python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
"""Fonduer paragraph mention model.""" from typing import Any, Dict, Type from sqlalchemy import Column, ForeignKey, Integer, UniqueConstraint from sqlalchemy.orm import relationship from fonduer.candidates.models.temporary_context import TemporaryContext from fonduer.parser.models import Paragraph from fonduer.parser.models.context import Context from fonduer.parser.models.utils import construct_stable_id class TemporaryParagraphMention(TemporaryContext): """The TemporaryContext version of ParagraphMention.""" def __init__(self, paragraph: Paragraph) -> None: """Initialize TemporaryParagraphMention.""" super().__init__() self.paragraph = paragraph # The paragraph Context def __len__(self) -> int: """Get the length of the mention.""" return 1 def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, TemporaryParagraphMention): return NotImplemented return self.paragraph == other.paragraph def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, TemporaryParagraphMention): return NotImplemented return self.paragraph != other.paragraph def __gt__(self, other: object) -> bool: """Check if the mention is greater than another mention.""" if not isinstance(other, TemporaryParagraphMention): return NotImplemented # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__() def __contains__(self, other: object) -> bool: """Check if the mention contains another mention.""" if not isinstance(other, TemporaryParagraphMention): return NotImplemented return self.__eq__(other) def __hash__(self) -> int: """Get the hash value of mention.""" return hash(self.paragraph) def get_stable_id(self) -> str: """Return a stable id.""" return construct_stable_id( self.paragraph, self._get_polymorphic_identity(), 0, 0 ) def _get_table(self) -> Type["ParagraphMention"]: return ParagraphMention def _get_polymorphic_identity(self) -> str: return "paragraph_mention" def _get_insert_args(self) -> Dict[str, Any]: return {"paragraph_id": self.paragraph.id} def __repr__(self) -> str: """Represent the mention as a string.""" return ( f"{self.__class__.__name__}" f"(" f"document={self.paragraph.document.name}, " f"position={self.paragraph.position}" f")" ) def _get_instance(self, **kwargs: Any) -> "TemporaryParagraphMention": return TemporaryParagraphMention(**kwargs) class ParagraphMention(Context, TemporaryParagraphMention): """A paragraph ``Mention``.""" __tablename__ = "paragraph_mention" #: The unique id of the ``ParagraphMention``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The id of the parent ``Paragraph``. paragraph_id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE")) #: The parent ``Paragraph``. paragraph = relationship("Context", foreign_keys=paragraph_id) __table_args__ = (UniqueConstraint(paragraph_id),) __mapper_args__ = { "polymorphic_identity": "paragraph_mention", "inherit_condition": (id == Context.id), } def __init__(self, tc: TemporaryParagraphMention): """Initialize ParagraphMention.""" self.stable_id = tc.get_stable_id() self.paragraph = tc.paragraph
fonduer-master
src/fonduer/candidates/models/paragraph_mention.py
"""Fonduer implicit span mention model.""" from typing import Any, Dict, List, Optional, Type from sqlalchemy import Column, ForeignKey, Integer, String, UniqueConstraint from sqlalchemy.dialects import postgresql from sqlalchemy.orm import backref, relationship from sqlalchemy.sql import text from sqlalchemy.types import PickleType from fonduer.candidates.models.span_mention import TemporarySpanMention from fonduer.parser.models.context import Context from fonduer.parser.models.sentence import Sentence from fonduer.parser.models.utils import split_stable_id class TemporaryImplicitSpanMention(TemporarySpanMention): """The TemporaryContext version of ImplicitSpanMention.""" def __init__( self, sentence: Sentence, char_start: int, char_end: int, expander_key: str, position: int, text: str, words: List[str], lemmas: List[str], pos_tags: List[str], ner_tags: List[str], dep_parents: List[int], dep_labels: List[str], page: List[Optional[int]], top: List[Optional[int]], left: List[Optional[int]], bottom: List[Optional[int]], right: List[Optional[int]], meta: Any = None, ) -> None: """Initialize TemporaryImplicitSpanMention.""" super().__init__(sentence, char_start, char_end, meta) self.expander_key = expander_key self.position = position self.text = text self.words = words self.lemmas = lemmas self.pos_tags = pos_tags self.ner_tags = ner_tags self.dep_parents = dep_parents self.dep_labels = dep_labels self.page = page self.top = top self.left = left self.bottom = bottom self.right = right def __len__(self) -> int: """Get the length of the mention.""" return sum(map(len, self.words)) def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, TemporaryImplicitSpanMention): return NotImplemented return ( self.sentence == other.sentence and self.char_start == other.char_start and self.char_end == other.char_end and self.expander_key == other.expander_key and self.position == other.position ) def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, TemporaryImplicitSpanMention): return NotImplemented return ( self.sentence != other.sentence or self.char_start != other.char_start or self.char_end != other.char_end or self.expander_key != other.expander_key or self.position != other.position ) def __hash__(self) -> int: """Get the hash value of mention.""" return ( hash(self.sentence) + hash(self.char_start) + hash(self.char_end) + hash(self.expander_key) + hash(self.position) ) def get_stable_id(self) -> str: """Return a stable id.""" doc_id, _, idx = split_stable_id(self.sentence.stable_id) parent_doc_char_start = idx[0] return ( f"{self.sentence.document.name}" f"::" f"{self._get_polymorphic_identity()}" f":" f"{parent_doc_char_start + self.char_start}" f":" f"{parent_doc_char_start + self.char_end}" f":" f"{self.expander_key}" f":" f"{self.position}" ) def _get_table(self) -> Type["ImplicitSpanMention"]: return ImplicitSpanMention def _get_polymorphic_identity(self) -> str: return "implicit_span_mention" def _get_insert_args(self) -> Dict[str, Any]: return { "sentence_id": self.sentence.id, "char_start": self.char_start, "char_end": self.char_end, "expander_key": self.expander_key, "position": self.position, "text": self.text, "words": self.words, "lemmas": self.lemmas, "pos_tags": self.pos_tags, "ner_tags": self.ner_tags, "dep_parents": self.dep_parents, "dep_labels": self.dep_labels, "page": self.page, "top": self.top, "left": self.left, "bottom": self.bottom, "right": self.right, "meta": self.meta, } def get_attrib_tokens(self, a: str = "words") -> List: """Get the tokens of sentence attribute *a*. Intuitively, like calling:: implicit_span.a :param a: The attribute to get tokens for. :return: The tokens of sentence attribute defined by *a* for the span. """ return self.__getattribute__(a) def get_attrib_span(self, a: str, sep: str = "") -> str: """Get the span of sentence attribute *a*. Intuitively, like calling:: sep.join(implicit_span.a) :param a: The attribute to get a span for. :param sep: The separator to use for the join, or to be removed from text if a="words". :return: The joined tokens, or text if a="words". """ if a == "words": return self.text.replace(sep, "") else: return sep.join([str(n) for n in self.get_attrib_tokens(a)]) def __getitem__(self, key: slice) -> "TemporaryImplicitSpanMention": """Slice operation returns a new candidate sliced according to **char index**. Note that the slicing is w.r.t. the candidate range (not the abs. sentence char indexing) """ if isinstance(key, slice): char_start = ( self.char_start if key.start is None else self.char_start + key.start ) if key.stop is None: char_end = self.char_end elif key.stop >= 0: char_end = self.char_start + key.stop - 1 else: char_end = self.char_end + key.stop return self._get_instance( sentence=self.sentence, char_start=char_start, char_end=char_end, expander_key=self.expander_key, position=self.position, text=text, words=self.words, lemmas=self.lemmas, pos_tags=self.pos_tags, ner_tags=self.ner_tags, dep_parents=self.dep_parents, dep_labels=self.dep_labels, page=self.page, top=self.top, left=self.left, bottom=self.bottom, right=self.right, meta=self.meta, ) else: raise NotImplementedError() def __repr__(self) -> str: """Represent the mention as a string.""" return ( f"{self.__class__.__name__}" f"(" f'"{self.get_span()}", ' f"sentence={self.sentence.id}, " f"words=[{self.get_word_start_index()},{self.get_word_end_index()}], " f"position=[{self.position}]" f")" ) def _get_instance(self, **kwargs: Any) -> "TemporaryImplicitSpanMention": return TemporaryImplicitSpanMention(**kwargs) class ImplicitSpanMention(Context, TemporaryImplicitSpanMention): """A span of characters that may not appear verbatim in the source text. It is identified by Context id, character-index start and end (inclusive), as well as a key representing what 'expander' function drew the ImplicitSpanMention from an existing SpanMention, and a position (where position=0 corresponds to the first ImplicitSpanMention produced from the expander function). The character-index start and end point to the segment of text that was expanded to produce the ImplicitSpanMention. """ __tablename__ = "implicit_span_mention" #: The unique id of the ``ImplicitSpanMention``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The id of the parent ``Sentence``. sentence_id = Column( Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True ) #: The parent ``Sentence``. sentence = relationship( "Context", backref=backref("implicit_spans", cascade="all, delete-orphan"), foreign_keys=sentence_id, ) #: The starting character-index of the ``ImplicitSpanMention``. char_start = Column(Integer, nullable=False) #: The ending character-index of the ``ImplicitSpanMention`` (inclusive). char_end = Column(Integer, nullable=False) #: The key representing the expander function which produced this # ``ImplicitSpanMention``. expander_key = Column(String, nullable=False) #: The position of the ``ImplicitSpanMention`` where position=0 is the first #: ``ImplicitSpanMention`` produced by the expander. position = Column(Integer, nullable=False) #: The raw text of the ``ImplicitSpanMention``. text = Column(String) #: A list of the words in the ``ImplicitSpanMention``. words = Column(postgresql.ARRAY(String), nullable=False) #: A list of the lemmas for each word in the ``ImplicitSpanMention``. lemmas = Column(postgresql.ARRAY(String)) #: A list of the POS tags for each word in the ``ImplicitSpanMention``. pos_tags = Column(postgresql.ARRAY(String)) #: A list of the NER tags for each word in the ``ImplicitSpanMention``. ner_tags = Column(postgresql.ARRAY(String)) #: A list of the dependency parents for each word in the ``ImplicitSpanMention``. dep_parents = Column(postgresql.ARRAY(Integer)) #: A list of the dependency labels for each word in the ``ImplicitSpanMention``. dep_labels = Column(postgresql.ARRAY(String)) #: A list of the page number each word in the ``ImplicitSpanMention``. page = Column(postgresql.ARRAY(Integer)) #: A list of each word's TOP bounding box coordinate in the # ``ImplicitSpanMention``. top = Column(postgresql.ARRAY(Integer)) #: A list of each word's LEFT bounding box coordinate in the # ``ImplicitSpanMention``. left = Column(postgresql.ARRAY(Integer)) #: A list of each word's BOTTOM bounding box coordinate in the # ``ImplicitSpanMention``. bottom = Column(postgresql.ARRAY(Integer)) #: A list of each word's RIGHT bounding box coordinate in the # ``ImplicitSpanMention``. right = Column(postgresql.ARRAY(Integer)) #: Pickled metadata about the ``ImplicitSpanMention``. meta = Column(PickleType) __table_args__ = ( UniqueConstraint(sentence_id, char_start, char_end, expander_key, position), ) __mapper_args__ = { "polymorphic_identity": "implicit_span_mention", "inherit_condition": (id == Context.id), } def __init__(self, tc: TemporaryImplicitSpanMention): """Initialize ImplicitSpanMention.""" self.stable_id = tc.get_stable_id() self.sentence = tc.sentence self.char_start = tc.char_start self.char_end = tc.char_end self.expander_key = tc.expander_key self.position = tc.position self.text = tc.text self.words = tc.words self.lemmas = tc.lemmas self.pos_tags = tc.pos_tags self.ner_tags = tc.ner_tags self.dep_parents = tc.dep_parents self.dep_labels = tc.dep_labels self.page = tc.page self.top = tc.top self.left = tc.left self.bottom = tc.bottom self.right = tc.right self.meta = tc.meta def _get_instance(self, **kwargs: Any) -> "ImplicitSpanMention": return ImplicitSpanMention(**kwargs) # We redefine these to use default semantics, overriding the operators # inherited from TemporarySpan def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, ImplicitSpanMention): return NotImplemented return self is other def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, ImplicitSpanMention): return NotImplemented return self is not other def __hash__(self) -> int: """Get the hash value of mention.""" return id(self)
fonduer-master
src/fonduer/candidates/models/implicit_span_mention.py
"""Fonduer's candidate model module.""" from fonduer.candidates.models.candidate import Candidate, candidate_subclass from fonduer.candidates.models.caption_mention import CaptionMention from fonduer.candidates.models.cell_mention import CellMention from fonduer.candidates.models.document_mention import DocumentMention from fonduer.candidates.models.figure_mention import FigureMention from fonduer.candidates.models.implicit_span_mention import ImplicitSpanMention from fonduer.candidates.models.mention import Mention, mention_subclass from fonduer.candidates.models.paragraph_mention import ParagraphMention from fonduer.candidates.models.section_mention import SectionMention from fonduer.candidates.models.span_mention import SpanMention from fonduer.candidates.models.table_mention import TableMention __all__ = [ "Candidate", "CaptionMention", "CellMention", "DocumentMention", "FigureMention", "ImplicitSpanMention", "Mention", "ParagraphMention", "SectionMention", "SpanMention", "TableMention", "candidate_subclass", "mention_subclass", ]
fonduer-master
src/fonduer/candidates/models/__init__.py
"""Fonduer caption mention model.""" from typing import Any, Dict, Type from sqlalchemy import Column, ForeignKey, Integer, UniqueConstraint from sqlalchemy.orm import relationship from fonduer.candidates.models.temporary_context import TemporaryContext from fonduer.parser.models import Caption from fonduer.parser.models.context import Context from fonduer.parser.models.utils import construct_stable_id class TemporaryCaptionMention(TemporaryContext): """The TemporaryContext version of CaptionMention.""" def __init__(self, caption: Caption) -> None: """Initialize TemporaryCaptionMention.""" super().__init__() self.caption = caption # The caption Context def __len__(self) -> int: """Get the length of the mention.""" return 1 def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, TemporaryCaptionMention): return NotImplemented return self.caption == other.caption def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, TemporaryCaptionMention): return NotImplemented return self.caption != other.caption def __gt__(self, other: object) -> bool: """Check if the mention is greater than another mention.""" if not isinstance(other, TemporaryCaptionMention): return NotImplemented # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__() def __contains__(self, other: object) -> bool: """Check if the mention contains another mention.""" if not isinstance(other, TemporaryCaptionMention): return NotImplemented return self.__eq__(other) def __hash__(self) -> int: """Get the hash value of mention.""" return hash(self.caption) def get_stable_id(self) -> str: """Return a stable id.""" return construct_stable_id(self.caption, self._get_polymorphic_identity(), 0, 0) def _get_table(self) -> Type["CaptionMention"]: return CaptionMention def _get_polymorphic_identity(self) -> str: return "caption_mention" def _get_insert_args(self) -> Dict[str, Any]: return {"caption_id": self.caption.id} def __repr__(self) -> str: """Represent the mention as a string.""" return ( f"{self.__class__.__name__}(" f"document={self.caption.document.name}, " f"position={self.caption.position}" f")" ) def _get_instance(self, **kwargs: Any) -> "TemporaryCaptionMention": return TemporaryCaptionMention(**kwargs) class CaptionMention(Context, TemporaryCaptionMention): """A caption ``Mention``.""" __tablename__ = "caption_mention" #: The unique id of the ``CaptionMention``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The id of the parent ``Caption``. caption_id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE")) #: The parent ``Caption``. caption = relationship("Context", foreign_keys=caption_id) __table_args__ = (UniqueConstraint(caption_id),) __mapper_args__ = { "polymorphic_identity": "caption_mention", "inherit_condition": (id == Context.id), } def __init__(self, tc: TemporaryCaptionMention): """Initialize CaptionMention.""" self.stable_id = tc.get_stable_id() self.caption = tc.caption
fonduer-master
src/fonduer/candidates/models/caption_mention.py
"""Fonduer span mention model.""" from typing import Any, Dict, List, Optional, Type from sqlalchemy import Column, ForeignKey, Integer, UniqueConstraint from sqlalchemy.orm import backref, relationship from sqlalchemy.types import PickleType from fonduer.candidates.models.temporary_context import TemporaryContext from fonduer.parser.models.context import Context from fonduer.parser.models.sentence import Sentence from fonduer.parser.models.utils import construct_stable_id from fonduer.utils.utils_visual import Bbox class TemporarySpanMention(TemporaryContext): """The TemporaryContext version of Span.""" def __init__( self, sentence: Sentence, char_start: int, char_end: int, meta: Optional[Any] = None, ) -> None: """Initialize TemporarySpanMention.""" super().__init__() self.sentence = sentence # The sentence Context of the Span self.char_start = char_start self.char_end = char_end self.meta = meta def __len__(self) -> int: """Get the length of the mention.""" return self.char_end - self.char_start + 1 def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, TemporarySpanMention): return NotImplemented return ( self.sentence == other.sentence and self.char_start == other.char_start and self.char_end == other.char_end ) def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, TemporarySpanMention): return NotImplemented return ( self.sentence != other.sentence or self.char_start != other.char_start or self.char_end != other.char_end ) def __hash__(self) -> int: """Get the hash value of mention.""" return hash(self.sentence) + hash(self.char_start) + hash(self.char_end) def get_stable_id(self) -> str: """Return a stable id.""" return construct_stable_id( self.sentence, self._get_polymorphic_identity(), self.char_start, self.char_end, ) def _get_table(self) -> Type["SpanMention"]: return SpanMention def _get_polymorphic_identity(self) -> str: return "span_mention" def _get_insert_args(self) -> Dict[str, Any]: return { "sentence_id": self.sentence.id, "char_start": self.char_start, "char_end": self.char_end, "meta": self.meta, } def get_word_start_index(self) -> int: """Get the index of the starting word of the span. :return: The word-index of the start of the span. """ return self._char_to_word_index(self.char_start) def get_word_end_index(self) -> int: """Get the index of the ending word of the span. :return: The word-index of the last word of the span. """ return self._char_to_word_index(self.char_end) def get_num_words(self) -> int: """Get the number of words in the span. :return: The number of words in the span (n of the ngrams). """ return self.get_word_end_index() - self.get_word_start_index() + 1 def _char_to_word_index(self, ci: int) -> int: """Return the index of the **word this char is in**. :param ci: The character-level index of the char. :return: The word-level index the char was in. """ i = None for i, co in enumerate(self.sentence.char_offsets): if ci == co: return i elif ci < co: return i - 1 return i def _word_to_char_index(self, wi: int) -> int: """Return the character-level index (offset) of the word's start. :param wi: The word-index. :return: The character-level index of the word's start. """ return self.sentence.char_offsets[wi] def get_attrib_tokens(self, a: str = "words") -> List: """Get the tokens of sentence attribute *a*. Intuitively, like calling:: span.a :param a: The attribute to get tokens for. :return: The tokens of sentence attribute defined by *a* for the span. """ return self.sentence.__getattribute__(a)[ self.get_word_start_index() : self.get_word_end_index() + 1 ] def get_attrib_span(self, a: str, sep: str = "") -> str: """Get the span of sentence attribute *a*. Intuitively, like calling:: sep.join(span.a) :param a: The attribute to get a span for. :param sep: The separator to use for the join, or to be removed from text if a="words". :return: The joined tokens, or text if a="words". """ # NOTE: Special behavior for words currently (due to correspondence # with char_offsets) if a == "words": return self.sentence.text[self.char_start : self.char_end + 1].replace( sep, "" ) else: return sep.join([str(n) for n in self.get_attrib_tokens(a)]) def get_span(self) -> str: """Return the text of the ``Span``. :return: The text of the ``Span``. """ return self.get_attrib_span("words") def get_bbox(self) -> Bbox: """Get the bounding box.""" if self.sentence.is_visual(): return Bbox( self.get_attrib_tokens("page")[0], min(self.get_attrib_tokens("top")), max(self.get_attrib_tokens("bottom")), min(self.get_attrib_tokens("left")), max(self.get_attrib_tokens("right")), ) else: return None def __contains__(self, other_span: object) -> bool: """Check if the mention contains another mention.""" if not isinstance(other_span, TemporarySpanMention): return NotImplemented return ( self.sentence == other_span.sentence and other_span.char_start >= self.char_start and other_span.char_end <= self.char_end ) def __getitem__(self, key: slice) -> "TemporarySpanMention": """Slice operation returns a new candidate sliced according to **char index**. Note that the slicing is w.r.t. the candidate range (not the abs. sentence char indexing). """ if isinstance(key, slice): char_start = ( self.char_start if key.start is None else self.char_start + key.start ) if key.stop is None: char_end = self.char_end elif key.stop >= 0: char_end = self.char_start + key.stop - 1 else: char_end = self.char_end + key.stop return self._get_instance( char_start=char_start, char_end=char_end, sentence=self.sentence ) else: raise NotImplementedError() def __repr__(self) -> str: """Represent the mention as a string.""" return ( f"{self.__class__.__name__}" f"(" f'"{self.get_span()}", ' f"sentence={self.sentence.id}, " f"chars=[{self.char_start},{self.char_end}], " f"words=[{self.get_word_start_index()},{self.get_word_end_index()}]" f")" ) def _get_instance(self, **kwargs: Any) -> "TemporarySpanMention": return TemporarySpanMention(**kwargs) class SpanMention(Context, TemporarySpanMention): """ A span of chars, identified by Context ID and char-index start, end (inclusive). char_offsets are **relative to the Context start** """ __tablename__ = "span_mention" #: The unique id of the ``SpanMention``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The id of the parent ``Sentence``. sentence_id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE")) #: The parent ``Sentence``. sentence = relationship( "Context", backref=backref("spans", cascade="all, delete-orphan"), foreign_keys=sentence_id, ) #: The starting character-index of the ``SpanMention``. char_start = Column(Integer, nullable=False) #: The ending character-index of the ``SpanMention`` (inclusive). char_end = Column(Integer, nullable=False) #: Pickled metadata about the ``ImplicitSpanMention``. meta = Column(PickleType) __table_args__ = (UniqueConstraint(sentence_id, char_start, char_end),) __mapper_args__ = { "polymorphic_identity": "span_mention", "inherit_condition": (id == Context.id), } def __init__(self, tc: TemporarySpanMention): """Initialize SpanMention.""" self.stable_id = tc.get_stable_id() self.sentence = tc.sentence self.char_start = tc.char_start self.char_end = tc.char_end self.meta = tc.meta def _get_instance(self, **kwargs: Any) -> "SpanMention": return SpanMention(**kwargs) # We redefine these to use default semantics, overriding the operators # inherited from TemporarySpanMention def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, SpanMention): return NotImplemented return self is other def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, SpanMention): return NotImplemented return self is not other def __hash__(self) -> int: """Get the hash value of mention.""" return id(self)
