python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import xpress as xp # Wrap is the xpress solver (https://pypi.org/project/xpress/, doc available at # https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/python/HTML/GUID-616C323F-05D8-3460-B0D7-80F77DA7D046.html) class XpressSolver: def __init__(self, timeout_s=None): self.vars = [] self.constraints = [] self.maximize = True self.timeout = timeout_s self.pd_gap = (None, None) self.pd_integral = None def create_integer_var(self, name, lower_bound, upper_bound): v = xp.var(name=name, lb=lower_bound, ub=upper_bound, vartype=xp.integer) self.vars.append(v) return v def create_real_var(self, name, lower_bound, upper_bound): v = xp.var(name=name, lb=lower_bound, ub=upper_bound, vartype=xp.continuous) self.vars.append(v) return v def create_binary_var(self, name): v = xp.var(name=name, vartype=xp.binary) self.vars.append(v) return v def set_objective_function(self, equation, maximize): self.of = equation self.maximize = maximize def add_constraint(self, cns): self.constraints.append(cns) def disable_presolver(self): # TBD pass def disable_cuts(self): # TBD pass def disable_heuristics(self): # TBD pass def solve(self): # Solve the problem. Return the result as a dictionary of values # indexed by the corresponding variables or an empty dictionary if the # problem is infeasible. p = self.as_xpress_problem() # Make sure the problem is feasible if p.iisfirst(0) == 0: raise RuntimeError("Problem is not feasible") # Solve and return the values for all the variables. if self.timeout: p.controls.maxtime = self.timeout p.solve() result = {} for v in self.vars: result[v] = p.getSolution(v) # Record the value of the primal dual gap. self.pd_gap = (p.getAttrib("mipbestobjval"), p.getAttrib("bestbound")) self.pd_integral = p.getAttrib("primaldualintegral") return result def primal_dual_gap(self): return self.pd_gap def primal_dual_integral(self): return self.pd_integral def load(self, mps_filename): # Not supported yet. assert False def export(self, lp_output_filename): p = xp.problem(self.vars, self.of, self.constraints) if self.maximize: p.chgobjsense(xp.maximize) else: p.chgobjsense(xp.minimize) p.write(lp_output_filename, "lp") def as_xpress_problem(self): p = xp.problem(self.vars, self.of, self.constraints) if self.maximize: p.chgobjsense(xp.maximize) else: p.chgobjsense(xp.minimize) return p
CL-LNS-main
xpress_solver.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import os.path import tarfile import zipfile import ecole import geco import geco.generator import glob import re import json import pyscipopt import hashlib import string import random import pyscipopt class InstanceLoader: LOCAL_INSTANCE = { "INDSET_test": "instances/INDSET_ER_6000/instance_ER4_*.cip", "INDSET_train": "instances/INDSET_ER_6000/train/train_instance_ER4_*.cip", } ECOLE = { # The settings are taken from the Gasse paper # (https://papers.nips.cc/paper/2019/file/d14c2267d848abeb81fd590f371d39bd-Paper.pdf) "SET_COVER_EASY": ecole.instance.SetCoverGenerator(n_rows=500, n_cols=500, density=0.05), "SET_COVER_MEDIUM": ecole.instance.SetCoverGenerator(n_rows=500, n_cols=1000, density=0.05), "SET_COVER_HARD": ecole.instance.SetCoverGenerator(n_rows=500, n_cols=2000, density=0.05), "INDEPENDENT_SET_EASY": ecole.instance.IndependentSetGenerator(n_nodes=500), "INDEPENDENT_SET_MEDIUM": ecole.instance.IndependentSetGenerator(n_nodes=1000), "INDEPENDENT_SET_HARD": ecole.instance.IndependentSetGenerator(n_nodes=1500), "AUCTION_EASY": ecole.instance.CombinatorialAuctionGenerator(n_items=100, n_bids=500), "AUCTION_MEDIUM": ecole.instance.CombinatorialAuctionGenerator(n_items=200, n_bids=1000), "AUCTION_HARD": ecole.instance.CombinatorialAuctionGenerator(n_items=300, n_bids=1500), "FACILITY_EASY": ecole.instance.CapacitatedFacilityLocationGenerator(n_facilities=100, n_customers=100), "FACILITY_MEDIUM": ecole.instance.CapacitatedFacilityLocationGenerator(n_facilities=100, n_customers=200), "FACILITY_HARD": ecole.instance.CapacitatedFacilityLocationGenerator(n_facilities=100, n_customers=400), } GECO = { # Instances from the GeCO generator "KNAPSACK_UC": lambda seed: geco.mips.knapsack.pisinger.uncorrelated(n=1974, c=2864, seed=seed), "KNAPSACK_WC": lambda seed: geco.mips.knapsack.pisinger.weakly_correlated(n=1974, c=2864, seed=seed), "KNAPSACK_SC": lambda seed: geco.mips.knapsack.pisinger.strongly_correlated(n=1974, c=2864, seed=seed), "KNAPSACK_ISC": lambda seed: geco.mips.knapsack.pisinger.inverse_strongly_correlated(n=1974, c=2864, seed=seed), "KNAPSACK_ASC": lambda seed: geco.mips.knapsack.pisinger.almost_strongly_correlated(n=1974, c=2864, seed=seed), "KNAPSACK_SUBSET_SUM": lambda seed: geco.mips.knapsack.pisinger.subset_sum(n=1974, c=2864, seed=seed), "KNAPSACK_UWSW": lambda seed: geco.mips.knapsack.pisinger.uncorrelated_with_similar_weights(n=1974, c=2864, seed=seed), #"KNAPSACK_SPANNER": lambda seed: geco.mips.knapsack.pisinger.spanner(v=345, m=2, n=995, distribution=**uncorrelated_distribution(), capacity=1720, seed=seed), "KNAPSACK_PROFIT_CEILING": lambda seed: geco.mips.knapsack.pisinger.profit_ceiling(n=2974, c=1864, d=1.5, seed=seed), "KNAPSACK_CIRCLE": lambda seed: geco.mips.knapsack.pisinger.circle(n=1974, c=2864, seed=seed), "KNAPSACK_MSC": lambda seed: geco.mips.knapsack.pisinger.multiple_strongly_correlated(n=1974, c=2864, k1=1, k2=2, d=3, seed=seed), "KNAPSACK_YANG": lambda seed: geco.mips.knapsack.yang.yang_instance(n=2368, seed=seed), "SCHEDULING_HEINZ": lambda seed: geco.mips.scheduling.heinz.heinz_instance(number_of_facilities=43, number_of_tasks=114, seed=seed), "SCHEDULING_HOOKER": lambda seed: geco.mips.scheduling.hooker.hooker_instance(number_of_facilities=23, number_of_tasks=73, time_steps=25, seed=seed), "SET_PACKING": lambda seed: geco.mips.set_packing.yang.yang_instance(m=734, seed=seed), "SET_COVER_SUN": lambda seed: geco.mips.set_cover.sun.sun_instance(n=1927, m=1467, seed=seed), "SET_COVER_YANG": lambda seed: geco.mips.set_cover.yang.yang_instance(m=1513, seed=seed), #"PRODUCTION_PLANNING": lambda seed: geco.mips.production_planning.tang.tang_instance(T=5, seed=seed), "MAX_INDEPENDENT_SET": lambda seed: geco.mips.independent_set.barabasi_albert.barabasi_albert_instance(m=10, n=100, seed=seed), "MAX_CUT": lambda seed: geco.mips.max_cut.tang.tang_instance(n=593, m=684, seed=seed), "PACKING": lambda seed: geco.mips.packing.tang.tang_instance(n=321, m=428, seed=seed), #"GRAPH_COLORING": lambda seed: geco.mips.graph_coloring.generic.assigment(seed=seed), #"FACILITY_CORNUEJOLS": lambda seed: geco.mips.facility_location.cornuejols.cornuejols_instance(n_customers=385, n_facilities=683, ratio=.95, seed=seed), } GECO_MIPLIB = { "MIPLIB_BENCHMARK": geco.mips.loading.miplib.benchmark_instances(), "MIPLIB_EASY": geco.mips.loading.miplib.easy_instances(), "MIPLIB_HARD": geco.mips.loading.miplib.hard_instances(), "MIPLIB_OPEN": geco.mips.loading.miplib.open_instances(), #"ORLIB": geco.mips.loading.orlib_load_instance(), } DATASETS = { "BCOL": "mip_BCOL-CLS.tar.gz", "CORLAT": "mip_COR-LAT.tar.gz", "MIPLIB": "collection.zip", "MIPLIB_FILTERED": "collection.zip", "RCW2": "mip_RCW2.tar.gz", "Regions200": "mip_Regions200.tar.gz", } COMPETITION = { "ANONYMOUS": "anonymous.tar.gz", "ITEM_PLACEMENT": "item_placement.tar.gz", "LOAD_BALANCING": "load_balancing.tar.gz", } #DFLT_TMP_FILE_LOC = "/tmp/" + str(os.geteuid()) + "/" #DFLT_TMP_FILE_LOC = "/tmp/" + str(2575) + "/" DFLT_TMP_FILE_LOC = "" def __init__(self, dataset_loc = "", tmp_file_loc = DFLT_TMP_FILE_LOC, mode="*", repeat=False, presolve=True, competition_settings=True, load_metadata=False, shard=0, shard_count=0, pprocess = False): dataset_loc = os.path.expanduser(dataset_loc) #try: # os.mkdir(tmp_file_loc) #except FileExistsError: # pass self.dataset_loc = dataset_loc self.tmp_file_loc = tmp_file_loc self.mode = mode self.repeat = repeat self.presolve = presolve self.competition_settings=competition_settings self.load_metadata = load_metadata self.shard = shard self.shard_count = shard_count self.filtered_instances = [] self.post_process = pprocess assert shard >= 0 assert (shard < shard_count or shard_count == 0) @staticmethod def hash_model(model): letters = string.ascii_letters tmp_file = '/tmp/' + ''.join(random.choice(letters) for i in range(10)) + '.lp' model.as_pyscipopt().writeProblem(tmp_file) with open(tmp_file, 'r') as f: problem = f.read() problem = problem.encode() key = hashlib.blake2s(problem, digest_size=4).hexdigest() return key def load(self, dataset_name): if not self.repeat: for m in self.load_datasets(dataset_name): yield m else: while True: for m in self.load_datasets(dataset_name): yield m def load_datasets(self, dataset_name): datasets = dataset_name.split('+') for d in datasets: for m in self.load_once(d): yield m print(self.filtered_instances) def load_once(self, dataset_name): if dataset_name in self.ECOLE: return self.load_ecole(dataset_name) elif dataset_name in self.GECO: return self.load_geco(dataset_name) elif dataset_name in self.GECO_MIPLIB: return self.load_geco_miplib(dataset_name) elif dataset_name in self.LOCAL_INSTANCE: return self.load_local_instance(dataset_name) elif dataset_name in self.COMPETITION: return self.load_competition(dataset_name) filename = self.DATASETS[dataset_name] local_version = os.path.join(self.dataset_loc, filename) if zipfile.is_zipfile(local_version): return self.load_zip(local_version) elif tarfile.is_tarfile(local_version): filter = re.compile(".+mps|.+lp") return self.load_tar(local_version, filter=filter) else: assert False def setup(self, ecole_model): if self.competition_settings: #print("disabling") # disable SCIP heuristics and restarts scip_model = ecole_model.as_pyscipopt() scip_model.setHeuristics(pyscipopt.scip.PY_SCIP_PARAMSETTING.OFF) ecole_model.set_params({ 'estimation/restarts/restartpolicy': 'n', }) def preprocess(self, ecole_model): self.setup(ecole_model) #print(self.presolve) if self.presolve: return ## NEVER presolve print("presolving mip") ecole_model.presolve() def load_zip(self, local_version): with zipfile.ZipFile(local_version) as z: if self.shard_count: files = z.namelist() shard = files[slice(self.shard, None, self.shard_count)] else: shard = z.namelist() for member in shard: f = z.extract(member, path=self.tmp_file_loc) instance = os.path.join(self.tmp_file_loc, member) #yield instance #bad coding :( this is just for loading MIPLIB instance continue #ecole_model = ecole.scip.Model.from_file(instance) temp_model = pyscipopt.Model() print(instance) temp_model.readProblem(instance) if temp_model.getNVars() != temp_model.getNBinVars(): continue #self.filtered_instances.append(member) #print(self.filtered_instances) ecole_model = ecole.scip.Model.from_pyscipopt(temp_model) self.preprocess(ecole_model) if not ecole_model.is_solved: yield ecole_model def load_tar(self, local_version, filter=None, presolved=False): with tarfile.open(local_version) as t: members = t.getmembers() if self.shard: members = members[slice(self.shard, None, self.shard_count)] for member in members: if not member.isfile(): continue if filter and not filter.match(member.name): continue f = t.extract(member, path=self.tmp_file_loc) instance = os.path.join(self.tmp_file_loc, member.name) #ecole_model = ecole.scip.Model.from_file(instance) temp_model = pyscipopt.Model() temp_model.readProblem(instance) ecole_model = ecole.scip.Model.from_pyscipopt(temp_model) self.setup(ecole_model) if self.presolve and not presolved: ecole_model.presolve() if ecole_model.is_solved: continue if not self.load_metadata: yield ecole_model else: metadata_loc = member.name.replace('mps', 'json') f = t.extract(metadata_loc, path=self.tmp_file_loc) raw_metadata = os.path.join(self.tmp_file_loc, metadata_loc) with open(raw_metadata) as f: metadata = json.load(f) yield (ecole_model, metadata) def load_ecole(self, instance_type): instances = self.ECOLE[instance_type] instances.seed(self.shard) for ecole_model in instances: self.preprocess(ecole_model) if not ecole_model.is_solved: yield ecole_model def load_geco(self, instance_type): generator = self.GECO[instance_type] for m in geco.generator.generate(generator, seed=self.shard): ecole_model = ecole.scip.Model.from_pyscipopt(m) self.preprocess(ecole_model) if not ecole_model.is_solved: yield ecole_model def load_geco_miplib(self, instance_type): # Sharding not supported yet assert self.shard_count == 0 instances = self.GECO_MIPLIB[instance_type] for m in instances: ecole_model = ecole.scip.Model.from_pyscipopt(m) self.preprocess(ecole_model) if not ecole_model.is_solved: yield ecole_model def load_local_instance(self, instance_type): # Sharding not supported yet assert self.shard_count == 0 dir = self.LOCAL_INSTANCE[instance_type] for instance in glob.glob(dir): print(instance) temp_model = pyscipopt.Model() if self.post_process: yield temp_model continue temp_model.readProblem(instance) ecole_model = ecole.scip.Model.from_pyscipopt(temp_model) #ecole_model = ecole.scip.Model.from_file(instance) self.preprocess(ecole_model) #self.setup(ecole_model) yield ecole_model def load_competition(self, instance_type): filename = self.COMPETITION[instance_type] local_version = os.path.join(self.dataset_loc, filename) filter = re.compile(".+mps") return self.load_tar(local_version, filter=filter, presolved=True) if __name__ == '__main__': loader = InstanceLoader() for m in loader.load("KNAPSACK_YANG"): print(str(m)) break
CL-LNS-main
instance_loader.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import multiprocessing import os import re import subprocess import sys import sysconfig from distutils.version import LooseVersion from setuptools import setup, Extension from setuptools.command.build_ext import build_ext from setuptools.command.test import test class CMakeExtension(Extension): def __init__(self, name, src_dir=""): super(CMakeExtension, self).__init__(name, sources=[]) self.src_dir = os.path.abspath(src_dir) class CMakeBuild(build_ext): def run(self): try: cmake_version = subprocess.check_output(["cmake", "--version"]) except OSError: raise RuntimeError( "CMake must be installed to build the following extensions: " + ", ".join(e.name for e in self.extensions)) cmake_version = LooseVersion( re.search(r"version\s*([\d.]+)", cmake_version.decode()).group(1)) if cmake_version < "3.14": raise RuntimeError("CMake >= 3.14 is required.") for ext in self.extensions: self.build_extension(ext) def build_extension(self, ext): ext_dir = os.path.abspath(os.path.dirname( self.get_ext_fullpath(ext.name))) cmake_args = ["-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=" + ext_dir, "-DPYTHON_EXECUTABLE=" + sys.executable] cfg = "Debug" if self.debug else "Release" build_args = ["--config", cfg] cmake_args += ["-DCMAKE_BUILD_TYPE=" + cfg] build_args += ["--", f"-j{multiprocessing.cpu_count()}"] env = os.environ.copy() env["CXXFLAGS"] = f'{env.get("CXXFLAGS", "")} \ -DVERSION_INFO="{self.distribution.get_version()}"' if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) subprocess.check_call(["cmake", ext.src_dir] + cmake_args, cwd=self.build_temp, env=env) subprocess.check_call(["cmake", "--build", "."] + build_args, cwd=self.build_temp) print() # Add an empty line for cleaner output setup( name="ml4co", version="0.1", packages=["ml4co", "ml4co.ops"], description="", long_description="", # add extension module ext_modules=[CMakeExtension("ml4co", "./ml4co")], # add custom build_ext command cmdclass=dict(build_ext=CMakeBuild), zip_safe=False, url="", )
CL-LNS-main
setup.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import submitit import os import argparse from graph_datasets.bipartite_graph_loader import BipartiteGraphLoader import torch from torch import autograd import glob import torch.nn.functional as F import torch_geometric import time from graph_datasets.bipartite_graph_dataset import BipartiteGraphDataset, BipartiteGraphDatasets from neural_nets.gnn_policy import GNNPolicy from neural_nets.losses import LogScoreLoss, LinearScoreLoss from tensorboardX import SummaryWriter as SummaryWriter import numpy as np import math from IPython import embed from graph_datasets.bipartite_graph_observations import augment_variable_features_with_dynamic_ones from torchmetrics.functional import auroc from os.path import exists import pickle import sys from pytorch_metric_learning import losses from pytorch_metric_learning.distances import DotProductSimilarity class Args: pass def multi_hot_encoding(input): max_val = torch.max(input, -1, keepdim=True).values - 1.0e-10 multihot = input >= max_val return multihot.float() initial_solution = dict() DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #DEVICE = 'cpu' log_score_loss_function = LogScoreLoss().to(DEVICE) linear_score_loss_function = LinearScoreLoss().to(DEVICE) bce_loss_function = torch.nn.BCEWithLogitsLoss(reduction="none").to(DEVICE) infoNCE_loss_function = losses.NTXentLoss(temperature=0.07,distance=DotProductSimilarity()).to(DEVICE) #data_loc = "training_data/" def pad_tensor(input, pad_sizes, normalize, pad_value=-1e10): """ This utility function splits a tensor and pads each split to make them all the same size, then stacks them. """ max_pad_size = pad_sizes.max() output = input.split(pad_sizes.cpu().numpy().tolist()) processed = [] for i in range(len(output)): slice = output[i] if normalize: # Normalize the scores to ensure they fall in the [-1, 1] range max_val = torch.max(abs(output[i])) print(max_val) slice /= max_val processed.append(F.pad(slice, (0, max_pad_size-slice.size(0)), 'constant', pad_value)) output = torch.stack(processed, dim=0) #output = torch.stack([F.pad(slice_, (0, max_pad_size-slice_.size(0)), 'constant', pad_value) # for slice_ in output], dim=0) return output def load_policy_from_checkpoint(args): policy = GNNPolicy(args.gnn_type) try: ckpt = torch.load(args.warmstart, map_location=DEVICE) try_again = False except Exception as e: print("Checkpoint " + args.checkpoint + " not found, bailing out: " + str(e)) sys.exit(1) policy.load_state_dict(ckpt.state_dict()) #policy = policy.to(DEVICE) #model_version = datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S") print("Loaded checkpoint") print(f"Will run evaluation on {DEVICE} device", flush=True) #embed() return policy def process(args, policy, data_loader, optimizer=None): """ This function will process a whole epoch of training or validation, depending on whether an optimizer is provided. """ prefix = "Train" if optimizer else "Eval" #embed() if args.loss == "linear_score": loss_function = linear_score_loss_function elif args.loss == "log_score": loss_function = log_score_loss_function else: loss_function = bce_loss_function mean_loss = 0.0 mean_acc = 0.0 mean_auc = 0.0 mean_offby = 0.0 top_k = [1, 3, 5, 10] k_acc = [0.0, 0.0, 0.0, 0.0] n_iters = 0 n_samples_processed = 0 n_positive_samples = 0 n_negative_samples = 0 start = time.time() n_samples_previously_processed = 0 history_window_size = 3 with torch.set_grad_enabled(optimizer is not None): for batch in data_loader: assert not torch.isnan(batch.constraint_features).any() assert not torch.isnan(batch.edge_attr).any() assert not torch.isnan(batch.variable_features).any() assert not torch.isnan(batch.edge_index).any() assert not torch.isinf(batch.constraint_features).any() assert not torch.isinf(batch.edge_attr).any() assert not torch.isinf(batch.variable_features).any() assert not torch.isinf(batch.edge_index).any() batch = batch.to(DEVICE) # TO DO: Fix the dataset instead if torch.isnan(batch.candidate_scores).any(): print("Skipping batch with NaN scores") continue global initial_solution batch = augment_variable_features_with_dynamic_ones(batch, args, initial_solution) # Compute the logits (i.e. pre-softmax activations) according to the policy on the concatenated graphs try: logits = policy(batch.constraint_features, batch.edge_index, batch.edge_attr, batch.variable_features) except RuntimeError as e: print("Skipping batch due to error: " + str(e)) continue # Index the results by the candidates, and split and pad them #pred_scores = pad_tensor(logits[batch.candidates], batch.nb_candidates, normalize=False) pred_scores = pad_tensor(logits, batch.nb_candidates, normalize=False) #pred_scores = torch.sigmoid(pred_scores) true_scores = pad_tensor(batch.candidate_scores, batch.nb_candidates, normalize=False) assert not torch.isnan(pred_scores).any() assert not torch.isnan(true_scores).any() #assert not torch.isnan(batch.candidate_choices).any() if args.loss == "cross_entropy": # Compute the usual cross-entropy classification loss loss = F.cross_entropy(pred_scores, batch.candidate_choices) elif args.loss == "bce": multi_hot_labels = multi_hot_encoding(true_scores) #print("lost function is bce") raw_loss = bce_loss_function(pred_scores, multi_hot_labels) batch_loss = torch.mean(raw_loss, 1) loss_sum = torch.sum(torch.mul(batch_loss, batch.batch_weight)) loss = torch.div(loss_sum, torch.sum(batch.batch_weight)) elif args.loss == "nt_xent": # # Try https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#ntxentloss # # Can also try https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#supconloss. # assert False # TBD # loss = loss_function(pred_labels, true_labels) #embed() batch_size = pred_scores.shape[0] multi_hot_labels = multi_hot_encoding(true_scores) embeddings = torch.sigmoid(pred_scores) anchor_positive = [] anchor_negative = [] positive_idx = [] negative_idx = [] total_sample = batch_size #embed() for i in range(batch_size): if batch.batch_weight[i].item() == 1: #embed() #anchor.append(i) if len(batch.info["positive_samples"][i]) == 0: #due to unknown bugs for SC #embed() continue ground_truth_improvement = max(batch.info["positive_labels"][i]) for j in range(len(batch.info["positive_samples"][i])): improvement_j = batch.info["positive_labels"][i][j] if improvement_j >= ground_truth_improvement * 0.5: anchor_positive.append(i) positive_idx.append(total_sample) embeddings = torch.cat([embeddings, torch.tensor([batch.info["positive_samples"][i][j]]).to(DEVICE)]) total_sample += 1 n_positive_samples += 1 for j in range(len(batch.info["negative_samples"][i])): improvement_j = batch.info["negative_labels"][i][j] if improvement_j <= ground_truth_improvement * 0.05: anchor_negative.append(i) negative_idx.append(total_sample) embeddings = torch.cat([embeddings, torch.tensor([batch.info["negative_samples"][i][j]]).to(DEVICE)]) total_sample += 1 n_negative_samples += 1 triplets = (torch.tensor(anchor_positive).to(DEVICE), torch.tensor(positive_idx).to(DEVICE), torch.tensor(anchor_negative).to(DEVICE), torch.tensor(negative_idx).to(DEVICE)) loss = infoNCE_loss_function(embeddings, indices_tuple = triplets) else: # use the log or linear score loss normalized_scores = normalize_tensor(batch.candidate_scores) loss = loss_function(logits[batch.candidates], normalized_scores) if math.isnan(loss.item()): continue assert not math.isnan(loss.item()) if not (loss.item() >= 0 or torch.sum(batch.batch_weight).item() == 0): print("Error") embed() assert loss.item() >= 0 or torch.sum(batch.batch_weight).item() == 0, f"loss = {loss.item()}, #samples = {torch.sum(batch.batch_weight).item()}" if optimizer is not None: optimizer.zero_grad() loss.backward() optimizer.step() #embed() mean_loss += loss.item() * torch.sum(batch.batch_weight).item() #mean_loss += loss_sum.item() n_samples_processed += torch.sum(batch.batch_weight).item()# batch.num_graphs n_iters += 1 #embed() for i in range(multi_hot_labels.shape[0]): if batch.batch_weight[i].item() == 0: continue mean_auc += auroc(torch.sigmoid(pred_scores)[i], multi_hot_labels.int()[i], pos_label = 1).item() if n_iters % args.checkpoint_every == 0: end = time.time() speed = (n_samples_processed - n_samples_previously_processed) / (end - start) start = time.time() n_samples_previously_processed = n_samples_processed print(f"{prefix} loss: {mean_loss/n_samples_processed:0.3f}, auc: {mean_auc/n_samples_processed:0.3f}, speed: {speed} samples/s") if optimizer: print("Checkpointing model") torch.save(policy, args.checkpoint) if n_samples_processed > 0: mean_loss /= n_samples_processed mean_acc /= n_samples_processed mean_auc /= n_samples_processed mean_offby /= n_samples_processed for i in range(len(k_acc)): k_acc[i] /= n_samples_processed else: mean_loss = float("inf") mean_acc = 0 mean_offby = float("inf") mean_auc = 0 for i in range(len(k_acc)): k_acc[i] = 0 print("n_samples_processed", n_samples_processed) return mean_loss, mean_auc #, mean_offby, k_acc def train_model(args): train_loader = BipartiteGraphLoader(args.train_db, shuffle=True, first_k=args.train_db_first_k) valid_loader = BipartiteGraphLoader(args.valid_db, shuffle=False) print(f"Training on {train_loader.num_examples()} examples") print(f"Evaluating on {valid_loader.num_examples()} examples") #from IPython import embed; embed() print(F"Using DEVICE {DEVICE}") tb_writer = SummaryWriter(log_dir=args.tensorboard, comment="neural_LNS") policy = GNNPolicy(args.gnn_type).to(DEVICE) if not (args.warmstart is None): print("Warnstarting training, loading from checkpoint %s"%(args.warmstart)) policy = load_policy_from_checkpoint(args) policy = policy.to(DEVICE) print(f"Checkpoint will be saved to {args.checkpoint}") num_of_parameters = sum(p.numel() for p in policy.parameters() if p.requires_grad) print("number of parameters =", num_of_parameters) learning_rate = args.lr best_valid_loss = float("inf") last_improved = 0 optimizer = torch.optim.AdamW(policy.parameters(), lr=learning_rate, weight_decay=args.weight_decay, amsgrad=True) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 5, eta_min=learning_rate/10, verbose=False) for epoch in range(args.num_epochs): start = time.time() print(f"Starting epoch {epoch+1}", flush=True) with autograd.set_detect_anomaly(args.detect_anomalies): train_iterator = train_loader.load(batch_size=args.batch_size) #32 train_loss, train_auc = process(args, policy, train_iterator, optimizer) print(f"Train loss: {train_loss:0.3f}, Train auc: {train_auc:0.3f}") valid_iterator = valid_loader.load(batch_size=args.batch_size) #32 valid_loss, valid_auc = process(args, policy, valid_iterator, None) print(f"Valid loss: {valid_loss:0.3f}, Valid auc: {valid_auc:0.3f}") end = time.time() tb_writer.add_scalar("Train/Loss", train_loss, global_step=epoch) tb_writer.add_scalar("Train/Auc", train_auc, global_step=epoch) tb_writer.add_scalar("Valid/Loss", valid_loss, global_step=epoch) tb_writer.add_scalar("Valid/Auc", valid_auc, global_step=epoch) # Done with one epoch, we can freeze the normalization policy.freeze_normalization() # Anneal the learning rate if requested if args.anneal_lr: scheduler.step() # Save the trained model print(f"Done with epoch {epoch+1} in {end-start:.1f}s, checkpointing model", flush=True) torch.save(policy, args.checkpoint+"_epoch%d"%(epoch)) # Check if we need to abort, adjust the learning rate, or just give up if math.isnan(train_loss) or math.isnan(valid_loss): print("NaN detected in loss, aborting") break if valid_loss < best_valid_loss: best_valid_loss = valid_loss last_improved = epoch print("Checkpointing new best model in " + args.checkpoint + "_best") torch.save(policy, args.checkpoint + "_best") elif epoch - last_improved > args.give_up_after: print("Validation loss didn't improve for too many epochs, giving up") break elif epoch - last_improved > args.decay_lr_after: learning_rate /= 2 print(f"Adjusting the learning rate to {learning_rate}") optimizer = torch.optim.Adam(policy.parameters(), lr=learning_rate) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 5, eta_min=learning_rate/10, verbose=False) # Give the model some time to improve with the new learning rate last_improved = epoch def train(problem, gnn_type = "gat", feature_set = "feat2", batch_size = 32, warmstart = None, loss = "bce", notes = '', data_loc = None): print("Starting training model on " + problem, flush=True) print("gnn_type = ", gnn_type, "feature_set=", feature_set) assert not (data_loc is None), "no training data location provided" save_to_folder = "model/model_%s_%s_%s_%s_%s/" % (problem, feature_set, "no" if warmstart is None else "warmstart", loss, notes) try: os.mkdir(save_to_folder) except OSError as error: print(error) args = Args() args.problem = problem args.num_epochs=30 args.batch_size = batch_size args.lr=0.001 args.anneal_lr = False args.decay_lr_after=20 args.give_up_after=100 args.train_db_first_k=None args.weight_decay=0.00005 args.window_size = 3 args.loss = loss args.gnn_type = gnn_type experiment = feature_set + "_" + args.gnn_type args.experiment = experiment args.warmstart = warmstart args.tensorboard = save_to_folder + "neural_LNS_" + problem + "_" + experiment + ".tb" args.checkpoint = save_to_folder + "neural_LNS_" + problem + "_" + experiment + ".pt" args.checkpoint_every=40 train_dbs = [] valid_dbs = [] dir = data_loc+"/*.db" num_data_file = 0 for dataset in glob.glob(dir): num_data_file += 1 validation_cutoff = int( num_data_file * 0.125) for i, dataset in enumerate(glob.glob(dir)): try: train_loader = BipartiteGraphLoader(dataset, shuffle=True) except: continue if train_loader.num_examples() == 0: continue if i >= validation_cutoff: train_dbs.append(dataset) else: valid_dbs.append(dataset) args.train_db = "+".join(train_dbs) args.valid_db = "+".join(valid_dbs) args.detect_anomalies = False train_model(args) torch.cuda.empty_cache() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--problem-set", default="INDSET_train", help="Problem set") parser.add_argument("--gnn-type", default="gat", type=str, help="GNN type: gasse or gat") parser.add_argument("--feature-set", default="feat2", type=str, help="feat1: Gasse's feature only; feat2: Gasse+Khalil features; feat3: feat2+LB RELAX features") parser.add_argument("--loss", default="nt_xent", type=str, help="nt_xent: contrastive loss; bce: bce loss") parser.add_argument("--data-loc", default=None, type=str, help="Provide the dataset folder location") parser.add_argument("--wind-size", default=3, type = int, help="window size = the number of past incumbent features in features") input_args = parser.parse_args() if input_args.data_loc is None: input_args.data_loc = "training_data/" + input_args.problem_set train(input_args.problem_set, gnn_type = input_args.gnn_type, feature_set = input_args.feature_set, loss = input_args.loss, data_loc = input_args.data_loc)
CL-LNS-main
train_neural_LNS.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from graph_datasets.bipartite_graph import * from graph_datasets.bipartite_graph_dataset import BipartiteGraphDataset import graph_datasets.bipartite_graph_observations as bgo from instance_loader import InstanceLoader from ilp_model import Solution import argparse import copy import random import pyscipopt from neural_nets.gnn_policy import GNNPolicy from pyscipopt import quicksum import time import ecole import networkx as nx import pickle import statistics from graph_datasets.featurization_test import make_obs import os import sys from IPython import embed DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') global WIND_SIZE WIND_SIZE = 3 COLLECT_SOLVE_TIME_LIMIT = 60 * 60 * 1 #2hours STEP_PER_COLLECT = 1 class MyEvent(pyscipopt.Eventhdlr): def eventinit(self): print("init event") self._start_time = time.monotonic() self.scip_log = [] self.start_time = time.monotonic() self.model.catchEvent(pyscipopt.SCIP_EVENTTYPE.BESTSOLFOUND, self) def eventexit(self): print("exit event") #self.model.dropEvent(pyscipopt.SCIP_EVENTTYPE.BESTSOLFOUND, self) def eventexec(self, event): print("exec event") self.end_time = time.monotonic() #obj = self.model.getPrimalbound() #print(obj, self.end_time - self._start_time) sol = self.model.getBestSol() obj = self.model.getSolObjVal(sol) Sol = Solution(self.model, sol, obj) log_entry = dict() log_entry['best_primal_sol'] = Sol log_entry['best_primal_scip_sol'] = sol log_entry['primal_bound'] = obj log_entry['solving_time'] = self.end_time - self.start_time log_entry['iteration_time'] = self.end_time - self.start_time log_entry['selection_time'] = 0 var_index_to_value = dict() for v in self.model.getVars(): v_name = v.name v_value = Sol.value(v) var_index_to_value[v_name] = v_value log_entry['var_index_to_value'] = copy.deepcopy(var_index_to_value) self.scip_log.append(log_entry) self.start_time = self.end_time #print(log_entry['primal_bound'], log_entry['solving_time'], self.end_time - self._start_time) def run_vanilla_scip(model, args): model = model.__repr__.__self__ event = MyEvent() model.includeEventhdlr( event, "", "" ) model.setParam("limits/time", args.time_limit) if "AGGR" in args.destroy_heuristic: print("Enabled aggressive mode for BnB with SCIP") model.setHeuristics(pyscipopt.scip.PY_SCIP_PARAMSETTING.AGGRESSIVE) model.optimize() return event.scip_log NUM_OF_EXPERT_SAMPLES = 50 def isInteger(x): return abs(x - round(x)) <=1e-8 def add_scip_config_to_mip_model(scip_config): for param, value in scip_config.items(): model.setRealParam(param, value) return model def scip_solve(model, incumbent_solution = None, scip_config = None, timer = None, get_initial_solution = False, primal_bound = None, prev_LNS_log = None, get_num_solutions = 1, mute = False, isMIPLIB = False): start_time = time.monotonic() if primal_bound is not None: objective_sense = model.getObjectiveSense() if objective_sense == "minimize": model.addCons(model.getObjective() <= primal_bound + 1e-8) #if not mute: #print("---added a new constraint using the primal bound for minimization") else: model.addCons(model.getObjective() >= primal_bound - 1e-8) #if not mute: #print("---added a new constraint using the primal bound for maximization") #print("added a new constraint using the primal bound") #model = add_scip_config_to_mip_model(model, scip_config) if scip_config is not None: for param, value in scip_config.items(): #print(param, value) model.setParam(param, value) found = True init_time = None if get_initial_solution == True: found = False #runtime_left = model.getParam('limits/time') runtime_left = 900 #time_limit = 610 if isMIPLIB else 10 time_limit = model.getParam('limits/time') while not found and time_limit <= runtime_left: #if time_limit * 2 >= runtime_left: # time_limit = runtime_left #time_limit = min(time_limit, runtime_left) model.setParam('limits/time', time_limit) start_time = time.monotonic() #embed() model.optimize() end_time = time.monotonic() init_time = end_time - start_time num_solutions_found = model.getNSols() found = (num_solutions_found > 0) #runtime_left -= time_limit if time_limit >= runtime_left-1e3: break time_limit *= 2 time_limit = min(time_limit, runtime_left) else: model.optimize() end_time = time.monotonic() init_time = end_time - start_time if not mute: print("finished optimizing sub mip") end_time = time.monotonic() status = model.getGap()#model.getStatus() log_entry = None if found == True: if model.getNSols() == 0: # if no solution in a LNS iteration, then return the same copy of the previous log but change the runtime if prev_LNS_log is None: return -1, None log_entry = dict() for k, v in prev_LNS_log.items(): log_entry[k] = v #log_entry = copy.deepcopy(prev_LNS_log) log_entry['solving_time'] = init_time return status, log_entry sol = model.getBestSol() obj = model.getSolObjVal(sol) Sol = Solution(model, sol, obj) log_entry = {} log_entry['best_primal_sol'] = Sol log_entry['best_primal_scip_sol'] = sol log_entry['primal_bound'] = obj if not (init_time is None): log_entry['solving_time'] = init_time log_entry['iteration_time'] = init_time else: log_entry['solving_time'] = end_time - start_time log_entry['iteration_time'] = end_time - start_time log_entry['selection_time'] = 0 var_index_to_value = dict() for v in model.getVars(): v_name = v.name v_value = Sol.value(v) var_index_to_value[v_name] = v_value log_entry['var_index_to_value'] = copy.deepcopy(var_index_to_value) if get_num_solutions > 1: var_index_to_values = dict() for v in model.getVars(): var_index_to_values[v.name] = [] #embed() sol_list = model.getSols() obj_list = [] sol_list.reverse() #if len(sol_list) > 30: # sol_list= sol_list[:30] for sol in sol_list: Sol = Solution(model, sol, obj) obj = model.getSolObjVal(sol) if primal_bound is not None: objective_sense = model.getObjectiveSense() if objective_sense == "minimize": if obj >= primal_bound - 1e-8: continue #model.addCons(model.getObjective() <= primal_bound + 1e-8) else: if obj <= primal_bound + 1e-8: continue #model.addCons(model.getObjective() >= primal_bound - 1e-8) for v in model.getVars(): v_name = v.name v_value = Sol.value(v) v_incumbent_value = incumbent_solution.value(v) var_index_to_values[v_name].append(0 if round(v_value) == round(v_incumbent_value) else 1) obj_list.append((obj, primal_bound)) log_entry['var_index_to_values'] = copy.deepcopy(var_index_to_values) log_entry['primal_bounds'] = copy.deepcopy(obj_list) #embed() else: log_entry['var_index_to_values'] = None log_entry['primal_bounds'] = None #log_entry['solving_time_calibrated'] = timer.elapsed_calibrated_time #sol_data.write(log_entry, force_save_sol=True) #print(sol) return status, log_entry def get_LP_relaxation_solution(model): LP_relaxation = pyscipopt.Model(sourceModel = model, origcopy = True) for var in LP_relaxation.getVars(): LP_relaxation.chgVarType(var, 'C') scip_solve_LP_relaxation_config = { 'limits/time' : 300, } #status, log_entry = scip_solve(LP_relaxation, scip_config = scip_solve_LP_relaxation_config) return scip_solve(LP_relaxation, scip_config = scip_solve_LP_relaxation_config) def random_sample_variable_based(model, G, variables_to_nodes, neighborhood_size, pre_selected_pivot = None, pivot_num = 1): all_int_variables = [v.name for v in model.getVars() if v.vtype() in ["BINARY", "INTEGER"]] pivot_node = [] for i in range(pivot_num): sample_var = random.choice(all_int_variables) while variables_to_nodes[sample_var] in pivot_node: sample_var = random.choice(all_int_variables) pivot_node.append(variables_to_nodes[sample_var]) if pre_selected_pivot is not None: pivot_node = [variables_to_nodes[var] for var in pre_selected_pivot] destroy_nodes = pivot_node current_group = pivot_node top = [v for v in G.nodes() if G.nodes[v]['bipartite'] == 0] pos = nx.bipartite_layout(G, top) for u, v in G.edges(): assert(G.nodes[u]['bipartite'] == 0) assert(G.nodes[v]['bipartite'] == 1) while len(destroy_nodes) < neighborhood_size: new_group = [] for v in current_group: for n in G.neighbors(v): new_group.append(n) #print(G.in_degree(n)) assert(G.nodes[n]['bipartite'] == 1) new_group = list(set(new_group)) G_predecessors = [] for v in new_group: for n in G.predecessors(v): if not (G.nodes[n]["scip_variable"] in all_int_variables): continue G_predecessors.append(n) assert(G.nodes[n]['bipartite'] == 0) #new_group = [n for v in current_group for n in G.neighbors(v)] #G_predecessors = [n for v in new_group for n in G.predecessors(v)] G_predecessors = list(set(G_predecessors) - set(destroy_nodes)) if len(G_predecessors) == 0: break for v in G_predecessors: assert G.nodes[v]['bipartite'] == 0, str(v) if len(G_predecessors) + len(destroy_nodes) <= neighborhood_size: destroy_nodes = destroy_nodes + G_predecessors else: destroy_nodes = destroy_nodes + random.sample(G_predecessors, neighborhood_size - len(destroy_nodes)) current_group = copy.deepcopy(G_predecessors) for v in destroy_nodes: assert(G.nodes[v]["scip_variable"] in all_int_variables) destroy_variables = [G.nodes[v]["scip_variable"] for v in destroy_nodes] assert(len(destroy_variables) <= neighborhood_size) return destroy_variables def normalize_score(score, neighborhood_size): l = 0 r = 100 while r - l > 1e-8: m = (l + r) * 0.5 tp_score = torch.pow(score, m) tp_sum = torch.sum(tp_score).item() if tp_sum > neighborhood_size: l = m else: r = m return torch.pow(score, l) def normalize_score2(logit, neighborhood_size): l = 0 r = 1 while r - l > 1e-8: m = (l + r) * 0.5 tp_logit = torch.mul(logit, m) tp_score = torch.sigmoid(tp_logit) tp_sum = torch.sum(tp_score).item() if tp_sum < neighborhood_size: r = m else: l = m tp_logit = torch.mul(logit, l) tp_score = torch.sigmoid(tp_logit) return tp_score #ML_info = (policy, observation, incumbent_history, LB_relaxation_history) def create_neighborhood_with_heuristic(model, LNS_log, neighborhood_size = 20, heuristic = "RANDOM", bipartite_graph = None, variables_to_nodes = None, improved = None, num_samples = 30, eps_clip = 0.05, ML_info = None, original_neighborhood_size = None, get_num_solutions = 1): if original_neighborhood_size is None: original_neighborhood_size = neighborhood_size all_variables = model.getVars() all_int_variables = [v.name for v in model.getVars() if v.vtype() in ["BINARY", "INTEGER"]] # currently only considering binary variables objective_sense = model.getObjectiveSense() obj_sense = 1 if objective_sense == "minimize" else -1 if heuristic == "RANDOM": if neighborhood_size >= len(all_int_variables): return all_int_variables, None else: return random.sample(all_int_variables, neighborhood_size), None elif heuristic == "VARIABLE": assert(bipartite_graph is not None) assert(variables_to_nodes is not None) return random_sample_variable_based(model, bipartite_graph, variables_to_nodes, neighborhood_size), None elif "ML" in heuristic: #embed() ML_inference_start_time = time.monotonic() assert ML_info is not None local_branching_mip = pyscipopt.Model(sourceModel = model, origcopy = True) #print(model) #print(local_branching_mip) incumbent_solution = LNS_log[-1]['best_primal_sol'] variables_equal_one = [] variables_equal_zero = [] all_int_variables = [v.name for v in local_branching_mip.getVars() if v.vtype() in ["BINARY", "INTEGER"]] for v in local_branching_mip.getVars(): if v.name in all_int_variables: v_value = incumbent_solution.value(v) if round(v_value) == 1: variables_equal_one.append(v) else: variables_equal_zero.append(v) #need to decide whether to use original neighborhood size or adaptive one if "ORINH" in heuristic: local_branching_mip.addCons(quicksum(v for v in variables_equal_zero) + quicksum( (1-v) for v in variables_equal_one) <= original_neighborhood_size) print("constructed mip for local branching with neighorhood size %d" % (original_neighborhood_size)) else: local_branching_mip.addCons(quicksum(v for v in variables_equal_zero) + quicksum( (1-v) for v in variables_equal_one) <= neighborhood_size) print("constructed mip for local branching with neighorhood size %d" % (neighborhood_size)) int_var = [v for v in model.getVars() if v.vtype() in ["BINARY", "INTEGER"]] LB_relaxation_solution = [] if "feat1" in args.mode or "feat2" in args.mode: #print("No LP solving") for var in int_var: LB_relaxation_solution.append(0) LB_LP_relaxation_solution = LNS_log[-1]['best_primal_sol'] else: LB_LP_relaxation_status, LB_LP_relaxation_log_entry = get_LP_relaxation_solution(local_branching_mip) LB_LP_relaxation_solution = LB_LP_relaxation_log_entry['best_primal_sol'] for var in int_var: LB_relaxation_solution.append(LB_LP_relaxation_solution.value(var)) #embed() policy, observation, incumbent_history, _LB_relaxation_history = ML_info LB_relaxation_history = copy.deepcopy(_LB_relaxation_history) LB_relaxation_history.append(LB_relaxation_solution) dynamic_features = torch.zeros((observation.column_features.shape[0], WIND_SIZE * 3), dtype = torch.float32) number_of_history_added = 0 assert(len(incumbent_history) == len(LB_relaxation_history)) for i in reversed(range(len(LB_relaxation_history))): dynamic_features[:, number_of_history_added*3] = torch.FloatTensor([1]*len(int_var)) dynamic_features[:, number_of_history_added*3+1] = torch.FloatTensor(incumbent_history[i]) if not ("feat1" in args.mode or "feat2" in args.mode): dynamic_features[:, number_of_history_added*3+2] = torch.FloatTensor(LB_relaxation_history[i]) else: dynamic_features[:, number_of_history_added*3+2] = torch.zeros(len(LB_relaxation_history[i])) #print("No relaxation features") number_of_history_added += 1 if number_of_history_added == WIND_SIZE: break observation.column_features[:, -WIND_SIZE * 3:] = dynamic_features with torch.no_grad(): obs = (observation.row_features.to(DEVICE), observation.edge_features.indices.to(DEVICE), observation.edge_features.values.to(DEVICE), observation.column_features.to(DEVICE)) logits = policy(*obs) score = torch.sigmoid(logits) info = dict() #info["LB_gap"] = status info["LB_LP_relaxation_solution"] = LB_LP_relaxation_solution distribution_destroy_variable = [] all_int_variables = [v.name for v in int_var] for i, v in enumerate(model.getVars()): if v.name in all_int_variables: v_value = score[i].item() v_logit = logits[i].item() distribution_destroy_variable.append((v.name, v_value, v_logit)) distribution_destroy_variable.sort(key = lambda x: x[2]) #from IPython import embed; embed(); num_cand = len(distribution_destroy_variable) info = dict() info["LB_LP_relaxation_solution"] = LB_LP_relaxation_solution destroy_variables = [] ML_inference_end_time = time.monotonic() print("ML inference time=", ML_inference_end_time-ML_inference_start_time) info["ML_time"] = ML_inference_end_time-ML_inference_start_time #embed() best_primal_bound = None if "SAMPLE" in heuristic: #embed() normalized_score = normalize_score(score, neighborhood_size) if torch.sum(normalized_score).item() > neighborhood_size * 1.5: #numerical issues normalized_score = normalize_score2(logits, neighborhood_size) #embed() for i, v in enumerate(model.getVars()): if v.name in all_int_variables: v_value = normalized_score[i].item() #score[i].item() coin_flip = random.uniform(0, 1) if coin_flip <= v_value: destroy_variables.append(v.name) return destroy_variables, info elif "GREEDY" in heuristic: return [v_name for v_name, _, __ in distribution_destroy_variable[-min(neighborhood_size, num_cand):]], info else: assert False, "Unknown sampling methods for ML" return destroy_variables, info elif heuristic.startswith("LOCAL"): local_branching_mip = pyscipopt.Model(sourceModel = model, origcopy = True) #print(model) #print(local_branching_mip) incumbent_solution = LNS_log[-1]['best_primal_sol'] variables_equal_one = [] variables_equal_zero = [] #embed() all_int_variables = [v.name for v in local_branching_mip.getVars() if v.vtype() in ["BINARY", "INTEGER"]] for v in local_branching_mip.getVars(): if v.name in all_int_variables: v_value = incumbent_solution.value(v) if round(v_value) == 1: variables_equal_one.append(v) else: variables_equal_zero.append(v) original_LP_relaxation_status, original_LP_relaxation_log_entry = None, None # get_LP_relaxation_solution(local_branching_mip) local_branching_mip.addCons(quicksum(v for v in variables_equal_zero) + quicksum( (1-v) for v in variables_equal_one) <= neighborhood_size) print("constructed mip for local branching") scip_solve_local_branching_config = { 'limits/time' : 3600 if "LONG" in heuristic else 600, } if args.mode == "COLLECT" or args.collect_along_test == 1: scip_solve_local_branching_config['limits/time'] = COLLECT_SOLVE_TIME_LIMIT destroy_variables = [] if "RELAXATION" in heuristic: LB_LP_relaxation_status, LB_LP_relaxation_log_entry = get_LP_relaxation_solution(local_branching_mip) #original_LP_relaxation_solution = original_LP_relaxation_log_entry['best_primal_sol'] original_LP_relaxation_solution = LB_LP_relaxation_log_entry['best_primal_sol'] LB_LP_relaxation_solution = LB_LP_relaxation_log_entry['best_primal_sol'] both_integer = 0 LB_integer = 0 original_integer = 0 for v in all_variables: if v.name in all_int_variables: v_orignal_value = original_LP_relaxation_solution.value(v) v_LB_value = LB_LP_relaxation_solution.value(v) if isInteger(v_orignal_value) and isInteger(v_LB_value): both_integer += 1 elif isInteger(v_orignal_value): original_integer +=1 elif isInteger(v_LB_value): LB_integer += 1 #print("---LB LP runtime", LB_LP_relaxation_log_entry['solving_time'])#, "original LP runtime", original_LP_relaxation_log_entry['solving_time']) #print("---both integer", both_integer, "original integer", original_integer, "LB integer", LB_integer) #print("---selecting using LP relaxation") same_integer_value_inc_and_LB_LP = 0 same_integer_value_LB_and_LB_LP = 0 if "RS" in heuristic: distribution_destroy_variable = [] for v in all_variables: if v.name in all_int_variables: v_value = incumbent_solution.value(v) #v_LB_value = local_branching_solution.value(v) v_LB_LP_value = LB_LP_relaxation_solution.value(v) distribution_destroy_variable.append((v.name, abs(v_LB_LP_value - v_value), v_value)) best_destroy_variables = None best_primal_bound = None NUM_OF_EXPERT_SAMPLES = num_samples for _ in range(NUM_OF_EXPERT_SAMPLES): tmp_destroy_variables = [] for v_name, prob, t in distribution_destroy_variable: coin_flip = random.uniform(0, 1) #if coin_flip <= max(min(1 - eps_clip, prob), eps_clip): if coin_flip <= (1 - 2 * eps_clip) * prob + eps_clip: tmp_destroy_variables.append(v_name) if NUM_OF_EXPERT_SAMPLES == 1: info = dict() info["LB_LP_relaxation_solution"] = LB_LP_relaxation_solution return tmp_destroy_variables, info sub_mip = create_sub_mip(model, tmp_destroy_variables, LNS_log[-1]['best_primal_sol']) scip_solve_destroy_config = { 'limits/time' : 120, } status, log_entry = scip_solve(sub_mip, primal_bound = LNS_log[-1]['primal_bound'], scip_config = scip_solve_destroy_config) print("sample improvement", log_entry['primal_bound']) if best_destroy_variables is None or log_entry['primal_bound'] * obj_sense < best_primal_bound * obj_sense: best_primal_bound = log_entry['primal_bound'] best_destroy_variables = copy.deepcopy(tmp_destroy_variables) print("best destroy variable chosen with obj =", best_primal_bound) info = dict() info["LB_LP_relaxation_solution"] = LB_LP_relaxation_solution info["num_ori_relax_integer"] = original_integer info["num_LB_relax_integer"] = LB_integer info["num_both_integer"] = both_integer return best_destroy_variables, info elif "MI" in heuristic or "LI" in heuristic: distribution_destroy_variable = [] for v in all_variables: if v.name in all_int_variables: v_value = incumbent_solution.value(v) #v_LB_value = local_branching_solution.value(v) v_LB_LP_value = LB_LP_relaxation_solution.value(v) if True or abs(v_LB_LP_value - v_value) > 1e-8: #distribution_destroy_variable.append((v.name, max(abs(v_LB_LP_value - v_value), 1 - abs(v_LB_LP_value - v_value)), v_value)) distribution_destroy_variable.append((v.name, abs(v_LB_LP_value - v_value), v_value)) distribution_destroy_variable.sort(key = lambda x: x[1]) #from IPython import embed; embed(); num_cand = len(distribution_destroy_variable) info = dict() info["LB_LP_relaxation_solution"] = LB_LP_relaxation_solution info["num_ori_relax_integer"] = original_integer info["num_LB_relax_integer"] = LB_integer info["num_both_integer"] = both_integer if "MI" in heuristic: return [v_name for v_name, _, __ in distribution_destroy_variable[:min(num_cand, neighborhood_size)]], info else: return [v_name for v_name, _, __ in distribution_destroy_variable[-min(neighborhood_size, num_cand):]], info #elif "LI" in heuristic: # pass else: for v in all_variables: if v.name in all_int_variables: v_value = incumbent_solution.value(v) #v_LB_value = local_branching_solution.value(v) v_LB_LP_value = LB_LP_relaxation_solution.value(v) if isInteger(v_LB_LP_value): if round(v_LB_LP_value) == round(v_value): same_integer_value_inc_and_LB_LP += 1 #print("---selecting using LP relaxation") if isInteger(v_LB_LP_value): if round(v_LB_LP_value) != round(v_value): #destroy_variables.append(v.getIndex()) destroy_variables.append(v.name) else: #destroy_variables.append(v.getIndex()) destroy_variables.append(v.name) #print("---num same integer values LB and LB LP", same_integer_value_LB_and_LB_LP) #print("---num same integer values inc and LB LP", same_integer_value_inc_and_LB_LP) #print("---num destroy variables", len(destroy_variables)) if len(destroy_variables) > neighborhood_size: destroy_variables = random.sample(destroy_variables, neighborhood_size) #print("num of variables selected by LB relaxation", len(destroy_variables), "with LP obj =", LB_LP_relaxation_log_entry['primal_bound']) info = dict() #"num_LB_relax_integer" info["LB_LP_relaxation_solution"] = LB_LP_relaxation_solution info["num_ori_relax_integer"] = original_integer info["num_LB_relax_integer"] = LB_integer info["num_both_integer"] = both_integer return destroy_variables, info else: status, log_entry = scip_solve(local_branching_mip, incumbent_solution = incumbent_solution, primal_bound = LNS_log[-1]['primal_bound'], prev_LNS_log = LNS_log[-1], scip_config = scip_solve_local_branching_config, get_num_solutions = get_num_solutions) local_branching_solution = log_entry['best_primal_sol'] LB_LP_relaxation_status, LB_LP_relaxation_log_entry = get_LP_relaxation_solution(local_branching_mip) #original_LP_relaxation_solution = original_LP_relaxation_log_entry['best_primal_sol'] if LB_LP_relaxation_log_entry is None: original_LP_relaxation_solution = local_branching_solution LB_LP_relaxation_solution = local_branching_solution else: original_LP_relaxation_solution = LB_LP_relaxation_log_entry['best_primal_sol'] LB_LP_relaxation_solution = LB_LP_relaxation_log_entry['best_primal_sol'] tmp_observation = dict() tmp_observation["selected_by_LB"] = [] tmp_observation["selected_by_LB_relax"] = [] same_integer_value_inc_and_LB_LP = 0 same_integer_value_LB_and_LB_LP = 0 all_variables = local_branching_mip.getVars() for v in all_variables: if v.name in all_int_variables: v_value = incumbent_solution.value(v) v_LB_value = local_branching_solution.value(v) v_LB_LP_value = LB_LP_relaxation_solution.value(v) if isInteger(v_LB_LP_value): if round(v_LB_LP_value) == round(v_LB_value): same_integer_value_LB_and_LB_LP += 1 if round(v_LB_LP_value) == round(v_value): same_integer_value_inc_and_LB_LP += 1 if heuristic.endswith("RELAXATION"): print("---selecting using LP relaxation") if isInteger(v_LB_LP_value): if round(v_LB_LP_value) != round(v_value): #destroy_variables.append(v.getIndex()) destroy_variables.append(v.name) else: #destroy_variables.append(v.getIndex()) destroy_variables.append(v.name) #tmp_observation.append((v.name, v_value, v_LB_value, v_LB_LP_value)) else: if round(v_LB_value) == round(v_value): continue #destroy_variables.append(v.getIndex()) destroy_variables.append(v.name) tmp_observation["selected_by_LB"].append((v.name, v_value, v_LB_value, v_LB_LP_value)) if isInteger(v_LB_LP_value): if round(v_LB_LP_value) != round(v_value): #destroy_variables.append(v.getIndex()) tmp_observation["selected_by_LB_relax"].append((v.name, v_value, v_LB_value, v_LB_LP_value)) else: #destroy_variables.append(v.getIndex()) #destroy_variables.append(v.name) tmp_observation["selected_by_LB_relax"].append((v.name, v_value, v_LB_value, v_LB_LP_value)) #print("---num same integer values LB and LB LP", same_integer_value_LB_and_LB_LP) #print("---num same integer values inc and LB LP", same_integer_value_inc_and_LB_LP) #print("num of variables selected by LB", len(destroy_variables), "with obj =", log_entry['primal_bound'], "runtime =", log_entry['solving_time']) #print("selected by LB =", tmp_observation["selected_by_LB"]) #print("selected by LB relax=", tmp_observation["selected_by_LB_relax"]) assert(heuristic.endswith("RELAXATION") or len(destroy_variables) <= neighborhood_size) info = dict() info["LB_primal_solution"] = log_entry["primal_bound"] info["LB_gap"] = status info["LB_LP_relaxation_solution"] = LB_LP_relaxation_solution if get_num_solutions > 1: info["multiple_solutions"] = copy.deepcopy(log_entry['var_index_to_values']) info["multiple_primal_bounds"] = copy.deepcopy(log_entry['primal_bounds']) #return random.sample(all_int_variables, neighborhood_size) return destroy_variables, info def create_sub_mip(model, destroy_variables, incumbent_solution, local_branching_distance = None, mute = False): sub_mip = pyscipopt.Model(sourceModel = model, origcopy = True) num_free_variables = 0 all_variables = sub_mip.getVars() if len(destroy_variables) > 0: if type(destroy_variables[0]) == type("string"): destroy_variables_name = copy.deepcopy(destroy_variables) else: destroy_variables_name = [v.name for v in model.getVars() if v.getIndex() in destroy_variables] else: destroy_variables_name = [] variables_equal_one = [] variables_equal_zero = [] for v in all_variables: if not (v.name in destroy_variables_name): if not (v.vtype() in ["BINARY", "INTEGER"]): continue fixed_value = incumbent_solution.value(v) sub_mip.chgVarLb(v, fixed_value) sub_mip.chgVarLbGlobal(v, fixed_value) sub_mip.chgVarUb(v, fixed_value) sub_mip.chgVarUbGlobal(v, fixed_value) #sub_mip.addCons(v >= fixed_value) else: assert v.vtype() in ["BINARY", "INTEGER"], "destroy variable %s not binary is instead %s"%(v.name, v.vtype()) v_value = incumbent_solution.value(v) if round(v_value) == 1: variables_equal_one.append(v) else: variables_equal_zero.append(v) num_free_variables += 1 if not mute: print("num_free_variables =", num_free_variables) if not (local_branching_distance is None): if not mute: print("added local branching constraint in sub-mip") sub_mip.addCons(quicksum(v for v in variables_equal_zero) + quicksum( (1-v) for v in variables_equal_one) <= local_branching_distance) return sub_mip def get_bipartite_graph_representation(m, model): #m is a ecole mip model model = m.as_pyscipopt() bg = nx.DiGraph() #don't know why ecole.observation.NodeBipartite() won't work properly #implementing my own get_bipartite_graph_representation() var_name_to_index = dict() for var in model.getVars(): var_name_to_index[var.name] = var.getIndex() num_var = model.getNVars() num_cons = model.getNConss() for i in range(num_var): bg.add_node(i) bg.nodes[i]['bipartite'] = 0 for i in range(num_cons): bg.add_node(i+num_var) bg.nodes[i+num_var]['bipartite'] = 1 all_constraints = model.getConss() for i, cons in enumerate(all_constraints): var_in_cons = model.getValsLinear(cons) for key, value in var_in_cons.items(): var_index = var_name_to_index[key] bg.add_edge(var_index, i + num_var) all_variables = list(model.getVars()) variables_to_nodes = dict() for i, feat_dict in bg.nodes(data = True): if i < len(all_variables): #assert(i == all_variables[i].getIndex()) feat_dict.update({"scip_variable": all_variables[i].name}) variables_to_nodes.update({all_variables[i].name: i}) else: break for u, v in bg.edges(): assert(bg.nodes[u]['bipartite'] == 0) assert(bg.nodes[v]['bipartite'] == 1) return bg, variables_to_nodes def print_log_entry_to_file(save_to_file, LNS_log): with open(save_to_file, "wb") as f: for log_entry in LNS_log: log_entry.pop('best_primal_sol', None) log_entry.pop('best_primal_scip_sol', None) pickle.dump(LNS_log, f) def extract_root_features(m, args, id): m.disable_presolve() observation, khalil = make_obs((bgo.BipartiteGraphObservations(), ecole.observation.Khalil2016(pseudo_candidates = True)), m, branching = False) extract_end_time = time.monotonic() branching_vars = np.array([i for i in range(observation.column_features.shape[0])]) observation.add_khalil_features(khalil, branching_vars) return observation def load_policy_from_checkpoint(args): policy = GNNPolicy(args.gnn_type) try: ckpt = torch.load(args.model, map_location=DEVICE) try_again = False except Exception as e: print("Checkpoint " + args.model + " not found, bailing out: " + str(e)) sys.exit(1) policy.load_state_dict(ckpt.state_dict()) #policy = policy.to(DEVICE) #model_version = datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S") print("Loaded checkpoint") print(f"Will run evaluation on {DEVICE} device", flush=True) return policy def