbers.length(); i++) {\n sum += numbers.charAt(i) - \'0\';\n if (++loop == k || numbers.length() - 1 == i) {\n res.append(sum);\n sum = 0;\n loop = 0;\n }\n }\n return res.length() > k ? digitSum(res, k) : res.toString();\n }\n}\n```
4
0
['String', 'Recursion', 'Java']
0
calculate-digit-sum-of-a-string
easy
easy-by-qwerysingr-3027
\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n \n while (true) {\n int n(size(s));\n int cnt(0), curr
qwerysingr
NORMAL
2022-05-08T05:54:15.063495+00:00
2022-05-08T05:54:15.063527+00:00
154
false
```\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n \n while (true) {\n int n(size(s));\n int cnt(0), curr(0), i(0);\n string nn;\n if (size(s) <= k) break;\n while (i < n) {\n curr += s[i++]-\'0\';\n if (++cnt == k or i == n) {\n cout << curr << "\\n";\n nn += to_string(curr);\n curr = 0;\n cnt = 0;\n }\n }\n s = nn;\n }\n return s;\n }\n};\n```
4
0
[]
0
calculate-digit-sum-of-a-string
[Java] 0ms + EASY explanations
java-0ms-easy-explanations-by-stefanelst-cf06
\nclass Solution {\n /** Algorithm\n 1. While s is longer than k, try to add its digits into a string builder stb\n 2. Loop in windows of k s
StefanelStan
NORMAL
2022-04-22T21:29:52.038952+00:00
2022-04-22T22:02:32.597988+00:00
411
false
```\nclass Solution {\n /** Algorithm\n 1. While s is longer than k, try to add its digits into a string builder stb\n 2. Loop in windows of k size and continue ONLY if current index < s.length().\n (meaning current expanding window is still shorter than s.length())\n EG: "123456789", k = 4. window1 : "1,2,3,4", window2 = "5,6,7,8"\n 3. In an inner loop, loop with j from i to i+ k; stopping at i + k OR when j reaches s.length() -1 \n Add digits to a temp int and add it to string builder \n 4. Make s point to the string value of the string builder.\n 5. Return s.\n */\n public String digitSum(String s, int k) {\n StringBuilder stb = new StringBuilder();\n int temp = 0;\n while(s.length() > k) {\n stb.setLength(0);\n for(int i = 0; i < s.length(); i += k) {\n temp = 0;\n for(int j = i; j < i + k && j < s.length(); j++) {\n temp += s.charAt(j) - \'0\';\n }\n stb.append(temp);\n }\n s = stb.toString();\n }\n return s;\n }\n}\n```
4
0
['Java']
0
calculate-digit-sum-of-a-string
JavaScript
javascript-by-netant007-82fs
\nwhile(s.length>k){\n\tlet temp=\'\'\n\tfor(let q=0;q<s.length;q+=k){\n\t\ttemp+=eval(s.substring(q,q+k).split(\'\').join(\'+\'))\n\t}\n\ts=temp\n}\nreturn s\n
netant007
NORMAL
2022-04-17T05:08:32.250464+00:00
2022-04-17T05:08:32.250511+00:00
296
false
```\nwhile(s.length>k){\n\tlet temp=\'\'\n\tfor(let q=0;q<s.length;q+=k){\n\t\ttemp+=eval(s.substring(q,q+k).split(\'\').join(\'+\'))\n\t}\n\ts=temp\n}\nreturn s\n```
4
0
['JavaScript']
1
calculate-digit-sum-of-a-string
Simple while loop
simple-while-loop-by-theabbie-lbsu
\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n while len(s) > k:\n nexts = ""\n for i in range(0, len(s), k):\
theabbie
NORMAL
2022-04-17T04:03:00.242420+00:00
2022-04-17T04:03:00.242448+00:00
348
false
```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n while len(s) > k:\n nexts = ""\n for i in range(0, len(s), k):\n nexts += str(sum(int(d) for d in s[i:i+k]))\n s = nexts\n return s\n```
4
0
['Python']
1
calculate-digit-sum-of-a-string
here is my solution->>:)
here-is-my-solution-by-re__fresh-gsdi
*plz upvote if you find my solution helpful***\n\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n l=len(s)\n \n while(l>k):\n
re__fresh
NORMAL
2022-09-07T17:52:39.864446+00:00
2022-09-07T17:52:39.864486+00:00
382
false
*****plz upvote if you find my solution helpful*****\n```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n l=len(s)\n \n while(l>k):\n s1=""\n for i in range(0,len(s),k):#0 -10\n \n sm=0\n for j in range(i,i+k):\n if(j<len(s)):\n sm+=int(s[j])\n s1=s1+str(sm)\n \n s=s1\n l=len(s)\n return s\n```
3
0
['Python']
0
calculate-digit-sum-of-a-string
Calculate Digit Sum of a String Solution Java
calculate-digit-sum-of-a-string-solution-d300
class Solution {\n public String digitSum(String s, int k) {\n while (s.length() > k) {\n StringBuilder sb = new StringBuilder();\n for (int i = 0
bhupendra786
NORMAL
2022-08-16T08:32:48.290201+00:00
2022-08-16T08:32:48.290248+00:00
140
false
class Solution {\n public String digitSum(String s, int k) {\n while (s.length() > k) {\n StringBuilder sb = new StringBuilder();\n for (int i = 0; i < s.length(); i += k) {\n int sum = 0;\n for (int j = i; j < Math.min(s.length(), i + k); ++j)\n sum += s.charAt(j) - \'0\';\n sb.append(sum);\n }\n s = sb.toString();\n }\n return s;\n }\n}\n
3
0
['String', 'Simulation']
0
calculate-digit-sum-of-a-string
C# One-Liner, Recursion, LINQ
c-one-liner-recursion-linq-by-rad0mir-m0ni
\npublic class Solution \n{\n public string DigitSum(string s, int k) \n => s.Length <= k ? s : DigitSum(String.Concat(s.Chunk(k).Select(g => g.Sum(c
Rad0miR
NORMAL
2022-04-17T18:33:29.474947+00:00
2022-04-17T18:33:29.474987+00:00
147
false
```\npublic class Solution \n{\n public string DigitSum(string s, int k) \n => s.Length <= k ? s : DigitSum(String.Concat(s.Chunk(k).Select(g => g.Sum(c => c - \'0\'))), k);\n}\n```
3
0
['Recursion']
1
calculate-digit-sum-of-a-string
Rust solution
rust-solution-by-bigmih-97z0
\nimpl Solution {\n pub fn digit_sum(s: String, k: i32) -> String {\n let mut s = s;\n while s.len() > k as usize {\n s = s\n
BigMih
NORMAL
2022-04-17T14:00:54.393603+00:00
2022-04-17T14:00:54.393637+00:00
129
false
```\nimpl Solution {\n pub fn digit_sum(s: String, k: i32) -> String {\n let mut s = s;\n while s.len() > k as usize {\n s = s\n .chars()\n .collect::<Vec<_>>()\n .chunks(k as usize)\n .map(|chunk| {\n chunk\n .iter()\n .map(|c| c.to_digit(10).unwrap())\n .sum::<u32>()\n .to_string()\n })\n .collect::<Vec<_>>()\n .join("");\n }\n s\n }\n}\n```
3
0
['Rust']
1
calculate-digit-sum-of-a-string
Java | Simple
java-simple-by-shubham203-xtdx
```\npublic String digitSum(String s, int k) {\n StringBuilder sb = new StringBuilder(s);\n while (sb.length()>k) {\n int idx = 0;\n
shubham203
NORMAL
2022-04-17T04:04:31.952360+00:00
2022-04-17T04:04:31.952388+00:00
307
false
```\npublic String digitSum(String s, int k) {\n StringBuilder sb = new StringBuilder(s);\n while (sb.length()>k) {\n int idx = 0;\n StringBuilder curr = new StringBuilder();\n while (idx<sb.length()) {\n String ss = sb.toString().substring(idx, Math.min(idx+k,sb.length()));\n idx+=k;\n int value = 0;\n for (char c: ss.toCharArray()) {\n value = value + (c-\'0\');\n }\n curr.append(value);\n }\n sb = new StringBuilder(curr);\n }\n \n return sb.toString();\n }
3
0
[]
1
calculate-digit-sum-of-a-string
C++ || Easy To Understand || Simple Brute Force Approach
c-easy-to-understand-simple-brute-force-3v9va
\nclass Solution {\npublic:\n int help(string &s)\n {\n int d=0;\n for(int i=0;i<s.length();i++)\n {\n d+=(s[i]-\'0\');\n
aarindey
NORMAL
2022-04-17T04:04:25.565747+00:00
2022-04-17T04:04:25.565780+00:00
301
false