fonduer-master
src/fonduer/candidates/models/span_mention.py
"""Fonduer candidate model.""" import logging from typing import Any, Dict, List, Optional, Tuple, Type from sqlalchemy import Column, ForeignKey, Integer, String, UniqueConstraint from sqlalchemy.orm import backref, relationship from fonduer.candidates.models.mention import Mention from fonduer.meta import Meta from fonduer.utils.utils import camel_to_under logger = logging.getLogger(__name__) # This global dictionary contains all classes that have been declared in this # Python environment, so that candidate_subclass() can return a class if it # already exists and is identical in specification to the requested class candidate_subclasses: Dict[str, Tuple] = {} class Candidate(Meta.Base): """ An abstract candidate relation. New relation types should be defined by calling candidate_subclass(), **not** subclassing this class directly. """ __tablename__ = "candidate" #: The unique id for the ``Candidate``. id = Column(Integer, primary_key=True) #: The type for the ``Candidate``, which corresponds to the names the user #: gives to the candidate_subclasses. type = Column(String, nullable=False) #: Which split the ``Candidate`` belongs to. Used to organize train/dev/test. split = Column(Integer, nullable=False, default=0, index=True) __mapper_args__ = {"polymorphic_identity": "candidate", "polymorphic_on": type} # __table_args__ = {"extend_existing" : True} def get_mentions(self) -> Tuple[Mention, ...]: """Get a tuple of the constituent ``Mentions`` making up this ``Candidate``.""" return tuple(getattr(self, name) for name in self.__argnames__) def __len__(self) -> int: """Get the length of the candidate.""" return len(self.__argnames__) def __getitem__(self, key: int) -> Mention: """Get the mention from candidate.""" return self.get_mentions()[key] def __repr__(self) -> str: """Represent the candidate as a string.""" return ( f"{self.__class__.__name__}" f"(" f"{', '.join(map(str, self.get_mentions()))}" f")" ) def __gt__(self, other_cand: "Candidate") -> bool: """Check if the candidate is greater than another candidate.""" # Allow sorting by comparing the string representations of each return self.__repr__() > other_cand.__repr__() def candidate_subclass( class_name: str, args: List[Mention], table_name: Optional[str] = None, cardinality: Optional[int] = None, values: Optional[List[Any]] = None, nullables: Optional[List[bool]] = None, ) -> Type[Candidate]: """Create new relation. Creates and returns a Candidate subclass with provided argument names, which are Context type. Creates the table in DB if does not exist yet. Import using: .. code-block:: python from fonduer.candidates.models import candidate_subclass :param class_name: The name of the class, should be "camel case" e.g. NewCandidate :param args: A list of names of constituent arguments, which refer to the Contexts--representing mentions--that comprise the candidate :param table_name: The name of the corresponding table in DB; if not provided, is converted from camel case by default, e.g. new_candidate :param cardinality: The cardinality of the variable corresponding to the Candidate. By default is 2 i.e. is a binary value, e.g. is or is not a true mention. :param values: A list of values a candidate can take as their label. :param nullables: The number of nullables must match that of args. If nullables[i]==True, a mention for ith mention subclass can be NULL. If nullables=``None`` (by default), no mention can be NULL. """ if table_name is None: table_name = camel_to_under(class_name) # If cardinality and values are None, default to binary classification if cardinality is None and values is None: values = [True, False] cardinality = 2 # Else use values if present, and validate proper input elif values is not None: if cardinality is not None and len(values) != cardinality: raise ValueError("Number of values must match cardinality.") if None in values: raise ValueError("`None` is a protected value.") # Note that bools are instances of ints in Python... if any([isinstance(v, int) and not isinstance(v, bool) for v in values]): raise ValueError( ( "Default usage of values is consecutive integers." "Leave values unset if trying to define values as integers." ) ) cardinality = len(values) # If cardinality is specified but not values, fill in with ints elif cardinality is not None: values = list(range(cardinality)) if nullables: if len(nullables) != len(args): raise ValueError("The number of nullables must match that of args.") else: nullables = [False] * len(args) class_spec = (args, table_name, cardinality, values) if class_name in candidate_subclasses: if class_spec == candidate_subclasses[class_name][1]: return candidate_subclasses[class_name][0] else: raise ValueError( f"Candidate subclass {class_name} " f"already exists in memory with incompatible " f"specification: {candidate_subclasses[class_name][1]}" ) else: # Set the class attributes == the columns in the database class_attribs = { # Declares name for storage table "__tablename__": table_name, # Connects candidate_subclass records to generic Candidate records "id": Column( Integer, ForeignKey("candidate.id", ondelete="CASCADE"), primary_key=True, ), # Store values & cardinality information in the class only "values": values, "cardinality": cardinality, # Polymorphism information for SQLAlchemy "__mapper_args__": {"polymorphic_identity": table_name}, # Helper method to get argument names "__argnames__": [_.__tablename__ for _ in args], "mentions": args, "nullables": nullables, } class_attribs["document_id"] = Column( Integer, ForeignKey("document.id", ondelete="CASCADE") ) class_attribs["document"] = relationship( "Document", backref=backref(table_name + "s", cascade="all, delete-orphan"), foreign_keys=class_attribs["document_id"], ) # Create named arguments, i.e. the entity mentions comprising the # relation mention. unique_args = [] for arg, nullable in zip(args, nullables): # Primary arguments are constituent Contexts, and their ids class_attribs[arg.__tablename__ + "_id"] = Column( Integer, ForeignKey(arg.__tablename__ + ".id", ondelete="CASCADE"), nullable=nullable, ) class_attribs[arg.__tablename__] = relationship( arg.__name__, backref=backref( table_name + "_" + arg.__tablename__ + "s", cascade_backrefs=False, cascade="all, delete-orphan", ), cascade_backrefs=False, foreign_keys=class_attribs[arg.__tablename__ + "_id"], ) unique_args.append(class_attribs[arg.__tablename__ + "_id"]) # Add unique constraints to the arguments class_attribs["__table_args__"] = (UniqueConstraint(*unique_args),) # Create class C = type(class_name, (Candidate,), class_attribs) # Create table in DB if Meta.engine and not Meta.engine.has_table(table_name): C.__table__.create(bind=Meta.engine) # type: ignore candidate_subclasses[class_name] = C, class_spec # Make this dynamically created class picklable # https://stackoverflow.com/a/39529149 globals()[class_name] = C return C
fonduer-master
src/fonduer/candidates/models/candidate.py
"""Fonduer section mention model.""" from typing import Any, Dict, Type from sqlalchemy import Column, ForeignKey, Integer, UniqueConstraint from sqlalchemy.orm import relationship from fonduer.candidates.models.temporary_context import TemporaryContext from fonduer.parser.models import Section from fonduer.parser.models.context import Context from fonduer.parser.models.utils import construct_stable_id class TemporarySectionMention(TemporaryContext): """The TemporaryContext version of SectionMention.""" def __init__(self, section: Section) -> None: """Initialize TemporarySectionMention.""" super().__init__() self.section = section # The section Context def __len__(self) -> int: """Get the length of the mention.""" return 1 def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, TemporarySectionMention): return NotImplemented return self.section == other.section def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, TemporarySectionMention): return NotImplemented return self.section != other.section def __gt__(self, other: object) -> bool: """Check if the mention is greater than another mention.""" if not isinstance(other, TemporarySectionMention): return NotImplemented # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__() def __contains__(self, other: object) -> bool: """Check if the mention contains another mention.""" if not isinstance(other, TemporarySectionMention): return NotImplemented return self.__eq__(other) def __hash__(self) -> int: """Get the hash value of mention.""" return hash(self.section) def get_stable_id(self) -> str: """Return a stable id.""" return construct_stable_id(self.section, self._get_polymorphic_identity(), 0, 0) def _get_table(self) -> Type["SectionMention"]: return SectionMention def _get_polymorphic_identity(self) -> str: return "section_mention" def _get_insert_args(self) -> Dict[str, Any]: return {"section_id": self.section.id} def __repr__(self) -> str: """Represent the mention as a string.""" return ( f"{self.__class__.__name__}" f"(" f"document={self.section.document.name}, " f"position={self.section.position}" f")" ) def _get_instance(self, **kwargs: Any) -> "TemporarySectionMention": return TemporarySectionMention(**kwargs) class SectionMention(Context, TemporarySectionMention): """A section ``Mention``.""" __tablename__ = "section_mention" #: The unique id of the ``SectionMention``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The id of the parent ``Section``. section_id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE")) #: The parent ``Section``. section = relationship("Context", foreign_keys=section_id) __table_args__ = (UniqueConstraint(section_id),) __mapper_args__ = { "polymorphic_identity": "section_mention", "inherit_condition": (id == Context.id), } def __init__(self, tc: TemporarySectionMention): """Initialize SectionMention.""" self.stable_id = tc.get_stable_id() self.section = tc.section
fonduer-master
src/fonduer/candidates/models/section_mention.py
"""Fonduer mention model.""" import logging from typing import Any, Dict, List, Optional, Tuple, Type from sqlalchemy import Column, ForeignKey, Integer, String, UniqueConstraint from sqlalchemy.orm import backref, relationship from fonduer.meta import Meta from fonduer.parser.models import Context from fonduer.utils.utils import camel_to_under logger = logging.getLogger(__name__) # This global dictionary contains all classes that have been declared in this # Python environment, so that mention_subclass() can return a class if it # already exists and is identical in specification to the requested class. mention_subclasses: Dict[str, Tuple] = {} class Mention(Meta.Base): """ An abstract Mention. New mention types should be defined by calling mention_subclass(), **not** subclassing this class directly. """ __tablename__ = "mention" #: The unique id of the ``Mention``. id = Column(Integer, primary_key=True) #: The type for the ``Mention``, which corresponds to the names the user #: gives to the mention_subclass. type = Column(String, nullable=False) __mapper_args__ = {"polymorphic_identity": "mention", "polymorphic_on": type} def get_contexts(self) -> Tuple[Context, ...]: """Get the constituent context making up this mention.""" return tuple(getattr(self, name) for name in self.__argnames__) def __len__(self) -> int: """Get the length of the mention.""" return len(self.__argnames__) def __getitem__(self, key: int) -> Context: """Get the context from mention.""" return self.get_contexts()[key] def __repr__(self) -> str: """Represent the mention as a string.""" return ( f"{self.__class__.__name__}" f"(" f"{', '.join(map(str, self.get_contexts()))}" f")" ) def __gt__(self, other: "Mention") -> bool: """Check if the mention is greater than another mention.""" # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__() def mention_subclass( class_name: str, cardinality: Optional[int] = None, values: Optional[List[Any]] = None, table_name: Optional[str] = None, ) -> Type[Mention]: """Create new mention. Creates and returns a Mention subclass with provided argument names, which are Context type. Creates the table in DB if does not exist yet. Import using: .. code-block:: python from fonduer.candidates.models import mention_subclass :param class_name: The name of the class, should be "camel case" e.g. NewMention :param table_name: The name of the corresponding table in DB; if not provided, is converted from camel case by default, e.g. new_mention :param values: The values that the variable corresponding to the Mention can take. By default it will be [True, False]. :param cardinality: The cardinality of the variable corresponding to the Mention. By default is 2 i.e. is a binary value, e.g. is or is not a true mention. """ if table_name is None: table_name = camel_to_under(class_name) # If cardinality and values are None, default to binary classification if cardinality is None and values is None: values = [True, False] cardinality = 2 # Else use values if present, and validate proper input elif values is not None: if cardinality is not None and len(values) != cardinality: raise ValueError("Number of values must match cardinality.") if None in values: raise ValueError("`None` is a protected value.") # Note that bools are instances of ints in Python... if any([isinstance(v, int) and not isinstance(v, bool) for v in values]): raise ValueError( ( "Default usage of values is consecutive integers." "Leave values unset if trying to define values as integers." ) ) cardinality = len(values) # If cardinality is specified but not values, fill in with ints elif cardinality is not None: values = list(range(cardinality)) args = ["context"] class_spec = (args, table_name, cardinality, values) if class_name in mention_subclasses: if class_spec == mention_subclasses[class_name][1]: return mention_subclasses[class_name][0] else: raise ValueError( f"Mention subclass {class_name} " f"already exists in memory with incompatible " f"specification: {mention_subclasses[class_name][1]}" ) else: # Set the class attributes == the columns in the database class_attribs = { # Declares name for storage table "__tablename__": table_name, # Connects mention_subclass records to generic Mention records "id": Column( Integer, ForeignKey("mention.id", ondelete="CASCADE"), primary_key=True ), # Store values & cardinality information in the class only "values": values, "cardinality": cardinality, # Polymorphism information for SQLAlchemy "__mapper_args__": {"polymorphic_identity": table_name}, # Helper method to get argument names "__argnames__": args, } class_attribs["document_id"] = Column( Integer, ForeignKey("document.id", ondelete="CASCADE") ) class_attribs["document"] = relationship( "Document", backref=backref(table_name + "s", cascade="all, delete-orphan"), foreign_keys=class_attribs["document_id"], ) # Create named arguments, i.e. the entity mentions comprising the # relation mention. unique_args = [] for arg in args: # Primary arguments are constituent Contexts, and their ids class_attribs[arg + "_id"] = Column( Integer, ForeignKey("context.id", ondelete="CASCADE") ) class_attribs[arg] = relationship( "Context", foreign_keys=class_attribs[arg + "_id"] ) unique_args.append(class_attribs[arg + "_id"]) # Add unique constraints to the arguments class_attribs["__table_args__"] = (UniqueConstraint(*unique_args),) # Create class C = type(class_name, (Mention,), class_attribs) # Create table in DB if Meta.engine and not Meta.engine.has_table(table_name): C.__table__.create(bind=Meta.engine) # type: ignore mention_subclasses[class_name] = C, class_spec # Make this dynamically created class picklable # https://stackoverflow.com/a/39529149 globals()[class_name] = C return C
fonduer-master
src/fonduer/candidates/models/mention.py
"""Fonduer document mention model.""" from typing import Any, Dict, Type from sqlalchemy import Column, ForeignKey, Integer, UniqueConstraint from sqlalchemy.orm import relationship from fonduer.candidates.models.temporary_context import TemporaryContext from fonduer.parser.models import Document from fonduer.parser.models.context import Context from fonduer.parser.models.utils import construct_stable_id class TemporaryDocumentMention(TemporaryContext): """The TemporaryContext version of DocumentMention.""" def __init__(self, document: Document) -> None: """Initialize TemporaryDocumentMention.""" super().__init__() self.document = document # The document Context def __len__(self) -> int: """Get the length of the mention.""" return 1 def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, TemporaryDocumentMention): return NotImplemented return self.document == other.document def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, TemporaryDocumentMention): return NotImplemented return self.document != other.document def __gt__(self, other: object) -> bool: """Check if the mention is greater than another mention.""" if not isinstance(other, TemporaryDocumentMention): return NotImplemented # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__() def __contains__(self, other: object) -> bool: """Check if the mention contains another mention.""" if not isinstance(other, TemporaryDocumentMention): return NotImplemented return self.__eq__(other) def __hash__(self) -> int: """Get the hash value of mention.""" return hash(self.document) def get_stable_id(self) -> str: """Return a stable id.""" return construct_stable_id( self.document, self._get_polymorphic_identity(), 0, 0 ) def _get_table(self) -> Type["DocumentMention"]: return DocumentMention def _get_polymorphic_identity(self) -> str: return "document_mention" def _get_insert_args(self) -> Dict[str, Any]: return {"document_id": self.document.id} def __repr__(self) -> str: """Represent the mention as a string.""" return f"{self.__class__.__name__}(document={self.document.name})" def _get_instance(self, **kwargs: Any) -> "TemporaryDocumentMention": return TemporaryDocumentMention(**kwargs) class DocumentMention(Context, TemporaryDocumentMention): """A document ``Mention``.""" __tablename__ = "document_mention" #: The unique id of the ``DocumentMention``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The id of the parent ``Document``. document_id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE")) #: The parent ``Document``. document = relationship("Context", foreign_keys=document_id) __table_args__ = (UniqueConstraint(document_id),) __mapper_args__ = { "polymorphic_identity": "document_mention", "inherit_condition": (id == Context.id), } def __init__(self, tc: TemporaryDocumentMention): """Initialize DocumentMention.""" self.stable_id = tc.get_stable_id() self.document = tc.document
fonduer-master
src/fonduer/candidates/models/document_mention.py
"""Fonduer temporary mention model.""" from builtins import object from typing import Any, Dict, Type from fonduer.parser.models.context import Context class TemporaryContext(object): """Temporary Context class. A context which does not incur the overhead of a proper ORM-based Context object. The TemporaryContext class is specifically for the candidate extraction process, during which a MentionSpace object will generate many TemporaryContexts, which will then be filtered by Matchers prior to materialization of Mentions and constituent Context objects. Every Context object has a corresponding TemporaryContext object from which it inherits. A TemporaryContext must have specified equality / set membership semantics, a stable_id for checking uniqueness against the database, and a promote() method which returns a corresponding Context object. """ def __init__(self) -> None: """Initialize TemporaryContext.""" self.id = None def __repr__(self) -> str: """Represent the mention as a string.""" raise NotImplementedError() def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, TemporaryContext): return NotImplemented raise NotImplementedError() def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, TemporaryContext): return NotImplemented raise NotImplementedError() def __gt__(self, other: object) -> bool: """Check if the mention is greater than another mention.""" if not isinstance(other, TemporaryContext): return NotImplemented raise NotImplementedError() def __contains__(self, other: object) -> bool: """Check if the mention contains another mention.""" if not isinstance(other, TemporaryContext): return NotImplemented raise NotImplementedError() def __hash__(self) -> int: """Get the hash value of mention.""" raise NotImplementedError() def _get_polymorphic_identity(self) -> str: raise NotImplementedError() def _get_table(self) -> Type[Context]: raise NotImplementedError() def _get_insert_args(self) -> Dict[str, Any]: raise NotImplementedError() def get_stable_id(self) -> str: """Get the stable_id of TemporaryContext.""" raise NotImplementedError()