get_perturbed_samples(args, model, destroy_variables, LNS_log, scip_solve_destroy_config, new_improvement, num_of_samples_to_generate, int_var): var_name_to_index = dict() fixed_variables = [] for i, var in enumerate(int_var): var_name_to_index[var.name] = i if not (var.name in destroy_variables): fixed_variables.append(var.name) primal_bound = LNS_log[-1]['primal_bound'] objective_sense = model.getObjectiveSense() obj_sense = 1 if objective_sense == "minimize" else -1 collected_samples = [] primal_bounds = [] negative_labels = [] #embed() for num_of_replaced_variables in range(5, len(destroy_variables)-1, 5): no_negative_sample = 0 for t in range(90): perturbed_destroy_variables = random.sample(destroy_variables, len(destroy_variables) - num_of_replaced_variables) + random.sample(fixed_variables, num_of_replaced_variables) sub_mip = create_sub_mip(model, perturbed_destroy_variables, LNS_log[-1]['best_primal_sol'], mute = True) scip_solve_destroy_config = { 'limits/time' : 240, # 240 for facilities 120 for the others } status, log_entry = scip_solve(sub_mip, incumbent_solution = LNS_log[-1]['best_primal_scip_sol'], primal_bound = LNS_log[-1]['primal_bound'], scip_config = scip_solve_destroy_config, timer = None, prev_LNS_log = LNS_log[-1], mute = True) improvement = abs(primal_bound - log_entry["primal_bound"]) improved = (obj_sense * (primal_bound - log_entry["primal_bound"]) > 1e-5) new_primal_bound = log_entry["primal_bound"] if (not improved) or (improvement < 0.05 * new_improvement): print(f"Found negative samples with {num_of_replaced_variables} replaced, primal bound = {primal_bound}, new primal bound = {new_primal_bound}") negative_sample = [0] * len(int_var) for var_name in perturbed_destroy_variables: negative_sample[var_name_to_index[var_name]] = 1 collected_samples.append(negative_sample) primal_bounds.append((log_entry["primal_bound"], primal_bound)) negative_labels.append(improvement) no_negative_sample = 0 else: no_negative_sample += 1 if no_negative_sample >= 10: print(f"No negative samples for 10 consecutive samples with {num_of_replaced_variables} variables replaced") break #print(f"This is not negative samples, primal bound = {primal_bound}, new primal bound = {new_primal_bound}") if len(collected_samples) == num_of_samples_to_generate: return collected_samples, primal_bounds, negative_labels return collected_samples, primal_bounds, negative_labels def run_LNS(m, args, id): # m: ecole.scip.model, a mip model from ecole instance_id = m if type(instance_id) == int: loader = InstanceLoader(presolve = args.presolve, competition_settings = False) for i, _m in enumerate(loader.load(args.problem_set)): if i == instance_id: m = _m break observation = None if (args.mode in ["COLLECT", "TEST_ML"]) or ("TEST_ML" in args.mode): print("Initializing Ecole for feature extraction...This might take a few minutes") observation = extract_root_features(m, args, id) if type(instance_id) == int: loader = InstanceLoader(presolve = args.presolve, competition_settings = False) for i, _m in enumerate(loader.load(args.problem_set)): if i == instance_id: m = _m break model = m.as_pyscipopt() int_var = [v for v in model.getVars() if v.vtype() in ["BINARY", "INTEGER"]] num_int_var = len(int_var) # currently only considering binary variables args_neighborhood_size = args.neighborhood_size if args.neighborhood_size == 0: args.neighborhood_size = int(num_int_var * 0.2) collection_local_branching_runtime = COLLECT_SOLVE_TIME_LIMIT neighborhood_size = args.neighborhood_size destroy_heuristic = args.destroy_heuristic objective_sense = model.getObjectiveSense() obj_sense = 1 if objective_sense == "minimize" else -1 print("Problem:",args.problem_set, instance_id) print("Using destroy heuristics:", destroy_heuristic) print("Neighborhood size:", neighborhood_size) print("Preprocessing...") if "VANILLA" in args.destroy_heuristic: scip_log = run_vanilla_scip(model, args) if args.save_log == 1: print_log_entry_to_file("tmp/log/%s_%s_nhsize%d.txt"%(id, destroy_heuristic, 0), scip_log) return bg ,variables_to_nodes = get_bipartite_graph_representation(m, model) if args.mode == "COLLECT" or args.collect_along_test == 1: db = BipartiteGraphDataset(args.data_loc + "%s_%d.db"%(args.problem_set, instance_id)) #LB_relaxation_history = [] #incumbent_history = [] # find initial solution with SCIP scip_solve_init_config = { 'limits/solutions' :10000, 'limits/time' : 610 if "MIPLIB" in args.problem_set else args.init_time_limit, } # scip_solve_init_config['limits/time'] = 300 timer = None status, log_entry = scip_solve(model, scip_config = scip_solve_init_config, timer = timer, get_initial_solution = True, isMIPLIB = "MIPLIB" in args.problem_set) if log_entry is None: print('Did not find incumbent solution for MIP: skipping this instance; try a longer runtime') return else: print("initial solution obj =", log_entry['primal_bound'], "found in time", log_entry['solving_time']) log_entry['limits/time'] = scip_solve_init_config['limits/time'] LNS_log = [log_entry] improved = True runtime_used = log_entry['solving_time'] count_no_improve = 0 print("solving steps limit =", args.num_solve_steps) # initialize incumbent_history with the initial solution if args.mode == "COLLECT" or "TEST_ML" in args.mode: incumbent_solution = [] incumbent_history = [] improvement_history = [] LB_relaxation_history = [] for var in int_var: incumbent_solution.append(log_entry["var_index_to_value"][var.name]) incumbent_history.append(incumbent_solution) if "TEST_ML" in args.mode: policy = load_policy_from_checkpoint(args) policy = policy.to(DEVICE) if "feat1" in args.mode: observation.column_features[:, 23:] = torch.zeros(observation.column_features.shape[0], observation.column_features.shape[1]-23) observation.column_features = torch.hstack((observation.column_features, torch.zeros(observation.column_features.shape[0], args.wind_size*3))) #embed() not_switched = True if args.ml_neighborhood_size == 0: args.ml_neighborhood_size = args.neighborhood_size for s in range(args.num_solve_steps): iteration_start_time = time.monotonic() incumbent_solution = LNS_log[-1]['best_primal_scip_sol'] primal_bound = LNS_log[-1]['primal_bound'] ML_info = None if "TEST_ML" in args.mode: ML_info = (policy, observation, incumbent_history, LB_relaxation_history) destroy_variables, info_destroy_heuristic = create_neighborhood_with_heuristic(model, LNS_log, neighborhood_size = neighborhood_size, bipartite_graph = bg, variables_to_nodes = variables_to_nodes, heuristic = destroy_heuristic, num_samples = args.num_samples, eps_clip = args.eps_clip, ML_info = ML_info, original_neighborhood_size = args.ml_neighborhood_size, ## alert!!! get_num_solutions = 20 if args.mode == "COLLECT" else 1) #print("destroy variables =", destroy_variables) if "CONSTRAINTED_REPAIR" in args.destroy_heuristic: sub_mip = create_sub_mip(model, destroy_variables, LNS_log[-1]['best_primal_sol'], local_branching_distance = args.neighborhood_size) else: sub_mip = create_sub_mip(model, destroy_variables, LNS_log[-1]['best_primal_sol']) #print("sub mip created =", sub_mip) scip_solve_destroy_config = { 'limits/time' : 120, } if args.mode == "COLLECT": scip_solve_destroy_config['limits/time'] = collection_local_branching_runtime status, log_entry = scip_solve(sub_mip, incumbent_solution = incumbent_solution, primal_bound = LNS_log[-1]['primal_bound'], scip_config = scip_solve_destroy_config, timer = timer, prev_LNS_log = LNS_log[-1]) iteration_end_time = time.monotonic() log_entry["iteration_time"] = iteration_end_time - iteration_start_time log_entry["selection_time"] = log_entry["iteration_time"] - log_entry["solving_time"] if "ML" in args.mode and "ML" in destroy_heuristic: log_entry["ML_time"] = info_destroy_heuristic["ML_time"] else: log_entry["ML_time"] = 0 log_entry["destroy_variables"] = destroy_variables log_entry["destroy_heuristic"] = destroy_heuristic log_entry["neighborhood_size"] = neighborhood_size if info_destroy_heuristic and "num_LB_relax_integer" in info_destroy_heuristic: log_entry["num_LB_relax_integer"] = info_destroy_heuristic["num_LB_relax_integer"] if info_destroy_heuristic and "num_ori_relax_integer" in info_destroy_heuristic: log_entry["num_ori_relax_integer"] = info_destroy_heuristic["num_ori_relax_integer"] if info_destroy_heuristic and "num_both_integer" in info_destroy_heuristic: log_entry["num_both_integer"] = info_destroy_heuristic["num_both_integer"] improvement = abs(primal_bound - log_entry["primal_bound"]) improved = (obj_sense * (primal_bound - log_entry["primal_bound"]) > 1e-5) if improved == False: if round(neighborhood_size * args.adaptive) < round(num_int_var * 0.5): neighborhood_size = round(neighborhood_size * args.adaptive) count_no_improve = 0 else: neighborhood_size = round(num_int_var * 0.5) count_no_improve += 1 if "GREEDY" in destroy_heuristic: destroy_heuristic = destroy_heuristic.replace("GREEDY", "SAMPLE") else: count_no_improve = 0 LNS_log.append(log_entry) if "TEST_ML" in args.mode and improved == True: LB_relaxation_solution = [] incumbent_solution = [] relaxation_value = info_destroy_heuristic["LB_LP_relaxation_solution"] for var in int_var: LB_relaxation_solution.append(relaxation_value.value(var)) incumbent_solution.append(log_entry["var_index_to_value"][var.name]) LB_relaxation_history.append(LB_relaxation_solution) incumbent_history.append(incumbent_solution) improvement_history.append(improvement) if (args.mode == "COLLECT" and improved == True) or (args.collect_along_test == 1 and s % STEP_PER_COLLECT == 0): if args.collect_along_test == 1: destroy_variables, info_destroy_heuristic = create_neighborhood_with_heuristic(model, LNS_log[:-1], neighborhood_size = args.neighborhood_size if args.ml_neighborhood_size == 0 else args.ml_neighborhood_size, bipartite_graph = bg, variables_to_nodes = variables_to_nodes, heuristic = "LOCAL_BRANCHING", num_samples = args.num_samples, eps_clip = args.eps_clip, ML_info = ML_info, original_neighborhood_size = args.neighborhood_size if args.ml_neighborhood_size == 0 else args.ml_neighborhood_size, get_num_solutions = 20) print("destroy variables =", destroy_variables) assert info_destroy_heuristic is not None relaxation_value = info_destroy_heuristic["LB_LP_relaxation_solution"] assert relaxation_value is not None #candidate_scores = [0] * num_int_var candidate_scores = [] LB_relaxation_solution = [] incumbent_solution = [] for var in int_var: if var.name in destroy_variables: candidate_scores.append(1) else: candidate_scores.append(0) LB_relaxation_solution.append(relaxation_value.value(var)) incumbent_solution.append(log_entry["var_index_to_value"][var.name]) new_improvement = abs(primal_bound - info_destroy_heuristic["LB_primal_solution"]) new_improved = (obj_sense * (primal_bound - info_destroy_heuristic["LB_primal_solution"]) > 1e-5) if args.mode == "COLLECT" or (args.collect_along_test == 1 and improved == False and new_improved == True): LB_relaxation_history.append(LB_relaxation_solution) incumbent_history.append(incumbent_solution) improvement_history.append(improvement) negative_samples, negative_info, negative_labels = get_perturbed_samples(args, model, destroy_variables, LNS_log[:-1], scip_solve_destroy_config, new_improvement, 90, int_var) candidates = [str(var.name) for var in int_var] candidate_choice = None info = dict() positive_samples = [] positive_labels = [] for i in range(len(info_destroy_heuristic["multiple_primal_bounds"])): positive_sample = [0] * len(int_var) for j, var in enumerate(int_var): positive_sample[j] = info_destroy_heuristic["multiple_solutions"][var.name][i] positive_samples.append(positive_sample) obj_info = info_destroy_heuristic["multiple_primal_bounds"][i] positive_labels.append( abs(obj_info[0] - obj_info[1])) info["num_positive_samples"] = len(positive_samples) info["positive_samples"] = positive_samples info["positive_labels"] = positive_labels info["num_negative_samples"] = len(negative_samples) info["negative_samples"] = negative_samples info["negative_labels"] = negative_labels info["#iteration"] = s info["instance_id"] = id info["incumbent_history"] = incumbent_history info["LB_relaxation_history"] = LB_relaxation_history info["neighborhood_size"] = args.neighborhood_size info["LB_gap"] = info_destroy_heuristic["LB_gap"] info["primal_bound"] = log_entry["primal_bound"] if args.mode == "COLLECT" else info_destroy_heuristic["LB_primal_solution"] info["LB_runtime"] = log_entry["iteration_time"] candidate_scores = torch.LongTensor(np.array(candidate_scores, dtype = np.int32)) graph = BipartiteGraph(observation.row_features, observation.edge_features.indices, observation.edge_features.values, observation.column_features[:,:95], candidates, candidate_choice, candidate_scores, info, iteration = i, instance_id = id, incumbent_history = incumbent_history, LB_relaxation_history = LB_relaxation_history, improvement_history = improvement_history, neighborhood_size = neighborhood_size) if args.mode == "COLLECT" or (args.collect_along_test == 1 and new_improved == True): assert len(LB_relaxation_history) + 1 == len(incumbent_history) assert len(LB_relaxation_history) > 0 rslt = db.add(graph) if not rslt: print("Skipping duplicate datapoint") else: print("Saving to database") if (improved == False and args.collect_along_test == 1 and new_improved == True): LB_relaxation_history.pop() incumbent_history.pop() improvement_history.pop() runtime_used += log_entry['iteration_time'] print("Finished LNS iteration #%d: obj_val = %.2f with time %.2f (total time used %.2f)" % (s, log_entry['primal_bound'], log_entry['iteration_time'], runtime_used))# -log_entry["ML_time"])) if runtime_used >= args.time_limit: break if args.save_log == 1: print_log_entry_to_file("tmp/log/%s_%s_nhsize%d.txt"%(id, args.destroy_heuristic, args_neighborhood_size), LNS_log) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--seed", default=0, type = int, help="random seed") parser.add_argument("--problem-set", default="INDSET_test", help="Problem set") parser.add_argument("--adaptive", default=1, type = float, help = "adaptive neighborhood size") parser.add_argument("--num-solve-steps", default=100000, type=int, help="Number of LNS iterations") parser.add_argument("--neighborhood-size", default=100, type=int, help="Upper bound on the neighborhood size") parser.add_argument("--ml-neighborhood-size", default=0, type=int, help="ML neighborhood size") parser.add_argument("--eps-clip", default=0.05, type=float, help="Clipping on LB_relax::RS probablity, will affect actual neighborhood size") parser.add_argument("--time-limit", default=3600, type=int, help="Time limit per instance") parser.add_argument("--init-time-limit", default=10, type=int, help="Initial solution time limit") parser.add_argument("--destroy-heuristic", default="RANDOM", type=str, help="Destroy heuristics: RANDOM, LOCAL_BRANCHING, LOCAL_BRANCHING::RELAXATION, VARIABLE") parser.add_argument("--mode", default="TEST", type=str, help="Solving mode: COLLECT, TEST, TEST_ML") parser.add_argument("--gnn-type", default="gat", type=str, help="GNN type: gasse or gat") parser.add_argument("--model", default=None, type=str, help="Path to the ML model") parser.add_argument("--num-samples", default=30, type=int, help="Number of samples with sample-and-select-best heuristics") parser.add_argument("--save-log", default=0, type = int, help="save log (1) or not (0)") parser.add_argument("--collect-along-test", default=0, type=int, help="collect data along the trajectory generated by this one") parser.add_argument("--wind-size", default=3, type = int, help="window size = the number of past incumbent features in features") parser.add_argument("--presolve", default=False, type = bool, help="presolve or not") args = parser.parse_args() WIND_SIZE = args.wind_size if args.mode == "COLLECT" or args.collect_along_test == 1: if args.mode == "COLLECT": args.destroy_heuristic = "LOCAL_BRANCHING" try: os.mkdir("training_data") except OSError as error: print(error) try: os.mkdir("training_data/" + args.problem_set) except OSError as error: print(error) args.data_loc = "training_data/" + args.problem_set + "/" print(args) random.seed(args.seed) loader = InstanceLoader(presolve = args.presolve, competition_settings = False) # default False if change presolve here, also if args.destroy_heuristic == "VANILLA": args.adaptive = 1 for i, m in enumerate(loader.load(args.problem_set)): model = m.as_pyscipopt() #all_int_variables = [v.getIndex() for v in model.getVars() if v.vtype() in ["BINARY", "INTEGER"]] name = args.problem_set + str(i) if args.adaptive > 1: name = args.problem_set + str(round(args.adaptive*100)) + "_" + str(i) if args.mode == "COLLECT" or args.collect_along_test == 1: name += "COLLECT" run_LNS(i, args, id = name) print("Finish LNS for MIP solving")
CL-LNS-main
LNS.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pyscipopt as scip # Wrap is the scip solver under a common API class ScipSolver: def __init__(self, timeout_s=None): self.constraints = [] self.maximize = True self.timeout = timeout_s self.model = scip.Model() def create_integer_var(self, name, lower_bound, upper_bound): v = self.model.addVar(name=name, lb=lower_bound, ub=upper_bound, vtype="I") return v def create_real_var(self, name, lower_bound, upper_bound): v = self.model.addVar(name=name, lb=lower_bound, ub=upper_bound, vtype="C") return v def create_binary_var(self, name): v = self.model.addVar(name=name, vtype="B") return v def set_objective_function(self, equation, maximize=True): self.model.setObjective(equation) if maximize: self.model.setMaximize() else: self.model.setMinimize() def add_constraint(self, cns): self.model.addCons(cns) def disable_presolver(self): self.model.setPresolve(scip.SCIP_PARAMSETTING.OFF) self.model.setBoolParam("lp/presolving", False) def disable_cuts(self): self.model.setSeparating(scip.SCIP_PARAMSETTING.OFF) def disable_heuristics(self): self.model.setHeuristics(scip.SCIP_PARAMSETTING.OFF) def solve(self): # Solve the problem. Return the result as a dictionary of values # indexed by the corresponding variables or an empty dictionary if the # problem is infeasible. if self.timeout: self.model.setParam('limits/time', self.timeout) self.model.optimize() sol = None if self.model.getNSols() > 0: sol = self.model.getBestSol() return sol def primal_dual_gap(self): return (self.model.getObjVal(), self.model.getDualbound()) def primal_dual_integral(self): # TBD return None def load(self, mps_filename): self.model.readProblem(mps_filename) def export(self, lp_output_filename): assert False def as_scip_model(self): return self.model
CL-LNS-main
scip_solver.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch_geometric import torch import torch.nn.init as init #from neural_nets import prenorm # GINConv network derived from https://arxiv.org/abs/1810.00826 # Added the ability to embed edge information as well. class GINConv(torch_geometric.nn.MessagePassing): def __init__(self, eps: float = 0.5, train_eps: bool = True): #kwargs.setdefault('aggr', 'add') #super(GINEConv, self).__init__(**kwargs) super().__init__('add') emb_size = 64 #self.final_norm = prenorm.Prenorm(emb_size, shift=False) #self.feature_module_final = torch.nn.Sequential( # self.final_norm, # torch.nn.ReLU(), # torch.nn.Linear(emb_size, emb_size) #) #self.feature_module_final = torch.nn.ReLU() #self.post_conv_module = prenorm.Prenorm(emb_size, shift=False) # output_layers self.output_module = torch.nn.Sequential( torch.nn.Linear(emb_size, emb_size * 2), torch.nn.ReLU(), torch.nn.Linear(emb_size * 2, emb_size * 4), torch.nn.ReLU(), torch.nn.Linear(emb_size * 4, emb_size * 2), torch.nn.ReLU(), torch.nn.Linear(emb_size * 2, emb_size), ) #self.nn = nn self.initial_eps = eps if train_eps: self.eps = torch.nn.Parameter(torch.Tensor([eps])) else: self.register_buffer('eps', torch.Tensor([eps])) self.reset_parameters() def reset_parameters(self): for t in self.parameters(): if len(t.shape) == 2: init.orthogonal_(t) else: init.normal_(t) self.eps.data.fill_(self.initial_eps) # def forward(self, x: Union[Tensor, OptPairTensor], edge_index: Adj, # edge_attr: OptTensor = None, size: Size = None) -> Tensor: # """""" # if isinstance(x, Tensor): # x: OptPairTensor = (x, x) # # Node and edge feature dimensionalites need to match. # if isinstance(edge_index, Tensor): # assert edge_attr is not None # assert x[0].size(-1) == edge_attr.size(-1) # elif isinstance(edge_index, SparseTensor): # assert x[0].size(-1) == edge_index.size(-1) # # propagate_type: (x: OptPairTensor, edge_attr: OptTensor) # out = self.propagate(edge_index, x=x, edge_attr=edge_attr, size=size) # x_r = x[1] # if x_r is not None: # out += (1 + self.eps) * x_r # return self.nn(out) #def message(self, x_j: Tensor, edge_attr: Tensor) -> Tensor: #return F.relu(x_j + edge_attr) def freeze_normalization(self): pass #self.final_norm.freeze_normalization() #self.post_conv_module.freeze_normalization() def forward(self, left_features, edge_indices, edge_features, right_features): """ This method sends the messages, computed in the message method. """ output = self.propagate(edge_indices, size=(left_features.shape[0], right_features.shape[0]), node_features=(left_features, right_features), edge_features=edge_features) output += (1 + self.eps) * right_features return self.output_module(output) def message(self, node_features_j, edge_features): output = torch.nn.functional.relu(node_features_j + edge_features) return output
CL-LNS-main
neural_nets/gin_convolution.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch_geometric import torch import torch.nn.init as init from neural_nets import prenorm # GATConvolution network derived https://arxiv.org/abs/2105.14491 # Added edge embedding as well class GATConvolution(torch_geometric.nn.MessagePassing): """ Graph convolution layer. THis is the heart of our GNNPolicy """ def __init__(self, negative_slope: float = 0.2, dropout: float = 0., **kwargs): super().__init__('add') emb_size = 64 self.heads = 8 self.in_channels = emb_size self.out_channels = emb_size // self.heads self.negative_slope = negative_slope self.dropout = dropout self.lin_l = torch.nn.Linear(self.in_channels, self.heads * self.out_channels, bias=True) self.lin_r = torch.nn.Linear(self.in_channels, self.heads * self.out_channels, bias=True) self.att = torch.nn.Parameter(torch.Tensor(1, self.heads, self.out_channels * 3)) # output_layer self.output_module = torch.nn.Sequential( torch.nn.Linear(2*emb_size, emb_size), torch.nn.ReLU(), torch.nn.Linear(emb_size, emb_size), ) self.reset_parameters() def reset_parameters(self): init.orthogonal_(self.lin_l.weight) init.orthogonal_(self.lin_r.weight) init.orthogonal_(self.att) def freeze_normalization(self): pass def reset_normalization(self): pass @property def frozen(self): return False def forward(self, left_features, edge_indices, edge_features, right_features): """ This method sends the messages, computed in the message method. """ H, C = self.heads, self.out_channels x_l = self.lin_l(left_features) x_r = self.lin_r(right_features) out = self.propagate(edge_indices, x=(x_l, x_r), size=(left_features.shape[0], right_features.shape[0]), edge_features=edge_features) return self.output_module(torch.cat([out, right_features], dim=-1)) def message(self, x_j, x_i, index, edge_features): x = torch.cat([x_i, x_j, edge_features], dim=-1) x = torch.nn.functional.leaky_relu(x, self.negative_slope) x = x.view(-1, self.heads, self.out_channels * 3) alpha = (x * self.att).sum(dim=-1) alpha = torch_geometric.utils.softmax(alpha, index) alpha = torch.nn.functional.dropout(alpha, p=self.dropout, training=self.training) x = x_j.view(-1, self.heads, self.out_channels) * alpha.unsqueeze(-1) return x.view(-1, self.heads * self.out_channels)
CL-LNS-main
neural_nets/gat_convolution.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch class LogScoreLoss(torch.nn.Module): """ Loss function to weight sample loss by confidence in the target value """ def __init__(self): super().__init__() self.register_buffer("eps", torch.tensor([1e-6])) def weight(self, input, target): max_tgt = torch.max(target, dim=-1, keepdim=True).values return torch.maximum(input, target) / max_tgt def forward(self, input, target): # Avoid division by zero target = torch.maximum(target, self.eps) main_loss = torch.log(input / target).abs() # Handle predictions smaller than eps neg_domain = (input / target - self.eps).abs() + torch.log(self.eps).abs() loss = torch.where(input / target < self.eps, neg_domain, main_loss) assert not torch.isnan(loss).any() weighted = loss * self.weight(input, target) assert not torch.isnan(weighted).any() return weighted.mean() class LinearScoreLoss(torch.nn.Module): """ Loss function to weight sample loss by confidence in the target value """ def __init__(self): super().__init__() self.register_buffer("eps", torch.tensor([1e-6])) def weight(self, input, target): max_tgt = torch.max(target, dim=-1, keepdim=True).values return torch.maximum(input, target) / max_tgt def forward(self, input, target): # Avoid division by zero target = torch.maximum(target, self.eps) loss = (input - target).abs() / target weighted = loss * self.weight(input, target) return weighted.mean()
CL-LNS-main
neural_nets/losses.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn.init as init from neural_nets import gat_convolution from neural_nets import gin_convolution from neural_nets import gasse_convolution from neural_nets import prenorm # Implements the branching policy described in # https://papers.nips.cc/paper/2019/hash/d14c2267d848abeb81fd590f371d39bd-Abstract.html class GNNPolicy(torch.nn.Module): def __init__(self, gnn_type="gasse"): super().__init__() emb_size = 64 cons_nfeats = 10 edge_nfeats = 2 var_nfeats = 104 # hard-coded no good # Constraint embedding self.cons_norm = prenorm.Prenorm(cons_nfeats) self.cons_embedding = torch.nn.Sequential( self.cons_norm, torch.nn.Linear(cons_nfeats, emb_size), torch.nn.ReLU(), torch.nn.Linear(emb_size, emb_size), torch.nn.ReLU(), ) # Edge embedding self.edge_norm = prenorm.Prenorm(edge_nfeats) self.edge_embedding = torch.nn.Sequential( self.edge_norm, torch.nn.Linear(edge_nfeats, emb_size), ) #self.edge_embedding = torch.nn.Linear(edge_nfeats, emb_size) # Variable embedding self.var_norm = prenorm.Prenorm(var_nfeats, preserve_features=[2]) self.var_embedding = torch.nn.Sequential( self.var_norm, torch.nn.Linear(var_nfeats, emb_size), torch.nn.ReLU(), torch.nn.Linear(emb_size, emb_size), torch.nn.ReLU(), ) if gnn_type == "gasse": self.conv_v_to_c = gasse_convolution.GasseConvolution() self.conv_c_to_v = gasse_convolution.GasseConvolution() elif gnn_type == "gin": self.conv_v_to_c = gin_convolution.GINConv() self.conv_c_to_v = gin_convolution.GINConv() else: self.conv_v_to_c = gat_convolution.GATConvolution() self.conv_c_to_v = gat_convolution.GATConvolution() self.output_module = torch.nn.Sequential( torch.nn.Linear(emb_size, emb_size), torch.nn.ReLU(), torch.nn.Linear(emb_size, 1, bias=False), ) self.reset_parameters() def reset_parameters(self): for t in self.parameters(): if len(t.shape) == 2: init.orthogonal_(t) else: init.normal_(t) def freeze_normalization(self): if not self.cons_norm.frozen: self.cons_norm.freeze_normalization() self.edge_norm.freeze_normalization() self.var_norm.freeze_normalization() self.conv_v_to_c.reset_normalization() self.conv_c_to_v.reset_normalization() return False if not self.conv_v_to_c.frozen: self.conv_v_to_c.freeze_normalization() self.conv_c_to_v.reset_normalization() return False if not self.conv_c_to_v.frozen: self.conv_c_to_v.freeze_normalization() return False return True def forward(self, constraint_features, edge_indices, edge_features, variable_features): reversed_edge_indices = torch.stack([edge_indices[1], edge_indices[0]], dim=0) # First step: linear embedding layers to a common dimension (64) constraint_features = self.cons_embedding(constraint_features) edge_features = self.edge_embedding(edge_features) variable_features = self.var_embedding(variable_features) # Two half convolutions constraint_features = self.conv_v_to_c(variable_features, reversed_edge_indices, edge_features, constraint_features) variable_features = self.conv_c_to_v(constraint_features, edge_indices, edge_features, variable_features) # A final MLP on the variable features output = self.output_module(variable_features).squeeze(-1) return output
CL-LNS-main
neural_nets/gnn_policy.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch class PrenormOld(torch.nn.Module): def __init__(self, num_features, shift=True, scale=True, eps=1e-5): super().__init__() self.num_features = num_features self.register_buffer("eps", torch.tensor([eps], requires_grad=False)) self.reset_normalization() def _check_input_dim(self, input): if input.dim() != 2: raise ValueError("expected a 2D input (got {}D input)".format(input.dim())) def freeze_normalization(self): self.frozen = torch.tensor([True], dtype=torch.bool) def reset_normalization(self): self.register_buffer("running_mean", torch.zeros([num_features])) self.register_buffer("running_var", torch.ones([num_features])) self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long, requires_grad=False)) self.register_buffer("frozen", torch.tensor([False], dtype=torch.bool, requires_grad=False)) # The input format should be [batch, features] def forward(self, input): self._check_input_dim(input) running_mean = self.running_mean if self.training and not self.frozen: batch_mean = torch.mean(input, dim=[0]) batch_var = torch.mean((input - batch_mean).pow(2), dim=[0]) if self.num_batches_tracked < 10000: momentum = ( float(self.num_batches_tracked) / (self.num_batches_tracked + 1) ) else: momentum = 0.9999 self.num_batches_tracked += 1 running_mean = ( momentum * self.running_mean + (1.0 - momentum) * batch_mean ).detach() self.running_mean = running_mean.detach() self.running_var = ( momentum * self.running_var + (1.0 - momentum) * batch_var ).detach() return (input - self.running_mean) / torch.sqrt( torch.max(self.eps, self.running_var) ) class Prenorm(torch.nn.Module): def __init__(self, num_features, shift=True, scale=True, preserve_features=[]): super().__init__() self.num_features = num_features self.preserve_features = preserve_features self.register_buffer("avg", torch.zeros([num_features], dtype=torch.double)) self.register_buffer("var", torch.zeros([num_features], dtype=torch.double)) self.register_buffer("count", torch.zeros([1])) self.register_buffer("frozen", torch.tensor([False], dtype=torch.bool, requires_grad=False)) if shift: self.register_buffer("shift", torch.zeros([num_features])) else: self.shift = None if scale: self.register_buffer("scale", torch.ones([num_features])) else: self.scale = None def freeze_normalization(self): self.frozen = torch.tensor([True], dtype=torch.bool).detach() def reset_normalization(self): self.avg.zero_() self.var.zero_() self.count.zero_() self.count += 1 self.frozen.zero_() def forward(self, input): if self.training and not self.frozen: # Online mean and variance estimation from Chan et al # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm assert len(input.shape) == 2 assert self.num_features == input.shape[-1], f"Expected input dimension of size {self.num_features}, got {input.shape[-1]}." with torch.no_grad(): assert not torch.isnan(input).any() assert not torch.isnan(self.var).any() assert not torch.isnan(self.scale).any() assert not torch.isnan(self.count).any() sample_count = float(input.shape[0]) sample_var, sample_avg = torch.var_mean(input.to(torch.float64), dim=0) assert not torch.isnan(sample_avg).any() assert not torch.isnan(sample_var).any() delta = sample_avg - self.avg assert self.count + sample_count > 0 m2 = (self.var * self.count + sample_var * sample_count + torch.square(delta) * self.count * sample_count / ( self.count + sample_count)) assert not torch.isnan(m2).any() self.avg = (self.avg * self.count + sample_avg * sample_count) / (self.count + sample_count) assert not torch.isnan(self.avg).any() self.count += sample_count self.var = m2 / self.count if self.shift is not None: self.shift = -self.avg.to(torch.float32) assert not torch.isnan(self.shift).any() if self.scale is not None: var = torch.where(torch.eq(self.var, 0), self.var.new_ones([self.num_features]), self.var) assert not torch.isnan(var).any() #assert not torch.isinf(var).any() assert (var > 0).all() self.scale = torch.rsqrt(var).to(torch.float32) assert not torch.isnan(self.scale).any() for f in self.preserve_features: self.shift[f] = 0.0 self.scale[f] = 1.0 output = input if self.shift is not None: output = output + self.shift if self.scale is not None: output = output * self.scale assert not torch.any(torch.isnan(output)) return output
CL-LNS-main
neural_nets/prenorm.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch_geometric import torch import torch.nn.init as init from neural_nets import prenorm # Implements the graph convolution described in # https://papers.nips.cc/paper/2019/hash/d14c2267d848abeb81fd590f371d39bd-Abstract.html class GasseConvolution(torch_geometric.nn.MessagePassing): """ Graph convolution layer. THis is the heart of our GNNPolicy """ def __init__(self): super().__init__('add') emb_size = 64 self.feature_module_left = torch.nn.Linear(emb_size, emb_size) self.feature_module_edge = torch.nn.Linear(emb_size, emb_size, bias=False) self.feature_module_right = torch.nn.Linear(emb_size, emb_size, bias=False) self.final_norm = prenorm.Prenorm(emb_size, shift=False) self.feature_module_final = torch.nn.Sequential( self.final_norm, torch.nn.ReLU(), torch.nn.Linear(emb_size, emb_size) ) self.post_conv_module = prenorm.Prenorm(emb_size, shift=False) # output_layers self.output_module = torch.nn.Sequential( torch.nn.Linear(2*emb_size, emb_size), torch.nn.ReLU(), torch.nn.Linear(emb_size, emb_size), ) self.reset_parameters() def reset_parameters(self): for t in self.parameters(): if len(t.shape) == 2: init.orthogonal_(t) else: init.normal_(t) def reset_normalization(self): self.final_norm.reset_normalization() self.post_conv_module.reset_normalization() @property def frozen(self): return self.final_norm.frozen and self.post_conv_module.frozen def freeze_normalization(self): if not self.final_norm.frozen: self.final_norm.freeze_normalization() self.post_conv_module.reset_normalization() return False if not self.post_conv_module.frozen: self.post_conv_module.freeze_normalization() return False return True def forward(self, left_features, edge_indices, edge_features, right_features): """ This method sends the messages, computed in the message method. """ output = self.propagate(edge_indices, size=(left_features.shape[0], right_features.shape[0]), node_features=(left_features, right_features), edge_features=edge_features) return self.output_module(torch.cat([self.post_conv_module(output), right_features], dim=-1)) def message(self, node_features_i, node_features_j, edge_features): output = self.feature_module_final(self.feature_module_left(node_features_i) + self.feature_module_edge(edge_features) + self.feature_module_right(node_features_j)) return output
CL-LNS-main
neural_nets/gasse_convolution.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
CL-LNS-main
ml4co/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import hypothesis import hypothesis.strategies as st import unittest import torch import torch.nn.functional as F from ml4co.ops.split_and_pad import SplitAndPadFunction def split_and_pad_ref(input, sizes, feature_size=0, padding_value=0): feature_size = max(feature_size, sizes.max().item()) inputs = input.split(sizes.detach().cpu().tolist()) outputs = [ F.pad(x, (0, feature_size - x.size(0)), "constant", padding_value) for x in inputs ] return torch.stack(outputs, dim=0) class SplitAndPadFunctionTest(unittest.TestCase): def setUp(self): self.split_and_pad = SplitAndPadFunction.apply @hypothesis.given( batch_size=st.integers(1, 200), inner_size=st.integers(10, 500), feature_size=st.sampled_from([0, 500]), padding_value=st.floats(min_value=-10.0, max_value=10.0), device=st.sampled_from( ["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"])) @hypothesis.settings(deadline=None) def test_forward(self, batch_size, inner_size, feature_size, padding_value, device): sizes = torch.randint(low=1, high=inner_size, size=(batch_size, ), device=device) input_size = sizes.sum().item() x = torch.randn(input_size, device=device) y = self.split_and_pad(x, sizes, feature_size, padding_value) y_ref = split_and_pad_ref(x, sizes, feature_size, padding_value) torch.testing.assert_allclose(y, y_ref) @hypothesis.given( batch_size=st.integers(1, 100), inner_size=st.integers(10, 500), device=st.sampled_from( ["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"])) @hypothesis.settings(deadline=None) def test_backward(self, batch_size, inner_size, device): sizes = torch.randint(low=1, high=inner_size, size=(batch_size, ), device=device) input_size = sizes.sum().item() x = torch.randn(input_size, device=device) x_ref = x.detach().clone() x.requires_grad_(True) x_ref.requires_grad_(True) y = self.split_and_pad(x, sizes) y_ref = split_and_pad_ref(x_ref, sizes) dy = torch.randn_like(y) y.backward(dy) y_ref.backward(dy) torch.testing.assert_allclose(x.grad, x_ref.grad) if __name__ == "__main__": unittest.main()
CL-LNS-main
ml4co/ops/split_and_pad_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import hypothesis import hypothesis.strategies as st import unittest import torch from ml4co.ops.prenorm import PrenormFunction def prenorm_ref(input, running_m0, running_m1, running_m2, eps): m0 = input.size(0) m2, m1 = torch.var_mean(input, dim=0, unbiased=False) n = m0 + running_m0 c = 0 if n == 0 else running_m0 / n delta = running_m1 - m1 m1 += c * delta m2 = m2 * m0 + running_m2 + delta.square() * c * m0 scale = (m2 / n + eps).rsqrt() bias = -scale * m1 return m1, m2, scale, bias class PrenormFunctionTest(unittest.TestCase): def setUp(self): self.prenorm = PrenormFunction.apply @hypothesis.given( outer_size=st.integers(2, 100), inner_size=st.integers(1, 200), running_m0=st.integers(0, 10), eps=st.floats(min_value=0, max_value=1e-3), device=st.sampled_from( ["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"])) @hypothesis.settings(deadline=None) def test_prenorm(self, outer_size, inner_size, running_m0, eps, device): x = torch.randn(outer_size, inner_size, device=device) if running_m0 == 0: running_m1 = torch.zeros((inner_size, ), device=device) running_m2 = torch.zeros((inner_size, ), device=device) else: running_m1 = torch.randn((inner_size, ), device=device) running_m2 = torch.randn((inner_size, ), device=device) m1, m2, scale, bias = self.prenorm(x, running_m0, running_m1, running_m2, eps) m1_ref, m2_ref, scale_ref, bias_ref = prenorm_ref( x, running_m0, running_m1, running_m2, eps) torch.testing.assert_allclose(m1, m1_ref) torch.testing.assert_allclose(m2, m2_ref) torch.testing.assert_allclose(scale, scale_ref) torch.testing.assert_allclose(bias, bias_ref) if __name__ == "__main__": unittest.main()
CL-LNS-main
ml4co/ops/prenorm_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
CL-LNS-main
ml4co/ops/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import torch import ml4co torch.ops.load_library( os.path.join(os.path.dirname(os.path.dirname(ml4co.__file__)), "libml4co_ops.so")) class SplitAndPadFunction(torch.autograd.Function): @staticmethod def forward(ctx, input, sizes, feature_size=0, padding_value=0.0): ctx.save_for_backward(sizes) return torch.ops.ml4co_ops.split_and_pad(input, sizes, feature_size, padding_value) @staticmethod def backward(ctx, grad_output): sizes, = ctx.saved_tensors grad_input = torch.ops.ml4co_ops.split_and_pad_backward( grad_output, sizes) return grad_input, None, None, None
CL-LNS-main
ml4co/ops/split_and_pad.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import torch import ml4co torch.ops.load_library( os.path.join(os.path.dirname(os.path.dirname(ml4co.__file__)), "libml4co_ops.so")) class PrenormFunction(torch.autograd.Function): @staticmethod def forward(ctx, input, running_m0, running_m1, running_m2, eps=0.0): return torch.ops.ml4co_ops.prenorm(input, running_m0, running_m1, running_m2, eps) @staticmethod def backward(ctx, grad_m1, grad_m2, grad_scale, grad_bias): raise NotImplementedError
CL-LNS-main
ml4co/ops/prenorm.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import ecole import ilp_model import numpy as np import torch from typing import Any, Callable, Optional, Tuple import rloptim.utils.data_utils as data_utils from rloptim.core.types import Tensor, NestedTensor from rloptim.envs.env import Env from rloptim.envs.wrappers import TimeLimitWrapper import competition.common.environments as competition_env import competition.common.rewards as competition_rewards from instance_loader import InstanceLoader class EcoleWrapper(Env): def __init__(self, dataset: str, problem_set: str, observation_function: ecole.observation.NodeBipartite, timeout: int = 900): super(EcoleWrapper, self).__init__() self._env = None self._dataset = dataset self._problem_set = problem_set self._observation_function = observation_function self._timeout = timeout self._instance_loader = InstanceLoader(dataset_loc=self._dataset, load_metadata=True) @property def env(self) -> Optional[ecole.environment.Environment]: return self._env @property def dataset(self) -> str: return self._dataset @property def problem_set(self) -> str: return self._problem_set @property def observation_function(self) -> ecole.observation.NodeBipartite: return self._observation_function def reset(self, **kwargs) -> NestedTensor: instance_data = self._instance_loader(self._problem_set) if isinstance(instance_data, ecole.core.scip.Model): instance = instance_data model = ilp_model.Model(instance) model.find_initial_solution() bounds = model.get_primal_dual_bounds() initial_primal_bound = bounds[0] initial_dual_bound = bounds[1] else: instance, metadata = instance_data initial_primal_bound = metadata["primal_bound"] initial_dual_bound = metadata["dual_bound"] reward_function = competition_rewards.TimeLimitDualIntegral() reward_function.set_parameters( initial_primal_bound=initial_primal_bound, initial_dual_bound=initial_dual_bound, objective_offset=0) self._env = competition_env.Branching( time_limit=self._timeout, observation_function=(self._observation_function, ecole.observation.Khalil2016( pseudo_candidates=True)), reward_function=-reward_function, information_function={ "nb_nodes": ecole.reward.NNodes(), "time": ecole.reward.SolvingTime() }) obs, action_set, reward, done, _ = self._env.reset( instance, objective_limit=initial_primal_bound) obs = self._parse_obs(obs, action_set) action_set = torch.from_numpy(action_set.astype(np.int64)) reward = torch.tensor([reward]) done = torch.tensor([done]) return { "obs": obs, "action_set": action_set, "reward": reward, "done": done } def step(self, action: NestedTensor) -> NestedTensor: if isinstance(action, dict): action = action["action"] action = data_utils.to_numpy(action) obs, action_set, reward, done, _ = self._env.step(action) obs = self._parse_obs(obs, action_set) action_set = torch.from_numpy(action_set.astype(np.int64)) reward = torch.tensor([reward], dtype=torch.float32) done = torch.tensor([done]) return { "obs": obs, "action_set": action_set, "reward": reward, "done": done } def _parse_obs(self, obs: Any, action_set: Any) -> Tuple[torch.Tensor]: bgo, khalil = obs bgo.add_khalil_features(khalil, action_set) bgo.check_features() obs = (bgo.row_features, bgo.edge_features.indices, bgo.edge_features.values, bgo.column_features) return obs def close(self) -> None: if self._env is not None: self._env.close() def seed(self, seed: Optional[int] = None) -> None: if self._env is not None: self._env.seed(seed)
CL-LNS-main
ml4co/rl/env/ecole_wrapper.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import unittest import numpy as np import string import random import os import sys import graph_datasets.evaluation_data as ed import ilp_solver class EvaluationDataMiningTest(unittest.TestCase): def setUp(self): solver = ilp_solver.ILPSolver(engine="scip") x1 = solver.create_integer_var("x1") x2 = solver.create_integer_var("x2") solver.add_constraint(10 * x1 + 15 * x2 >= 100) solver.add_constraint(20 * x1 + 16 * x2 >= 160) solver.add_constraint(17 * x1 + 11 * x2 >= 130) # Minimize the objective solver.set_objective_function(80 * x1 + 95 * x2, maximize=False) self.instance1 = solver.as_scip_model() solver = ilp_solver.ILPSolver(engine="scip") x1 = solver.create_integer_var("x1") x2 = solver.create_integer_var("x2") x3 = solver.create_integer_var("x3") solver.add_constraint(10 * x1 + 15 * x2 >= 100) solver.add_constraint(20 * x1 + 16 * x2 >= 160) solver.add_constraint(17 * x3 + 11 * x2 >= 130) # Minimize the objective solver.set_objective_function(80 * x1 + 95 * x2 + 17 * x3, maximize=False) self.instance2 = solver.as_scip_model() letters = string.ascii_letters self.db = [] for i in range(3): self.db.append('/tmp/' + ''.join(random.choice(letters) for i in range(10))) def tearDown(self): for db in self.db: try: os.remove(db) except: pass def testSingleVersion(self): data = ed.EvaluationData(self.db[0]) # Format is instance, model_version, step_id, primal, dual, nb_nodes, timestamp data.add(self.instance1, "v1", 1, 0, 123, 2, 1.0) data.add(self.instance1, "v1", 2, 0, 125, 4, 1.5) data.commit() miner = ed.EvaluationDataMining(self.db[0], ["v1"]) nb_nodes, integrals_over_nodes, integrals_over_time = miner.compute_metrics() self.assertEqual(nb_nodes, {"v1": [4]}) self.assertEqual(integrals_over_nodes, {"v1": [246.0]}) self.assertEqual(integrals_over_time, {"v1": [61.5]}) def testMultipleVersions(self): data = ed.EvaluationData(self.db[1]) # Format is instance, model_version, step_id, primal, dual, nb_nodes, timestamp data.add(self.instance1, "v1", 1, 0, 123, 2, 1.0) data.add(self.instance1, "v1", 2, 0, 125, 4, 1.5) data.add(self.instance1, "v2", 4, 0, 321, 3, 2.0) data.add(self.instance1, "v2", 5, 0, 432, 7, 2.7) data.commit() miner = ed.EvaluationDataMining(self.db[1], ["v1"]) nb_nodes, integrals_over_nodes, integrals_over_time = miner.compute_metrics() self.assertEqual(nb_nodes, {"v1": [4]}) self.assertEqual(integrals_over_nodes, {"v1": [246.0]}) self.assertEqual(integrals_over_time, {"v1": [61.5]}) miner = ed.EvaluationDataMining(self.db[1], ["v2"]) nb_nodes, integrals_over_nodes, integrals_over_time = miner.compute_metrics() self.assertEqual(nb_nodes, {"v2": [7]}) self.assertEqual(integrals_over_nodes, {"v2": [1284.0]}) self.assertEqual(integrals_over_time, {"v2": [224.70000000000005]}) miner = ed.EvaluationDataMining(self.db[1], ["v1", "v2"]) nb_nodes, integrals_over_nodes, integrals_over_time = miner.compute_metrics() self.assertEqual(nb_nodes, {"v1": [4], "v2": [4]}) self.assertEqual(integrals_over_nodes, {"v1": [246.0], "v2": [321.0]}) self.assertEqual(integrals_over_time, {"v1": [61.5], "v2": [0.0]}) def testMultipleVersionsMultipleInstances(self): data = ed.EvaluationData(self.db[2]) # Format is instance, model_version, step_id, primal, dual, nb_nodes, timestamp data.add(self.instance1, "v1", 1, 0, 123, 2, 1.0) data.add(self.instance1, "v1", 2, 0, 125, 4, 1.5) data.add(self.instance1, "v2", 4, 0, 321, 3, 2.0) data.add(self.instance1, "v2", 5, 0, 432, 7, 2.7) data.add(self.instance2, "v1", 11, 0, 1123, 12, 11.0) data.add(self.instance2, "v1", 12, 0, 1125, 14, 11.5) data.add(self.instance2, "v2", 14, 0, 1321, 13, 12.0) data.add(self.instance2, "v2", 15, 0, 1432, 17, 12.7) data.commit() miner = ed.EvaluationDataMining(self.db[2], ["v1"]) nb_nodes, integrals_over_nodes, integrals_over_time = miner.compute_metrics() self.assertEqual(nb_nodes, {"v1": [4, 14]}) self.assertEqual(integrals_over_nodes, {"v1": [246.0, 2246.0]}) self.assertEqual(integrals_over_time, {"v1": [61.5, 561.5]}) miner = ed.EvaluationDataMining(self.db[2], ["v2"]) nb_nodes, integrals_over_nodes, integrals_over_time = miner.compute_metrics() self.assertEqual(nb_nodes, {"v2": [7, 17]}) self.assertEqual(integrals_over_nodes, {"v2": [1284.0, 5284.0]}) self.assertEqual(integrals_over_time, {"v2": [224.70000000000005, 924.699999999999]}) miner = ed.EvaluationDataMining(self.db[2], ["v1", "v2"]) nb_nodes, integrals_over_nodes, integrals_over_time = miner.compute_metrics() self.assertEqual(nb_nodes, {"v1": [4, 14], "v2": [4, 14]}) self.assertEqual(integrals_over_nodes, {"v1": [246.0, 2246.0], "v2": [321.0, 1321.0]}) self.assertEqual(integrals_over_time, {"v1": [61.5, 561.5], "v2": [0, 0]}) def _testRealResults(self): miner = ed.EvaluationDataMining("/data/home/benoitsteiner/ml4co-dev/ml4co/results.db", ["SCIP", "09/09/2021 17:26:14"]) nb_nodes, integrals_over_nodes, integrals_over_time = miner.compute_metrics() print(str(nb_nodes)) print(str(integrals_over_nodes)) print(str(integrals_over_time)) self.assertEqual(1, 2)
CL-LNS-main
graph_datasets/evaluation_data_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sqlite3 import pickle from pathlib import Path import hashlib import string import random import base64 import functools class SolvedMilpDataset(): """ This class stores the best solution found for a collection of milp instances. """ def __init__(self, sample_db, read_only=False, best_solution_only=True): self.best_solution_only = best_solution_only if best_solution_only: self.sql_insert = "REPLACE" else: self.sql_insert = "INSERT" p = Path(sample_db) if not p.parent.exists(): p.parent.mkdir(exist_ok=True) already_created = p.exists() assert already_created or not read_only uri = "file:" + sample_db if read_only: uri += "?mode=ro" self.db = sqlite3.connect(uri, uri=True) self.cur = self.db.cursor() # Create table if needed if not already_created: if best_solution_only: self.cur.execute('''CREATE TABLE milp (id text primary key, problem text, solution text, objective_sense text, objective_value float, gap float)''') else: self.cur.execute('''CREATE TABLE milp (id text key, problem text, solution text, objective_sense text, objective_value float, gap float)''') self.cur.execute('''CREATE INDEX id_index ON milp (id)''') def __del__(self): self.db.close() @functools.lru_cache(maxsize=16) def _model_to_key_pb(self, model): letters = string.ascii_letters tmp_file = '/tmp/' + ''.join(random.choice(letters) for i in range(10)) + '.lp' model.writeProblem(tmp_file) with open(tmp_file, 'r') as f: problem = f.read() problem = problem.encode() key = hashlib.sha256(problem).hexdigest() return key, problem def _better_solution_exists(self, key, obj_sense, obj_value): try: query = f"SELECT objective_value FROM milp WHERE id = \'{key}\'" self.cur.execute(query) rslt = self.cur.fetchone() old_value = rslt[0] found = True except: found = False if found and ((obj_sense == "minimize" and old_value < obj_value) or (obj_sense == "maximize" and old_value > obj_value)): return True else: return False def get_one(self, model): """ Load the solution(s) and variable assignment(s) for the specified model. Encodes the solutions as the ({key, value}, obj_value) tuple, where key is the index of a variable in the array returned by model.getVars(transformed=True), value is the value of this variable in the solution, and obj_value is the objective value of the solution. """ key, _ = self._model_to_key_pb(model) query = f"SELECT solution, objective_value FROM milp WHERE id = \'{key}\'" self.cur.execute(query) rslt = self.cur.fetchone() solution = base64.b64decode(rslt[0].encode()) solution = pickle.loads(solution) obj_value = rslt[1] return (solution, obj_value) def get_all(self, model): """ Load the solution(s) and variable assignment(s) for the specified model. Encodes the solutions as the ({key, value}, obj_value) tuple, where key is the index of a variable in the array returned by model.getVars(transformed=True), value is the value of this variable in the solution, and obj_value is the objective value of the solution. """ key, _ = self._model_to_key_pb(model) query = f"SELECT solution, objective_value FROM milp WHERE id = \'{key}\'" self.cur.execute(query) rslts = self.cur.fetchmany() while len(rslts) > 0: for rslt in rslts: solution = base64.b64decode(rslt[0].encode()) solution = pickle.loads(solution) obj_value = rslt[1] yield (solution, obj_value) rslts = self.cur.fetchmany() def add(self, model, solution, objective_value, gap): """ Stores the solution and variable assignment for the specified model. """ # Insert a row of data or replace it if a better solution is found key, problem = self._model_to_key_pb(model) obj_sense = model.getObjectiveSense() if self.best_solution_only and self._better_solution_exists(key, obj_sense, objective_value): return sol = {} vars = model.getVars(transformed=True) for i in range(len(vars)): v = vars[i] val = solution[v] sol[i] = val sol = pickle.dumps(sol) problem = base64.b64encode(problem).decode() sol = base64.b64encode(sol).decode() query = f"{self.sql_insert} INTO milp VALUES (\'{key}\', \'{problem}\', \'{sol}\', \'{obj_sense}\', {objective_value}, {gap})" self.cur.execute(query) self.db.commit() def merge(self, dataset): """ Add another dataset to the current one """ query = "SELECT id, problem, solution, objective_sense, objective_value, gap FROM milp" sample_cnt = 0 for milp in dataset.cur.execute(query): key = milp[0] obj_sense = milp[3] obj_value = milp[4] if self.best_solution_only and self._better_solution_exists(key, obj_sense, obj_value): continue insert = f"{self.sql_insert} INTO milp VALUES (\'{milp[0]}\', \'{milp[1]}\', \'{milp[2]}\', \'{milp[3]}\', {milp[4]}, {milp[5]})" self.cur.execute(insert) sample_cnt += 1 if sample_cnt % 1000 == 0: self.db.commit() self.db.commit()
CL-LNS-main