```\nclass Solution {\npublic:\n int help(string &s)\n {\n int d=0;\n for(int i=0;i<s.length();i++)\n {\n d+=(s[i]-\'0\');\n }\n return d;\n }\n string digitSum(string s, int k) {\n int n=s.length();\n string temp=s,neww;\n if(k>=n)\n return s;\n while(temp.size()>k)\n {\n neww="";\n for(int i=0;i<temp.size();i+=k)\n {\n string str=temp.substr(i,min((int)k,(int)(temp.size()-i)));\n string sum=to_string(help(str));\n neww+=sum;\n }\n temp=neww;\n }\n return neww;\n }\n};\n```\n**Please upvote to motivate me in my quest of documenting all leetcode solutions(to help the community). HAPPY CODING:)\nAny suggestions and improvements are always welcome**
3
0
[]
2
calculate-digit-sum-of-a-string
Iterative Digit Summation and Reduction Beats 100% Of the Submissions
iterative-digit-summation-and-reduction-5jm6t
IntuitionThe problem requires repeatedly dividing the string into groups of size k , summing the digits in each group, and forming a new string until the lengt
x7Fg9_K2pLm4nQwR8sT3vYz5bDcE6h
NORMAL
2025-02-24T13:13:41.922949+00:00
2025-02-24T13:13:41.922949+00:00
65
false
# Intuition The problem requires repeatedly dividing the string into groups of size k , summing the digits in each group, and forming a new string until the length of the string is at most k . This suggests an iterative approach where we repeatedly process the string, reducing its length each time. # Approach 1. Iterate While Length is Greater than k : - Continue processing the string until its length becomes less than equal to k. 2. Grouping and Summation: - Traverse the string and sum up digits in groups of size k . - If the last group is smaller than k , process it separately. 3. Forming the New String: - Convert the sum of each group into a string and concatenate to form the new string. - Repeat the process until the length constraint is met. The approach ensures that the string is reduced efficiently in each round until it satisfies the problem condition. # Complexity - Time complexity: $$O(n)$$ per iteration, where n is the length of the string. Since the string shrinks after every iteration, the number of iterations is logarithmic in n . The worst-case complexity is approximately $$O(nlogn)$$. - Space complexity: $$O(n)$$ for storing the intermediate strings. # Code ```cpp [] class Solution { public: string digitSum(string s, int k) { while (s.size()>k){ string b=""; for (int i=0,l=0;i<s.size();i++){ l+=s[i]-'0'; if (((i+1)%k==0)||(i==s.size()-1)){b+=to_string(l);l=0;} } s=b; } return s; } }; ```
2
0
['C++']
0
calculate-digit-sum-of-a-string
Python || Easy Solution
python-easy-solution-by-kumarcharukesh-62a1
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
kumarcharukesh
NORMAL
2024-07-30T10:49:32.228565+00:00
2024-07-30T10:49:32.228599+00:00
85
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution(object):\n def digitSum(self,s,k):\n n=len(s)\n while n>k:\n s2=""\n k1=k\n for i in range(0,n,k):\n s1=s[i:k1]\n k1=k1+k\n sum1=0\n for j in s1:\n sum1=sum1+int(j)\n s2=s2+str(sum1)\n s=s2\n n=len(s)\n return s\n```
2
0
['Python']
0
calculate-digit-sum-of-a-string
Easy Understandable Soln | JAVA🔥
easy-understandable-soln-java-by-sumo25-rti0
\n\n# Code\n\nclass Solution {\n public String digitSum(String s, int k) {\n int i=0;\n while(s.length()>k){\n i=0;\n Str
sumo25
NORMAL
2024-02-18T18:37:04.187119+00:00
2024-02-18T18:37:04.187142+00:00
423
false
\n\n# Code\n```\nclass Solution {\n public String digitSum(String s, int k) {\n int i=0;\n while(s.length()>k){\n i=0;\n String ans="";\n while(i<s.length()){\n if(i+k>s.length()){\n ans+=find(s.substring(i,s.length()));\n }\n else{\n ans+=find(s.substring(i,i+k));\n } \n i+=k;\n }\n s=ans;\n }\n return s;\n }\n public String find(String s){\n int i=0;\n int sum=0;\n while(i<s.length()){\n sum+=s.charAt(i)-\'0\';\n i++;\n }\n return String.valueOf(sum);\n }\n}\n```
2
0
['Java']
1
calculate-digit-sum-of-a-string
Calculate Digit Sum of a String Solution in C++
calculate-digit-sum-of-a-string-solution-fy1f
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
The_Kunal_Singh
NORMAL
2023-06-01T03:51:42.861800+00:00
2023-06-01T03:51:42.861832+00:00
109
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nO(n*m)\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\nO(n)\n# Code\n```\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n int i, j=0, l, n;\n string temp="";\n while(s.length()>k)\n {\n j=0;\n l = s.length()/k;\n while(l--)\n {\n for(i=j ; i<j+k ; i++)\n {\n n += s[i]-48;\n }\n j = j+k;\n temp += to_string(n);\n n=0;\n }\n if(s.length()%k!=0)\n {\n for(i=j ; i<s.length() ; i++)\n {\n n += s[i]-48;\n }\n temp += to_string(n);\n n=0;\n }\n s.clear();\n s = temp;\n temp.clear();\n }\n return s;\n }\n};\n```\n![upvote new.jpg](https://assets.leetcode.com/users/images/af207ac5-cef2-406d-b647-0f6e145ac565_1685591499.707829.jpeg)\n
2
0
['C++']
0
calculate-digit-sum-of-a-string
Java Easy Solution || Beginner Friendly
java-easy-solution-beginner-friendly-by-vm1vj
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
raunakbhanarkar7
NORMAL
2023-05-24T01:09:49.428909+00:00
2023-05-24T01:09:49.428939+00:00
508
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\n public String digitSum(String s, int k) {\n StringBuilder sb = new StringBuilder(s);\n\n // Continue until length of sb is less than or equal to k\n while (sb.length() > k) {\n StringBuilder newString = new StringBuilder();\n int i = 0;\n\n // Iterate over characters of sb\n while (i < sb.length()) {\n int sum = 0;\n int count = 0;\n\n // Calculate sum of digits for each group\n while (i < sb.length() && count < k) {\n sum += sb.charAt(i) - \'0\';\n i++;\n count++;\n }\n\n newString.append(sum);\n }\n\n sb = newString; // Update sb with newString\n }\n\n return sb.toString();\n }\n}\n\n```
2
0
['Java']
1
calculate-digit-sum-of-a-string
JAVA | calculate-digit-sum-of-a-string
java-calculate-digit-sum-of-a-string-by-facbl
\nclass Solution {\n public String digitSum(String s, int k) {\n if(s.length()<=k)return s;\n while(s.length()>k)\n {\n Strin
Venkat089
NORMAL
2022-11-21T12:15:37.012970+00:00
2022-11-21T12:15:37.013015+00:00
646
false
```\nclass Solution {\n public String digitSum(String s, int k) {\n if(s.length()<=k)return s;\n while(s.length()>k)\n {\n String str="";\n int left=s.length()%k;\n for(int i=0;i<s.length()-left;i+=k)\n {\n str+=(sumstring(s.substring(i,i+k)));\n }\n if(s.length()%k!=0)str+=(sumstring(s.substring(s.length()-left,s.length())));\n s=str;\n System.out.println(s);\n }\n return s;\n \n }\n \n public String sumstring(String str){\n int sum=0;\n for(char i:str.toCharArray())\n {\n sum+=(i-\'0\');\n }\n return String.valueOf(sum);\n }\n}\n```
2
0
['String', 'Java']
0
calculate-digit-sum-of-a-string
the fastest solution run time 97% memory 90%
the-fastest-solution-run-time-97-memory-fg4w7
\n\n\nclass Solution {\n public static String digitSum(String s, int k) {\n\n StringBuilder stringBuilder = new StringBuilder();\n\n while (s.le
Qurbonali
NORMAL
2022-11-12T05:18:38.161968+00:00
2022-11-12T05:18:38.162006+00:00
727
false
![image](https://assets.leetcode.com/users/images/eff66c9d-2218-4b08-b5d3-895e747b96c0_1668230310.485688.png)\n\n```\nclass Solution {\n public static String digitSum(String s, int k) {\n\n StringBuilder stringBuilder = new StringBuilder();\n\n while (s.length() > k) {\n\n for (int i = 0; i < s.length(); i+=k) {\n\n if (i+k<=s.length()) stringBuilder.append(sum(s.substring(i, i + k)));\n else stringBuilder.append(sum(s.substring(i)));\n }\n\n s = stringBuilder.toString();\n stringBuilder = new StringBuilder();\n\n }\n\n return s;\n }\n\n public static Integer sum(String number){\n\n int n = 0;\n\n for (int i = 0; i < number.length(); i++) {\n n += Integer.parseInt(number.substring(i,i+1));\n }\n\n return n;\n }\n}\n```