fonduer-master
src/fonduer/candidates/models/temporary_context.py
"""Fonduer cell mention model.""" from typing import Any, Dict, Type from sqlalchemy import Column, ForeignKey, Integer, UniqueConstraint from sqlalchemy.orm import relationship from fonduer.candidates.models.temporary_context import TemporaryContext from fonduer.parser.models import Cell from fonduer.parser.models.context import Context from fonduer.parser.models.utils import construct_stable_id class TemporaryCellMention(TemporaryContext): """The TemporaryContext version of CellMention.""" def __init__(self, cell: Cell) -> None: """Initialize TemporaryCellMention.""" super().__init__() self.cell = cell # The cell Context def __len__(self) -> int: """Get the length of the mention.""" return 1 def __eq__(self, other: object) -> bool: """Check if the mention is equal to another mention.""" if not isinstance(other, TemporaryCellMention): return NotImplemented return self.cell == other.cell def __ne__(self, other: object) -> bool: """Check if the mention is not equal to another mention.""" if not isinstance(other, TemporaryCellMention): return NotImplemented return self.cell != other.cell def __gt__(self, other: object) -> bool: """Check if the mention is greater than another mention.""" if not isinstance(other, TemporaryCellMention): return NotImplemented # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__() def __contains__(self, other: object) -> bool: """Check if the mention contains another mention.""" if not isinstance(other, TemporaryCellMention): return NotImplemented return self.__eq__(other) def __hash__(self) -> int: """Get the hash value of mention.""" return hash(self.cell) def get_stable_id(self) -> str: """Return a stable id.""" return construct_stable_id(self.cell, self._get_polymorphic_identity(), 0, 0) def _get_table(self) -> Type["CellMention"]: return CellMention def _get_polymorphic_identity(self) -> str: return "cell_mention" def _get_insert_args(self) -> Dict[str, Any]: return {"cell_id": self.cell.id} def __repr__(self) -> str: """Represent the mention as a string.""" return ( f"{self.__class__.__name__}" f"(" f"document={self.cell.document.name}, " f"table_position={self.cell.table.position}, " f"position={self.cell.position}" f")" ) def _get_instance(self, **kwargs: Any) -> "TemporaryCellMention": return TemporaryCellMention(**kwargs) class CellMention(Context, TemporaryCellMention): """A cell ``Mention``.""" __tablename__ = "cell_mention" #: The unique id of the ``CellMention``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The id of the parent ``Cell``. cell_id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE")) #: The parent ``Cell``. cell = relationship("Context", foreign_keys=cell_id) __table_args__ = (UniqueConstraint(cell_id),) __mapper_args__ = { "polymorphic_identity": "cell_mention", "inherit_condition": (id == Context.id), } def __init__(self, tc: TemporaryCellMention): """Initialize CellMention.""" self.stable_id = tc.get_stable_id() self.cell = tc.cell
fonduer-master
src/fonduer/candidates/models/cell_mention.py
"""Customized MLflow model for Fonduer.""" import logging import os import sys from io import BytesIO from typing import Any, Callable, Dict, List, Optional, Union import cloudpickle as pickle import emmental import numpy as np import torch import yaml from emmental.model import EmmentalModel from mlflow import pyfunc from mlflow.models import Model from mlflow.utils.environment import _mlflow_conda_env from mlflow.utils.file_utils import _copy_file_or_tree from mlflow.utils.model_utils import _get_flavor_configuration from pandas import DataFrame from scipy.sparse import csr_matrix from snorkel.labeling.model import LabelModel from fonduer import init_logging from fonduer.candidates import CandidateExtractor, MentionExtractor from fonduer.candidates.candidates import CandidateExtractorUDF from fonduer.candidates.mentions import MentionExtractorUDF from fonduer.candidates.models import ( Candidate, Mention, candidate_subclass, mention_subclass, ) from fonduer.candidates.models.mention import mention_subclasses from fonduer.features.feature_extractors import FeatureExtractor from fonduer.features.featurizer import Featurizer, FeaturizerUDF from fonduer.parser import Parser from fonduer.parser.models import Document from fonduer.parser.parser import ParserUDF from fonduer.parser.preprocessors import DocPreprocessor from fonduer.supervision.labeler import Labeler, LabelerUDF from fonduer.utils.utils_udf import _convert_mappings_to_matrix, unshift_label_matrix logger = logging.getLogger(__name__) MODEL_TYPE = "model_type" class FonduerModel(pyfunc.PythonModel): """A custom MLflow model for Fonduer. This class is intended to be subclassed. """ def _classify(self, doc: Document) -> DataFrame: """Classify candidates by an Emmental model (or by a label model).""" raise NotImplementedError() def predict(self, model_input: DataFrame) -> DataFrame: """Take html_path (and pdf_path) as input and return extracted information. This method is required and its signature is defined by the MLflow's convention. See MLflow_ for more details. .. _MLflow: https://www.mlflow.org/docs/latest/models.html#python-function-python-function :param model_input: Pandas DataFrame with rows as docs and colums as params. params should include "html_path" and can optionally include "pdf_path". :return: Pandas DataFrame containing the output from :func:`_classify`, which depends on how it is implemented by a subclass. """ df = DataFrame() for index, row in model_input.iterrows(): output = self._process( row["html_path"], row["pdf_path"] if "pdf_path" in row.keys() else None ) output["html_path"] = row["html_path"] df = df.append(output) return df def _process(self, html_path: str, pdf_path: Optional[str] = None) -> DataFrame: """Run the whole pipeline of Fonduer. :param html_path: a path of an HTML file or a directory containing files. :param pdf_path: a path of a PDF file or a directory containing files. """ if not os.path.exists(html_path): raise ValueError("html_path should be a file/directory path") # Parse docs doc = next( self.preprocessor._parse_file(html_path, os.path.basename(html_path)) ) logger.info(f"Parsing {html_path}") doc = self.parser.apply(doc, pdf_path=pdf_path) logger.info(f"Extracting mentions from {html_path}") doc = self.mention_extractor.apply(doc) logger.info(f"Extracting candidates from {html_path}") doc = self.candidate_extractor.apply(doc, split=2) logger.info(f"Classifying candidates from {html_path}") df = self._classify(doc) return df @staticmethod def convert_features_to_matrix( features: List[Dict[str, Any]], keys: List[str] ) -> csr_matrix: """Convert features (the output from FeaturizerUDF.apply) into a sparse matrix. :param features: a list of feature mapping (key: key, value=feature). :param keys: a list of all keys. """ return _convert_mappings_to_matrix(features, keys) @staticmethod def convert_labels_to_matrix( labels: List[Dict[str, Any]], keys: List[str] ) -> np.ndarray: """Convert labels (the output from LabelerUDF.apply) into a dense matrix. Note that the input labels are 0-indexed (``{0, 1, ..., k}``), while the output labels are -1-indexed (``{-1, 0, ..., k-1}``). :param labels: a list of label mapping (key: key, value=label). :param keys: a list of all keys. """ return unshift_label_matrix(_convert_mappings_to_matrix(labels, keys)) def _load_pyfunc(model_path: str) -> Any: """Load PyFunc implementation. Called by ``pyfunc.load_pyfunc``.""" # Load mention_classes _load_mention_classes(model_path) # Load candiate_classes _load_candidate_classes(model_path) # Load a pickled model model = pickle.load(open(os.path.join(model_path, "model.pkl"), "rb")) fonduer_model = model["fonduer_model"] fonduer_model.preprocessor = model["preprosessor"] fonduer_model.parser = ParserUDF(**model["parser"]) fonduer_model.mention_extractor = MentionExtractorUDF(**model["mention_extractor"]) fonduer_model.candidate_extractor = CandidateExtractorUDF( **model["candidate_extractor"] ) # Configure logging for Fonduer init_logging(log_dir="logs") pyfunc_conf = _get_flavor_configuration( model_path=model_path, flavor_name=pyfunc.FLAVOR_NAME ) candidate_classes = fonduer_model.candidate_extractor.candidate_classes fonduer_model.model_type = pyfunc_conf.get(MODEL_TYPE, "emmental") if fonduer_model.model_type == "emmental": emmental.init() fonduer_model.featurizer = FeaturizerUDF(candidate_classes, FeatureExtractor()) fonduer_model.key_names = model["feature_keys"] fonduer_model.word2id = model["word2id"] fonduer_model.emmental_model = _load_emmental_model(model["emmental_model"]) else: fonduer_model.labeler = LabelerUDF(candidate_classes) fonduer_model.key_names = model["labeler_keys"] fonduer_model.lfs = model["lfs"] fonduer_model.label_models = [] for state_dict in model["label_models_state_dict"]: label_model = LabelModel() label_model.__dict__.update(state_dict) fonduer_model.label_models.append(label_model) return fonduer_model def log_model( fonduer_model: FonduerModel, artifact_path: str, preprocessor: DocPreprocessor, parser: Parser, mention_extractor: MentionExtractor, candidate_extractor: CandidateExtractor, conda_env: Optional[Union[Dict, str]] = None, code_paths: Optional[List[str]] = None, model_type: Optional[str] = "emmental", labeler: Optional[Labeler] = None, lfs: Optional[List[List[Callable]]] = None, label_models: Optional[List[LabelModel]] = None, featurizer: Optional[Featurizer] = None, emmental_model: Optional[EmmentalModel] = None, word2id: Optional[Dict] = None, ) -> None: """Log a Fonduer model as an MLflow artifact for the current run. :param fonduer_model: Fonduer model to be saved. :param artifact_path: Run-relative artifact path. :param preprocessor: the doc preprocessor. :param parser: self-explanatory :param mention_extractor: self-explanatory :param candidate_extractor: self-explanatory :param conda_env: Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. :param code_paths: A list of local filesystem paths to Python file dependencies, or directories containing file dependencies. These files are prepended to the system path when the model is loaded. :param model_type: the model type, either "emmental" or "label", defaults to "emmental". :param labeler: a labeler, defaults to None. :param lfs: a list of list of labeling functions. :param label_models: a list of label models, defaults to None. :param featurizer: a featurizer, defaults to None. :param emmental_model: an Emmental model, defaults to None. :param word2id: a word embedding map. """ Model.log( artifact_path=artifact_path, flavor=sys.modules[__name__], fonduer_model=fonduer_model, preprocessor=preprocessor, parser=parser, mention_extractor=mention_extractor, candidate_extractor=candidate_extractor, conda_env=conda_env, code_paths=code_paths, model_type=model_type, labeler=labeler, lfs=lfs, label_models=label_models, featurizer=featurizer, emmental_model=emmental_model, word2id=word2id, ) def save_model( fonduer_model: FonduerModel, path: str, preprocessor: DocPreprocessor, parser: Parser, mention_extractor: MentionExtractor, candidate_extractor: CandidateExtractor, mlflow_model: Model = Model(), conda_env: Optional[Union[Dict, str]] = None, code_paths: Optional[List[str]] = None, model_type: Optional[str] = "emmental", labeler: Optional[Labeler] = None, lfs: Optional[List[List[Callable]]] = None, label_models: Optional[List[LabelModel]] = None, featurizer: Optional[Featurizer] = None, emmental_model: Optional[EmmentalModel] = None, word2id: Optional[Dict] = None, ) -> None: """Save a Fonduer model to a path on the local file system. :param fonduer_model: Fonduer model to be saved. :param path: the path on the local file system. :param preprocessor: the doc preprocessor. :param parser: self-explanatory :param mention_extractor: self-explanatory :param candidate_extractor: self-explanatory :param mlflow_model: model configuration. :param conda_env: Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. :param code_paths: A list of local filesystem paths to Python file dependencies, or directories containing file dependencies. These files are prepended to the system path when the model is loaded. :param model_type: the model type, either "emmental" or "label", defaults to "emmental". :param labeler: a labeler, defaults to None. :param lfs: a list of list of labeling functions. :param label_models: a list of label models, defaults to None. :param featurizer: a featurizer, defaults to None. :param emmental_model: an Emmental model, defaults to None. :param word2id: a word embedding map. """ os.makedirs(path) model_code_path = os.path.join(path, pyfunc.CODE) os.makedirs(model_code_path) # Save mention_classes and candidate_classes _save_mention_classes(mention_extractor.udf_init_kwargs["mention_classes"], path) _save_candidate_classes( candidate_extractor.udf_init_kwargs["candidate_classes"], path ) # Makes lfs unpicklable w/o the module (ie fonduer_lfs.py) # https://github.com/cloudpipe/cloudpickle/issues/206#issuecomment-555939172 modules = [] if model_type == "label": for _ in lfs: for lf in _: modules.append(lf.__module__) lf.__module__ = "__main__" # Note that instances of ParserUDF and other UDF theselves are not picklable. # https://stackoverflow.com/a/52026025 model = { "fonduer_model": fonduer_model, "preprosessor": preprocessor, "parser": parser.udf_init_kwargs, "mention_extractor": mention_extractor.udf_init_kwargs, "candidate_extractor": candidate_extractor.udf_init_kwargs, } if model_type == "emmental": key_names = [key.name for key in featurizer.get_keys()] model["feature_keys"] = key_names model["word2id"] = word2id model["emmental_model"] = _save_emmental_model(emmental_model) else: key_names = [key.name for key in labeler.get_keys()] model["labeler_keys"] = key_names model["lfs"] = lfs model["label_models_state_dict"] = [ label_model.__dict__ for label_model in label_models ] pickle.dump(model, open(os.path.join(path, "model.pkl"), "wb")) # Restore __module__ back to the original if model_type == "label": for _ in lfs: for lf in _: lf.__module__ = modules.pop() # Create a conda yaml file. conda_env_subpath = "conda.yaml" if conda_env is None: conda_env = _get_default_conda_env() elif not isinstance(conda_env, dict): with open(conda_env, "r") as f: conda_env = yaml.safe_load(f) with open(os.path.join(path, conda_env_subpath), "w") as f: yaml.safe_dump(conda_env, stream=f, default_flow_style=False) # Copy code_paths. if code_paths is not None: for code_path in code_paths: _copy_file_or_tree(src=code_path, dst=model_code_path) mlflow_model.add_flavor( pyfunc.FLAVOR_NAME, code=pyfunc.CODE, loader_module=__name__, model_type=model_type, env=conda_env_subpath, ) mlflow_model.save(os.path.join(path, "MLmodel")) def _get_default_conda_env() -> Optional[Dict[str, Any]]: """Get default Conda environment. :return: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ import torch import fonduer return _mlflow_conda_env( additional_conda_deps=[ "pytorch={}".format(torch.__version__), "psycopg2", "pip", ], additional_pip_deps=["fonduer=={}".format(fonduer.__version__)], additional_conda_channels=["pytorch"], ) def _save_emmental_model(emmental_model: EmmentalModel) -> bytes: buffer = BytesIO() torch.save(emmental_model, buffer) buffer.seek(0) return buffer.read() def _load_emmental_model(b: bytes) -> EmmentalModel: buffer = BytesIO() buffer.write(b) buffer.seek(0) return torch.load(buffer) def _save_mention_classes(mention_classes: List[Mention], path: str) -> None: pickle.dump( [ { "class_name": mention_class.__name__, "cardinality": mention_class.cardinality, "values": mention_class.values, "table_name": mention_class.__tablename__, } for mention_class in mention_classes ], open(os.path.join(path, "mention_classes.pkl"), "wb"), ) def _load_mention_classes(path: str) -> None: for kwargs in pickle.load(open(os.path.join(path, "mention_classes.pkl"), "rb")): mention_subclass(**kwargs) def _save_candidate_classes(candidate_classes: List[Candidate], path: str) -> None: pickle.dump( [ { "class_name": candidate_class.__name__, "mention_class_names": [ candidate_class.__name__ for candidate_class in candidate_class.mentions ], "table_name": candidate_class.__tablename__, "cardinality": candidate_class.cardinality, "values": candidate_class.values, } for candidate_class in candidate_classes ], open(os.path.join(path, "candidate_classes.pkl"), "wb"), ) def _load_candidate_classes(path: str) -> None: for kwargs in pickle.load(open(os.path.join(path, "candidate_classes.pkl"), "rb")): # Convert the classnames of mention to mention_classes kwargs["args"] = [ mention_subclasses[mention_class_name][0] for mention_class_name in kwargs.pop("mention_class_names") ] candidate_subclass(**kwargs)
fonduer-master
src/fonduer/packaging/fonduer_model.py
"""Fonduer's packaging module.""" from fonduer.packaging.fonduer_model import FonduerModel, log_model, save_model __all__ = [ "FonduerModel", "save_model", "log_model", ]
fonduer-master
src/fonduer/packaging/__init__.py
"""Customized Emmental task for Fonduer.""" import logging from functools import partial from typing import Any, Dict, List, Optional, Union from emmental.modules.embedding_module import EmbeddingModule from emmental.modules.rnn_module import RNN from emmental.modules.sparse_linear_module import SparseLinear from emmental.scorer import Scorer from emmental.task import EmmentalTask from torch import Tensor, nn as nn from torch.nn import functional as F from fonduer.learning.modules.concat_linear import ConcatLinear from fonduer.learning.modules.soft_cross_entropy_loss import SoftCrossEntropyLoss from fonduer.utils.config import get_config logger = logging.getLogger(__name__) sce_loss = SoftCrossEntropyLoss() def loss( module_name: str, intermediate_output_dict: Dict[str, Any], Y: Tensor, active: Tensor, ) -> Tensor: """Define the loss of the task. :param module_name: The module name to calculate the loss. :param intermediate_output_dict: The intermediate output dictionary :param Y: Ground truth labels. :param active: The sample mask. :return: Loss. """ if len(Y.size()) == 1: label = intermediate_output_dict[module_name][0].new_zeros( intermediate_output_dict[module_name][0].size() ) label.scatter_(1, Y.view(Y.size()[0], 1), 1.0) else: label = Y return sce_loss(intermediate_output_dict[module_name][0][active], label[active]) def output(module_name: str, intermediate_output_dict: Dict[str, Any]) -> Tensor: """Define the output of the task. :param module_name: The module name to calculate the loss. :param intermediate_output_dict: The intermediate output dictionary :return: Output tensor. """ return F.softmax(intermediate_output_dict[module_name][0]) def create_task( task_names: Union[str, List[str]], n_arities: Union[int, List[int]], n_features: int, n_classes: Union[int, List[int]], emb_layer: Optional[EmbeddingModule], model: str = "LSTM", mode: str = "MTL", ) -> List[EmmentalTask]: """Create task from relation(s). :param task_names: Relation name(s), If str, only one relation; If List[str], multiple relations. :param n_arities: The arity of each relation. :param n_features: The multimodal feature set size. :param n_classes: Number of classes for each task. (Only support classification task now). :param emb_layer: The embedding layer for LSTM. No need for LogisticRegression model. :param model: Model name (available models: "LSTM", "LogisticRegression"), defaults to "LSTM". :param mode: Learning mode (available modes: "STL", "MTL"), defaults to "MTL". """ if model not in ["LSTM", "LogisticRegression"]: raise ValueError( f"Unrecognized model {model}. Only support {['LSTM', 'LogisticRegression']}" ) if mode not in ["STL", "MTL"]: raise ValueError(f"Unrecognized mode {mode}. Only support {['STL', 'MTL']}") config = get_config()["learning"][model] logger.info(f"{model} model config: {config}") if not isinstance(task_names, list): task_names = [task_names] if not isinstance(n_arities, list): n_arities = [n_arities] if not isinstance(n_classes, list): n_classes = [n_classes] tasks = [] for task_name, n_arity, n_class in zip(task_names, n_arities, n_classes): if mode == "MTL": feature_module_name = "shared_feature" else: feature_module_name = f"{task_name}_feature" if model == "LSTM": module_pool = nn.ModuleDict( { "emb": emb_layer, feature_module_name: SparseLinear( n_features + 1, config["hidden_dim"], bias=config["bias"] ), } ) for i in range(n_arity): module_pool.update( { f"{task_name}_lstm{i}": RNN( num_classes=0, emb_size=emb_layer.dim, lstm_hidden=config["hidden_dim"], attention=config["attention"], dropout=config["dropout"], bidirectional=config["bidirectional"], ) } ) module_pool.update( { f"{task_name}_pred_head": ConcatLinear( [f"{task_name}_lstm{i}" for i in range(n_arity)] + [feature_module_name], config["hidden_dim"] * (2 * n_arity + 1) if config["bidirectional"] else config["hidden_dim"] * (n_arity + 1), n_class, ) } ) task_flow = [] task_flow += [ { "name": f"{task_name}_emb{i}", "module": "emb", "inputs": [("_input_", f"m{i}")], } for i in range(n_arity) ] task_flow += [ { "name": f"{task_name}_lstm{i}", "module": f"{task_name}_lstm{i}", "inputs": [(f"{task_name}_emb{i}", 0), ("_input_", f"m{i}_mask")], } for i in range(n_arity) ] task_flow += [ { "name": feature_module_name, "module": feature_module_name, "inputs": [ ("_input_", "feature_index"), ("_input_", "feature_weight"), ], } ] task_flow += [ { "name": f"{task_name}_pred_head", "module": f"{task_name}_pred_head", "inputs": None, } ] elif model == "LogisticRegression": module_pool = nn.ModuleDict( { feature_module_name: SparseLinear( n_features + 1, config["hidden_dim"], bias=config["bias"] ), f"{task_name}_pred_head": ConcatLinear( [feature_module_name], config["hidden_dim"], n_class ), } ) task_flow = [ { "name": feature_module_name, "module": feature_module_name, "inputs": [ ("_input_", "feature_index"), ("_input_", "feature_weight"), ], }, { "name": f"{task_name}_pred_head", "module": f"{task_name}_pred_head", "inputs": None, }, ] else: raise ValueError(f"Unrecognized model {model}.") tasks.append( EmmentalTask( name=task_name, module_pool=module_pool, task_flow=task_flow, loss_func=partial(loss, f"{task_name}_pred_head"), output_func=partial(output, f"{task_name}_pred_head"), scorer=Scorer(metrics=["accuracy", "precision", "recall", "f1"]), ) ) return tasks
fonduer-master
src/fonduer/learning/task.py
"""Fonduer's learning module."""