graph_datasets/solved_milp_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import ecole import torch import numpy as np import math import time def augment_variable_features_with_dynamic_ones(batch, args, initial_solution = {}): DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #DEVICE = 'cpu' nh_size_threshold = dict() # filter out training data below certain neighborhood size threshold window_size = args.window_size # to add features of the last $window_size improving solutions in LNS # each window contains 1. whether we have the solution 2. incumbent values 3. LB relax values dynamic_feature_size = window_size * 3 static_feature_size = batch.variable_features.shape[-1] dynamic_features = torch.zeros((batch.variable_features.shape[0], window_size * 3), dtype = torch.float32) if "feat1" in args.experiment: #feat1: no Khalil's feature and no LB relax feature batch.variable_features[:,23:] = torch.zeros(batch.variable_features.shape[0], batch.variable_features.shape[1] - 23) assert len(batch.incumbent_history) == len(batch.LB_relaxation_history) tot_variables = 0 batch_weight = [] batch_n_candidates = [] #embed() for i in range(len(batch.LB_relaxation_history)): #pop the incumbent solution batch.incumbent_history[i].pop() assert len(batch.incumbent_history[i]) == len(batch.LB_relaxation_history[i]) number_of_history_added = 0 number_of_variables = len(batch.LB_relaxation_history[i][0]) total_candidates = torch.sum(batch.candidate_scores[tot_variables:tot_variables+number_of_variables]) batch_n_candidates.append(total_candidates) #print(total_candidates) if args.problem in nh_size_threshold and total_candidates<nh_size_threshold[args.problem]: batch_weight.append(0) #print("============No positive labels=============") else: batch_weight.append(1) for j in reversed(range(len(batch.LB_relaxation_history[i]))): assert number_of_variables == len(batch.incumbent_history[i][j]) assert number_of_variables == len(batch.LB_relaxation_history[i][j]) dynamic_features[tot_variables:tot_variables+number_of_variables, number_of_history_added*3] = torch.FloatTensor([1]*number_of_variables) dynamic_features[tot_variables:tot_variables+number_of_variables, number_of_history_added*3+1] = torch.FloatTensor(batch.incumbent_history[i][j]) if "feat1" in args.experiment or "feat2" in args.experiment: dynamic_features[tot_variables:tot_variables+number_of_variables, number_of_history_added*3+2] = torch.zeros(len(batch.LB_relaxation_history[i][j])) else: dynamic_features[tot_variables:tot_variables+number_of_variables, number_of_history_added*3+2] = torch.FloatTensor(batch.LB_relaxation_history[i][j]) number_of_history_added += 1 if number_of_history_added == window_size: break #print(number_of_history_added) tot_variables += number_of_variables #embed() assert tot_variables == batch.variable_features.shape[0] dynamic_features = dynamic_features.to(DEVICE) #this implementation is bad, again due to a bug during data collection if batch.variable_features.shape[-1] == 104: batch.variable_features[:,-9:] = dynamic_features else: all_features = torch.hstack((batch.variable_features, dynamic_features)) batch.variable_features = all_features #print("batch valid sample %d / %d"% (sum(batch_weight), len(batch_weight))) batch_weight = torch.tensor(batch_weight) #embed() batch.batch_weight = batch_weight.to(DEVICE) return batch class MilpEdgeFeatures(): def __init__(self, indices, values): self.indices = indices self.values = values class MilpProblemObservation(): def __init__(self, column_features, row_features, edge_features): self.column_features = column_features self.row_features = row_features self.edge_features = edge_features def add_LB_relaxation_value(self, LB_relaxation_value): pass def add_khalil_features(self, khalil, action_set): # Validate and cleanup the Khalil features assert khalil.features.shape[0] == len(action_set) khalil_features = np.nan_to_num(khalil.features.astype(np.float32), posinf=1e6, neginf=-1e6) # Concatenate the khalil features with the existing features column_feature_size = self.column_features.shape[-1] khalil_feature_size = khalil_features.shape[-1] total_feature_size = column_feature_size + khalil_feature_size col_features = torch.zeros( (self.column_features.shape[0], total_feature_size), dtype=torch.float32) col_features[:, :column_feature_size] = self.column_features col_features[action_set.astype(np.int32), column_feature_size:] = torch.from_numpy(khalil_features) self.column_features = col_features def check_features(self): assert not torch.any(torch.isinf(self.row_features)) assert not torch.any(torch.isinf(self.column_features)) assert not torch.any(torch.isinf(self.edge_features.indices)) assert not torch.any(torch.isinf(self.edge_features.values)) assert not torch.any(torch.isnan(self.row_features)) assert not torch.any(torch.isnan(self.column_features)) assert not torch.any(torch.isnan(self.edge_features.indices)) assert not torch.any(torch.isnan(self.edge_features.values)) # Completement the basic Gasse features with some of our own: # Lower and upper bound for each variable # Coefficients associated with each variable in the objective function # Lower and upper bound for each constraint class BipartiteGraphObservations(ecole.observation.NodeBipartite): def __init__(self, check_for_nans=True, *args, **kwargs): super().__init__(*args, **kwargs) self.check_for_nans = check_for_nans self.num_calls = 0 self.feature_extraction_time = 0 self.feature_cleanup_time = 0 self.extra_col_feature_extraction_time = 0 self.extra_row_feature_extraction_time = 0 self.feature_normalization_time = 0 self.feature_merge_time = 0 self.total_time = 0 def before_reset(self, model): super().before_reset(model) #model.write_problem("/tmp/pb.lp") def extract(self, model, done): if done: return None start = time.monotonic() # Extract the Gasse features base_obs = super().extract(model, done) stop = time.monotonic() self.feature_extraction_time += stop - start scip_model = model.as_pyscipopt() #sense = scip_model.getObjectiveSense() #assert(sense == "minimize") # Delete the incubent column features. They are always NaN when the scip heuristics are turned off. print(base_obs.variable_features.shape) base_obs.variable_features = np.delete(base_obs.variable_features, 14, axis=1) base_obs.variable_features = np.delete(base_obs.variable_features, 13, axis=1) stop = time.monotonic() self.feature_cleanup_time += stop - start assert not np.isinf(base_obs.variable_features.astype(np.float32)).any() #total_col_features = 3 + base_obs.column_features.shape[-1] extra_col_features = np.empty((base_obs.variable_features.shape[0], 6), dtype=np.float32) cols = scip_model.getLPColsData() assert(len(cols) == base_obs.variable_features.shape[0]) vars = scip_model.getVars(transformed=True) assert(len(vars) == base_obs.variable_features.shape[0]) for i in range(base_obs.variable_features.shape[0]): col = cols[i] assert i == col.getLPPos() #print("BASIS = " + str(col.getBasisStatus())) #print("POS = " + str(col.getLPPos())) #print("POVArS = " + str(col.getVar())) #print(str(base_obs.column_features[i]), flush=True) #print(str(base_obs.column_features[i][6])) #print("LB = " + str(col.getLb())) #print("UB = " + str(col.getUb())) extra_col_features[i, 0] = col.getLb() extra_col_features[i, 1] = col.getUb() var = vars[i] assert i == var.getCol().getLPPos() assert var.ptr() == col.getVar().ptr() extra_col_features[i, 2] = var.getLbGlobal() extra_col_features[i, 3] = var.getUbGlobal() extra_col_features[i, 4] = var.getObj() assert var.getLPSol() == col.getPrimsol() extra_col_features[i, 5] = var.getLPSol() #print("OBJ = " + str(var.getObj())) #print("LP SOL = " + str(var.getLPSol())) assert col.getLb() == var.getLbLocal() assert col.getUb() == var.getUbLocal() #var_map[var.getIndex()] = var stop = time.monotonic() self.extra_col_feature_extraction_time += stop - start assert not np.isinf(extra_col_features).any() #extra_col_features[:, 3:] = base_obs.column_features #base_obs.column_features = torch.from_numpy(extra_col_features) #total_row_features = 3 + base_obs.row_features.shape[-1] extra_row_features = np.empty((base_obs.row_features.shape[0], 5), dtype=np.float32) rows = scip_model.getLPRowsData() assert len(rows) <= base_obs.row_features.shape[0] ecole_cns_id = 0 for i in range(len(rows)): row = rows[i] assert i == row.getLPPos() # If a constraint has both a lhs and a rhs, ecole will create 2 constraints under the hood lhs_set = not scip_model.isInfinity(abs(row.getLhs())) rhs_set = not scip_model.isInfinity(abs(row.getRhs())) assert lhs_set or rhs_set if lhs_set: cns = -row.getLhs() extra_row_features[ecole_cns_id, 0] = cns extra_row_features[ecole_cns_id, 1] = math.copysign(1, cns) extra_row_features[ecole_cns_id, 2] = row.getConstant() extra_row_features[ecole_cns_id, 3] = row.getOrigintype() extra_row_features[ecole_cns_id, 4] = row.isIntegral() ecole_cns_id += 1 if rhs_set: cns = row.getRhs() extra_row_features[ecole_cns_id, 0] = cns extra_row_features[ecole_cns_id, 1] = math.copysign(1, cns) extra_row_features[ecole_cns_id, 2] = row.getConstant() extra_row_features[ecole_cns_id, 3] = row.getOrigintype() extra_row_features[ecole_cns_id, 4] = row.isIntegral() ecole_cns_id += 1 #extra_row_features[i, 0] = -row.getLhs() #extra_row_features[i, 1] = row.getRhs() #extra_row_features[i, 1] = row.getConstant() #lhs = row.getLhs() #print("- LHS = " + str(lhs)) #rhs = row.getRhs() #print("- RHS = " + str(rhs)) #cons = row.getConstant() #print("- CONS = " + str(cons)) #print("- POS: " + str(pos)) #val = row.getVals() #print("- VALS = " + str(val)) #for col in row.getCols(): # print("- COLS: " + str(cols)) #row = scip_model.getTransformedCons(row) #lhs = row.getLhs() #print("- LHS = " + str(lhs)) #rhs = row.getRhs() #print("- RHS = " + str(rhs)) #cons = row.getConstant() #print("- CONS = " + str(cons)) #pos = row.getLPPos() #print("- POS: " + str(pos)) #val = row.getVals() #print("- VALS = " + str(val)) #node_id += 1 assert ecole_cns_id == base_obs.row_features.shape[0] stop = time.monotonic() self.extra_row_feature_extraction_time += stop - start #extra_row_features[:, 3:] = base_obs.row_features #base_obs.row_features = torch.from_numpy(extra_row_features) #vars = scip_model.getVars(transformed=False) #for var in vars: # print("VAR = " + str(var) + ": " + str(var.getCol()) + " " + str(var.getObj())) #vars = scip_model.getVars(transformed=True) #i = 0 #for var in vars: # print("TRANSFORMED VAR = " + str(var) + ": " + str(var.getCol()) + " " + str(var.getObj())) # assert i == var.getCol().getLPPos() # i += 1 # #print("LB = " + str(var.getLbOriginal()) + "/" + str(var.getLbLocal()) + "/" + str(var.getLbGlobal())) # #print("UB = " + str(var.getUbOriginal()) + "/" + str(var.getUbLocal()) + "/" + str(var.getUbGlobal())) #conss = scip_model.getConss() #assert(len(conss) == base_obs.row_features.shape[0]) #for cons in conss: # print(str(cons)) #obj = scip_model.getObjective() #print("OBJ = " + str(obj)) #params = model.get_params() #print("PARAMS: " + str(params)) #lp_columns = model.lp_columns() #print("LP_COLUMNS " + str(lp_columns)) #lp_rows = model.lp_rows() #print("LP_ROWS " + str(lp_rows)) #constraints = scip_model.getConss() #print("CNS: " + str(constraints)) #constraints = scip_model.getNConss() #print("NCNS: " + str(len(cols)) + " vs " + str(base_obs.column_features.shape[0]), flush=True) #print("NROWS: " + str(len(rows)) + " vs " + str(base_obs.row_features.shape[0]), flush=True) #print("CNS: " + str(base_obs.row_features)) #print("EDGES: " + str(base_obs.edge_features.indices)) #print("EDG VALS: " + str(base_obs.edge_features.values)) #print("VARS: " + str(base_obs.column_features), flush=True) #print("WHOLE FEATURIZATION" + str(base_obs)) ############## # MORE STUFF #scip_model.getRowLPActivity() # Normalize the objective features factor = 1.0 / np.max(np.absolute(extra_col_features[:, 4])) extra_col_features[:, 4] *= factor # Store both normalized and unormalized constraints new_edge_values = np.tile(base_obs.edge_features.values.astype(np.float32).reshape(-1, 1), (1, 2)) #assert not np.any(np.isnan(new_edge_values)) cns_id = base_obs.edge_features.indices[0, :] cns = extra_row_features[cns_id, 0] div = np.maximum(1e-6, np.abs(cns)) new_edge_values[:, 1] /= div #assert not np.any(np.isnan(new_edge_values)) stop = time.monotonic() self.feature_normalization_time += stop - start column_features = torch.from_numpy(np.concatenate([extra_col_features, base_obs.variable_features.astype(np.float32)], axis=1)) row_features = torch.from_numpy(np.concatenate([extra_row_features, base_obs.row_features.astype(np.float32)], axis=1)) edge_features = MilpEdgeFeatures(torch.from_numpy(base_obs.edge_features.indices.astype(np.int64)), torch.from_numpy(new_edge_values)) obs = MilpProblemObservation(column_features, row_features, edge_features) stop = time.monotonic() self.feature_merge_time += stop - start if self.check_for_nans: assert not torch.any(torch.isnan(obs.row_features)) assert not torch.any(torch.isnan(obs.column_features)) assert not torch.any(torch.isnan(obs.edge_features.indices)) assert not torch.any(torch.isnan(obs.edge_features.values)) assert not torch.any(torch.isinf(obs.row_features)) assert not torch.any(torch.isinf(obs.column_features)) assert not torch.any(torch.isinf(obs.edge_features.indices)) assert not torch.any(torch.isinf(obs.edge_features.values)) stop = time.monotonic() self.total_time += stop - start self.num_calls += 1 ''' print("feature_extraction_time", self.feature_extraction_time) print("feature_cleanup_time", self.feature_cleanup_time) print("extra_col_feature_extraction_time", self.extra_col_feature_extraction_time) print("extra_row_feature_extraction_time", self.extra_row_feature_extraction_time) print("feature_normalization_time", self.feature_normalization_time) print("feature_merge_time", self.feature_merge_time) print("total_time", self.total_time) ''' return obs def timings(self): if self.num_calls == 0: return "" timing = f"observation time = {self.feature_extraction_time/self.num_calls: >.4f} {self.feature_cleanup_time/self.num_calls: >.4f} {self.extra_col_feature_extraction_time/self.num_calls: >.4f} {self.extra_row_feature_extraction_time/self.num_calls: >.4f} {self.feature_normalization_time/self.num_calls: >.4f} {self.feature_merge_time/self.num_calls: >.4f} {self.total_time/self.num_calls: >.4f}" return timing
CL-LNS-main
graph_datasets/bipartite_graph_observations.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import ecole.typing class DualBound(ecole.typing.InformationFunction): def __init__(self): super().__init__() def before_reset(self, model): super().before_reset(model) def extract(self, model, done): m = model.as_pyscipopt() dual_bound = m.getDualbound() return dual_bound class Gap(ecole.typing.InformationFunction): def __init__(self): super().__init__() def before_reset(self, model): super().before_reset(model) def extract(self, model, done): m = model.as_pyscipopt() gap = m.getGap() return gap
CL-LNS-main
graph_datasets/informations.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import unittest import torch import random import string import os import graph_datasets.bipartite_graph as bg import graph_datasets.bipartite_graph_dataset as bgd import graph_datasets.bipartite_graph_loader as bgl class BipartiteGraphLoaderTest(unittest.TestCase): def build_db(self, seed=None): random.seed(seed) letters = string.ascii_letters name = '/tmp/' + ''.join(random.choice(letters) for i in range(10)) if os.path.exists(name): os.remove(name) db = bgd.BipartiteGraphDataset(name) # create a graph with 2 variables and 1 constraint db.add(bg.BipartiteGraph(torch.FloatTensor([123]), torch.IntTensor([[0, 1], [0, 0]]), torch.FloatTensor([32, 21]), torch.FloatTensor([78, 910]), torch.LongTensor([0]), [0], torch.FloatTensor([0.65]), [0])) # create a graph with 3 variables and 2 constraints db.add(bg.BipartiteGraph(torch.FloatTensor([456, 567]), torch.IntTensor([[0, 1, 1, 2], [0, 0, 1, 1]]), torch.FloatTensor([654, 765, 876, 987]), torch.FloatTensor([987, 109, 111]), torch.LongTensor([1, 2]), [0], torch.FloatTensor([0.56, 0.12]), [0])) db.commit() return name def testLoadAsPTGeom(self): name = self.build_db(seed="pt_geom") loader = bgl.BipartiteGraphLoader(name, shuffle=False) gen = loader.load(batch_size=1, format="pt_geom") g1 = next(gen) self.assertEqual(g1.constraint_features, torch.FloatTensor([123])) self.assertTrue(torch.equal(g1.variable_features, torch.FloatTensor([78, 910]))) self.assertTrue(torch.equal(g1.edge_attr, torch.FloatTensor([32, 21]))) g2 = next(gen) self.assertTrue(torch.equal(g2.constraint_features, torch.FloatTensor([456, 567]))) self.assertTrue(torch.equal(g2.variable_features, torch.FloatTensor([987, 109, 111]))) self.assertTrue(torch.equal(g2.edge_attr, torch.FloatTensor([654, 765, 876, 987]))) def testLoadAsDGL(self): name = self.build_db(seed="dgl") loader = bgl.BipartiteGraphLoader(name, shuffle=False) gen = loader.load(batch_size=1, format="dgl") g1 = next(gen) self.assertTrue(torch.equal(g1.nodes['variables'].data['variable_features'], torch.FloatTensor([78, 910]))) self.assertTrue(torch.equal(g1.nodes['variables'].data['fsb_scores'], torch.FloatTensor([0.65, -1.0e10]))) self.assertEqual(g1.nodes['constraints'].data['constraint_features'], torch.FloatTensor([123])) self.assertTrue(torch.equal(g1.edges['edges'].data['edge_attr'], torch.FloatTensor([32, 21]))) self.assertTrue(g1.has_edges_between(0, 0, ("variables", "edges", "constraints"))) self.assertTrue(g1.has_edges_between(1, 0, ("variables", "edges", "constraints"))) g2 = next(gen) self.assertTrue(torch.equal(g2.nodes['variables'].data['variable_features'], torch.FloatTensor([987, 109, 111]))) self.assertTrue(torch.equal(g2.nodes['variables'].data['fsb_scores'], torch.FloatTensor([-1.0e10, 0.56, 0.12]))) self.assertTrue(torch.equal(g2.nodes['constraints'].data['constraint_features'], torch.FloatTensor([456, 567]))) self.assertTrue(torch.equal(g2.edges['edges'].data['edge_attr'], torch.FloatTensor([654, 765, 876, 987]))) self.assertTrue(g2.has_edges_between(0, 0, ("variables", "edges", "constraints"))) self.assertTrue(g2.has_edges_between(1, 0, ("variables", "edges", "constraints"))) self.assertTrue(g2.has_edges_between(1, 1, ("variables", "edges", "constraints"))) self.assertTrue(g2.has_edges_between(2, 1, ("variables", "edges", "constraints"))) def testLoadAsNTX(self): name = self.build_db(seed="ntx") loader = bgl.BipartiteGraphLoader(name, shuffle=False) gen = loader.load(batch_size=1, format="ntx") g1 = next(gen) # TODO: figure out how to check the graph #nx.write_gpickle(g1, "/tmp/g1.pickle") #with open('/tmp/g1.txt', mode='w') as f: # print(str(g1), file=f) g2 = next(gen) #nx.write_gpickle(g2, "/tmp/g2.pickle") #with open('/tmp/g2.txt', mode='w') as f: # print(str(g2), file=f) reached_end = False try: _ = next(gen) except: reached_end = True self.assertTrue(reached_end)
CL-LNS-main
graph_datasets/bipartite_graph_loader_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from pyscipopt import Eventhdlr from pyscipopt import SCIP_EVENTTYPE class DualBoundEventHandler(Eventhdlr): def __init__(self, initial_bound=None): super().__init__() self.initial_bound = initial_bound if initial_bound: self.events = [(initial_bound, 0, 0)] self.last_dual = initial_bound else: self.events = [] self.last_dual = float("NaN") def eventinit(self): self.model.catchEvent(SCIP_EVENTTYPE.LPEVENT, self) def eventexit(self): self.model.dropEvent(SCIP_EVENTTYPE.LPEVENT, self) def eventexec(self, event): dual = self.model.getDualbound() if dual != self.last_dual: if self.initial_bound: if self.model.getObjectiveSense() == "minimize": dual = max(dual, self.initial_bound) else: dual = min(dual, self.initial_bound) self.last_dual = dual time = self.model.getSolvingTime() nb_nodes = self.model.getNNodes() self.events.append((dual, time, nb_nodes)) #print(f"CAUGHT EVENT {dual} at t={time} nb_nodes={nb_nodes}", flush=True) return {}
CL-LNS-main
graph_datasets/event_handlers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sqlite3 from pathlib import Path import hashlib import string import random import functools from collections import defaultdict class EvaluationData(): def __init__(self, db, read_only=False): p = Path(db) if not p.parent.exists(): p.parent.mkdir(exist_ok=True) already_created = p.exists() assert already_created or not read_only uri = "file:" + db if read_only: uri += "?mode=ro" self.db = sqlite3.connect(uri, uri=True) self.cur = self.db.cursor() # Create table if needed if not already_created: self.cur.execute('''CREATE TABLE eval_data (instance_id string not null, model_version string not null, step_id integer not null, nb_nodes integer not null, timestamp float, primal float, dual float)''') self.cur.execute('''CREATE INDEX per_instance_id ON eval_data(instance_id)''') self.cur.execute('''CREATE INDEX per_model_version ON eval_data(model_version)''') self.db.commit() self.added_rows = 0 def __del__(self): self.db.commit() self.db.close() @functools.lru_cache(maxsize=16) def _instance_to_key(self, model): letters = string.ascii_letters tmp_file = '/tmp/' + ''.join(random.choice(letters) for i in range(10)) + '.lp' model.writeProblem(tmp_file) with open(tmp_file, 'r') as f: problem = f.read() problem = problem.encode() key = hashlib.sha256(problem).hexdigest() return key def add(self, instance, model_version, step_id, primal, dual, nb_nodes, timestamp): instance_id = self._instance_to_key(instance) self.cur.execute(f"INSERT INTO eval_data VALUES (\'{instance_id}\', \'{model_version}\', {step_id}, {nb_nodes}, {timestamp}, {primal}, {dual})") self.added_rows += 1 if self.added_rows % 1000 == 0: self.db.commit() def commit(self): self.db.commit() class EvaluationDataMining(): def __init__(self, db, models): self.db = EvaluationData(db, read_only=True) self.models = models def compute_metrics(self): model_filter = f"model_version == '{self.models[0]}' " for m in self.models[1:]: model_filter += f"OR model_version == '{m}' " query = f"SELECT DISTINCT instance_id FROM eval_data WHERE {model_filter}" #print(query) self.db.cur.execute(query) instances = self.db.cur.fetchall() #print(str(instances)) integrals_over_time = defaultdict(lambda: []) integrals_over_nodes = defaultdict(lambda: []) nb_nodes = defaultdict(lambda: []) for instance in instances: instance_id = instance[0] max_nb_nodes = 1e100 for version in self.models: query = f"SELECT MAX(nb_nodes) FROM eval_data WHERE instance_id == '{instance_id}' AND model_version == '{version}'" #print(query) self.db.cur.execute(query) num_nodes = self.db.cur.fetchone() #print(str(num_nodes)) max_nb_nodes = min(max_nb_nodes, int(num_nodes[0])) for version in self.models: #print(version) nb_nodes[version].append(max_nb_nodes) integral_over_time = 0 integral_over_nodes = 0 query = f"SELECT nb_nodes, dual, timestamp FROM eval_data WHERE instance_id == '{instance_id}' AND model_version == '{version}' AND nb_nodes <= {max_nb_nodes} ORDER BY nb_nodes ASC" #print(query) first = True last_dual = 0 last_nb_nodes = 0 last_timestamp = 0 for rslt in self.db.cur.execute(query): #print("ORDERED RSLT:" + str(rslt)) if not first: integral_over_time += last_dual * (float(rslt[2]) - last_timestamp) integral_over_nodes += last_dual * (int(rslt[0]) - last_nb_nodes) first = False last_dual = float(rslt[1]) last_nb_nodes = int(rslt[0]) last_timestamp = float(rslt[2]) if last_nb_nodes < max_nb_nodes: integral_over_nodes += last_dual * (max_nb_nodes - last_nb_nodes) integrals_over_time[version].append(integral_over_time) integrals_over_nodes[version].append(integral_over_nodes) return (nb_nodes, integrals_over_nodes, integrals_over_time) def draw_in_tensorboard(self): pass
CL-LNS-main
graph_datasets/evaluation_data.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch_geometric import sqlite3 import pickle import base64 import random from pathlib import Path from graph_datasets.bipartite_graph import BipartiteGraph import intervaltree import zlib import torch class BipartiteGraphDataset(torch_geometric.data.Dataset): """ This class encodes a collection of graphs, as well as a method to load such graphs from the disk. It can be used in turn by the data loaders provided by pytorch geometric. """ def __init__(self, sample_db, query_opt=False, read_only=False, first_k=None): super().__init__(root=None, transform=None, pre_transform=None) self.query_opt = query_opt p = Path(sample_db) if not p.parent.exists(): p.parent.mkdir(exist_ok=True) already_created = p.exists() assert already_created or not read_only uri = "file:" + sample_db if read_only: uri += "?mode=ro" self.db = sqlite3.connect(uri, uri=True) self.cur = self.db.cursor() # Create table if needed if not already_created: self.cur.execute('''CREATE TABLE samples (id integer primary key asc, features text not null unique)''') #self.cur.execute('''CREATE UNIQUE INDEX per_id ON samples(id)''') self.cur.execute('''INSERT INTO samples VALUES (-1, \'0\')''') self.db.commit() self.sample_cnt = 0 else: self.cur.execute("SELECT features FROM samples WHERE id = -1") rslt = self.cur.fetchone() self.sample_cnt = int(rslt[0]) if first_k is not None: self.sample_cnt = min(self.sample_cnt, first_k) print(f"Use first_k = {first_k}. Dataset size = {self.sample_cnt}") def __del__(self): self.db.close() def len(self): return self.sample_cnt def get(self, index): """ Load a bipartite graph observation as saved on the disk during data collection. """ #print("here: get") #assert False #from IPython import embed; embed() if self.query_opt: # Ignore the requested index, so we can stream data rslt = self.cur.fetchone() if rslt is None: query = "SELECT features FROM samples WHERE id >= 0" self.cur.execute(query) rslt = self.cur.fetchone() assert rslt is not None else: # Fetch the data at the requested index. This is much slower query = f"SELECT features FROM samples WHERE id = {index}" self.cur.execute(query) rslt = self.cur.fetchone() entry = base64.b64decode(rslt[0].encode()) try: raw = zlib.decompress(entry) except: # Old uncompressed dataset raw = entry graph = pickle.loads(raw) #from IPython import embed; embed() #if torch.sum(graph.candidate_scores).item() < 25: # return None #if index % 2 ==0 : # return None return graph def add(self, graph): """ Add a bipartite graph observation to the dataset. Only adds the observation if it wasn't already present in the dataset """ # Insert a row of data raw = pickle.dumps(graph) compressed = zlib.compress(raw, level=9) sample = base64.b64encode(compressed).decode() query = f"INSERT INTO samples VALUES ({self.sample_cnt}, \'{sample}\')" try: self.cur.execute(query) self.sample_cnt += 1 self.commit() return True except sqlite3.IntegrityError: return False def merge(self, dataset): """ Add another dataset to the current one """ query = "SELECT features FROM samples WHERE id >= 0" for sample in dataset.cur.execute(query): insert = f"INSERT INTO samples VALUES ({self.sample_cnt}, \'{sample[0]}\')" try: self.cur.execute(insert) self.sample_cnt += 1 except sqlite3.IntegrityError: continue if self.sample_cnt % 1000 == 0: self.commit() self.commit() def merge_multiple(self, datasets): """ Add several other datasets to the current one """ query = "SELECT features FROM samples WHERE id >= 0" for dataset in datasets: dataset.cur.execute(query) done = False while not done: idx = random.randint(0, len(datasets)-1) dataset = datasets[idx] sample = dataset.cur.fetchone() if sample is None: datasets.pop(idx) if len(datasets) == 0: done = True else: insert = f"INSERT INTO samples VALUES ({self.sample_cnt}, \'{sample[0]}\')" try: self.cur.execute(insert) self.sample_cnt += 1 except sqlite3.IntegrityError: continue if self.sample_cnt % 1000 == 0: self.commit() self.commit() def commit(self): query = f"INSERT OR REPLACE INTO samples VALUES (-1, \'{self.sample_cnt}\')" self.cur.execute(query) self.db.commit() class BipartiteGraphDatasets(torch_geometric.data.Dataset): """ Allows training on the data from multiple datasets. """ def __init__(self, databases, query_opt=False, first_k=None): super().__init__(root=None, transform=None, pre_transform=None) if first_k: first_k = max(1,first_k // len(databases)) self.dbs = intervaltree.IntervalTree() self.sample_cnt = 0 for db in databases: p = Path(db) assert p.exists() dataset = BipartiteGraphDataset(db, query_opt, read_only=True, first_k=first_k) new_samples = dataset.len() self.dbs[self.sample_cnt:self.sample_cnt+new_samples] = dataset self.sample_cnt += new_samples def len(self): return self.sample_cnt def get(self, index): """ Load a bipartite graph observation as saved on the disk during data collection. """ rslt = None #while rslt is None: d = self.dbs[index].pop() db = d.data index -= d.begin rslt = db.get(index) return rslt
CL-LNS-main
graph_datasets/bipartite_graph_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import unittest import ecole import torch import torch_geometric import numpy as np import pyscipopt import graph_datasets.bipartite_graph as bg import graph_datasets.bipartite_graph_dataset as bgd import graph_datasets.bipartite_graph_observations as bgo import ilp_solver import os import time def advance_to_root_node(model, branching): """Utility to advance a model to the root node.""" if branching: dyn = ecole.dynamics.BranchingDynamics() #print("BranchingDynamics") else: dyn = ecole.dynamics.PrimalSearchDynamics() #print("PrimalSearchDynamics") model = dyn.reset_dynamics(model) return model def make_obs(obs_func, model, branching=True): """Utility function to extract observation on root node.""" start = time.monotonic() if isinstance(obs_func, tuple): for f in obs_func: f.before_reset(model) else: obs_func.before_reset(model) stop = time.monotonic() advance_to_root_node(model, branching) stop = time.monotonic() if isinstance(obs_func, tuple): rslt = [] for f in obs_func: rslt.append(f.extract(model, False)) return rslt else: return obs_func.extract(model, False) def disable_all(solver): solver.disable_presolver() solver.disable_cuts() solver.disable_heuristics() class FeaturizationTest(unittest.TestCase): def setUp(self): # Create a small ILP problem solver1 = ilp_solver.ILPSolver(engine="scip") x1 = solver1.create_integer_var("x1") x2 = solver1.create_integer_var("x2") solver1.add_constraint(10 * x1 + 15 * x2 >= 100.23) solver1.add_constraint(20 * x1 + 16 * x2 >= 161.8) solver1.add_constraint(17 * x1 + 11 * x2 >= 129.42) # Minimize the objective solver1.set_objective_function(80 * x1 + 95 * x2, maximize=False) disable_all(solver1) scip_model = solver1.as_scip_model() self.model1 = ecole.scip.Model.from_pyscipopt(scip_model) #self.model1.transform_prob() solver2 = ilp_solver.ILPSolver(engine="scip") x1 = solver2.create_integer_var("x1") x2 = solver2.create_integer_var("x2") solver2.add_constraint(20 * x1 + 30 * x2 <= 200) solver2.add_constraint(40 * x1 + 32 * x2 <= 320) solver2.add_constraint(34 * x1 + 22 * x2 <= 260) # Minimize the objective solver2.set_objective_function(80 * x1 + 95 * x2, maximize=True) disable_all(solver2) scip_model = solver2.as_scip_model() self.model2 = ecole.scip.Model.from_pyscipopt(scip_model) #self.model2.transform_prob() solver3 = ilp_solver.ILPSolver(engine="scip") x0 = solver3.create_integer_var("x0") x1 = solver3.create_integer_var("x1") x2 = solver3.create_integer_var("x2") solver3.add_constraint(20 * x1 + 30 * x2 >= 200) solver3.add_constraint(40 * x1 + 32 * x2 >= 320) solver3.add_constraint(34 * x1 + 22 * x2 >= 260) solver3.add_constraint(2 * x0 + 3 * x1 == 12) # Minimize the objective solver3.set_objective_function(87.3 * x1 + 93.2 * x2, maximize=False) disable_all(solver3) scip_model = solver3.as_scip_model() self.model3 = ecole.scip.Model.from_pyscipopt(scip_model) #self.model3.transform_prob() def testBranchingFeaturization(self): observation = make_obs(bgo.BipartiteGraphObservations(), self.model1) #print("VARS1: " + str(observation.column_features), flush=True) self.assertEqual(str(observation.column_features), """tensor([[-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, 8.4211e-01, 5.8809e+00, 6.4414e-01, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 5.8809e+00, 8.8086e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00], [-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, 1.0000e+00, 2.7614e+00, 7.6491e-01, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 2.7614e+00, 7.6143e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00]])""") #print("CNS1: " + str(observation.row_features)) self.assertEqual(str(observation.row_features), """tensor([[-1.0023e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -5.5598e+00, -9.9375e-01, 1.0000e+00, -1.9779e-03, 0.0000e+00], [-1.6180e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -6.3172e+00, -9.8082e-01, 1.0000e+00, -5.6137e-04, 0.0000e+00], [-1.2942e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -6.3916e+00, -9.5634e-01, 0.0000e+00, 0.0000e+00, 1.6667e-01]])""") #print("EDGES1: " + str(observation.edge_features.indices)) self.assertEqual(str(observation.edge_features.indices), """tensor([[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])""") #print("EDGE VALS1: " + str(observation.edge_features.values)) self.assertEqual(str(observation.edge_features.values), """tensor([[-10.0000, -0.0998], [-15.0000, -0.1497], [-20.0000, -0.1236], [-16.0000, -0.0989], [-17.0000, -0.1314], [-11.0000, -0.0850]])""") observation = make_obs(bgo.BipartiteGraphObservations(), self.model2) #print("VARS2: " + str(observation.column_features), flush=True) self.assertEqual(str(observation.column_features), """tensor([[-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, -8.4211e-01, 5.7143e+00, -6.4414e-01, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 5.7143e+00, 7.1429e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00], [-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, -1.0000e+00, 2.8571e+00, -7.6491e-01, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 2.8571e+00, 8.5714e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00]])""") #print("CNS2: " + str(observation.row_features)) self.assertEqual(str(observation.row_features), """tensor([[ 2.0000e+02, 1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, 5.5470e+00, -9.9375e-01, 1.0000e+00, -4.9448e-04, 0.0000e+00], [ 3.2000e+02, 1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, 6.2470e+00, -9.8082e-01, 1.0000e+00, -1.4034e-04, 0.0000e+00], [ 2.6000e+02, 1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, 6.4202e+00, -9.5634e-01, 0.0000e+00, -0.0000e+00, 1.6667e-01]])""") #print("EDGES2: " + str(observation.edge_features.indices)) self.assertEqual(str(observation.edge_features.indices), """tensor([[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])""") #print("EDGE VALS2: " + str(observation.edge_features.values), flush=True) self.assertEqual(str(observation.edge_features.values), """tensor([[20.0000, 0.1000], [30.0000, 0.1500], [40.0000, 0.1250], [32.0000, 0.1000], [34.0000, 0.1308], [22.0000, 0.0846]])""") observation = make_obs(bgo.BipartiteGraphObservations(), self.model3) #print("VARS3: " + str(observation.column_features), flush=True) self.assertEqual(str(observation.column_features), """tensor([[-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, 0.0000e+00, -2.7931e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, -2.7931e+00, 2.0690e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00], [-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, 9.3670e-01, 5.8621e+00, 6.8363e-01, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 5.8621e+00, 8.6207e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00], [-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, 1.0000e+00, 2.7586e+00, 7.2983e-01, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 2.7586e+00, 7.5862e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00]])""") #print("CNS3: " + str(observation.row_features)) self.assertEqual(str(observation.row_features), """tensor([[-2.0000e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -5.5470e+00, -9.8646e-01, 1.0000e+00, -4.6740e-04, 0.0000e+00], [-3.2000e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -6.2470e+00, -9.8975e-01, 0.0000e+00, 0.0000e+00, 1.6667e-01], [-2.6000e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -6.4202e+00, -9.7044e-01, 1.0000e+00, -2.5171e-04, 0.0000e+00], [-1.2000e+01, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -3.3282e+00, -5.6881e-01, 1.0000e+00, 0.0000e+00, 1.6667e-01], [ 1.2000e+01, 1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, 3.3282e+00, 5.6881e-01, 1.0000e+00, -0.0000e+00, 1.6667e-01]])""") #print("EDGES3: " + str(observation.edge_features.indices)) self.assertEqual(str(observation.edge_features.indices), """tensor([[0, 0, 1, 1, 2, 2, 3, 3, 4, 4], [1, 2, 1, 2, 1, 2, 0, 1, 0, 1]])""") #print("EDGE VALS3: " + str(observation.edge_features.values)) self.assertEqual(str(observation.edge_features.values), """tensor([[-20.0000, -0.1000], [-30.0000, -0.1500], [-40.0000, -0.1250], [-32.0000, -0.1000], [-34.0000, -0.1308], [-22.0000, -0.0846], [ -2.0000, -0.1667], [ -3.0000, -0.2500], [ 2.0000, 0.1667], [ 3.0000, 0.2500]])""") def testPrimalSearchFeatures(self): observation = make_obs(bgo.BipartiteGraphObservations(), self.model3, branching=False) #print("VARS: " + str(observation.column_features), flush=True) self.assertEqual(str(observation.column_features), """tensor([[-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, 0.0000e+00, -2.7931e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, -2.7931e+00, 2.0690e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00], [-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, 9.3670e-01, 5.8621e+00, 6.8363e-01, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 5.8621e+00, 8.6207e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00], [-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, 1.0000e+00, 2.7586e+00, 7.2983e-01, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 2.7586e+00, 7.5862e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00]])""") #print("CNS: " + str(observation.row_features)) self.assertEqual(str(observation.row_features), """tensor([[-2.0000e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -5.5470e+00, -9.8646e-01, 1.0000e+00, -4.6740e-04, 0.0000e+00], [-3.2000e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -6.2470e+00, -9.8975e-01, 0.0000e+00, 0.0000e+00, 1.6667e-01], [-2.6000e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -6.4202e+00, -9.7044e-01, 1.0000e+00, -2.5171e-04, 0.0000e+00], [-1.2000e+01, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -3.3282e+00, -5.6881e-01, 1.0000e+00, 0.0000e+00, 1.6667e-01], [ 1.2000e+01, 1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, 3.3282e+00, 5.6881e-01, 1.0000e+00, -0.0000e+00, 1.6667e-01]])""") #print("EDGES: " + str(observation.edge_features.indices)) self.assertEqual(str(observation.edge_features.indices), """tensor([[0, 0, 1, 1, 2, 2, 3, 3, 4, 4], [1, 2, 1, 2, 1, 2, 0, 1, 0, 1]])""") #print("EDGE VALS: " + str(observation.edge_features.values)) self.assertEqual(str(observation.edge_features.values), """tensor([[-20.0000, -0.1000], [-30.0000, -0.1500], [-40.0000, -0.1250], [-32.0000, -0.1000], [-34.0000, -0.1308], [-22.0000, -0.0846], [ -2.0000, -0.1667], [ -3.0000, -0.2500], [ 2.0000, 0.1667], [ 3.0000, 0.2500]])""") def testKhalilFeaturization(self): observation, khalil = make_obs((bgo.BipartiteGraphObservations(), ecole.observation.Khalil2016()), self.model1) branching_vars = np.array([0, 1]) observation.add_khalil_features(khalil, branching_vars) print("VARS: " + str(observation.column_features), flush=True) self.assertEqual(str(observation.column_features), """tensor([[-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, 8.4211e-01, 5.8809e+00, 6.4414e-01, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 5.8809e+00, 8.8086e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.6000e+01, 1.6000e+01, 0.0000e+00, 3.0000e+00, 2.0000e+00, 0.0000e+00, 2.0000e+00, 2.0000e+00, 3.0000e+00, 1.5667e+01, 4.1899e+00, 1.0000e+01, 2.0000e+01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.1914e-01, 1.1914e-01, 1.1914e-01, 8.8086e-01, 1.3526e-01, 1.0000e+00, 1.0495e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 2.0000e+00, 0.0000e+00, 2.0000e+00, 2.0000e+00, 5.0000e-01, 5.0000e-01, 5.0000e-01, 1.0000e+00, -1.0000e+00, -1.1610e-01, -9.0719e-02, 4.0000e-01, 6.0714e-01, 1.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 2.0000e+00, 3.0000e+01, 1.5000e+01, 3.5355e+00, 1.0000e+01, 2.0000e+01, 6.7778e-02, 9.5556e-01, 4.7778e-01, 5.4997e-02, 4.0000e-01, 5.5556e-01, 6.7778e-02, 9.5556e-01, 4.7778e-01, 5.4997e-02, 4.0000e-01, 5.5556e-01, 1.2429e+00, 1.6000e+01, 8.0000e+00, 6.0609e-01, 7.1429e+00, 8.8571e+00], [-9.2234e+18, 9.2234e+18, -9.2234e+18, 9.2234e+18, 1.0000e+00, 2.7614e+00, 7.6491e-01, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 2.7614e+00, 7.6143e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.9000e+01, 1.9000e+01, 0.0000e+00, 3.0000e+00, 2.0000e+00, 0.0000e+00, 2.0000e+00, 2.0000e+00, 3.0000e+00, 1.4000e+01, 2.1602e+00, 1.1000e+01, 1.6000e+01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 2.3857e-01, 2.3857e-01, 2.3857e-01, 7.6143e-01, 3.1332e-01, 1.0000e+00, 1.8166e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 2.0000e+00, 0.0000e+00, 2.0000e+00, 2.0000e+00, 5.0000e-01, 5.0000e-01, 5.0000e-01, 1.0000e+00, -1.0000e+00, -1.3017e-01, -7.8336e-02, 3.9286e-01, 6.0000e-01, 1.0000e+00, 1.0000e+00, 1.0000e+00, 0.0000e+00, 1.0000e+00, 0.0000e+00, 2.0000e+00, 3.1000e+01, 1.5500e+01, 3.5355e-01, 1.5000e+01, 1.6000e+01, 6.7778e-02, 1.0444e+00, 5.2222e-01, 5.4997e-02, 4.4444e-01, 6.0000e-01, 6.7778e-02, 1.0444e+00, 5.2222e-01, 5.4997e-02, 4.4444e-01, 6.0000e-01, 1.2429e+00, 1.9000e+01, 9.5000e+00, 2.6769e+00, 5.7143e+00, 1.3286e+01]])""") print("CNS: " + str(observation.row_features)) self.assertEqual(str(observation.row_features), """tensor([[-1.0023e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -5.5598e+00, -9.9375e-01, 1.0000e+00, -1.9779e-03, 0.0000e+00], [-1.6180e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -6.3172e+00, -9.8082e-01, 1.0000e+00, -5.6137e-04, 0.0000e+00], [-1.2942e+02, -1.0000e+00, 0.0000e+00, 2.0000e+00, 1.0000e+00, -6.3916e+00, -9.5634e-01, 0.0000e+00, 0.0000e+00, 1.6667e-01]])""") print("EDGES: " + str(observation.edge_features.indices)) self.assertEqual(str(observation.edge_features.indices), """tensor([[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])""") print("EDGE VALS: " + str(observation.edge_features.values)) self.assertEqual(str(observation.edge_features.values), """tensor([[-10.0000, -0.0998], [-15.0000, -0.1497], [-20.0000, -0.1236], [-16.0000, -0.0989], [-17.0000, -0.1314], [-11.0000, -0.0850]])""") if __name__ == "__main__": unittest.main()
CL-LNS-main
graph_datasets/featurization_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
CL-LNS-main
graph_datasets/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import graph_datasets.bipartite_graph_dataset as bgd import torch_geometric #import dgl import random import torch class BipartiteGraphLoader: def __init__(self, db, shuffle=True, first_k=None): self.shuffle = shuffle dbs = db.split('+') if len(dbs) == 1: self.data = bgd.BipartiteGraphDataset(db, query_opt=not shuffle, read_only=True, first_k=first_k) else: self.data = bgd.BipartiteGraphDatasets(dbs, query_opt=not shuffle, first_k=first_k) def num_examples(self): return self.data.sample_cnt def load(self, batch_size=32, format="pt_geom"): #from IPython import embed;embed() if format == "pt_geom": #print("here") def my_collate(batch): #embed() #print(len(batch)) #batch = list(filter(lambda x: torch.sum(x.candidate_scores) > 0.5 * x.info["neighborhood_size"], batch)) #return None #from IPython import embed; embed() batch = list(filter(lambda x: x is not None), batch) return torch.utils.data.dataloader.default_collate(batch) loader = torch_geometric.loader.DataLoader(self.data, batch_size, shuffle=self.shuffle)#, collate_fn=my_collate) for ptg in loader: #from IPython import embed;embed() yield ptg return elif format == 'dgl': k = self.data.len() permutation = random.sample(range(k), k) graphs = [] for loc in permutation: ptg = self.data.get(loc) ntx = ptg.to_networkx() #print("here") #from IPython import embed;embed() dgl_graph = dgl.bipartite_from_networkx(ntx, utype='variables', etype='edges', vtype='constraints', u_attrs=['variable_features'], e_attrs=['edge_attr'], v_attrs=['constraint_features']) # Annotate the variables with other information num_variables = dgl_graph.nodes("variables").size(0) fsb_scores = torch.full((num_variables,), -1.0e10) #, dype=torch.float) candidate_scores = ntx.graph["candidate_scores"] branching_candidates = ntx.graph["candidates"] num_candidates = branching_candidates.size(0) for i in range(num_candidates): candidate_id = branching_candidates[i] candidate_score = candidate_scores[i] assert candidate_score >= 0 fsb_scores[candidate_id] = candidate_score dgl_graph.nodes['variables'].data['fsb_scores'] = fsb_scores graphs.append(dgl_graph) if len(graphs) == batch_size: yield dgl.batch(graphs) graphs = [] return assert format == 'ntx' k = self.data.len() permutation = random.sample(range(k), k) batch = [] for loc in permutation: ptg = self.data.get(loc) ntx = ptg.to_networkx() batch.append(ntx) if len(batch) == batch_size: yield batch batch = []
CL-LNS-main
graph_datasets/bipartite_graph_loader.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch_geometric import torch import numpy as np import networkx as nx class BipartiteGraph(torch_geometric.data.Data): """ This class encode a node bipartite graph observation as returned by the `ecole.observation.NodeBipartite` observation function in a format understood by the pytorch geometric data handlers. """ def __init__(self, constraint_features, edge_indices, edge_features, variable_features, candidates, candidate_choice, candidate_scores, info, iteration = None, instance_id = None, incumbent_history = None, LB_relaxation_history = None, improvement_history = None, neighborhood_size = None): super().__init__() self.constraint_features = constraint_features self.edge_index = edge_indices self.edge_attr = edge_features self.variable_features = variable_features #print("Variable features shape", variable_features.shape) self.candidates = candidates self.nb_candidates = len(candidates) if candidates is not None else 0 self.candidate_choices = candidate_choice self.candidate_scores = candidate_scores self.info = info # We must tell pytorch geometric how many nodes there are, for indexing purposes self.num_nodes = constraint_features.shape[0] if constraint_features is not None else 0 self.num_nodes += variable_features.shape[0] if variable_features is not None else 0 self.iteration = iteration self.instance_id = instance_id self.incumbent_history = incumbent_history self.LB_relaxation_history = LB_relaxation_history self.improvement_history = improvement_history self.neighborhood_size = neighborhood_size def __inc__(self, key, value, *args, **kwargs): """ We overload the pytorch geometric method that tells how to increment indices when concatenating graphs for those entries (edge index, candidates) for which this is not obvious. """ if key == 'edge_index': return torch.tensor([[self.constraint_features.shape[0]], [self.variable_features.shape[0]]]) elif key == 'candidates': return self.variable_features.shape[0] else: return super().__inc__(key, value) def to_networkx(self): G = nx.DiGraph(candidates=self.candidates, candidate_scores=self.candidate_scores, nb_candidates=self.nb_candidates, candidate_choice=self.candidate_choices, info=self.info) G.add_nodes_from(range(self.num_nodes)) num_vars = self.variable_features.shape[0] #print(num_vars) for i, (v, u) in enumerate(self.edge_index.T.tolist()): G.add_edge(u, v+num_vars) #print(u, v) assert 0 <= u and u < num_vars, str(u) assert v >= 0, str(v) G[u][v+num_vars]["edge_attr"] = self.edge_attr[i] for i, feat_dict in G.nodes(data=True): if i < num_vars: feat_dict.update({"variable_features": self.variable_features[i].squeeze()}) feat_dict.update({"bipartite": 0}) else: feat_dict.update({"constraint_features": self.constraint_features[i-num_vars].squeeze()}) feat_dict.update({"bipartite": 1}) for u, v in G.edges(): #print(u, v, G.nodes[u]['bipartite'], G.nodes[v]['bipartite'], num_vars) assert(G.nodes[u]['bipartite'] == 0) assert(G.nodes[v]['bipartite'] == 1) return G
CL-LNS-main
graph_datasets/bipartite_graph.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import ecole.typing import competition.common.rewards as competition_rewards # Returns the relative improvement in dual bound since the last step class Dual(ecole.typing.RewardFunction): def __init__(self): self.parameters = competition_rewards.IntegralParameters() super().__init__(wall=True, bound_function=lambda model: ( self.parameters.offset, self.parameters.initial_primal_bound)) def set_parameters(self, objective_offset=None, initial_primal_bound=None, initial_dual_bound=None): self.parameters = competition_rewards.IntegralParameters( offset=objective_offset, initial_primal_bound=initial_primal_bound, initial_dual_bound=initial_dual_bound) def before_reset(self, model): self.parameters.fetch_values(model) super().before_reset(model) self.last_dual_bound = self.parameters.initial_dual_bound def extract(self, model, done): if done: return 0 m = model.as_pyscipopt() dual_bound = m.getDualbound() reward = abs(dual_bound - self.last_dual_bound) / abs(self.last_dual_bound) self.last_dual_bound = dual_bound return reward # Returns the relative improvement in the primal/dual gap since the last step class PrimalDualGrap(ecole.typing.RewardFunction): def __init__(self): self.parameters = competition_rewards.IntegralParameters() super().__init__(wall=True, bound_function=lambda model: ( self.parameters.offset, self.parameters.initial_primal_bound)) def set_parameters(self, objective_offset=None, initial_primal_bound=None, initial_dual_bound=None): self.parameters = competition_rewards.IntegralParameters( offset=objective_offset, initial_primal_bound=initial_primal_bound, initial_dual_bound=initial_dual_bound) def before_reset(self, model): self.parameters.fetch_values(model) super().before_reset(model) self.last_gap = abs(self.parameters.initial_dual_bound - self.parameters.initial_primal_bound) / min(abs(self.parameters.initial_dual_bound), abs(self.parameters.initial_primal_bound)) def extract(self, model, done): if done: return 0 m = model.as_pyscipopt() gap = m.getGap() reward = (self.last_gap - gap) / self.last_gap self.last_gap = gap return reward
CL-LNS-main
graph_datasets/step_rewards.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import unittest import ilp_solver import random import string from graph_datasets.solved_milp_dataset import SolvedMilpDataset class SolvedMilpDatasetTest(unittest.TestCase): def setUp(self): # Create a small ILP problem solver = ilp_solver.ILPSolver(engine="scip") x1 = solver.create_integer_var("x1") x2 = solver.create_integer_var("x2") solver.add_constraint(10 * x1 + 15 * x2 >= 100.23) solver.add_constraint(20 * x1 + 16 * x2 >= 161.8) solver.add_constraint(17 * x1 + 11 * x2 >= 129.42) solver.set_objective_function(80 * x1 + 95 * x2, maximize=False) self.model = solver.as_scip_model() self.model.optimize() self.solution = self.model.getBestSol() self.obj_value = self.model.getObjVal() self.gap = self.model.getGap() letters = string.ascii_letters self.db_name = '/tmp/' + ''.join(random.choice(letters) for i in range(10)) self.db_name2 = '/tmp/' + ''.join(random.choice(letters) for i in range(10)) def test_read_write(self): dataset = SolvedMilpDataset(self.db_name) dataset.add(self.model, self.solution, self.obj_value, self.gap) a, b = dataset.get_one(self.model) sol = {} for v in self.model.getVars(): val = self.solution[v] sol[v.getIndex()] = val self.assertEqual(a, sol) self.assertEqual(b, self.obj_value) def test_missing_entry(self): dataset = SolvedMilpDataset(self.db_name) try: a, b = dataset.get_one(self.model) found = True except: found = False self.assertFalse(found) def test_overwrite(self): dataset = SolvedMilpDataset(self.db_name) dataset.add(self.model, self.solution, 10, 23) dataset.add(self.model, self.solution, 1.0, 21) a, b = dataset.get_one(self.model) sol = {} for v in self.model.getVars(): val = self.solution[v] sol[v.getIndex()] = val self.assertEqual(a, sol) self.assertEqual(b, 1.0) dataset.add(self.model, self.solution, 2.0, 22) a, b = dataset.get_one(self.model) self.assertEqual(b, 1.0) def test_multiple_entries(self): dataset = SolvedMilpDataset(self.db_name2, best_solution_only=False) dataset.add(self.model, self.solution, 50.0, 23) dataset.add(self.model, self.solution, 10.0, 21) dataset.add(self.model, self.solution, 2.0, 22) expected_obj_value = 50.0 for a, b in dataset.get_all(self.model): sol = {} for v in self.model.getVars(): val = self.solution[v] sol[v.getIndex()] = val self.assertEqual(a, sol) self.assertEqual(b, expected_obj_value) expected_obj_value /= 5 def test_aggregate(self): dataset1 = SolvedMilpDataset(self.db_name) dataset1.add(self.model, self.solution, 10, 25) _, b = dataset1.get_one(self.model) self.assertEqual(b, 10) dataset2 = SolvedMilpDataset(self.db_name) dataset2.add(self.model, self.solution, 1, 11) dataset1.merge(dataset2) _, b = dataset1.get_one(self.model) self.assertEqual(b, 1) dataset3 = SolvedMilpDataset(self.db_name) dataset3.add(self.model, self.solution, 5, 17) dataset1.merge(dataset3) _, b = dataset1.get_one(self.model) self.assertEqual(b, 1)
CL-LNS-main
graph_datasets/solved_milp_dataset_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import unittest import ecole import torch import torch_geometric import numpy as np import string import random import os import sys import graph_datasets.bipartite_graph as bg import graph_datasets.bipartite_graph_dataset as bgd import ilp_solver def advance_to_root_node(model): """Utility to advance a model to the root node.""" dyn = ecole.dynamics.BranchingDynamics() model = dyn.reset_dynamics(model) return model def make_obs(obs_func, model): """Utility function to extract observation on root node.""" obs_func.before_reset(model) advance_to_root_node(model) return obs_func.extract(model, False) class BipartiteGraphDatasetTest(unittest.TestCase): def setUp(self): # Create a small ILP problem solver = ilp_solver.ILPSolver(engine="scip") x1 = solver.create_integer_var("x1") x2 = solver.create_integer_var("x2") solver.add_constraint(10 * x1 + 15 * x2 >= 100) solver.add_constraint(20 * x1 + 16 * x2 >= 160) solver.add_constraint(17 * x1 + 11 * x2 >= 130) # Minimize the objective solver.set_objective_function(80 * x1 + 95 * x2, maximize=False) scip_model = solver.as_scip_model() self.model = ecole.scip.Model.from_pyscipopt(scip_model) self.model.disable_presolve() self.model.disable_cuts() letters = string.ascii_letters self.db = [] for i in range(6): self.db.append('/tmp/' + ''.join(random.choice(letters) for i in range(10))) def tearDown(self): for db in self.db: try: os.remove(db) except: pass def testBipartiteGraphQueries(self): db = bgd.BipartiteGraphDataset(self.db[0], query_opt=False) g0 = bg.BipartiteGraph(np.array([0]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0]) db.add(g0) g1 = bg.BipartiteGraph(np.array([1]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0]) db.add(g1) g2 = bg.BipartiteGraph(np.array([2]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0]) db.add(g2) t0 = db.get(0) t1 = db.get(1) t2 = db.get(2) self.assertEqual(t0.constraint_features, g0.constraint_features) self.assertEqual(t1.constraint_features, g1.constraint_features) self.assertEqual(t2.constraint_features, g2.constraint_features) def testBipartiteGraphIterationNoOpt(self): db = bgd.BipartiteGraphDataset(self.db[1], query_opt=False) db.add(bg.BipartiteGraph(np.array([0]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) db.add(bg.BipartiteGraph(np.array([1]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) self.assertEqual(2, db.len()) for i in range(5): _ = db.get(i % 2) def testBipartiteGraphIterationOpt(self): db = bgd.BipartiteGraphDataset(self.db[2], query_opt=True) db.add(bg.BipartiteGraph(np.array([0]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) db.add(bg.BipartiteGraph(np.array([1]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) self.assertEqual(2, db.len()) for i in range(5): _ = db.get(i % 2) def _testDuplicateEntries(self): db = bgd.BipartiteGraphDataset(self.db[3], query_opt=True) rslt1 = db.add(bg.BipartiteGraph(np.array([0]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) rslt2 = db.add(bg.BipartiteGraph(np.array([0]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) self.assertEqual(True, rslt1) self.assertEqual(False, rslt2) self.assertEqual(1, db.len()) def _testMerge(self): db1 = bgd.BipartiteGraphDataset(self.db[4], query_opt=True) rslt1 = db1.add(bg.BipartiteGraph(np.array([0]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) self.assertEqual(True, rslt1) db2 = bgd.BipartiteGraphDataset(self.db[5], query_opt=True) rslt2 = db2.add(bg.BipartiteGraph(np.array([0]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) self.assertEqual(True, rslt2) rslt2 = db2.add(bg.BipartiteGraph(np.array([1]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) self.assertEqual(True, rslt2) db1.merge(db2) self.assertEqual(2, db1.len()) class BipartiteGraphDatasetTests(unittest.TestCase): def setUp(self) -> None: letters = string.ascii_letters self.db = [] for i in range(6): self.db.append('/tmp/' + ''.join(random.choice(letters) for i in range(10))) def tearDown(self): for db in self.db: try: os.remove(db) except: pass def _testBipartiteGraphExtraction(self): db1 = bgd.BipartiteGraphDataset(self.db[0]) db1.add(bg.BipartiteGraph(torch.tensor([0]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) db1.add(bg.BipartiteGraph(torch.tensor([1]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) self.assertEqual(db1.len(), 2) db2 = bgd.BipartiteGraphDataset(self.db[1]) db2.add(bg.BipartiteGraph(torch.tensor([2]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) db2.add(bg.BipartiteGraph(torch.tensor([3]), np.array([[0], [0]]), [0], np.array([0]), [0], [0], [0], [0])) self.assertEqual(db2.len(), 2) db = bgd.BipartiteGraphDatasets([self.db[0], self.db[1]]) self.assertEqual(db.get(0).constraint_features, torch.tensor([0])) self.assertEqual(db.get(1).constraint_features, torch.tensor([1])) self.assertEqual(db.get(2).constraint_features, torch.tensor([2])) self.assertEqual(db.get(3).constraint_features, torch.tensor([3])) for i in range(4): t = db.get(i) self.assertEqual(t.constraint_features, torch.tensor([i])) if __name__ == "__main__": unittest.main()
CL-LNS-main
graph_datasets/bipartite_graph_dataset_test.py
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned using a masked language modeling (MLM) loss. """ import logging import math import os from dataclasses import dataclass, field from typing import Optional from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, HfArgumentParser, LineByLineTextDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch." }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ train_data_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a text file)."} ) eval_data_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) mlm: bool = field( default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) block_size: int = field( default=-1, metadata={ "help": "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def get_dataset(args: DataTrainingArguments, tokenizer: PreTrainedTokenizer, evaluate=False): file_path = args.eval_data_file if evaluate else args.train_data_file if args.line_by_line: return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size) else: return TextDataset( tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, overwrite_cache=args.overwrite_cache ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it," "and load it from here, using --tokenizer_name" ) tokenizer.add_special_tokens({'additional_special_tokens': ['<|belief|>', '<|endofbelief|>', '<|action|>', '<|endofaction|>', \ '<|response|>', '<|endofresponse|>', '<|context|>', '<|endofcontext|>', '<|user|>', '<|system|>', \ '<|task|>', '<|endoftask|>', '<|chitchat|>', '<|endofchitchat|>']}) if model_args.model_name_or_path: model = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) else: logger.info("Training new model from scratch") model = AutoModelWithLMHead.from_config(config) model.resize_token_embeddings(len(tokenizer)) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm " "flag (masked language modeling)." ) if data_args.block_size <= 0: data_args.block_size = tokenizer.max_len # Our input block size will be the max possible for the model else: data_args.block_size = min(data_args.block_size, tokenizer.max_len) # Get datasets train_dataset = get_dataset(data_args, tokenizer=tokenizer) if training_args.do_train else None eval_dataset = get_dataset(data_args, tokenizer=tokenizer, evaluate=True) if training_args.do_eval else None data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, prediction_loss_only=True, ) # Training if training_args.do_train: model_path = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) else None ) trainer.train(model_path=model_path) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") eval_output = trainer.evaluate() perplexity = math.exp(eval_output["eval_loss"]) result = {"perplexity": perplexity} output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt") if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) results.update(result) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
accentor-main
run_language_modeling.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import random import argparse import os def clean(x): return x.replace("\n", "").replace("\r", "").replace("\t", " ").strip() parser = argparse.ArgumentParser() parser.add_argument("--data", default="./accentor-sgd/", type=str, required=False, help="path to SGD") args = parser.parse_args() random.seed(42) pairs = {} for s in ["train", "dev", "test"]: pairs[s] = [] fns = os.listdir(args.data + s) fns.sort() for fn in fns: if not fn.startswith("dialogue") or not fn.endswith(".json"): continue with open(args.data + s + "/" + fn, "r", encoding='utf8') as f: data = json.load(f) for i in range(len(data)): t = '' for j in range(len(data[i]["turns"])): for ps in ["beginning", "end"]: if ps in data[i]["turns"][j]: for k in range(len(data[i]["turns"][j][ps])): if data[i]["turns"][j][ps][k]["label"] == "good": pair = [t, clean(data[i]["turns"][j][ps][k]["candidate"])] pairs[s] += [pair] if t != '': t += ' ' if j % 2 == 0: t += 'user: ' else: t += 'system: ' t += clean(data[i]["turns"][j]["utterance"]) for s in pairs: print(s, len(pairs[s])) random.shuffle(pairs["train"]) for s in ["train", "dev", "test"]: with open("parlai_"+(s if s != "dev" else "valid")+".txt", "w", encoding='utf8') as f: for i in range(len(pairs[s])): f.write("text:" + pairs[s][i][0] + "\t" + "labels:" + pairs[s][i][1] + "\tepisode_done:True\n")
accentor-main