2
1
['Java']
0
calculate-digit-sum-of-a-string
Java 100% faster | 96% memory solution
java-100-faster-96-memory-solution-by-tb-2rpf
Code\n\nclass Solution {\n public String digitSum(String s, int k) {\n StringBuilder sb = new StringBuilder();\n String intermediate = s;\n
tbekpro
NORMAL
2022-11-03T04:36:28.255686+00:00
2022-11-03T04:36:28.255733+00:00
438
false
# Code\n```\nclass Solution {\n public String digitSum(String s, int k) {\n StringBuilder sb = new StringBuilder();\n String intermediate = s;\n int interInt = 0;\n while (intermediate.length() > k) {\n for (int i = 0; i < intermediate.length(); i += k) {\n for (int j = i; j < i + k && j < intermediate.length(); j++) {\n interInt += intermediate.charAt(j) - \'0\';\n }\n sb.append(interInt);\n interInt = 0;\n }\n intermediate = sb.toString();\n sb.setLength(0);\n }\n return intermediate;\n }\n}\n```
2
0
['Java']
0
calculate-digit-sum-of-a-string
✅✅C++ || Easy Solution || 0ms || Faster
c-easy-solution-0ms-faster-by-akshat0610-e8pi
\nclass Solution {\npublic:\n string digitSum(string s, int k) \n {\n return fun(s,k); \n }\n string fun(string s,int &k)\n {\n \tif(s.leng
akshat0610
NORMAL
2022-10-09T17:22:43.114836+00:00
2022-10-09T17:22:43.114879+00:00
869
false
```\nclass Solution {\npublic:\n string digitSum(string s, int k) \n {\n return fun(s,k); \n }\n string fun(string s,int &k)\n {\n \tif(s.length()<=k)\n \t{\n \t\treturn s;\n }\n int idx=0;\n string str="";\n while(idx<s.length())\n {\n \tint sum=0;\n \tint counter=0;\n \twhile(idx<s.length() and counter<k)\n \t{\n \t\tsum=sum+(s[idx]-\'0\');\n \t\tcounter++;\n \t\tidx++;\n\t\t}\n\t\tstr=str+to_string(sum);\n\t}\n\treturn fun(str,k);\n }\n};\n```
2
0
['Recursion', 'C', 'C++']
0
calculate-digit-sum-of-a-string
EASY TO UNDERSTAND || SIMPLE JAVA CODE
easy-to-understand-simple-java-code-by-p-6unm
\nclass Solution {\n public String digitSum(String s, int k) {\n \n \n while(s.length()>k){\n String temp="",sub;\n
priyankan_23
NORMAL
2022-08-29T19:51:52.955990+00:00
2022-08-29T19:51:52.956030+00:00
231
false
```\nclass Solution {\n public String digitSum(String s, int k) {\n \n \n while(s.length()>k){\n String temp="",sub;\n \n for(int i=0;i<s.length();){\n if(i<s.length()+1 && i+k>=s.length()){\n sub=s.substring(i);\n i+=sub.length();\n }else{\n sub=s.substring(i,i+k);\n i+=k;\n }\n int count=0;\n for(char c:sub.toCharArray())count+=c-\'0\';\n temp+=count+"";\n }\n \n s=temp;\n \n \n \n }\n return s;\n \n \n }\n}\n```
2
0
[]
0
calculate-digit-sum-of-a-string
Python Elegant & Short | Pythonic | Iterative + Recursive
python-elegant-short-pythonic-iterative-aqny6
\tclass Solution:\n\t\tdef digitSum(self, s: str, k: int) -> str:\n\t\t\t"""Iterative version"""\n\t\t\twhile len(s) > k:\n\t\t\t\ts = self.round(s, k)\n\t\t\tr
Kyrylo-Ktl
NORMAL
2022-08-14T19:22:31.717012+00:00
2022-08-14T19:25:20.322001+00:00
766
false
\tclass Solution:\n\t\tdef digitSum(self, s: str, k: int) -> str:\n\t\t\t"""Iterative version"""\n\t\t\twhile len(s) > k:\n\t\t\t\ts = self.round(s, k)\n\t\t\treturn s\n\t\n\t\tdef digitSum(self, s: str, k: int) -> str:\n\t\t\t"""Recursive version"""\n\t\t\tif len(s) <= k:\n\t\t\t\treturn s\n\t\t\treturn self.digitSum(self.round(s, k), k)\n\n\t\t@classmethod\n\t\tdef round(cls, s: str, k: int) -> str:\n\t\t\treturn \'\'.join(map(cls.add_digits, cls.slice(s, k)))\n\n\t\t@staticmethod\n\t\tdef add_digits(s: str) -> str:\n\t\t\treturn str(sum(int(d) for d in s))\n\n\t\t@staticmethod\n\t\tdef slice(s: str, k: int):\n\t\t\tfor i in range(0, len(s), k):\n\t\t\t\tyield s[i:i + k]\n
2
0
['Python', 'Python3']
0
calculate-digit-sum-of-a-string
Python Recursive Approach
python-recursive-approach-by-rnyati2000-jnj5
\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n \n def func(s,k):\n if len(s)<=k:\n return s\n
rnyati2000
NORMAL
2022-06-08T14:34:25.520459+00:00
2022-06-08T14:34:25.520508+00:00
222
false
```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n \n def func(s,k):\n if len(s)<=k:\n return s\n \n x=""\n a=k\n for i in range(0,len(s),++k):\n y=s[i:i+k]\n z=0\n for j in y:\n z+=int(j)\n x+=str(z) \n return func(x,k)\n \n return func(s,k)\n```\nIf u understood the code then plz.......UPVOTE...........Thnx in adv
2
0
['Recursion', 'Python']
1
calculate-digit-sum-of-a-string
📌Fastest java☕ solution. 0 ms💯
fastest-java-solution-0-ms-by-saurabh_17-61is
```\nclass Solution {\n public String digitSum(String s, int k) \n {\n while(s.length()>k)\n {\n StringBuilder u=new StringBuilde
saurabh_173
NORMAL
2022-04-28T19:22:40.732490+00:00
2022-04-28T19:22:40.732553+00:00
256
false
```\nclass Solution {\n public String digitSum(String s, int k) \n {\n while(s.length()>k)\n {\n StringBuilder u=new StringBuilder();\n for(int i=0;i<s.length();i+=k)\n {\n int n=0;\n for(int j=i;j<i+k && j<s.length(); j++)\n n+=s.charAt(j)-\'0\';\n u.append(n);\n }\n s=u.toString();\n }\n return s;\n }\n}
2
0
['String', 'Java']
0
calculate-digit-sum-of-a-string
Python easy iterative solution for beginners
python-easy-iterative-solution-for-begin-g4dh
```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n while len(s) > k:\n groups = [s[x:x+k] for x in range(0, len(s), k)]\n
elefant1805
NORMAL
2022-04-28T04:26:13.814740+00:00
2022-04-28T04:26:13.814783+00:00
327
false
```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n while len(s) > k:\n groups = [s[x:x+k] for x in range(0, len(s), k)]\n temp = ""\n for i in groups:\n dig = [int(y) for y in i]\n temp += str(sum(dig))\n s = temp\n return s
2
0
['Python', 'Python3']
0
calculate-digit-sum-of-a-string
Java Solution - Easy to Understand
java-solution-easy-to-understand-by-tush-54wh
Here is my solution:\n\nclass Solution {\n public String digitSum(String s, int k) {\n \n while(s.length()>k){ /*If the length of the string
tushar30gaurab
NORMAL
2022-04-21T19:13:14.641652+00:00
2022-04-22T18:02:10.270019+00:00
164
false
Here is my solution:\n```\nclass Solution {\n public String digitSum(String s, int k) {\n \n while(s.length()>k){ /*If the length of the string is greater than k, repeat from step 1.*/\n \n String newstr = ""; /*for storing updated string*/\n \n for(int i=0; i<s.length(); i+=k){ // retrieving small parts of string in k equal parts\n\t\t\t\n int sum=0; // for finding "sum"\n\t\t\t\t\n String temp = s.substring(i,Math.min(i+k, s.length())); //for substring from ith to (i+k)th position\n\t\t\t\t\n for(int itr = 0; itr<temp.length(); itr++){\n sum += temp.charAt(itr) - \'0\';\n }\n \n newstr = newstr + "" + sum; // storing sum into new string\n }\n \n s = newstr; /*Updating original string with new string containing sum of digits*/\n }\n \n return s;\n }\n}\n```\nIf liked the approach. Pls **upvote** :)\nFeel free to ask any doubt..\nHappy Coding !!
2
0
['Java']
0
calculate-digit-sum-of-a-string
Calculate Digit Sum of a String T.C. O(n), S.C. O(1).