fonduer-master
src/fonduer/learning/__init__.py
"""Fonduer dataset.""" import logging from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import torch from emmental.data import EmmentalDataset from scipy.sparse import csr_matrix from torch import Tensor from fonduer.candidates.models import Candidate from fonduer.learning.utils import mark_sentence, mention_to_tokens logger = logging.getLogger(__name__) class FonduerDataset(EmmentalDataset): """A FonduerDataset class which is inherited from EmmentalDataset. This class takes list of candidates and corresponding feature matrix as input and wraps them. :param name: The name of the dataset. :param candidates: The list of candidates. :param features: The corresponding feature matrix. :param word2id: The name of the dataset. :param labels: If np.array, it's the label for all candidates; If int, it's the number of classes of label and we will create placeholder labels (mainly used for inference). :param labels: Which candidates to use. If None, use all candidates. """ def __init__( self, name: str, candidates: List[Candidate], features: csr_matrix, word2id: Dict, labels: Union[np.array, int], index: Optional[List[int]] = None, ): """Initialize FonduerDataset.""" self.name = name self.candidates = candidates self.features = features self.word2id = word2id self.labels = labels self.index = index self.X_dict: Dict[str, List[Any]] = {} self.Y_dict: Dict[str, Tensor] = {} self._map_to_id() self._map_features() self._map_labels() uids = [f"{self.name}_{idx}" for idx in range(len(self.candidates))] self.add_features({"_uids_": uids}) super().__init__(name, self.X_dict, self.Y_dict, "_uids_") def __len__(self) -> int: """Get the length of the dataset.""" try: if self.index is not None: return len(self.index) else: return len(next(iter(self.X_dict.values()))) except StopIteration: return 0 def __getitem__( self, index: int ) -> Tuple[Dict[str, Union[Tensor, list]], Dict[str, Tensor]]: """Get the data from dataset.""" if self.index is not None: index = self.index[index] x_dict = {name: feature[index] for name, feature in self.X_dict.items()} y_dict = {name: label[index] for name, label in self.Y_dict.items()} return x_dict, y_dict def _map_to_id(self) -> None: self.X_dict.update( dict([(f"m{i}", []) for i in range(len(self.candidates[0]))]) ) for candidate in self.candidates: for i in range(len(candidate)): # Add mark for each mention in the original sentence args = [ ( candidate[i].context.get_word_start_index(), candidate[i].context.get_word_end_index(), i, ) ] s = mark_sentence(mention_to_tokens(candidate[i]), args) self.X_dict[f"m{i}"].append( torch.tensor( [ self.word2id[w] if w in self.word2id else self.word2id["<unk>"] for w in s ], dtype=torch.long, ) ) def _map_features(self) -> None: self.X_dict.update({"feature_index": [], "feature_weight": []}) for i in range(len(self.candidates)): self.X_dict["feature_index"].append( torch.tensor( self.features.indices[ self.features.indptr[i] : self.features.indptr[i + 1] ], dtype=torch.long, ) + 1 ) self.X_dict["feature_weight"].append( torch.tensor( self.features.data[ self.features.indptr[i] : self.features.indptr[i + 1] ], dtype=torch.float, ) ) def _map_labels(self) -> None: if isinstance(self.labels, int): self.Y_dict.update( { "labels": torch.from_numpy( np.random.randint(self.labels, size=len(self.candidates)) ) } ) else: self.Y_dict.update({"labels": torch.tensor(np.array(self.labels))})
fonduer-master
src/fonduer/learning/dataset.py
"""Fonduer learning utils.""" import logging from collections import Counter from typing import Dict, List, Set, Tuple, Union import numpy as np from sqlalchemy.orm import Session from fonduer.candidates.models import Candidate, Mention from fonduer.learning.models.marginal import Marginal logger = logging.getLogger(__name__) def save_marginals( session: Session, X: List[Candidate], marginals: Session, training: bool = True ) -> None: """Save marginal probabilities for a set of Candidates to db. :param X: A list of arbitrary objects with candidate ids accessible via a .id attrib :param marginals: A dense M x K matrix of marginal probabilities, where K is the cardinality of the candidates, OR a M-dim list/array if K=2. :param training: If True, these are training marginals / labels; else they are saved as end model predictions. Note: The marginals for k=0 are not stored, only for k = 1,...,K """ logger = logging.getLogger(__name__) # Make sure that we are working with a numpy array try: shape = marginals.shape except Exception: marginals = np.array(marginals) shape = marginals.shape # Handle binary input as M x 1-dim array; assume elements represent # poksitive (k=1) class values if len(shape) == 1: marginals = np.vstack([1 - marginals, marginals]).T # Only add values for classes k=1,...,K marginal_tuples = [] for i in range(shape[0]): for k in range(1, shape[1] if len(shape) > 1 else 2): if marginals[i, k] > 0: marginal_tuples.append((i, k, marginals[i, k])) # NOTE: This will delete all existing marginals of type `training` session.query(Marginal).filter(Marginal.training == training).delete( synchronize_session="fetch" ) # Prepare bulk INSERT query q = Marginal.__table__.insert() # Prepare values insert_vals = [] for i, k, p in marginal_tuples: cid = X[i].id insert_vals.append( { "candidate_id": cid, "training": training, "value": k, # We cast p in case its a numpy type, which psycopg2 does not handle "probability": float(p), } ) # Execute update session.execute(q, insert_vals) session.commit() logger.info(f"Saved {len(marginals)} marginals") def confusion_matrix(pred: Set, gold: Set) -> Tuple[Set, Set, Set]: """Return a confusion matrix. This can be used for both entity-level and mention-level :param pred: a set of predicted entities/candidates :param gold: a set of golden entities/candidates :return: a tuple of TP, FP, and FN """ if not isinstance(pred, set): pred = set(pred) if not isinstance(gold, set): gold = set(gold) TP = pred.intersection(gold) FP = pred.difference(gold) FN = gold.difference(pred) return (TP, FP, FN) def mention_to_tokens( mention: Mention, token_type: str = "words", lowercase: bool = False ) -> List[str]: """Extract tokens from the mention. :param mention: mention object. :param token_type: token type that wants to extract (e.g. words, lemmas, poses). :param lowercase: use lowercase or not. :return: The token list. """ tokens = getattr(mention.context.sentence, token_type) return [w.lower() if lowercase else w for w in tokens] def mark(l: int, h: int, idx: int) -> List[Tuple[int, str]]: """Produce markers based on argument positions. :param l: sentence position of first word in argument. :param h: sentence position of last word in argument. :param idx: argument index (1 or 2). :return: markers. """ return [(l, f"~~[[{idx}"), (h + 1, f"{idx}]]~~")] def mark_sentence(s: List[str], args: List[Tuple[int, int, int]]) -> List[str]: """Insert markers around relation arguments in word sequence. :param s: list of tokens in sentence. :param args: list of triples (l, h, idx) as per @_mark(...) corresponding to relation arguments :return: The marked sentence. Example: Then Barack married Michelle. -> Then ~~[[1 Barack 1]]~~ married ~~[[2 Michelle 2]]~~. """ marks = sorted([y for m in args for y in mark(*m)], reverse=True) x = list(s) for k, v in marks: x.insert(k, v) return x def collect_word_counter( candidates: Union[List[Candidate], List[List[Candidate]]] ) -> Dict[str, int]: """Collect word counter from candidates. :param candidates: The candidates used to collect word counter. :return: The word counter. """ word_counter: Counter = Counter() if isinstance(candidates[0], list): candidates = [cand for candidate in candidates for cand in candidate] for candidate in candidates: for mention in candidate: word_counter.update(mention_to_tokens(mention)) return word_counter
fonduer-master
src/fonduer/learning/utils.py
"""Fonduer's learning model module.""" from fonduer.learning.models.marginal import Marginal from fonduer.learning.models.prediction import Prediction, PredictionKey __all__ = ["Marginal", "Prediction", "PredictionKey"]
fonduer-master
src/fonduer/learning/models/__init__.py
"""Fonduer learning prediction model.""" from sqlalchemy import Column, Float from fonduer.meta import Meta from fonduer.utils.models.annotation import AnnotationKeyMixin, AnnotationMixin class PredictionKey(AnnotationKeyMixin, Meta.Base): """A Prediction's annotation key.""" pass class Prediction(AnnotationMixin, Meta.Base): """A Prediction table. A probability associated with a Candidate, indicating the degree of belief that the Candidate is true. A Prediction's annotation key indicates which process or method produced the Prediction, e.g., which model with which ParameterSet. """ value = Column(Float, nullable=False)
fonduer-master
src/fonduer/learning/models/prediction.py
"""Fonduer learning marginal model.""" from sqlalchemy import Boolean, Column, Float, ForeignKey, Integer, UniqueConstraint from fonduer.meta import Meta class Marginal(Meta.Base): """ A marginal probability corresponding to a (Candidate, value) pair. Represents: P(candidate = value) = probability @training: If True, this is a training marginal; otherwise is end prediction """ __tablename__ = "marginal" id = Column(Integer, primary_key=True) candidate_id = Column(Integer, ForeignKey("candidate.id", ondelete="CASCADE")) training = Column(Boolean, default=True) value = Column(Integer, nullable=False, default=1) probability = Column(Float, nullable=False, default=0.0) __table_args__ = (UniqueConstraint(candidate_id, training, value),) def __repr__(self) -> str: """Represent the marginal as a string.""" label = "Training" if self.training else "Predicted" return ( f"<" f"{label} " f"Marginal: P({self.candidate_id} == {self.value}) = {self.probability}" f">" )
fonduer-master
src/fonduer/learning/models/marginal.py
"""Fonduer's learning modules."""
fonduer-master
src/fonduer/learning/modules/__init__.py
"""Soft cross entropy loss.""" from typing import List import torch from torch import Tensor, nn as nn from torch.nn import functional as F class SoftCrossEntropyLoss(nn.Module): """Calculate the CrossEntropyLoss with soft targets. :param weight: Weight to assign to each of the classes. Default: None :param reduction: The way to reduce the losses: 'none' | 'mean' | 'sum'. 'none': no reduction, 'mean': the mean of the losses, 'sum': the sum of the losses. """ def __init__(self, weight: List[float] = None, reduction: str = "mean"): """Initialize SoftCrossEntropyLoss.""" super().__init__() if weight is None: self.weight = None else: self.register_buffer("weight", torch.tensor(weight)) self.reduction = reduction def forward(self, input: Tensor, target: Tensor) -> Tensor: """Calculate the loss. :param input: prediction logits :param target: target probabilities :return: loss """ n, k = input.shape losses = input.new_zeros(n) for i in range(k): cls_idx = input.new_full((n,), i, dtype=torch.long) loss = F.cross_entropy(input, cls_idx, reduction="none") if self.weight is not None: loss = loss * self.weight[i] losses += target[:, i].float() * loss if self.reduction == "mean": losses = losses.mean() elif self.reduction == "sum": losses = losses.sum() elif self.reduction != "none": raise ValueError(f"Unrecognized reduction: {self.reduction}") return losses
fonduer-master
src/fonduer/learning/modules/soft_cross_entropy_loss.py
"""Concat linear.""" from typing import Any, Dict, List import torch from torch import Tensor, nn as nn class ConcatLinear(nn.Module): """Concat different outputs and feed into a linear layer. :param concat_output_keys: The keys of features to concat. :param input_dim: The total sum of input dim. :param outpt_dim: The output dim. """ def __init__( self, concat_output_keys: List[str], input_dim: int, outpt_dim: int ) -> None: """Initialize ConcatLinear.""" super().__init__() self.concat_output_keys = concat_output_keys self.linear = nn.Linear(input_dim, outpt_dim) def forward(self, intermediate_output_dict: Dict[str, Any]) -> Tensor: """Forward function.""" input_feature = torch.cat( [intermediate_output_dict[key][0] for key in self.concat_output_keys], dim=1 ) return self.linear(input_feature)
fonduer-master
src/fonduer/learning/modules/concat_linear.py
"""Fonduer featurizer.""" import itertools import logging from collections import defaultdict from typing import ( Any, Collection, DefaultDict, Dict, Iterable, List, Optional, Type, Union, ) from scipy.sparse import csr_matrix from sqlalchemy.orm import Session from fonduer.candidates.models import Candidate from fonduer.features.feature_extractors import FeatureExtractor from fonduer.features.models import Feature, FeatureKey from fonduer.parser.models.document import Document from fonduer.utils.udf import UDF, UDFRunner from fonduer.utils.utils_udf import ( ALL_SPLITS, batch_upsert_records, drop_all_keys, drop_keys, get_docs_from_split, get_mapping, get_sparse_matrix, get_sparse_matrix_keys, upsert_keys, ) logger = logging.getLogger(__name__) class Featurizer(UDFRunner): """An operator to add Feature Annotations to Candidates. :param session: The database session to use. :param candidate_classes: A list of candidate_subclasses to featurize. :param parallelism: The number of processes to use in parallel. Default 1. """ def __init__( self, session: Session, candidate_classes: List[Candidate], feature_extractors: FeatureExtractor = FeatureExtractor(), parallelism: int = 1, ) -> None: """Initialize the Featurizer.""" super().__init__( session, FeaturizerUDF, parallelism=parallelism, candidate_classes=candidate_classes, feature_extractors=feature_extractors, ) self.candidate_classes = candidate_classes def update( self, docs: Optional[Collection[Document]] = None, split: int = 0, parallelism: Optional[int] = None, progress_bar: bool = True, ) -> None: """Update the features of the specified candidates. :param docs: If provided, apply features to all the candidates in these documents. :param split: If docs is None, apply features to the candidates in this particular split. :param parallelism: How many threads to use for extraction. This will override the parallelism value used to initialize the Featurizer if it is provided. :param progress_bar: Whether or not to display a progress bar. The progress bar is measured per document. """ self.apply( docs=docs, split=split, train=True, clear=False, parallelism=parallelism, progress_bar=progress_bar, ) def apply( # type: ignore self, docs: Optional[Collection[Document]] = None, split: int = 0, train: bool = False, clear: bool = True, parallelism: Optional[int] = None, progress_bar: bool = True, ) -> None: """Apply features to the specified candidates. :param docs: If provided, apply features to all the candidates in these documents. :param split: If docs is None, apply features to the candidates in this particular split. :param train: Whether or not to update the global key set of features and the features of candidates. :param clear: Whether or not to clear the features table before applying features. :param parallelism: How many threads to use for extraction. This will override the parallelism value used to initialize the Featurizer if it is provided. :param progress_bar: Whether or not to display a progress bar. The progress bar is measured per document. """ if docs: # Call apply on the specified docs for all splits # TODO: split is int split = ALL_SPLITS # type: ignore super().apply( docs, split=split, train=train, clear=clear, parallelism=parallelism, progress_bar=progress_bar, ) # Needed to sync the bulk operations self.session.commit() else: # Only grab the docs containing candidates from the given split. split_docs = get_docs_from_split( self.session, self.candidate_classes, split ) super().apply( split_docs, split=split, train=train, clear=clear, parallelism=parallelism, progress_bar=progress_bar, ) # Needed to sync the bulk operations self.session.commit() def upsert_keys( self, keys: Iterable[str], candidate_classes: Union[Candidate, Iterable[Candidate], None] = None, ) -> None: """Upsert the specified keys to FeatureKey. :param keys: A list of FeatureKey names to upsert. :param candidate_classes: A list of the Candidates to upsert the key for. If None, upsert the keys for all candidate classes associated with this Featurizer. """ # Make sure keys is iterable keys = keys if isinstance(keys, (list, tuple)) else [keys] # Make sure candidate_classes is iterable if candidate_classes: candidate_classes = ( candidate_classes if isinstance(candidate_classes, Iterable) else [candidate_classes] ) # Ensure only candidate classes associated with the featurizer # are used. candidate_classes = [ _.__tablename__ for _ in candidate_classes if _ in self.candidate_classes ] if len(candidate_classes) == 0: logger.warning( "You didn't specify valid candidate classes for this featurizer." ) return # If unspecified, just use all candidate classes else: candidate_classes = [_.__tablename__ for _ in self.candidate_classes] # build dict for use by utils key_map = dict() for key in keys: key_map[key] = set(candidate_classes) upsert_keys(self.session, FeatureKey, key_map) def drop_keys( self, keys: Iterable[str], candidate_classes: Union[Candidate, Iterable[Candidate], None] = None, ) -> None: """Drop the specified keys from FeatureKeys. :param keys: A list of FeatureKey names to delete. :param candidate_classes: A list of the Candidates to drop the key for. If None, drops the keys for all candidate classes associated with this Featurizer. """ # Make sure keys is iterable keys = keys if isinstance(keys, (list, tuple)) else [keys] # Make sure candidate_classes is iterable if candidate_classes: candidate_classes = ( candidate_classes if isinstance(candidate_classes, Iterable) else [candidate_classes] ) # Ensure only candidate classes associated with the featurizer # are used. candidate_classes = [ _.__tablename__ for _ in candidate_classes if _ in self.candidate_classes ] if len(candidate_classes) == 0: logger.warning( "You didn't specify valid candidate classes for this featurizer." ) return # If unspecified, just use all candidate classes else: candidate_classes = [_.__tablename__ for _ in self.candidate_classes] # build dict for use by utils key_map = dict() for key in keys: key_map[key] = set(candidate_classes) drop_keys(self.session, FeatureKey, key_map) def get_keys(self) -> List[FeatureKey]: """Return a list of keys for the Features. :return: List of FeatureKeys. """ return list(get_sparse_matrix_keys(self.session, FeatureKey)) def _add(self, session: Session, records_list: List[List[Dict[str, Any]]]) -> None: # Make a flat list of all records from the list of list of records. # This helps reduce the number of queries needed to update. all_records = list(itertools.chain.from_iterable(records_list)) batch_upsert_records(session, Feature, all_records) def clear(self, train: bool = False, split: int = 0) -> None: # type: ignore """Delete Features of each class from the database. :param train: Whether or not to clear the FeatureKeys :param split: Which split of candidates to clear features from. """ # Clear Features for the candidates in the split passed in. logger.info(f"Clearing Features (split {split})") if split == ALL_SPLITS: sub_query = self.session.query(Candidate.id).subquery() else: sub_query = ( self.session.query(Candidate.id) .filter(Candidate.split == split) .subquery() ) query = self.session.query(Feature).filter(Feature.candidate_id.in_(sub_query)) query.delete(synchronize_session="fetch") # Delete all old annotation keys if train: logger.debug(f"Clearing all FeatureKeys from {self.candidate_classes}...") drop_all_keys(self.session, FeatureKey, self.candidate_classes) def clear_all(self) -> None: """Delete all Features.""" logger.info("Clearing ALL Features and FeatureKeys.") self.session.query(Feature).delete(synchronize_session="fetch") self.session.query(FeatureKey).delete(synchronize_session="fetch") def _after_apply(self, train: bool = False, **kwargs: Any) -> None: # Insert all Feature Keys if train: key_map: DefaultDict[str, set] = defaultdict(set) for feature in self.session.query(Feature).all(): cand = feature.candidate for key in feature.keys: key_map[key].add(cand.__class__.__tablename__) self.session.query(FeatureKey).delete(synchronize_session="fetch") # TODO: upsert is too much. insert is fine as all keys are deleted. upsert_keys(self.session, FeatureKey, key_map) def get_feature_matrices( self, cand_lists: List[List[Candidate]] ) -> List[csr_matrix]: """Load sparse matrix of Features for each candidate_class. :param cand_lists: The candidates to get features for. :return: A list of MxN sparse matrix where M are the candidates and N is the features. """ return get_sparse_matrix(self.session, FeatureKey, cand_lists) class FeaturizerUDF(UDF): """UDF for performing candidate extraction.""" def __init__( self, candidate_classes: Iterable[Type[Candidate]], feature_extractors: FeatureExtractor, **kwargs: Any, ) -> None: """Initialize the FeaturizerUDF.""" self.candidate_classes = ( candidate_classes if isinstance(candidate_classes, (list, tuple)) else [candidate_classes] ) self.feature_extractors = feature_extractors super().__init__(**kwargs) def apply(self, doc: Document, **kwargs: Any) -> List[List[Dict[str, Any]]]: """Extract candidates from the given Context. :param doc: A document to process. """ logger.debug(f"Document: {doc}") # Get all the candidates in this doc that will be featurized cands_list = [ getattr(doc, candidate_class.__tablename__ + "s") for candidate_class in self.candidate_classes ] records_list = [ list(get_mapping(Feature, cands, self.feature_extractors.extract)) for cands in cands_list ] return records_list