gen_parlai_data.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import os from utils import bleuscorer import argparse def main(): parser = argparse.ArgumentParser() parser.add_argument("--inference", default="dev.inference.gpt2_10epoch_1e-3_fp16.json", type=str, required=False, help='inference file') parser.add_argument("--datafolder", default="./simpletod/", type=str, required=False, help='data folder') parser.add_argument("--predictionfolder", default="./prediction/", type=str, required=False, help='prediction folder') parser.add_argument("--split", default="dev", type=str, required=False, help="[dev,test]") args = parser.parse_args() inference = args.inference datafolder = args.datafolder predictionfolder = args.predictionfolder folder = args.split + "/" if inference.endswith(".txt"): with open(inference, "r") as f: predict = f.read().strip().split("\n") predict = [a.strip() for a in predict] else: with open(inference, "r") as f: predict = json.load(f) idx = 0 cnt = 0 seen_services = set() with open(datafolder + "train/" + "schema.json", "r") as f: schema = json.load(f) for i in range(len(schema)): seen_services.add(schema[i]["service_name"]) domain_slots = set() with open(datafolder + folder + "schema.json", "r") as f: schema = json.load(f) for i in range(len(schema)): for j in range(len(schema[i]["slots"])): assert(" " not in schema[i]["slots"][j]) domain_slots.add(schema[i]["service_name"].split("_")[0].lower() + " " + schema[i]["slots"][j]["name"].lower()) fns = os.listdir(datafolder + folder) fns.sort() act_precision = [] act_recall = [] seen_act_precision = [] seen_act_recall = [] unseen_act_precision = [] unseen_act_recall = [] bleu = [] bleua = [] bleub = [] seenbleu = [] seenbleua = [] seenbleub = [] unseenbleu = [] unseenbleua = [] unseenbleub = [] for fn in fns: if not fn.startswith("dialogue"): continue if fn.startswith("dialogues_and_metrics.json"): continue with open(datafolder + folder + fn, "r") as f: data = json.load(f) for i in range(len(data)): for j in range(1, len(data[i]["turns"]), 2): cnt += 1 if idx >= len(predict): continue belief = predict[idx].split("<|belief|>") if len(belief) >= 2 and "<|endofbelief|>" in belief[1]: belief = belief[1].split("<|endofbelief|>")[0].strip() else: belief = "" action = predict[idx].split("<|action|>") if len(action) >= 2 and "<|endofaction|>" in action[1]: action = action[1].split("<|endofaction|>")[0].strip() else: action = "" response = predict[idx].split("<|response|>") if len(response) >= 2: response = response[1].split("<|")[0].strip() else: response = "" data[i]["turns"][j]["response"] = response seen = True for k in range(len(data[i]["turns"][j-1]["frames"])): if data[i]["turns"][j-1]["frames"][k]["service"] not in seen_services: seen = False parsedbelief = belief.split(", ") for k in range(len(parsedbelief)): parsed = False for ds in domain_slots: if parsedbelief[k].startswith(ds): parsedbelief[k] = [ds, parsedbelief[k][len(ds):].strip()] parsed = True break if not parsed: parsedbelief[k] = [parsedbelief[k]] k = 1 while k < len(parsedbelief): if len(parsedbelief[k]) == 1: parsedbelief[k-1] += parsedbelief[k] del parsedbelief[k] else: k += 1 if len(parsedbelief) >= 1: if parsedbelief[0][0] not in domain_slots: del parsedbelief[0] parsedbelief = {x[0]:x[1:] for x in parsedbelief} parsedaction = action.split(", ") for k in range(len(parsedaction)): parsedaction[k] = parsedaction[k].strip().split() k = 0 while k < len(parsedaction): if len(parsedaction[k]) <= 1 or len(parsedaction[k]) > 3: del parsedaction[k] else: k += 1 act_gt = set() for k in range(len(data[i]["turns"][j]["frames"][0]["actions"])): act_gt.add((data[i]["turns"][j]["frames"][0]["actions"][k]["act"].lower() + " " + data[i]["turns"][j]["frames"][0]["actions"][k]["slot"]).strip()) act_p = set() for k in range(len(parsedaction)): act_p.add(' '.join(parsedaction[k][1:])) act_precision += [len(act_p & act_gt) / len(act_p) if len(act_p) != 0 else 1] act_recall += [len(act_p & act_gt) / len(act_gt) if len(act_gt) != 0 else 0] if seen: seen_act_precision += [len(act_p & act_gt) / len(act_p) if len(act_p) != 0 else 1] seen_act_recall += [len(act_p & act_gt) / len(act_gt) if len(act_gt) != 0 else 0] else: unseen_act_precision += [len(act_p & act_gt) / len(act_p) if len(act_p) != 0 else 1] unseen_act_recall += [len(act_p & act_gt) / len(act_gt) if len(act_gt) != 0 else 0] bleu += [bleuscorer([response.lower()], [[data[i]["turns"][j]["delex"].lower()]])] if len(data[i]["turns"][j]["delexaug"]) > 0: bleua += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"]]])] bleub += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"] + [data[i]["turns"][j]["delex"].lower()]]])] if seen: seenbleu += [bleuscorer([response.lower()], [[data[i]["turns"][j]["delex"].lower()]])] if len(data[i]["turns"][j]["delexaug"]) > 0: seenbleua += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"]]])] seenbleub += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"] + [data[i]["turns"][j]["delex"].lower()]]])] else: unseenbleu += [bleuscorer([response.lower()], [[data[i]["turns"][j]["delex"].lower()]])] if len(data[i]["turns"][j]["delexaug"]) > 0: unseenbleua += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"]]])] unseenbleub += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"] + [data[i]["turns"][j]["delex"].lower()]]])] for k in range(len(data[i]["turns"][j-1]["frames"])): data[i]["turns"][j-1]["frames"][k]["state"]["slot_values"] = {} for ds in parsedbelief: if ds.split()[0].lower() == data[i]["turns"][j-1]["frames"][k]["service"].split("_")[0].lower(): data[i]["turns"][j-1]["frames"][k]["state"]["slot_values"][ds.split()[1]] = parsedbelief[ds] idx += 1 if not os.path.exists(predictionfolder + folder): os.makedirs(predictionfolder + folder) with open(predictionfolder + folder + fn, "w") as f: json.dump(data, f, indent=1) act_precision = sum(act_precision) / len(act_precision) act_recall = sum(act_recall) / len(act_recall) print("act", act_precision, act_recall, 2*act_precision*act_recall/(act_precision+act_recall)) print('bleu:', sum(bleu)/len(bleu)) #BLEU-4_{orig} print('bleua:', sum(bleua)/len(bleua)) #BLEU-4_{aug} #print('bleub:', sum(bleub)/len(bleub)) seen_act_precision = sum(seen_act_precision) / len(seen_act_precision) seen_act_recall = sum(seen_act_recall) / len(seen_act_recall) print("act (seen):", seen_act_precision, seen_act_recall, 2*seen_act_precision*seen_act_recall/(seen_act_precision+seen_act_recall)) unseen_act_precision = sum(unseen_act_precision) / len(unseen_act_precision) unseen_act_recall = sum(unseen_act_recall) / len(unseen_act_recall) print("act (unseen):", unseen_act_precision, unseen_act_recall, 2*unseen_act_precision*unseen_act_recall/(unseen_act_precision+unseen_act_recall)) print('bleu (seen):', sum(seenbleu)/len(seenbleu)) print('bleua (seen):', sum(seenbleua)/len(seenbleua)) #print('bleub (seen):', sum(seenbleub)/len(seenbleub)) print('bleu (unseen):', sum(unseenbleu)/len(unseenbleu)) print('bleua (unseen):', sum(unseenbleua)/len(unseenbleua)) #print('bleub (unseen):', sum(unseenbleub)/len(unseenbleub)) if __name__ == '__main__': main()
accentor-main
gen_predict.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import os import copy import random import argparse def main(): parser = argparse.ArgumentParser() parser.add_argument("--all", default=False, type=bool, required=False, help="use all dialogues rather than only augmented dialogues") parser.add_argument("--delexlevel", default=2, type=int, required=False, help="0: no delex; 1: delex values in \"slots\"; 2: delex values in both \"slots\" and \"actions\"") parser.add_argument("--data", default="./accentor-sgd/", type=str, required=False, help="path to SGD") parser.add_argument("--target", default="./simpletod/", type=str, required=False, help="path to output") args = parser.parse_args() datafolder = args.data targetfolder = args.target for folder in ["train", "dev", "test"]: if not os.path.exists(targetfolder + folder): os.makedirs(targetfolder + folder) inlm = [] inlme = [] inlma = [] inlmb = [] incc = [] inlmf = [] fns = os.listdir(datafolder + folder) fns.sort() for fn in fns: if not fn.startswith("dialogue"): with open(datafolder + folder + "/" + fn, "r", encoding='utf8') as f: data = json.load(f) with open(targetfolder + folder + "/" + fn, "w", encoding='utf8') as f: json.dump(data, f, indent=1) continue with open(datafolder + folder + "/" + fn, "r", encoding='utf8') as f: data = json.load(f) i = 0 while i < len(data): dbs = [] slots = {} canmap = {} vmap = {} for j in range(len(data[i]["turns"])): if data[i]["turns"][j]["speaker"] != "SYSTEM": continue if "service_results" in data[i]["turns"][j]["frames"][0]: dbs += data[i]["turns"][j]["frames"][0]["service_results"] if len(data[i]["turns"][j]["frames"][0]["slots"]) != 0: slots = {} for k in range(len(data[i]["turns"][j]["frames"][0]["actions"])): assert(len(data[i]["turns"][j]["frames"][0]["actions"][k]["canonical_values"]) == len(data[i]["turns"][j]["frames"][0]["actions"][k]["values"])) for l in range(len(data[i]["turns"][j]["frames"][0]["actions"][k]["canonical_values"])): canmap[data[i]["turns"][j]["frames"][0]["actions"][k]["values"][l]] = data[i]["turns"][j]["frames"][0]["actions"][k]["canonical_values"][l] vmap[data[i]["turns"][j]["frames"][0]["actions"][k]["canonical_values"][l]] = data[i]["turns"][j]["frames"][0]["actions"][k]["values"][l] for k in range(len(data[i]["turns"][j]["frames"][0]["slots"])): s = data[i]["turns"][j]["frames"][0]["slots"][k]["slot"] slots[s] = data[i]["turns"][j]["utterance"][data[i]["turns"][j]["frames"][0]["slots"][k]["start"]:data[i]["turns"][j]["frames"][0]["slots"][k]["exclusive_end"]] db = {} for k in range(len(dbs)): matched = True for s in slots: if s not in dbs[k]: matched = False break if dbs[k][s] != canmap[slots[s]]: matched = False break if matched: db = copy.deepcopy(dbs[k]) for s in db: if db[s] in vmap: db[s] = vmap[db[s]] break data[i]["turns"][j]["frames"][0]["selecteddbslots"] = slots data[i]["turns"][j]["frames"][0]["selecteddb"] = db for j in range(1, len(data[i]["turns"]), 2): domain = data[i]["turns"][j]["frames"][0]["service"].split("_")[0].lower() assert(data[i]["turns"][j]["speaker"] == "SYSTEM") assert(len(data[i]["turns"][j]["frames"]) == 1) slots = copy.deepcopy(data[i]["turns"][j]["frames"][0]["slots"]) slots.sort(key = lambda x : -x["start"]) delex = data[i]["turns"][j]["utterance"] delexed = set() if args.delexlevel >= 1: for k in range(1, len(slots)): assert(slots[k-1]["start"] >= slots[k]["exclusive_end"]) for k in range(len(slots)): domain_slot = domain + "_" + slots[k]["slot"] delex = delex[:slots[k]["start"]] + "[" + domain_slot + "]" + delex[slots[k]["exclusive_end"]:] delexed.add(domain_slot) if args.delexlevel >= 2: slots2 = copy.deepcopy(data[i]["turns"][j]["frames"][0]["actions"]) slots2 = [x for x in slots2 if len(x["values"]) > 0] slots2.sort(key = lambda x : -len(x["values"][0])) for k in range(len(slots2)): domain_slot = domain + "_" + slots2[k]["slot"] if domain_slot in delexed: continue for l in range(len(slots2[k]["values"])): delex = delex.replace(slots2[k]["values"][l], "[" + domain_slot + "]") delexed.add(domain_slot) data[i]["turns"][j]["delex"] = delex target = '' belief = [] for k in range(len(data[i]["turns"][j-1]["frames"])): for slot in data[i]["turns"][j-1]["frames"][k]["state"]["slot_values"]: belief += [[data[i]["turns"][j-1]["frames"][k]["service"].split("_")[0].lower(), slot, data[i]["turns"][j-1]["frames"][k]["state"]["slot_values"][slot]]] belief.sort(key = lambda x : x[0] + " " + x[1]) for k in range(len(belief)): belief[k][2].sort() belief[k][2] = belief[k][2][0] belief = [x[0] + " " + x[1] + " " + x[2] for x in belief] target += '<|belief|> ' + ", ".join(belief) + ' <|endofbelief|> ' action = copy.deepcopy(data[i]["turns"][j]["frames"][0]["actions"]) action.sort(key = lambda x : x["act"]) action = [domain + " " + x["act"].lower() + " " + x["slot"] for x in action] targetaug = [] delexaug = [] tcpos = [] tcneg = [] for k in range(len(data[i]["turns"][j]["beginning"])): if "social" in data[i]["turns"][j]["beginning"][k]["justification"] or "useful" in data[i]["turns"][j]["beginning"][k]["justification"]: delexaug += [data[i]["turns"][j]["beginning"][k]["candidate"].strip() + ' ' + delex] targetaug += [target + '<|action|> ' + "chitchat, " + ", ".join(action) + ' <|endofaction|> ' + '<|response|> ' + data[i]["turns"][j]["beginning"][k]["candidate"].strip() + ' ' + delex + ' <|endofresponse|>'] tcpos += [' <|task|> ' + delex + ' <|endoftask|> ' + '<|chitchat|> ' + data[i]["turns"][j]["beginning"][k]["candidate"].strip() + ' <|endofchitchat|> '] else: tcneg += [' <|task|> ' + delex + ' <|endoftask|> ' + '<|chitchat|> ' + data[i]["turns"][j]["beginning"][k]["candidate"].strip() + ' <|endofchitchat|> '] for k in range(len(data[i]["turns"][j]["end"])): if "social" in data[i]["turns"][j]["end"][k]["justification"] or "useful" in data[i]["turns"][j]["end"][k]["justification"]: delexaug += [delex + ' ' + data[i]["turns"][j]["end"][k]["candidate"].strip()] targetaug += [target + '<|action|> ' + ", ".join(action) + ", chitchat" + ' <|endofaction|> ' + '<|response|> ' + delex + ' ' + data[i]["turns"][j]["end"][k]["candidate"].strip() + ' <|endofresponse|>'] tcpos += [' <|task|> ' + delex + ' <|endoftask|> ' + '<|chitchat|> ' + data[i]["turns"][j]["end"][k]["candidate"].strip() + ' <|endofchitchat|> '] else: tcneg += [' <|task|> ' + delex + ' <|endoftask|> ' + '<|chitchat|> ' + data[i]["turns"][j]["end"][k]["candidate"].strip() + ' <|endofchitchat|> '] target += '<|action|> ' + ", ".join(action) + ' <|endofaction|> ' target += '<|response|> ' + delex + ' <|endofresponse|>' data[i]["turns"][j]["target"] = target data[i]["turns"][j]["targetaug"] = targetaug data[i]["turns"][j]["delexaug"] = delexaug context = '<|context|> ' for k in range(j): if k % 2 == 0: context += '<|user|> ' else: context += '<|system|> ' context += data[i]["turns"][k]["utterance"] + " " context += '<|endofcontext|>' data[i]["turns"][j]["context"] = context inlm += [(context + target).replace("\n", " ").replace("\r", "")] assert("\n" not in inlm[-1]) inlme += [(context).replace("\n", " ").replace("\r", "")] if len(targetaug) != 0: for k in range(len(targetaug)): inlma += [(context + targetaug[k]).replace("\n", " ").replace("\r", "")] inlmb += [(context + targetaug[k]).replace("\n", " ").replace("\r", "")] inlmf += [(context + tcpos[k] + targetaug[k]).replace("\n", " ").replace("\r", "")] for l in range(len(tcneg)): inlmf += [(context + tcneg[l] + targetaug[k]).replace("\n", " ").replace("\r", "")] else: inlmb += [(context + target).replace("\n", " ").replace("\r", "")] for k in range(len(tcneg)): inlmf += [(context + tcneg[k] + target).replace("\n", " ").replace("\r", "")] incc += [context.replace('<|context|>', '').replace('<|endofcontext|>', '').replace('<|user|>', 'user:').replace('<|system|>', 'system:').replace('\t', ' ').strip(), '[DONE]'] i += 1 with open(targetfolder + folder + "/" + fn, "w") as f: json.dump(data, f, indent=1) random.shuffle(inlm) with open("lm.input."+folder+".txt", "w", encoding='utf8') as f: #SimpleTOD f.write('\n'.join(inlm)) with open("lm.input."+folder+".eval.txt", "w", encoding='utf8') as f: #used as the input during evaluation of SimpleTOD and SimpleTOD extension f.write('\n'.join(inlme)) with open("lm.input."+folder+".aug.txt", "w", encoding='utf8') as f: #SimpleTOD extension (augmented responses only) f.write('\n'.join(inlma)) with open("lm.input."+folder+".both.txt", "w", encoding='utf8') as f: #SimpleTOD extension (all responses) f.write('\n'.join(inlmb)) with open("lm.input."+folder+".cc.txt", "w", encoding='utf8') as f: #cc: chitchat f.write('\n'.join(incc+['[EXIT]'])) with open("lm.input."+folder+".ff.txt", "w", encoding='utf8') as f: #ff: free-form f.write('\n'.join(inlmf)) if __name__ == '__main__': random.seed(42) main()
accentor-main
gen_delex.py
# Copyright (c) Facebook, Inc. and its affiliates. from transformers import GPT2LMHeadModel, GPT2Tokenizer import torch import argparse import numpy as np import json from tqdm import tqdm def set_seed(args): np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) parser = argparse.ArgumentParser() parser.add_argument("--no_cuda", action="store_true", help="avoid using CUDA when available") parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--model_name_or_path", type=str, default="output", help="path to pre-trained model or shortcut name") parser.add_argument("--input", type=str, help="input text file, each line corresponding to one instance") parser.add_argument("--output", type=str, help="output file") parser.add_argument("--eos_token_id", type=int, default=None, help="eos token id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--jobid", type=int, default=0, help="jobid") parser.add_argument("--jobnum", type=int, default=1, help="jobnum") args = parser.parse_args() args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() set_seed(args) model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path) tokenizer = GPT2Tokenizer.from_pretrained(args.model_name_or_path, pad_token='<PAD>') model.to(args.device) with open(args.input, "r") as f: prompts = f.read().strip().split("\n") batch_size = args.batch_size ret = [] for batch in tqdm(range(args.jobid, len(prompts), batch_size * args.jobnum)): prompt_text = prompts[batch: batch+batch_size] encodings_dict = tokenizer.batch_encode_plus(prompt_text, max_length=None, pad_to_max_length=True) input_ids = torch.tensor(encodings_dict['input_ids']) attn_mask = torch.tensor(encodings_dict['attention_mask']) seq_len = len(input_ids[0]) num_tokens_to_produce = 1024 - seq_len pad_token_id = tokenizer.pad_token_id eos_token_id = args.eos_token_id if eos_token_id is None: eos_token_id = tokenizer.eos_token_id eos_not_in_sents = torch.ones(input_ids.shape[0]).long() last_non_masked_idx = torch.sum(attn_mask, dim=1) - 1 start_idx = inp_idx = (last_non_masked_idx).view(-1, 1).repeat(1, tokenizer.vocab_size + len(tokenizer.additional_special_tokens)).unsqueeze(1) past = None position_ids = torch.tensor([list(range(seq_len)) for i in range(input_ids.shape[0])]) for i, position_ids_slice in enumerate(position_ids): position_ids_slice[last_non_masked_idx[i]:] = position_ids_slice[last_non_masked_idx[i]] input_ids = input_ids.to(args.device) attn_mask = attn_mask.to(args.device) eos_not_in_sents = eos_not_in_sents.to(args.device) start_idx = start_idx.to(args.device) position_ids = position_ids.to(args.device) for step in range(num_tokens_to_produce): outputs = model(input_ids, attention_mask=attn_mask, position_ids=position_ids) if step == 0: next_token_logits = outputs[0].gather(1, start_idx).squeeze(1) else: next_token_logits = outputs[0][:, -1, :] next_tokens = torch.argmax(next_token_logits, dim=-1) eos_not_in_sents.mul_(next_tokens.ne(eos_token_id).long()) tokens_to_add = next_tokens * (eos_not_in_sents) + pad_token_id * (1 - eos_not_in_sents) input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1) attn_mask = torch.cat([attn_mask, torch.ones((attn_mask.shape[0], 1)).long().to(args.device)], dim=1) position_ids = torch.cat([position_ids, (position_ids[:, -1] + 1).unsqueeze(-1)], dim=1) if torch.max(eos_not_in_sents) == 0: break ret += [tokenizer.decode(output, skip_special_tokens=False, clean_up_tokenization_spaces=True).replace("<|endoftext|>", "") for output in input_ids] with open(args.output, "w") as f: json.dump(ret, f, indent=1)
accentor-main
run_generation.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import random import argparse import os parser = argparse.ArgumentParser() parser.add_argument("--data", default="./simpletod/", type=str, required=False, help="path to delexed & augmented SGD") args = parser.parse_args() def clean(x): return x.replace("\n", "").replace("\r", "").replace("\t", " ").strip() random.seed(42) pairs = {} pos = {} tot = {} for s in ["train", "dev", "test"]: pairs[s] = [] pos[s] = 0 tot[s] = 0 fns = os.listdir(args.data + s) fns.sort() for fn in fns: if not fn.startswith("dialogue") or not fn.endswith(".json"): continue with open(args.data + s + "/" + fn, "r", encoding='utf8') as f: data = json.load(f) for i in range(len(data)): t = '' for j in range(len(data[i]["turns"])): for ps in ["beginning", "end"]: if ps in data[i]["turns"][j]: for k in range(len(data[i]["turns"][j][ps])): tot[s] += 1 if data[i]["turns"][j][ps][k]["label"] == "good": pair = [t, data[i]["turns"][j]["delex"], clean(data[i]["turns"][j][ps][k]["candidate"]), 1 if ps == "beginning" else 2] pairs[s] += [pair] pos[s] += 1 else: pair = [t, data[i]["turns"][j]["delex"], clean(data[i]["turns"][j][ps][k]["candidate"]), 0] pairs[s] += [pair] if t != '': t += ' ' if j % 2 == 0: t += 'user: ' else: t += 'system: ' t += clean(data[i]["turns"][j]["utterance"]) for s in pos: print(s, pos[s], tot[s], pos[s]/tot[s]) for s in pairs: print(s, len(pairs[s])) random.shuffle(pairs["train"]) with open("arranger_input.json", "w", encoding='utf8') as f: json.dump(pairs, f, indent=1)
accentor-main
gen_arranger_input.py
# Copyright (c) Facebook, Inc. and its affiliates. import nltk def bleuscorer(hyps, refs): #print(hyps, refs) bleu = [] for hyp, ref in zip(hyps, refs): hyp = hyp.split() ref = [a.split() for a in ref] #hyp = nltk.word_tokenize(hyp) #ref = [nltk.word_tokenize(a) for a in ref] bleu += [nltk.translate.bleu_score.sentence_bleu(ref, hyp)] return sum(bleu) / len(bleu) if __name__ == '__main__': print(bleuscorer(['the the the the the the the', 'there is a cat', 'it is'], [["the cat is on the mat", "there is a cat on the mat"], ["there is a cat on the mat"], ["it is true"]]))
accentor-main
utils.py
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random import numpy as np import torch from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from tqdm import tqdm, trange from transformers import (WEIGHTS_NAME, BertConfig, BertForMultipleChoice, BertTokenizer, RobertaConfig, RobertaForMultipleChoice, RobertaTokenizer) from transformers import AdamW, get_linear_schedule_with_warmup import torch.nn as nn from utils_multiple_choice import (convert_examples_to_features, processors) logger = logging.getLogger(__name__) ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig)), ()) MODEL_CLASSES = { 'bert': (BertConfig, BertForMultipleChoice, BertTokenizer), 'roberta': (RobertaConfig, RobertaForMultipleChoice, RobertaTokenizer), } def select_field(features, field): return [ [ choice[field] for choice in feature.choices_features ] for feature in features ] def simple_accuracy(preds, labels): return (preds == labels).mean() def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 best_dev_acc, best_dev_loss = 0.0, 99999999999.0 best_steps = 0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproductibility (even between python 2 and 3) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'token_type_ids': batch[2] if args.model_type in ['bert'] else None, 'labels': batch[3]} outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar('eval_{}'.format(key), value, global_step) if results["eval_acc"] > best_dev_acc: best_dev_acc = results["eval_acc"] best_dev_loss = results["eval_loss"] best_steps = global_step if args.do_test: results_test = evaluate(args, model, tokenizer, test=True) for key, value in results_test.items(): tb_writer.add_scalar('test_{}'.format(key), value, global_step) logger.info("test acc: %s, loss: %s, global steps: %s", str(results_test['eval_acc']), str(results_test['eval_loss']), str(global_step)) tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step) tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step) logger.info("Average loss: %s at global step: %s", str((tr_loss - logging_loss)/args.logging_steps), str(global_step)) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_vocabulary(output_dir) torch.save(args, os.path.join(output_dir, 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step, best_steps def evaluate(args, model, tokenizer, prefix="", test=False): eval_task_names = (args.task_name,) eval_outputs_dirs = (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=not test, test=test) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'token_type_ids': batch[2] if args.model_type in ['bert'] else None, 'labels': batch[3]} outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs['labels'].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps output_logits_file = os.path.join(eval_output_dir, "is_test_" + str(test).lower() + "_eval_logits.txt") with open(output_logits_file, "w") as writer: logits_list = list(preds) for i in range(len(logits_list)): for j in range(len(logits_list[i])): writer.write(str(logits_list[i][j])) if j == len(logits_list[i]) - 1: writer.write("\n") else: writer.write(" ") preds = np.argmax(preds, axis=1) acc = simple_accuracy(preds, out_label_ids) result = {"eval_acc": acc, "eval_loss": eval_loss} results.update(result) output_eval_file = os.path.join(eval_output_dir, "is_test_" + str(test).lower() + "_eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(str(prefix) + " is test:" + str(test))) writer.write("model =%s\n" % str(args.model_name_or_path)) writer.write("total batch size=%d\n" % (args.per_gpu_train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))) writer.write("train num epochs=%d\n" % args.num_train_epochs) writer.write("fp16 =%s\n" % args.fp16) writer.write("max seq length =%d\n" % args.max_seq_length) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return results def load_and_cache_examples(args, task, tokenizer, evaluate=False, test=False): if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() # Load data features from cache or dataset file if evaluate: cached_mode = 'dev' elif test: cached_mode = 'test' else: cached_mode = 'train' assert (evaluate == True and test == True) == False cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format( cached_mode, list(filter(None, args.model_name_or_path.split('/'))).pop(), str(args.max_seq_length), str(task))) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if evaluate: examples = processor.get_dev_examples(args.data_dir) elif test: examples = processor.get_test_examples(args.data_dir) else: examples = processor.get_train_examples(args.data_dir) logger.info("Training number: %s", str(len(examples))) features = convert_examples_to_features( examples, label_list, args.max_seq_length, tokenizer, pad_on_left=False, pad_token_segment_id=0 ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor(select_field(features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(select_field(features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(select_field(features, 'segment_ids'), dtype=torch.long) all_label_ids = torch.tensor([f.label for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) return dataset def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)) parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_test", action='store_true', help='Whether to run test on the test set') parser.add_argument("--evaluate_during_training", action='store_true', help="Run evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument('--logging_steps', type=int, default=50, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None) tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) best_steps = 0 # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss, best_steps = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: if not args.do_train: args.output_dir = args.model_name_or_path checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) result = dict((k + '_{}'.format(global_step), v) for k, v in result.items()) results.update(result) if args.do_test and args.local_rank in [-1, 0]: if not args.do_train: args.output_dir = args.model_name_or_path checkpoints = [args.output_dir] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix, test=True) result = dict((k + '_{}'.format(global_step), v) for k, v in result.items()) results.update(result) if best_steps: logger.info("best steps of eval acc is the following checkpoints: %s", best_steps) return results if __name__ == "__main__": main()
accentor-main
run_multiple_choice.py
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import logging import os import sys from io import open import json import csv import glob import tqdm from typing import List from transformers import PreTrainedTokenizer import random logger = logging.getLogger(__name__) class InputExample(object): """A single training/test example for multiple choice""" def __init__(self, example_id, question, contexts, endings, label=None): """Constructs a InputExample. Args: example_id: Unique id for the example. contexts: list of str. The untokenized text of the first sequence (context of corresponding question). question: string. The untokenized text of the second sequence (question). endings: list of str. multiple choice's options. Its length must be equal to contexts' length. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.example_id = example_id self.question = question self.contexts = contexts self.endings = endings self.label = label class InputFeatures(object): def __init__(self, example_id, choices_features, label ): self.example_id = example_id self.choices_features = [ { 'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids } for input_ids, input_mask, segment_ids in choices_features ] self.label = label class DataProcessor(object): """Base class for data converters for multiple choice data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for the test set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() class ACCProcessor(DataProcessor): def __init__(self): self.D = [[], [], []] datasetfile = "arranger_input.json" with open(datasetfile, "r") as f: data = json.load(f) for sid in range(2): dt = ["train", "dev"][sid] for i in range(len(data[dt])): d = [data[dt][i][0].lower(), data[dt][i][1].lower(), data[dt][i][2].lower(), data[dt][i][3]] self.D[sid] += [d] sid = 2 for fns in [["lm.input.dev.cc.txt", "lm.output.dev.cc.txt", "dev.inference.gpt2_10epoch_1e-3_fp16.json"], ["lm.input.test.cc.txt", "lm.output.test.cc.txt", "test.inference.gpt2_10epoch_1e-3_fp16.json"]]: with open(fns[0], "r") as f: data = f.read().split("\n")[0:-1:2] data_d = data with open(fns[1], "r") as f: data = f.read() data = data.split("[TransformerGenerator]:")[1:] for i in range(len(data)): data[i] = data[i].split("\n")[0].strip() data_cc = data with open(fns[2], "r") as f: data = json.load(f) for i in range(len(data)): data[i] = data[i].split("<|response|>") if len(data[i]) == 1: data[i] += [''] elif len(data[i]) > 2: data[i] = ["<|response|>".join(data[i][:-2]), data[i][-1]] self.D[2] += [[data_d[i].strip(), data[i][1], data_cc[i].strip(), 0]] def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[0], "train") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[2], "test") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[1], "dev") def get_labels(self): """See base class.""" return ["0", "1", "2"] def _create_examples(self, data, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, d) in enumerate(data): acc_id = "%s-%d" % (set_type, i) examples.append( InputExample( example_id=acc_id, question="", contexts=[data[i][0], data[i][0], data[i][0]], endings=[data[i][1], data[i][2] + " " + data[i][1], data[i][1] + " " + data[i][2]], label=str(data[i][3]))) return examples def convert_examples_to_features( examples: List[InputExample], label_list: List[str], max_length: int, tokenizer: PreTrainedTokenizer, pad_token_segment_id=0, pad_on_left=False, pad_token=0, mask_padding_with_zero=True, ) -> List[InputFeatures]: """ Loads a data file into a list of `InputFeatures` """ label_map = {label : i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) choices_features = [] for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)): text_a = context if example.question.find("_") != -1: text_b = example.question.replace("_", ending) else: text_b = example.question + " " + ending inputs = tokenizer.encode_plus( text_a, text_b, add_special_tokens=True, max_length=max_length, ) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length assert len(attention_mask) == max_length assert len(token_type_ids) == max_length choices_features.append((input_ids, attention_mask, token_type_ids)) label = label_map[example.label] if ex_index < 2: logger.info("*** Example ***") logger.info("race_id: {}".format(example.example_id)) for choice_idx, (input_ids, attention_mask, token_type_ids) in enumerate(choices_features): logger.info("choice: {}".format(choice_idx)) logger.info("input_ids: {}".format(' '.join(map(str, input_ids)))) logger.info("attention_mask: {}".format(' '.join(map(str, attention_mask)))) logger.info("token_type_ids: {}".format(' '.join(map(str, token_type_ids)))) logger.info("label: {}".format(label)) features.append( InputFeatures( example_id=example.example_id, choices_features=choices_features, label=label, ) ) return features processors = { "acc": ACCProcessor, } MULTIPLE_CHOICE_TASKS_NUM_LABELS = { "acc", 3 }
accentor-main
utils_multiple_choice.py
# Copyright (c) Facebook, Inc. and its affiliates. import json for fns in [["./lm.input.dev.eval.txt", "./lm.output.dev.cc.txt", "./dev.inference.gpt2_10epoch_1e-3_fp16.json", "lm.input.dev.eval.ff.txt"], ["./lm.input.test.eval.txt", "./lm.output.test.cc.txt", "./test.inference.gpt2_10epoch_1e-3_fp16.json", "lm.input.test.eval.ff.txt"]]: with open(fns[0], "r", encoding='utf8') as f: context = f.read().strip().split("\n") with open(fns[1], "r", encoding='utf8') as f: cc = f.read().strip() cc = cc.split("[TransformerGenerator]:")[1:] for i in range(len(cc)): cc[i] = cc[i].split("\n")[0].strip() with open(fns[2], "r", encoding='utf8') as f: task = json.load(f) print(len(context), len(cc), len(task)) assert(len(context) == len(cc)) assert(len(cc) == len(task)) with open(fns[3], "w", encoding='utf8') as f: for i in range(len(cc)): t = task[i].split("<|response|>") if len(t) >= 2: t = t[-1].strip() else: t = "" b = task[i].split("<|belief|>") if len(b) >= 2: b = b[1].split("<|endofbelief|>") if len(b) == 2: b = b[0] else: b = "" else: b = "" f.write(context[i] + " <|task|> " + t + " <|endoftask|> <|chitchat|> " + cc[i] + ' <|endofchitchat|> <|belief|>' + b + "<|endofbelief|>\n")
accentor-main
gen_rewriter_data.py
# Copyright (c) Facebook, Inc. and its affiliates. import json with open("./acc_arranger_roberta_base_3epoch/is_test_true_eval_logits.txt", "r") as f: model_outputs = f.read().strip().split("\n") for i in range(len(model_outputs)): model_outputs[i] = model_outputs[i].split() for j in range(len(model_outputs[i])): model_outputs[i][j] = float(model_outputs[i][j]) assert(len(model_outputs[i]) == 3) print(len(model_outputs)) for fns in [["./lm.input.dev.cc.txt", "./lm.output.dev.cc.txt", "./dev.inference.gpt2_10epoch_1e-3_fp16.json", "./dev.inference.arranger_3epoch.json"], ["./lm.input.test.cc.txt", "./lm.output.test.cc.txt", "./test.inference.gpt2_10epoch_1e-3_fp16.json", "./test.inference.arranger_3epoch.json"]]: with open(fns[0], "r") as f: data = f.read().split("\n")[0:-1:2] print(len(data)) data_d = data with open(fns[1], "r") as f: data = f.read() data = data.split("[TransformerGenerator]:")[1:] for i in range(len(data)): data[i] = data[i].split("\n")[0].strip() print(len(data)) data_cc = data with open(fns[2], "r") as f: data = json.load(f) print(len(data)) eval_data = [] for i in range(len(data)): data[i] = data[i].split("<|response|>") if len(data[i]) == 1: data[i] += [''] elif len(data[i]) > 2: data[i] = ["<|response|>".join(data[i][:-2]), data[i][-1]] eval_data += [[data_d[i].strip(), data[i][1], data_cc[i].strip(), 0]] print(len(eval_data)) stats = {0:0, 1:0, 2:0} for i in range(len(data)): assert(len(model_outputs[i]) == 3) o = 0 for j in range(1, 3): if model_outputs[i][j] > model_outputs[i][o]: o = j stats[o] += 1 if o == 0: data[i] = "<|response|>".join(data[i]) elif o == 1: data[i] = data[i][0] + "<|response|> " + data_cc[i].strip() + " " + data[i][1].strip() else: data[i] = data[i][0] + "<|response|> " + data[i][1].strip() + " " + data_cc[i].strip() print(len(data), len(model_outputs)) print(stats) model_outputs = model_outputs[len(data):] with open(fns[3], "w", encoding='utf8') as f: json.dump(data, f, indent=1)
accentor-main
gen_arranger_output.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import argparse if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--source", default="./MultiWOZ_2.1/data.json", type=str, required=False, help="Path to the MultiWOZ dataset.") args = parser.parse_args() with open("candidates-multiwoz.json", "r", encoding='utf8') as f: augmentation = json.load(f) with open(args.source, "r", encoding='utf8') as f: data = json.load(f) data = {x:data[x] for x in data if x in augmentation} for x in data: for i in range(1, len(data[x]["log"]), 2): data[x]["log"][i]["beginning"] = [] data[x]["log"][i]["end"] = [] for cc in augmentation[x]: data[x]["log"][cc[0]][cc[1]] += [{"candidate": cc[2], "label": cc[3], "justification": cc[4]}] with open("accentor-multiwoz-1k.json", "w", encoding='utf8') as f: json.dump(data, f, indent=1, ensure_ascii=False)
accentor-main
v1.0/accentor-multiwoz.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import argparse import os if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--source", default="./dstc8-schema-guided-dialogue", type=str, required=False, help="Path to the SGD dataset.") parser.add_argument("--target", default="./accentor-sgd", type=str, required=False, help="The target directory to store ACCENTOR-SGD.") args = parser.parse_args() with open("candidates-sgd.json", "r", encoding='utf8') as f: augmentation = json.load(f) for subdir in ["train", "dev", "test"]: targetdir = os.path.join(args.target, subdir) sourcedir = os.path.join(args.source, subdir) os.makedirs(targetdir, exist_ok=True) fns = os.listdir(sourcedir) for fn in fns: if not fn.endswith(".json"): continue with open(os.path.join(sourcedir, fn), "r", encoding='utf8') as f: data = json.load(f) if fn.startswith("dialogue"): for i in range(len(data)): for j in range(1, len(data[i]["turns"]), 2): data[i]["turns"][j]["beginning"] = [] data[i]["turns"][j]["end"] = [] for cc in augmentation[subdir + data[i]["dialogue_id"]]: data[i]["turns"][cc[0]][cc[1]] += [{"candidate": cc[2], "label": cc[3], "justification": cc[4]}] with open(os.path.join(targetdir, fn), "w", encoding='utf8') as f: json.dump(data, f, indent=1, ensure_ascii=False)
accentor-main
v1.0/accentor-sgd.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Implementation adapted from Slimmable - https://github.com/JiahuiYu/slimmable_networks import torch class CrossEntropyLossSoft(torch.nn.modules.loss._Loss): """ inplace distillation for image classification """ def forward(self, output, target): output_log_prob = torch.nn.functional.log_softmax(output, dim=1) target = target.unsqueeze(1) output_log_prob = output_log_prob.unsqueeze(2) cross_entropy_loss = -torch.bmm(target, output_log_prob) return cross_entropy_loss.mean() class KLLossSoft(torch.nn.modules.loss._Loss): """ inplace distillation for image classification output: output logits of the student network target: output logits of the teacher network T: temperature KL(p||q) = Ep \log p - \Ep log q """ def forward(self, output, soft_logits, target=None, temperature=1., alpha=0.9): output, soft_logits = output / temperature, soft_logits / temperature soft_target_prob = torch.nn.functional.softmax(soft_logits, dim=1) output_log_prob = torch.nn.functional.log_softmax(output, dim=1) kd_loss = -torch.sum(soft_target_prob * output_log_prob, dim=1) if target is not None: n_class = output.size(1) target = torch.zeros_like(output).scatter(1, target.view(-1, 1), 1) target = target.unsqueeze(1) output_log_prob = output_log_prob.unsqueeze(2) ce_loss = -torch.bmm(target, output_log_prob).squeeze() loss = alpha*temperature* temperature*kd_loss + (1.0-alpha)*ce_loss else: loss = kd_loss if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() return loss class CrossEntropyLossSmooth(torch.nn.modules.loss._Loss): def __init__(self, label_smoothing=0.1): super(CrossEntropyLossSmooth, self).__init__() self.eps = label_smoothing """ label smooth """ def forward(self, output, target): n_class = output.size(1) one_hot = torch.zeros_like(output).scatter(1, target.view(-1, 1), 1) target = one_hot * (1 - self.eps) + self.eps / n_class output_log_prob = torch.nn.functional.log_softmax(output, dim=1) target = target.unsqueeze(1) output_log_prob = output_log_prob.unsqueeze(2) loss = -torch.bmm(target, output_log_prob) if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() return loss def f_divergence(q_logits, p_logits, alpha, iw_clip=1e3): assert isinstance(alpha, float) q_prob = torch.nn.functional.softmax(q_logits, dim=1).detach() p_prob = torch.nn.functional.softmax(p_logits, dim=1).detach() q_log_prob = torch.nn.functional.log_softmax(q_logits, dim=1) #gradient is only backpropagated here importance_ratio = p_prob / q_prob if abs(alpha) < 1e-3: importance_ratio = importance_ratio.clamp(0, iw_clip) f = -importance_ratio.log() f_base = 0 rho_f = importance_ratio.log() - 1.0 elif abs(alpha - 1.0) < 1e-3: f = importance_ratio * importance_ratio.log() f_base = 0 rho_f = importance_ratio else: iw_alpha = torch.pow(importance_ratio, alpha) iw_alpha = iw_alpha.clamp(0, iw_clip) f = iw_alpha / alpha / (alpha - 1.0) f_base = 1.0 / alpha / (alpha - 1.0) rho_f = iw_alpha / alpha + f_base loss = torch.sum(q_prob * (f - f_base), dim=1) grad_loss = -torch.sum(q_prob * rho_f * q_log_prob, dim=1) return loss, grad_loss """ It's often necessary to clip the maximum gradient value (e.g., 1.0) when using this adaptive KD loss """ class AdaptiveLossSoft(torch.nn.modules.loss._Loss): def __init__(self, alpha_min=-1.0, alpha_max=1.0, iw_clip=5.0): super(AdaptiveLossSoft, self).__init__() self.alpha_min = alpha_min self.alpha_max = alpha_max self.iw_clip = iw_clip def forward(self, output, target, alpha_min=None, alpha_max=None): alpha_min = alpha_min or self.alpha_min alpha_max = alpha_max or self.alpha_max loss_left, grad_loss_left = f_divergence(output, target, alpha_min, iw_clip=self.iw_clip) loss_right, grad_loss_right = f_divergence(output, target, alpha_max, iw_clip=self.iw_clip) ind = torch.gt(loss_left, loss_right).float() loss = ind * grad_loss_left + (1.0 - ind) * grad_loss_right if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() return loss
AlphaNet-main
loss_ops.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import random import torch import torch.nn as nn import torch.distributed as dist import torch.multiprocessing as mp import models from utils.config import setup import utils.comm as comm import utils.saver as saver from data.data_loader import build_data_loader from evaluate import attentive_nas_eval as attentive_nas_eval import utils.logging as logging import argparse """ using multiple nodes to run evolutionary search: 1) each GPU will evaluate its own sub-networks 2) all evaluation results will be aggregated on GPU 0 """ parser = argparse.ArgumentParser(description='Test AlphaNet Models') parser.add_argument('--config-file', default='./configs/parallel_supernet_evo_search.yml') parser.add_argument('--machine-rank', default=0, type=int, help='machine rank, distributed setting') parser.add_argument('--num-machines', default=1, type=int, help='number of nodes, distributed setting') parser.add_argument('--dist-url', default="tcp://127.0.0.1:10001", type=str, help='init method, distributed setting') parser.add_argument('--seed', default=1, type=int, help='default random seed') run_args = parser.parse_args() logger = logging.get_logger(__name__) def eval_worker(gpu, ngpus_per_node, args): args.gpu = gpu # local rank, local machine cuda id args.local_rank = args.gpu args.batch_size = args.batch_size_per_gpu global_rank = args.gpu + args.machine_rank * ngpus_per_node dist.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=global_rank ) # Setup logging format. logging.setup_logging("stdout.log", 'w') # synchronize is needed here to prevent a possible timeout after calling # init_process_group # See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172 comm.synchronize() args.rank = comm.get_rank() # global rank torch.cuda.set_device(args.gpu) random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) # build the supernet logger.info("=> creating model '{}'".format(args.arch)) model = models.model_factory.create_model(args) model.cuda(args.gpu) model = comm.get_parallel_model(model, args.gpu) #local rank # define loss function (criterion) criterion = nn.CrossEntropyLoss().cuda() ## load dataset, train_sampler: distributed train_loader, val_loader, train_sampler = build_data_loader(args) assert args.resume #reloading model model.module.load_weights_from_pretrained_models(args.resume) if train_sampler: train_sampler.set_epoch(0) targeted_min_flops = args.evo_search.targeted_min_flops targeted_max_flops = args.evo_search.targeted_max_flops # run evolutionary search parent_popu = [] for idx in range(args.evo_search.parent_popu_size): if idx == 0: cfg = model.module.sample_min_subnet() else: cfg = model.module.sample_active_subnet_within_range( targeted_min_flops, targeted_max_flops ) cfg['net_id'] = f'net_{idx % args.world_size}_evo_0_{idx}' parent_popu.append(cfg) pareto_global = {} for evo in range(args.evo_search.evo_iter): # partition the set of candidate sub-networks # and send them to each GPU for parallel evaluation # sub-networks to be evaluated on GPU {args.rank} my_subnets_to_be_evaluated = {} n_evaluated = len(parent_popu) // args.world_size * args.world_size for cfg in parent_popu[:n_evaluated]: if cfg['net_id'].startswith(f'net_{args.rank}_'): my_subnets_to_be_evaluated[cfg['net_id']] = cfg # aggregating all evaluation results eval_results = attentive_nas_eval.validate( my_subnets_to_be_evaluated, train_loader, val_loader, model, criterion, args, logger, ) # update the Pareto frontier # in this case, we search the best FLOPs vs. accuracy trade-offs for cfg in eval_results: f = round(cfg['flops'] / args.evo_search.step) * args.evo_search.step if f not in pareto_global or pareto_global[f]['acc1'] < cfg['acc1']: pareto_global[f] = cfg # next batch of sub-networks to be evaluated parent_popu = [] # mutate for idx in range(args.evo_search.mutate_size): while True: old_cfg = random.choice(list(pareto_global.values())) cfg = model.module.mutate_and_reset(old_cfg, prob=args.evo_search.mutate_prob) flops = model.module.compute_active_subnet_flops() if flops >= targeted_min_flops and flops <= targeted_max_flops: break cfg['net_id'] = f'net_{idx % args.world_size}_evo_{evo}_mutate_{idx}' parent_popu.append(cfg) # cross over for idx in range(args.evo_search.crossover_size): while True: cfg1 = random.choice(list(pareto_global.values())) cfg2 = random.choice(list(pareto_global.values())) cfg = model.module.crossover_and_reset(cfg1, cfg2) flops = model.module.compute_active_subnet_flops() if flops >= targeted_min_flops and flops <= targeted_max_flops: break cfg['net_id'] = f'net_{idx % args.world_size}_evo_{evo}_crossover_{idx}' parent_popu.append(cfg) if __name__ == '__main__': # setup enviroments args = setup(run_args.config_file) args.dist_url = run_args.dist_url args.machine_rank = run_args.machine_rank args.num_nodes = run_args.num_machines ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.num_nodes assert args.world_size > 1, "only support DDP settings" # Use torch.multiprocessing.spawn to launch distributed processes: the # eval_worker process function mp.spawn(eval_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: raise NotImplementedError
AlphaNet-main
parallel_supernet_evo_search.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Modified from AttentiveNAS (https://github.com/facebookresearch/AttentiveNAS) import argparse import builtins import math import os import random import shutil import time import warnings import sys import operator from datetime import date import torch import torch.nn as nn #from torch.utils.tensorboard import SummaryWriter import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed from data.data_loader import build_data_loader from utils.config import setup import utils.saver as saver from utils.progress import AverageMeter, ProgressMeter, accuracy import utils.comm as comm import utils.logging as logging from evaluate import attentive_nas_eval as attentive_nas_eval from solver import build_optimizer, build_lr_scheduler import models from copy import deepcopy import numpy as np import loss_ops as loss_ops parser = argparse.ArgumentParser(description='AlphaNet Training') parser.add_argument('--config-file', default=None, type=str, help='training configuration') parser.add_argument('--machine-rank', default=0, type=int, help='machine rank, distributed setting') parser.add_argument('--num-machines', default=1, type=int, help='number of nodes, distributed setting') parser.add_argument('--dist-url', default="tcp://127.0.0.1:10001", type=str, help='init method, distributed setting') logger = logging.get_logger(__name__) def build_args_and_env(run_args): assert run_args.config_file and os.path.isfile(run_args.config_file), 'cannot locate config file' args = setup(run_args.config_file) args.config_file = run_args.config_file #load config assert args.distributed and args.multiprocessing_distributed, 'only support DDP training' args.distributed = True args.machine_rank = run_args.machine_rank args.num_nodes = run_args.num_machines args.dist_url = run_args.dist_url args.models_save_dir = os.path.join(args.models_save_dir, args.exp_name) if not os.path.exists(args.models_save_dir): os.makedirs(args.models_save_dir) #backup config file saver.copy_file(args.config_file, '{}/{}'.format(args.models_save_dir, os.path.basename(args.config_file))) args.checkpoint_save_path = os.path.join( args.models_save_dir, 'alphanet.pth.tar' ) args.logging_save_path = os.path.join( args.models_save_dir, f'stdout.log' ) return args def main(): run_args = parser.parse_args() args = build_args_and_env(run_args) random.seed(args.seed) torch.manual_seed(args.seed) #cudnn.deterministic = True #warnings.warn('You have chosen to seed training. ' # 'This will turn on the CUDNN deterministic setting, ' # 'which can slow down your training considerably! ' # 'You may see unexpected behavior when restarting ' # 'from checkpoints.') ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.num_nodes # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: raise NotImplementedError assert args.world_size > 1, 'only support ddp training' def main_worker(gpu, ngpus_per_node, args): args.gpu = gpu # local rank, local machine cuda id args.local_rank = args.gpu args.batch_size = args.batch_size_per_gpu args.batch_size_total = args.batch_size * args.world_size #rescale base lr args.lr_scheduler.base_lr = args.lr_scheduler.base_lr * (max(1, args.batch_size_total // 256)) # set random seed, make sure all random subgraph generated would be the same random.seed(args.seed) torch.manual_seed(args.seed) if args.gpu: torch.cuda.manual_seed(args.seed) global_rank = args.gpu + args.machine_rank * ngpus_per_node dist.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=global_rank ) # Setup logging format. logging.setup_logging(args.logging_save_path, 'w') logger.info(f"Use GPU: {args.gpu}, machine rank {args.machine_rank}, num_nodes {args.num_nodes}, \ gpu per node {ngpus_per_node}, world size {args.world_size}") # synchronize is needed here to prevent a possible timeout after calling # init_process_group # See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172 comm.synchronize() args.rank = comm.get_rank() # global rank args.local_rank = args.gpu torch.cuda.set_device(args.gpu) # build model logger.info("=> creating model '{}'".format(args.arch)) model = models.model_factory.create_model(args) model.cuda(args.gpu) # use sync batchnorm if getattr(args, 'sync_bn', False): model.apply( lambda m: setattr(m, 'need_sync', True)) model = comm.get_parallel_model(model, args.gpu) #local rank logger.info(model) criterion = loss_ops.CrossEntropyLossSmooth(args.label_smoothing).cuda(args.gpu) soft_criterion = loss_ops.AdaptiveLossSoft(args.alpha_min, args.alpha_max, args.iw_clip).cuda(args.gpu) if not getattr(args, 'inplace_distill', True): soft_criterion = None ## load dataset, train_sampler: distributed train_loader, val_loader, train_sampler = build_data_loader(args) args.n_iters_per_epoch = len(train_loader) logger.info( f'building optimizer and lr scheduler, \ local rank {args.gpu}, global rank {args.rank}, world_size {args.world_size}') optimizer = build_optimizer(args, model) lr_scheduler = build_lr_scheduler(args, optimizer) # optionally resume from a checkpoint if args.resume: saver.load_checkpoints(args, model, optimizer, lr_scheduler, logger) logger.info(args) for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) args.curr_epoch = epoch logger.info('Training lr {}'.format(lr_scheduler.get_lr()[0])) # train for one epoch acc1, acc5 = train_epoch(epoch, model, train_loader, optimizer, criterion, args, \ soft_criterion=soft_criterion, lr_scheduler=lr_scheduler) if comm.is_master_process() or args.distributed: # validate supernet model validate( train_loader, val_loader, model, criterion, args ) if comm.is_master_process(): # save checkpoints saver.save_checkpoint( args.checkpoint_save_path, model, optimizer, lr_scheduler, args, epoch, ) def train_epoch( epoch, model, train_loader, optimizer, criterion, args, soft_criterion=None, lr_scheduler=None, ): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) model.train() end = time.time() num_updates = epoch * len(train_loader) for batch_idx, (images, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # total subnets to be sampled num_subnet_training = max(2, getattr(args, 'num_arch_training', 2)) optimizer.zero_grad() ### compute gradients using sandwich rule ### # step 1 sample the largest network, apply regularization to only the largest network drop_connect_only_last_two_stages = getattr(args, 'drop_connect_only_last_two_stages', True) model.module.sample_max_subnet() model.module.set_dropout_rate(args.dropout, args.drop_connect, drop_connect_only_last_two_stages) #dropout for supernet output = model(images) loss = criterion(output, target) loss.backward() with torch.no_grad(): soft_logits = output.clone().detach() #step 2. sample the smallest network and several random networks sandwich_rule = getattr(args, 'sandwich_rule', True) model.module.set_dropout_rate(0, 0, drop_connect_only_last_two_stages) #reset dropout rate for arch_id in range(1, num_subnet_training): if arch_id == num_subnet_training-1 and sandwich_rule: model.module.sample_min_subnet() else: model.module.sample_active_subnet() # calcualting loss output = model(images) if soft_criterion: loss = soft_criterion(output, soft_logits) else: assert not args.inplace_distill loss = criterion(output, target) loss.backward() #clip gradients if specfied if getattr(args, 'grad_clip_value', None): torch.nn.utils.clip_grad_value_(model.parameters(), args.grad_clip_value) optimizer.step() #accuracy measured on the local batch acc1, acc5 = accuracy(output, target, topk=(1, 5)) if args.distributed: corr1, corr5, loss = acc1*args.batch_size, acc5*args.batch_size, loss.item()*args.batch_size #just in case the batch size is different on different nodes stats = torch.tensor([corr1, corr5, loss, args.batch_size], device=args.gpu) dist.barrier() # synchronizes all processes dist.all_reduce(stats, op=torch.distributed.ReduceOp.SUM) corr1, corr5, loss, batch_size = stats.tolist() acc1, acc5, loss = corr1/batch_size, corr5/batch_size, loss/batch_size losses.update(loss, batch_size) top1.update(acc1, batch_size) top5.update(acc5, batch_size) else: losses.update(loss.item(), images.size(0)) top1.update(acc1, images.size(0)) top5.update(acc5, images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() num_updates += 1 if lr_scheduler is not None: lr_scheduler.step() if batch_idx % args.print_freq == 0: progress.display(batch_idx, logger) return top1.avg, top5.avg def validate( train_loader, val_loader, model, criterion, args, distributed = True, ): subnets_to_be_evaluated = { 'attentive_nas_min_net': {}, 'attentive_nas_max_net': {}, } acc1_list, acc5_list = attentive_nas_eval.validate( subnets_to_be_evaluated, train_loader, val_loader, model, criterion, args, logger, bn_calibration = True, ) if __name__ == '__main__': main()
AlphaNet-main
train_alphanet.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Modified from AttentiveNAS (https://github.com/facebookresearch/AttentiveNAS) import argparse import builtins import math import os import random import shutil import time import warnings import sys from datetime import date import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import models from utils.config import setup from utils.flops_counter import count_net_flops_and_params import utils.comm as comm import utils.saver as saver from data.data_loader import build_data_loader from utils.progress import AverageMeter, ProgressMeter, accuracy import argparse parser = argparse.ArgumentParser(description='Test AlphaNet Models') parser.add_argument('--config-file', default='./configs/eval_alphanet_models.yml') parser.add_argument('--model', default='a0', type=str, choices=['a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a5_1', 'a6']) parser.add_argument('--gpu', default=0, type=int, help='gpu id') run_args = parser.parse_args() if __name__ == '__main__': args = setup(run_args.config_file) args.model = run_args.model args.gpu = run_args.gpu random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) args.__dict__['active_subnet'] = args.__dict__['pareto_models'][args.model] print(args.active_subnet) train_loader, val_loader, train_sampler = build_data_loader(args) ## init static attentivenas model with weights inherited from the supernet model = models.model_factory.create_model(args) model.to(args.gpu) model.eval() # bn running stats calibration following Slimmable (https://arxiv.org/abs/1903.05134) # please consider trying a different random seed if you see a small accuracy drop with torch.no_grad(): model.reset_running_stats_for_calibration() for batch_idx, (images, _) in enumerate(train_loader): if batch_idx >= args.post_bn_calibration_batch_num: break images = images.cuda(args.gpu, non_blocking=True) model(images) #forward only model.eval() with torch.no_grad(): criterion = nn.CrossEntropyLoss().cuda() from evaluate.imagenet_eval import validate_one_subnet acc1, acc5, loss, flops, params = validate_one_subnet(val_loader, model, criterion, args) print(acc1, acc5, flops, params)
AlphaNet-main
test_alphanet.py
"""For pip.""" from glob import glob from os.path import basename, splitext from setuptools import find_packages, setup exec(open("src/fonduer/_version.py").read()) setup( name="fonduer", version=__version__, description="Knowledge base construction system for richly formatted data.", long_description=open("README.rst").read(), packages=find_packages("src"), package_dir={"": "src"}, py_modules=[splitext(basename(path))[0] for path in glob("src/*.py")], install_requires=[ "beautifulsoup4>=4.8.0", "editdistance>=0.5.2, <0.6.0", "snorkel>=0.9.5, <0.10.0", "emmental>=0.0.6, <0.1.0", "lxml>=4.2.5, <5.0.0", "mlflow>=1.1.0, <2.0.0", "numpy>=1.11, <2.0", "pyyaml>=5.1, <6.0", "scipy>=1.1.0, <2.0.0", "spacy>=2.1.3, <2.4.0", "sqlalchemy[postgresql]>=1.3.7, <2.0.0", "torch>=1.3.1,<2.0.0", "tqdm>=4.36.0, <5.0.0", "treedlib>=0.1.3, <0.2.0", "wand>=0.4.4, <0.6.0", "ipython", "deprecation", ], extras_require={ "spacy_ja": ["fugashi[unidic-lite]>=0.2.3"], "spacy_zh": ["jieba>=0.39, <0.40"], }, keywords=["fonduer", "knowledge base construction", "richly formatted data"], package_data={"fonduer": ["py.typed"]}, url="https://github.com/HazyResearch/fonduer", classifiers=[ # https://pypi.python.org/pypi?:action=list_classifiers "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3 :: Only", ], project_urls={ "Tracker": "https://github.com/HazyResearch/fonduer/issues", "Source": "https://github.com/HazyResearch/fonduer", }, python_requires=">=3.6", author="Hazy Research", author_email="[email protected]", license="MIT", )
fonduer-master
setup.py
"""conftest.py file that defines shared fixture functions. See https://docs.pytest.org/en/stable/fixture.html#conftest-py-sharing-fixture-functions """ import os import psycopg2 import pytest from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT from fonduer.meta import Meta DB = "fonduer_test" if "CI" in os.environ: CONN_STRING = ( f"postgresql://{os.environ['PGUSER']}:{os.environ['PGPASSWORD']}" + f"@{os.environ['POSTGRES_HOST']}:{os.environ['POSTGRES_PORT']}/{DB}" ) else: CONN_STRING = f"postgresql://127.0.0.1:5432/{DB}" @pytest.fixture def database_session(): """Fixture function that creates and drops a database. As a setup, a database is created and an SQLAlchemy session is passed to a test. As a teardown, the database is dropped after the test runs. """ if "CI" in os.environ: con = psycopg2.connect( host=os.environ["POSTGRES_HOST"], port=os.environ["POSTGRES_PORT"], user=os.environ["PGUSER"], password=os.environ["PGPASSWORD"], ) else: con = psycopg2.connect(host="127.0.0.1", port="5432") # Setup con.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) cursor = con.cursor() cursor.execute(f'create database "{DB}";') session = Meta.init(CONN_STRING).Session() yield session # Teardown engine = session.get_bind() session.close() engine.dispose() Meta.engine = None cursor.execute(f'drop database "{DB}";') cursor.close() con.close()
fonduer-master
tests/conftest.py
"""Fonduer unit tests."""