calculate-digit-sum-of-a-string-tc-on-sc-cziq
\nclass Solution {\npublic:\n string digitSum(string s, int k) \n {\n while (s.size() > k) // Run the loop until given string s length is greater
shubhammishra115
NORMAL
2022-04-19T13:24:21.386389+00:00
2022-04-19T13:24:21.386429+00:00
400
false
```\nclass Solution {\npublic:\n string digitSum(string s, int k) \n {\n while (s.size() > k) // Run the loop until given string s length is greater than k otherwise return the string.\n {\n string temp = ""; // Temp variable to store the new string.\n for (int i = 0; i < s.size(); i++)\n {\n int sum = 0;\n int count = 0;\n while (i < s.size() && count < k) // Run the loop until count is less than k or iterator is less than the size of string.\n {\n sum += s[i++] - \'0\'; // Sum up the string value\n count++; // Increase the count \n }\n temp += to_string(sum); // Add the obtained sum to the temp variable.\n i--;\n }\n s = temp; // Update the value of main string.\n }\n return s; // Return the final string.\n }\n};\n\n// Hope it will help. :)\n```
2
0
['String', 'C', 'C++']
0
calculate-digit-sum-of-a-string
python | recursion | easy
python-recursion-easy-by-mamtadnr-wjyk
\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n if len(s)<=k:\n return s\n def digitsm(s):\n sm=0\n
mamtadnr
NORMAL
2022-04-17T16:33:46.542792+00:00
2022-04-17T16:33:46.542857+00:00
57
false
```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n if len(s)<=k:\n return s\n def digitsm(s):\n sm=0\n for i in range(len(s)):\n sm+=int(s[i])\n return sm\n string=\'\'\n for i in range(0,len(s),k):\n try:\n string+=str(digitsm(s[i:i+k]))\n except:\n string+=str(digitsm(s[i:]))\n if len(string)<=k:\n return string\n return self.digitSum(string,k)\n \n```
2
0
[]
0
calculate-digit-sum-of-a-string
JAVA (StringBuilder and String) Commented
java-stringbuilder-and-string-commented-c5kl6
Using String :\nRuntime: 6 ms\nMemory Usage: 40.6 MB\n\nclass Solution {\n public String digitSum(String s, int k) {\n int len = s.length();\n
Srishti2002in
NORMAL
2022-04-17T07:37:11.145538+00:00
2022-04-17T07:41:56.703058+00:00
171
false
Using String :\nRuntime: 6 ms\nMemory Usage: 40.6 MB\n```\nclass Solution {\n public String digitSum(String s, int k) {\n int len = s.length();\n String ans = s; //making a copy of string s\n while(ans.length() > k) {\n String dummy = ""; // this will store the string after a round\n int i = 0;\n for(i = 0; i < ans.length(); i+=k) {\n int sum = 0;\n for(int j = 0; j < k && (j+i) < ans.length(); j++) {\n sum += ans.charAt(i+j)-\'0\';\n }\n dummy += sum+""; //adding the result to the string\n }\n ans = dummy; //adding modified value to the answer\n }\n return ans;\n }\n}\n```\n\nUsing StringBuilder :\nRuntime: 1 ms\nMemory Usage: 40.7 MB\n\n```\nclass Solution {\n public String digitSum(String s, int k) {\n StringBuilder ans = new StringBuilder(s);\n int len = s.length();\n while(ans.length() > k) {\n StringBuilder dummy = new StringBuilder();\n int i = 0;\n for(i = 0; i < ans.length(); i+=k) {\n int sum = 0;\n for(int j = 0; j < k && (j+i) < ans.length(); j++) {\n sum += ans.charAt(i+j)-\'0\';\n }\n dummy.append(sum+"");\n }\n ans = dummy;\n }\n return ans.toString();\n }\n}\n```
2
0
['String', 'Java']
0
calculate-digit-sum-of-a-string
javascript direct way 84ms
javascript-direct-way-84ms-by-henrychen2-3de9
\nconst digitSum = (s, k) => {\n while (s.length > k) {\n let t = \'\'; // each round accumalate new string t\n for (let i = 0; i < s.length; i
henrychen222
NORMAL
2022-04-17T04:48:15.026682+00:00
2022-04-17T04:50:58.119475+00:00
251
false
```\nconst digitSum = (s, k) => {\n while (s.length > k) {\n let t = \'\'; // each round accumalate new string t\n for (let i = 0; i < s.length; i += k) {\n let sub = s.slice(i, i + k), sum = 0;\n for (const c of sub) sum += c - \'0\'; // sum of each digits\n t += sum; // rebuild new string with sum\n }\n s = t; // update new string to s\n }\n return s;\n};\n```
2
0
['String', 'JavaScript']
0
calculate-digit-sum-of-a-string
[C++] String problem
c-string-problem-by-animesh_roy-1n4i
\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n while(s.length()>k){\n string temp="";\n int p=0, sum=0;\n
Animesh_Roy
NORMAL
2022-04-17T04:19:54.632141+00:00
2022-04-17T04:19:54.632166+00:00
178
false
```\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n while(s.length()>k){\n string temp="";\n int p=0, sum=0;\n for(int i=0; i<s.length(); i++){\n sum += s[i]-\'0\';\n p++;\n if(p==k){\n temp += to_string(sum);\n sum=0;\n p=0;\n }\n }\n if(p>0) temp += to_string(sum);\n s=temp;\n }\n return s;\n }\n};\n```
2
0
['String', 'C']
0
calculate-digit-sum-of-a-string
C++|| solution
c-solution-by-soujash_mandal-tv3m
\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n \n \n \n while(s.size()>k)\n {\n string res=
soujash_mandal
NORMAL
2022-04-17T04:01:31.415158+00:00
2022-04-17T04:01:31.415195+00:00
290
false
```\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n \n \n \n while(s.size()>k)\n {\n string res="";\n int n=s.size();\n int i=0;\n while(i<n)\n {\n int c=0;\n string temp="";\n int count=0;\n while(i<n && c<k)\n {\n count+=s[i]-\'0\';\n c++;\n i++;\n }\n string str=to_string(count);\n res+=str;\n }\n \n s=res;\n }\n return s;\n }\n};\n```
2
0
[]
1
calculate-digit-sum-of-a-string
Calculate Digit Sum of a String (Finally done it on my own)
calculate-digit-sum-of-a-string-finally-ggucx
IntuitionApproachComplexity Time complexity: (n log n) Space complexity: O(n)Code
Vinil07
NORMAL
2025-03-25T06:39:39.195311+00:00
2025-03-25T06:39:39.195311+00:00
45
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> (n log n) **** - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> O(n) # Code ```cpp [] class Solution { public: string digitSum(string s, int k) { while(s.size()>k) { string temp=""; int sum=0; for(int i=0;i<s.size();i++) { sum+=s[i]-'0'; if((i+1)%k==0) { temp+=to_string(sum); sum=0; } } if(s.size()%k!=0) { temp+=to_string(sum); } s=temp; } return s; } }; ```
1
0
['String', 'Simulation', 'C++']
0
calculate-digit-sum-of-a-string
[C#] | O(N) | 0 ms | 100% | Best Solution
c-on-0-ms-100-best-solution-by-sovokan-4dvz
Approach First, let's loop our algorithm until s.Length > k. (Step 3) Use StringBuilder because it's faster than string concatenation. For performance, you can
SoVoKaN
NORMAL
2025-01-31T03:48:55.813969+00:00
2025-01-31T03:48:55.813969+00:00
41
false
# Approach - First, let's loop our algorithm until `s.Length > k`. (Step 3) - Use `StringBuilder` because it's faster than string concatenation. For performance, you can set Capacity. - First cycle - required to save the position after the group sum calculation. - The variables `sum` and `j` are declared in the first cycle. (`j` is declared outside the second cycle because it's value is passed to `i` after the cycle) - The second cycle - required to calculate the sum of numbers in the group `k`. (`'0'` in ASCII table = 48) - Since the last group can be smaller than `k`, check that `j` is smaller than the `s.Length`. - Add `sum` to `StringBuilder` and assign the position `j` to `i`. - Then assign your string from `StringBuilder` to `s`. - And finally return `s`. # Complexity - Time complexity: **O(N)** - Space complexity: **O(1)** # Code ```csharp [] public class Solution { public string DigitSum(string s, int k) { while (s.Length > k) { StringBuilder builder = new StringBuilder(20); for (int i = 0; i < s.Length;) { int sum = 0, j = i; for (; j < s.Length && j < i + k; j++) { sum += s[j] - 48; } builder.Append(sum); i = j; } s = builder.ToString(); } return s; } } ``` --- Thank you for reading my post. Please upvote it! ✔️ ---
1
0
['Array', 'Two Pointers', 'String', 'C#']
0
calculate-digit-sum-of-a-string
✅✅ Python easy 3 Liner | Beats 100% | 0ms | Sum of Digits List Comprehension ✅✅
python-easy-3-liner-beats-100-0ms-sum-of-3gzn
Code
nicostoehr
NORMAL
2025-01-30T18:01:53.810436+00:00
2025-01-30T18:01:53.810436+00:00
85
false
# Code ```python3 [] class Solution: def digitSum(self, s: str, k: int) -> str: def sod(w): return str(sum([int(x) for x in w])) while len(s) > k: s = "".join(([sod(s[i*k:i*k+k]) for i in range(ceil(len(s)/k))])) return s ```
1
0
['Python3']
0
calculate-digit-sum-of-a-string
100% easy solution
100-easy-solution-by-tashu002-q7j7
IntuitionApproachComplexity Time complexity:O(n) Space complexity:O(1) Code
Tashu002
NORMAL
2025-01-01T05:52:19.077955+00:00
2025-01-01T05:52:19.077955+00:00
125
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity:O(n) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity:O(1) <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: string digitSum(string s, int k) { while(s.length() > k){ string temp = ""; for(int i = 0; i < s.length(); i += k){ int num = 0; for(int j = i; j < i+ k && j < s.length(); j++){ num += (s[j] - '0'); } // string temp1 = str(num); temp += to_string(num); // int to string } s = temp; } return s; } }; ```