fonduer-master
src/fonduer/features/featurizer.py
"""Fonduer's features module.""" from fonduer.features.feature_extractors import FeatureExtractor from fonduer.features.featurizer import Featurizer __all__ = ["Featurizer", "FeatureExtractor"]
fonduer-master
src/fonduer/features/__init__.py
"""Fonduer feature extractor.""" from typing import Callable, Dict, Iterator, List, Tuple, Union from fonduer.candidates.models import Candidate from fonduer.features.feature_libs.structural_features import ( extract_structural_features, ) from fonduer.features.feature_libs.tabular_features import extract_tabular_features from fonduer.features.feature_libs.textual_features import extract_textual_features from fonduer.features.feature_libs.visual_features import extract_visual_features FEATURES: Dict[str, Callable[[List[Candidate]], Iterator[Tuple[int, str, int]]]] = { "textual": extract_textual_features, "structural": extract_structural_features, "tabular": extract_tabular_features, "visual": extract_visual_features, } # Type alias for feature_func Feature_func = Callable[[List[Candidate]], Iterator[Tuple[int, str, int]]] class FeatureExtractor(object): """A class to extract features from candidates. :param features: a list of which Fonduer feature types to extract, defaults to ["textual", "structural", "tabular", "visual"] :param customize_feature_funcs: a list of customized feature extractors where the extractor takes a list of candidates as input and yield tuples of (candidate_id, feature, value), defaults to [] """ def __init__( self, features: List[str] = ["textual", "structural", "tabular", "visual"], customize_feature_funcs: Union[Feature_func, List[Feature_func]] = [], ) -> None: """Initialize FeatureExtractor.""" if not isinstance(customize_feature_funcs, list): customize_feature_funcs = [customize_feature_funcs] self.feature_extractors: List[ Callable[[List[Candidate]], Iterator[Tuple[int, str, int]]] ] = [] for feature in features: if feature not in FEATURES: raise ValueError(f"Unrecognized feature type: {feature}") self.feature_extractors.append(FEATURES[feature]) self.feature_extractors.extend(customize_feature_funcs) def extract( self, candidates: Union[List[Candidate], Candidate] ) -> Iterator[Tuple[int, str, int]]: """Extract features from candidates. :param candidates: A list of candidates to extract features from """ candidates = candidates if isinstance(candidates, list) else [candidates] for feature_extractor in self.feature_extractors: for candidate_id, feature, value in feature_extractor(candidates): yield candidate_id, feature, value
fonduer-master
src/fonduer/features/feature_extractors.py
"""Fonduer visual feature extractor.""" from typing import Dict, Iterator, List, Set, Tuple, Union from fonduer.candidates.models import Candidate from fonduer.candidates.models.span_mention import SpanMention, TemporarySpanMention from fonduer.utils.data_model_utils import ( get_visual_aligned_lemmas, is_horz_aligned, is_vert_aligned, is_vert_aligned_center, is_vert_aligned_left, is_vert_aligned_right, same_page, ) FEAT_PRE = "VIZ_" DEF_VALUE = 1 unary_vizlib_feats: Dict[str, Set] = {} multinary_vizlib_feats: Dict[str, Set] = {} def extract_visual_features( candidates: Union[Candidate, List[Candidate]], ) -> Iterator[Tuple[int, str, int]]: """Extract visual features. :param candidates: A list of candidates to extract features from """ candidates = candidates if isinstance(candidates, list) else [candidates] for candidate in candidates: args = tuple([m.context for m in candidate.get_mentions()]) if any(not (isinstance(arg, TemporarySpanMention)) for arg in args): raise ValueError( f"Visual feature only accepts Span-type arguments, " f"{type(candidate)}-type found." ) # Unary candidates if len(args) == 1: span = args[0] # Add VisualLib entity features (if applicable) if span.sentence.is_visual(): if span.stable_id not in unary_vizlib_feats: unary_vizlib_feats[span.stable_id] = set() for f, v in _vizlib_unary_features(span): unary_vizlib_feats[span.stable_id].add((f, v)) for f, v in unary_vizlib_feats[span.stable_id]: yield candidate.id, FEAT_PRE + f, v # Multinary candidates else: spans = args # Add VisualLib entity features (if applicable) if all([span.sentence.is_visual() for span in spans]): for i, span in enumerate(spans): prefix = f"e{i}_" if span.stable_id not in unary_vizlib_feats: unary_vizlib_feats[span.stable_id] = set() for f, v in _vizlib_unary_features(span): unary_vizlib_feats[span.stable_id].add((f, v)) for f, v in unary_vizlib_feats[span.stable_id]: yield candidate.id, FEAT_PRE + prefix + f, v if candidate.id not in multinary_vizlib_feats: multinary_vizlib_feats[candidate.id] = set() for f, v in _vizlib_multinary_features(spans): multinary_vizlib_feats[candidate.id].add((f, v)) for f, v in multinary_vizlib_feats[candidate.id]: yield candidate.id, FEAT_PRE + f, v def _vizlib_unary_features(span: SpanMention) -> Iterator[Tuple[str, int]]: """Visual-related features for a single span.""" if not span.sentence.is_visual(): return for f in get_visual_aligned_lemmas(span): yield f"ALIGNED_{f}", DEF_VALUE for page in set(span.get_attrib_tokens("page")): yield f"PAGE_[{page}]", DEF_VALUE def _vizlib_multinary_features( spans: Tuple[SpanMention, ...] ) -> Iterator[Tuple[str, int]]: """Visual-related features for multiple spans.""" if same_page(spans): yield "SAME_PAGE", DEF_VALUE if is_horz_aligned(spans): yield "HORZ_ALIGNED", DEF_VALUE if is_vert_aligned(spans): yield "VERT_ALIGNED", DEF_VALUE if is_vert_aligned_left(spans): yield "VERT_ALIGNED_LEFT", DEF_VALUE if is_vert_aligned_right(spans): yield "VERT_ALIGNED_RIGHT", DEF_VALUE if is_vert_aligned_center(spans): yield "VERT_ALIGNED_CENTER", DEF_VALUE
fonduer-master
src/fonduer/features/feature_libs/visual_features.py
"""Fonduer tabular feature extractor.""" from typing import Dict, Iterator, List, Set, Tuple, Union from fonduer.candidates.models import Candidate from fonduer.candidates.models.span_mention import SpanMention, TemporarySpanMention from fonduer.utils.config import get_config from fonduer.utils.data_model_utils import ( get_cell_ngrams, get_col_ngrams, get_head_ngrams, get_row_ngrams, ) from fonduer.utils.utils_table import min_col_diff, min_row_diff, num_cols, num_rows FEAT_PRE = "TAB_" DEF_VALUE = 1 unary_tablelib_feats: Dict[str, Set] = {} multinary_tablelib_feats: Dict[str, Set] = {} settings = get_config() def extract_tabular_features( candidates: Union[Candidate, List[Candidate]], ) -> Iterator[Tuple[int, str, int]]: """Extract tabular features. :param candidates: A list of candidates to extract features from """ candidates = candidates if isinstance(candidates, list) else [candidates] for candidate in candidates: args = tuple([m.context for m in candidate.get_mentions()]) if any(not (isinstance(arg, TemporarySpanMention)) for arg in args): raise ValueError( f"Table feature only accepts Span-type arguments, " f"{type(candidate)}-type found." ) # Unary candidates if len(args) == 1: span = args[0] if span.stable_id not in unary_tablelib_feats: unary_tablelib_feats[span.stable_id] = set() for f, v in _tablelib_unary_features(span): unary_tablelib_feats[span.stable_id].add((f, v)) for f, v in unary_tablelib_feats[span.stable_id]: yield candidate.id, FEAT_PRE + f, v # Multinary candidates else: spans = args if any([span.sentence.is_tabular() for span in spans]): for i, span in enumerate(spans): prefix = f"e{i}_" if span.stable_id not in unary_tablelib_feats: unary_tablelib_feats[span.stable_id] = set() for f, v in _tablelib_unary_features(span): unary_tablelib_feats[span.stable_id].add((f, v)) for f, v in unary_tablelib_feats[span.stable_id]: yield candidate.id, FEAT_PRE + prefix + f, v if candidate.id not in multinary_tablelib_feats: multinary_tablelib_feats[candidate.id] = set() for f, v in _tablelib_multinary_features(spans): multinary_tablelib_feats[candidate.id].add((f, v)) for f, v in multinary_tablelib_feats[candidate.id]: yield candidate.id, FEAT_PRE + f, v def _tablelib_unary_features(span: SpanMention) -> Iterator[Tuple[str, int]]: """Table-/structure-related features for a single span.""" if not span.sentence.is_tabular(): return sentence = span.sentence for attrib in settings["featurization"]["tabular"]["unary_features"]["attrib"]: for ngram in get_cell_ngrams( span, n_max=settings["featurization"]["tabular"]["unary_features"][ "get_cell_ngrams" ]["max"], attrib=attrib, ): yield f"CELL_{attrib.upper()}_[{ngram}]", DEF_VALUE for row_num in range(sentence.row_start, sentence.row_end + 1): yield f"ROW_NUM_[{row_num}]", DEF_VALUE for col_num in range(sentence.col_start, sentence.col_end + 1): yield f"COL_NUM_[{col_num}]", DEF_VALUE # NOTE: These two features could be accounted for by HTML_ATTR in # structural features yield f"ROW_SPAN_[{num_rows(sentence)}]", DEF_VALUE yield f"COL_SPAN_[{num_cols(sentence)}]", DEF_VALUE for axis in ["row", "col"]: for ngram in get_head_ngrams( span, axis, n_max=settings["featurization"]["tabular"]["unary_features"][ "get_head_ngrams" ]["max"], attrib=attrib, ): yield f"{axis.upper()}_HEAD_{attrib.upper()}_[{ngram}]", DEF_VALUE for ngram in get_row_ngrams( span, n_max=settings["featurization"]["tabular"]["unary_features"][ "get_row_ngrams" ]["max"], attrib=attrib, ): yield f"ROW_{attrib.upper()}_[{ngram}]", DEF_VALUE for ngram in get_col_ngrams( span, n_max=settings["featurization"]["tabular"]["unary_features"][ "get_col_ngrams" ]["max"], attrib=attrib, ): yield f"COL_{attrib.upper()}_[{ngram}]", DEF_VALUE # TODO: # for ngram in get_row_ngrams( # span, n_max=2, attrib=attrib, direct=False, infer=True # ): # yield "ROW_INFERRED_%s_[%s]" % (attrib.upper(), ngram), DEF_VALUE # for ngram in get_col_ngrams( # span, n_max=2, attrib=attrib, direct=False, infer=True # ): # yield "COL_INFERRED_%s_[%s]" % (attrib.upper(), ngram), DEF_VALUE def _tablelib_multinary_features( spans: Tuple[SpanMention, ...] ) -> Iterator[Tuple[str, int]]: """Table-/structure-related features for multiple spans.""" multinary_features = settings["featurization"]["tabular"]["multinary_features"] span_sentences = [span.sentence for span in spans] if all([sentence.is_tabular() for sentence in span_sentences]): span_tables = [sentence.table for sentence in span_sentences] if span_tables[1:] == span_tables[:-1]: yield "SAME_TABLE", DEF_VALUE if all([span.sentence.cell is not None for span in spans]): row_diff = min_row_diff( span_sentences, absolute=multinary_features["min_row_diff"]["absolute"], ) col_diff = min_col_diff( span_sentences, absolute=multinary_features["min_col_diff"]["absolute"], ) yield f"SAME_TABLE_ROW_DIFF_[{row_diff}]", DEF_VALUE yield f"SAME_TABLE_COL_DIFF_[{col_diff}]", DEF_VALUE yield ( f"SAME_TABLE_MANHATTAN_DIST_[{abs(row_diff) + abs(col_diff)}]" ), DEF_VALUE span_cells = [sentence.cell for sentence in span_sentences] if span_cells[1:] == span_cells[:-1]: yield "SAME_CELL", DEF_VALUE word_diff = sum( [ s1.get_word_start_index() - s2.get_word_start_index() for s1, s2 in zip(spans[:-1], spans[1:]) ] ) yield (f"WORD_DIFF_[{word_diff}]"), DEF_VALUE char_diff = sum( [ s1.char_start - s2.char_start for s1, s2 in zip(spans[:-1], spans[1:]) ] ) yield (f"CHAR_DIFF_[{char_diff}]"), DEF_VALUE if [span_sentences[1:] == span_sentences[:-1]]: yield "SAME_SENTENCE", DEF_VALUE else: if all([sentence.cell is not None for sentence in span_sentences]): yield "DIFF_TABLE", DEF_VALUE row_diff = min_row_diff( span_sentences, absolute=multinary_features["min_row_diff"]["absolute"], ) col_diff = min_col_diff( span_sentences, absolute=multinary_features["min_col_diff"]["absolute"], ) yield f"DIFF_TABLE_ROW_DIFF_[{row_diff}]", DEF_VALUE yield f"DIFF_TABLE_COL_DIFF_[{col_diff}]", DEF_VALUE yield ( f"DIFF_TABLE_MANHATTAN_DIST_[{abs(row_diff) + abs(col_diff)}]" ), DEF_VALUE
fonduer-master
src/fonduer/features/feature_libs/tabular_features.py
"""Fonduer textual feature extractor.""" from builtins import range from typing import Any, Callable, Dict, Iterator, List, Set, Tuple, Union from treedlib import ( Children, Compile, Indicator, LeftNgrams, LeftSiblings, Mention, Ngrams, Parents, RightNgrams, RightSiblings, compile_relation_feature_generator, ) from fonduer.candidates.models import Candidate, ImplicitSpanMention, SpanMention from fonduer.features.feature_libs.tree_structs import corenlp_to_xmltree from fonduer.utils.config import get_config from fonduer.utils.data_model_utils import get_left_ngrams, get_right_ngrams from fonduer.utils.utils import get_as_dict, tokens_to_ngrams DEF_VALUE = 1 unary_ddlib_feats: Dict[str, Set] = {} unary_word_feats: Dict[str, Set] = {} unary_tdl_feats: Dict[str, Set] = {} multinary_tdl_feats: Dict[str, Set] = {} settings = get_config() def extract_textual_features( candidates: Union[Candidate, List[Candidate]], ) -> Iterator[Tuple[int, str, int]]: """Extract textual features. :param candidates: A list of candidates to extract features from """ candidates = candidates if isinstance(candidates, list) else [candidates] for candidate in candidates: args = tuple([m.context for m in candidate.get_mentions()]) if not (isinstance(args[0], (SpanMention, ImplicitSpanMention))): raise ValueError( f"Accepts Span/ImplicitSpan-type mentions, {type(args[0])}-type found." ) # Unary candidates if len(args) == 1: span: Union[SpanMention, ImplicitSpanMention] = args[0] if span.sentence.is_lingual(): get_tdl_feats = _compile_entity_feature_generator() xmltree = corenlp_to_xmltree(span.sentence) sidxs = list( range(span.get_word_start_index(), span.get_word_end_index() + 1) ) if len(sidxs) > 0: # Add DDLIB entity features for f in _get_ddlib_feats(span, get_as_dict(span.sentence), sidxs): yield candidate.id, f"DDL_{f}", DEF_VALUE # Add TreeDLib entity features if span.stable_id not in unary_tdl_feats: unary_tdl_feats[span.stable_id] = set() for f in get_tdl_feats(xmltree.root, sidxs): unary_tdl_feats[span.stable_id].add(f) for f in unary_tdl_feats[span.stable_id]: yield candidate.id, f"TDL_{f}", DEF_VALUE for f in _get_word_feats(span): yield candidate.id, f"BASIC_{f}", DEF_VALUE # Multinary candidates else: spans = args if all([span.sentence.is_lingual() for span in spans]): get_tdl_feats = compile_relation_feature_generator(is_multary=True) sents = [get_as_dict(span.sentence) for span in spans] xmltree = corenlp_to_xmltree(spans[0].sentence) s_idxs = [ list( range( span.get_word_start_index(), span.get_word_end_index() + 1 ) ) for span in spans ] if all([len(s_idx) > 0 for s_idx in s_idxs]): # Add DDLIB entity features for relation for span, sent, s_idx, i in zip( spans, sents, s_idxs, range(len(spans)) ): for f in _get_ddlib_feats(span, sent, s_idx): yield candidate.id, f"DDL_e{i}_{f}", DEF_VALUE # Add TreeDLib relation features if candidate.id not in multinary_tdl_feats: multinary_tdl_feats[candidate.id] = set() for f in get_tdl_feats(xmltree.root, s_idxs): multinary_tdl_feats[candidate.id].add(f) for f in multinary_tdl_feats[candidate.id]: yield candidate.id, f"TDL_{f}", DEF_VALUE for i, span in enumerate(spans): for f in _get_word_feats(span): yield candidate.id, f"BASIC_e{i}_{f}", DEF_VALUE def _compile_entity_feature_generator() -> Callable: """Compile entity feature generator. Given optional arguments, returns a generator function which accepts an xml root and a list of indexes for a mention, and will generate relation features for this entity. """ BASIC_ATTRIBS_REL = ["lemma", "dep_label"] m = Mention(0) # Basic relation feature templates temps = [ [Indicator(m, a) for a in BASIC_ATTRIBS_REL], Indicator(m, "dep_label,lemma"), # The *first element on the* path to the root: ngram lemmas along it Ngrams(Parents(m, 3), "lemma", (1, 3)), Ngrams(Children(m), "lemma", (1, 3)), # The siblings of the mention [LeftNgrams(LeftSiblings(m), a) for a in BASIC_ATTRIBS_REL], [RightNgrams(RightSiblings(m), a) for a in BASIC_ATTRIBS_REL], ] # return generator function return Compile(temps).apply_mention def _get_ddlib_feats( span: SpanMention, context: Dict[str, Any], idxs: List[int] ) -> Iterator[str]: """Minimalist port of generic mention features from ddlib.""" if span.stable_id not in unary_ddlib_feats: unary_ddlib_feats[span.stable_id] = set() for seq_feat in _get_seq_features(context, idxs): unary_ddlib_feats[span.stable_id].add(seq_feat) for window_feat in _get_window_features(context, idxs): unary_ddlib_feats[span.stable_id].add(window_feat) for f in unary_ddlib_feats[span.stable_id]: yield f def _get_seq_features(context: Dict[str, Any], idxs: List[int]) -> Iterator[str]: yield f"WORD_SEQ_[{' '.join(context['words'][i] for i in idxs)}]" yield f"LEMMA_SEQ_[{' '.join(context['lemmas'][i] for i in idxs)}]" yield f"POS_SEQ_[{' '.join(context['pos_tags'][i] for i in idxs)}]" yield f"DEP_SEQ_[{' '.join(context['dep_labels'][i] for i in idxs)}]" def _get_window_features( context: Dict[str, Any], idxs: List[int], window: int = settings["featurization"]["textual"]["window_feature"]["size"], combinations: bool = settings["featurization"]["textual"]["window_feature"][ "combinations" ], isolated: bool = settings["featurization"]["textual"]["window_feature"]["isolated"], ) -> Iterator[str]: left_lemmas = [] left_pos_tags = [] right_lemmas = [] right_pos_tags = [] try: for i in range(1, window + 1): lemma = context["lemmas"][idxs[0] - i] try: float(lemma) lemma = "_NUMBER" except ValueError: pass left_lemmas.append(lemma) left_pos_tags.append(context["pos_tags"][idxs[0] - i]) except IndexError: pass left_lemmas.reverse() left_pos_tags.reverse() try: for i in range(1, window + 1): lemma = context["lemmas"][idxs[-1] + i] try: float(lemma) lemma = "_NUMBER" except ValueError: pass right_lemmas.append(lemma) right_pos_tags.append(context["pos_tags"][idxs[-1] + i]) except IndexError: pass if isolated: for i in range(len(left_lemmas)): yield f"W_LEFT_{i + 1}_[{' '.join(left_lemmas[-i - 1 :])}]" yield f"W_LEFT_POS_{i + 1}_[{' '.join(left_pos_tags[-i - 1 :])}]" for i in range(len(right_lemmas)): yield f"W_RIGHT_{i + 1}_[{' '.join(right_lemmas[: i + 1])}]" yield f"W_RIGHT_POS_{i + 1}_[{' '.join(right_pos_tags[: i + 1])}]" if combinations: for i in range(len(left_lemmas)): curr_left_lemmas = " ".join(left_lemmas[-i - 1 :]) try: curr_left_pos_tags = " ".join(left_pos_tags[-i - 1 :]) except TypeError: new_pos_tags = [] for pos in left_pos_tags[-i - 1 :]: to_add = pos if not to_add: to_add = "None" new_pos_tags.append(to_add) curr_left_pos_tags = " ".join(new_pos_tags) for j in range(len(right_lemmas)): curr_right_lemmas = " ".join(right_lemmas[: j + 1]) try: curr_right_pos_tags = " ".join(right_pos_tags[: j + 1]) except TypeError: new_pos_tags = [] for pos in right_pos_tags[: j + 1]: to_add = pos if not to_add: to_add = "None" new_pos_tags.append(to_add) curr_right_pos_tags = " ".join(new_pos_tags) yield ( f"W_LEMMA_L_{i + 1}_R_{j + 1}_" f"[{curr_left_lemmas}]_[{curr_right_lemmas}]" ) yield ( f"W_POS_L_{i + 1}_R_{j + 1}_" f"[{curr_left_pos_tags}]_[{curr_right_pos_tags}]" ) def _get_word_feats(span: SpanMention) -> Iterator[str]: attrib = "words" if span.stable_id not in unary_word_feats: unary_word_feats[span.stable_id] = set() for ngram in tokens_to_ngrams(span.get_attrib_tokens(attrib), n_min=1, n_max=2): feature = f"CONTAINS_{attrib.upper()}_[{ngram}]" unary_word_feats[span.stable_id].add(feature) for ngram in get_left_ngrams( span, window=settings["featurization"]["textual"]["word_feature"]["window"], n_max=2, attrib=attrib, ): feature = f"LEFT_{attrib.upper()}_[{ngram}]" unary_word_feats[span.stable_id].add(feature) for ngram in get_right_ngrams( span, window=settings["featurization"]["textual"]["word_feature"]["window"], n_max=2, attrib=attrib, ): feature = f"RIGHT_{attrib.upper()}_[{ngram}]" unary_word_feats[span.stable_id].add(feature) unary_word_feats[span.stable_id].add( ( f"SPAN_TYPE_[" f"{'IMPLICIT' if isinstance(span, ImplicitSpanMention) else 'EXPLICIT'}" f"]" ) ) if span.get_span()[0].isupper(): unary_word_feats[span.stable_id].add("STARTS_WITH_CAPITAL") unary_word_feats[span.stable_id].add(f"LENGTH_{span.get_num_words()}") for f in unary_word_feats[span.stable_id]: yield f