fonduer-master
tests/__init__.py
"""Test Fonduer meta.""" import logging import os import psycopg2 import pytest from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT from sqlalchemy.exc import OperationalError from fonduer import Meta from fonduer.candidates.models import mention_subclass from tests.conftest import CONN_STRING, DB logger = logging.getLogger(__name__) def test_meta_connection_strings(database_session): """Simple sanity checks for validating postgres connection strings.""" with pytest.raises(ValueError): Meta.init("postgresql" + DB).Session() with pytest.raises(ValueError): Meta.init("sqlite://somethingsilly" + DB).Session() with pytest.raises(OperationalError): Meta.init("postgresql://somethingsilly:5432/").Session() session = Meta.init("postgresql://localhost:5432/" + DB).Session() engine = session.get_bind() session.close() engine.dispose() assert Meta.DBNAME == DB def test_subclass_before_meta_init(): """Test if mention (candidate) subclass can be created before Meta init.""" # Test if mention (candidate) subclass can be created Part = mention_subclass("Part") logger.info(f"Create a mention subclass '{Part.__tablename__}'") # Setup a database con = psycopg2.connect( host=os.environ["POSTGRES_HOST"], port=os.environ["POSTGRES_PORT"], user=os.environ["PGUSER"], password=os.environ["PGPASSWORD"], ) con.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) cursor = con.cursor() cursor.execute(f'create database "{DB}";') session = Meta.init(CONN_STRING).Session() # Test if another mention subclass can be created Temp = mention_subclass("Temp") logger.info(f"Create a mention subclass '{Temp.__tablename__}'") # Teardown the database session.close() Meta.engine.dispose() Meta.engine = None cursor.execute(f'drop database "{DB}";') cursor.close() con.close()
fonduer-master
tests/test_meta.py
"""Unit tests that involve postgres access.""" import logging from fonduer.candidates import CandidateExtractor, MentionExtractor, MentionFigures from fonduer.candidates.matchers import LambdaFunctionFigureMatcher from fonduer.candidates.models import ( Candidate, Mention, candidate_subclass, mention_subclass, ) from fonduer.parser import Parser from fonduer.parser.models import Document, Sentence from fonduer.parser.preprocessors import HTMLDocPreprocessor from fonduer.parser.visual_parser import PdfVisualParser from tests.shared.hardware_matchers import part_matcher, temp_matcher, volt_matcher from tests.shared.hardware_spaces import ( MentionNgramsPart, MentionNgramsTemp, MentionNgramsVolt, ) from tests.shared.hardware_throttlers import temp_throttler logger = logging.getLogger(__name__) def test_preprocessor_parse_file_called_once(database_session, mocker): """Test if DocPreprocessor._parse_file is called only once during parser.apply.""" max_docs = 1 session = database_session docs_path = "tests/data/html/" # Set up preprocessor, parser, and spy on preprocessor doc_preprocessor = HTMLDocPreprocessor(docs_path, max_docs=max_docs) spy = mocker.spy(doc_preprocessor, "_parse_file") corpus_parser = Parser(session) # Check if udf.last_docs is empty. assert len(corpus_parser.get_last_documents()) == 0 # Parsing corpus_parser.apply(doc_preprocessor) # Check if udf.last_docs is correctly updated. assert len(corpus_parser.get_last_documents()) == max_docs # doc_preprocessor._parse_file should be called only once (#434). spy.assert_called_once() def test_cand_gen_cascading_delete(database_session): """Test cascading the deletion of candidates.""" # GitHub Actions gives 2 cores # help.github.com/en/actions/reference/virtual-environments-for-github-hosted-runners PARALLEL = 2 max_docs = 1 session = database_session docs_path = "tests/data/html/" pdf_path = "tests/data/pdf/" # Parsing logger.info("Parsing...") doc_preprocessor = HTMLDocPreprocessor(docs_path, max_docs=max_docs) corpus_parser = Parser( session, structural=True, lingual=True, visual_parser=PdfVisualParser(pdf_path), ) corpus_parser.apply(doc_preprocessor, parallelism=PARALLEL) assert session.query(Document).count() == max_docs assert session.query(Sentence).count() == 799 docs = session.query(Document).order_by(Document.name).all() # Mention Extraction part_ngrams = MentionNgramsPart(parts_by_doc=None, n_max=3) temp_ngrams = MentionNgramsTemp(n_max=2) Part = mention_subclass("Part") Temp = mention_subclass("Temp") mention_extractor = MentionExtractor( session, [Part, Temp], [part_ngrams, temp_ngrams], [part_matcher, temp_matcher] ) mention_extractor.clear_all() mention_extractor.apply(docs, parallelism=PARALLEL) assert session.query(Mention).count() == 93 assert session.query(Part).count() == 70 assert session.query(Temp).count() == 23 part = session.query(Part).order_by(Part.id).all()[0] temp = session.query(Temp).order_by(Temp.id).all()[0] logger.info(f"Part: {part.context}") logger.info(f"Temp: {temp.context}") # Candidate Extraction PartTemp = candidate_subclass("PartTemp", [Part, Temp]) candidate_extractor = CandidateExtractor( session, [PartTemp], throttlers=[temp_throttler] ) candidate_extractor.apply(docs, split=0, parallelism=PARALLEL) assert session.query(PartTemp).count() == 1431 assert session.query(Candidate).count() == 1431 assert docs[0].name == "112823" assert len(docs[0].parts) == 70 assert len(docs[0].temps) == 23 # Delete from parent class should cascade to child x = session.query(Candidate).first() session.query(Candidate).filter_by(id=x.id).delete(synchronize_session="fetch") assert session.query(Candidate).count() == 1430 assert session.query(PartTemp).count() == 1430 # Test that deletion of a Candidate does not delete the Mention x = session.query(PartTemp).first() candidate = session.query(PartTemp).filter_by(id=x.id).first() session.delete(candidate) assert session.query(PartTemp).count() == 1429 assert session.query(Temp).count() == 23 assert session.query(Part).count() == 70 # Clearing Mentions should also delete Candidates mention_extractor.clear() assert session.query(Mention).count() == 0 assert session.query(Part).count() == 0 assert session.query(Temp).count() == 0 assert session.query(PartTemp).count() == 0 assert session.query(Candidate).count() == 0 def test_too_many_clients_error_should_not_happen(database_session): """Too many clients error should not happens.""" PARALLEL = 32 logger.info("Parallel: {PARALLEL}") def do_nothing_matcher(fig): return True max_docs = 1 session = database_session docs_path = "tests/data/html/" pdf_path = "tests/data/pdf/" # Parsing logger.info("Parsing...") doc_preprocessor = HTMLDocPreprocessor(docs_path, max_docs=max_docs) corpus_parser = Parser( session, structural=True, lingual=True, visual_parser=PdfVisualParser(pdf_path), ) corpus_parser.apply(doc_preprocessor, parallelism=PARALLEL) docs = session.query(Document).order_by(Document.name).all() # Mention Extraction part_ngrams = MentionNgramsPart(parts_by_doc=None, n_max=3) temp_ngrams = MentionNgramsTemp(n_max=2) volt_ngrams = MentionNgramsVolt(n_max=1) figs = MentionFigures(types="png") Part = mention_subclass("Part") Temp = mention_subclass("Temp") Volt = mention_subclass("Volt") Fig = mention_subclass("Fig") fig_matcher = LambdaFunctionFigureMatcher(func=do_nothing_matcher) mention_extractor = MentionExtractor( session, [Part, Temp, Volt, Fig], [part_ngrams, temp_ngrams, volt_ngrams, figs], [part_matcher, temp_matcher, volt_matcher, fig_matcher], ) mention_extractor.apply(docs, parallelism=PARALLEL) # Candidate Extraction PartTemp = candidate_subclass("PartTemp", [Part, Temp]) PartVolt = candidate_subclass("PartVolt", [Part, Volt]) # Test that no throttler in candidate extractor candidate_extractor = CandidateExtractor( session, [PartTemp, PartVolt] ) # Pass, no throttler candidate_extractor.apply(docs, split=0, parallelism=PARALLEL) candidate_extractor.clear_all(split=0) # Test with None in throttlers in candidate extractor candidate_extractor = CandidateExtractor( session, [PartTemp, PartVolt], throttlers=[temp_throttler, None] ) candidate_extractor.apply(docs, split=0, parallelism=PARALLEL) def test_parse_error_doc_skipping(database_session): """Test skipping of faulty htmls.""" faulty_doc_path = "tests/data/html_faulty/ext_diseases_missing_table_tag.html" preprocessor = HTMLDocPreprocessor(faulty_doc_path) session = database_session corpus_parser = Parser(session) corpus_parser.apply(preprocessor) # This returns documents that apply() was called on assert corpus_parser.last_docs == {"ext_diseases_missing_table_tag"} # This returns only documents that are successfully parsed. assert corpus_parser.get_last_documents() == []
fonduer-master
tests/test_postgres.py
"""Fonduer unit tests for extracting candidates.""" import logging import pickle from typing import Optional import pytest from fonduer.candidates import ( CandidateExtractor, MentionCaptions, MentionCells, MentionDocuments, MentionExtractor, MentionFigures, MentionNgrams, MentionParagraphs, MentionSections, MentionSentences, MentionTables, ) from fonduer.candidates.candidates import CandidateExtractorUDF from fonduer.candidates.matchers import ( DoNothingMatcher, LambdaFunctionFigureMatcher, LambdaFunctionMatcher, PersonMatcher, ) from fonduer.candidates.mentions import MentionExtractorUDF, Ngrams from fonduer.candidates.models import candidate_subclass, mention_subclass from fonduer.parser.models import Sentence from fonduer.parser.preprocessors import HTMLDocPreprocessor from fonduer.parser.visual_parser import PdfVisualParser from fonduer.utils.data_model_utils import get_col_ngrams, get_row_ngrams from tests.parser.test_parser import get_parser_udf from tests.shared.hardware_matchers import part_matcher, temp_matcher, volt_matcher from tests.shared.hardware_spaces import ( MentionNgramsPart, MentionNgramsTemp, MentionNgramsVolt, ) from tests.shared.hardware_throttlers import temp_throttler, volt_throttler logger = logging.getLogger(__name__) def parse_doc(docs_path: str, file_name: str, pdf_path: Optional[str] = None): """Parse documents from given path.""" max_docs = 1 logger.info("Parsing...") doc_preprocessor = HTMLDocPreprocessor(docs_path, max_docs=max_docs) doc = next(doc_preprocessor._parse_file(docs_path, file_name)) # Create an Parser and parse the md document parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=True if pdf_path else False, visual_parser=PdfVisualParser(pdf_path) if pdf_path else None, language="en", ) doc = parser_udf.apply(doc) return doc def test_ngram_split(): """Test ngram split.""" ngrams = Ngrams(split_tokens=["-", "/"]) sent = Sentence() # When a split_token appears in the middle of the text. sent.text = "New-Text" sent.words = ["New-Text"] sent.char_offsets = [0] sent.abs_char_offsets = [0] result = list(ngrams.apply(sent)) assert len(result) == 3 assert result[0].get_span() == "New-Text" assert result[1].get_span() == "New" assert result[2].get_span() == "Text" # When a text ends with a split_token. sent.text = "New-" sent.words = ["New-"] result = list(ngrams.apply(sent)) assert len(result) == 2 assert result[0].get_span() == "New-" assert result[1].get_span() == "New" # When a text starts with a split_token. sent.text = "-Text" sent.words = ["-Text"] result = list(ngrams.apply(sent)) assert len(result) == 2 assert result[0].get_span() == "-Text" assert result[1].get_span() == "Text" # When more than one split_token appears. sent.text = "New/Text-Word" sent.words = ["New/Text-Word"] result = list(ngrams.apply(sent)) assert len(result) == 6 spans = [r.get_span() for r in result] assert "New/Text-Word" in spans assert "New" in spans assert "New/Text" in spans assert "Text" in spans assert "Text-Word" in spans assert "Word" in spans sent.text = "A-B/C-D" sent.words = ["A-B/C-D"] result = list(ngrams.apply(sent)) assert len(result) == 10 spans = [r.get_span() for r in result] assert "A-B/C-D" in spans assert "A-B/C" in spans assert "B/C-D" in spans assert "A-B" in spans assert "C-D" in spans assert "B/C" in spans assert "A" in spans assert "B" in spans assert "C" in spans assert "D" in spans ngrams = Ngrams(split_tokens=["~", "~~"]) sent = Sentence() sent.text = "a~b~~c~d" sent.words = ["a~b~~c~d"] sent.char_offsets = [0] sent.abs_char_offsets = [0] result = list(ngrams.apply(sent)) assert len(result) == 10 spans = [r.get_span() for r in result] assert "a~b~~c~d" in spans assert "a" in spans assert "a~b" in spans assert "a~b~~c" in spans assert "b" in spans assert "b~~c" in spans assert "b~~c~d" in spans assert "c" in spans assert "c~d" in spans assert "d" in spans ngrams = Ngrams(split_tokens=["~a", "a~"]) sent = Sentence() sent.text = "~a~b~~c~d" sent.words = ["~a~b~~c~d"] sent.char_offsets = [0] sent.abs_char_offsets = [0] result = list(ngrams.apply(sent)) assert len(result) == 2 spans = [r.get_span() for r in result] assert "~a~b~~c~d" in spans assert "~b~~c~d" in spans ngrams = Ngrams(split_tokens=["-", "/", "*"]) sent = Sentence() sent.text = "A-B/C*D" sent.words = ["A-B/C*D"] sent.char_offsets = [0] sent.abs_char_offsets = [0] result = list(ngrams.apply(sent)) assert len(result) == 10 spans = [r.get_span() for r in result] assert "A-B/C*D" in spans assert "A" in spans assert "A-B" in spans assert "A-B/C" in spans assert "B" in spans assert "B/C" in spans assert "B/C*D" in spans assert "C" in spans assert "C*D" in spans assert "D" in spans def test_span_char_start_and_char_end(): """Test chart_start and char_end of TemporarySpan that comes from Ngrams.apply.""" ngrams = Ngrams() sent = Sentence() sent.text = "BC548BG" sent.words = ["BC548BG"] sent.char_offsets = [0] sent.abs_char_offsets = [0] result = list(ngrams.apply(sent)) assert len(result) == 1 assert result[0].get_span() == "BC548BG" assert result[0].char_start == 0 assert result[0].char_end == 6 def test_cand_gen(): """Test extracting candidates from mentions from documents.""" def do_nothing_matcher(fig): return True docs_path = "tests/data/html/112823.html" pdf_path = "tests/data/pdf/" doc = parse_doc(docs_path, "112823", pdf_path) # Mention Extraction part_ngrams = MentionNgramsPart(parts_by_doc=None, n_max=3) temp_ngrams = MentionNgramsTemp(n_max=2) volt_ngrams = MentionNgramsVolt(n_max=1) figs = MentionFigures(types="png") Part = mention_subclass("Part") Temp = mention_subclass("Temp") Volt = mention_subclass("Volt") Fig = mention_subclass("Fig") fig_matcher = LambdaFunctionFigureMatcher(func=do_nothing_matcher) with pytest.raises(ValueError): MentionExtractor( "dummy", [Part, Temp, Volt], [part_ngrams, volt_ngrams], # Fail, mismatched arity [part_matcher, temp_matcher, volt_matcher], ) with pytest.raises(ValueError): MentionExtractor( "dummy", [Part, Temp, Volt], [part_ngrams, temp_matcher, volt_ngrams], [part_matcher, temp_matcher], # Fail, mismatched arity ) mention_extractor_udf = MentionExtractorUDF( [Part, Temp, Volt, Fig], [part_ngrams, temp_ngrams, volt_ngrams, figs], [part_matcher, temp_matcher, volt_matcher, fig_matcher], ) doc = mention_extractor_udf.apply(doc) assert len(doc.parts) == 70 assert len(doc.volts) == 33 assert len(doc.temps) == 23 assert len(doc.figs) == 31 part = doc.parts[0] volt = doc.volts[0] temp = doc.temps[0] logger.info(f"Part: {part.context}") logger.info(f"Volt: {volt.context}") logger.info(f"Temp: {temp.context}") # Candidate Extraction PartTemp = candidate_subclass("PartTemp", [Part, Temp]) PartVolt = candidate_subclass("PartVolt", [Part, Volt]) with pytest.raises(ValueError): CandidateExtractor( "dummy", [PartTemp, PartVolt], throttlers=[ temp_throttler, volt_throttler, volt_throttler, ], # Fail, mismatched arity ) with pytest.raises(ValueError): CandidateExtractor( "dummy", [PartTemp], # Fail, mismatched arity throttlers=[temp_throttler, volt_throttler], ) # Test that no throttler in candidate extractor candidate_extractor_udf = CandidateExtractorUDF( [PartTemp, PartVolt], [None, None], False, False, True # Pass, no throttler ) doc = candidate_extractor_udf.apply(doc, split=0) assert len(doc.part_temps) == 1610 assert len(doc.part_volts) == 2310 # Clear doc.part_temps = [] doc.part_volts = [] # Test with None in throttlers in candidate extractor candidate_extractor_udf = CandidateExtractorUDF( [PartTemp, PartVolt], [temp_throttler, None], False, False, True ) doc = candidate_extractor_udf.apply(doc, split=0) assert len(doc.part_temps) == 1431 assert len(doc.part_volts) == 2310 # Clear doc.part_temps = [] doc.part_volts = [] candidate_extractor_udf = CandidateExtractorUDF( [PartTemp, PartVolt], [temp_throttler, volt_throttler], False, False, True ) doc = candidate_extractor_udf.apply(doc, split=0) assert len(doc.part_temps) == 1431 assert len(doc.part_volts) == 1993 assert len(doc.parts) == 70 assert len(doc.volts) == 33 assert len(doc.temps) == 23 def test_ngrams(): """Test n-gram limits in mention extraction.""" file_name = "lincoln_short" docs_path = f"tests/data/pure_html/{file_name}.html" doc = parse_doc(docs_path, file_name) # Mention Extraction Person = mention_subclass("Person") person_ngrams = MentionNgrams(n_max=3) person_matcher = PersonMatcher() mention_extractor_udf = MentionExtractorUDF( [Person], [person_ngrams], [person_matcher] ) doc = mention_extractor_udf.apply(doc) assert len(doc.persons) == 123 mentions = doc.persons assert len([x for x in mentions if x.context.get_num_words() == 1]) == 44 assert len([x for x in mentions if x.context.get_num_words() > 3]) == 0 # Test for unigram exclusion for mention in doc.persons[:]: doc.persons.remove(mention) assert len(doc.persons) == 0 person_ngrams = MentionNgrams(n_min=2, n_max=3) mention_extractor_udf = MentionExtractorUDF( [Person], [person_ngrams], [person_matcher] ) doc = mention_extractor_udf.apply(doc) assert len(doc.persons) == 79 mentions = doc.persons assert len([x for x in mentions if x.context.get_num_words() == 1]) == 0 assert len([x for x in mentions if x.context.get_num_words() > 3]) == 0 def test_row_col_ngram_extraction(): """Test whether row/column ngrams list is empty, if mention is not in a table.""" file_name = "lincoln_short" docs_path = f"tests/data/pure_html/{file_name}.html" doc = parse_doc(docs_path, file_name) # Mention Extraction place_ngrams = MentionNgramsTemp(n_max=4) Place = mention_subclass("Place") def get_row_and_column_ngrams(mention): row_ngrams = list(get_row_ngrams(mention)) col_ngrams = list(get_col_ngrams(mention)) if not mention.sentence.is_tabular(): assert len(row_ngrams) == 0 assert len(col_ngrams) == 0 else: assert not any(x is None for x in row_ngrams) assert not any(x is None for x in col_ngrams) if "birth_place" in row_ngrams: return True else: return False birthplace_matcher = LambdaFunctionMatcher(func=get_row_and_column_ngrams) mention_extractor_udf = MentionExtractorUDF( [Place], [place_ngrams], [birthplace_matcher] ) doc = mention_extractor_udf.apply(doc) def test_mention_longest_match(): """Test longest match filtering in mention extraction.""" file_name = "lincoln_short" docs_path = f"tests/data/pure_html/{file_name}.html" doc = parse_doc(docs_path, file_name) # Mention Extraction name_ngrams = MentionNgramsPart(n_max=3) place_ngrams = MentionNgramsTemp(n_max=4) Name = mention_subclass("Name") Place = mention_subclass("Place") def is_birthplace_table_row(mention): if not mention.sentence.is_tabular(): return False ngrams = get_row_ngrams(mention, lower=True) if "birth_place" in ngrams: return True else: return False birthplace_matcher = LambdaFunctionMatcher( func=is_birthplace_table_row, longest_match_only=False ) mention_extractor_udf = MentionExtractorUDF( [Name, Place], [name_ngrams, place_ngrams], [PersonMatcher(), birthplace_matcher], ) doc = mention_extractor_udf.apply(doc) mentions = doc.places mention_spans = [x.context.get_span() for x in mentions] assert "Sinking Spring Farm" in mention_spans assert "Farm" in mention_spans assert len(mention_spans) == 23 # Clear manually for mention in doc.places[:]: doc.places.remove(mention) birthplace_matcher = LambdaFunctionMatcher( func=is_birthplace_table_row, longest_match_only=True ) mention_extractor_udf = MentionExtractorUDF( [Name, Place], [name_ngrams, place_ngrams], [PersonMatcher(), birthplace_matcher], ) doc = mention_extractor_udf.apply(doc) mentions = doc.places mention_spans = [x.context.get_span() for x in mentions] assert "Sinking Spring Farm" in mention_spans assert "Farm" not in mention_spans assert len(mention_spans) == 4 def test_multimodal_cand(): """Test multimodal candidate generation.""" file_name = "radiology" docs_path = f"tests/data/pure_html/{file_name}.html" doc = parse_doc(docs_path, file_name) assert len(doc.sentences) == 35 # Mention Extraction ms_doc = mention_subclass("m_doc") ms_sec = mention_subclass("m_sec") ms_tab = mention_subclass("m_tab") ms_fig = mention_subclass("m_fig") ms_cell = mention_subclass("m_cell") ms_para = mention_subclass("m_para") ms_cap = mention_subclass("m_cap") ms_sent = mention_subclass("m_sent") m_doc = MentionDocuments() m_sec = MentionSections() m_tab = MentionTables() m_fig = MentionFigures() m_cell = MentionCells() m_para = MentionParagraphs() m_cap = MentionCaptions() m_sent = MentionSentences() ms = [ms_doc, ms_cap, ms_sec, ms_tab, ms_fig, ms_para, ms_sent, ms_cell] m = [m_doc, m_cap, m_sec, m_tab, m_fig, m_para, m_sent, m_cell] matchers = [DoNothingMatcher()] * 8 mention_extractor_udf = MentionExtractorUDF(ms, m, matchers) doc = mention_extractor_udf.apply(doc) assert len(doc.m_docs) == 1 assert len(doc.m_caps) == 2 assert len(doc.m_secs) == 5 assert len(doc.m_tabs) == 2 assert len(doc.m_figs) == 2 assert len(doc.m_paras) == 30 assert len(doc.m_sents) == 35 assert len(doc.m_cells) == 21 # Candidate Extraction cs_doc = candidate_subclass("cs_doc", [ms_doc]) cs_sec = candidate_subclass("cs_sec", [ms_sec]) cs_tab = candidate_subclass("cs_tab", [ms_tab]) cs_fig = candidate_subclass("cs_fig", [ms_fig]) cs_cell = candidate_subclass("cs_cell", [ms_cell]) cs_para = candidate_subclass("cs_para", [ms_para]) cs_cap = candidate_subclass("cs_cap", [ms_cap]) cs_sent = candidate_subclass("cs_sent", [ms_sent]) candidate_extractor_udf = CandidateExtractorUDF( [cs_doc, cs_sec, cs_tab, cs_fig, cs_cell, cs_para, cs_cap, cs_sent], [None, None, None, None, None, None, None, None], False, False, True, ) doc = candidate_extractor_udf.apply(doc, split=0) assert len(doc.cs_docs) == 1 assert len(doc.cs_caps) == 2 assert len(doc.cs_secs) == 5 assert len(doc.cs_tabs) == 2 assert len(doc.cs_figs) == 2 assert len(doc.cs_paras) == 30 assert len(doc.cs_sents) == 35 assert len(doc.cs_cells) == 21 def test_pickle_subclasses(): """Test if mention/candidate subclasses and their objects can be pickled.""" Part = mention_subclass("Part") Temp = mention_subclass("Temp") PartTemp = candidate_subclass("PartTemp", [Part, Temp]) logger.info("Test if mention/candidate subclasses are picklable") pickle.loads(pickle.dumps(Part)) pickle.loads(pickle.dumps(Temp)) pickle.loads(pickle.dumps(PartTemp)) logger.info("Test if their objects are pickable") part = Part() temp = Temp() parttemp = PartTemp() pickle.loads(pickle.dumps(part)) pickle.loads(pickle.dumps(temp)) pickle.loads(pickle.dumps(parttemp)) def test_candidate_with_nullable_mentions(): """Test if mentions can be NULL.""" docs_path = "tests/data/html/112823.html" pdf_path = "tests/data/pdf/" doc = parse_doc(docs_path, "112823", pdf_path) # Mention Extraction MentionTemp = mention_subclass("MentionTemp") temp_ngrams = MentionNgramsTemp(n_max=2) mention_extractor_udf = MentionExtractorUDF( [MentionTemp], [temp_ngrams], [temp_matcher], ) doc = mention_extractor_udf.apply(doc) assert len(doc.mention_temps) == 23 # Candidate Extraction CandidateTemp = candidate_subclass("CandidateTemp", [MentionTemp], nullables=[True]) candidate_extractor_udf = CandidateExtractorUDF( [CandidateTemp], [None], False, False, True ) doc = candidate_extractor_udf.apply(doc, split=0) # The number of extracted candidates should be that of mentions + 1 (NULL) assert len(doc.candidate_temps) == len(doc.mention_temps) + 1 # Extracted candidates should include one with NULL mention. assert None in [c[0] for c in doc.candidate_temps]
fonduer-master
tests/candidates/test_candidates.py
"""Fonduer candidate unit tests."""
fonduer-master
tests/candidates/__init__.py
"""Fonduer unit tests for matchers.""" from unittest.mock import Mock import pytest from nltk.stem.porter import PorterStemmer from fonduer.candidates.matchers import ( Concat, DateMatcher, DictionaryMatch, Intersect, Inverse, LambdaFunctionFigureMatcher, LambdaFunctionMatcher, LocationMatcher, MiscMatcher, NumberMatcher, OrganizationMatcher, PersonMatcher, RegexMatchEach, RegexMatchSpan, Union, ) from fonduer.candidates.mentions import MentionFigures, MentionNgrams from fonduer.candidates.models.span_mention import TemporarySpanMention from fonduer.parser.lingual_parser.spacy_parser import SpacyParser from fonduer.parser.models import Document, Figure, Sentence @pytest.fixture() def doc_setup(): """Set up document.""" doc = Document(id=1, name="test", stable_id="1::document:0:0") doc.text = "This is apple" lingual_parser = SpacyParser("en") for parts in lingual_parser.split_sentences(doc.text): parts["document"] = doc Sentence(**parts) return doc def test_union(doc_setup): """Test union matcher.""" doc = doc_setup space = MentionNgrams(n_min=1, n_max=2) tc: TemporarySpanMention assert set(tc.get_span() for tc in space.apply(doc)) == { "This is", "is apple", "This", "is", "apple", } # Match any span that contains "apple" matcher0 = RegexMatchSpan( rgx=r"apple", search=True, full_match=True, longest_match_only=False ) assert set(tc.get_span() for tc in matcher0.apply(space.apply(doc))) == { "is apple", "apple", } # Match any span that contains "this" (case insensitive) matcher1 = RegexMatchSpan( rgx=r"this", search=False, full_match=False, longest_match_only=False ) assert set(tc.get_span() for tc in matcher1.apply(space.apply(doc))) == { "This is", "This", } matcher = Union(matcher0, matcher1, longest_match_only=False) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == { "is apple", "apple", "This is", "This", } # longest_match_only of each matcher is ignored. matcher = Union(matcher0, matcher1, longest_match_only=True) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == { "This is", "is apple", } # Unsupported option should raise an exception with pytest.raises(Exception): Union(matcher0, matcher1, long_match_only=False) def test_intersect(doc_setup): """Test intersect matcher.""" doc = doc_setup space = MentionNgrams(n_min=1, n_max=3) tc: TemporarySpanMention # Match any span that contains "apple" matcher0 = RegexMatchSpan( rgx=r"apple", search=True, full_match=True, longest_match_only=False ) assert set(tc.get_span() for tc in matcher0.apply(space.apply(doc))) == { "This is apple", "is apple", "apple", } # Match any span that contains "this" (case insensitive) matcher1 = RegexMatchSpan( rgx=r"this", search=False, full_match=False, longest_match_only=False ) assert set(tc.get_span() for tc in matcher1.apply(space.apply(doc))) == { "This is apple", "This is", "This", } # Intersection of matcher0 and matcher1 matcher = Intersect(matcher0, matcher1, longest_match_only=False) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == { "This is apple" } # Intersection of matcher0 and matcher0 matcher = Intersect(matcher0, matcher0, longest_match_only=False) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == { "This is apple", "is apple", "apple", } # longest_match_only=True overrides that of child matchers. matcher = Intersect(matcher0, matcher0, longest_match_only=True) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == { "This is apple" } def test_inverse(doc_setup): """Test inverse matcher.""" doc = doc_setup space = MentionNgrams(n_min=1, n_max=2) tc: TemporarySpanMention assert set(tc.get_span() for tc in space.apply(doc)) == { "This is", "is apple", "This", "is", "apple", } # Match any span that contains "apple" with longest_match_only=False matcher0 = RegexMatchSpan( rgx=r"apple", search=True, full_match=True, longest_match_only=False ) assert set(tc.get_span() for tc in matcher0.apply(space.apply(doc))) == { "is apple", "apple", } # Take an inverse matcher = Inverse(matcher0, longest_match_only=False) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == { "This is", "This", "is", } # longest_match_only=True matcher = Inverse(matcher0, longest_match_only=True) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"This is"} # Match any span that contains "apple" with longest_match_only=True matcher0 = RegexMatchSpan( rgx=r"apple", search=True, full_match=True, longest_match_only=True ) assert set(tc.get_span() for tc in matcher0.apply(space.apply(doc))) == {"is apple"} # longest_match_only=False on Inverse is in effect. matcher = Inverse(matcher0, longest_match_only=False) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == { "This is", "This", "is", } # longest_match_only=True on Inverse is in effect. matcher = Inverse(matcher0, longest_match_only=True) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"This is"} # Check if Inverse raises an error when no child matcher is provided. with pytest.raises(ValueError): Inverse() # Check if Inverse raises an error when two child matchers are provided. with pytest.raises(ValueError): Inverse(matcher0, matcher0) def test_cancat(doc_setup): """Test Concat matcher.""" doc = doc_setup space = MentionNgrams(n_min=1, n_max=2) # Match any span that contains "this" matcher0 = RegexMatchSpan( rgx=r"this", search=False, full_match=False, longest_match_only=False ) # Match any span that contains "is" matcher1 = RegexMatchSpan( rgx=r"is", search=False, full_match=False, longest_match_only=False ) matcher = Concat(matcher0, matcher1) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"This is"} # Test if matcher raises an error when _f is given non-TemporarySpanMention with pytest.raises(ValueError): list(matcher.apply(doc.sentences[0].words)) # Test if an error is raised when the number of child matchers is not 2. matcher = Concat(matcher0) with pytest.raises(ValueError): list(matcher.apply(space.apply(doc))) # Test with left_required=False matcher = Concat(matcher0, matcher1, left_required=False) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == { "This is", "is apple", } # Test with right_required=False matcher = Concat(matcher0, matcher1, right_required=False) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"This is"} # Test with permutations=False matcher = Concat(matcher1, matcher0, permutations=False) assert set(matcher.apply(space.apply(doc))) == set() # Test with permutations=True matcher = Concat(matcher1, matcher0, permutations=True) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"This is"} # TODO: Add a test for ignore_sep=False def test_dictionary_match(doc_setup): """Test DictionaryMatch matcher.""" doc = doc_setup space = MentionNgrams(n_min=1, n_max=1) # Test with a list of str matcher = DictionaryMatch(d=["this"]) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"This"} # Test without a dictionary with pytest.raises(Exception): DictionaryMatch() # TODO: test with plural words matcher = DictionaryMatch(d=["is"], stemmer=PorterStemmer()) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"is"} # Test if matcher raises an error when _f is given non-TemporarySpanMention matcher = DictionaryMatch(d=["this"]) with pytest.raises(ValueError): list(matcher.apply(doc.sentences[0].words)) def test_do_not_use_stemmer_when_UnicodeDecodeError(): """Test DictionaryMatch when stemmer causes UnicodeDecodeError.""" stemmer = PorterStemmer() matcher = DictionaryMatch(d=["is"], stemmer=stemmer) # _stem(w) should return a word stem. assert matcher._stem("caresses") == "caress" stemmer.stem = Mock( side_effect=UnicodeDecodeError("dummycodec", b"\x00\x00", 1, 2, "Dummy !") ) matcher = DictionaryMatch(d=["is"], stemmer=stemmer) # _stem(w) should return w as stemmer.stem raises UnicodeDecodeError. assert matcher._stem("caresses") == "caresses" def test_lambda_function_matcher(doc_setup): """Test DictionaryMatch matcher.""" doc = doc_setup space = MentionNgrams(n_min=1, n_max=1) # Test with a lambda function matcher = LambdaFunctionMatcher(func=lambda x: True) assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == { "This", "is", "apple", } # Test if matcher raises an error when _f is given non-TemporarySpanMention with pytest.raises(ValueError): list(matcher.apply(doc.sentences[0].words)) # Test if an error raised when a func is not provided. with pytest.raises(Exception): LambdaFunctionMatcher() def test_regex_match(doc_setup): """Test RegexMatch matcher.""" doc = doc_setup space = MentionNgrams(n_min=1, n_max=2) # a wrong option name should raise an excetiopn with pytest.raises(Exception): RegexMatchSpan(regex=r"apple") # Test if matcher raises an error when _f is given non-TemporarySpanMention matcher = RegexMatchSpan(rgx=r"apple") with pytest.raises(ValueError): list(matcher.apply(doc.sentences[0].words)) matcher = RegexMatchEach(rgx=r"apple") with pytest.raises(ValueError): list(matcher.apply(doc.sentences[0].words)) # Test if RegexMatchEach works as expected. assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"apple"} # Test ignore_case option matcher = RegexMatchEach(rgx=r"Apple", ignore_case=False) assert list(matcher.apply(space.apply(doc))) == [] # Test sep option matcher = RegexMatchSpan(rgx=r"isapple", sep=" ") assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"is apple"} def test_ner_matchers(): """Test different ner type matchers.""" # Set up a document doc = Document(id=1, name="test", stable_id="1::document:0:0") doc.text = " ".join( [ "Tim Cook was born in USA in 1960.", "He is the CEO of Apple.", "He sold 100 million of iPhone.", ] ) lingual_parser = SpacyParser("en") for parts in lingual_parser.split_sentences(doc.text): parts["document"] = doc Sentence(**parts) # Manually attach ner_tags as the result from spacy may fluctuate. doc.sentences[0].ner_tags = [ "PERSON", "PERSON", "O", "O", "O", "GPE", "O", "DATE", "O", ] doc.sentences[1].ner_tags = ["O", "O", "O", "O", "O", "ORG", "O"] doc.sentences[2].ner_tags = ["O", "O", "CARDINAL", "CARDINAL", "O", "MISC", "O"] # the length of words and that of ner_tags should match. assert len(doc.sentences[0].words) == len(doc.sentences[0].ner_tags) assert len(doc.sentences[1].words) == len(doc.sentences[1].ner_tags) space = MentionNgrams(n_min=1, n_max=2) # Test if PersonMatcher works as expected matcher = PersonMatcher() assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"Tim Cook"} # Test if LocationMatcher works as expected matcher = LocationMatcher() assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"USA"} # Test if DateMatcher works as expected matcher = DateMatcher() assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"1960"} # Test if OrganizationMatcher works as expected matcher = OrganizationMatcher() assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"Apple"} # Test if NumberMatcher works as expected matcher = NumberMatcher() assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == { "100 million" } # Test if MiscMatcher works as expected matcher = MiscMatcher() assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"iPhone"} def test_figure_matcher(doc_setup): """Test matchers for figures.""" doc = doc_setup # Create two dummy figures Figure(id=2, document=doc) Figure(id=3, document=doc) assert len(doc.figures) == 2 space = MentionFigures() assert len(list(space.apply(doc))) == 2 # Set up a matcher that matches figures with id==2. matcher = LambdaFunctionFigureMatcher( func=lambda tf: True if tf.figure.id == 2 else False ) # Test if matcher only matches the first figure. assert len(list(matcher.apply(space.apply(doc)))) == 1 assert set(tf.figure.id for tf in matcher.apply(space.apply(doc))) == {2} # The keyword arg should be "func" with pytest.raises(Exception): LambdaFunctionFigureMatcher( function=lambda tf: True if tf.figure.id == 2 else False ) # LambdaFunctionFigureMatcher only supports TemporaryFigureMention. space = MentionNgrams(n_min=1, n_max=2) with pytest.raises(ValueError): list(matcher.apply(space.apply(doc)))
fonduer-master
tests/candidates/test_matchers.py
"""Fonduer MLflow unit tests.""" import os from pathlib import Path from typing import Any, Dict, List from unittest.mock import MagicMock import emmental.meta import mlflow import mlflow.pyfunc import numpy as np import pandas as pd import pytest import yaml from emmental.model import EmmentalModel from packaging import version from snorkel.labeling.model import LabelModel from fonduer.candidates import CandidateExtractor, MentionExtractor from fonduer.candidates.models import candidate_subclass, mention_subclass from fonduer.candidates.models.candidate import candidate_subclasses from fonduer.candidates.models.mention import mention_subclasses from fonduer.features.featurizer import Featurizer from fonduer.features.models import FeatureKey from fonduer.packaging import FonduerModel, log_model, save_model from fonduer.packaging.fonduer_model import ( _get_default_conda_env, _load_candidate_classes, _load_mention_classes, _save_candidate_classes, _save_mention_classes, ) from fonduer.parser import Parser from fonduer.parser.preprocessors import HTMLDocPreprocessor from fonduer.supervision.labeler import Labeler from fonduer.supervision.models import LabelKey from tests.shared.hardware_fonduer_model import HardwareFonduerModel from tests.shared.hardware_lfs import LF_storage_row from tests.shared.hardware_matchers import part_matcher, temp_matcher from tests.shared.hardware_spaces import MentionNgramsPart, MentionNgramsTemp from tests.shared.hardware_subclasses import Part, PartTemp, Temp from tests.shared.hardware_throttlers import temp_throttler artifact_path = "fonduer_model" @pytest.fixture def setup_common_components(): """Set up mention/candidate extractor.""" preprocessor = HTMLDocPreprocessor("tests/data/html/") parser = Parser(None) mention_extractor = MentionExtractor( None, [Part, Temp], [MentionNgramsPart(parts_by_doc=None, n_max=3), MentionNgramsTemp(n_max=2)], [part_matcher, temp_matcher], ) candidate_extractor = CandidateExtractor(None, [PartTemp], [temp_throttler]) return { "preprocessor": preprocessor, "parser": parser, "mention_extractor": mention_extractor, "candidate_extractor": candidate_extractor, } def test_convert_features_to_matrix(): """Test _convert_features_to_matrix.""" features: List[Dict[str, Any]] = [ {"keys": ["key1", "key2"], "values": [0.0, 0.1]}, {"keys": ["key1", "key2"], "values": [1.0, 1.1]}, ] key_names: List[str] = ["key1", "key2"] F = FonduerModel.convert_features_to_matrix(features, key_names) D = np.array([[0.0, 0.1], [1.0, 1.1]]) assert (F.todense() == D).all() def test_convert_features_to_matrix_limited_keys(): """Test _convert_features_to_matrix with limited keys.""" features: List[Dict[str, Any]] = [ {"keys": ["key1", "key2"], "values": [0.0, 0.1]}, {"keys": ["key1", "key2"], "values": [1.0, 1.1]}, ] F = FonduerModel.convert_features_to_matrix(features, ["key1"]) D = np.array([[0.0], [1.0]]) assert (F.todense() == D).all() def test_convert_labels_to_matrix(): """Test _convert_labels_to_matrix.""" labels: List[Dict[str, Any]] = [ {"keys": ["key1", "key2"], "values": [0, 1]}, {"keys": ["key1", "key2"], "values": [1, 2]}, ] key_names: List[str] = ["key1", "key2"] L = FonduerModel.convert_labels_to_matrix(labels, key_names) D = np.array([[-1, 0], [0, 1]]) assert (L == D).all() @pytest.mark.dependency() def test_save_subclasses(): """Test if subclasses can be saved.""" mention_class = mention_subclass("test_mention_class") _save_mention_classes([mention_class], "./") assert os.path.exists("./mention_classes.pkl") candidate_class = candidate_subclass("test_candidate_class", [mention_class]) _save_candidate_classes([candidate_class], "./") assert os.path.exists("./candidate_classes.pkl") @pytest.mark.dependency(depends=["test_save_subclasses"]) def test_load_subclasses(): """Test if subclasses can be loaded.""" _load_mention_classes("./") assert "test_mention_class" in mention_subclasses mention_class, _ = mention_subclasses["test_mention_class"] _load_candidate_classes("./") assert "test_candidate_class" in candidate_subclasses candidate_class, _ = candidate_subclasses["test_candidate_class"] assert candidate_class.mentions[0] == mention_class @pytest.mark.dependency() def test_save_model(tmp_path: Path, setup_common_components: Dict): """Test if a Fonduer model can be saved.""" kwargs = setup_common_components featurizer = Featurizer(None, [PartTemp]) # Mock the get_keys() featurizer.get_keys = MagicMock(return_value=[FeatureKey(name="key1")]) emmental.meta.init_config() save_model( HardwareFonduerModel(), os.path.join(tmp_path, artifact_path), **kwargs, code_paths=[ "tests" ], # pass a directory name to preserver the directory hierarchy featurizer=featurizer, emmental_model=EmmentalModel(), word2id={"foo": 1}, ) assert os.path.exists(os.path.join(tmp_path, artifact_path)) log_model( HardwareFonduerModel(), artifact_path, **kwargs, code_paths=[ "tests" ], # pass a directory name to preserver the directory hierarchy featurizer=featurizer, emmental_model=EmmentalModel(), word2id={"foo": 1}, ) @pytest.mark.dependency(depends=["test_save_model"]) def test_load_model(tmp_path: Path): """Test if a saved model can be loaded.""" # Load from a saved model mlflow.pyfunc.load_model( os.path.join(tmp_path, "../test_save_model0", artifact_path) ) @pytest.mark.dependency() def test_save_label_model(tmp_path: Path, setup_common_components: Dict): """Test if a Fonduer model with a LabelModel as a classifier.""" kwargs = setup_common_components labeler = Labeler(None, [PartTemp]) # Mock the get_keys() labeler.get_keys = MagicMock(return_value=[LabelKey(name="key1")]) lfs = [[LF_storage_row]] label_models = [LabelModel()] save_model( HardwareFonduerModel(), os.path.join(tmp_path, artifact_path), **kwargs, code_paths=[ "tests" ], # pass a directory name to preserver the directory hierarchy model_type="label", labeler=labeler, lfs=lfs, label_models=label_models, ) assert os.path.exists(os.path.join(tmp_path, artifact_path)) @pytest.mark.dependency(depends=["test_save_label_model"]) def test_load_label_model(tmp_path: Path): """Test if a saved model can be loaded.""" # Load from a saved model mlflow.pyfunc.load_model( os.path.join(tmp_path, "../test_save_label_model0", artifact_path) ) def test_save_with_conda_yaml(tmp_path: Path, setup_common_components: Dict): """Test if a model can be saved with a conda yaml file.""" kwargs = setup_common_components labeler = Labeler(None, [PartTemp]) # Mock the get_keys() labeler.get_keys = MagicMock(return_value=[LabelKey(name="key1")]) lfs = [[LF_storage_row]] label_models = [LabelModel()] # Create a conda yaml file with open(tmp_path.joinpath("my_conda.yaml"), "w") as f: yaml.dump(_get_default_conda_env(), f) # Save a model with a conda yaml file. save_model( HardwareFonduerModel(), os.path.join(tmp_path, artifact_path), **kwargs, conda_env=tmp_path.joinpath("my_conda.yaml"), code_paths=[ "tests" ], # pass a directory name to preserver the directory hierarchy model_type="label", labeler=labeler, lfs=lfs, label_models=label_models, ) # Your conda yaml file is saved as "conda.yaml". assert os.path.exists(os.path.join(tmp_path, artifact_path, "conda.yaml")) def test_predict(mocker, setup_common_components: Dict): """Test if a Fonduer model can predict.""" kwargs = setup_common_components featurizer = Featurizer(None, [PartTemp]) # Mock the get_keys() featurizer.get_keys = MagicMock(return_value=[FeatureKey(name="key1")]) emmental.meta.init_config() # Log the model with FonduerModel() log_model( FonduerModel(), artifact_path, **kwargs, code_paths=[ "tests" ], # pass a directory name to preserver the directory hierarchy featurizer=featurizer, emmental_model=EmmentalModel(), word2id={"foo": 1}, ) # Load the model fonduer_model = mlflow.pyfunc.load_model( os.path.join(mlflow.active_run().info.artifact_uri, artifact_path) ) with pytest.raises(NotImplementedError): _ = fonduer_model.predict( pd.DataFrame(data={"html_path": ["tests/data/html/112823.html"]}) ) # Log the model with HardwareFonduerModel() log_model( HardwareFonduerModel(), artifact_path, **kwargs, code_paths=[ "tests" ], # pass a directory name to preserver the directory hierarchy featurizer=featurizer, emmental_model=EmmentalModel(), word2id={"foo": 1}, ) # Load the model fonduer_model = mlflow.pyfunc.load_model( os.path.join(mlflow.active_run().info.artifact_uri, artifact_path) ) # Mock the _classify as we don't test the implementation of _classify here. mock_output = pd.DataFrame(data={"col1": ["val1"], "col2": ["val2"]}) # Input both html_path and pdf_html if version.parse(mlflow.__version__) >= version.parse("1.9.0"): fonduer_model._model_impl._classify = MagicMock(return_value=mock_output) spy = mocker.spy(fonduer_model._model_impl, "_process") else: fonduer_model._classify = MagicMock(return_value=mock_output) spy = mocker.spy(fonduer_model, "_process") output = fonduer_model.predict( pd.DataFrame( data={ "html_path": ["tests/data/html/112823.html"], "pdf_path": ["tests/data/pdf/112823.pdf"], } ) ) spy.assert_called_once_with( "tests/data/html/112823.html", "tests/data/pdf/112823.pdf" ) assert output.equals( pd.DataFrame( data={ "col1": ["val1"], "col2": ["val2"], "html_path": ["tests/data/html/112823.html"], } ) ) # Input only html_path spy.reset_mock() output = fonduer_model.predict( pd.DataFrame(data={"html_path": ["tests/data/html/112823.html"]}) ) spy.assert_called_once_with("tests/data/html/112823.html", None) assert output.equals( pd.DataFrame( data={ "col1": ["val1"], "col2": ["val2"], "html_path": ["tests/data/html/112823.html"], } ) ) # Input html_path that does not exist spy.reset_mock() with pytest.raises(ValueError): _ = fonduer_model.predict( pd.DataFrame(data={"html_path": ["tests/data/html/foo.html"]}) ) # Test when _classify produces multiple relations per doc. mock_output = pd.DataFrame(data={"col0": ["00", "10"], "col1": ["01", "11"]}) if version.parse(mlflow.__version__) >= version.parse("1.9.0"): fonduer_model._model_impl._classify = MagicMock(return_value=mock_output) else: fonduer_model._classify = MagicMock(return_value=mock_output) output = fonduer_model.predict( pd.DataFrame(data={"html_path": ["tests/data/html/112823.html"]}) ) assert output.equals( pd.DataFrame( data={ "col0": ["00", "10"], "col1": ["01", "11"], "html_path": [ "tests/data/html/112823.html", "tests/data/html/112823.html", ], } ) )
fonduer-master
tests/packaging/test_fonduer_model.py
"""Fonduer packaging unit tests."""