1
0
['Two Pointers', 'C++']
0
calculate-digit-sum-of-a-string
leetcodedaybyday - Beats 100% with C++ and Beats 100% with Python3
leetcodedaybyday-beats-100-with-c-and-be-zi45
IntuitionThe problem involves repeatedly compressing a string by summing groups of k consecutive characters. The goal is to reduce the string until its length i
tuanlong1106
NORMAL
2024-12-27T06:51:27.531750+00:00
2024-12-27T06:51:27.531750+00:00
85
false
# Intuition The problem involves repeatedly compressing a string by summing groups of `k` consecutive characters. The goal is to reduce the string until its length is less than or equal to `k`. This iterative process of summing digits helps in understanding and implementing a loop-based solution. # Approach 1. **Digit Sum Helper**: - Define a helper function to calculate the sum of digits for a given substring. In Python, this can be done using `sum(int(char) for char in substring)`. 2. **Iterative Compression**: - While the string's length exceeds `k`, process the string: - Divide the string into groups of `k` characters. - For each group, compute the sum of its digits and convert the result back to a string. - Concatenate these results to form the new compressed string. - Repeat the process until the string length is less than or equal to `k`. 3. **Output**: - Return the final compressed string. # Complexity - **Time Complexity**: - Each iteration processes the string by summing digits, which takes \(O(n)\), where \(n\) is the length of the current string. - In the worst case, the length of the string is halved in each iteration, leading to \(O(n \log(n))\). - **Space Complexity**: - In Python, temporary strings and substrings take \(O(n)\) space in total. For C++, string manipulations also require similar temporary space, resulting in \(O(n)\). --- # Code ```cpp [] class Solution { public: int sum(string& s){ int n = s.size(); int ans = 0; for (int i = 0; i < n; i++){ int dig = s[i] - '0'; ans += dig; } return ans; } string digitSum(string s, int k) { while (s.size() > k){ string ans = ""; int n = s.size(); for (int i = 0; i < n; i += k){ string str = s.substr(i, min(k, n - i)); int res = sum(str); ans += to_string(res); } s = ans; } return s; } }; ``` ```python3 [] class Solution: def digitSum(self, s: str, k: int) -> str: def digit(substring: str) -> int: return sum(int(char) for char in substring) while len(s) > k: ans = "" for i in range(0, len(s), k): substring = s[i : i + k] res = digit(substring) ans += str(res) s = ans return s ```
1
0
['C++', 'Python3']
0
calculate-digit-sum-of-a-string
pathetic code but 100% beats and understandable
pathetic-code-but-100-beats-and-understa-079c
helper function, sums the group helper function convert does 1 roundCode
pitcherpunchst
NORMAL
2024-12-22T10:44:19.769574+00:00
2024-12-22T10:44:19.769574+00:00
39
false
helper function, sums the group helper function convert does 1 round # Code ```cpp [] class Solution { public: string sum(string st) { int s = 0; for(char c : st) s+= c-'0'; return to_string(s); } string convert(string s, int k) { vector<string> groups; while(s.size()>=k) { groups.push_back(s.substr(0, k)); s.erase(s.begin(),s.begin()+k); } if(s.size()>0) groups.push_back(s); string ans; for(string num : groups) { ans+=sum(num); } return ans; } string digitSum(string s, int k) { while(s.size()>k) s = convert(s,k); return s; } }; ```
1
0
['C++']
0
calculate-digit-sum-of-a-string
Swift solution 1 while 1 for 1 if
swift-solution-1-while-1-for-1-if-by-ver-fus0
# Intuition \n\n\n\n\n\n# Complexity\n- Time complexity: O(n)\n\n\n- Space complexity: O(n)\n\n\n# Code\nswift []\nclass Solution {\n func digitSum(_ s: St
vert
NORMAL
2024-11-19T21:04:20.630548+00:00
2024-11-19T21:04:20.630584+00:00
6
false
<!-- # Intuition -->\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n<!-- # Approach -->\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity: $$O(n)$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $$O(n)$$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```swift []\nclass Solution {\n func digitSum(_ s: String, _ k: Int) -> String {\n var res = Array(s) \n\n while res.count > k {\n var newStr = ""\n var currSum = 0\n\n for i in 0..<res.count {\n currSum += res[i].wholeNumberValue ?? 0\n\n if (i + 1) % k == 0 || i == res.count - 1 {\n newStr.append("\\(currSum)")\n currSum = 0\n }\n }\n res = Array(newStr)\n }\n return String(res)\n }\n}\n```
1
0
['Swift']
0
calculate-digit-sum-of-a-string
chal finally did on own like fully own no bugs :D but must try hard bahut hai krna
chal-finally-did-on-own-like-fully-own-n-p014
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
yesyesem
NORMAL
2024-11-18T13:48:22.161558+00:00
2024-11-18T13:48:22.161595+00:00
33
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```cpp []\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n\n string temp=s;\n int c=0;\n int num=0;\n string calc="";\n\n while(temp.size()>k)\n {\n calc="";\n num=0;\n c=0;\n\n for(int i=0;i<temp.size();i++)\n {\n num+=temp[i]-\'0\';\n c++;\n\n if(c==k || i==temp.size()-1)\n {\n c=0;\n calc+=to_string(num);\n num=0;\n\n }\n }\n temp=calc;\n\n\n }\n \n return temp;\n }\n};\n```
1
0
['C++']
0
calculate-digit-sum-of-a-string
Likha tha logic still kuch bugs the wo fix krne mein help lagi will try tm again :D
likha-tha-logic-still-kuch-bugs-the-wo-f-blu5
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
yesyesem
NORMAL
2024-11-17T19:05:45.683088+00:00
2024-11-17T19:05:45.683120+00:00
22
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```cpp []\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n \n string temp=s;\n \n int num=0;\n string calc="";\n int c=0;\n\n while(temp.size()>k)\n {\n calc="";\n num=0;\n c=0;\n for(int i=0;i<temp.size();i++)\n {\n\n num+=temp[i]-\'0\';\n c++;\n\n if(c==k||i==temp.size()-1)\n {\n calc+=to_string(num);\n num=0;\n c=0;\n }\n \n \n \n\n \n }\n\n \n\n temp=calc;\n\n }\n return temp;\n }\n};\n```
1
0
['C++']
0
calculate-digit-sum-of-a-string
Easy Java Solution ( 0 ms time complexity)
easy-java-solution-0-ms-time-complexity-0bd87
Intuition\ndivide, replace , merge\n\n# Approach\neasy\n\n# Complexity\n- Time complexity:\n0ms\n\n\n\n# Code\njava []\nclass Solution {\n public String digi
Vaishnavi7m
NORMAL
2024-09-21T19:57:56.911344+00:00
2024-09-21T19:57:56.911374+00:00
51
false
# Intuition\n**divide, replace , merge**\n\n# Approach\neasy\n\n# Complexity\n*- Time complexity:\n0ms*\n\n\n\n# Code\n```java []\nclass Solution {\n public String digitSum(String s, int k) {\n \n while(s.length()>k)\n s = makeParts(s,k);\n return s;\n }\n\n public String makeParts(String s,int k){\n int n = s.length();\n StringBuilder sb = new StringBuilder();\n int i = 0;\n while(i<n){\n int cnt = 0;\n int sum = 0;\n while(cnt<k && i<n){\n sum+=s.charAt(i)-\'0\';\n i++;\n cnt++;\n }\n sb.append(sum);\n }\n return sb.toString();\n }\n\n \n}\n```
1
0
['String', 'Simulation', 'Java']
0
calculate-digit-sum-of-a-string
without using any inbuilt method,pure logic
without-using-any-inbuilt-methodpure-log-c4pt
Code\njavascript []\n/**\n * @param {string} s\n * @param {number} k\n * @return {string}\n */\nvar digitSum = function (s, k) {\n\n function rec(s) {\n
ali-miyan
NORMAL
2024-09-21T00:59:56.482960+00:00
2024-09-21T00:59:56.482985+00:00
19
false
# Code\n```javascript []\n/**\n * @param {string} s\n * @param {number} k\n * @return {string}\n */\nvar digitSum = function (s, k) {\n\n function rec(s) {\n if (s.length <= k) return s\n\n let str = \'\';\n\n\n for (let i = 0; i < s.length; i += k) {\n let str2 = 0\n for (let j = i; j < i + k && j < s.length; j++) {\n str2 += Number(s[j]);\n }\n str += str2.toString()\n }\n console.log(str.length !== k)\n\n if(str.length !== k){\n return rec(str)\n }else{\n return str\n }\n\n\n }\n\n return rec(s)\n};\n```
1
0
['JavaScript']
0
calculate-digit-sum-of-a-string
C# nothing special, code explain itself
c-nothing-special-code-explain-itself-by-r2jj
Code\ncsharp []\npublic class Solution {\n public string DigitSum(string s, int k) {\n var sb = new StringBuilder();\n while(s.Length > k){\n
nzspider
NORMAL
2024-09-06T06:56:40.776276+00:00
2024-09-06T06:56:40.776313+00:00
12
false
# Code\n```csharp []\npublic class Solution {\n public string DigitSum(string s, int k) {\n var sb = new StringBuilder();\n while(s.Length > k){\n var lists = SplitStringByLength(s, k);\n foreach(var str in lists){\n var sum = str.Select(c=>c-\'0\').Sum();\n sb.Append(sum.ToString());\n }\n s = sb.ToString();\n sb.Clear();\n }\n return s;\n }\n\n public IEnumerable<string> SplitStringByLength(string str, int length)\n {\n for (int i = 0; i < str.Length; i += length)\n {\n yield return str.Substring(i, Math.Min(length, str.Length - i));\n }\n }\n}\n```
1
0
['C#']
0
calculate-digit-sum-of-a-string
🦚 Simple Approach || Easy Code !! || Simple & Concise Code || C++ Code Reference !