fonduer-master
src/fonduer/features/feature_libs/textual_features.py
"""Fonduer's feature library module.""" from fonduer.features.feature_libs.structural_features import ( extract_structural_features, ) from fonduer.features.feature_libs.tabular_features import extract_tabular_features from fonduer.features.feature_libs.textual_features import extract_textual_features from fonduer.features.feature_libs.visual_features import extract_visual_features __all__ = [ "extract_textual_features", "extract_structural_features", "extract_tabular_features", "extract_visual_features", ]
fonduer-master
src/fonduer/features/feature_libs/__init__.py
"""Fonduer tree structs.""" import re from functools import lru_cache from typing import Any, Dict, List, Optional, Union from lxml import etree as et from lxml.etree import _Element from fonduer.parser.models import Sentence from fonduer.utils.utils import get_as_dict class XMLTree: """A generic tree representation which takes XML as input. Includes subroutines for conversion to JSON & for visualization based on js form """ def __init__(self, xml_root: _Element, words: Optional[List[str]] = None) -> None: """Call subroutines to generate JSON form of XML input.""" self.root = xml_root self.words = words # create a unique id for e.g. canvas id in notebook self.id = str(abs(hash(self.to_str()))) def _to_json(self, root: _Element) -> Dict: children: List[Dict] = [] for c in root: children.append(self._to_json(c)) js = {"attrib": dict(root.attrib), "children": children} return js def to_json(self) -> Dict: """Convert to json.""" return self._to_json(self.root) def to_str(self) -> bytes: """Convert to string.""" return et.tostring(self.root) @lru_cache(maxsize=1024) def corenlp_to_xmltree(obj: Union[Dict, Sentence], prune_root: bool = True) -> XMLTree: """Convert CoreNLP attributes into an XMLTree. Transform an object with CoreNLP dep_path and dep_parent attributes into an XMLTree. Will include elements of any array having the same dimension as dep_* as node attributes. Also adds special word_idx attribute corresponding to original sequence order in sentence. """ # Convert input object to dictionary s: Dict = get_as_dict(obj) # Use the dep_parents array as a guide: ensure it is present and a list of ints if not ("dep_parents" in s and isinstance(s["dep_parents"], list)): raise ValueError( "Input CoreNLP object must have a 'dep_parents' attribute which is a list" ) try: dep_parents = list(map(int, s["dep_parents"])) except Exception: raise ValueError("'dep_parents' attribute must be a list of ints") # Also ensure that we are using CoreNLP-native indexing # (root=0, 1-base word indexes)! b = min(dep_parents) if b != 0: dep_parents = list(map(lambda j: j - b, dep_parents)) # Parse recursively root = corenlp_to_xmltree_sub(s, dep_parents, 0) # Often the return tree will have several roots, where one is the actual # root and the rest are just singletons not included in the dep tree # parse... # We optionally remove these singletons and then collapse the root if only # one child left. if prune_root: for c in root: if len(c) == 0: root.remove(c) if len(root) == 1: root = root.findall("./*")[0] return XMLTree(root, words=s["words"]) def scrub(s: str) -> str: """Scrub the string. :param s: The input string. :return: The scrubbed string. """ return "".join(c for c in s if ord(c) < 128) def corenlp_to_xmltree_sub( s: Dict[str, Any], dep_parents: List[int], rid: int = 0 ) -> _Element: """Construct XMLTree with CoreNLP information. :param s: Input object. :param dep_parents: Dependency parents. :param rid: Root id, defaults to 0 :return: The constructed XMLTree. """ i = rid - 1 attrib = {} N = len(list(dep_parents)) # Add all attributes that have the same shape as dep_parents if i >= 0: for k, v in list( filter(lambda t: isinstance(t[1], list) and len(t[1]) == N, s.items()) ): if v[i] is not None: attrib[singular(k)] = ( scrub(v[i]).encode("ascii", "ignore") if hasattr(v[i], "encode") else str(v[i]) ) # Add word_idx if not present if "word_idx" not in attrib: attrib["word_idx"] = str(i) # Build tree recursively root = et.Element("node", attrib=attrib) for i, d in enumerate(dep_parents): if d == rid: root.append(corenlp_to_xmltree_sub(s, dep_parents, i + 1)) return root def singular(s: str) -> str: """Get singular form of word s (crudely). :param s: The input string. :return: The singular form of the string. """ return re.sub(r"e?s$", "", s, flags=re.I)
fonduer-master
src/fonduer/features/feature_libs/tree_structs.py
"""Fonduer structural feature extractor.""" from typing import Dict, Iterator, List, Set, Tuple, Union from fonduer.candidates.models import Candidate from fonduer.candidates.models.span_mention import SpanMention, TemporarySpanMention from fonduer.utils.data_model_utils import ( common_ancestor, get_ancestor_class_names, get_ancestor_id_names, get_ancestor_tag_names, get_attributes, get_next_sibling_tags, get_parent_tag, get_prev_sibling_tags, get_tag, lowest_common_ancestor_depth, ) FEATURE_PREFIX = "STR_" DEF_VALUE = 1 unary_strlib_feats: Dict[str, Set[Tuple[str, int]]] = {} multinary_strlib_feats: Dict[str, Set[Tuple[str, int]]] = {} def extract_structural_features( candidates: Union[Candidate, List[Candidate]], ) -> Iterator[Tuple[int, str, int]]: """Extract structural features. :param candidates: A list of candidates to extract features from """ candidates = candidates if isinstance(candidates, list) else [candidates] for candidate in candidates: args = tuple([m.context for m in candidate.get_mentions()]) if any(not (isinstance(arg, TemporarySpanMention)) for arg in args): raise ValueError( f"Structural feature only accepts Span-type arguments, " f"{type(candidate)}-type found." ) # Unary candidates if len(args) == 1: span = args[0] if span.sentence.is_structural(): if span.stable_id not in unary_strlib_feats: unary_strlib_feats[span.stable_id] = set() for feature, value in _strlib_unary_features(span): unary_strlib_feats[span.stable_id].add((feature, value)) for feature, value in unary_strlib_feats[span.stable_id]: yield candidate.id, FEATURE_PREFIX + feature, value # Multinary candidates else: spans = args if all([span.sentence.is_structural() for span in spans]): for i, span in enumerate(spans): prefix = f"e{i}_" if span.stable_id not in unary_strlib_feats: unary_strlib_feats[span.stable_id] = set() for feature, value in _strlib_unary_features(span): unary_strlib_feats[span.stable_id].add((feature, value)) for feature, value in unary_strlib_feats[span.stable_id]: yield candidate.id, FEATURE_PREFIX + prefix + feature, value if candidate.id not in multinary_strlib_feats: multinary_strlib_feats[candidate.id] = set() for feature, value in _strlib_multinary_features(spans): multinary_strlib_feats[candidate.id].add((feature, value)) for feature, value in multinary_strlib_feats[candidate.id]: yield candidate.id, FEATURE_PREFIX + feature, value def _strlib_unary_features(span: SpanMention) -> Iterator[Tuple[str, int]]: """Structural-related features for a single span.""" if not span.sentence.is_structural(): return yield f"TAG_{get_tag(span)}", DEF_VALUE for attr in get_attributes(span): yield f"HTML_ATTR_{attr}", DEF_VALUE yield f"PARENT_TAG_{get_parent_tag(span)}", DEF_VALUE prev_tags = get_prev_sibling_tags(span) if len(prev_tags): yield f"PREV_SIB_TAG_{prev_tags[-1]}", DEF_VALUE yield f"NODE_POS_{len(prev_tags) + 1}", DEF_VALUE else: yield "FIRST_NODE", DEF_VALUE next_tags = get_next_sibling_tags(span) if len(next_tags): yield f"NEXT_SIB_TAG_{next_tags[0]}", DEF_VALUE else: yield "LAST_NODE", DEF_VALUE yield f"ANCESTOR_CLASS_[{' '.join(get_ancestor_class_names(span))}]", DEF_VALUE yield f"ANCESTOR_TAG_[{' '.join(get_ancestor_tag_names(span))}]", DEF_VALUE yield f"ANCESTOR_ID_[{' '.join(get_ancestor_id_names(span))}]", DEF_VALUE def _strlib_multinary_features( spans: Tuple[SpanMention, ...] ) -> Iterator[Tuple[str, int]]: """Structural-related features for multiple spans.""" yield f"COMMON_ANCESTOR_[{' '.join(common_ancestor(spans))}]", DEF_VALUE yield ( f"LOWEST_ANCESTOR_DEPTH_[" f"{lowest_common_ancestor_depth(spans)}]" ), DEF_VALUE
fonduer-master
src/fonduer/features/feature_libs/structural_features.py
"""Fonduer's feature model module.""" from fonduer.features.models.feature import Feature, FeatureKey __all__ = ["Feature", "FeatureKey"]
fonduer-master
src/fonduer/features/models/__init__.py
"""Fonduer feature model.""" from sqlalchemy import Column, Float from sqlalchemy.dialects import postgresql from fonduer.meta import Meta from fonduer.utils.models.annotation import AnnotationKeyMixin, AnnotationMixin class FeatureKey(AnnotationKeyMixin, Meta.Base): """A feature's key that identifies the definition of the Feature.""" pass class Feature(AnnotationMixin, Meta.Base): """An element of a representation of a Candidate in a feature space. A Feature's annotation key identifies the definition of the Feature, e.g., a function that implements it or the library name and feature name in an automatic featurization library. """ #: A list of floating point values for each Key. values = Column(postgresql.ARRAY(Float), nullable=False)
fonduer-master
src/fonduer/features/models/feature.py
"""Fonduer basic config and config utils.""" import logging import os from typing import Dict import yaml MAX_CONFIG_SEARCH_DEPTH = 25 # Max num of parent directories to look for config logger = logging.getLogger(__name__) default = { "featurization": { "textual": { "window_feature": {"size": 3, "combinations": True, "isolated": True}, "word_feature": {"window": 7}, }, "tabular": { "unary_features": { "attrib": ["words"], "get_cell_ngrams": {"max": 2}, "get_head_ngrams": {"max": 2}, "get_row_ngrams": {"max": 2}, "get_col_ngrams": {"max": 2}, }, "multinary_features": { "min_row_diff": {"absolute": False}, "min_col_diff": {"absolute": False}, }, }, }, "learning": { "LSTM": { "emb_dim": 100, "hidden_dim": 100, "attention": True, "dropout": 0.1, "bidirectional": True, "bias": False, }, "LogisticRegression": {"hidden_dim": 100, "bias": False}, }, } def _merge(x: Dict, y: Dict) -> Dict: """Merge two nested dictionaries. Overwrite values in x with values in y.""" merged = {**x, **y} xkeys = x.keys() for key in xkeys: if isinstance(x[key], dict) and key in y: merged[key] = _merge(x[key], y[key]) return merged def get_config(path: str = os.getcwd()) -> Dict: """Search for settings file in root of project and its parents.""" config = default tries = 0 current_dir = path while current_dir and tries < MAX_CONFIG_SEARCH_DEPTH: potential_path = os.path.join(current_dir, ".fonduer-config.yaml") if os.path.exists(potential_path): with open(potential_path, "r") as f: config = _merge(config, yaml.safe_load(f)) logger.debug(f"Loading Fonduer config from {potential_path}.") break new_dir = os.path.split(current_dir)[0] if current_dir == new_dir: logger.debug("Unable to find config file. Using defaults.") break current_dir = new_dir tries += 1 return config
fonduer-master
src/fonduer/utils/config.py
"""Fonduer visual utils.""" import warnings from typing import NamedTuple class Bbox(NamedTuple): """Bounding box.""" page: int top: int bottom: int left: int right: int def bbox_from_span(span) -> Bbox: # type: ignore """Get bounding box from span. :param span: The input span. :return: The bounding box of the span. """ warnings.warn( "bbox_from_span(span) is deprecated. Use span.get_bbox() instead.", DeprecationWarning, ) from fonduer.candidates.models.span_mention import TemporarySpanMention # noqa if isinstance(span, TemporarySpanMention) and span.sentence.is_visual(): return Bbox( span.get_attrib_tokens("page")[0], min(span.get_attrib_tokens("top")), max(span.get_attrib_tokens("bottom")), min(span.get_attrib_tokens("left")), max(span.get_attrib_tokens("right")), ) else: return None def bbox_from_sentence(sentence) -> Bbox: # type: ignore """Get bounding box from sentence. :param sentence: The input sentence. :return: The bounding box of the sentence. """ warnings.warn( "bbox_from_sentence(sentence) is deprecated. Use sentence.get_bbox() instead.", DeprecationWarning, ) from fonduer.parser.models import Sentence # noqa # TODO: this may have issues where a sentence is linked to words on different pages if isinstance(sentence, Sentence) and sentence.is_visual(): return Bbox( sentence.page[0], min(sentence.top), max(sentence.bottom), min(sentence.left), max(sentence.right), ) else: return None def bbox_horz_aligned(box1: Bbox, box2: Bbox) -> bool: """Check two bounding boxes are horizontally aligned. Return true if the vertical center point of either span is within the vertical range of the other """ if not (box1 and box2): return False # NEW: any overlap counts # return box1.top <= box2.bottom and box2.top <= box1.bottom box1_top = box1.top + 1.5 box2_top = box2.top + 1.5 box1_bottom = box1.bottom - 1.5 box2_bottom = box2.bottom - 1.5 return not (box1_top > box2_bottom or box2_top > box1_bottom) # return not (box1.top >= box2.bottom or box2.top >= box1.bottom) # center1 = (box1.bottom + box1.top) / 2.0 # center2 = (box2.bottom + box2.top) / 2.0 # return ((center1 >= box2.top and center1 <= box2.bottom) or # (center2 >= box1.top and center2 <= box1.bottom)) def bbox_vert_aligned(box1: Bbox, box2: Bbox) -> bool: """Check two bounding boxes are vertical aligned. Return true if the horizontal center point of either span is within the horizontal range of the other """ if not (box1 and box2): return False # NEW: any overlap counts # return box1.left <= box2.right and box2.left <= box1.right box1_left = box1.left + 1.5 box2_left = box2.left + 1.5 box1_right = box1.right - 1.5 box2_right = box2.right - 1.5 return not (box1_left > box2_right or box2_left > box1_right) # center1 = (box1.right + box1.left) / 2.0 # center2 = (box2.right + box2.left) / 2.0 # return ((center1 >= box2.left and center1 <= box2.right) or # (center2 >= box1.left and center2 <= box1.right)) def bbox_vert_aligned_left(box1: Bbox, box2: Bbox) -> bool: """Check two boxes' left boundaries are with 2pts. Return true if the left boundary of both boxes is within 2 pts. """ if not (box1 and box2): return False return abs(box1.left - box2.left) <= 2 def bbox_vert_aligned_right(box1: Bbox, box2: Bbox) -> bool: """Check two boxes' right boundaries are with 2pts. Return true if the right boundary of both boxes is within 2 pts. """ if not (box1 and box2): return False return abs(box1.right - box2.right) <= 2 def bbox_vert_aligned_center(box1: Bbox, box2: Bbox) -> bool: """Check two boxes' centers are with 5pts. Return true if the center of both boxes is within 5 pts. """ if not (box1 and box2): return False return abs(((box1.right + box1.left) / 2.0) - ((box2.right + box2.left) / 2.0)) <= 5
fonduer-master
src/fonduer/utils/utils_visual.py
"""Fonduer tabular utils.""" import itertools from builtins import range from functools import lru_cache from typing import List, Optional, Tuple, Union from fonduer.parser.models.sentence import Sentence from fonduer.parser.models.table import Cell @lru_cache(maxsize=1024) def _min_range_diff(coordinates: Tuple[Tuple[int, int]], absolute: bool = True) -> int: """Get the minimum range difference. # Using Tuple instead of list because list is unhashable with `lru_cache` # if absolute=True, return the absolute value of minimum magnitude difference # if absolute=False, return the raw value of minimum magnitude difference # TODO: move back to efficient implementation once it sees that # min_range_diff(3,3,2,3) = 0 return max(0, max(a_end - b_start, b_end - # a_start)) :param coordinates: A tuple of a couple (start, end) indexes of the objects. :param absolute: Whether use absolute value, defaults to True. :return: The minimum range difference. """ f = lambda x: (abs(x) if absolute else x) return min( [ f(min([x - y for x, y in zip(ii[:-1], ii[1:])], key=abs)) for ii in itertools.product( *[range(start, end + 1) for start, end in coordinates] ) ], key=abs, ) def min_row_diff(cells: List[Union[Cell, Sentence]], absolute: bool = True) -> int: """Get the minimum row difference of two sentences or cells. :param cells: The list of cells or sentences. :param absolute: Whether use absolute value, defaults to True. :return: The minimum row difference. """ coordinates = [(cell.row_start, cell.row_end) for cell in cells] return _min_range_diff(tuple(coordinates), absolute=absolute) def min_col_diff(cells: List[Union[Cell, Sentence]], absolute: bool = True) -> int: """Get the minimum column difference of two sentences or cells. :param cells: The list of cells or sentences. :param absolute: Whether use absolute value, defaults to True. :return: The minimum column difference. """ coordinates = [(cell.col_start, cell.col_end) for cell in cells] return _min_range_diff(tuple(coordinates), absolute=absolute) def min_axis_diff( a: Union[Cell, Sentence], b: Union[Cell, Sentence], axis: Optional[str] = None, absolute: bool = True, ) -> int: """Get the minimum axis difference of two sentences or cells. :param a: The first cell or sentence. :param b: The second cell or sentence. :param axis: The axis to calculate the difference, defaults to None. :return: The minimum axis difference. """ if axis == "row": return min_row_diff([a, b], absolute) elif axis == "col": return min_col_diff([a, b], absolute) else: return min(min_row_diff([a, b], absolute), min_col_diff([a, b], absolute)) def is_row_aligned( a: Union[Cell, Sentence], b: Union[Cell, Sentence], spread: List[int] = [0, 0] ) -> bool: """Check two sentences or cells are row-wise aligned. :param a: The first cell or sentence. :param b: The second cell or sentence. :param spread: Row difference range, defaults to [0, 0]. :return: Return True if two sentences or cells are row-wise aligned. """ return min_row_diff([a, b]) in range(spread[0], spread[1] + 1) def is_col_aligned( a: Union[Sentence, Cell], b: Union[Cell, Sentence], spread: List[int] = [0, 0] ) -> bool: """Check two sentences or cells are column-wise aligned. :param a: The first cell or sentence. :param b: The second cell or sentence. :param spread: Column difference range, defaults to [0, 0]. :return: Return True if two sentences or cells are column-wise aligned. """ return min_col_diff([a, b]) in range(spread[0], spread[1] + 1) def is_axis_aligned( a: Union[Cell, Sentence], b: Union[Cell, Sentence], axis: Optional[str] = None, spread: List[int] = [0, 0], ) -> bool: """Check two sentences or cells are axis-wise aligned. :param a: The first cell or sentence. :param b: The second cell or sentence. :param axis: The axis to calculate the alignment, defaults to None. :param spread: Row/column difference range, defaults to [0, 0]. :return: Return True if two sentences or cells are axis-wise aligned. """ if axis == "row": return is_row_aligned(a, b, spread=spread) elif axis == "col": return is_col_aligned(a, b, spread=spread) else: return is_row_aligned(a, b, spread=spread) or is_col_aligned( a, b, spread=spread ) def num_rows(a: Union[Cell, Sentence]) -> int: """Get number of rows that sentence or cell spans. :param a: The cell or sentence. :return: The number of rows that sentence or cell spans. """ return a.row_start - a.row_end + 1 def num_cols(a: Union[Cell, Sentence]) -> int: """Get number of columns that sentence or cell spans. :param a: The cell or sentence. :return: The number of columns that sentence or cell spans. """ return a.col_start - a.col_end + 1
fonduer-master
src/fonduer/utils/utils_table.py
"""Fonduer's utils module."""