fonduer-master
tests/packaging/__init__.py
"""Fonduer learning utils' unit tests.""" from fonduer.candidates.models import Candidate from fonduer.learning.utils import confusion_matrix def test_confusion_matrix(): """Test the confusion matrix.""" # Synthesize candidates cand1 = Candidate(id=1, type="type") cand2 = Candidate(id=2, type="type") cand3 = Candidate(id=3, type="type") cand4 = Candidate(id=4, type="type") # pred and gold as set pred = {cand1, cand2, cand3} gold = {cand1, cand2, cand4} (TP, FP, FN) = confusion_matrix(pred, gold) assert TP == {cand1, cand2} assert FP == {cand3} assert FN == {cand4} # pred as list pred = [cand1, cand2, cand3] (TP, FP, FN) = confusion_matrix(pred, gold) assert TP == {cand1, cand2} assert FP == {cand3} assert FN == {cand4} # test if the order of elements does not affect the output pred = [cand3, cand2, cand1] (TP, FP, FN) = confusion_matrix(pred, gold) assert TP == {cand1, cand2} assert FP == {cand3} assert FN == {cand4} # Assume the followings are entities pred = {"1", "2", "3"} gold = {"1", "2", "4"} (TP, FP, FN) = confusion_matrix(pred, gold) assert TP == {"1", "2"} assert FP == {"3"} assert FN == {"4"}
fonduer-master
tests/learning/test_utils.py
"""Fonduer learning unit tests."""
fonduer-master
tests/learning/__init__.py
"""Fonduer featurization unit tests.""" import itertools import logging import pytest from fonduer.candidates import MentionNgrams from fonduer.candidates.candidates import CandidateExtractorUDF from fonduer.candidates.mentions import MentionExtractorUDF from fonduer.candidates.models import candidate_subclass, mention_subclass from fonduer.features import FeatureExtractor from fonduer.features.featurizer import FeaturizerUDF from tests.candidates.test_candidates import parse_doc from tests.shared.hardware_matchers import part_matcher, temp_matcher, volt_matcher logger = logging.getLogger(__name__) def test_unary_relation_feature_extraction(): """Test extracting unary candidates from mentions from documents.""" docs_path = "tests/data/html/112823.html" pdf_path = "tests/data/pdf/" # Parsing doc = parse_doc(docs_path, "112823", pdf_path) assert len(doc.sentences) == 799 # Mention Extraction part_ngrams = MentionNgrams(n_max=1) Part = mention_subclass("Part") mention_extractor_udf = MentionExtractorUDF([Part], [part_ngrams], [part_matcher]) doc = mention_extractor_udf.apply(doc) assert doc.name == "112823" assert len(doc.parts) == 62 part = doc.parts[0] logger.info(f"Part: {part.context}") # Candidate Extraction PartRel = candidate_subclass("PartRel", [Part]) candidate_extractor_udf = CandidateExtractorUDF([PartRel], None, False, False, True) doc = candidate_extractor_udf.apply(doc, split=0) # Featurization based on default feature library featurizer_udf = FeaturizerUDF([PartRel], FeatureExtractor()) # Test that featurization default feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_default_feats = len(key_set) # Featurization with only textual feature feature_extractors = FeatureExtractor(features=["textual"]) featurizer_udf = FeaturizerUDF([PartRel], feature_extractors=feature_extractors) # Test that featurization textual feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_textual_features = len(key_set) # Featurization with only tabular feature feature_extractors = FeatureExtractor(features=["tabular"]) featurizer_udf = FeaturizerUDF([PartRel], feature_extractors=feature_extractors) # Test that featurization tabular feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_tabular_features = len(key_set) # Featurization with only structural feature feature_extractors = FeatureExtractor(features=["structural"]) featurizer_udf = FeaturizerUDF([PartRel], feature_extractors=feature_extractors) # Test that featurization structural feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_structural_features = len(key_set) # Featurization with only visual feature feature_extractors = FeatureExtractor(features=["visual"]) featurizer_udf = FeaturizerUDF([PartRel], feature_extractors=feature_extractors) # Test that featurization visual feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_visual_features = len(key_set) assert ( n_default_feats == n_textual_features + n_tabular_features + n_structural_features + n_visual_features ) def test_binary_relation_feature_extraction(): """Test extracting candidates from mentions from documents.""" docs_path = "tests/data/html/112823.html" pdf_path = "tests/data/pdf/" # Parsing doc = parse_doc(docs_path, "112823", pdf_path) assert len(doc.sentences) == 799 # Mention Extraction part_ngrams = MentionNgrams(n_max=1) temp_ngrams = MentionNgrams(n_max=1) Part = mention_subclass("Part") Temp = mention_subclass("Temp") mention_extractor_udf = MentionExtractorUDF( [Part, Temp], [part_ngrams, temp_ngrams], [part_matcher, temp_matcher] ) doc = mention_extractor_udf.apply(doc) assert len(doc.parts) == 62 assert len(doc.temps) == 16 part = doc.parts[0] temp = doc.temps[0] logger.info(f"Part: {part.context}") logger.info(f"Temp: {temp.context}") # Candidate Extraction PartTemp = candidate_subclass("PartTemp", [Part, Temp]) candidate_extractor_udf = CandidateExtractorUDF( [PartTemp], None, False, False, True ) doc = candidate_extractor_udf.apply(doc, split=0) # Manually set id as it is not set automatically b/c a database is not used. i = 0 for cand in doc.part_temps: cand.id = i i = i + 1 n_cands = len(doc.part_temps) # Featurization based on default feature library featurizer_udf = FeaturizerUDF([PartTemp], FeatureExtractor()) # Test that featurization default feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_default_feats = len(key_set) # Example feature extractor def feat_ext(candidates): candidates = candidates if isinstance(candidates, list) else [candidates] for candidate in candidates: yield candidate.id, f"cand_id_{candidate.id}", 1 # Featurization with one extra feature extractor feature_extractors = FeatureExtractor(customize_feature_funcs=[feat_ext]) featurizer_udf = FeaturizerUDF([PartTemp], feature_extractors=feature_extractors) # Test that featurization default feature library with one extra feature extractor features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_default_w_customized_features = len(key_set) # Example spurious feature extractor def bad_feat_ext(candidates): raise RuntimeError() # Featurization with a spurious feature extractor feature_extractors = FeatureExtractor(customize_feature_funcs=[bad_feat_ext]) featurizer_udf = FeaturizerUDF([PartTemp], feature_extractors=feature_extractors) # Test that featurization default feature library with one extra feature extractor logger.info("Featurizing with a spurious feature extractor...") with pytest.raises(RuntimeError): features = featurizer_udf.apply(doc) # Featurization with only textual feature feature_extractors = FeatureExtractor(features=["textual"]) featurizer_udf = FeaturizerUDF([PartTemp], feature_extractors=feature_extractors) # Test that featurization textual feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_textual_features = len(key_set) # Featurization with only tabular feature feature_extractors = FeatureExtractor(features=["tabular"]) featurizer_udf = FeaturizerUDF([PartTemp], feature_extractors=feature_extractors) # Test that featurization tabular feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_tabular_features = len(key_set) # Featurization with only structural feature feature_extractors = FeatureExtractor(features=["structural"]) featurizer_udf = FeaturizerUDF([PartTemp], feature_extractors=feature_extractors) # Test that featurization structural feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_structural_features = len(key_set) # Featurization with only visual feature feature_extractors = FeatureExtractor(features=["visual"]) featurizer_udf = FeaturizerUDF([PartTemp], feature_extractors=feature_extractors) # Test that featurization visual feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_visual_features = len(key_set) assert ( n_default_feats == n_textual_features + n_tabular_features + n_structural_features + n_visual_features ) assert n_default_w_customized_features == n_default_feats + n_cands def test_multinary_relation_feature_extraction(): """Test extracting candidates from mentions from documents.""" docs_path = "tests/data/html/112823.html" pdf_path = "tests/data/pdf/" # Parsing doc = parse_doc(docs_path, "112823", pdf_path) assert len(doc.sentences) == 799 # Mention Extraction part_ngrams = MentionNgrams(n_max=1) temp_ngrams = MentionNgrams(n_max=1) volt_ngrams = MentionNgrams(n_max=1) Part = mention_subclass("Part") Temp = mention_subclass("Temp") Volt = mention_subclass("Volt") mention_extractor_udf = MentionExtractorUDF( [Part, Temp, Volt], [part_ngrams, temp_ngrams, volt_ngrams], [part_matcher, temp_matcher, volt_matcher], ) doc = mention_extractor_udf.apply(doc) assert len(doc.parts) == 62 assert len(doc.temps) == 16 assert len(doc.volts) == 33 part = doc.parts[0] temp = doc.temps[0] volt = doc.volts[0] logger.info(f"Part: {part.context}") logger.info(f"Temp: {temp.context}") logger.info(f"Volt: {volt.context}") # Candidate Extraction PartTempVolt = candidate_subclass("PartTempVolt", [Part, Temp, Volt]) candidate_extractor_udf = CandidateExtractorUDF( [PartTempVolt], None, False, False, True ) doc = candidate_extractor_udf.apply(doc, split=0) # Manually set id as it is not set automatically b/c a database is not used. i = 0 for cand in doc.part_temp_volts: cand.id = i i = i + 1 n_cands = len(doc.part_temp_volts) # Featurization based on default feature library featurizer_udf = FeaturizerUDF([PartTempVolt], FeatureExtractor()) # Test that featurization default feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_default_feats = len(key_set) # Example feature extractor def feat_ext(candidates): candidates = candidates if isinstance(candidates, list) else [candidates] for candidate in candidates: yield candidate.id, f"cand_id_{candidate.id}", 1 # Featurization with one extra feature extractor feature_extractors = FeatureExtractor(customize_feature_funcs=[feat_ext]) featurizer_udf = FeaturizerUDF( [PartTempVolt], feature_extractors=feature_extractors ) # Test that featurization default feature library with one extra feature extractor features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_default_w_customized_features = len(key_set) # Example spurious feature extractor def bad_feat_ext(candidates): raise RuntimeError() # Featurization with a spurious feature extractor feature_extractors = FeatureExtractor(customize_feature_funcs=[bad_feat_ext]) featurizer_udf = FeaturizerUDF( [PartTempVolt], feature_extractors=feature_extractors ) # Test that featurization default feature library with one extra feature extractor logger.info("Featurizing with a spurious feature extractor...") with pytest.raises(RuntimeError): features = featurizer_udf.apply(doc) # Featurization with only textual feature feature_extractors = FeatureExtractor(features=["textual"]) featurizer_udf = FeaturizerUDF( [PartTempVolt], feature_extractors=feature_extractors ) # Test that featurization textual feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_textual_features = len(key_set) # Featurization with only tabular feature feature_extractors = FeatureExtractor(features=["tabular"]) featurizer_udf = FeaturizerUDF( [PartTempVolt], feature_extractors=feature_extractors ) # Test that featurization tabular feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_tabular_features = len(key_set) # Featurization with only structural feature feature_extractors = FeatureExtractor(features=["structural"]) featurizer_udf = FeaturizerUDF( [PartTempVolt], feature_extractors=feature_extractors ) # Test that featurization structural feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_structural_features = len(key_set) # Featurization with only visual feature feature_extractors = FeatureExtractor(features=["visual"]) featurizer_udf = FeaturizerUDF( [PartTempVolt], feature_extractors=feature_extractors ) # Test that featurization visual feature library features_list = featurizer_udf.apply(doc) features = itertools.chain.from_iterable(features_list) key_set = set([key for feature in features for key in feature["keys"]]) n_visual_features = len(key_set) assert ( n_default_feats == n_textual_features + n_tabular_features + n_structural_features + n_visual_features ) assert n_default_w_customized_features == n_default_feats + n_cands
fonduer-master
tests/features/test_features.py
"""Fonduer feature unit tests."""
fonduer-master
tests/features/__init__.py
"""Fonduer table utils' tests.""" import logging from fonduer.utils.utils_table import _min_range_diff def test_min_range_diff(caplog): """Test the minimum range calculation for table utils.""" caplog.set_level(logging.INFO) assert _min_range_diff(((0, 5), (0, 5))) == 0 assert _min_range_diff(((1, 5), (3, 6))) == 0 assert _min_range_diff(((1, 2), (2, 3))) == 0 assert _min_range_diff(((3, 6), (1, 4))) == 0 assert _min_range_diff(((1, 2), (3, 4))) == 1 assert _min_range_diff(((3, 4), (1, 2))) == 1 assert _min_range_diff(((3, 4), (1, 2)), absolute=False) == 1 assert _min_range_diff(((1, 2), (3, 4)), absolute=False) == -1 assert _min_range_diff(((0, 5), (0, 5), (0, 5))) == 0 assert _min_range_diff(((1, 5), (3, 6), (2, 4))) == 0 assert _min_range_diff(((3, 4), (1, 2), (4, 5))) == 1 assert _min_range_diff(((1, 2), (3, 4), (5, 6)), absolute=False) == -1 assert _min_range_diff(((1, 2), (3, 4), (4, 6)), absolute=False) == 0 assert _min_range_diff(((1, 2), (3, 4), (4, 6), (5, 8)), absolute=False) == 0
fonduer-master
tests/utils/test_utils_table.py
"""Fonduer visualizer unit tests.""" from fonduer.candidates import MentionNgrams from fonduer.candidates.candidates import CandidateExtractorUDF from fonduer.candidates.matchers import OrganizationMatcher from fonduer.candidates.mentions import MentionExtractorUDF from fonduer.candidates.models import candidate_subclass, mention_subclass from tests.candidates.test_candidates import parse_doc def test_visualizer(): """Unit test of visualizer using the md document.""" from fonduer.utils.visualizer import Visualizer, get_box # noqa docs_path = "tests/data/html_simple/md.html" pdf_path = "tests/data/pdf_simple/" # Grab the md document doc = parse_doc(docs_path, "md", pdf_path) assert doc.name == "md" organization_ngrams = MentionNgrams(n_max=1) Org = mention_subclass("Org") organization_matcher = OrganizationMatcher() mention_extractor_udf = MentionExtractorUDF( [Org], [organization_ngrams], [organization_matcher] ) doc = mention_extractor_udf.apply(doc) Organization = candidate_subclass("Organization", [Org]) candidate_extractor_udf = CandidateExtractorUDF( [Organization], None, False, False, True ) doc = candidate_extractor_udf.apply(doc, split=0) # Take one candidate cand = doc.organizations[0] pdf_path = "tests/data/pdf_simple" vis = Visualizer(pdf_path) # Test bounding boxes boxes = [get_box(mention.context) for mention in cand.get_mentions()] for box in boxes: assert box.top <= box.bottom assert box.left <= box.right assert boxes == [mention.context.get_bbox() for mention in cand.get_mentions()] # Test visualizer vis.display_candidates([cand]) def test_get_pdf_dim(): """Test get_pdf_dim on different pages.""" from fonduer.utils.visualizer import get_pdf_dim # noqa assert get_pdf_dim("tests/data/pdf/BC546A_Series_B14-521026.pdf") == (729, 1032) assert get_pdf_dim("tests/data/pdf/BC546A_Series_B14-521026.pdf", page=1) == ( 729, 1032, ) assert get_pdf_dim("tests/data/pdf/BC546A_Series_B14-521026.pdf", page=6) == ( 612, 792, )
fonduer-master
tests/utils/test_visualizer.py
"""Fonduer unit tests' utils."""
fonduer-master
tests/utils/__init__.py
"""Fonduer load config unit tests.""" import os from fonduer.utils.config import get_config def test_load_config(): """Simple sanity check for loading feature config.""" # Check that default is loaded defaults = get_config() assert defaults["featurization"]["textual"]["window_feature"]["size"] == 3 assert defaults["learning"]["LSTM"]["emb_dim"] == 100 assert defaults["learning"]["LSTM"]["bias"] is False # Check that file is loaded if present settings = get_config(os.path.dirname(__file__)) assert settings["featurization"]["textual"]["window_feature"]["size"] == 8 assert settings["learning"]["LSTM"]["bias"] is False # Check that defaults are used for unspecified settings assert ( settings["featurization"]["tabular"]["unary_features"]["get_head_ngrams"]["max"] == 2 )
fonduer-master
tests/utils/test_config.py
"""Fonduer UDF utils' unit tests.""" import logging import numpy as np from fonduer.utils.utils_udf import shift_label_matrix, unshift_label_matrix def test_shift_label_matrix(caplog): """Test the label matrix shifter and unshifter.""" caplog.set_level(logging.INFO) """ L is a dense label matrix (ABSTAIN as -1) with values: -1 0 1 -1 """ L = np.array([[-1, 0], [1, -1]]) """ L_sparse is a sparse label matrix (ABSTAIN as 0) 0 1 2 0 """ L_sparse = shift_label_matrix(L) assert np.array_equal(L, unshift_label_matrix(L_sparse)) assert L_sparse.count_nonzero() == 2
fonduer-master
tests/utils/test_utils_udf.py
"""Fonduer data model's visual utils' unit tests.""" import pytest from fonduer.candidates.mentions import MentionNgrams from fonduer.parser.lingual_parser.spacy_parser import SpacyParser from fonduer.parser.models import Document, Sentence from fonduer.utils.data_model_utils.visual import get_horz_ngrams, get_vert_ngrams @pytest.fixture() def doc_setup(): """Set up document.""" doc = Document(id=1, name="test", stable_id="1::document:0:0") doc.text = "This is apple. That is orange. Where is banaba? I like Apple." lingual_parser = SpacyParser("en") # Split sentences for parts in lingual_parser.split_sentences(doc.text): parts["document"] = doc Sentence(**parts) # Enrich sentences for _ in lingual_parser.enrich_sentences_with_NLP(doc.sentences): pass # Pick one sentence and add visual information # so that all the words get aligned horizontally. sentence: Sentence = doc.sentences[0] sentence.page = [1, 1, 1, 1] sentence.top = [0, 0, 0, 0] sentence.bottom = [10, 10, 10, 10] sentence.left = [0, 10, 20, 30] sentence.right = [10, 20, 30, 40] # Assume the 2nd sentence is horizontally aligned with 1st. sentence: Sentence = doc.sentences[1] sentence.page = [1, 1, 1, 1] sentence.top = [0, 0, 0, 0] sentence.bottom = [10, 10, 10, 10] sentence.left = [40, 50, 60, 70] sentence.right = [50, 60, 70, 80] # Assume the 3rd sentence is vertically aligned with 1st. sentence: Sentence = doc.sentences[2] sentence.page = [1, 1, 1, 1] sentence.top = [10, 10, 10, 10] sentence.bottom = [20, 20, 20, 20] sentence.left = [0, 10, 20, 30] sentence.right = [10, 20, 30, 40] # Assume the 4th sentence is in 2nd page. sentence: Sentence = doc.sentences[3] sentence.page = [2, 2, 2, 2] sentence.top = [0, 0, 0, 0] sentence.bottom = [10, 10, 10, 10] sentence.left = [0, 10, 20, 30] sentence.right = [10, 20, 30, 40] return doc def test_get_vert_ngrams(doc_setup): """Test if get_vert_ngrams works.""" doc = doc_setup sentence: Sentence = doc.sentences[0] # Assert this sentence is visual. assert sentence.is_visual() # Assert this sentence is not tabular. assert not sentence.is_tabular() # Create 1-gram span mentions space = MentionNgrams(n_min=1, n_max=1) mentions = [tc for tc in space.apply(doc)] assert len(mentions) == len([word for sent in doc.sentences for word in sent.words]) # Pick "apple" span mention. mention = mentions[2] assert mention.get_span() == "apple" # from_sentence=True (ie ngrams from all aligned Sentences but its Sentence) ngrams = list(get_vert_ngrams(mention)) assert ngrams == ["where", "is", "banaba", "?"] def test_get_horz_ngrams(doc_setup): """Test if get_horz_ngrams works.""" doc = doc_setup sentence: Sentence = doc.sentences[0] # Assert this sentence is visual. assert sentence.is_visual() # Assert this sentence is not tabular. assert not sentence.is_tabular() # Create 1-gram span mentions space = MentionNgrams(n_min=1, n_max=1) mentions = [tc for tc in space.apply(doc)] assert len(mentions) == len([word for sent in doc.sentences for word in sent.words]) # Pick "apple" span mention. mention = mentions[2] assert mention.get_span() == "apple" # from_sentence=True (ie ngrams from all aligned Sentences but its Sentence) ngrams = list(get_horz_ngrams(mention)) assert ngrams == ["that", "is", "orange", "."] # Check the from_sentence=False (ie all aligned ngrams but itself) assert mention.get_span() == "apple" ngrams = list(get_horz_ngrams(mention, from_sentence=False)) assert ngrams == ["this", "is", ".", "that", "is", "orange", "."] # Check attrib="lemmas" ngrams = list(get_horz_ngrams(mention, attrib="lemmas")) assert ngrams == ["that", "be", "orange", "."] # Check attrib="pos_tags" ngrams = list(get_horz_ngrams(mention, attrib="pos_tags")) assert ngrams == ["dt", "vbz", "jj", "."] # Check lower option ngrams = list(get_horz_ngrams(mention, lower=False, from_sentence=False)) assert ngrams == ["This", "is", ".", "That", "is", "orange", "."] # Pick "This" span mention. mention = mentions[0] assert mention.get_span() == "This" ngrams = list(get_horz_ngrams(mention, from_sentence=False)) assert ngrams == ["is", "apple", ".", "that", "is", "orange", "."] # Check n_max=2 ngrams = list(get_horz_ngrams(mention, n_max=2, from_sentence=False)) assert ngrams == [ "is apple", "apple.", "is", "apple", ".", "that is", "is orange", "orange.", "that", "is", "orange", ".", ] def test_get_ngrams_that_match_in_string(doc_setup): """Test if ngrams can be obtained even if they match mention's span in string.""" doc = doc_setup sentence: Sentence = doc.sentences[0] # Assert this sentence is visual. assert sentence.is_visual() # Assert this sentence is not tabular. assert not sentence.is_tabular() # Create 1-gram span mentions space = MentionNgrams(n_min=1, n_max=1) mentions = [tc for tc in space.apply(doc)] assert len(mentions) == len([word for sent in doc.sentences for word in sent.words]) # Pick "is" from the apple sentence that matches "is" in the orange sentence. mention = mentions[1] assert mention.get_span() == "is" # Check if the "is" in the orange sentence can be obtained. ngrams = list(get_horz_ngrams(mention, from_sentence=False)) assert "is" in ngrams
fonduer-master
tests/utils/data_model_utils/test_visual.py
"""Fonduer data model's tabular utils' unit tests.""" import pytest from fonduer.candidates import MentionNgrams from fonduer.parser.preprocessors import HTMLDocPreprocessor from fonduer.parser.visual_parser import PdfVisualParser from fonduer.utils.data_model_utils.tabular import ( get_aligned_ngrams, get_cell_ngrams, get_col_ngrams, get_head_ngrams, get_max_col_num, get_max_row_num, get_min_col_num, get_min_row_num, get_neighbor_cell_ngrams, get_neighbor_sentence_ngrams, get_row_ngrams, get_sentence_ngrams, is_tabular_aligned, same_cell, same_col, same_row, same_sentence, ) from tests.parser.test_parser import get_parser_udf @pytest.fixture() def mention_setup(): """Set up mentions.""" docs_path = "tests/data/html_simple/md.html" pdf_path = "tests/data/pdf_simple/" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor.__iter__()) # Create an Parser and parse the md document parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=True, visual_parser=PdfVisualParser(pdf_path), language="en", ) doc = parser_udf.apply(doc) # Create 1-gram span mentions space = MentionNgrams(n_min=1, n_max=1) mentions = [tc for tc in space.apply(doc)] return mentions def test_same_row(mention_setup): """Test the same_row function.""" mentions = mention_setup # Same row assert mentions[51].get_span() == "Joan" assert mentions[52].get_span() == "saag" assert same_row((mentions[51], mentions[52])) # Different row assert mentions[57].get_span() == "Sally" assert not same_row((mentions[51], mentions[57])) def test_same_col(mention_setup): """Test the same_col function.""" mentions = mention_setup # Different column assert mentions[51].get_span() == "Joan" assert mentions[52].get_span() == "saag" assert not same_col((mentions[51], mentions[52])) # Same column assert mentions[57].get_span() == "Sally" assert same_col((mentions[51], mentions[57])) def test_is_tabular_aligned(mention_setup): """Test the is_tabular_aligned function.""" mentions = mention_setup # tabular_aligned assert mentions[51].get_span() == "Joan" assert mentions[52].get_span() == "saag" assert is_tabular_aligned((mentions[51], mentions[52])) # not tabular_aligned assert mentions[58].get_span() == "vindaloo" assert not is_tabular_aligned((mentions[51], mentions[58])) def test_same_cell(mention_setup): """Test the same_cell function.""" mentions = mention_setup # Different cell assert mentions[51].get_span() == "Joan" assert mentions[52].get_span() == "saag" assert not same_cell((mentions[51], mentions[52])) # Same cell assert mentions[53].get_span() == "paneer" assert same_cell((mentions[52], mentions[53])) def test_same_sentence(mention_setup): """Test the same_sentence function.""" mentions = mention_setup # Same sentence assert mentions[0].get_span() == "Sample" assert mentions[1].get_span() == "Markdown" assert same_sentence((mentions[0], mentions[1])) # Different sentence assert mentions[2].get_span() == "This" assert not same_sentence((mentions[0], mentions[2])) def test_get_min_max_col_num(mention_setup): """Test the get_min_col_num and get_max_col_num function.""" mentions = mention_setup # Non tabular mention assert mentions[0].get_span() == "Sample" assert not get_max_col_num(mentions[0]) assert not get_min_col_num(mentions[0]) # Tabular mention assert mentions[51].get_span() == "Joan" assert get_min_col_num(mentions[51]) == 0 # TODO: it'd be better to use the mention that spans multiple cols assert get_max_col_num(mentions[51]) == 0 def test_get_min_max_row_num(mention_setup): """Test the get_min_row_num and get_max_row_num function.""" mentions = mention_setup # Non tabular mention assert mentions[0].get_span() == "Sample" assert not get_max_row_num(mentions[0]) assert not get_min_row_num(mentions[0]) # Tabular mention assert mentions[51].get_span() == "Joan" assert get_min_row_num(mentions[51]) == 1 assert get_max_row_num(mentions[51]) == 1 def test_get_sentence_ngrams(mention_setup): """Test the get_sentence_ngrams function.""" mentions = mention_setup assert mentions[5].get_span() == "basic" assert list(get_sentence_ngrams(mentions[5])) == [ "this", "is", "some", ",", "sample", "markdown", ".", ] def test_get_neighbor_sentence_ngrams(mention_setup): """Test the get_neighbor_sentence_ngrams function.""" mentions = mention_setup assert mentions[5].get_span() == "basic" assert list(get_neighbor_sentence_ngrams(mentions[5])) == ["sample", "markdown"] + [ "second", "heading", ] def test_get_cell_ngrams(mention_setup): """Test the get_cell_ngrams function.""" mentions = mention_setup assert mentions[52].get_span() == "saag" assert list(get_cell_ngrams(mentions[52])) == ["paneer"] # TODO: test get_cell_ngrams when there are other sentences in the cell. # when a mention is not tabular assert mentions[0].get_span() == "Sample" assert list(get_cell_ngrams(mentions[0])) == [] def test_get_neighbor_cell_ngrams(mention_setup): """Test the get_neighbor_cell_ngrams function.""" mentions = mention_setup assert mentions[52].get_span() == "saag" # No directions assert list(get_neighbor_cell_ngrams(mentions[52])) == ["paneer"] + ["joan"] + [ "medium" ] + ["lunch", "order"] + ["vindaloo"] # directions=True assert list(get_neighbor_cell_ngrams(mentions[52], directions=True)) == [ "paneer", ("joan", "LEFT"), ("medium", "RIGHT"), ("lunch", "UP"), ("order", "UP"), ("vindaloo", "DOWN"), ] # when a mention is not tabular assert mentions[0].get_span() == "Sample" assert list(get_neighbor_cell_ngrams(mentions[0])) == [] def test_get_row_ngrams(mention_setup): """Test the get_row_ngrams function.""" mentions = mention_setup assert mentions[52].get_span() == "saag" assert list(get_row_ngrams(mentions[52])) == ["paneer"] + ["joan"] + ["medium"] + [ "$", "11", ] # when a mention is not tabular assert mentions[0].get_span() == "Sample" assert list(get_row_ngrams(mentions[0])) == [] def test_get_col_ngrams(mention_setup): """Test the get_col_ngrams function.""" mentions = mention_setup assert mentions[52].get_span() == "saag" assert list(get_col_ngrams(mentions[52])) == ["paneer"] + ["lunch", "order"] + [ "vindaloo" ] + ["lamb", "madras"] # when a mention is not tabular assert mentions[0].get_span() == "Sample" assert list(get_col_ngrams(mentions[0])) == [] def test_get_aligned_ngrams(mention_setup): """Test the get_aligned_ngrams function.""" mentions = mention_setup assert mentions[52].get_span() == "saag" # TODO: ["paneer"] appears twice. Is this expected result? assert list(get_aligned_ngrams(mentions[52])) == ["paneer"] + ["joan"] + [ "medium" ] + ["$", "11"] + ["paneer"] + ["lunch", "order"] + ["vindaloo"] + [ "lamb", "madras", ] # when a mention is not tabular assert mentions[0].get_span() == "Sample" assert list(get_aligned_ngrams(mentions[0])) == [] def test_get_head_ngrams(mention_setup): """Test the get_head_ngrams function.""" mentions = mention_setup assert mentions[52].get_span() == "saag" assert list(get_head_ngrams(mentions[52])) == ["joan"] + ["lunch", "order"] # when a mention is in the 1st column assert mentions[51].get_span() == "Joan" assert list(get_head_ngrams(mentions[51])) == [] # when a mention is in the header row assert mentions[46].get_span() == "Name" assert list(get_head_ngrams(mentions[46])) == [] # when a mention is not tabular assert mentions[0].get_span() == "Sample" assert list(get_head_ngrams(mentions[0])) == []
fonduer-master
tests/utils/data_model_utils/test_tabular.py
"""Fonduer data model's structural utils unit tests.""" import pytest from fonduer.candidates.mentions import MentionNgrams from fonduer.parser.models import Document from fonduer.parser.parser import ParserUDF from fonduer.utils.data_model_utils import common_ancestor, lowest_common_ancestor_depth def get_parser_udf( structural=True, # structural information blacklist=["style", "script"], # ignore tag types, default: style, script flatten=["span", "br"], # flatten tag types, default: span, br language="en", lingual=True, # lingual information lingual_parser=None, strip=True, replacements=[("[\u2010\u2011\u2012\u2013\u2014\u2212]", "-")], tabular=True, # tabular information visual=False, # visual information visual_parser=None, pdf_path=None, ): """Return an instance of ParserUDF.""" parser_udf = ParserUDF( structural=structural, blacklist=blacklist, flatten=flatten, lingual=lingual, lingual_parser=lingual_parser, strip=strip, replacements=replacements, tabular=tabular, visual=visual, visual_parser=visual_parser, pdf_path=pdf_path, language=language, ) return parser_udf @pytest.fixture() def doc_setup(): """Set up a document.""" parser_udf = get_parser_udf() doc = Document(id=1, name="test", stable_id="1::document:0:0") doc.text = """<html> <body> <h1>test1</h1> <h2>test2</h2> <div> <h3>test3</h3> <table> <tr> <td>test4</td> <td>test5</td> </tr> </table> <table> <tr> <td>test6</td> <td>test7</td> </tr> </table> </div> <p>test8 test9</p> </body> </html>""" doc = parser_udf.apply(doc) return doc @pytest.mark.parametrize( "mention_ids, output_common_ancestor, output_lcad", [ ([], ["", "html", "body"], 1), ([0, 1], ["", "html", "body"], 1), ([2, 3], ["", "html", "body", "div"], 1), ([3, 4], ["", "html", "body", "div", "table[1]", "tr"], 1), ([4, 5], ["", "html", "body", "div"], 3), ([5, 6], ["", "html", "body", "div", "table[2]", "tr"], 1), ([3, 5], ["", "html", "body", "div"], 3), ([7, 8], ["", "html", "body", "p"], 0), ], ) def test_ancestors(doc_setup, mention_ids, output_common_ancestor, output_lcad): """Test if get_vert_ngrams works.""" doc = doc_setup # Create 1-gram span mentions space = MentionNgrams(n_min=1, n_max=1) mentions = [tc for tc in space.apply(doc)] assert len(mentions) == len([word for sent in doc.sentences for word in sent.words]) # Test mentions extraction assert mentions[0].sentence.text == "test1" assert mentions[1].sentence.text == "test2" assert mentions[2].sentence.text == "test3" assert mentions[3].sentence.text == "test4" assert mentions[4].sentence.text == "test5" assert mentions[5].sentence.text == "test6" assert mentions[6].sentence.text == "test7" assert mentions[7].sentence.text == "test8 test9" assert mentions[7].get_span() == "test8" assert mentions[8].get_span() == "test9" test_mentions = ( [mentions[i] for i in mention_ids] if len(mention_ids) > 0 else mentions ) # Test commont ancestor calculation overall_common_ancestor = common_ancestor(test_mentions) assert overall_common_ancestor == output_common_ancestor # Test lowest commont ancestor depth calculation overall_lowest_common_ancestor_depth = lowest_common_ancestor_depth(test_mentions) assert overall_lowest_common_ancestor_depth == output_lcad
fonduer-master
tests/utils/data_model_utils/test_structural.py
"""Hardware labeling functions.""" import re from itertools import chain from fonduer.utils.data_model_utils import ( get_aligned_ngrams, get_left_ngrams, get_row_ngrams, overlap, ) from tests.shared.hardware_utils import ABSTAIN, FALSE, TRUE def LF_storage_row(c): """Return True if temp mention's row ngrams contain ``storage''.""" return TRUE if "storage" in get_row_ngrams(c.temp) else ABSTAIN def LF_temperature_row(c): """Return True if temp mention's row ngrams contain ``temperature''.""" return TRUE if "temperature" in get_row_ngrams(c.temp) else ABSTAIN def LF_operating_row(c): """Return True if temp mention's row ngrams contain ``operating''.""" return TRUE if "operating" in get_row_ngrams(c.temp) else ABSTAIN def LF_tstg_row(c): """Return True if temp mention's row ngrams overlap with the following keywords.""" return ( TRUE if overlap(["tstg", "stg", "ts"], list(get_row_ngrams(c.temp))) else ABSTAIN ) def LF_to_left(c): """Return True if temp mention's left ngrams contain ``to''.""" return TRUE if "to" in get_left_ngrams(c.temp, window=2) else ABSTAIN def LF_negative_number_left(c): """Return True if temp mention's left ngrams contain negative number.""" return ( TRUE if any( [re.match(r"-\s*\d+", ngram) for ngram in get_left_ngrams(c.temp, window=4)] ) else ABSTAIN ) def LF_test_condition_aligned(c): """Return False if temp mention's ngrams align with ``test'' or ``condition''.""" return ( FALSE if overlap(["test", "condition"], list(get_aligned_ngrams(c.temp))) else ABSTAIN ) def LF_collector_aligned(c): """Return False if temp mention's ngrams align with the following keywords.""" return ( FALSE if overlap( ["collector", "collector-current", "collector-base", "collector-emitter"], list(get_aligned_ngrams(c.temp)), ) else ABSTAIN ) def LF_current_aligned(c): """Return False if temp mention's ngrams align with the following keywords.""" return ( FALSE if overlap(["current", "dc", "ic"], list(get_aligned_ngrams(c.temp))) else ABSTAIN ) def LF_voltage_row_temp(c): """Return False if temp mention's ngrams align with the following keywords.""" return ( FALSE if overlap( ["voltage", "cbo", "ceo", "ebo", "v"], list(get_aligned_ngrams(c.temp)) ) else ABSTAIN ) def LF_voltage_row_part(c): """Return False if temp mention's ngrams align with the following keywords.""" return ( FALSE if overlap( ["voltage", "cbo", "ceo", "ebo", "v"], list(get_aligned_ngrams(c.temp)) ) else ABSTAIN ) def LF_typ_row(c): """Return False if temp mention's ngrams align with the following keywords.""" return FALSE if overlap(["typ", "typ."], list(get_row_ngrams(c.temp))) else ABSTAIN def LF_complement_left_row(c): """Return False if temp mention's ngrams align with the following keywords.""" return ( FALSE if ( overlap( ["complement", "complementary"], chain.from_iterable( [get_row_ngrams(c.part), get_left_ngrams(c.part, window=10)] ), ) ) else ABSTAIN ) def LF_too_many_numbers_row(c): """Return False if too many numbers in the row.""" num_numbers = list(get_row_ngrams(c.temp, attrib="ner_tags")).count("number") return FALSE if num_numbers >= 3 else ABSTAIN def LF_temp_on_high_page_num(c): """Return False if temp mention on high page number.""" return FALSE if c.temp.context.get_attrib_tokens("page")[0] > 2 else ABSTAIN def LF_temp_outside_table(c): """Return False if temp mention is outside of the table.""" return FALSE if not c.temp.context.sentence.is_tabular() is None else ABSTAIN def LF_not_temp_relevant(c): """Return False if temp mention's ngrams overlap with the following keywords.""" return ( FALSE if not overlap( ["storage", "temperature", "tstg", "stg", "ts"], list(get_aligned_ngrams(c.temp)), ) else ABSTAIN ) # Voltage LFS def LF_bad_keywords_in_row(c): """Return False if volt mention's ngrams overlap with the following keywords.""" return ( FALSE if overlap( ["continuous", "cut-off", "gain", "breakdown"], get_row_ngrams(c.volt) ) else ABSTAIN ) def LF_current_in_row(c): """Return False if volt mention's ngrams overlap with the following keywords.""" return FALSE if overlap(["i", "ic", "mA"], get_row_ngrams(c.volt)) else ABSTAIN non_ce_voltage_keywords = set( [ "collector-base", "collector - base", "collector base", "vcbo", "cbo", "vces", "emitter-base", "emitter - base", "emitter base", "vebo", "ebo", "breakdown voltage", "emitter breakdown", "emitter breakdown voltage", "current", ] ) def LF_non_ce_voltages_in_row(c): """Return False if volt mention's ngrams overlap with non_ce_voltage_keywords.""" return ( FALSE if overlap(non_ce_voltage_keywords, get_row_ngrams(c.volt, n_max=3)) else ABSTAIN )
fonduer-master
tests/shared/hardware_lfs.py
"""Hardware FonduerModel.""" import pickle import numpy as np from emmental.data import EmmentalDataLoader from pandas import DataFrame from fonduer.learning.dataset import FonduerDataset from fonduer.packaging import FonduerModel from fonduer.parser.models import Document from tests.shared.hardware_lfs import TRUE from tests.shared.hardware_utils import get_implied_parts ATTRIBUTE = "stg_temp_max" class HardwareFonduerModel(FonduerModel): """Customized FonduerModel for hardware.""" def _classify(self, doc: Document) -> DataFrame: # Only one candidate class is used. candidate_class = self.candidate_extractor.candidate_classes[0] test_cands = getattr(doc, candidate_class.__tablename__ + "s") features_list = self.featurizer.apply(doc) # Convert features into a sparse matrix F_test = FonduerModel.convert_features_to_matrix( features_list[0], self.key_names ) test_dataloader = EmmentalDataLoader( task_to_label_dict={ATTRIBUTE: "labels"}, dataset=FonduerDataset(ATTRIBUTE, test_cands, F_test, self.word2id, 2), split="test", batch_size=100, shuffle=False, ) test_preds = self.emmental_model.predict(test_dataloader, return_preds=True) positive = np.where(np.array(test_preds["probs"][ATTRIBUTE])[:, TRUE] > 0.7) true_preds = [test_cands[_] for _ in positive[0]] pickle_file = "tests/data/parts_by_doc_dict.pkl" with open(pickle_file, "rb") as f: parts_by_doc = pickle.load(f) df = DataFrame() for c in true_preds: part = c[0].context.get_span() doc = c[0].context.sentence.document.name.upper() val = c[1].context.get_span() for p in get_implied_parts(part, doc, parts_by_doc): entity_relation = (doc, p, val) df = df.append( DataFrame([entity_relation], columns=["doc", "part", "val"]) ) return df
fonduer-master
tests/shared/hardware_fonduer_model.py
"""Fonduer shared modules for unit tests."""
fonduer-master
tests/shared/__init__.py
"""Hardware throttlers.""" import re from fonduer.utils.data_model_utils import ( get_horz_ngrams, get_vert_ngrams, is_horz_aligned, is_vert_aligned, same_table, ) from tests.shared.hardware_spaces import expand_part_range def temp_throttler(c): """Temperature throttler.""" (part, attr) = c if same_table((part, attr)): return is_horz_aligned((part, attr)) or is_vert_aligned((part, attr)) return True def filter_non_parts(c): """Filter non parts.""" ret = set() for _ in c: for __ in expand_part_range(_): if re.match("^([0-9]+[A-Z]+|[A-Z]+[0-9]+)[0-9A-Z]*$", __) and len(__) > 2: ret.add(__) return ret def LF_part_miss_match(c): """Return 0 if part mismatch.""" ngrams_part = set(list(get_vert_ngrams(c[1], n_max=1))) ngrams_part = filter_non_parts( ngrams_part.union(set(list(get_horz_ngrams(c[1], n_max=1)))) ) return ( 0 if len(ngrams_part) == 0 or any([c[0].get_span().lower().startswith(_.lower()) for _ in ngrams_part]) else -1 ) def volt_throttler(c): """Voltage throttler.""" (part, attr) = c if same_table((part, attr)): return is_horz_aligned((part, attr)) or is_vert_aligned((part, attr)) if LF_part_miss_match((part, attr)) < 0: return False return True
fonduer-master
tests/shared/hardware_throttlers.py
"""Hardware mention/candidate subclasses.""" from fonduer.candidates.models import candidate_subclass, mention_subclass Part = mention_subclass("Part") Temp = mention_subclass("Temp") Volt = mention_subclass("Volt") PartTemp = candidate_subclass("PartTemp", [Part, Temp]) PartVolt = candidate_subclass("PartVolt", [Part, Volt])
fonduer-master
tests/shared/hardware_subclasses.py
"""Hardware matchers.""" import csv from fonduer.candidates.matchers import ( DictionaryMatch, Intersect, LambdaFunctionMatcher, RegexMatchSpan, Union, ) from fonduer.utils.data_model_utils import get_row_ngrams, overlap temp_matcher = RegexMatchSpan(rgx=r"(?:[1][5-9]|20)[05]", longest_match_only=False) # Transistor Naming Conventions as Regular Expressions ### eeca_rgx = ( r"([ABC][A-Z][WXYZ]?[0-9]{3,5}(?:[A-Z]){0,5}" r"[0-9]?[A-Z]?(?:-[A-Z0-9]{1,7})?(?:[-][A-Z0-9]{1,2})?(?:\/DG)?)" ) jedec_rgx = r"(2N\d{3,4}[A-Z]{0,5}[0-9]?[A-Z]?)" jis_rgx = r"(2S[ABCDEFGHJKMQRSTVZ]{1}[\d]{2,4})" others_rgx = ( r"((?:NSVBC|SMBT|MJ|MJE|MPS|MRF|RCA|TIP|ZTX|ZT|ZXT|TIS|" r"TIPL|DTC|MMBT|SMMBT|PZT|FZT|STD|BUV|PBSS|KSC|CXT|FCX|CMPT){1}" r"[\d]{2,4}[A-Z]{0,5}(?:-[A-Z0-9]{0,6})?(?:[-][A-Z0-9]{0,1})?)" ) part_rgx = "|".join([eeca_rgx, jedec_rgx, jis_rgx, others_rgx]) part_rgx_matcher = RegexMatchSpan(rgx=part_rgx, longest_match_only=True) def get_digikey_parts_set(path): """Get all transistor parts from digikey part dictionary.""" all_parts = set() with open(path, "r") as csvinput: reader = csv.reader(csvinput) for line in reader: (part, url) = line all_parts.add(part) return all_parts # Dictionary of known transistor parts ### dict_path = "tests/data/digikey_part_dictionary.csv" part_dict_matcher = DictionaryMatch(d=get_digikey_parts_set(dict_path)) def common_prefix_length_diff(str1, str2): """Calculate common prefix length difference.""" for i in range(min(len(str1), len(str2))): if str1[i] != str2[i]: return min(len(str1), len(str2)) - i return 0 def part_file_name_conditions(attr): """Check part file name conditions.""" file_name = attr.sentence.document.name if len(file_name.split("_")) != 2: return False if attr.get_span()[0] == "-": return False name = attr.get_span().replace("-", "") return ( any(char.isdigit() for char in name) and any(char.isalpha() for char in name) and common_prefix_length_diff(file_name.split("_")[1], name) <= 2 ) add_rgx = r"^[A-Z0-9\-]{5,15}$" part_file_name_lambda_matcher = LambdaFunctionMatcher(func=part_file_name_conditions) part_file_name_matcher = Intersect( RegexMatchSpan(rgx=add_rgx, longest_match_only=True), part_file_name_lambda_matcher ) part_matcher = Union(part_rgx_matcher, part_dict_matcher, part_file_name_matcher) # CE Voltage Matcher ce_keywords = set(["collector emitter", "collector-emitter", "collector - emitter"]) ce_abbrevs = set(["ceo", "vceo"]) ce_v_max_rgx_matcher = RegexMatchSpan(rgx=r"\d{1,2}[05]", longest_match_only=False) def ce_v_max_conditions(attr): """Check ce_v_max conditions.""" return overlap( ce_keywords.union(ce_abbrevs), get_row_ngrams(attr, spread=[0, 3], n_max=3) ) ce_v_max_row_matcher = LambdaFunctionMatcher(func=ce_v_max_conditions) def ce_v_max_more_conditions1(attr): """Check ce_v_max conditions.""" text = attr.sentence.text if ( attr.char_start > 1 and text[attr.char_start - 1] == "-" and text[attr.char_start - 2] not in [" ", "="] ): return False return True def ce_v_max_more_conditions(attr): """Check ce_v_max conditions.""" text = attr.sentence.text if attr.char_start != 0 and text[attr.char_start - 1] == "/": return False if ( attr.char_start > 1 and text[attr.char_start - 1] == "-" and text[attr.char_start - 2] not in [" ", "="] ): return False if "vcb" in attr.sentence.text.lower(): return False for i in range(attr.char_end + 1, len(text)): if text[i] == " ": continue if text[i].isdigit(): break if text[i].upper() != "V": return False else: break return True def attr_in_table(attr): """Check attribute is in table.""" return attr.sentence.is_tabular() attr_in_table_matcher = LambdaFunctionMatcher(func=attr_in_table) ce_v_whole_number = LambdaFunctionMatcher(func=ce_v_max_more_conditions) volt_matcher = Intersect( ce_v_max_rgx_matcher, attr_in_table_matcher, ce_v_max_row_matcher, ce_v_whole_number )
fonduer-master
tests/shared/hardware_matchers.py
"""Hardware mention spaces.""" import logging import re from builtins import chr, range, str from difflib import SequenceMatcher from fonduer.candidates import MentionNgrams from fonduer.candidates.models.implicit_span_mention import TemporaryImplicitSpanMention logger = logging.getLogger(__name__) def expand_part_range(text): """Expand transistor part range. Given a string, generates strings that are potentially implied by the original text. Two main operations are performed: 1. Expanding ranges (X to Y; X ~ Y; X -- Y) 2. Expanding suffixes (123X/Y/Z; 123X, Y, Z) Also yields the original input string. To get the correct output from complex strings, this function should be fed many Ngrams from a particular sentence. """ # Regex Patterns compile only once per function call. # This range pattern will find text that "looks like" a range. range_pattern = re.compile( r"^(?P<start>[\w\/]+)(?:\s*(\.{3,}|\~|\-+|to|thru|through" r"|\u2011+|\u2012+|\u2013+|\u2014+|\u2012+|\u2212+)\s*)(?P<end>[\w\/]+)$", re.IGNORECASE | re.UNICODE, ) suffix_pattern = re.compile(r"(?P<spacer>(?:,|\/)\s*)(?P<suffix>[\w\-]+)") base_pattern = re.compile( r"(?P<base>[\w\-]+)(?P<spacer>(?:,|\/)\s*)(?P<suffix>[\w\-]+)?" ) logger.debug("Text: " + text) expanded_parts = set() final_set = set() # Step 1: Search and expand ranges m = re.search(range_pattern, text) if m: start = m.group("start") end = m.group("end") start_diff = "" end_diff = "" logger.debug(f" Start: {start} \t End: {end}") # Use difflib to find difference. We are interested in 'replace' only seqm = SequenceMatcher(None, start, end).get_opcodes() for opcode, a0, a1, b0, b1 in seqm: if opcode == "equal": continue elif opcode == "insert": break elif opcode == "delete": break elif opcode == "replace": # NOTE: Potential bug if there is more than 1 replace start_diff = start[a0:a1] end_diff = end[b0:b1] else: logger.error("Unexpected opcode") raise RuntimeError("[ERROR] unexpected opcode") logger.debug(f" start_diff: {start_diff} \t end_diff: {end_diff}") # First, check for number range if atoi(start_diff) and atoi(end_diff): logger.debug(f" Enumerate {atoi(start_diff)} to {atoi(end_diff)}") # generate a list of the numbers plugged in for number in range(atoi(start_diff), atoi(end_diff) + 1): new_part = start.replace(start_diff, str(number)) # Produce the strings with the enumerated ranges expanded_parts.add(new_part) # Second, check for single-letter enumeration if len(start_diff) == 1 and len(end_diff) == 1: if start_diff.isalpha() and end_diff.isalpha(): logger.debug(f" Enumerate {start_diff} to {end_diff}") letter_range = char_range(start_diff, end_diff) for letter in letter_range: new_part = start.replace(start_diff, letter) # Produce the strings with the enumerated ranges expanded_parts.add(new_part) # If we cannot identify a clear number or letter range, or if there are # multiple ranges being expressed, just ignore it. if len(expanded_parts) == 0: expanded_parts.add(text) else: expanded_parts.add(text) # Special case is when there is a single slack (e.g. BC337-16/BC338-16) # and we want to output both halves of the slash, assuming that both # halves are the same length if text.count("/") == 1: split = text.split("/") if len(split[0]) == len(split[1]): expanded_parts.add(split[0]) expanded_parts.add(split[1]) logger.debug(" Inferred Text: \n " + str(sorted(expanded_parts))) # Step 2: Expand suffixes for each of the inferred sentences # NOTE: this only does the simple case of replacing same-length suffixes. # we do not handle cases like "BC546A/B/XYZ/QR" for part in expanded_parts: first_match = re.search(base_pattern, part) if first_match: base = re.search(base_pattern, part).group("base") final_set.add(base) # add the base (multiple times, but set handles that) if first_match.group("suffix"): all_suffix_lengths = set() # This is a bit inefficient but this first pass just is here # to make sure that the suffixes are the same length for m in re.finditer(suffix_pattern, part): suffix = m.group("suffix") suffix_len = len(suffix) all_suffix_lengths.add(suffix_len) if len(all_suffix_lengths) == 1: for m in re.finditer(suffix_pattern, part): suffix = m.group("suffix") suffix_len = len(suffix) old_suffix = base[-suffix_len:] if (suffix.isalpha() and old_suffix.isalpha()) or ( suffix.isdigit() and old_suffix.isdigit() ): trimmed = base[:-suffix_len] final_set.add(trimmed + suffix) else: if part and (not part.isspace()): final_set.add(part) # no base was found with suffixes to expand logger.debug(" Final Set: " + str(sorted(final_set))) # Also return the original input string final_set.add(text) for part in final_set: yield part # NOTE: We make a few assumptions (e.g. suffixes must be same length), but # one important unstated assumption is that if there is a single suffix, # (e.g. BC546A/B), the single suffix will be swapped in no matter what. # In this example, it works. But if we had "ABCD/EFG" we would get "ABCD,AEFG" # Check out UtilsTests.py to see more of our assumptions capture as test # cases. def atoi(num_str): """Convert a string to an integer, or returns None.""" try: return int(num_str) except Exception: pass return None def char_range(a, b): """Generate the characters from a to b inclusive.""" for c in range(ord(a), ord(b) + 1): yield chr(c) class MentionNgramsPart(MentionNgrams): """N-grams mention specifically for transistor parts.""" def __init__( self, parts_by_doc=None, n_max=3, expand=True, split_tokens=["-", "/"] ): """Initialize MentionNgramsPart. :param parts_by_doc: a dictionary d where d[document_name.upper()] = [partA, partB, ...] """ super().__init__(n_max=n_max, split_tokens=split_tokens) self.parts_by_doc = parts_by_doc self.expander = expand_part_range if expand else (lambda x: [x]) def apply(self, doc): """Apply function takes a Document and return a mention generator.""" for ts in MentionNgrams.apply(self, doc): enumerated_parts = [ part.upper() for part in expand_part_range(ts.get_span()) ] parts = set(enumerated_parts) if self.parts_by_doc: possible_parts = self.parts_by_doc[ts.parent.document.name.upper()] for base_part in enumerated_parts: for part in possible_parts: if part.startswith(base_part) and len(base_part) >= 4: parts.add(part) for i, part in enumerate(sorted(list(parts))): if " " in part: continue # it won't pass the part_matcher if part == ts.get_span(): yield ts else: yield TemporaryImplicitSpanMention( sentence=ts.sentence, char_start=ts.char_start, char_end=ts.char_end, expander_key="part_expander", position=i, text=part, words=[part], lemmas=[part], pos_tags=[ts.get_attrib_tokens("pos_tags")[0]], ner_tags=[ts.get_attrib_tokens("ner_tags")[0]], dep_parents=[ts.get_attrib_tokens("dep_parents")[0]], dep_labels=[ts.get_attrib_tokens("dep_labels")[0]], page=[min(ts.get_attrib_tokens("page"))] if ts.sentence.is_visual() else [None], top=[min(ts.get_attrib_tokens("top"))] if ts.sentence.is_visual() else [None], left=[max(ts.get_attrib_tokens("left"))] if ts.sentence.is_visual() else [None], bottom=[min(ts.get_attrib_tokens("bottom"))] if ts.sentence.is_visual() else [None], right=[max(ts.get_attrib_tokens("right"))] if ts.sentence.is_visual() else [None], meta=None, ) class MentionNgramsTemp(MentionNgrams): """N-grams mention specifically for temperature.""" def __init__(self, n_max=2, split_tokens=["-", "/"]): """Initialize MentionNgramsTemp.""" super().__init__(n_max=n_max, split_tokens=split_tokens) def apply(self, doc): """Apply function takes a Document and return a mention generator.""" for ts in MentionNgrams.apply(self, doc): m = re.match( r"^([\+\-\u2010\u2011\u2012\u2013\u2014\u2212\uf02d])?(\s*)(\d+)$", ts.get_span(), re.U, ) if m: if m.group(1) is None: temp = "" elif m.group(1) == "+": if m.group(2) != "": # If bigram '+ 150' is seen, accept the unigram '150', # not both continue temp = "" else: # m.group(1) is a type of negative sign # A bigram '- 150' is different from unigram '150', so we # keep the implicit '-150' temp = "-" temp += m.group(3) yield TemporaryImplicitSpanMention( sentence=ts.sentence, char_start=ts.char_start, char_end=ts.char_end, expander_key="temp_expander", position=0, text=temp, words=[temp], lemmas=[temp], pos_tags=[ts.get_attrib_tokens("pos_tags")[-1]], ner_tags=[ts.get_attrib_tokens("ner_tags")[-1]], dep_parents=[ts.get_attrib_tokens("dep_parents")[-1]], dep_labels=[ts.get_attrib_tokens("dep_labels")[-1]], page=[ts.get_attrib_tokens("page")[-1]] if ts.sentence.is_visual() else [None], top=[ts.get_attrib_tokens("top")[-1]] if ts.sentence.is_visual() else [None], left=[ts.get_attrib_tokens("left")[-1]] if ts.sentence.is_visual() else [None], bottom=[ts.get_attrib_tokens("bottom")[-1]] if ts.sentence.is_visual() else [None], right=[ts.get_attrib_tokens("right")[-1]] if ts.sentence.is_visual() else [None], meta=None, ) else: yield ts class MentionNgramsVolt(MentionNgrams): """N-grams mention specifically for voltage.""" def __init__(self, n_max=1, split_tokens=["-", "/"]): """Initialize MentionNgramsVolt.""" super().__init__(n_max=n_max, split_tokens=split_tokens) def apply(self, doc): """Apply function takes a Document and return a mention generator.""" for ts in MentionNgrams.apply(self, doc): if ts.get_span().endswith(".0"): value = ts.get_span()[:-2] yield TemporaryImplicitSpanMention( sentence=ts.sentence, char_start=ts.char_start, char_end=ts.char_end, expander_key="volt_expander", position=0, text=value, words=[value], lemmas=[value], pos_tags=[ts.get_attrib_tokens("pos_tags")[-1]], ner_tags=[ts.get_attrib_tokens("ner_tags")[-1]], dep_parents=[ts.get_attrib_tokens("dep_parents")[-1]], dep_labels=[ts.get_attrib_tokens("dep_labels")[-1]], page=[ts.get_attrib_tokens("page")[-1]] if ts.sentence.is_visual() else [None], top=[ts.get_attrib_tokens("top")[-1]] if ts.sentence.is_visual() else [None], left=[ts.get_attrib_tokens("left")[-1]] if ts.sentence.is_visual() else [None], bottom=[ts.get_attrib_tokens("bottom")[-1]] if ts.sentence.is_visual() else [None], right=[ts.get_attrib_tokens("right")[-1]] if ts.sentence.is_visual() else [None], meta=None, ) else: yield ts
fonduer-master
tests/shared/hardware_spaces.py
"""Hardware utils.""" import codecs import csv import logging from builtins import range from fonduer.candidates.models import Candidate from fonduer.learning.utils import confusion_matrix try: from IPython import get_ipython if "IPKernelApp" not in get_ipython().config: raise ImportError("console") except (AttributeError, ImportError): from tqdm import tqdm else: from tqdm import tqdm_notebook as tqdm logger = logging.getLogger(__name__) ABSTAIN = -1 FALSE = 0 TRUE = 1 def get_gold_dict( filename, doc_on=True, part_on=True, val_on=True, attribute=None, docs=None ): """Get gold dict.""" with codecs.open(filename, encoding="utf-8") as csvfile: gold_reader = csv.reader(csvfile) gold_dict = set() for row in gold_reader: (doc, part, attr, val) = row if docs is None or doc.upper() in docs: if attribute and attr != attribute: continue if val == TRUE: continue else: key = [] if doc_on: key.append(doc.upper()) if part_on: key.append(part.upper()) if val_on: key.append(val.upper()) gold_dict.add(tuple(key)) return gold_dict gold_dict = get_gold_dict( "tests/data/hardware_tutorial_gold.csv", attribute="stg_temp_max" ) def gold(c: Candidate) -> int: """Check if candidate is in gold dict.""" doc = (c[0].context.sentence.document.name).upper() part = (c[0].context.get_span()).upper() val = ("".join(c[1].context.get_span().split())).upper() if (doc, part, val) in gold_dict: return TRUE else: return FALSE def entity_level_f1( candidates, gold_file, attribute=None, corpus=None, parts_by_doc=None ): """Check entity-level recall of candidates compared to gold. Turns a CandidateSet into a normal set of entity-level tuples (doc, part, [attribute_value]) then compares this to the entity-level tuples found in the gold. Example Usage: from hardware_utils import entity_level_total_recall candidates = # CandidateSet of all candidates you want to consider gold_file = 'tutorials/tables/data/hardware/hardware_gold.csv' entity_level_total_recall(candidates, gold_file, 'stg_temp_min') """ docs = [(doc.name).upper() for doc in corpus] if corpus else None val_on = attribute is not None gold_set = get_gold_dict( gold_file, docs=docs, doc_on=True, part_on=True, val_on=val_on, attribute=attribute, ) if len(gold_set) == 0: logger.info(f"Gold File: {gold_file}\n Attribute: {attribute}") logger.error("Gold set is empty.") return # Turn CandidateSet into set of tuples logger.info("Preparing candidates...") entities = set() for i, c in enumerate(tqdm(candidates)): part = c[0].context.get_span() doc = c[0].context.sentence.document.name.upper() if attribute: val = c[1].context.get_span() for p in get_implied_parts(part, doc, parts_by_doc): if attribute: entities.add((doc, p, val)) else: entities.add((doc, p)) (TP_set, FP_set, FN_set) = confusion_matrix(entities, gold_set) TP = len(TP_set) FP = len(FP_set) FN = len(FN_set) prec = TP / (TP + FP) if TP + FP > 0 else float("nan") rec = TP / (TP + FN) if TP + FN > 0 else float("nan") f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan") logger.info("========================================") logger.info("Scoring on Entity-Level Gold Data") logger.info("========================================") logger.info(f"Corpus Precision {prec:.3}") logger.info(f"Corpus Recall {rec:.3}") logger.info(f"Corpus F1 {f1:.3}") logger.info("----------------------------------------") logger.info(f"TP: {TP} | FP: {FP} | FN: {FN}") logger.info("========================================\n") return [sorted(list(x)) for x in [TP_set, FP_set, FN_set]] def get_implied_parts(part, doc, parts_by_doc): """Get implied parts.""" yield part if parts_by_doc: for p in parts_by_doc[doc]: if p.startswith(part) and len(part) >= 4: yield p def entity_to_candidates(entity, candidate_subset): """Get corresponding candidates from entity.""" matches = [] for c in candidate_subset: c_entity = tuple( [c[0].context.sentence.document.name.upper()] + [c[i].context.get_span().upper() for i in range(len(c))] ) c_entity = tuple([str(x) for x in c_entity]) if c_entity == entity: matches.append(c) return matches