simple-approach-easy-code-simple-concise-ctjr
Intuition\n- Intuition Is On Sleep Mode.\n# Code\ncpp [There You Go !]\n\n string digitSum(string s, int k) {\n \n int sum=0;\n string t="";
Amanzm00
NORMAL
2024-09-01T03:52:16.865672+00:00
2024-09-01T03:52:16.865692+00:00
64
false
# Intuition\n- Intuition Is On Sleep Mode.\n# Code\n```cpp [There You Go !]\n\n string digitSum(string s, int k) {\n \n int sum=0;\n string t=""; \n\n while(s.length()>k)\n {\n for(int i=0;i<s.length();i++)\n {\n sum += (s[i]-\'0\');\n\n if((i+1)%k ==0 || i==s.length()-1)\n t+=to_string(sum), sum=0;\n }\n s=t,t="";\n\n }\n\n return s;\n }\n\n```
1
0
['String', 'Simulation', 'C++']
0
calculate-digit-sum-of-a-string
Simple java code
simple-java-code-by-arobh-exrt
\n# Complexity\n- \n\n# Code\n\nclass Solution {\n public String sumD(String s,int k){\n int n=s.length();\n String s2="";\n for(int i=0
Arobh
NORMAL
2023-12-31T02:29:38.202760+00:00
2023-12-31T02:29:38.202788+00:00
17
false
\n# Complexity\n- \n![image.png](https://assets.leetcode.com/users/images/9e7aaa48-a14d-4324-8efa-bda44002359d_1703989776.1976728.png)\n# Code\n```\nclass Solution {\n public String sumD(String s,int k){\n int n=s.length();\n String s2="";\n for(int i=0;i<n;i=i+k){\n int sum=0;\n int flag=0;\n for(int j=i;j<i+k&&j<n;j++){\n int key=(int)(s.charAt(j)-\'0\');\n sum+=key;\n flag=1;\n }\n if(flag==1){\n s2=s2+sum;\n }\n else{\n for(int j=i;j<n;j++){\n int key=(int)(s.charAt(j)-\'0\');\n sum+=key;\n }\n s2=s2+sum;\n break;\n }\n\n }\n return s2;\n }\n public String digitSum(String s, int k) {\n if(s.length()<=k){\n return s;\n }\n String s2=sumD(s,k);\n while(s2.length()>k){\n s2=sumD(s2,k);\n }\n return s2;\n }\n}\n```
1
0
['Java']
0
calculate-digit-sum-of-a-string
EASY CPP Solution | | Beats 100% in Runtime | | Beginner Friendly
easy-cpp-solution-beats-100-in-runtime-b-34uw
\n\n\n# Code\n\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n string ans = s;\n while(ans.length() > k){\n string
Sumit_Soni_999
NORMAL
2023-09-21T18:54:13.250716+00:00
2023-09-21T18:54:13.250745+00:00
55
false
![image.png](https://assets.leetcode.com/users/images/bb105cdb-8bce-4d0b-a2fd-7132ca65ea85_1695322421.7062838.png)\n\n\n# Code\n```\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n string ans = s;\n while(ans.length() > k){\n string tmp = "";\n int num = 0, cnt=0;\n for(int i=0; i<ans.length(); i++){\n num += ans[i] - \'0\';\n cnt++;\n if(i != 0 && cnt == k || i == ans.length()-1){\n tmp += to_string(num);\n num = cnt = 0;\n }\n }\n ans = tmp;\n }\n return ans;\n }\n};\n```
1
0
['C++']
0
calculate-digit-sum-of-a-string
C++ Easy Solution || Beginner's Solution || Vector✅✅
c-easy-solution-beginners-solution-vecto-gpj5
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
Manisha_jha658
NORMAL
2023-08-15T20:56:09.051861+00:00
2023-08-15T20:56:09.051879+00:00
705
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n vector<int> ans;\n int num=0;\n\n//Till the size of string is greater, while loop will work.\n while(s.size()>k){\n for(int i=0;i<s.size();i++){\n num=0;\n for(int j=0;j<k;j++){\n//while increasing j, always check whether i is less than the actual size.\n if(i<s.size()) \n num=num+s[i]+\'0\'-96;\n//If s[i]=1 then to change it in integer add \'0\' it become 97 thus sub 96.\n i++;\n }\n i--;\n ans.push_back(num);\n }\n s.clear(); //clear previous string\n for(int i=0;i<ans.size();i++){\n s=s+to_string(ans[i]); \n//change each number to string for concatenation \n }\n \n ans.clear();\n }\n return s;\n \n }\n};\n```
1
0
['C++']
1
calculate-digit-sum-of-a-string
Golang: recursion - runtime 0 ms, Beats 100%
golang-recursion-runtime-0-ms-beats-100-vta97
\n# Code\n\nfunc digitSum(s string, k int) string {\n if len(s) <= k { return s }\n result := split(s, k)\n return digitSum(stringCount(result), k)\n}\
9bany
NORMAL
2023-06-23T09:15:57.787112+00:00
2023-06-23T09:16:48.382896+00:00
171
false
\n# Code\n```\nfunc digitSum(s string, k int) string {\n if len(s) <= k { return s }\n result := split(s, k)\n return digitSum(stringCount(result), k)\n}\n\nfunc stringCount(strs []string) (result string) {\n for _, elements := range strs {\n sum := 0 \n for _, item := range elements {\n i, _ := strconv.Atoi(string(item))\n sum += i\n }\n result += fmt.Sprint(sum)\n }\n return\n}\n\nfunc split(s string, k int) (result []string) {\n if len(s) <= k { return []string{s} }\n result = append(result, s[:k])\n result = append(result, split(s[k:], k)...)\n return\n}\n```
1
0
['Go']
0
calculate-digit-sum-of-a-string
Ruby Solution. Easy to understand
ruby-solution-easy-to-understand-by-gusw-jsa1
\n# @param {String} s\n# @param {Integer} k\n# @return {String}\ndef digit_sum(s, k)\n while s.size > k\n arr = []\n i = 0\n while i < s
guswhitten
NORMAL
2023-01-17T21:14:45.040301+00:00
2023-01-17T21:14:45.040329+00:00
25
false
```\n# @param {String} s\n# @param {Integer} k\n# @return {String}\ndef digit_sum(s, k)\n while s.size > k\n arr = []\n i = 0\n while i < s.size\n sum = 0\n s[i...(i + k)].each_char { |c| sum += c.to_i }\n arr.push(sum.to_s)\n i += k\n end\n s.replace(arr.join)\n end\n \n s\nend\n```
1
0
['Ruby']
0
calculate-digit-sum-of-a-string
Iterate and Sum
iterate-and-sum-by-prashantunity-9nvk
\n# Code\n\npublic class Solution \n{\n public string DigitSum(string s, int k)\n {\n while(s.Length>k)\n {\n var sb = new String
PrashantUnity
NORMAL
2022-12-21T11:47:32.427578+00:00
2022-12-21T11:47:32.427616+00:00
463
false
\n# Code\n```\npublic class Solution \n{\n public string DigitSum(string s, int k)\n {\n while(s.Length>k)\n {\n var sb = new StringBuilder();\n int j=k;\n int ans=0;\n for(var i=0;i<s.Length;i++)\n {\n ans+=Convert.ToInt32(s[i].ToString());\n if(i==j-1)\n {\n sb.Append(ans.ToString());\n ans=0;\n j+=k;\n }\n }\n if(j>s.Length && s.Length%k!=0)\n {\n sb.Append(ans.ToString());\n ans=0;\n j+=k;\n }\n s=sb.ToString();\n }\n return s;\n }\n}\n```
1
0
['C#']
0
calculate-digit-sum-of-a-string
C#
c-by-neildeng0705-4cuv
\n\npublic class Solution \n{\n public string DigitSum(string s, int k) \n {\n while(s.Length > k)\n {\n var chunks = s.Select((c
neildeng0705
NORMAL
2022-10-05T18:02:39.451679+00:00
2022-10-05T18:02:39.451709+00:00
112
false
\n```\npublic class Solution \n{\n public string DigitSum(string s, int k) \n {\n while(s.Length > k)\n {\n var chunks = s.Select((c, index) => new {c, index})\n .GroupBy(x => x.index/k)\n .Select(group => group.Select(elem => elem.c))\n .Select(chars => new string(chars.ToArray()));\n s = string.Empty;\n foreach(string str in chunks)\n {\n s = s + str.Sum(c => c - \'0\').ToString();\n }\n }\n\n return s; \n }\n}\n```
1
0
['C#']
0
calculate-digit-sum-of-a-string
Python simple solution both recursive and iterative
python-simple-solution-both-recursive-an-euim
Recursive:\n\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n def str_sum(s):\n return str(sum([int(i) for i in s]))\n\n
Mark_computer
NORMAL
2022-09-13T19:00:53.169534+00:00
2022-09-13T19:01:13.550011+00:00
215
false
***Recursive:***\n```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n def str_sum(s):\n return str(sum([int(i) for i in s]))\n\n if len(s) <= k:\n return s\n tmp = []\n for i in range(0, len(s), k):\n tmp.append(str_sum(s[i:i + k]))\n s = \'\'.join(tmp)\n return self.digitSum(s, k)\n```\n\n***Iterative:***\n```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n def str_sum(s):\n return str(sum([int(i) for i in s]))\n\n while len(s) > k:\n tmp = []\n for i in range(0, len(s), k):\n tmp.append(str_sum(s[i:i + k]))\n s = \'\'.join(tmp)\n return s\n```
1
0
['Recursion', 'Iterator', 'Python', 'Python3']
0
calculate-digit-sum-of-a-string
[ JAVA ] --> 1ms Runtime easy and elegant Solution
java-1ms-runtime-easy-and-elegant-soluti-fvo4
\nint n=0,sum=0;\nStringBuilder ss=new StringBuilder(s);\nStringBuilder sk=new StringBuilder();\nwhile(ss.length()>k) {\n\tfor (int i = 0; i <= ss.length() - 1;
bgautam1254
NORMAL
2022-09-09T07:17:41.344238+00:00
2022-09-09T07:17:41.344277+00:00
303
false