fonduer-master
src/fonduer/utils/__init__.py
"""Fonduer parser utils.""" from typing import List, Optional, Tuple def build_node(type: str, name: str, content: str) -> str: """ Wrap up content in to a html node. :param type: content type (e.g., doc, section, text, figure) :param name: content name (e.g., the name of the section) :param name: actual content :return: new String with content in html format """ if type == "doc": return f"<html>{content}</html>" if type == "section": return f"<section name='{name}'>{content}</section>" if type == "text": return f"<p name='{name}'>{content}</p>" if type == "figure": return f"<img name='{name}' src='{content}'/>" raise RuntimeError("unknown type") def column_constructor( text: str, name: Optional[str] = None, type: str = "text", delim: Optional[str] = None, ) -> List[Tuple[str, str, str]]: """Column constructor. Convert raw content to a list of strutured tuple where each tuple contains (type, name, content). :param text: content to be converted () :param type: content name (default: None) :param type: content type (default: text) :param delim: delimiter to split the content :return: A list of tuple where each tuple contains (content type, content name, content) """ if delim is None: return [(type, name, text)] return [(type, name, content) for content in text.split(delim)]
fonduer-master
src/fonduer/utils/utils_parser.py
"""Fonduer UDF utils.""" import logging from typing import ( Any, Callable, Dict, Iterable, Iterator, List, Optional, Sequence, Set, Tuple, Type, Union, ) import numpy as np from scipy.sparse import csr_matrix from sqlalchemy import String, Table from sqlalchemy.dialects.postgresql import ARRAY, insert from sqlalchemy.orm import Session from sqlalchemy.sql.expression import cast from fonduer.candidates.models import Candidate from fonduer.parser.models import Document from fonduer.utils.models import AnnotationMixin logger = logging.getLogger(__name__) # Flag value to signal that no filtering on split should be applied. Not an # integer to ensure that it won't conflict with a user's split value. ALL_SPLITS = "ALL" def _get_cand_values(candidate: Candidate, key_table: Table) -> List[AnnotationMixin]: """Get the corresponding values for the key_table.""" # NOTE: Import just before checking to avoid circular imports. from fonduer.features.models import FeatureKey from fonduer.supervision.models import GoldLabelKey, LabelKey if key_table == FeatureKey: return candidate.features elif key_table == LabelKey: return candidate.labels elif key_table == GoldLabelKey: return candidate.gold_labels else: raise ValueError(f"{key_table} is not a valid key table.") def _batch_postgres_query( table: Table, records: List[Dict[str, Any]] ) -> Iterator[List[Dict[str, Any]]]: """Break the list into chunks that can be processed as a single statement. Postgres query cannot be too long or it will fail. See: https://dba.stackexchange.com/questions/131399/is-there-a-maximum- length-constraint-for-a-postgres-query :param records: The full list of records to batch. :param table: The sqlalchemy table. :return: A generator of lists of records. """ if not records: return POSTGRESQL_MAX = 0x3FFFFFFF # Create preamble and measure its length preamble = ( "INSERT INTO " + table.__tablename__ + " (" + ", ".join(records[0].keys()) + ") VALUES (" + ", ".join(["?"] * len(records[0].keys())) + ")\n" ) start = 0 end = 0 total_len = len(preamble) while end < len(records): record_len = sum([len(str(v)) for v in records[end].values()]) # Pre-increment to include the end element in the slice end += 1 if total_len + record_len >= POSTGRESQL_MAX: logger.debug(f"Splitting query due to length ({total_len} chars).") yield records[start:end] start = end # Reset the total query length total_len = len(preamble) else: total_len += record_len yield records[start:end] def get_sparse_matrix_keys(session: Session, key_table: Table) -> List: """Return a list of keys for the sparse matrix.""" return session.query(key_table).order_by(key_table.name).all() def batch_upsert_records( session: Session, table: Table, records: List[Dict[str, Any]] ) -> None: """Batch upsert records into postgresql database.""" if not records: return for record_batch in _batch_postgres_query(table, records): stmt = insert(table.__table__) stmt = stmt.on_conflict_do_update( constraint=table.__table__.primary_key, set_={ "keys": stmt.excluded.get("keys"), "values": stmt.excluded.get("values"), }, ) session.execute(stmt, record_batch) session.commit() def get_sparse_matrix( session: Session, key_table: Table, cand_lists: Union[Sequence[Candidate], Iterable[Sequence[Candidate]]], key: Optional[str] = None, ) -> List[csr_matrix]: """Load sparse matrix of GoldLabels for each candidate_class.""" result = [] cand_lists = cand_lists if isinstance(cand_lists, (list, tuple)) else [cand_lists] for cand_list in cand_lists: if len(cand_list) == 0: raise ValueError("cand_lists contain empty cand_list.") # Keys are used as a global index if key: key_names = [key] else: # Get all keys all_keys = get_sparse_matrix_keys(session, key_table) # Filter only keys that are used by this cand_list key_names = [k.name for k in all_keys] annotations: List[Dict[str, Any]] = [] for cand in cand_list: annotation_mixins: List[AnnotationMixin] = _get_cand_values(cand, key_table) if annotation_mixins: annotations.append( { "keys": annotation_mixins[0].keys, "values": annotation_mixins[0].values, } ) else: annotations.append({"keys": [], "values": []}) result.append(_convert_mappings_to_matrix(annotations, key_names)) return result def _convert_mappings_to_matrix( mappings: List[Dict[str, Any]], keys: List[str] ) -> csr_matrix: """Convert a list of (annotation) mapping into a sparse matrix. An annotation mapping is a dictionary representation of annotations like instances of :class:`Label` and :class:`Feature`. For example, label.keys and label.values corresponds to annotation["keys"] and annotation["values"]. Note that :func:`FeaturizerUDF.apply` returns a list of list of such a mapping, where the outer list represents candidate_classes, while this method takes a list of a mapping of each candidate_class. :param mappings: a list of annotation mapping. :param keys: a list of keys, which becomes columns of the matrix to be returned. """ # Create a mapping that maps key_name to column index) keys_map = {key: keys.index(key) for key in keys} indptr = [0] indices = [] data = [] for mapping in mappings: if mapping: for key, value in zip(mapping["keys"], mapping["values"]): if key in keys_map: indices.append(keys_map[key]) data.append(value) indptr.append(len(indices)) return csr_matrix((data, indices, indptr), shape=(len(mappings), len(keys))) def unshift_label_matrix(L_sparse: csr_matrix) -> np.ndarray: """Unshift a sparse label matrix (ABSTAIN as 0) to a dense one (ABSTAIN as -1).""" return L_sparse.toarray() - 1 def shift_label_matrix(L: np.ndarray) -> csr_matrix: """Shift a dense label matrix (ABSTAIN as -1) to a sparse one (ABSTAIN as 0).""" return csr_matrix(L + 1) def get_docs_from_split( session: Session, candidate_classes: Iterable[Type[Candidate]], split: int ) -> Set[Document]: """Return a list of documents that contain the candidates in the split.""" # Only grab the docs containing candidates from the given split. sub_query = session.query(Candidate.id).filter(Candidate.split == split).subquery() split_docs: Set[Document] = set() for candidate_class in candidate_classes: split_docs.update( cand.document for cand in session.query(candidate_class) .filter(candidate_class.id.in_(sub_query)) .all() ) return split_docs def get_mapping( table: Table, candidates: Iterable[Candidate], generator: Callable[[Candidate], Iterator[Tuple]], ) -> Iterator[Dict[str, Any]]: """Generate map of keys and values for the candidate from the generator. :param table: The table we will be inserting into (i.e. Feature or Label). :param candidates: The candidates to get mappings for. :param generator: A generator yielding (candidate_id, key, value) tuples. :return: Generator of dictionaries of {"candidate_id": _, "keys": _, "values": _} """ for cand in candidates: # Grab the old values if len(getattr(cand, table.__tablename__ + "s")) != 0: temp = getattr(cand, table.__tablename__ + "s")[0] cand_map = dict(zip(temp.keys, temp.values)) else: cand_map = {} for cid, key, value in generator(cand): if value == 0: # Make sure this key does not exist in cand_map cand_map.pop(key, None) continue cand_map[key] = value # Assemble label arguments yield { "candidate_id": cand.id, "keys": [*cand_map.keys()], "values": [*cand_map.values()], } def drop_all_keys( session: Session, key_table: Table, candidate_classes: Iterable[Type[Candidate]] ) -> None: """Bulk drop annotation keys for all the candidate_classes in the table. Rather than directly dropping the keys, this removes the candidate_classes specified for the given keys only. If all candidate_classes are removed for a key, the key is dropped. :param key_table: The sqlalchemy class to insert into. :param candidate_classes: A list of candidate classes to drop. """ if not candidate_classes: return set_of_candidate_classes: Set[str] = set( [c.__tablename__ for c in candidate_classes] ) # Select all rows that contain ANY of the candidate_classes all_rows = ( session.query(key_table) .filter( key_table.candidate_classes.overlap( cast(set_of_candidate_classes, ARRAY(String)) ) ) .all() ) to_delete = set() to_update = [] # All candidate classes will be the same for all keys, so just look at one for row in all_rows: # Remove the selected candidate_classes. If empty, mark for deletion. row.candidate_classes = list( set(row.candidate_classes) - set_of_candidate_classes ) if len(row.candidate_classes) == 0: to_delete.add(row.name) else: to_update.append( {"name": row.name, "candidate_classes": row.candidate_classes} ) # Perform all deletes if to_delete: query = session.query(key_table).filter(key_table.name.in_(to_delete)) query.delete(synchronize_session="fetch") # Perform all updates if to_update: for batch in _batch_postgres_query(key_table, to_update): stmt = insert(key_table.__table__) stmt = stmt.on_conflict_do_update( constraint=key_table.__table__.primary_key, set_={ "name": stmt.excluded.get("name"), "candidate_classes": stmt.excluded.get("candidate_classes"), }, ) session.execute(stmt, batch) session.commit() def drop_keys(session: Session, key_table: Table, keys: Dict) -> None: """Bulk drop annotation keys to the specified table. Rather than directly dropping the keys, this removes the candidate_classes specified for the given keys only. If all candidate_classes are removed for a key, the key is dropped. :param key_table: The sqlalchemy class to insert into. :param keys: A map of {name: [candidate_classes]}. """ # Do nothing if empty if not keys: return for key_batch in _batch_postgres_query( key_table, [{"name": k[0], "candidate_classes": k[1]} for k in keys.items()] ): all_rows = ( session.query(key_table) .filter(key_table.name.in_([key["name"] for key in key_batch])) .all() ) to_delete = set() to_update = [] # All candidate classes will be the same for all keys, so just look at one candidate_classes = key_batch[0]["candidate_classes"] for row in all_rows: # Remove the selected candidate_classes. If empty, mark for deletion. row.candidate_classes = list( set(row.candidate_classes) - set(candidate_classes) ) if len(row.candidate_classes) == 0: to_delete.add(row.name) else: to_update.append( {"name": row.name, "candidate_classes": row.candidate_classes} ) # Perform all deletes if to_delete: query = session.query(key_table).filter(key_table.name.in_(to_delete)) query.delete(synchronize_session="fetch") # Perform all updates if to_update: stmt = insert(key_table.__table__) stmt = stmt.on_conflict_do_update( constraint=key_table.__table__.primary_key, set_={ "name": stmt.excluded.get("name"), "candidate_classes": stmt.excluded.get("candidate_classes"), }, ) session.execute(stmt, to_update) session.commit() def upsert_keys(session: Session, key_table: Table, keys: Dict) -> None: """Bulk add annotation keys to the specified table. :param key_table: The sqlalchemy class to insert into. :param keys: A map of {name: [candidate_classes]}. """ # Do nothing if empty if not keys: return for key_batch in _batch_postgres_query( key_table, [{"name": k[0], "candidate_classes": k[1]} for k in keys.items()] ): stmt = insert(key_table.__table__) stmt = stmt.on_conflict_do_update( constraint=key_table.__table__.primary_key, set_={ "name": stmt.excluded.get("name"), "candidate_classes": stmt.excluded.get("candidate_classes"), }, ) while True: try: session.execute(stmt, key_batch) session.commit() break except Exception as e: logger.debug(e)
fonduer-master
src/fonduer/utils/utils_udf.py
"""Fonduer utils.""" import re from builtins import range from typing import TYPE_CHECKING, Dict, Iterator, List, Set, Tuple, Type, Union from fonduer.parser.models import Context, Document, Sentence if TYPE_CHECKING: # to prevent circular imports from fonduer.candidates.models import Candidate def camel_to_under(name: str) -> str: """ Convert camel-case string to lowercase string separated by underscores. Written by epost (http://stackoverflow.com/questions/1175208). :param name: String to be converted :return: new String with camel-case converted to lowercase, underscored """ s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() def get_as_dict(x: Union[Dict, Sentence]) -> Dict: """Return an object as a dictionary of its attributes.""" if isinstance(x, dict): return x else: try: return x._asdict() except AttributeError: return x.__dict__ def tokens_to_ngrams( tokens: List[str], n_min: int = 1, n_max: int = 3, delim: str = " ", lower: bool = False, ) -> Iterator[str]: """Get n-grams from tokens.""" f = (lambda x: x.lower()) if lower else (lambda x: x) N = len(tokens) for root in range(N): for n in range(max(n_min - 1, 0), min(n_max, N - root)): yield f(delim.join(tokens[root : root + n + 1])) def get_set_of_stable_ids( doc: Document, candidate_class: "Type[Candidate]" ) -> Set[Tuple[str, ...]]: """Return a set of stable_ids of candidates. A stable_id of a candidate is a tuple of stable_id of the constituent context. """ set_of_stable_ids = set() # "s" is required due to the relationship between Document and candidate_class. if hasattr(doc, candidate_class.__tablename__ + "s"): set_of_stable_ids.update( set( [ tuple(m.context.get_stable_id() for m in c) if c else None for c in getattr(doc, candidate_class.__tablename__ + "s") ] ) ) return set_of_stable_ids def get_dict_of_stable_id(doc: Document) -> Dict[str, Context]: """Return a mapping of a stable_id to its context.""" return { doc.stable_id: doc, **{ c.stable_id: c for a in [ "sentences", "paragraphs", "captions", "cells", "tables", "sections", "figures", ] for c in getattr(doc, a) }, **{ c.stable_id: c for s in doc.sentences for a in ["spans", "implicit_spans"] for c in getattr(s, a) }, }
fonduer-master
src/fonduer/utils/utils.py
"""Fonduer UDF.""" import logging from multiprocessing import Manager, Process from queue import Queue from threading import Thread from typing import Any, Collection, Dict, List, Optional, Set, Type, Union from sqlalchemy import inspect from sqlalchemy.orm import Session, scoped_session, sessionmaker from fonduer.meta import Meta, new_sessionmaker from fonduer.parser.models.document import Document try: from IPython import get_ipython if "IPKernelApp" not in get_ipython().config: raise ImportError("console") except (AttributeError, ImportError): from tqdm import tqdm else: from tqdm.notebook import tqdm logger = logging.getLogger(__name__) class UDFRunner(object): """Class to run UDFs in parallel using simple queue-based multiprocessing setup.""" def __init__( self, session: Session, udf_class: Type["UDF"], parallelism: int = 1, **udf_init_kwargs: Any, ) -> None: """Initialize UDFRunner.""" self.udf_class = udf_class self.udf_init_kwargs = udf_init_kwargs self.udfs: List["UDF"] = [] self.pb = None self.session = session self.parallelism = parallelism #: The last set of documents that apply() was called on self.last_docs: Set[str] = set() def apply( self, doc_loader: Collection[ Document ], # doc_loader has __len__, but Iterable doesn't. clear: bool = True, parallelism: Optional[int] = None, progress_bar: bool = True, **kwargs: Any, ) -> None: """Apply the given UDF to the set of objects returned by the doc_loader. Either single or multi-threaded, and optionally calling clear() first. """ # Clear everything downstream of this UDF if requested if clear: self.clear(**kwargs) # Execute the UDF logger.info("Running UDF...") # Setup progress bar if progress_bar: logger.debug("Setting up progress bar...") if hasattr(doc_loader, "__len__"): self.pb = tqdm(total=len(doc_loader)) else: logger.error("Could not determine size of progress bar") # Use the parallelism of the class if none is provided to apply parallelism = parallelism if parallelism else self.parallelism self._apply(doc_loader, parallelism, clear=clear, **kwargs) # Close progress bar if self.pb is not None: logger.debug("Closing progress bar...") self.pb.close() logger.debug("Running after_apply...") self._after_apply(**kwargs) def clear(self, **kwargs: Any) -> None: """Clear the associated data from the database.""" raise NotImplementedError() def _after_apply(self, **kwargs: Any) -> None: """Execute this method by a single process after apply.""" pass def _add(self, session: Session, instance: Any) -> None: pass def _apply( self, doc_loader: Collection[Document], parallelism: int, **kwargs: Any ) -> None: """Run the UDF multi-threaded using python multiprocessing.""" if not Meta.postgres: raise ValueError("Fonduer must use PostgreSQL as a database backend.") # Create an input queue to feed documents to UDF workers manager = Manager() # Set maxsize (#435). The number is heuristically determined. in_queue = manager.Queue(maxsize=parallelism * 2) # Use an output queue to track multiprocess progress out_queue = manager.Queue() # Clear the last documents parsed by the last run self.last_docs = set() # Create DB session factory for insert data on each UDF (#545) session_factory = new_sessionmaker() # Create UDF Processes for i in range(parallelism): udf = self.udf_class( session_factory=session_factory, runner=self, in_queue=in_queue, out_queue=out_queue, worker_id=i, **self.udf_init_kwargs, ) udf.apply_kwargs = kwargs self.udfs.append(udf) # Start the UDF processes for udf in self.udfs: udf.start() # Fill input queue with documents but # of docs in queue is capped (#435). def in_thread_func() -> None: # Do not use session here to prevent concurrent use (#482). for doc in doc_loader: in_queue.put(doc) # block until a free slot is available Thread(target=in_thread_func).start() count_parsed = 0 total_count = len(doc_loader) while ( any([udf.is_alive() for udf in self.udfs]) or not out_queue.empty() ) and count_parsed < total_count: # Get doc from the out_queue and persist the result into postgres try: doc_name = out_queue.get() # block until an item is available self.last_docs.add(doc_name) # Update progress bar whenever an item has been processed count_parsed += 1 if self.pb is not None: self.pb.update(1) except Exception as e: # Raise an error for all the other exceptions. raise (e) # Join the UDF processes for _ in self.udfs: in_queue.put(UDF.TASK_DONE) for udf in self.udfs: udf.join() # Flush the processes self.udfs = [] class UDF(Process): """UDF class.""" TASK_DONE = "done" def __init__( self, session_factory: sessionmaker = None, runner: UDFRunner = None, in_queue: Optional[Queue] = None, out_queue: Optional[Queue] = None, worker_id: int = 0, **udf_init_kwargs: Any, ) -> None: """Initialize UDF. :param in_queue: A Queue of input objects to processes :param out_queue: A Queue of output objects from processes :param worker_id: An ID of a process """ super().__init__() self.daemon = True self.session_factory = session_factory self.runner = runner self.in_queue = in_queue self.out_queue = out_queue self.worker_id = worker_id # We use a workaround to pass in the apply kwargs self.apply_kwargs: Dict[str, Any] = {} def run(self) -> None: """Run function of UDF. Call this method when the UDF is run as a Process in a multiprocess setting The basic routine is: get from JoinableQueue, apply, put / add outputs, loop """ # Each UDF get thread local (scoped) session from connection pools # See SQLalchemy, using scoped sesion with multiprocessing. Session = scoped_session(self.session_factory) session = Session() while True: doc = self.in_queue.get() # block until an item is available if doc == UDF.TASK_DONE: break # Merge the object with the session owned by the current child process. # This does not happen during parsing when doc is transient. if not inspect(doc).transient: doc = session.merge(doc, load=False) y = self.apply(doc, **self.apply_kwargs) self.runner._add(session, y) self.out_queue.put(doc.name) session.commit() session.close() Session.remove() def apply( self, doc: Document, **kwargs: Any ) -> Union[Document, None, List[List[Dict[str, Any]]]]: """Apply function. This function takes in an object, and returns a generator / set / list. """ raise NotImplementedError()
fonduer-master
src/fonduer/utils/udf.py
"""Fonduer visualizer.""" import logging import os import subprocess import warnings from builtins import object from collections import defaultdict from typing import DefaultDict, List, Optional, Tuple from bs4 import BeautifulSoup from IPython.display import DisplayHandle, display from wand.color import Color from wand.drawing import Drawing from wand.image import Image from fonduer.candidates.models import Candidate, SpanMention from fonduer.parser.models import Sentence from fonduer.utils.utils_visual import Bbox logger = logging.getLogger(__name__) class Visualizer(object): """Object to display bounding boxes on a pdf document.""" def __init__(self, pdf_path: str) -> None: """Initialize Visualizer. :param pdf_path: directory where documents are stored :return: """ self.pdf_path = pdf_path def display_boxes( self, pdf_file: str, boxes: List[Bbox], alternate_colors: bool = False, ) -> List[Image]: """Display bounding boxes on the document. Display each of the bounding boxes passed in 'boxes' on images of the pdf pointed to by pdf_file boxes is a list of 5-tuples (page, top, left, bottom, right) """ imgs = [] with Color("blue") as blue, Color("red") as red, Color( "rgba(0, 0, 0, 0.0)" ) as transparent: colors = [blue, red] boxes_per_page: DefaultDict[int, int] = defaultdict(int) boxes_by_page: DefaultDict[ int, List[Tuple[int, int, int, int]] ] = defaultdict(list) for i, (page, top, bottom, left, right) in enumerate(boxes): boxes_per_page[page] += 1 boxes_by_page[page].append((top, bottom, left, right)) for i, page_num in enumerate(boxes_per_page.keys()): with Drawing() as draw: img = pdf_to_img(pdf_file, page_num) draw.fill_color = transparent for j, (top, bottom, left, right) in enumerate( boxes_by_page[page_num] ): draw.stroke_color = ( colors[j % 2] if alternate_colors else colors[0] ) draw.rectangle(left=left, top=top, right=right, bottom=bottom) draw(img) imgs.append(img) return imgs def display_candidates( self, candidates: List[Candidate], pdf_file: Optional[str] = None ) -> DisplayHandle: """Display the bounding boxes of candidates. Display the bounding boxes corresponding to candidates on an image of the pdf boxes is a list of 5-tuples (page, top, left, bottom, right) """ if not pdf_file: pdf_file = os.path.join(self.pdf_path, candidates[0].document.name) if os.path.isfile(pdf_file + ".pdf"): pdf_file += ".pdf" elif os.path.isfile(pdf_file + ".PDF"): pdf_file += ".PDF" else: logger.error("display_candidates failed: pdf file missing.") boxes = [m.context.get_bbox() for c in candidates for m in c.get_mentions()] imgs = self.display_boxes(pdf_file, boxes, alternate_colors=True) return display(*imgs) def display_words( self, sentences: List[Sentence], target: Optional[str] = None, pdf_file: Optional[str] = None, ) -> DisplayHandle: """Display the bounding boxes of words. Display the bounding boxes corresponding to words on the pdf. """ if not pdf_file: pdf_file = os.path.join(self.pdf_path, sentences[0].document.name + ".pdf") boxes = [] for sentence in sentences: for i, word in enumerate(sentence.words): if target is None or word == target: boxes.append( Bbox( sentence.page[i], sentence.top[i], sentence.bottom[i], sentence.left[i], sentence.right[i], ) ) imgs = self.display_boxes(pdf_file, boxes) return display(*imgs) def get_box(span: SpanMention) -> Bbox: """Get the bounding box.""" warnings.warn( "get_box(span) is deprecated. Use span.get_bbox() instead.", DeprecationWarning, ) return Bbox( min(span.get_attrib_tokens("page")), min(span.get_attrib_tokens("top")), max(span.get_attrib_tokens("bottom")), min(span.get_attrib_tokens("left")), max(span.get_attrib_tokens("right")), ) def get_pdf_dim(pdf_file: str, page: int = 1) -> Tuple[int, int]: """Get the dimension of a pdf. :param pdf_file: path to the pdf file :param page: page number (starting from 1) to get a dimension for :return: width, height """ html_content = subprocess.check_output( f"pdftotext -f {page} -l {page} -bbox '{pdf_file}' -", shell=True ) soup = BeautifulSoup(html_content, "html.parser") pages = soup.find_all("page") page_width, page_height = ( int(float(pages[0].get("width"))), int(float(pages[0].get("height"))), ) return page_width, page_height def pdf_to_img( pdf_file: str, page_num: int, pdf_dim: Optional[Tuple[int, int]] = None ) -> Image: """Convert pdf file into image. :param pdf_file: path to the pdf file :param page_num: page number to convert (index starting at 1) :return: wand image object """ if not pdf_dim: pdf_dim = get_pdf_dim(pdf_file) page_width, page_height = pdf_dim img = Image(filename=f"{pdf_file}[{page_num - 1}]") img.resize(page_width, page_height) return img