fonduer-master
tests/shared/hardware_utils.py
"""Fonduer parser unit tests.""" import logging import os from typing import List import pytest from sqlalchemy.orm import Session from fonduer.parser import Parser from fonduer.parser.lingual_parser import SpacyParser from fonduer.parser.models import Document from fonduer.parser.parser import ParserUDF, SimpleParser from fonduer.parser.preprocessors import ( CSVDocPreprocessor, HOCRDocPreprocessor, HTMLDocPreprocessor, TextDocPreprocessor, TSVDocPreprocessor, ) from fonduer.parser.visual_parser import HocrVisualParser, PdfVisualParser def get_parser_udf( structural=True, # structural information blacklist=["style", "script"], # ignore tag types, default: style, script flatten=["span", "br"], # flatten tag types, default: span, br language="en", lingual=True, # lingual information lingual_parser=None, strip=True, replacements=[("[\u2010\u2011\u2012\u2013\u2014\u2212]", "-")], tabular=True, # tabular information visual=False, # visual information visual_parser=None, ): """Return an instance of ParserUDF.""" parser_udf = ParserUDF( structural=structural, blacklist=blacklist, flatten=flatten, lingual=lingual, lingual_parser=lingual_parser, strip=strip, replacements=replacements, tabular=tabular, visual=visual, visual_parser=visual_parser, language=language, ) return parser_udf def parse(session: Session, docs_path: str, pdf_path: str) -> List[Document]: """Parse documents using Parser UDF Runner.""" # Preprocessor for the Docs doc_preprocessor = HTMLDocPreprocessor(docs_path) # Create an Parser and parse the documents corpus_parser = Parser( session, parallelism=1, structural=True, lingual=True, visual_parser=PdfVisualParser(pdf_path), ) corpus_parser.clear() corpus_parser.apply(doc_preprocessor) return corpus_parser.get_documents() def test_parse_md_details(): """Test the parser with the md document.""" logger = logging.getLogger(__name__) docs_path = "tests/data/html_simple/md.html" pdf_path = "tests/data/pdf_simple/" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "md")) # Check that doc has a name assert doc.name == "md" # Check that doc does not have any of these assert len(doc.figures) == 0 assert len(doc.tables) == 0 assert len(doc.cells) == 0 assert len(doc.sentences) == 0 # Create an Parser and parse the md document parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=True, visual_parser=PdfVisualParser(pdf_path), language="en", ) doc = parser_udf.apply(doc) # Check that doc has a figure assert len(doc.figures) == 1 assert doc.figures[0].url == "http://placebear.com/200/200" assert doc.figures[0].position == 0 assert doc.figures[0].section.position == 0 assert doc.figures[0].stable_id == "md::figure:0" # Check that doc has a table assert len(doc.tables) == 1 assert doc.tables[0].position == 0 assert doc.tables[0].section.position == 0 assert doc.tables[0].document.name == "md" # Check that doc has cells assert len(doc.cells) == 16 cells = list(doc.cells) assert cells[0].row_start == 0 assert cells[0].col_start == 0 assert cells[0].position == 0 assert cells[0].document.name == "md" assert cells[0].table.position == 0 assert cells[10].row_start == 2 assert cells[10].col_start == 2 assert cells[10].position == 10 assert cells[10].document.name == "md" assert cells[10].table.position == 0 # Check that doc has sentences assert len(doc.sentences) == 45 sent = sorted(doc.sentences, key=lambda x: x.position)[25] assert sent.text == "Spicy" assert sent.table.position == 0 assert sent.table.section.position == 0 assert sent.cell.row_start == 0 assert sent.cell.col_start == 2 # Check if the tail text is processed after inner elements (#333) assert [sent.text for sent in doc.sentences[14:18]] == [ "italics and later", "bold", ".", "Even", ] # Check abs_char_offsets (#332) text = "".join([sent.text for sent in doc.sentences]) for sent in doc.sentences: for abs_char_offset, word in zip(sent.abs_char_offsets, sent.words): assert text[abs_char_offset] == word[0] logger.info(f"Doc: {doc}") for i, sentence in enumerate(doc.sentences): logger.info(f" Sentence[{i}]: {sentence.text}") header = sorted(doc.sentences, key=lambda x: x.position)[0] # Test structural attributes assert header.xpath == "/html/body/h1" assert header.html_tag == "h1" assert header.html_attrs == ["id=sample-markdown"] # Test visual attributes assert header.page == [1, 1] assert header.top == [35, 35] assert header.bottom == [61, 61] assert header.right == [111, 231] assert header.left == [35, 117] # Test lingual attributes # when lingual=True, some value other than "" should be filled-in. assert all(sent.ner_tags) assert all(sent.dep_labels) # Test whether nlp information corresponds to sentence words for sent in doc.sentences: assert len(sent.words) == len(sent.lemmas) assert len(sent.words) == len(sent.pos_tags) assert len(sent.words) == len(sent.ner_tags) assert len(sent.words) == len(sent.dep_parents) assert len(sent.words) == len(sent.dep_labels) def test_parse_wo_tabular(): """Test the parser without extracting tabular information.""" docs_path = "tests/data/html_simple/md.html" pdf_path = "tests/data/pdf_simple/" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "md")) # Create an Parser and parse the md document parser_udf = get_parser_udf( structural=True, tabular=False, lingual=True, visual=True, visual_parser=PdfVisualParser(pdf_path), language="en", ) doc = parser_udf.apply(doc) # Check that doc has neither table nor cell assert len(doc.sections) == 1 assert len(doc.paragraphs) == 44 assert len(doc.figures) == 1 assert len(doc.tables) == 0 assert len(doc.cells) == 0 assert len(doc.sentences) == 45 # Check that sentences are associated with both section and paragraph. assert all([sent.section is not None for sent in doc.sentences]) assert all([sent.paragraph is not None for sent in doc.sentences]) # Check that sentences are NOT associated with cell assert all([sent.cell is None for sent in doc.sentences]) @pytest.mark.skipif( "CI" not in os.environ, reason="Only run spacy non English test on GitHub Actions" ) def test_spacy_german(): """Test the parser with the md document.""" docs_path = "tests/data/pure_html/brot.html" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "md")) # Create an Parser and parse the md document parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=False, language="de" ) doc = parser_udf.apply(doc) # Check that doc has sentences assert len(doc.sentences) == 824 sent = sorted(doc.sentences, key=lambda x: x.position)[143] assert sent.ner_tags == [ "O", "O", "LOC", "O", "O", "LOC", "O", "O", "O", "O", "O", "O", "O", "O", "O", ] # inaccurate assert sent.dep_labels == [ "mo", "ROOT", "sb", "mo", "nk", "nk", "punct", "mo", "nk", "nk", "nk", "sb", "oc", "rc", "punct", ] @pytest.mark.skipif( "CI" not in os.environ, reason="Only run spacy non English test on GitHub Actions" ) def test_spacy_japanese(): """Test the parser with the md document.""" # Test Japanese alpha tokenization docs_path = "tests/data/pure_html/japan.html" preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "md")) parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=False, language="ja" ) doc = parser_udf.apply(doc) assert len(doc.sentences) == 308 sent = doc.sentences[45] assert sent.text == "当時マルコ・ポーロが辿り着いたと言われる" assert sent.words == [ "当時", "マルコ", "・", "ポーロ", "が", "辿り", "着い", "た", "と", "言わ", "れる", ] assert sent.lemmas == [ "当時", "マルコ", "・", "ポーロ", "が", "辿る", "着く", "た", "と", "言う", "れる", ] # These tags are less stable (ie they change when a spacy model changes) # So just check that values other than "" are assigned. assert all(sent.pos_tags) assert all(sent.ner_tags) assert all(sent.dep_labels) @pytest.mark.skipif( "CI" not in os.environ, reason="Only run spacy non English test on GitHub Actions" ) def test_spacy_chinese(): """Test the parser with the md document.""" # Test Chinese alpha tokenization docs_path = "tests/data/pure_html/chinese.html" preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "md")) parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=False, language="zh" ) doc = parser_udf.apply(doc) assert len(doc.sentences) == 8 sent = doc.sentences[1] assert sent.text == "我们和他对比谁更厉害!" assert sent.words == ["我们", "和", "他", "对比", "谁", "更", "厉害", "!"] # These tags are less stable (ie they change when a spacy model changes) # So just check that values other than "" are assigned. assert all(sent.ner_tags) assert all(sent.dep_labels) def test_warning_on_missing_pdf(): """Test that a warning is issued on invalid pdf.""" docs_path = "tests/data/html_simple/table_span.html" pdf_path = "tests/data/pdf_simple/" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(iter(preprocessor)) # Create an Parser and parse the md document parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=True, visual_parser=PdfVisualParser(pdf_path), ) with pytest.warns(RuntimeWarning) as record: doc = parser_udf.apply(doc) assert isinstance(record, type(pytest.warns(RuntimeWarning))) def test_warning_on_incorrect_filename(): """Test that a warning is issued on invalid pdf.""" docs_path = "tests/data/html_simple/md_para.html" pdf_path = "tests/data/html_simple/" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "md_para")) # Create an Parser and parse the md document parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=True, visual_parser=PdfVisualParser(pdf_path), ) with pytest.warns(RuntimeWarning) as record: doc = parser_udf.apply(doc) assert isinstance(record, type(pytest.warns(RuntimeWarning))) def test_parse_md_paragraphs(): """Unit test of Paragraph parsing.""" docs_path = "tests/data/html_simple/md_para.html" pdf_path = "tests/data/pdf_simple/" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "md_para")) # Check that doc has a name assert doc.name == "md_para" # Create an Parser and parse the md document parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=True, visual_parser=PdfVisualParser(pdf_path), ) doc = parser_udf.apply(doc) # Check that doc has a figure assert len(doc.figures) == 6 assert doc.figures[0].url == "http://placebear.com/200/200" assert doc.figures[0].position == 0 assert doc.figures[0].section.position == 0 assert len(doc.figures[0].captions) == 0 assert doc.figures[0].stable_id == "md_para::figure:0" assert doc.figures[0].cell.position == 13 assert ( doc.figures[2].url == "http://html5doctor.com/wp-content/uploads/2010/03/kookaburra.jpg" ) assert doc.figures[2].position == 2 assert len(doc.figures[2].captions) == 1 assert len(doc.figures[2].captions[0].paragraphs[0].sentences) == 3 assert ( doc.figures[2].captions[0].paragraphs[0].sentences[0].text == "Australian Birds." ) assert len(doc.figures[4].captions) == 0 assert ( doc.figures[4].url == "http://html5doctor.com/wp-content/uploads/2010/03/pelican.jpg" ) # Check that doc has a table assert len(doc.tables) == 1 assert doc.tables[0].position == 0 assert doc.tables[0].section.position == 0 # Check that doc has cells assert len(doc.cells) == 16 cells = list(doc.cells) assert cells[0].row_start == 0 assert cells[0].col_start == 0 assert cells[0].position == 0 assert cells[0].table.position == 0 assert cells[10].row_start == 2 assert cells[10].col_start == 2 assert cells[10].position == 10 assert cells[10].table.position == 0 # Check that doc has sentences assert len(doc.sentences) == 51 sentences = sorted(doc.sentences, key=lambda x: x.position) sent1 = sentences[1] sent2 = sentences[2] sent3 = sentences[3] assert sent1.text == "This is some basic, sample markdown." assert sent2.text == ( "Unlike the other markdown document, however, " "this document actually contains paragraphs of text." ) assert sent1.paragraph.position == 1 assert sent1.section.position == 0 assert sent2.paragraph.position == 1 assert sent2.section.position == 0 assert sent3.paragraph.position == 1 assert sent3.section.position == 0 assert len(doc.paragraphs) == 46 assert len(doc.paragraphs[1].sentences) == 3 assert len(doc.paragraphs[2].sentences) == 1 def test_simple_parser(): """Unit test of Parser on a single document with lingual features off.""" logger = logging.getLogger(__name__) docs_path = "tests/data/html_simple/md.html" pdf_path = "tests/data/pdf_simple/" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "md")) # Check that doc has a name assert doc.name == "md" # Create an Parser and parse the md document parser_udf = get_parser_udf( structural=True, lingual=False, visual=True, visual_parser=PdfVisualParser(pdf_path), lingual_parser=SimpleParser(delim="NoDelim"), ) doc = parser_udf.apply(doc) logger.info(f"Doc: {doc}") for i, sentence in enumerate(doc.sentences): logger.info(f" Sentence[{i}]: {sentence.text}") header = sorted(doc.sentences, key=lambda x: x.position)[0] # Test structural attributes assert header.xpath == "/html/body/h1" assert header.html_tag == "h1" assert header.html_attrs == ["id=sample-markdown"] # Test lingual attributes assert header.ner_tags == ["", ""] assert header.dep_labels == ["", ""] assert header.dep_parents == [0, 0] assert header.lemmas == ["", ""] assert header.pos_tags == ["", ""] assert len(doc.sentences) == 44 def test_custom_parser(): """Unit test of customized parser.""" lingual_parser = SpacyParser("en") parser_udf = get_parser_udf( language="de", lingual=True, lingual_parser=lingual_parser ) # The lingual_parser is prioritized over language assert parser_udf.lingual_parser == lingual_parser assert parser_udf.lingual_parser.lang == "en" def test_parse_table_span(): """Unit test of parse table span.""" logger = logging.getLogger(__name__) docs_path = "tests/data/html_simple/table_span.html" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "table_span")) # Check that doc has a name assert doc.name == "table_span" # Create an Parser and parse the document parser_udf = get_parser_udf(structural=True, lingual=True, visual=False) doc = parser_udf.apply(doc) logger.info(f"Doc: {doc}") assert len(doc.sentences) == 1 for sentence in doc.sentences: logger.info(f" Sentence: {sentence.text}") def test_parse_document_diseases(): """Unit test of Parser on a single document. This tests both the structural and visual parse of the document. """ logger = logging.getLogger(__name__) docs_path = "tests/data/html_simple/diseases.html" pdf_path = "tests/data/pdf_simple/" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "diseases")) # Check that doc has a name assert doc.name == "diseases" # Create an Parser and parse the diseases document parser_udf = get_parser_udf( structural=True, lingual=True, visual=True, visual_parser=PdfVisualParser(pdf_path), ) doc = parser_udf.apply(doc) logger.info(f"Doc: {doc}") for sentence in doc.sentences: logger.info(f" Sentence: {sentence.text}") # Check captions assert len(doc.captions) == 2 caption = sorted(doc.sentences, key=lambda x: x.position)[20] assert caption.paragraph.caption.position == 0 assert caption.paragraph.caption.table.position == 0 assert caption.text == "Table 1: Infectious diseases and where to find them." assert caption.paragraph.position == 18 # Check figures assert len(doc.figures) == 0 # Check that doc has a table assert len(doc.tables) == 3 assert doc.tables[0].position == 0 assert doc.tables[0].document.name == "diseases" # Check that doc has cells assert len(doc.cells) == 25 sentence = sorted(doc.sentences, key=lambda x: x.position)[10] logger.info(f" {sentence}") # Check the sentence's cell assert sentence.table.position == 0 assert sentence.cell.row_start == 2 assert sentence.cell.col_start == 1 assert sentence.cell.position == 4 # Test structural attributes assert sentence.xpath == "/html/body/table[1]/tbody/tr[3]/td[1]/p" assert sentence.html_tag == "p" assert sentence.html_attrs == ["class=s6", "style=padding-top: 1pt"] # Test visual attributes assert sentence.page == [1, 1, 1] assert sentence.top == [342, 296, 356] assert sentence.left == [318, 369, 318] # Test lingual attributes # when lingual=True, some value other than "" should be filled-in. assert all(sentence.ner_tags) assert all(sentence.dep_labels) assert len(doc.sentences) == 37 def test_parse_style(): """Test style tag parsing.""" logger = logging.getLogger(__name__) docs_path = "tests/data/html_extended/ext_diseases.html" pdf_path = "tests/data/pdf_extended/" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "ext_diseases")) # Create an Parser and parse the diseases document parser_udf = get_parser_udf( structural=True, lingual=True, visual=True, visual_parser=PdfVisualParser(pdf_path), ) doc = parser_udf.apply(doc) # Grab the sentences parsed by the Parser sentences = doc.sentences logger.warning(f"Doc: {doc}") for i, sentence in enumerate(sentences): logger.warning(f" Sentence[{i}]: {sentence.html_attrs}") # sentences for testing sub_sentences = [ { "index": 6, "attr": [ "class=col-header", "hobbies=work:hard;play:harder", "type=phenotype", "style=background: #f1f1f1; color: aquamarine; font-size: 18px;", ], }, {"index": 9, "attr": ["class=row-header", "style=background: #f1f1f1;"]}, {"index": 11, "attr": ["class=cell", "style=text-align: center;"]}, ] # Assertions assert all(sentences[p["index"]].html_attrs == p["attr"] for p in sub_sentences) def test_parse_error_doc_skipping(): """Test skipping of faulty htmls.""" faulty_doc_path = "tests/data/html_faulty/ext_diseases_missing_table_tag.html" preprocessor = HTMLDocPreprocessor(faulty_doc_path) doc = next( preprocessor._parse_file(faulty_doc_path, "ext_diseases_missing_table_tag") ) parser_udf = get_parser_udf(structural=True, lingual=True) doc = parser_udf.apply(doc) # No document is returned for faulty document assert doc is None valid_doc_path = "tests/data/html_extended/ext_diseases.html" preprocessor = HTMLDocPreprocessor(valid_doc_path) doc = next(preprocessor._parse_file(valid_doc_path, "ext_diseases")) parser_udf = get_parser_udf(structural=True, lingual=True) doc = parser_udf.apply(doc) assert len(doc.sentences) == 37 def test_parse_multi_sections(): """Test the parser with the radiology document.""" # Test multi-section html docs_path = "tests/data/pure_html/radiology.html" preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "radiology")) parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=False ) doc = parser_udf.apply(doc) assert len(doc.sections) == 5 assert len(doc.paragraphs) == 30 assert len(doc.sentences) == 35 assert len(doc.figures) == 2 assert doc.sections[0].name is None assert doc.sections[1].name == "label" assert doc.sections[2].name == "content" assert doc.sections[3].name == "image" assert doc.sections[2].paragraphs[0].name == "COMPARISON" assert doc.sections[2].paragraphs[1].name == "INDICATION" assert doc.sections[2].paragraphs[2].name == "FINDINGS" assert doc.sections[2].paragraphs[3].name == "IMPRESSION" def test_text_doc_preprocessor(): """Test ``TextDocPreprocessor`` with text document.""" # Test text document docs_path = "tests/data/various_format/text_format.txt" preprocessor = TextDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "plain_text_format")) parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=False ) doc = parser_udf.apply(doc) assert len(preprocessor) == 1 assert len(doc.sections) == 1 assert len(doc.paragraphs) == 1 assert len(doc.sentences) == 57 def test_tsv_doc_preprocessor(): """Test ``TSVDocPreprocessor`` with tsv document.""" # Test tsv document docs_path = "tests/data/various_format/tsv_format.tsv" preprocessor = TSVDocPreprocessor(docs_path, header=True) assert len(preprocessor) == 2 preprocessor = TSVDocPreprocessor(docs_path, max_docs=1, header=True) doc = next(preprocessor._parse_file(docs_path, "tsv_format")) parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=False ) doc = parser_udf.apply(doc) assert len(preprocessor) == 1 assert doc.name == "9b28e780-ba48-4a53-8682-7c58c141a1b6" assert len(doc.sections) == 1 assert len(doc.paragraphs) == 1 assert len(doc.sentences) == 33 def test_csv_doc_preprocessor(): """Test ``CSVDocPreprocessor`` with csv document.""" # Test csv document docs_path = "tests/data/various_format/csv_format.csv" preprocessor = CSVDocPreprocessor(docs_path, header=True) assert len(preprocessor) == 10 preprocessor = CSVDocPreprocessor(docs_path, max_docs=1, header=True) doc = next(preprocessor._parse_file(docs_path, "csv_format")) parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual=False ) doc = parser_udf.apply(doc) assert len(preprocessor) == 1 assert len(doc.sections) == 12 assert len(doc.paragraphs) == 10 assert len(doc.sentences) == 17 def test_parser_skips_and_flattens(): """Test if ``Parser`` skips/flattens elements.""" parser_udf = get_parser_udf() # Test if a parser skips comments doc = Document(id=1, name="test", stable_id="1::document:0:0") doc.text = "<html><body>Hello!<!-- comment --></body></html>" doc = parser_udf.apply(doc) assert doc.sentences[0].text == "Hello!" # Test if a parser skips blacklisted elements doc = Document(id=2, name="test2", stable_id="2::document:0:0") doc.text = "<html><body><script>alert('Hello');</script><p>Hello!</p></body></html>" doc = parser_udf.apply(doc) assert doc.sentences[0].text == "Hello!" # Test if a parser flattens elements doc = Document(id=3, name="test3", stable_id="3::document:0:0") doc.text = "<html><body><span>Hello, <br>world!</span></body></html>" doc = parser_udf.apply(doc) assert doc.sentences[0].text == "Hello, world!" # Now with different blacklist and flatten parser_udf = get_parser_udf(blacklist=["meta"], flatten=["word"]) # Test if a parser does not skip non-blacklisted element doc = Document(id=4, name="test4", stable_id="4::document:0:0") doc.text = "<html><body><script>alert('Hello');</script><p>Hello!</p></body></html>" doc = parser_udf.apply(doc) assert doc.sentences[0].text == "alert('Hello');" assert doc.sentences[1].text == "Hello!" # Test if a parser skips blacklisted elements doc = Document(id=5, name="test5", stable_id="5::document:0:0") doc.text = "<html><head><meta name='keywords'></head><body>Hello!</body></html>" doc = parser_udf.apply(doc) assert doc.sentences[0].text == "Hello!" # Test if a parser does not flatten elements doc = Document(id=6, name="test6", stable_id="6::document:0:0") doc.text = "<html><body><span>Hello, <br>world!</span></body></html>" doc = parser_udf.apply(doc) assert doc.sentences[0].text == "Hello," assert doc.sentences[1].text == "world!" # Test if a parser flattens elements doc = Document(id=7, name="test7", stable_id="7::document:0:0") doc.text = "<html><body><word>Hello, </word><word>world!</word></body></html>" doc = parser_udf.apply(doc) assert doc.sentences[0].text == "Hello, world!" def test_parser_no_image(): """Unit test of Parser on a single document that has a figure without image.""" docs_path = "tests/data/html_simple/no_image.html" pdf_path = "tests/data/pdf_simple/" # Preprocessor for the Docs preprocessor = HTMLDocPreprocessor(docs_path) doc = next(preprocessor._parse_file(docs_path, "no_image")) # Check that doc has a name assert doc.name == "no_image" # Create an Parser and parse the no_image document parser_udf = get_parser_udf( structural=True, lingual=False, visual=True, visual_parser=PdfVisualParser(pdf_path), ) doc = parser_udf.apply(doc) # Check that doc has no figures assert len(doc.figures) == 0 @pytest.mark.parametrize( "docs_path, pdf_path", [ ("tests/data/html_simple/", "tests/data/pdf_simple/"), ("tests/data/html_simple/", "tests/data/pdf_simple"), ("tests/data/html_simple", "tests/data/pdf_simple/"), ("tests/data/html_simple", "tests/data/pdf_simple"), ], ) def test_various_dir_path_formats(database_session, docs_path, pdf_path): """Test the parser with various directory path formats.""" docs = parse(database_session, docs_path, pdf_path) assert len(docs) == 6 for doc in docs: # table_span.pdf and no_image_unsorted.pdf are not exist, so no # coordinate info available if doc.name in ["table_span", "no_image_unsorted"]: assert doc.sentences[0].top is None else: assert doc.sentences[0].top is not None @pytest.mark.parametrize( "pdf_path", [ ("tests/data/pdf_extended/"), ("tests/data/pdf_extended"), ], ) def test_various_pdf_path_formats(database_session, pdf_path): """Test the parser with various pdf_path formats.""" docs_path = "tests/data/html_extended/ext_diseases.html" docs = parse(database_session, docs_path, pdf_path) assert len(docs) == 1 assert docs[0].sentences[0].top is not None def test_parse_hocr(): """Test the parser with hOCR documents.""" docs_path = "tests/data/hocr_simple/md.hocr" # Preprocessor for the Docs preprocessor = HOCRDocPreprocessor(docs_path) doc = next(iter(preprocessor)) # Create an Parser and parse the md document parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual_parser=HocrVisualParser(), ) doc = parser_udf.apply(doc) assert doc.name == "md" assert doc.sentences[12].left == [372, 384, 405, 418, 418] assert doc.sentences[12].page == [1] * len(doc.sentences[12].words) docs_path = "tests/data/hocr_simple/121.hocr" preprocessor = HOCRDocPreprocessor(docs_path) doc = next(iter(preprocessor)) doc = parser_udf.apply(doc) # The double spaces between "This" and "Consumer" should be replaced with a single # space at HOCRDocPreprocessor. assert doc.sentences[0].words[:3] == ["This", "Consumer", "Credit"] docs_path = "tests/data/hocr_simple/japan.hocr" preprocessor = HOCRDocPreprocessor(docs_path, space=False) doc = next(iter(preprocessor)) # Create an Parser and parse the md document parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, language="ja", visual_parser=HocrVisualParser(), ) doc = parser_udf.apply(doc) assert doc.name == "japan" sent = doc.sentences[0] assert len(sent.words) == len(sent.left) # "にっぽん" is tokenized into three: "に", "っ", "ぽん" in hOCR, # but it is tokenized as an one token by spaCy. assert sent.words[1] == "にっぽん" assert sent.left[1] == 150 # this left comes from "に" in hOCR assert sent.right[1] == 249 # this right comes from "ぽん" in hOCR sent = doc.sentences[2] assert len(sent.words) == len(sent.left) # "チェーン店\n本・支店" is tokenized into three: "チェーン店", "本・支店" in hOCR, # but it is tokenized as "チェーン", "店本", "・", "支店" by spaCy. assert sent.words[1] == "店本" assert sent.left[1] == 145 # comes from left min of "チェーン店\n本・支店" in hOCR assert sent.right[1] == 245 # comes from right min of "チェーン店\n本・支店" in hOCR def test_parse_hocr_with_tables(): """Test the parser with hOCR documents that have tables.""" docs_path = "tests/data/hocr_simple/1st.hocr" preprocessor = HOCRDocPreprocessor(docs_path) doc = next(iter(preprocessor)) parser_udf = get_parser_udf( structural=True, tabular=True, lingual=True, visual_parser=HocrVisualParser(), ) doc = parser_udf.apply(doc) assert doc.name == "1st"
fonduer-master
tests/parser/test_parser.py
"""Fonduer simple parser unit tests.""" from fonduer.parser.lingual_parser import SimpleParser def test_simple_parser_support(): """Unit test of simple parser support.""" lingual_parser = SimpleParser() assert lingual_parser.has_tokenizer_support() assert not lingual_parser.has_NLP_support() def test_simple_split_sentences(): """Unit test of splitting sentences.""" tokenize_and_split_sentences = SimpleParser().split_sentences text = "This is a text. This is another text." iterator = tokenize_and_split_sentences(text) assert len(list(iterator)) == 2
fonduer-master
tests/parser/test_simple_parser.py
"""Fonduer spacy parser unit tests.""" import os import pytest from fonduer.parser.lingual_parser.spacy_parser import ( SpacyParser, TokenPreservingTokenizer, set_custom_boundary, ) from fonduer.parser.models import Sentence @pytest.mark.skipif( "CI" not in os.environ, reason="Only run non-English tests on GitHub Actions" ) def test_spacy_support(): """Unit test of spacy support.""" # Supported language lingual_parser = SpacyParser("en") assert lingual_parser.has_tokenizer_support() assert lingual_parser.has_NLP_support() lingual_parser = SpacyParser("ja") assert lingual_parser.has_tokenizer_support() assert lingual_parser.has_NLP_support() # Non supported language lingual_parser = SpacyParser("non-supported-lang") assert not lingual_parser.has_tokenizer_support() assert not lingual_parser.has_NLP_support() # Language not specified with pytest.raises(TypeError): lingual_parser = SpacyParser() def test_spacy_split_sentences(): """Unit test of splitting sentences.""" lingual_parser = SpacyParser("en") tokenize_and_split_sentences = lingual_parser.split_sentences text = "This is a text. This is another text." iterator = tokenize_and_split_sentences(text) assert len(list(iterator)) == 2 def test_split_sentences_by_char_limit(): """Unit test of splitting sentences by char limit.""" lingual_parser = SpacyParser("en") text = "This is a text. This is another text." all_sentences = [ Sentence(**parts) for parts in lingual_parser.split_sentences(text) ] assert len(all_sentences) == 2 assert [len(sentence.text) for sentence in all_sentences] == [15, 21] lingual_parser.model.remove_pipe("sentencizer") lingual_parser.model.add_pipe( set_custom_boundary, before="parser", name="sentence_boundary_detector" ) sentence_batches = lingual_parser._split_sentences_by_char_limit(all_sentences, 20) assert len(sentence_batches) == 2 sentence_batches = lingual_parser._split_sentences_by_char_limit(all_sentences, 100) assert len(sentence_batches) == 1 sentence_batch = sentence_batches[0] custom_tokenizer = TokenPreservingTokenizer(lingual_parser.model.vocab) doc = custom_tokenizer(sentence_batch) doc.user_data = sentence_batch for name, proc in lingual_parser.model.pipeline: # iterate over components in order doc = proc(doc) assert doc.is_parsed # See if the number of parsed spaCy sentences matches that of input sentences assert len(list(doc.sents)) == len(sentence_batch)
fonduer-master
tests/parser/test_spacy_parser.py
"""Fonduer parser unit tests."""
fonduer-master
tests/parser/__init__.py
"""Unit tests for preprocessors.""" from bs4 import BeautifulSoup from fonduer.parser.preprocessors.hocr_doc_preprocessor import HOCRDocPreprocessor def test_hocrpreprocessor(): """Test hOCRDocPreprocessor with a simple hOCR.""" path = "tests/data/hocr_simple/md.hocr" preprocessor = HOCRDocPreprocessor(path=path) doc = next(iter(preprocessor)) assert doc.name == "md" # the intermidiate attribute: "fonduer" should be removed. assert "fonduer" not in doc.text # number of "left" attribute is equal to that of "ppageno" - 1 (at ocr_page) assert doc.text.count("left") == doc.text.count("ppageno") - 1 == 24 def test_hocrpreprocessor_space_false(): """Test hOCRDocPreprocessor with space=False.""" path = "tests/data/hocr_simple/japan.hocr" preprocessor = HOCRDocPreprocessor(path=path, space=False) doc = next(iter(preprocessor)) assert doc.name == "japan" # the intermidiate attribute: "fonduer" should be removed. assert "fonduer" not in doc.text soup = BeautifulSoup(doc.text, "lxml") element = soup.find(id="par_1_1") # A token cannot contain " " (whitespace) as "tokens" are deliminated by a " ". assert len(element.get("left").split()) == len(element.get("tokens").split()) == 59
fonduer-master
tests/parser/test_preprocessor.py
"""Fonduer visual_parser unit tests.""" import random from operator import attrgetter import pytest from bs4 import BeautifulSoup from fonduer.parser.preprocessors import HTMLDocPreprocessor from fonduer.parser.visual_parser import PdfVisualParser from tests.parser.test_parser import get_parser_udf def test_visual_parser_not_affected_by_order_of_sentences(): """Test if visual_parser result is not affected by the order of sentences.""" docs_path = "tests/data/html/2N6427.html" pdf_path = "tests/data/pdf/" # Initialize preprocessor, parser, visual_parser. # Note that parser is initialized with `visual=False` and that visual_parser # will be used to attach "visual" information to sentences after parsing. preprocessor = HTMLDocPreprocessor(docs_path) parser_udf = get_parser_udf( structural=True, lingual=False, tabular=True, visual=False ) visual_parser = PdfVisualParser(pdf_path=pdf_path) doc = parser_udf.apply(next(preprocessor.__iter__())) # Sort sentences by sentence.position doc.sentences = sorted(doc.sentences, key=attrgetter("position")) sentences0 = [sent for sent in visual_parser.parse(doc.name, doc.sentences)] # Sort again in case visual_parser.link changes the order sentences0 = sorted(sentences0, key=attrgetter("position")) doc = parser_udf.apply(next(preprocessor.__iter__())) # Shuffle random.shuffle(doc.sentences) sentences1 = [sent for sent in visual_parser.parse(doc.name, doc.sentences)] # Sort sentences by sentence.position sentences1 = sorted(sentences1, key=attrgetter("position")) # This should hold as both sentences are sorted by their position assert all( [ sent0.position == sent1.position for (sent0, sent1) in zip(sentences0, sentences1) ] ) # The following assertion should hold if the visual_parser result is not affected # by the order of sentences. assert all( [sent0.left == sent1.left for (sent0, sent1) in zip(sentences0, sentences1)] ) def test_non_existent_pdf_path_should_fail(): """Test if a non-existent raises an error.""" pdf_path = "dummy_path" with pytest.raises(ValueError): PdfVisualParser(pdf_path=pdf_path) def test_pdf_word_list_is_sorted(): """Test if pdf_word_list is sorted as expected. no_image_unsorted.html is originally created from pdf_simple/no_image.pdf, but the order of html elements like block and word has been changed to see if pdf_word_list is sorted as expected. """ docs_path = "tests/data/html_simple/no_image_unsorted.html" pdf_path = "tests/data/pdf_simple" visual_parser = PdfVisualParser(pdf_path=pdf_path) with open(docs_path) as f: soup = BeautifulSoup(f, "html.parser") page = soup.find_all("page")[0] pdf_word_list, coordinate_map = visual_parser._coordinates_from_HTML(page, 1) # Check if words are sorted by block top assert set([content for (_, content) in pdf_word_list[:2]]) == {"Sample", "HTML"} # Check if words are sorted by top assert [content for (_, content) in pdf_word_list[2:7]] == [ "This", "is", "an", "html", "that", ] # Check if words are sorted by left (#449) assert [content for (_, content) in pdf_word_list[:2]] == ["Sample", "HTML"]
fonduer-master
tests/parser/test_visual_linker.py
"""Fonduer e2e tests."""
fonduer-master
tests/e2e/__init__.py
"""Fonduer incremental e2e test.""" import logging import os import pytest from snorkel.labeling import labeling_function from fonduer.candidates import CandidateExtractor, MentionExtractor from fonduer.candidates.models import Candidate from fonduer.features import Featurizer from fonduer.features.models import Feature, FeatureKey from fonduer.parser import Parser from fonduer.parser.models import Document from fonduer.parser.preprocessors import HTMLDocPreprocessor from fonduer.parser.visual_parser import PdfVisualParser from fonduer.supervision import Labeler from fonduer.supervision.labeler import ABSTAIN from fonduer.supervision.models import Label, LabelKey from tests.shared.hardware_lfs import ( LF_negative_number_left, LF_operating_row, LF_storage_row, LF_temperature_row, LF_to_left, LF_tstg_row, ) from tests.shared.hardware_matchers import part_matcher, temp_matcher from tests.shared.hardware_spaces import MentionNgramsPart, MentionNgramsTemp from tests.shared.hardware_subclasses import Part, PartTemp, Temp from tests.shared.hardware_throttlers import temp_throttler logger = logging.getLogger(__name__) ATTRIBUTE = "stg_temp_max" @pytest.mark.skipif( "CI" not in os.environ, reason="Only run incremental on GitHub Actions" ) def test_incremental(database_session): """Run an end-to-end test on incremental additions.""" # GitHub Actions gives 2 cores # help.github.com/en/actions/reference/virtual-environments-for-github-hosted-runners PARALLEL = 2 max_docs = 1 session = database_session docs_path = "tests/data/html/dtc114w.html" pdf_path = "tests/data/pdf/" doc_preprocessor = HTMLDocPreprocessor(docs_path, max_docs=max_docs) corpus_parser = Parser( session, parallelism=PARALLEL, structural=True, lingual=True, visual_parser=PdfVisualParser(pdf_path), ) corpus_parser.apply(doc_preprocessor) num_docs = session.query(Document).count() logger.info(f"Docs: {num_docs}") assert num_docs == max_docs docs = corpus_parser.get_documents() last_docs = corpus_parser.get_documents() assert len(docs[0].sentences) == len(last_docs[0].sentences) # Mention Extraction part_ngrams = MentionNgramsPart(parts_by_doc=None, n_max=3) temp_ngrams = MentionNgramsTemp(n_max=2) mention_extractor = MentionExtractor( session, [Part, Temp], [part_ngrams, temp_ngrams], [part_matcher, temp_matcher] ) mention_extractor.apply(docs, parallelism=PARALLEL) assert session.query(Part).count() == 11 assert session.query(Temp).count() == 8 # Test if clear=True works mention_extractor.apply(docs, parallelism=PARALLEL, clear=True) assert session.query(Part).count() == 11 assert session.query(Temp).count() == 8 # Candidate Extraction candidate_extractor = CandidateExtractor( session, [PartTemp], throttlers=[temp_throttler] ) candidate_extractor.apply(docs, split=0, parallelism=PARALLEL) assert session.query(PartTemp).filter(PartTemp.split == 0).count() == 70 assert session.query(Candidate).count() == 70 # Grab candidate lists train_cands = candidate_extractor.get_candidates(split=0) assert len(train_cands) == 1 assert len(train_cands[0]) == 70 # Featurization featurizer = Featurizer(session, [PartTemp]) featurizer.apply(split=0, train=True, parallelism=PARALLEL) assert session.query(Feature).count() == len(train_cands[0]) num_feature_keys = session.query(FeatureKey).count() assert num_feature_keys == 514 F_train = featurizer.get_feature_matrices(train_cands) assert F_train[0].shape == (len(train_cands[0]), num_feature_keys) assert len(featurizer.get_keys()) == num_feature_keys # Test Dropping FeatureKey featurizer.drop_keys(["BASIC_e1_LENGTH_1"]) assert session.query(FeatureKey).count() == num_feature_keys - 1 stg_temp_lfs = [ LF_storage_row, LF_operating_row, LF_temperature_row, LF_tstg_row, LF_to_left, LF_negative_number_left, ] labeler = Labeler(session, [PartTemp]) labeler.apply(split=0, lfs=[stg_temp_lfs], train=True, parallelism=PARALLEL) assert session.query(Label).count() == len(train_cands[0]) # Only 5 because LF_operating_row doesn't apply to the first test doc assert session.query(LabelKey).count() == 5 L_train = labeler.get_label_matrices(train_cands) assert L_train[0].shape == (len(train_cands[0]), 5) assert len(labeler.get_keys()) == 5 docs_path = "tests/data/html/112823.html" pdf_path = "tests/data/pdf/" doc_preprocessor = HTMLDocPreprocessor(docs_path, max_docs=max_docs) corpus_parser.apply(doc_preprocessor, clear=False) assert len(corpus_parser.get_documents()) == 2 new_docs = corpus_parser.get_last_documents() assert len(new_docs) == 1 assert new_docs[0].name == "112823" # Get mentions from just the new docs mention_extractor.apply(new_docs, parallelism=PARALLEL, clear=False) assert session.query(Part).count() == 81 assert session.query(Temp).count() == 31 # Test if existing mentions are skipped. mention_extractor.apply(new_docs, parallelism=PARALLEL, clear=False) assert session.query(Part).count() == 81 assert session.query(Temp).count() == 31 # Just run candidate extraction and assign to split 0 candidate_extractor.apply(new_docs, split=0, parallelism=PARALLEL, clear=False) # Grab candidate lists train_cands = candidate_extractor.get_candidates(split=0) assert len(train_cands) == 1 assert len(train_cands[0]) == 1501 # Test if existing candidates are skipped. candidate_extractor.apply(new_docs, split=0, parallelism=PARALLEL, clear=False) train_cands = candidate_extractor.get_candidates(split=0) assert len(train_cands) == 1 assert len(train_cands[0]) == 1501 # Update features featurizer.update(new_docs, parallelism=PARALLEL) assert session.query(Feature).count() == len(train_cands[0]) num_feature_keys = session.query(FeatureKey).count() assert num_feature_keys == 2608 F_train = featurizer.get_feature_matrices(train_cands) assert F_train[0].shape == (len(train_cands[0]), num_feature_keys) assert len(featurizer.get_keys()) == num_feature_keys # Update LF_storage_row. Now it always returns ABSTAIN. @labeling_function(name="LF_storage_row") def LF_storage_row_updated(c): return ABSTAIN stg_temp_lfs = [ LF_storage_row_updated, LF_operating_row, LF_temperature_row, LF_tstg_row, LF_to_left, LF_negative_number_left, ] # Update Labels labeler.update(docs, lfs=[stg_temp_lfs], parallelism=PARALLEL) labeler.update(new_docs, lfs=[stg_temp_lfs], parallelism=PARALLEL) assert session.query(Label).count() == len(train_cands[0]) # Only 5 because LF_storage_row doesn't apply to any doc (always ABSTAIN) num_label_keys = session.query(LabelKey).count() assert num_label_keys == 5 L_train = labeler.get_label_matrices(train_cands) assert L_train[0].shape == (len(train_cands[0]), num_label_keys) # Test clear featurizer.clear(train=True) assert session.query(FeatureKey).count() == 0
fonduer-master
tests/e2e/test_incremental.py
"""Fonduer e2e test.""" import logging import os import pickle import emmental import numpy as np import pytest from emmental.data import EmmentalDataLoader from emmental.learner import EmmentalLearner from emmental.model import EmmentalModel from emmental.modules.embedding_module import EmbeddingModule from snorkel.labeling.model import LabelModel import fonduer from fonduer.candidates import CandidateExtractor, MentionExtractor from fonduer.candidates.models import Candidate from fonduer.features import Featurizer from fonduer.features.models import Feature, FeatureKey from fonduer.learning.dataset import FonduerDataset from fonduer.learning.task import create_task from fonduer.learning.utils import collect_word_counter from fonduer.parser import Parser from fonduer.parser.models import Document, Sentence from fonduer.parser.preprocessors import HTMLDocPreprocessor from fonduer.parser.visual_parser import PdfVisualParser from fonduer.supervision import Labeler from fonduer.supervision.models import GoldLabel, Label, LabelKey from tests.shared.hardware_lfs import ( TRUE, LF_bad_keywords_in_row, LF_collector_aligned, LF_complement_left_row, LF_current_aligned, LF_current_in_row, LF_negative_number_left, LF_non_ce_voltages_in_row, LF_not_temp_relevant, LF_operating_row, LF_storage_row, LF_temp_on_high_page_num, LF_temp_outside_table, LF_temperature_row, LF_test_condition_aligned, LF_to_left, LF_too_many_numbers_row, LF_tstg_row, LF_typ_row, LF_voltage_row_part, LF_voltage_row_temp, ) from tests.shared.hardware_matchers import part_matcher, temp_matcher, volt_matcher from tests.shared.hardware_spaces import ( MentionNgramsPart, MentionNgramsTemp, MentionNgramsVolt, ) from tests.shared.hardware_subclasses import Part, PartTemp, PartVolt, Temp, Volt from tests.shared.hardware_throttlers import temp_throttler, volt_throttler from tests.shared.hardware_utils import entity_level_f1, gold logger = logging.getLogger(__name__) ATTRIBUTE = "stg_temp_max" @pytest.mark.skipif("CI" not in os.environ, reason="Only run e2e on GitHub Actions") def test_e2e(database_session): """Run an end-to-end test on documents of the hardware domain.""" # GitHub Actions gives 2 cores # help.github.com/en/actions/reference/virtual-environments-for-github-hosted-runners PARALLEL = 2 max_docs = 12 fonduer.init_logging( format="[%(asctime)s][%(levelname)s] %(name)s:%(lineno)s - %(message)s", level=logging.INFO, ) session = database_session docs_path = "tests/data/html/" pdf_path = "tests/data/pdf/" doc_preprocessor = HTMLDocPreprocessor(docs_path, max_docs=max_docs) corpus_parser = Parser( session, parallelism=PARALLEL, structural=True, lingual=True, visual_parser=PdfVisualParser(pdf_path), ) corpus_parser.apply(doc_preprocessor) assert session.query(Document).count() == max_docs num_docs = session.query(Document).count() logger.info(f"Docs: {num_docs}") assert num_docs == max_docs num_sentences = session.query(Sentence).count() logger.info(f"Sentences: {num_sentences}") # Divide into test and train docs = sorted(corpus_parser.get_documents()) last_docs = sorted(corpus_parser.get_last_documents()) ld = len(docs) assert ld == len(last_docs) assert len(docs[0].sentences) == len(last_docs[0].sentences) train_docs = set() dev_docs = set() test_docs = set() splits = (0.5, 0.75) data = [(doc.name, doc) for doc in docs] data.sort(key=lambda x: x[0]) for i, (doc_name, doc) in enumerate(data): if i < splits[0] * ld: train_docs.add(doc) elif i < splits[1] * ld: dev_docs.add(doc) else: test_docs.add(doc) logger.info([x.name for x in train_docs]) # NOTE: With multi-relation support, return values of getting candidates, # mentions, or sparse matrices are formatted as a list of lists. This means # that with a single relation, we need to index into the list of lists to # get the candidates/mentions/sparse matrix for a particular relation or # mention. # Mention Extraction part_ngrams = MentionNgramsPart(parts_by_doc=None, n_max=3) temp_ngrams = MentionNgramsTemp(n_max=2) volt_ngrams = MentionNgramsVolt(n_max=1) mention_extractor = MentionExtractor( session, [Part, Temp, Volt], [part_ngrams, temp_ngrams, volt_ngrams], [part_matcher, temp_matcher, volt_matcher], ) mention_extractor.apply(docs, parallelism=PARALLEL) assert len(mention_extractor.get_mentions()) == 3 assert len(mention_extractor.get_mentions(docs)) == 3 # Candidate Extraction candidate_extractor = CandidateExtractor( session, [PartTemp, PartVolt], throttlers=[temp_throttler, volt_throttler] ) for i, docs in enumerate([train_docs, dev_docs, test_docs]): candidate_extractor.apply(docs, split=i, parallelism=PARALLEL) # Grab candidate lists train_cands = candidate_extractor.get_candidates(split=0, sort=True) dev_cands = candidate_extractor.get_candidates(split=1, sort=True) test_cands = candidate_extractor.get_candidates(split=2, sort=True) # Candidate lists should be deterministically sorted. assert ( "112823::implicit_span_mention:11059:11065:part_expander:0" == train_cands[0][0][0].context.get_stable_id() ) assert ( "112823::implicit_span_mention:2752:2754:temp_expander:0" == train_cands[0][0][1].context.get_stable_id() ) assert len(train_cands) == 2 assert len(candidate_extractor.get_candidates(docs)) == 2 # Featurization featurizer = Featurizer(session, [PartTemp, PartVolt]) # Test that FeatureKey is properly reset featurizer.apply(split=1, train=True, parallelism=PARALLEL) assert session.query(Feature).count() == 214 num_feature_keys = session.query(FeatureKey).count() assert num_feature_keys == 1278 # Test Dropping FeatureKey # Should force a row deletion featurizer.drop_keys(["BASIC_e0_CONTAINS_WORDS_[BC182]"]) assert session.query(FeatureKey).count() == num_feature_keys - 1 # Should only remove the part_volt as a relation and leave part_temp assert set( session.query(FeatureKey) .filter(FeatureKey.name == "DDL_e0_LEMMA_SEQ_[bc182]") .one() .candidate_classes ) == {"part_temp", "part_volt"} featurizer.drop_keys(["DDL_e0_LEMMA_SEQ_[bc182]"], candidate_classes=[PartVolt]) assert session.query(FeatureKey).filter( FeatureKey.name == "DDL_e0_LEMMA_SEQ_[bc182]" ).one().candidate_classes == ["part_temp"] assert session.query(FeatureKey).count() == num_feature_keys - 1 # Inserting the removed key featurizer.upsert_keys( ["DDL_e0_LEMMA_SEQ_[bc182]"], candidate_classes=[PartTemp, PartVolt] ) assert set( session.query(FeatureKey) .filter(FeatureKey.name == "DDL_e0_LEMMA_SEQ_[bc182]") .one() .candidate_classes ) == {"part_temp", "part_volt"} assert session.query(FeatureKey).count() == num_feature_keys - 1 # Removing the key again featurizer.drop_keys(["DDL_e0_LEMMA_SEQ_[bc182]"], candidate_classes=[PartVolt]) # Removing the last relation from a key should delete the row featurizer.drop_keys(["DDL_e0_LEMMA_SEQ_[bc182]"], candidate_classes=[PartTemp]) assert session.query(FeatureKey).count() == num_feature_keys - 2 session.query(Feature).delete(synchronize_session="fetch") session.query(FeatureKey).delete(synchronize_session="fetch") featurizer.apply(split=0, train=True, parallelism=PARALLEL) # the number of Features should equals to the total number of train candidates num_features = session.query(Feature).count() assert num_features == len(train_cands[0]) + len(train_cands[1]) num_feature_keys = session.query(FeatureKey).count() assert num_feature_keys == 4629 F_train = featurizer.get_feature_matrices(train_cands) assert F_train[0].shape == (len(train_cands[0]), num_feature_keys) assert F_train[1].shape == (len(train_cands[1]), num_feature_keys) assert len(featurizer.get_keys()) == num_feature_keys featurizer.apply(split=1, parallelism=PARALLEL) # the number of Features should increate by the total number of dev candidates num_features += len(dev_cands[0]) + len(dev_cands[1]) assert session.query(Feature).count() == num_features assert session.query(FeatureKey).count() == num_feature_keys F_dev = featurizer.get_feature_matrices(dev_cands) assert F_dev[0].shape == (len(dev_cands[0]), num_feature_keys) assert F_dev[1].shape == (len(dev_cands[1]), num_feature_keys) featurizer.apply(split=2, parallelism=PARALLEL) # the number of Features should increate by the total number of test candidates num_features += len(test_cands[0]) + len(test_cands[1]) assert session.query(Feature).count() == num_features assert session.query(FeatureKey).count() == num_feature_keys F_test = featurizer.get_feature_matrices(test_cands) assert F_test[0].shape == (len(test_cands[0]), num_feature_keys) assert F_test[1].shape == (len(test_cands[1]), num_feature_keys) gold_file = "tests/data/hardware_tutorial_gold.csv" labeler = Labeler(session, [PartTemp, PartVolt]) # This should raise an error, since gold labels are not yet loaded. with pytest.raises(ValueError): _ = labeler.get_gold_labels(train_cands, annotator="gold") labeler.apply( docs=last_docs, lfs=[[gold], [gold]], table=GoldLabel, train=True, parallelism=PARALLEL, ) # All candidates should now be gold-labeled. assert session.query(GoldLabel).count() == session.query(Candidate).count() stg_temp_lfs = [ LF_storage_row, LF_operating_row, LF_temperature_row, LF_tstg_row, LF_to_left, LF_negative_number_left, ] ce_v_max_lfs = [ LF_bad_keywords_in_row, LF_current_in_row, LF_non_ce_voltages_in_row, ] with pytest.raises(ValueError): labeler.apply(split=0, lfs=stg_temp_lfs, train=True, parallelism=PARALLEL) labeler.apply( docs=train_docs, lfs=[stg_temp_lfs, ce_v_max_lfs], train=True, parallelism=PARALLEL, ) assert session.query(Label).count() == len(train_cands[0]) + len(train_cands[1]) num_label_keys = session.query(LabelKey).count() assert num_label_keys == 9 L_train = labeler.get_label_matrices(train_cands) assert L_train[0].shape == (len(train_cands[0]), num_label_keys) assert L_train[1].shape == (len(train_cands[1]), num_label_keys) assert len(labeler.get_keys()) == num_label_keys # Test Dropping LabelerKey labeler.drop_keys(["LF_storage_row"]) assert len(labeler.get_keys()) == num_label_keys - 1 # Test Upserting LabelerKey labeler.upsert_keys(["LF_storage_row"]) assert "LF_storage_row" in [label.name for label in labeler.get_keys()] L_train_gold = labeler.get_gold_labels(train_cands) assert L_train_gold[0].shape == (len(train_cands[0]), 1) L_train_gold = labeler.get_gold_labels(train_cands, annotator="gold") assert L_train_gold[0].shape == (len(train_cands[0]), 1) label_model = LabelModel(cardinality=2) label_model.fit(L_train=L_train[0], n_epochs=500, seed=1234, log_freq=100) train_marginals = label_model.predict_proba(L_train[0]) # Collect word counter word_counter = collect_word_counter(train_cands) emmental.init(fonduer.Meta.log_path) # Training config config = { "meta_config": {"verbose": False}, "model_config": {"model_path": None, "device": 0, "dataparallel": False}, "learner_config": { "n_epochs": 5, "optimizer_config": {"lr": 0.001, "l2": 0.0}, "task_scheduler": "round_robin", }, "logging_config": { "evaluation_freq": 1, "counter_unit": "epoch", "checkpointing": False, "checkpointer_config": { "checkpoint_metric": {f"{ATTRIBUTE}/{ATTRIBUTE}/train/loss": "min"}, "checkpoint_freq": 1, "checkpoint_runway": 2, "clear_intermediate_checkpoints": True, "clear_all_checkpoints": True, }, }, } emmental.Meta.update_config(config=config) # Generate word embedding module arity = 2 # Geneate special tokens specials = [] for i in range(arity): specials += [f"~~[[{i}", f"{i}]]~~"] emb_layer = EmbeddingModule( word_counter=word_counter, word_dim=300, specials=specials ) diffs = train_marginals.max(axis=1) - train_marginals.min(axis=1) train_idxs = np.where(diffs > 1e-6)[0] train_dataloader = EmmentalDataLoader( task_to_label_dict={ATTRIBUTE: "labels"}, dataset=FonduerDataset( ATTRIBUTE, train_cands[0], F_train[0], emb_layer.word2id, train_marginals, train_idxs, ), split="train", batch_size=100, shuffle=True, ) tasks = create_task( ATTRIBUTE, 2, F_train[0].shape[1], 2, emb_layer, model="LogisticRegression" ) model = EmmentalModel(name=f"{ATTRIBUTE}_task") for task in tasks: model.add_task(task) emmental_learner = EmmentalLearner() emmental_learner.learn(model, [train_dataloader]) test_dataloader = EmmentalDataLoader( task_to_label_dict={ATTRIBUTE: "labels"}, dataset=FonduerDataset( ATTRIBUTE, test_cands[0], F_test[0], emb_layer.word2id, 2 ), split="test", batch_size=100, shuffle=False, ) test_preds = model.predict(test_dataloader, return_preds=True) positive = np.where(np.array(test_preds["probs"][ATTRIBUTE])[:, TRUE] > 0.6) true_pred = [test_cands[0][_] for _ in positive[0]] pickle_file = "tests/data/parts_by_doc_dict.pkl" with open(pickle_file, "rb") as f: parts_by_doc = pickle.load(f) (TP, FP, FN) = entity_level_f1( true_pred, gold_file, ATTRIBUTE, test_docs, parts_by_doc=parts_by_doc ) tp_len = len(TP) fp_len = len(FP) fn_len = len(FN) prec = tp_len / (tp_len + fp_len) if tp_len + fp_len > 0 else float("nan") rec = tp_len / (tp_len + fn_len) if tp_len + fn_len > 0 else float("nan") f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan") logger.info(f"prec: {prec}") logger.info(f"rec: {rec}") logger.info(f"f1: {f1}") assert f1 < 0.7 and f1 > 0.3 stg_temp_lfs_2 = [ LF_to_left, LF_test_condition_aligned, LF_collector_aligned, LF_current_aligned, LF_voltage_row_temp, LF_voltage_row_part, LF_typ_row, LF_complement_left_row, LF_too_many_numbers_row, LF_temp_on_high_page_num, LF_temp_outside_table, LF_not_temp_relevant, ] labeler.update(split=0, lfs=[stg_temp_lfs_2, ce_v_max_lfs], parallelism=PARALLEL) assert session.query(Label).count() == len(train_cands[0]) + len(train_cands[1]) num_label_keys = session.query(LabelKey).count() assert num_label_keys == 16 L_train = labeler.get_label_matrices(train_cands) assert L_train[0].shape == (len(train_cands[0]), num_label_keys) label_model = LabelModel(cardinality=2) label_model.fit(L_train=L_train[0], n_epochs=500, seed=1234, log_freq=100) train_marginals = label_model.predict_proba(L_train[0]) diffs = train_marginals.max(axis=1) - train_marginals.min(axis=1) train_idxs = np.where(diffs > 1e-6)[0] train_dataloader = EmmentalDataLoader( task_to_label_dict={ATTRIBUTE: "labels"}, dataset=FonduerDataset( ATTRIBUTE, train_cands[0], F_train[0], emb_layer.word2id, train_marginals, train_idxs, ), split="train", batch_size=100, shuffle=True, ) valid_dataloader = EmmentalDataLoader( task_to_label_dict={ATTRIBUTE: "labels"}, dataset=FonduerDataset( ATTRIBUTE, train_cands[0], F_train[0], emb_layer.word2id, np.argmax(train_marginals, axis=1), train_idxs, ), split="valid", batch_size=100, shuffle=False, ) # Testing STL LogisticRegression emmental.Meta.reset() emmental.init(fonduer.Meta.log_path) emmental.Meta.update_config(config=config) tasks = create_task( ATTRIBUTE, 2, F_train[0].shape[1], 2, emb_layer, model="LogisticRegression", mode="STL", ) model = EmmentalModel(name=f"{ATTRIBUTE}_task") for task in tasks: model.add_task(task) emmental_learner = EmmentalLearner() emmental_learner.learn(model, [train_dataloader, valid_dataloader]) test_preds = model.predict(test_dataloader, return_preds=True) positive = np.where(np.array(test_preds["probs"][ATTRIBUTE])[:, TRUE] > 0.7) true_pred = [test_cands[0][_] for _ in positive[0]] (TP, FP, FN) = entity_level_f1( true_pred, gold_file, ATTRIBUTE, test_docs, parts_by_doc=parts_by_doc ) tp_len = len(TP) fp_len = len(FP) fn_len = len(FN) prec = tp_len / (tp_len + fp_len) if tp_len + fp_len > 0 else float("nan") rec = tp_len / (tp_len + fn_len) if tp_len + fn_len > 0 else float("nan") f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan") logger.info(f"prec: {prec}") logger.info(f"rec: {rec}") logger.info(f"f1: {f1}") assert f1 > 0.7 # Testing STL LSTM emmental.Meta.reset() emmental.init(fonduer.Meta.log_path) emmental.Meta.update_config(config=config) tasks = create_task( ATTRIBUTE, 2, F_train[0].shape[1], 2, emb_layer, model="LSTM", mode="STL" ) model = EmmentalModel(name=f"{ATTRIBUTE}_task") for task in tasks: model.add_task(task) emmental_learner = EmmentalLearner() emmental_learner.learn(model, [train_dataloader]) test_preds = model.predict(test_dataloader, return_preds=True) positive = np.where(np.array(test_preds["probs"][ATTRIBUTE])[:, TRUE] > 0.7) true_pred = [test_cands[0][_] for _ in positive[0]] (TP, FP, FN) = entity_level_f1( true_pred, gold_file, ATTRIBUTE, test_docs, parts_by_doc=parts_by_doc ) tp_len = len(TP) fp_len = len(FP) fn_len = len(FN) prec = tp_len / (tp_len + fp_len) if tp_len + fp_len > 0 else float("nan") rec = tp_len / (tp_len + fn_len) if tp_len + fn_len > 0 else float("nan") f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan") logger.info(f"prec: {prec}") logger.info(f"rec: {rec}") logger.info(f"f1: {f1}") assert f1 > 0.7 # Testing MTL LogisticRegression emmental.Meta.reset() emmental.init(fonduer.Meta.log_path) emmental.Meta.update_config(config=config) tasks = create_task( ATTRIBUTE, 2, F_train[0].shape[1], 2, emb_layer, model="LogisticRegression", mode="MTL", ) model = EmmentalModel(name=f"{ATTRIBUTE}_task") for task in tasks: model.add_task(task) emmental_learner = EmmentalLearner() emmental_learner.learn(model, [train_dataloader, valid_dataloader]) test_preds = model.predict(test_dataloader, return_preds=True) positive = np.where(np.array(test_preds["probs"][ATTRIBUTE])[:, TRUE] > 0.7) true_pred = [test_cands[0][_] for _ in positive[0]] (TP, FP, FN) = entity_level_f1( true_pred, gold_file, ATTRIBUTE, test_docs, parts_by_doc=parts_by_doc ) tp_len = len(TP) fp_len = len(FP) fn_len = len(FN) prec = tp_len / (tp_len + fp_len) if tp_len + fp_len > 0 else float("nan") rec = tp_len / (tp_len + fn_len) if tp_len + fn_len > 0 else float("nan") f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan") logger.info(f"prec: {prec}") logger.info(f"rec: {rec}") logger.info(f"f1: {f1}") assert f1 > 0.7 # Testing LSTM emmental.Meta.reset() emmental.init(fonduer.Meta.log_path) emmental.Meta.update_config(config=config) tasks = create_task( ATTRIBUTE, 2, F_train[0].shape[1], 2, emb_layer, model="LSTM", mode="MTL" ) model = EmmentalModel(name=f"{ATTRIBUTE}_task") for task in tasks: model.add_task(task) emmental_learner = EmmentalLearner() emmental_learner.learn(model, [train_dataloader]) test_preds = model.predict(test_dataloader, return_preds=True) positive = np.where(np.array(test_preds["probs"][ATTRIBUTE])[:, TRUE] > 0.7) true_pred = [test_cands[0][_] for _ in positive[0]] (TP, FP, FN) = entity_level_f1( true_pred, gold_file, ATTRIBUTE, test_docs, parts_by_doc=parts_by_doc ) tp_len = len(TP) fp_len = len(FP) fn_len = len(FN) prec = tp_len / (tp_len + fp_len) if tp_len + fp_len > 0 else float("nan") rec = tp_len / (tp_len + fn_len) if tp_len + fn_len > 0 else float("nan") f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan") logger.info(f"prec: {prec}") logger.info(f"rec: {rec}") logger.info(f"f1: {f1}") assert f1 > 0.7