```\nint n=0,sum=0;\nStringBuilder ss=new StringBuilder(s);\nStringBuilder sk=new StringBuilder();\nwhile(ss.length()>k) {\n\tfor (int i = 0; i <= ss.length() - 1; i++) {\n\t\tsum += ss.charAt(i) - \'0\';\n\t\tn++;\n\t\tif (n == k || i == ss.length() - 1) {\n\t\t\tsk.append(sum);\n\t\t\tn = 0;\n\t\t\tsum=0;\n\t\t\tif (i == ss.length() - 1) {\n\t\t\t\tss = new StringBuilder(sk);\n\t\t\t\tsk = new StringBuilder();\n\t\t\t}\n\t\t}\n\t}\n}\nreturn String.valueOf(ss);\n\n```\n**If you have any question, feel free to ask. If you like the solution or the explanation, Please UPVOTE !**
1
0
['String', 'Java']
0
calculate-digit-sum-of-a-string
Java Solution || Thinking Recursively || easy to understand
java-solution-thinking-recursively-easy-9gqqi
\nclass Solution {\n public String digitSum(String s, int k) {\n if (s.length() <= k) {\n return s;\n }\n int i = 0;\n
beastfake8
NORMAL
2022-08-26T14:33:02.294867+00:00
2022-08-26T14:33:02.294899+00:00
163
false
```\nclass Solution {\n public String digitSum(String s, int k) {\n if (s.length() <= k) {\n return s;\n }\n int i = 0;\n String help = "";\n for (i = 0; i < s.length() - k; i += k) {\n String str = s.substring(i, i+k);\n int n = 0;\n for (char c : str.toCharArray()) {\n n += Character.getNumericValue(c);\n }\n help += n;\n }\n if (i != s.length()) {\n String str = s.substring(i);\n int n = 0;\n for (char c : str.toCharArray()) {\n n += Character.getNumericValue(c);\n }\n help += n;\n }\n return digitSum(help, k);\n }\n}\n```
1
0
['Recursion', 'Java']
0
calculate-digit-sum-of-a-string
simple recursion
simple-recursion-by-kj_shreyas-q2nl
\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n self.res=""\n def recur(string):\n if len(string)<=k:\n
KJ_Shreyas
NORMAL
2022-08-26T11:31:44.155837+00:00
2022-08-26T11:31:44.155862+00:00
196
false
```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n self.res=""\n def recur(string):\n if len(string)<=k:\n self.res=string\n return string\n i=0\n newString=""\n while i<len(string):\n a=string[i:i+k]\n sumn=None\n for j in a:\n if not sumn:\n sumn=int(j)\n continue\n sumn+=int(j)\n newString+=str(sumn)\n i+=k\n recur(newString)\n recur(s)\n return self.res\n```
1
0
['Python']
0
calculate-digit-sum-of-a-string
Easy and Faster than 100% solution in cpp
easy-and-faster-than-100-solution-in-cpp-3kv7
class Solution {\npublic:\n string digitSum(string s, int k) {\n\t\n while(s.size()>k){\n string res="";\n for(int i=0;i<s.size();){\n
Harendra_Singh
NORMAL
2022-08-25T21:13:34.777844+00:00
2022-08-25T21:13:34.777874+00:00
58
false
class Solution {\npublic:\n string digitSum(string s, int k) {\n\t\n while(s.size()>k){\n string res="";\n for(int i=0;i<s.size();){\n int sum=0,j=i;\n for(;j<i+k and j<s.size();j++) sum+= (s[j]-\'0\');\n res+= to_string(sum);\n i=j;\n }\n s=res;\n }\n return s;\n }\n};
1
0
[]
0
calculate-digit-sum-of-a-string
[python] zip split, generator sum 5-liner (or 3 lines minified) - beats 100%
python-zip-split-generator-sum-5-liner-o-un6u
```\nfrom itertools import chain\n\n\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n string = s\n tail = \'0\' * (k - 1)\n
perfontana
NORMAL
2022-08-25T20:40:24.410698+00:00
2022-08-25T21:08:25.264180+00:00
208
false
```\nfrom itertools import chain\n\n\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n string = s\n tail = \'0\' * (k - 1)\n while len(string) > k:\n parts = list(\n zip(\n *(\n [iter(\n chain(string, tail)\n )] * k\n )\n )\n )\n string = \'\'.join(\n str(\n sum(\n int(number) for number in part\n )\n ) for part in parts\n )\n return string\n\t\t\n\t\t# ...or packed into (almost) one-liner\n\t\t#while len(s) > k:\n # s = \'\'.join(str(sum(int(number) for number in part)) for part in zip(*([iter(chain(s, \'0\' * (k - 1)))] * k)))\n #return s
1
0
['String', 'Iterator', 'Python']
1
calculate-digit-sum-of-a-string
Easy to understand || C++ || Faster
easy-to-understand-c-faster-by-thirt13n-akgp
\nclass Solution {\npublic:\n int toint(string x){\n int I=0;\n for(int i=0; i<x.size(); i++)\n I+=x[i]-48;\n return I;\n
thirt13n
NORMAL
2022-08-19T16:03:43.167343+00:00
2022-08-19T16:03:43.167376+00:00
205
false
```\nclass Solution {\npublic:\n int toint(string x){\n int I=0;\n for(int i=0; i<x.size(); i++)\n I+=x[i]-48;\n return I;\n }\n string digitSum(string s, int k) {\n while(s.size()>k){\n string temp="", x="";\n for(int i=0; i<s.size();i++){\n if((i+1)%k==0){\n x+=s[i];\n temp+=to_string(toint(x));\n x="";\n }\n else\n x+=s[i];\n }\n if(x.size())\n temp+=to_string(toint(x));\n s=temp;\n }\n return s;\n }\n};\n// Please upvote if its helpful to you! \n```
1
0
['String', 'C']
0
calculate-digit-sum-of-a-string
JavaScript - Easy Approach while loop
javascript-easy-approach-while-loop-by-g-hn6j
\n/**\n * @param {string} s\n * @param {number} k\n * @return {string}\n */\nconst digitSum = (s, k) => {\n while (s.length > k) {\n const getSum = ar
gpambasana
NORMAL
2022-08-15T10:21:02.707244+00:00
2022-08-15T10:21:02.707290+00:00
265
false
```\n/**\n * @param {string} s\n * @param {number} k\n * @return {string}\n */\nconst digitSum = (s, k) => {\n while (s.length > k) {\n const getSum = arr => arr.reduce((a, n) => parseInt(a) + parseInt(n), 0).toString();\n const parts = s.match(new RegExp(`.{1,${k}}`, `g`));\n s = parts.map(p => getSum(p.split(``))).join(``);\n }\n \n return s;\n}\n```
1
0
['JavaScript']
0
calculate-digit-sum-of-a-string
simple PYTHON solution || easy to understand
simple-python-solution-easy-to-understan-ci6k
This is the solution which can be understand easily\n\nhere i have iterated until I get the size less than or equal to k :\nfor every iteration the value of the
narendra_036
NORMAL
2022-08-06T15:02:50.878509+00:00
2022-08-06T15:02:50.878547+00:00
115
false
This is the solution which can be understand easily\n\nhere i have iterated until I get the size less than or equal to k :\nfor every iteration the value of the string changes\nfinally you will get the answer ..\n\n```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n \n while len(s)>k:\n \n s=[int(i) for i in s]\n x=""\n for i in range(0,len(s),k):\n x+=str(sum(s[i:i+k]))\n s=x\n return s\n```\n[https://github.com/Narendrakumarreddy-Kadiri](http://)
1
0
['Python']
0
calculate-digit-sum-of-a-string
Python3 O(n+k) || O(n) Runtime: 52ms 41.96% || Memory: 13.0mb 70.32%
python3-onk-on-runtime-52ms-4196-memory-5i608
Hope I didn\'t coded this in hardcore.\n\nclass Solution:\n# O(n+k) where n is the elements present in the string\n# and k is the number of steps\n# O(N) sp
arshergon
NORMAL
2022-07-24T17:55:00.627399+00:00
2022-07-24T17:55:00.627440+00:00
170
false
Hope I didn\'t coded this in hardcore.\n```\nclass Solution:\n# O(n+k) where n is the elements present in the string\n# and k is the number of steps\n# O(N) space\n# Runtime: 52ms 41.96% || Memory: 13.0mb 70.32%\n def digitSum(self, string: str, k: int) -> str:\n if not string:\n return string\n stringLength = len(string)\n k %= stringLength \n if stringLength == k or k == 0 or k == 1:\n return string\n\n return helper(string, k)\n\ndef helper(string, k):\n newStringList = list(string)\n newNum = 0\n tempList = list()\n for i in range(0, len(newStringList), k):\n newNum = sum(map(int, newStringList[i:k+i]))\n tempList += list(str(newNum))\n\n result = \'\'.join(tempList)\n if len(result) > k:\n return helper(result, k)\n return result\n```
1
0
['String', 'Python', 'Python3']
0
calculate-digit-sum-of-a-string
java solution
java-solution-by-mansishahh-arew
Iterative:\n\n\tclass Solution {\n public String digitSum(String s, int k) {\n if(s.length() <= k)\n return s;\n \n while(s.l
MansiShahh
NORMAL
2022-06-21T04:23:35.551300+00:00
2022-07-18T05:23:16.791523+00:00
113
false
Iterative:\n\n\tclass Solution {\n public String digitSum(String s, int k) {\n if(s.length() <= k)\n return s;\n \n while(s.length() > k){\n String temp = "";\n for(int i = 0; i < s.length(); i += k){\n int curSum = 0;\n for(int j = 0; j < k && (j + i) < s.length(); j++){\n curSum += s.charAt(i + j) - \'0\';\n }\n temp += curSum +"";\n }\n s = temp;\n }\n \n return s;\n }\n\t}\n\nRecursive:\n\n\tclass Solution {\n public String digitSum(String s, int k) {\n \n while(s.length() > k){\n s = roundTrip(s, k);\n }\n return s;\n }\n \n public String roundTrip(String s, int k){\n int i = 0, j = 0, currSum = 0;\n String ans = "";\n for(;i < s.length();){\n while(j < k && i < s.length()){\n currSum += s.charAt(i) - \'0\';\n i++;\n j++;\n }\n ans += currSum;\n j = 0; \n currSum = 0;\n }\n \n return ans;\n }\n\t}
1
0
['Java']
0
calculate-digit-sum-of-a-string
C++ | Simulation (Iterative) | Time: O(len) | Auxiliary Space: O(len / k)
c-simulation-iterative-time-olen-auxilia-nuvk
\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n while (s.length() > k) {\n string ret = "";\n for (int i = 0;
happylifewy
NORMAL
2022-06-13T05:27:32.651441+00:00
2022-06-13T05:27:32.651490+00:00
74
false
```\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n while (s.length() > k) {\n string ret = "";\n for (int i = 0; i < s.length(); i += k) {\n string sub = s.substr(i, k);\n int sum = 0;\n for (auto c: sub) {\n sum += c - \'0\';\n }\n ret += to_string(sum);\n }\n s = ret;\n }\n return s;\n }\n};\n```
1
0
[]
0
calculate-digit-sum-of-a-string
C naive solution- faster than 100%- explained
c-naive-solution-faster-than-100-explain-kxqd
\'\'\'\n\n\nchar * digitSum(char * s, int k){\n \n\t\t//base case\n\t\tif (strlen(s) <= k)\n\t\t\treturn s;\n\n\t\t//iterate through s using sPtr\n\t\tint j
InbarRofman
NORMAL
2022-06-02T11:42:44.060460+00:00
2022-06-02T11:42:44.060488+00:00
93
false
\'\'\'\n\n\nchar * digitSum(char * s, int k){\n \n\t\t//base case\n\t\tif (strlen(s) <= k)\n\t\t\treturn s;\n\n\t\t//iterate through s using sPtr\n\t\tint j = 0;\n\t\tchar *sPtr = s;\n\t\twhile (*sPtr != \'\\0\')\n\t\t{\n\t\t\tint sum = 0;\n\n\t\t\t//calculating the sum of groups of k\n\t\t\tfor (int i = 0; (i < k) && (*sPtr!=\'\\0\'); i++)\n\t\t\t{\n\t\t\t\tsum += *sPtr - \'0\';\n\t\t\t\tsPtr++;\n\t\t\t}\n\n\t\t\t//if sum is more than one digit, the sum is casted to a string and read in reverse\n\t\t\tif (sum > 9)\n\t\t\t{\n\t\t\t\tint i = 0;\n\t\t\t\tchar s1[k];\n\t\t\t\twhile (sum != 0)\n\t\t\t\t{\n\t\t\t\t\ts1[i++] = sum%10 + \'0\';\n\t\t\t\t\tsum /= 10;\n\t\t\t\t}\n\t\t\t\ti--;\n\t\t\t\tchar *ptr = s1 + i;\n\t\t\t\twhile (i >= 0)\n\t\t\t\t{\n\t\t\t\t\ts[j++] = s1[i--];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\telse\n\t\t\t\ts[j++] = sum + \'0\';\n\n\t\t}\n\t\ts[j] = \'\\0\';\n\n\t\t//recursive call for the new s\n\t\treturn digitSum(s, k);\n}\'\'\'
1
0
['C']
0
calculate-digit-sum-of-a-string
Java | Easy to understand
java-easy-to-understand-by-lekh_nith-sw0g
\nclass Solution {\n public String digitSum(String s, int k) {\n while(s.length() > k){\n String str = "";\n for(int i=0; i<s.le
lekh_nith
NORMAL
2022-05-27T05:28:58.861060+00:00
2022-05-27T05:28:58.861095+00:00
109
false
```\nclass Solution {\n public String digitSum(String s, int k) {\n while(s.length() > k){\n String str = "";\n for(int i=0; i<s.length(); i=i+k){\n int sum = 0;\n for(int j=i; j<s.length() && j<i+k ; j++)\n sum += Character.getNumericValue(s.charAt(j));\n str += String.valueOf(sum);\n }\n s = str;\n }\n return s;\n }\n}\n```
1
0
['Iterator', 'Java']
0
calculate-digit-sum-of-a-string
Simple Ruby solution with full explanation
simple-ruby-solution-with-full-explanati-clg8
\ndef digit_sum(s, k)\n # so we will loop until string size is greater than k\n while s.size > k\n # blank string to store up the value\n z = \'\'\n
abir162
NORMAL
2022-05-23T07:47:57.319604+00:00
2022-05-23T07:47:57.319639+00:00
57
false
```\ndef digit_sum(s, k)\n # so we will loop until string size is greater than k\n while s.size > k\n # blank string to store up the value\n z = \'\'\n # we will slice upto k elements and pass it to the loop\n s.chars.each_slice(k) do |a|\n # we will sum up, turn it into a string and add with the z\n z += a.sum(&:to_i).to_s\n end\n # we will pass z to s thus it will loop again\n s = z\n end\n # return s when it is not greater than k\n s\nend\n```
1
0
['Ruby']
0
calculate-digit-sum-of-a-string
Python | Very easy simulation
python-very-easy-simulation-by-__asrar-l9ew
\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n \'\'\'\n The basic idea is create a list of substrings with specified size k
__Asrar
NORMAL
2022-05-15T20:12:59.828191+00:00
2022-05-15T20:12:59.828217+00:00
115
false
```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n \'\'\'\n The basic idea is create a list of substrings with specified size k\n then perform digit sum and create a new string keep repeating the scenerio\n untill the newly formed string size becomes less then k.\n \'\'\'\n while len(s) > k:\n numslst = []\n for i in range(0,len(s),k):\n numslst.append(s[i:i+k])\n \n temp = \'\'\n for num in numslst:\n digits = [int(i) for i in num] # calculating digit in form of list\n temp += str(sum(digits)) # calculating sum\n s = temp # making current string as required string\n return s\n```
1
0
['String', 'Python']
0
calculate-digit-sum-of-a-string
C++ 12 line solution with Recursion
c-12-line-solution-with-recursion-by-ros-6gnh
\n\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n if(s.size() <= k)\n return s;\n string digits;\n for(int
roshatron
NORMAL
2022-05-08T16:41:31.433698+00:00
2022-05-08T16:41:31.433724+00:00
107
false
\n```\nclass Solution {\npublic:\n string digitSum(string s, int k) {\n if(s.size() <= k)\n return s;\n string digits;\n for(int i = 0; i < s.size(); i += k){\n string window = s.substr(i,k);\n int sum = 0;\n for(char i : window){\n sum += i - \'0\'; \n }\n digits += to_string(sum);\n }\n return digitSum(digits,k);\n }\n};\n```
1
0
['Recursion', 'C']
0
calculate-digit-sum-of-a-string
Java Easy Understanding - 8ms Using Recursive
java-easy-understanding-8ms-using-recurs-2buy
\n//This Solution Can Be Improved By Memoization Technique\nclass Solution {\n public String digitSum(String s, int k) {\n int sum = 0;\n Strin
Anbu_Mozhi_S
NORMAL
2022-04-30T06:30:49.404372+00:00
2022-04-30T06:30:49.404409+00:00
97
false
```\n//This Solution Can Be Improved By Memoization Technique\nclass Solution {\n public String digitSum(String s, int k) {\n int sum = 0;\n String str = "";\n //Check If The Summed Up String\'s Length Is Less Than K \n while(s.length()>k){\n //Recursive Function To Find The Summed Up String\n s = calculateRecurse(s, k);\n }\n return s;\n }\n \n public String calculateRecurse(String str, int k){\n int sum = 0;\n //Check If The String\'s Length Is Less/Equal To K\n //Stopping Condition For A Recursive Function\n if(str.length() <= k){\n for(int i=0; i<str.length(); i++){\n //Easiest Way To Convert A Char Value To Integer\n sum += str.charAt(i) - 48;\n }\n //Easiest Way To Convert A Integer To Char\n return sum + "";\n }\n //Recursive Flow Condition\n String s = str.substring(0,k);\n for(int i=0; i<k; i++){\n sum += str.charAt(i) - 48;\n }\n return (sum + "") + calculateRecurse(str.substring(k,str.length()), k);\n }\n}\n```
1
0
['Java']
0
calculate-digit-sum-of-a-string
Simple Python Solution
simple-python-solution-by-runchen-mr4p
\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n while len(s) > k:\n strList = [s[i:i+k] for i in range(0, len(s), k)]\n
runchen
NORMAL
2022-04-28T19:24:25.293617+00:00
2022-04-28T19:24:25.293654+00:00
119
false
```\nclass Solution:\n def digitSum(self, s: str, k: int) -> str:\n while len(s) > k:\n strList = [s[i:i+k] for i in range(0, len(s), k)]\n \n for idx, _s in enumerate(strList):\n strList[idx] = self.getSum(_s)\n s = "".join(strList)\n return s\n \n def getSum(self, s: str) -> str:\n return str(sum(map(int, list(s))))\n```
1
0
['Python']
0
calculate-digit-sum-of-a-string
PHP | simple | 100 mem beat
php-simple-100-mem-beat-by-stuu-bqg2
\n```\nclass Solution\n{\n\n /\n * @param string $s\n * @param int $k\n \n * @return String\n /\n public function digitSum($s, $k)\n {\n
stuu
NORMAL
2022-04-28T11:26:35.538660+00:00
2022-04-28T11:26:35.538691+00:00
49
false
![image](https://assets.leetcode.com/users/images/b511cf0a-1340-4a7b-bdeb-621a8ef0c892_1651145181.9083827.png)\n```\nclass Solution\n{\n\n /**\n * @param string $s\n * @param int $k\n *\n * @return String\n */\n public function digitSum($s, $k)\n {\n if(strlen($s) <= $k) return $s;\n $chunks = array_chunk(str_split($s), $k);\n\n $ds = \'\';\n foreach ($chunks as $chunk) {\n $ds .= array_sum($chunk);\n }\n\n return $this->digitSum($ds, $k);\n }\n}
1
0
['PHP']
1