fonduer-master
tests/e2e/test_e2e.py
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys exec(open("../src/fonduer/_version.py").read()) sys.path.insert(0, os.path.abspath("../src/")) autodoc_mock_imports = [ "bs4", "cloudpickle", "editdistance", "emmental", "lxml", "mlflow", "numpy", "pandas", "scipy", "spacy", "snorkel", "torch", "tqdm", "treedlib", "wand", "yaml", ] # -- Project information ----------------------------------------------------- project = "Fonduer" copyright = "2018, HazyResearch" author = "HazyResearch" # The short X.Y version version = __version__.split("+")[0] # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.viewcode", "sphinx_autodoc_typehints", "sphinxcontrib.mermaid", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = ".rst" # The master toctree document. master_doc = "index" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["static"] html_logo = "static/img/fonduer.svg" html_theme_options = {"logo_only": True, "display_version": False} # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = "Fonduerdoc" # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, "Fonduer.tex", "Fonduer Documentation", "HazyResearch", "manual") ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "fonduer", "Fonduer Documentation", [author], 1)] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "Fonduer", "Fonduer Documentation", author, "Fonduer", "One line description of project.", "Miscellaneous", ) ] # -- Extension configuration ------------------------------------------------- autoclass_content = "both"
fonduer-master
docs/conf.py
"""Fonduer version.""" __version__ = "0.9.0+dev"
fonduer-master
src/fonduer/_version.py
"""Fonduer package.""" from fonduer._version import __version__ from fonduer.meta import Meta, init_logging __all__ = ["__version__", "Meta", "init_logging"]
fonduer-master
src/fonduer/__init__.py
"""Fonduer meta class.""" import logging import os import tempfile from builtins import object from datetime import datetime from typing import Any, Optional, Type from urllib.parse import urlparse import sqlalchemy from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker logger = logging.getLogger(__name__) def init_logging( log_dir: str = tempfile.gettempdir(), format: str = "[%(asctime)s][%(levelname)s] %(name)s:%(lineno)s - %(message)s", level: int = logging.INFO, ) -> None: """Configure logging to output to the provided log_dir. Will use a nested directory whose name is the current timestamp. :param log_dir: The directory to store logs in. :param format: The logging format string to use. :param level: The logging level to use, e.g., logging.INFO. """ if not Meta.log_path: # Generate a new directory using the log_dir, if it doesn't exist dt = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") log_path = os.path.join(log_dir, dt) if not os.path.exists(log_path): os.makedirs(log_path) # Configure the logger using the provided path logging.basicConfig( format=format, level=level, handlers=[ logging.FileHandler(os.path.join(log_path, "fonduer.log")), logging.StreamHandler(), ], ) # Notify user of log location logger.info(f"Setting logging directory to: {log_path}") Meta.log_path = log_path else: logger.info( f"Logging was already initialized to use {Meta.log_path}. " "To configure logging manually, call fonduer.init_logging before " "initialiting Meta." ) # Defines procedure for setting up a sessionmaker def new_sessionmaker() -> sessionmaker: """Create new sessionmaker. Turning on autocommit for Postgres, see http://oddbird.net/2014/06/14/sqlalchemy-postgres-autocommit/. Otherwise performance suffers with multiple notebooks/processes/etc due to lock contention on the tables. """ try: engine = create_engine( Meta.conn_string, client_encoding="utf8", executemany_mode="batch", isolation_level="AUTOCOMMIT", ) except sqlalchemy.exc.OperationalError as e: raise ValueError( f"{e}\n" f"To resolve this error, check our FAQs at: " f"https://fonduer.readthedocs.io/en/latest/user/faqs.html" ) except Exception as e: raise ValueError( f"{e}\n" f"Meta variables have not been initialized with " f"a valid postgres connection string.\n" f"Use the form: " f"postgresql://<user>:<pw>@<host>:<port>/<database_name>" ) # New sessionmaker return sessionmaker(bind=engine) def _update_meta(conn_string: str) -> None: """Update Meta class.""" url = urlparse(conn_string) Meta.conn_string = conn_string Meta.DBNAME = url.path[1:] Meta.DBUSER = url.username Meta.DBPWD = url.password Meta.DBHOST = url.hostname Meta.DBPORT = url.port Meta.postgres = url.scheme.startswith("postgresql") class Meta(object): """Singleton-like metadata class for all global variables. Adapted from the Unique Design Pattern: https://stackoverflow.com/questions/1318406/why-is-the-borg-pattern-better-than-the-singleton-pattern-in-python """ # Static class variables conn_string: Optional[str] = None DBNAME: Optional[str] = None DBUSER: Optional[str] = None DBHOST: Optional[str] = None DBPORT: Optional[int] = None DBPWD: Optional[str] = None Session = None engine = None Base: Any = declarative_base(name="Base", cls=object) postgres = False log_path: Optional[str] = None @classmethod def init(cls, conn_string: Optional[str] = None) -> Type["Meta"]: """Return the unique Meta class.""" if conn_string: _update_meta(conn_string) # We initialize the engine within the models module because models' # schema can depend on which data types are supported by the engine Meta.Session = new_sessionmaker() Meta.engine = Meta.Session.kw["bind"] logger.info( f"Connecting user:{Meta.DBUSER} " f"to {Meta.DBHOST}:{Meta.DBPORT}/{Meta.DBNAME}" ) Meta._init_db() if not Meta.log_path: init_logging() return cls @classmethod def _init_db(cls) -> None: """Initialize the storage schema. This call must be performed after all classes that extend Base are declared to ensure the storage schema is initialized. """ # This list of import defines which SQLAlchemy classes will be # initialized when Meta.init() is called. If a sqlalchemy class is not # imported before the call to create_all(), it will not be created. import fonduer.candidates.models # noqa import fonduer.features.models # noqa import fonduer.learning.models # noqa import fonduer.parser.models # noqa import fonduer.supervision.models # noqa import fonduer.utils.models # noqa logger.info("Initializing the storage schema") Meta.Base.metadata.create_all(Meta.engine)
fonduer-master
src/fonduer/meta.py
"""Fonduer's candidate module.""" from fonduer.candidates.candidates import CandidateExtractor from fonduer.candidates.mentions import ( MentionCaptions, MentionCells, MentionDocuments, MentionExtractor, MentionFigures, MentionNgrams, MentionParagraphs, MentionSections, MentionSentences, MentionTables, ) __all__ = [ "CandidateExtractor", "MentionCaptions", "MentionCells", "MentionDocuments", "MentionExtractor", "MentionFigures", "MentionNgrams", "MentionParagraphs", "MentionSections", "MentionSentences", "MentionTables", ]
fonduer-master
src/fonduer/candidates/__init__.py
"""Fonduer mention.""" import logging import re from builtins import map, range from typing import Any, Collection, Dict, Iterable, Iterator, List, Optional, Set, Union from sqlalchemy.orm import Session from fonduer.candidates.matchers import _Matcher from fonduer.candidates.models import Candidate, Mention from fonduer.candidates.models.candidate import candidate_subclasses from fonduer.candidates.models.caption_mention import TemporaryCaptionMention from fonduer.candidates.models.cell_mention import TemporaryCellMention from fonduer.candidates.models.document_mention import TemporaryDocumentMention from fonduer.candidates.models.figure_mention import TemporaryFigureMention from fonduer.candidates.models.paragraph_mention import TemporaryParagraphMention from fonduer.candidates.models.section_mention import TemporarySectionMention from fonduer.candidates.models.span_mention import TemporarySpanMention from fonduer.candidates.models.table_mention import TemporaryTableMention from fonduer.candidates.models.temporary_context import TemporaryContext from fonduer.parser.models import Context, Document, Sentence from fonduer.utils.udf import UDF, UDFRunner from fonduer.utils.utils import get_dict_of_stable_id logger = logging.getLogger(__name__) class MentionSpace(object): """Define the **space** of Mention objects. Calling *apply(x)* given an object *x* returns a generator over mentions in *x*. """ def __init__(self) -> None: """Initialize mention space.""" pass def apply(self, x: Context) -> Iterator[TemporaryContext]: """Apply function takes a Context and return a mention generator. :param x: The input Context. :yield: The mention generator. """ raise NotImplementedError() class Ngrams(MentionSpace): """Define the space of Mentions as all n-grams in a Sentence. Define the space of Mentions as all n-grams (n_min <= n <= n_max) in a Sentence *x*, indexing by **character offset**. :param n_min: Lower limit for the generated n_grams. :param n_max: Upper limit for the generated n_grams. :param split_tokens: Tokens, on which unigrams are split into two separate unigrams. :type split_tokens: tuple, list of str. """ def __init__( self, n_min: int = 1, n_max: int = 5, split_tokens: Collection[str] = [] ) -> None: """Initialize Ngrams.""" MentionSpace.__init__(self) self.n_min = n_min self.n_max = n_max self.split_rgx = ( r"(" + r"|".join(map(re.escape, sorted(split_tokens, reverse=True))) + r")" if split_tokens and len(split_tokens) > 0 else None ) def apply(self, context: Sentence) -> Iterator[TemporarySpanMention]: """Apply function takes a Sentence and return a mention generator. :param x: The input Sentence. :yield: The mention generator. """ # These are the character offset--**relative to the sentence # start**--for each _token_ offsets = context.char_offsets # Loop over all n-grams in **reverse** order (to facilitate # longest-match semantics) L = len(offsets) seen: Set[TemporarySpanMention] = set() for j in range(self.n_min, self.n_max + 1)[::-1]: for i in range(L - j + 1): w = context.words[i + j - 1] start = offsets[i] end = offsets[i + j - 1] + len(w) - 1 ts = TemporarySpanMention( char_start=start, char_end=end, sentence=context ) if ts not in seen: seen.add(ts) yield ts # Check for split if ( j == 1 and self.n_max >= 1 and self.n_min <= 1 and self.split_rgx is not None and end - start > 0 ): text = context.text[start - offsets[0] : end - offsets[0] + 1] start_idxs = [0] end_idxs = [] for m in re.finditer(self.split_rgx, text): start_idxs.append(m.end()) end_idxs.append(m.start()) end_idxs.append(len(text)) for start_idx in start_idxs: for end_idx in end_idxs: if start_idx < end_idx: ts = TemporarySpanMention( char_start=start_idx, char_end=end_idx - 1, sentence=context, ) if ts not in seen and ts.get_span(): seen.add(ts) yield ts class MentionNgrams(Ngrams): """Defines the **space** of Mentions as n-grams in a Document. Defines the space of Mentions as all n-grams (n_min <= n <= n_max) in a Document *x*, divided into Sentences inside of html elements (such as table cells). :param n_min: Lower limit for the generated n_grams. :param n_max: Upper limit for the generated n_grams. :param split_tokens: Tokens, on which unigrams are split into two separate unigrams. :type split_tokens: tuple, list of str. """ def __init__( self, n_min: int = 1, n_max: int = 5, split_tokens: Collection[str] = [] ) -> None: """Initialize MentionNgrams.""" Ngrams.__init__(self, n_min=n_min, n_max=n_max, split_tokens=split_tokens) def apply(self, doc: Document) -> Iterator[TemporarySpanMention]: """Generate MentionNgrams from a Document by parsing all of its Sentences. :param doc: The ``Document`` to parse. :raises TypeError: If the input doc is not of type ``Document``. """ if not isinstance(doc, Document): raise TypeError( "Input Contexts to MentionNgrams.apply() must be of type Document" ) for sentence in doc.sentences: for ts in Ngrams.apply(self, sentence): yield ts class MentionFigures(MentionSpace): """Defines the space of Mentions as all figures in a Document *x*. :param types: If specified, only yield TemporaryFigureMentions whose url ends in one of the specified types. Example: types=["png", "jpg", "jpeg"]. :type types: list, tuple of str """ def __init__(self, types: Optional[str] = None) -> None: """Initialize MentionFigures.""" MentionSpace.__init__(self) if types is not None: self.types = [t.strip().lower() for t in types] else: self.types = None def apply(self, doc: Document) -> Iterator[TemporaryFigureMention]: """ Generate MentionFigures from a Document by parsing all of its Figures. :param doc: The ``Document`` to parse. :raises TypeError: If the input doc is not of type ``Document``. """ if not isinstance(doc, Document): raise TypeError( "Input Contexts to MentionFigures.apply() must be of type Document" ) for figure in doc.figures: if self.types is None or any( figure.url.lower().endswith(type) for type in self.types ): yield TemporaryFigureMention(figure) class MentionSentences(MentionSpace): """Defines the space of Mentions as all sentences in a Document *x*.""" def __init__(self) -> None: """Initialize MentionSentences.""" MentionSpace.__init__(self) def apply(self, doc: Document) -> Iterator[TemporarySpanMention]: """ Generate MentionSentences from a Document by parsing all of its Sentences. :param doc: The ``Document`` to parse. :raises TypeError: If the input doc is not of type ``Document``. """ if not isinstance(doc, Document): raise TypeError( "Input Contexts to MentionSentences.apply() must be of type Document" ) for sentence in doc.sentences: yield TemporarySpanMention( char_start=0, char_end=len(sentence.text) - 1, sentence=sentence ) class MentionParagraphs(MentionSpace): """Defines the space of Mentions as all paragraphs in a Document *x*.""" def __init__(self) -> None: """Initialize MentionParagraphs.""" MentionSpace.__init__(self) def apply(self, doc: Document) -> Iterator[TemporaryParagraphMention]: """ Generate MentionParagraphs from a Document by parsing all of its Paragraphs. :param doc: The ``Document`` to parse. :raises TypeError: If the input doc is not of type ``Document``. """ if not isinstance(doc, Document): raise TypeError( "Input Contexts to MentionParagraphs.apply() must be of type Document" ) for paragraph in doc.paragraphs: yield TemporaryParagraphMention(paragraph) class MentionCaptions(MentionSpace): """Defines the space of Mentions as all captions in a Document *x*.""" def __init__(self) -> None: """Initialize MentionCaptions.""" MentionSpace.__init__(self) def apply(self, doc: Document) -> Iterator[TemporaryCaptionMention]: """ Generate MentionCaptions from a Document by parsing all of its Captions. :param doc: The ``Document`` to parse. :raises TypeError: If the input doc is not of type ``Document``. """ if not isinstance(doc, Document): raise TypeError( "Input Contexts to MentionCaptions.apply() must be of type Document" ) for caption in doc.captions: yield TemporaryCaptionMention(caption) class MentionCells(MentionSpace): """Defines the space of Mentions as all cells in a Document *x*.""" def __init__(self) -> None: """Initialize MentionCells.""" MentionSpace.__init__(self) def apply(self, doc: Document) -> Iterator[TemporaryCellMention]: """ Generate MentionCells from a Document by parsing all of its Cells. :param doc: The ``Document`` to parse. :raises TypeError: If the input doc is not of type ``Document``. """ if not isinstance(doc, Document): raise TypeError( "Input Contexts to MentionCells.apply() must be of type Document" ) for cell in doc.cells: yield TemporaryCellMention(cell) class MentionTables(MentionSpace): """Defines the space of Mentions as all tables in a Document *x*.""" def __init__(self) -> None: """Initialize MentionTables.""" MentionSpace.__init__(self) def apply(self, doc: Document) -> Iterator[TemporaryTableMention]: """ Generate MentionTables from a Document by parsing all of its Tables. :param doc: The ``Document`` to parse. :raises TypeError: If the input doc is not of type ``Document``. """ if not isinstance(doc, Document): raise TypeError( "Input Contexts to MentionTables.apply() must be of type Document" ) for table in doc.tables: yield TemporaryTableMention(table) class MentionSections(MentionSpace): """Defines the space of Mentions as all sections in a Document *x*.""" def __init__(self) -> None: """Initialize MentionSections.""" MentionSpace.__init__(self) def apply(self, doc: Document) -> Iterator[TemporarySectionMention]: """ Generate MentionSections from a Document by parsing all of its Sections. :param doc: The ``Document`` to parse. :raises TypeError: If the input doc is not of type ``Document``. """ if not isinstance(doc, Document): raise TypeError( "Input Contexts to MentionSections.apply() must be of type Document" ) for section in doc.sections: yield TemporarySectionMention(section) class MentionDocuments(MentionSpace): """Defines the space of Mentions as a document in a Document *x*.""" def __init__(self) -> None: """Initialize MentionDocuments.""" MentionSpace.__init__(self) def apply(self, doc: Document) -> Iterator[TemporaryDocumentMention]: """ Generate MentionDocuments from a Document by using document. :param doc: The ``Document`` to parse. :raises TypeError: If the input doc is not of type ``Document``. """ if not isinstance(doc, Document): raise TypeError( "Input Contexts to MentionDocuments.apply() must be of type Document" ) yield TemporaryDocumentMention(doc) class MentionExtractor(UDFRunner): """An operator to extract Mention objects from a Context. :Example: Assuming we want to extract two types of ``Mentions``, a Part and a Temperature, and we have already defined Matchers to use:: part_ngrams = MentionNgrams(n_max=3) temp_ngrams = MentionNgrams(n_max=2) Part = mention_subclass("Part") Temp = mention_subclass("Temp") mention_extractor = MentionExtractor( session, [Part, Temp], [part_ngrams, temp_ngrams], [part_matcher, temp_matcher] ) :param session: An initialized database session. :param mention_classes: The type of relation to extract, defined using :func: fonduer.mentions.mention_subclass. :param mention_spaces: one or list of :class:`MentionSpace` objects, one for each relation argument. Defines space of Contexts to consider :param matchers: one or list of :class:`fonduer.matchers.Matcher` objects, one for each relation argument. Only tuples of Contexts for which each element is accepted by the corresponding Matcher will be returned as Mentions :param parallelism: The number of processes to use in parallel for calls to apply(). :raises ValueError: If mention classes, spaces, and matchers are not the same length. """ def __init__( self, session: Session, mention_classes: List[Mention], mention_spaces: List[MentionSpace], matchers: List[_Matcher], parallelism: int = 1, ): """Initialize the MentionExtractor.""" super().__init__( session, MentionExtractorUDF, parallelism=parallelism, mention_classes=mention_classes, mention_spaces=mention_spaces, matchers=matchers, ) # Check that arity is same arity = len(mention_classes) if not all( len(x) == arity # type: ignore for x in [mention_classes, mention_spaces, matchers] ): raise ValueError( "Mismatched arity of mention classes, spaces, and matchers." ) self.mention_classes = mention_classes def apply( # type: ignore self, docs: Collection[Document], clear: bool = True, parallelism: Optional[int] = None, progress_bar: bool = True, ) -> None: """Run the MentionExtractor. :Example: To extract mentions from a set of training documents using 4 cores:: mention_extractor.apply(train_docs, parallelism=4) :param docs: Set of documents to extract from. :param clear: Whether or not to clear the existing Mentions beforehand. :param parallelism: How many threads to use for extraction. This will override the parallelism value used to initialize the MentionExtractor if it is provided. :param progress_bar: Whether or not to display a progress bar. The progress bar is measured per document. """ super().apply( docs, clear=clear, parallelism=parallelism, progress_bar=progress_bar ) def clear(self) -> None: # type: ignore """Delete Mentions of each class in the extractor from the given split.""" # Create set of candidate_subclasses associated with each mention_subclass cand_subclasses = set() for mentions, tablename in [ (_[1][0], _[1][1]) for _ in candidate_subclasses.values() ]: for mention in mentions: if mention in self.mention_classes: cand_subclasses.add(tablename) # First, clear all the Mentions. This will cascade and remove the # mention_subclasses and corresponding candidate_subclasses. for mention_class in self.mention_classes: logger.info(f"Clearing table: {mention_class.__tablename__}") self.session.query(Mention).filter_by( type=mention_class.__tablename__ ).delete(synchronize_session="fetch") # Next, clear the Candidates. This is done manually because we have # no cascading relationship from candidate_subclass to Candidate. for cand_subclass in cand_subclasses: logger.info(f"Cascading to clear table: {cand_subclass}") self.session.query(Candidate).filter_by(type=cand_subclass).delete( synchronize_session="fetch" ) def clear_all(self) -> None: """Delete all Mentions from given split the database.""" logger.info("Clearing ALL Mentions.") self.session.query(Mention).delete(synchronize_session="fetch") # With no Mentions, there should be no Candidates also self.session.query(Candidate).delete(synchronize_session="fetch") logger.info("Cleared ALL Mentions (and Candidates).") def get_mentions( self, docs: Union[Document, Iterable[Document], None] = None, sort: bool = False ) -> List[List[Mention]]: """Return a list of lists of the mentions associated with this extractor. Each list of the return will contain the Mentions for one of the mention classes associated with the MentionExtractor. :param docs: If provided, return Mentions from these documents. Else, return all Mentions. :param sort: If sort is True, then return all Mentions sorted by stable_id. :return: Mentions for each mention_class. """ result = [] if docs: docs = docs if isinstance(docs, Iterable) else [docs] # Get cands from all splits for mention_class in self.mention_classes: mentions = ( self.session.query(mention_class) .filter(mention_class.document_id.in_([doc.id for doc in docs])) .order_by(mention_class.id) .all() ) if sort: mentions = sorted(mentions, key=lambda x: x[0].get_stable_id()) result.append(mentions) else: for mention_class in self.mention_classes: mentions = ( self.session.query(mention_class).order_by(mention_class.id).all() ) if sort: mentions = sorted(mentions, key=lambda x: x[0].get_stable_id()) result.append(mentions) return result class MentionExtractorUDF(UDF): """UDF for performing mention extraction.""" def __init__( self, mention_classes: Union[Mention, List[Mention]], mention_spaces: Union[MentionSpace, List[MentionSpace]], matchers: Union[_Matcher, List[_Matcher]], **kwargs: Any, ): """Initialize the MentionExtractorUDF.""" self.mention_classes = ( mention_classes if isinstance(mention_classes, (list, tuple)) else [mention_classes] ) self.mention_spaces = ( mention_spaces if isinstance(mention_spaces, (list, tuple)) else [mention_spaces] ) self.matchers = matchers if isinstance(matchers, (list, tuple)) else [matchers] # Preallocates internal data structure self.child_context_set: Set[TemporaryContext] = set() super().__init__(**kwargs) def apply(self, doc: Document, **kwargs: Any) -> Document: """Extract mentions from the given Document. :param doc: A document to process. """ # Get a dict of stable_id of contexts. dict_of_stable_id: Dict[str, Context] = get_dict_of_stable_id(doc) # Iterate over each mention class for i, mention_class in enumerate(self.mention_classes): # Generate TemporaryContexts that are children of the context using # the mention_space and filtered by the Matcher for child_context in self.matchers[i].apply( self.mention_spaces[i].apply(doc) ): # Skip if this temporary context is used by this mention class. stable_id = child_context.get_stable_id() if hasattr(doc, mention_class.__tablename__ + "s") and any( [ m.context.stable_id == stable_id for m in getattr(doc, mention_class.__tablename__ + "s") ] ): continue # Re-use a persisted context if exists. if stable_id in dict_of_stable_id: context = dict_of_stable_id[stable_id] # Persist a temporary context. else: context_type = child_context._get_table() context = context_type(child_context) dict_of_stable_id[stable_id] = context mention_args = {"document": doc, "context": context} # Add Mention to session mention_class(**mention_args) return doc
fonduer-master
src/fonduer/candidates/mentions.py
"""Fonduer matcher.""" import re from typing import Iterator, Set from fonduer.candidates.models.figure_mention import TemporaryFigureMention from fonduer.candidates.models.span_mention import TemporarySpanMention from fonduer.candidates.models.temporary_context import TemporaryContext WORDS = "words" class _Matcher(object): """Matcher class. Apply a function ``f : m -> {True, False}`` to a generator of mentions, returning only mentions *m* s.t. *f(m) == True*, where f can be compositionally defined. """ def __init__(self, *children, **opts): # type: ignore self.children = children self.opts = opts self.longest_match_only = self.opts.get("longest_match_only", True) self.init() self._check_opts() def init(self) -> None: pass def _check_opts(self) -> None: """Check for unsupported opts, throws error if found. NOTE: Must be called _after_ init() """ for opt in self.opts.keys(): if opt not in self.__dict__: raise Exception(f"Unsupported option: {opt}") def _f(self, m: TemporaryContext) -> bool: """Non-composed version of filter function f.""" return True def f(self, m: TemporaryContext) -> bool: """(Recursively) Composed version of filter function f. By default, returns logical **conjunction** of operator and single child operator """ if len(self.children) == 0: return self._f(m) elif len(self.children) == 1: return self._f(m) and self.children[0].f(m) else: raise Exception( f"{self.__class__.__name__} does not support two or more child Matcher" ) def apply(self, mentions: Iterator[TemporaryContext]) -> Iterator[TemporaryContext]: """Apply the Matcher to a **generator** of mentions. Optionally only takes the longest match (NOTE: assumes this is the *first* match) """ seen_mentions: Set[TemporaryContext] = set() for m in mentions: if self.f(m) and ( not self.longest_match_only or not any([m in s for s in seen_mentions]) ): if self.longest_match_only: seen_mentions.add(m) yield m class DictionaryMatch(_Matcher): """Select mention Ngrams that match against a given list *d*. :param d: A list of strings representing a dictionary. :type d: list of str :param ignore_case: Whether to ignore the case when matching. Default True. :type ignore_case: bool :param inverse: Whether to invert the results (e.g., return those which are not in the list). Default False. :type inverse: bool :param stemmer: Optionally provide a stemmer to preprocess the dictionary. Can be any object which has a ``stem(str) -> str`` method like ``PorterStemmer()``. Default None. """ def init(self) -> None: """Initialize the dictionary matcher.""" self.ignore_case = self.opts.get("ignore_case", True) self.attrib = self.opts.get("attrib", WORDS) self.inverse = self.opts.get("inverse", False) try: self.d = frozenset( w.lower() if self.ignore_case else w for w in self.opts["d"] ) except KeyError: raise Exception("Please supply a dictionary (list of strings) d as d=d.") # Optionally use a stemmer, preprocess the dictionary # Note that user can provide *an object having a stem() method* self.stemmer = self.opts.get("stemmer", None) if self.stemmer: self.d = frozenset(self._stem(w) for w in list(self.d)) def _stem(self, w: str) -> str: """Apply stemmer, handling encoding errors.""" try: return self.stemmer.stem(w) except UnicodeDecodeError: return w def _f(self, m: TemporaryContext) -> bool: if not isinstance(m, TemporarySpanMention): raise ValueError( f"{self.__class__.__name__} only supports TemporarySpanMention" ) p = m.get_attrib_span(self.attrib) p = p.lower() if self.ignore_case else p p = self._stem(p) if self.stemmer is not None else p return (not self.inverse) if p in self.d else self.inverse class LambdaFunctionMatcher(_Matcher): """Select ``Ngrams`` that return True when fed to a function f. :param func: The function to evaluate with a signature of ``f: m -> {True, False}``, where ``m`` denotes a mention. More precisely, ``m`` is an instance of child class of :class:`TemporaryContext`, depending on which :class:`MentionSpace` is used. E.g., :class:`TemporarySpanMention` when :class:`MentionNgrams` is used. :type func: function :param longest_match_only: Whether to only return the longest span matched, rather than all spans. Default False. :type longest_match_only: bool """ def init(self) -> None: """Initialize the lambda function matcher.""" self.attrib = self.opts.get("attrib", WORDS) # Set longest match only to False by default. self.longest_match_only = self.opts.get("longest_match_only", False) try: self.func = self.opts["func"] except KeyError: raise Exception("Please supply a function f as func=f.") def _f(self, m: TemporaryContext) -> bool: """Non-composed version of filter function f.""" if not isinstance(m, TemporarySpanMention): raise ValueError( f"{self.__class__.__name__} only supports TemporarySpanMention" ) return self.func(m) class Union(_Matcher): """Take the union of mention sets returned by the provided ``Matchers``. :param longest_match_only: If True, only return the longest match. Default True. Overrides longest_match_only of its child ``Matchers``. :type longest_match_only: bool """ def f(self, m: TemporaryContext) -> bool: """Non-composed version of filter function f.""" for child in self.children: if child.f(m): return True return False class Intersect(_Matcher): """Take the intersection of mention sets returned by the provided ``Matchers``. :param longest_match_only: If True, only return the longest match. Default True. Overrides longest_match_only of its child ``Matchers``. :type longest_match_only: bool """ def f(self, m: TemporaryContext) -> bool: """Non-composed version of filter function f.""" for child in self.children: if not child.f(m): return False return True class Inverse(_Matcher): """Return the opposite result of ifs child ``Matcher``. :raises ValueError: If more than one Matcher is provided. :param longest_match_only: If True, only return the longest match. Default True. Overrides longest_match_only of its child ``Matchers``. :type longest_match_only: bool """ def __init__(self, *children, **opts): # type: ignore """Initialize inverse matcher.""" if not len(children) == 1: raise ValueError("Provide a single Matcher.") super().__init__(*children, **opts) def f(self, m: TemporaryContext) -> bool: """Non-composed version of filter function f.""" child = self.children[0] return not child.f(m) class Concat(_Matcher): """Concatenate mentions generated by Matchers. Select mentions which are the concatenation of adjacent matches from child operators. :Example: A concatenation of a NumberMatcher and PersonMatcher could match on a span of text like "10 Obama". :param permutations: Default False. :type permutations: bool :param left_required: Whether or not to require the left child to match. Default True. :type left_required: bool :param right_required: Whether or not to require the right child to match. Default True. :type right_required: bool :param ignore_sep: Whether or not to ignore the separator. Default True. :type ignore_sep: bool :param sep: If not ignoring the separator, specify which separator to look for. Default sep=" ". :type set: str :raises ValueError: If Concat is not provided with two child matcher objects. .. note:: Currently slices on **word index** and considers concatenation along these divisions only. """ def init(self) -> None: """Initialize concatenate matcher.""" self.permutations = self.opts.get("permutations", False) self.left_required = self.opts.get("left_required", True) self.right_required = self.opts.get("right_required", True) self.ignore_sep = self.opts.get("ignore_sep", True) self.sep = self.opts.get("sep", " ") def f(self, m: TemporaryContext) -> bool: """Non-composed version of filter function f.""" if not isinstance(m, TemporarySpanMention): raise ValueError( f"{self.__class__.__name__} only supports TemporarySpanMention" ) if len(self.children) != 2: raise ValueError("Concat takes two child Matcher objects as arguments.") if not self.left_required and self.children[1].f(m): return True if not self.right_required and self.children[0].f(m): return True # Iterate over mention splits **at the word boundaries** for wsplit in range(m.get_word_start_index() + 1, m.get_word_end_index() + 1): csplit = ( m._word_to_char_index(wsplit) - m.char_start ) # NOTE the switch to **mention-relative** char index # Optionally check for specific separator if self.ignore_sep or m.get_span()[csplit - 1] == self.sep: m1 = m[: csplit - len(self.sep)] m2 = m[csplit:] if self.children[0].f(m1) and self.children[1].f(m2): return True if ( self.permutations and self.children[1].f(m1) and self.children[0].f(m2) ): return True return False class _RegexMatch(_Matcher): """Regex matcher class. Select mentions using a regular expression. Does not specify the semantics of *what* is being matched yet. """ def init(self) -> None: try: self.rgx = self.opts["rgx"] except KeyError: raise Exception("Please supply a regular expression string r as rgx=r.") self.ignore_case = self.opts.get("ignore_case", True) self.attrib = self.opts.get("attrib", WORDS) self.sep = self.opts.get("sep", "") # Extending the _RegexMatch to handle search(instead of only match) # and adding a toggle for full span match. # Default values are set to False and True for search flag and full # span matching flag respectively. self.search = self.opts.get("search", False) self.full_match = self.opts.get("full_match", True) # Compile regex matcher # NOTE: Enforce full span matching by ensuring that regex ends with $. # Group self.rgx first so that $ applies to all components of an 'OR' # expression. (e.g., we want r'(a|b)$' instead of r'a|b$') self.rgx = ( self.rgx if self.rgx.endswith("$") or not self.full_match else ("(" + self.rgx + ")$") ) self.r = re.compile( self.rgx, flags=(re.I if self.ignore_case else 0) | re.UNICODE ) def _f(self, m: TemporaryContext) -> bool: raise NotImplementedError() class RegexMatchSpan(_RegexMatch): """Match regex pattern on **full concatenated span**. :param rgx: The RegEx pattern to use. :type rgx: str :param ignore_case: Whether or not to ignore case in the RegEx. Default True. :type ignore_case: bool :param search: If True, *search* the regex pattern through the concatenated span. If False, try to *match* the regex patten only at its beginning. Default False. :type search: bool :param full_match: If True, wrap the provided rgx with ``(<rgx>)$``. Default True. :type full_match: bool :param longest_match_only: If True, only return the longest match. Default True. Will be overridden by the parent matcher like :class:`Union` when it is wrapped by :class:`Union`, :class:`Intersect`, or :class:`Inverse`. :type longest_match_only: bool """ def _f(self, m: TemporaryContext) -> bool: if not isinstance(m, TemporarySpanMention): raise ValueError( f"{self.__class__.__name__} only supports TemporarySpanMention" ) if self.search: return ( True if self.r.search(m.get_attrib_span(self.attrib, sep=self.sep)) is not None else False ) else: return ( True if self.r.match(m.get_attrib_span(self.attrib, sep=self.sep)) is not None else False ) class RegexMatchEach(_RegexMatch): """Match regex pattern on **each token**. :param rgx: The RegEx pattern to use. :type rgx: str :param ignore_case: Whether or not to ignore case in the RegEx. Default True. :type ignore_case: bool :param full_match: If True, wrap the provided rgx with ``(<rgx>)$``. Default True. :type full_match: bool :param longest_match_only: If True, only return the longest match. Default True. :type longest_match_only: bool """ def _f(self, m: TemporaryContext) -> bool: if not isinstance(m, TemporarySpanMention): raise ValueError( f"{self.__class__.__name__} only supports TemporarySpanMention" ) tokens = m.get_attrib_tokens(self.attrib) return ( True if tokens and all([self.r.match(t) is not None for t in tokens]) else False ) class PersonMatcher(RegexMatchEach): """ Match Spans that are the names of people, as identified by spaCy. A convenience class for setting up a RegexMatchEach to match spans for which each token was tagged as a person (PERSON). """ def __init__(self, *children, **kwargs): # type: ignore """Initialize person matcher.""" kwargs["attrib"] = "ner_tags" kwargs["rgx"] = "PERSON" super().__init__(*children, **kwargs) class LocationMatcher(RegexMatchEach): """ Match Spans that are the names of locations, as identified by spaCy. A convenience class for setting up a RegexMatchEach to match spans for which each token was tagged as a location (GPE or LOC). """ def __init__(self, *children, **kwargs): # type: ignore """Initialize location matcher.""" kwargs["attrib"] = "ner_tags" kwargs["rgx"] = "GPE|LOC" super().__init__(*children, **kwargs) class OrganizationMatcher(RegexMatchEach): """ Match Spans that are the names of organizations, as identified by spaCy. A convenience class for setting up a RegexMatchEach to match spans for which each token was tagged as an organization (NORG or ORG). """ def __init__(self, *children, **kwargs): # type: ignore """Initialize organization matcher.""" kwargs["attrib"] = "ner_tags" kwargs["rgx"] = "NORG|ORG" super().__init__(*children, **kwargs) class DateMatcher(RegexMatchEach): """ Match Spans that are dates, as identified by spaCy. A convenience class for setting up a RegexMatchEach to match spans for which each token was tagged as a date (DATE). """ def __init__(self, *children, **kwargs): # type: ignore """Initialize date matcher.""" kwargs["attrib"] = "ner_tags" kwargs["rgx"] = "DATE" super().__init__(*children, **kwargs) class NumberMatcher(RegexMatchEach): """ Match Spans that are numbers, as identified by spaCy. A convenience class for setting up a RegexMatchEach to match spans for which each token was tagged as a number (CARDINAL or QUANTITY). """ def __init__(self, *children, **kwargs): # type: ignore """Initialize number matcher.""" kwargs["attrib"] = "ner_tags" kwargs["rgx"] = "CARDINAL|QUANTITY" super().__init__(*children, **kwargs) class MiscMatcher(RegexMatchEach): """ Match Spans that are miscellaneous named entities, as identified by spaCy. A convenience class for setting up a RegexMatchEach to match spans for which each token was tagged as miscellaneous (MISC). """ def __init__(self, *children, **kwargs): # type: ignore """Initialize miscellaneous matcher.""" kwargs["attrib"] = "ner_tags" kwargs["rgx"] = "MISC" super().__init__(*children, **kwargs) class LambdaFunctionFigureMatcher(_Matcher): """Select Figures that return True when fed to a function f. :param func: The function to evaluate. See :class:`LambdaFunctionMatcher` for details. :type func: function """ def init(self) -> None: """Initialize lambda function figure matcher.""" # Set longest match only to False self.longest_match_only = False try: self.func = self.opts["func"] except KeyError: raise Exception("Please supply a function f as func=f.") def _f(self, m: TemporaryContext) -> bool: """Non-composed version of filter function f.""" if not isinstance(m, TemporaryFigureMention): raise ValueError( f"{self.__class__.__name__} only supports TemporaryFigureMention" ) return self.func(m) class DoNothingMatcher(_Matcher): """Matcher class for doing nothing.""" pass
fonduer-master
src/fonduer/candidates/matchers.py
"""Fonduer candidate.""" import logging from builtins import range from itertools import product from typing import ( Any, Callable, Collection, Iterable, List, Optional, Tuple, Type, Union, ) from sqlalchemy.orm import Session from fonduer.candidates.models import Candidate, Mention from fonduer.parser.models.document import Document from fonduer.utils.udf import UDF, UDFRunner from fonduer.utils.utils import get_set_of_stable_ids logger = logging.getLogger(__name__) class CandidateExtractor(UDFRunner): """An operator to extract Candidate objects from a Context. :Example: Assuming we have already defined a Part and Temp ``Mention`` subclass, and a throttler called templ_throttler, we can create a candidate extractor as follows:: PartTemp = candidate_subclass("PartTemp", [Part, Temp]) candidate_extractor = CandidateExtractor( session, [PartTemp], throttlers=[temp_throttler] ) :param session: An initialized database session. :param candidate_classes: The types of relation to extract, defined using :func:`fonduer.candidates.candidate_subclass`. :param throttlers: optional functions for filtering out candidates which returns a Boolean expressing whether or not the candidate should be instantiated. :type throttlers: list of throttlers. :param self_relations: Boolean indicating whether to extract Candidates that relate the same context. Only applies to binary relations. :param nested_relations: Boolean indicating whether to extract Candidates that relate one Context with another that contains it. Only applies to binary relations. :param symmetric_relations: Boolean indicating whether to extract symmetric Candidates, i.e., rel(A,B) and rel(B,A), where A and B are Contexts. Only applies to binary relations. :param parallelism: The number of processes to use in parallel for calls to apply(). :raises ValueError: If throttlers are provided, but a throtters are not the same length as candidate classes. """ def __init__( self, session: Session, candidate_classes: List[Type[Candidate]], throttlers: Optional[List[Callable[[Tuple[Mention, ...]], bool]]] = None, self_relations: bool = False, nested_relations: bool = False, symmetric_relations: bool = True, parallelism: int = 1, ) -> None: """Set throttlers match candidate_classes if not provide.""" if throttlers is None: throttlers = [None] * len(candidate_classes) """Initialize the CandidateExtractor.""" super().__init__( session, CandidateExtractorUDF, parallelism=parallelism, candidate_classes=candidate_classes, throttlers=throttlers, self_relations=self_relations, nested_relations=nested_relations, symmetric_relations=symmetric_relations, ) # Check that arity is sensible if len(candidate_classes) != len(throttlers): raise ValueError( "Provided different number of throttlers and candidate classes." ) self.candidate_classes = candidate_classes def apply( # type: ignore self, docs: Collection[Document], split: int = 0, clear: bool = True, parallelism: Optional[int] = None, progress_bar: bool = True, ) -> None: """Run the CandidateExtractor. :Example: To extract candidates from a set of training documents using 4 cores:: candidate_extractor.apply(train_docs, split=0, parallelism=4) :param docs: Set of documents to extract from. :param split: Which split to assign the extracted Candidates to. :param clear: Whether or not to clear the existing Candidates beforehand. :param parallelism: How many threads to use for extraction. This will override the parallelism value used to initialize the CandidateExtractor if it is provided. :param progress_bar: Whether or not to display a progress bar. The progress bar is measured per document. """ super().apply( docs, split=split, clear=clear, parallelism=parallelism, progress_bar=progress_bar, ) def clear(self, split: int) -> None: # type: ignore """Clear Candidates of each class. Delete Candidates of each class initialized with the CandidateExtractor from the given split in the database. :param split: Which split to clear. """ for candidate_class in self.candidate_classes: logger.info( f"Clearing table {candidate_class.__tablename__} (split {split})" ) self.session.query(Candidate).filter( Candidate.type == candidate_class.__tablename__ ).filter(Candidate.split == split).delete(synchronize_session="fetch") def clear_all(self, split: int) -> None: """Delete ALL Candidates from given split the database. :param split: Which split to clear. """ logger.info("Clearing ALL Candidates.") self.session.query(Candidate).filter(Candidate.split == split).delete( synchronize_session="fetch" ) def get_candidates( self, docs: Union[Document, Iterable[Document], None] = None, split: int = 0, sort: bool = False, ) -> List[List[Candidate]]: """Return a list of lists of the candidates associated with this extractor. Each list of the return will contain the candidates for one of the candidate classes associated with the CandidateExtractor. :param docs: If provided, return candidates from these documents from all splits. :param split: If docs is None, then return all the candidates from this split. :param sort: If sort is True, then return all candidates sorted by stable_id. :return: Candidates for each candidate_class. """ result = [] if docs: docs = docs if isinstance(docs, Iterable) else [docs] # Get cands from all splits for candidate_class in self.candidate_classes: cands = ( self.session.query(candidate_class) .filter(candidate_class.document_id.in_([doc.id for doc in docs])) .order_by(candidate_class.id) .all() ) if sort: cands = sorted( cands, key=lambda x: "_".join( [x[i].context.get_stable_id() for i in range(len(x))] ), ) result.append(cands) else: for candidate_class in self.candidate_classes: # Filter by candidate_ids in a particular split sub_query = ( self.session.query(Candidate.id) .filter(Candidate.split == split) .subquery() ) cands = ( self.session.query(candidate_class) .filter(candidate_class.id.in_(sub_query)) .order_by(candidate_class.id) .all() ) if sort: cands = sorted( cands, key=lambda x: "_".join( [x[i].context.get_stable_id() for i in range(len(x))] ), ) result.append(cands) return result # Type alias for throttler Throttler = Callable[[Tuple[Mention, ...]], bool] class CandidateExtractorUDF(UDF): """UDF for performing candidate extraction.""" def __init__( self, candidate_classes: Union[Type[Candidate], List[Type[Candidate]]], throttlers: Union[Throttler, List[Throttler]], self_relations: bool, nested_relations: bool, symmetric_relations: bool, **kwargs: Any, ) -> None: """Initialize the CandidateExtractorUDF.""" self.candidate_classes = ( candidate_classes if isinstance(candidate_classes, (list, tuple)) else [candidate_classes] ) self.throttlers = ( throttlers if isinstance(throttlers, (list, tuple)) else [throttlers] ) self.nested_relations = nested_relations self.self_relations = self_relations self.symmetric_relations = symmetric_relations self.arities = [len(cclass.__argnames__) for cclass in self.candidate_classes] super().__init__(**kwargs) def apply( # type: ignore self, doc: Document, split: int, **kwargs: Any ) -> Document: """Extract candidates from the given Context. :param doc: A document to process. :param split: Which split to use. """ logger.debug(f"Document: {doc}") # Iterate over each candidate class for i, candidate_class in enumerate(self.candidate_classes): logger.debug(f" Relation: {candidate_class.__name__}") # Generates and persists candidates candidate_args = {"split": split} candidate_args["document"] = doc cands = product( *[ enumerate( # a list of mentions for each mention subclass within a doc getattr(doc, mention.__tablename__ + "s") + ([None] if nullable else []) ) for mention, nullable in zip( candidate_class.mentions, candidate_class.nullables ) ] ) # Get a set of stable_ids of candidates. set_of_stable_ids = get_set_of_stable_ids(doc, candidate_class) for cand in cands: # Apply throttler if one was given. # Accepts a tuple of Mention objects # (throttler returns whether or not proposed candidate # passes throttling condition) if self.throttlers[i]: if not self.throttlers[i]( tuple(cand[j][1] for j in range(self.arities[i])) ): continue # TODO: Make this work for higher-order relations if self.arities[i] == 2: ai, a = (cand[0][0], cand[0][1].context if cand[0][1] else None) bi, b = (cand[1][0], cand[1][1].context if cand[1][1] else None) # Check for self-joins, "nested" joins (joins from context to # its subcontext), and flipped duplicate "symmetric" relations if not self.self_relations and a == b: logger.debug(f"Skipping self-joined candidate {cand}") continue # Skip the check if either is None as None is not iterable. if not self.nested_relations and (a and b) and (a in b or b in a): logger.debug(f"Skipping nested candidate {cand}") continue if not self.symmetric_relations and ai > bi: logger.debug(f"Skipping symmetric candidate {cand}") continue # Assemble candidate arguments for j, arg_name in enumerate(candidate_class.__argnames__): candidate_args[arg_name] = cand[j][1] stable_ids = tuple( cand[j][1].context.get_stable_id() if cand[j][1] else None for j in range(self.arities[i]) ) # Skip if this (temporary) candidate is used by this candidate class. if ( hasattr(doc, candidate_class.__tablename__ + "s") and stable_ids in set_of_stable_ids ): continue # Add Candidate to session candidate_class(**candidate_args) return doc
fonduer-master
src/fonduer/candidates/candidates.py
"""Fonduer figure mention model.""" from typing import Any, Dict, Type from sqlalchemy import Column, ForeignKey, Integer, UniqueConstraint from sqlalchemy.orm import relationship from fonduer.candidates.models.temporary_context import TemporaryContext from fonduer.parser.models import Figure from fonduer.parser.models.context import Context from fonduer.parser.models.utils import construct_stable_id class TemporaryFigureMention(TemporaryContext): """The TemporaryContext version of FigureMention.""" def __init__(self, figure: Figure) -> None: """Initialize TemporaryFigureMention.""" super().__init__() self.figure = figure # The figure Context def __len__(self) -> int: """Get the length of the mention.""" return 1 def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, TemporaryFigureMention): return NotImplemented return self.figure == other.figure def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, TemporaryFigureMention): return NotImplemented return self.figure != other.figure def __gt__(self, other: object) -> bool: """Check if the mention is greater than another mention.""" if not isinstance(other, TemporaryFigureMention): return NotImplemented # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__() def __contains__(self, other: object) -> bool: """Check if the mention contains another mention.""" if not isinstance(other, TemporaryFigureMention): return NotImplemented return self.__eq__(other) def __hash__(self) -> int: """Get the hash value of mention.""" return hash(self.figure) def get_stable_id(self) -> str: """Return a stable id.""" return construct_stable_id(self.figure, self._get_polymorphic_identity(), 0, 0) def _get_table(self) -> Type["FigureMention"]: return FigureMention def _get_polymorphic_identity(self) -> str: return "figure_mention" def _get_insert_args(self) -> Dict[str, Any]: return {"figure_id": self.figure.id} def __repr__(self) -> str: """Represent the mention as a string.""" return ( f"{self.__class__.__name__}" f"(" f"document={self.figure.document.name}, " f"position={self.figure.position}, " f"url={self.figure.url}" f")" ) def _get_instance(self, **kwargs: Any) -> "TemporaryFigureMention": return TemporaryFigureMention(**kwargs) class FigureMention(Context, TemporaryFigureMention): """A figure ``Mention``.""" __tablename__ = "figure_mention" #: The unique id of the ``FigureMention``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The id of the parent ``Figure``. figure_id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE")) #: The parent ``Figure``. figure = relationship("Context", foreign_keys=figure_id) __table_args__ = (UniqueConstraint(figure_id),) __mapper_args__ = { "polymorphic_identity": "figure_mention", "inherit_condition": (id == Context.id), } def __init__(self, tc: TemporaryFigureMention): """Initialize FigureMention.""" self.stable_id = tc.get_stable_id() self.figure = tc.figure
fonduer-master
src/fonduer/candidates/models/figure_mention.py
"""Fonduer table mention model.""" from typing import Any, Dict, Type from sqlalchemy import Column, ForeignKey, Integer, UniqueConstraint from sqlalchemy.orm import relationship from fonduer.candidates.models.temporary_context import TemporaryContext from fonduer.parser.models import Table from fonduer.parser.models.context import Context from fonduer.parser.models.utils import construct_stable_id class TemporaryTableMention(TemporaryContext): """The TemporaryContext version of TableMention.""" def __init__(self, table: Table) -> None: """Initialize TemporaryTableMention.""" super().__init__() self.table = table # The table Context def __len__(self) -> int: """Get the length of the mention.""" return 1 def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, TemporaryTableMention): return NotImplemented return self.table == other.table def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, TemporaryTableMention): return NotImplemented return self.table != other.table def __gt__(self, other: object) -> bool: """Check if the mention is greater than another mention.""" if not isinstance(other, TemporaryTableMention): return NotImplemented # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__() def __contains__(self, other: object) -> bool: """Check if the mention contains another mention.""" if not isinstance(other, TemporaryTableMention): return NotImplemented return self.__eq__(other) def __hash__(self) -> int: """Get the hash value of mention.""" return hash(self.table) def get_stable_id(self) -> str: """Return a stable id.""" return construct_stable_id(self.table, self._get_polymorphic_identity(), 0, 0) def _get_table(self) -> Type["TableMention"]: return TableMention def _get_polymorphic_identity(self) -> str: return "table_mention" def _get_insert_args(self) -> Dict[str, Any]: return {"table_id": self.table.id} def __repr__(self) -> str: """Represent the mention as a string.""" return ( f"{self.__class__.__name__}" f"(" f"document={self.table.document.name}, " f"position={self.table.position}" f")" ) def _get_instance(self, **kwargs: Any) -> "TemporaryTableMention": return TemporaryTableMention(**kwargs) class TableMention(Context, TemporaryTableMention): """A table ``Mention``.""" __tablename__ = "table_mention" #: The unique id of the ``TableMention``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The id of the parent ``Table``. table_id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE")) #: The parent ``Table``. table = relationship("Context", foreign_keys=table_id) __table_args__ = (UniqueConstraint(table_id),) __mapper_args__ = { "polymorphic_identity": "table_mention", "inherit_condition": (id == Context.id), } def __init__(self, tc: TemporaryTableMention): """Initialize TableMention.""" self.stable_id = tc.get_stable_id() self.table = tc.table
fonduer-master
src/fonduer/candidates/models/table_mention.py