fonduer-master
src/fonduer/utils/visualizer.py
"""Fonduer annotation model.""" from typing import Tuple from sqlalchemy import Column, ForeignKey, Integer, String, UniqueConstraint from sqlalchemy.dialects import postgresql from sqlalchemy.ext.declarative import declared_attr from sqlalchemy.orm import backref, relationship from fonduer.utils.utils import camel_to_under class AnnotationKeyMixin(object): """Mixin class for defining annotation key tables. An AnnotationKey is the unique name associated with a set of Annotations, corresponding e.g. to a single labeling function or feature. """ __name__: str # declare for mypy @declared_attr def __tablename__(cls) -> str: """Get the table name.""" return camel_to_under(cls.__name__) @declared_attr def name(cls) -> Column: """Name of the Key.""" return Column(String, primary_key=True) @declared_attr def candidate_classes(cls) -> Column: """List of strings of each Key name.""" return Column(postgresql.ARRAY(String), nullable=False) @declared_attr def __table_args__(cls) -> Tuple[UniqueConstraint]: """Get the table args.""" return (UniqueConstraint("name"),) def __repr__(self) -> str: """Represent the annotation key as a string.""" return f"{self.__class__.__name__} ({self.name})" class AnnotationMixin(object): """Mixin class for defining annotation tables. An annotation is a value associated with a Candidate. Examples include labels, features, and predictions. New types of annotations can be defined by creating an annotation class and corresponding annotation, for example: .. code-block:: python from fonduer.utils.models import AnnotationMixin from fonduer.meta import Meta class NewAnnotation(AnnotationMixin, Meta.Base): values = Column(Float, nullable=False) The annotation class should include a Column attribute named values. """ __name__: str # declare for mypy values: Column # declare for mypy @declared_attr def __tablename__(cls) -> str: """Get the table name.""" return camel_to_under(cls.__name__) # The key is the "name" or "type" of the Annotation- e.g. the name of a # feature, lf, or of a human annotator @declared_attr def keys(cls) -> Column: """List of strings of each Key name.""" return Column(postgresql.ARRAY(String), nullable=False) # Every annotation is with respect to a candidate @declared_attr def candidate_id(cls) -> Column: """Id of the ``Candidate`` being annotated.""" return Column( "candidate_id", Integer, ForeignKey("candidate.id", ondelete="CASCADE"), primary_key=True, ) @declared_attr def candidate(cls) -> relationship: """``Candidate``.""" return relationship( "Candidate", backref=backref( camel_to_under(cls.__name__) + "s", cascade="all, delete-orphan", cascade_backrefs=False, ), cascade_backrefs=False, ) def __repr__(self) -> str: """Represent the annotation as a string.""" return ( f"{self.__class__.__name__}" f" (" f"{self.keys}" f" = " f"{self.values}" f")" )
fonduer-master
src/fonduer/utils/models/annotation.py
"""Fonduer's utils model module.""" from fonduer.utils.models.annotation import AnnotationKeyMixin, AnnotationMixin __all__ = ["AnnotationKeyMixin", "AnnotationMixin"]
fonduer-master
src/fonduer/utils/models/__init__.py
"""Fonduer structural modality utilities.""" import functools from builtins import str from typing import List, Optional, Tuple, Union import numpy as np from lxml import etree from lxml.etree import _ElementTree from lxml.html import HtmlElement, fromstring from fonduer.candidates.models import Candidate, Mention from fonduer.candidates.models.span_mention import SpanMention, TemporarySpanMention from fonduer.parser.models.sentence import Sentence from fonduer.utils.data_model_utils.utils import _to_span def get_tag(mention: Union[Candidate, Mention, TemporarySpanMention]) -> str: """Return the HTML tag of the Mention. If a candidate is passed in, only the tag of its first Mention is returned. These may be tags such as 'p', 'h2', 'table', 'div', etc. :param mention: The Mention to evaluate """ span = _to_span(mention) return str(span.sentence.html_tag) def get_attributes( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> List[str]: """Return the HTML attributes of the Mention. If a candidate is passed in, only the tag of its first Mention is returned. A sample outout of this function on a Mention in a paragraph tag is [u'style=padding-top: 8pt;padding-left: 20pt;text-indent: 0pt;text-align: left;'] :param mention: The Mention to evaluate :return: list of strings representing HTML attributes """ span = _to_span(mention) return span.sentence.html_attrs @functools.lru_cache(maxsize=16) def _get_etree_for_text(text: str) -> _ElementTree: return etree.ElementTree(fromstring(text)) def _get_node(sentence: Sentence) -> HtmlElement: # Using caching to speed up retrieve process doc_etree = _get_etree_for_text(sentence.document.text) return doc_etree.xpath(sentence.xpath)[0] def get_parent_tag( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> Optional[str]: """Return the HTML tag of the Mention's parent. These may be tags such as 'p', 'h2', 'table', 'div', etc. If a candidate is passed in, only the tag of its first Mention is returned. :param mention: The Mention to evaluate """ span = _to_span(mention) i = _get_node(span.sentence) return str(i.getparent().tag) if i.getparent() is not None else None def get_prev_sibling_tags( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> List[str]: """Return the HTML tag of the Mention's previous siblings. Previous siblings are Mentions which are at the same level in the HTML tree as the given mention, but are declared before the given mention. If a candidate is passed in, only the previous siblings of its first Mention are considered in the calculation. :param mention: The Mention to evaluate """ span = _to_span(mention) prev_sibling_tags: List[str] = [] i = _get_node(span.sentence) while i.getprevious() is not None: prev_sibling_tags.insert(0, str(i.getprevious().tag)) i = i.getprevious() return prev_sibling_tags def get_next_sibling_tags( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> List[str]: """Return the HTML tag of the Mention's next siblings. Next siblings are Mentions which are at the same level in the HTML tree as the given mention, but are declared after the given mention. If a candidate is passed in, only the next siblings of its last Mention are considered in the calculation. :param mention: The Mention to evaluate """ span = _to_span(mention) next_sibling_tags = [] i = _get_node(span.sentence) while i.getnext() is not None: next_sibling_tags.append(str(i.getnext().tag)) i = i.getnext() return next_sibling_tags def get_ancestor_class_names( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> List[str]: """Return the HTML classes of the Mention's ancestors. If a candidate is passed in, only the ancestors of its first Mention are returned. :param mention: The Mention to evaluate """ span = _to_span(mention) class_names: List[str] = [] i = _get_node(span.sentence) while i is not None: class_names.insert(0, str(i.get("class"))) i = i.getparent() return class_names def get_ancestor_tag_names( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> List[str]: """Return the HTML tag of the Mention's ancestors. For example, ['html', 'body', 'p']. If a candidate is passed in, only the ancestors of its first Mention are returned. :param mention: The Mention to evaluate """ span = _to_span(mention) tag_names: List[str] = [] i = _get_node(span.sentence) while i is not None: tag_names.insert(0, str(i.tag)) i = i.getparent() return tag_names def get_ancestor_id_names( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> List[str]: """Return the HTML id's of the Mention's ancestors. If a candidate is passed in, only the ancestors of its first Mention are returned. :param mention: The Mention to evaluate """ span = _to_span(mention) id_names: List[str] = [] i = _get_node(span.sentence) while i is not None: id_names.insert(0, str(i.get("id"))) i = i.getparent() return id_names def common_ancestor(c: Tuple[SpanMention, ...]) -> List[str]: """Return the path to the root that is shared between a multinary-Mention Candidate. In particular, this is the common path of HTML tags. :param c: The multinary-Mention Candidate to evaluate """ spans = [_to_span(i) for i in c] ancestors = [np.array(span.sentence.xpath.split("/")) for span in spans] min_len = min([a.size for a in ancestors]) ancestor = ancestors[0] ind = 0 # all the ancestors are common up to this index (exclusive). while ind < min_len: if not all([a[ind] == ancestor[ind] for a in ancestors]): break ind += 1 return list(ancestors[0][:ind]) def lowest_common_ancestor_depth(c: Tuple[SpanMention, ...]) -> int: """Return the lowest common ancestor depth. In particular, return the minimum distance between a multinary-Mention Candidate to their lowest common ancestor. For example, if the tree looked like this:: html ├──<div> Mention 1 </div> ├──table │ ├──tr │ │ └──<th> Mention 2 </th> we return 1, the distance from Mention 1 to the html root. Smaller values indicate that two Mentions are close structurally, while larger values indicate that two Mentions are spread far apart structurally in the document. :param c: The multinary-Mention Candidate to evaluate """ spans = [_to_span(i) for i in c] ancestors = [np.array(span.sentence.xpath.split("/")) for span in spans] min_len = min([a.size for a in ancestors]) ancestor = ancestors[0] ind = 0 # all the ancestors are common up to this index (exclusive). while ind < min_len: if not all([a[ind] == ancestor[ind] for a in ancestors]): break ind += 1 return min_len - ind
fonduer-master
src/fonduer/utils/data_model_utils/structural.py
"""Fonduer textual modality utilities.""" from itertools import chain from typing import Iterator, Union from fonduer.candidates.models import Candidate, Mention from fonduer.candidates.models.span_mention import TemporarySpanMention from fonduer.utils.data_model_utils.utils import _to_span, _to_spans from fonduer.utils.utils import tokens_to_ngrams def same_sentence(c: Candidate) -> bool: """Return True if all Mentions in the given candidate are from the same Sentence. :param c: The candidate whose Mentions are being compared """ return all( _to_span(c[i]).sentence is not None and _to_span(c[i]).sentence == _to_span(c[0]).sentence for i in range(len(c)) ) def get_between_ngrams( c: Candidate, attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, ) -> Iterator[str]: """Return the ngrams *between* two unary Mentions of a binary-Mention Candidate. Get the ngrams *between* two unary Mentions of a binary-Mention Candidate, where both share the same sentence Context. :param c: The binary-Mention Candidate to evaluate. :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If 'True', all ngrams will be returned in lower case """ if len(c) != 2: raise ValueError("Only applicable to binary Candidates") span0 = _to_span(c[0]) span1 = _to_span(c[1]) if span0.sentence != span1.sentence: raise ValueError( "Only applicable to Candidates where both spans are \ from the same immediate Context." ) distance = abs(span0.get_word_start_index() - span1.get_word_start_index()) if span0.get_word_start_index() < span1.get_word_start_index(): for ngram in get_right_ngrams( span0, window=distance - 1, attrib=attrib, n_min=n_min, n_max=n_max, lower=lower, ): yield ngram else: # span0.get_word_start_index() > span1.get_word_start_index() for ngram in get_right_ngrams( span1, window=distance - 1, attrib=attrib, n_min=n_min, n_max=n_max, lower=lower, ): yield ngram def get_left_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], window: int = 3, attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, ) -> Iterator[str]: """Get the ngrams within a window to the *left* from the sentence Context. For higher-arity Candidates, defaults to the *first* argument. :param mention: The Mention to evaluate. If a candidate is given, default to its first Mention. :param window: The number of tokens to the left of the first argument to return. :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If True, all ngrams will be returned in lower case """ span = _to_span(mention) i = span.get_word_start_index() for ngram in tokens_to_ngrams( getattr(span.sentence, attrib)[max(0, i - window) : i], n_min=n_min, n_max=n_max, lower=lower, ): yield ngram def get_right_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], window: int = 3, attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, ) -> Iterator[str]: """Get the ngrams within a window to the *right* from the sentence Context. For higher-arity Candidates, defaults to the *last* argument. :param mention: The Mention to evaluate. If a candidate is given, default to its last Mention. :param window: The number of tokens to the left of the first argument to return :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If True, all ngrams will be returned in lower case """ span = _to_span(mention, idx=-1) i = span.get_word_end_index() for ngram in tokens_to_ngrams( getattr(span.sentence, attrib)[i + 1 : i + 1 + window], n_min=n_min, n_max=n_max, lower=lower, ): yield ngram def get_sentence_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, ) -> Iterator[str]: """Get the ngrams that are in the Sentence of the given Mention, not including itself. Note that if a candidate is passed in, all of its Mentions will be searched. :param mention: The Mention whose Sentence is being searched :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If True, all ngrams will be returned in lower case """ spans = _to_spans(mention) for span in spans: for ngram in get_left_ngrams( span, window=100, attrib=attrib, n_min=n_min, n_max=n_max, lower=lower ): yield ngram for ngram in get_right_ngrams( span, window=100, attrib=attrib, n_min=n_min, n_max=n_max, lower=lower ): yield ngram def get_neighbor_sentence_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], d: int = 1, attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, ) -> Iterator[str]: """Get the ngrams that are in the neighoring Sentences of the given Mention. Note that if a candidate is passed in, all of its Mentions will be searched. :param mention: The Mention whose neighbor Sentences are being searched :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If True, all ngrams will be returned in lower case """ spans = _to_spans(mention) for span in spans: for ngram in chain.from_iterable( [ tokens_to_ngrams( getattr(sentence, attrib), n_min=n_min, n_max=n_max, lower=lower ) for sentence in span.sentence.document.sentences if abs(sentence.position - span.sentence.position) <= d and sentence != span.sentence ] ): yield ngram
fonduer-master
src/fonduer/utils/data_model_utils/textual.py
"""Fonduer tabular modality utilities.""" from builtins import range from collections import defaultdict from functools import lru_cache from itertools import chain from typing import DefaultDict, Iterator, List, Optional, Set, Tuple, Union import deprecation from fonduer import __version__ from fonduer.candidates.models import Candidate, Mention from fonduer.candidates.models.span_mention import TemporarySpanMention from fonduer.parser.models.sentence import Sentence from fonduer.parser.models.table import Cell, Table from fonduer.utils.data_model_utils.textual import ( get_neighbor_sentence_ngrams as get_neighbor_sentence_ngrams_in_textual, get_sentence_ngrams as get_sentence_ngrams_in_textual, same_sentence as same_sentence_in_textual, ) from fonduer.utils.data_model_utils.utils import _to_span, _to_spans from fonduer.utils.utils import tokens_to_ngrams from fonduer.utils.utils_table import ( is_axis_aligned, is_col_aligned, is_row_aligned, min_col_diff, min_row_diff, ) def same_table(c: Candidate) -> bool: """Return True if all Mentions in the given candidate are from the same Table. :param c: The candidate whose Mentions are being compared """ return all( _to_span(c[i]).sentence.is_tabular() and _to_span(c[i]).sentence.table == _to_span(c[0]).sentence.table for i in range(len(c)) ) def same_row(c: Candidate) -> bool: """Return True if all Mentions in the given candidate are from the same Row. :param c: The candidate whose Mentions are being compared """ return same_table(c) and all( is_row_aligned(_to_span(c[i]).sentence, _to_span(c[0]).sentence) for i in range(len(c)) ) def same_col(c: Candidate) -> bool: """Return True if all Mentions in the given candidate are from the same Col. :param c: The candidate whose Mentions are being compared """ return same_table(c) and all( is_col_aligned(_to_span(c[i]).sentence, _to_span(c[0]).sentence) for i in range(len(c)) ) def is_tabular_aligned(c: Candidate) -> bool: """Return True if all Mentions in the given candidate are from the same Row or Col. :param c: The candidate whose Mentions are being compared """ return same_table(c) and all( is_col_aligned(_to_span(c[i]).sentence, _to_span(c[0]).sentence) or is_row_aligned(_to_span(c[i]).sentence, _to_span(c[0]).sentence) for i in range(len(c)) ) def same_cell(c: Candidate) -> bool: """Return True if all Mentions in the given candidate are from the same Cell. :param c: The candidate whose Mentions are being compared """ return all( _to_span(c[i]).sentence.cell is not None and _to_span(c[i]).sentence.cell == _to_span(c[0]).sentence.cell for i in range(len(c)) ) @deprecation.deprecated( deprecated_in="0.8.3", removed_in="0.9.0", current_version=__version__, details="Use :func:`textual.same_sentence()` instead", ) def same_sentence(c: Candidate) -> bool: """Return True if all Mentions in the given candidate are from the same Sentence. :param c: The candidate whose Mentions are being compared """ return same_sentence_in_textual(c) def get_max_col_num( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> Optional[int]: """Return the largest column number that a Mention occupies. :param mention: The Mention to evaluate. If a candidate is given, default to its last Mention. """ span = _to_span(mention, idx=-1) if span.sentence.is_tabular(): return span.sentence.cell.col_end else: return None def get_min_col_num( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> Optional[int]: """Return the lowest column number that a Mention occupies. :param mention: The Mention to evaluate. If a candidate is given, default to its first Mention. """ span = _to_span(mention) if span.sentence.is_tabular(): return span.sentence.cell.col_start else: return None def get_max_row_num( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> Optional[int]: """Return the largest row number that a Mention occupies. :param mention: The Mention to evaluate. If a candidate is given, default to its last Mention. """ span = _to_span(mention, idx=-1) if span.sentence.is_tabular(): return span.sentence.cell.row_end else: return None def get_min_row_num( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> Optional[int]: """Return the lowest row number that a Mention occupies. :param mention: The Mention to evaluate. If a candidate is given, default to its first Mention. """ span = _to_span(mention) if span.sentence.is_tabular(): return span.sentence.cell.row_start else: return None @deprecation.deprecated( deprecated_in="0.8.3", removed_in="0.9.0", current_version=__version__, details="Use :func:`textual.get_sentence_ngrams()` instead", ) def get_sentence_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, ) -> Iterator[str]: """Get the ngrams that are in the Sentence of the given Mention, not including itself. Note that if a candidate is passed in, all of its Mentions will be searched. :param mention: The Mention whose Sentence is being searched :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If True, all ngrams will be returned in lower case """ return get_sentence_ngrams_in_textual(mention, attrib, n_min, n_max, lower) @deprecation.deprecated( deprecated_in="0.8.3", removed_in="0.9.0", current_version=__version__, details="Use :func:`textual.get_neighbor_sentence_ngrams()` instead", ) def get_neighbor_sentence_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], d: int = 1, attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, ) -> Iterator[str]: """Get the ngrams that are in the neighoring Sentences of the given Mention. Note that if a candidate is passed in, all of its Mentions will be searched. :param mention: The Mention whose neighbor Sentences are being searched :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If True, all ngrams will be returned in lower case """ return get_neighbor_sentence_ngrams_in_textual( mention, d, attrib, n_min, n_max, lower ) def get_cell_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, ) -> Iterator[str]: """Get the ngrams that are in the Cell of the given mention, not including itself. Note that if a candidate is passed in, all of its Mentions will be searched. Also note that if the mention is not tabular, nothing will be yielded. :param mention: The Mention whose Cell is being searched :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If True, all ngrams will be returned in lower case """ spans = _to_spans(mention) for span in spans: if not span.sentence.is_tabular(): continue for ngram in get_sentence_ngrams( span, attrib=attrib, n_min=n_min, n_max=n_max, lower=lower ): yield ngram for ngram in chain.from_iterable( [ tokens_to_ngrams( getattr(sentence, attrib), n_min=n_min, n_max=n_max, lower=lower ) for sentence in _get_table_cells(span.sentence.table)[ span.sentence.cell ] if sentence != span.sentence ] ): yield ngram def get_neighbor_cell_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], dist: int = 1, directions: bool = False, attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, ) -> Iterator[Union[str, Tuple[str, str]]]: """Get ngrams from all neighbor Cells. Get the ngrams from all Cells that are within a given Cell distance in one direction from the given Mention. Note that if a candidate is passed in, all of its Mentions will be searched. If `directions=True``, each ngram will be returned with a direction in {'UP', 'DOWN', 'LEFT', 'RIGHT'}. Also note that if the mention is not tabular, nothing will be yielded. :param mention: The Mention whose neighbor Cells are being searched :param dist: The Cell distance within which a neighbor Cell must be to be considered :param directions: A Boolean expressing whether or not to return the direction of each ngram :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If True, all ngrams will be returned in lower case :return: a *generator* of ngrams (or (ngram, direction) tuples if directions=True) """ # TODO: Fix this to be more efficient (optimize with SQL query) spans = _to_spans(mention) for span in spans: if not span.sentence.is_tabular(): continue for ngram in get_sentence_ngrams( span, attrib=attrib, n_min=n_min, n_max=n_max, lower=lower ): yield ngram root_cell = span.sentence.cell for sentence in chain.from_iterable( [ _get_aligned_sentences(root_cell, "row"), _get_aligned_sentences(root_cell, "col"), ] ): row_diff = min_row_diff([sentence, root_cell], absolute=False) col_diff = min_col_diff([sentence, root_cell], absolute=False) if ( row_diff ^ col_diff # Exclusive OR and abs(row_diff) + abs(col_diff) <= dist ): if directions: if col_diff == 0: direction = "DOWN" if 0 < row_diff else "UP" else: direction = "RIGHT" if 0 < col_diff else "LEFT" for ngram in tokens_to_ngrams( getattr(sentence, attrib), n_min=n_min, n_max=n_max, lower=lower, ): yield (ngram, direction) else: for ngram in tokens_to_ngrams( getattr(sentence, attrib), n_min=n_min, n_max=n_max, lower=lower, ): yield ngram def get_row_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], attrib: str = "words", n_min: int = 1, n_max: int = 1, spread: List[int] = [0, 0], lower: bool = True, ) -> Iterator[str]: """Get the ngrams from all Cells that are in the same row as the given Mention. Note that if a candidate is passed in, all of its Mentions will be searched. Also note that if the mention is not tabular, nothing will be yielded. :param mention: The Mention whose row Cells are being searched :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param spread: The number of rows above and below to also consider "aligned". :param lower: If True, all ngrams will be returned in lower case """ spans = _to_spans(mention) for span in spans: for ngram in _get_axis_ngrams( span, axis="row", attrib=attrib, n_min=n_min, n_max=n_max, spread=spread, lower=lower, ): yield ngram def get_col_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], attrib: str = "words", n_min: int = 1, n_max: int = 1, spread: List[int] = [0, 0], lower: bool = True, ) -> Iterator[str]: """Get the ngrams from all Cells that are in the same column as the given Mention. Note that if a candidate is passed in, all of its Mentions will be searched. Also note that if the mention is not tabular, nothing will be yielded. :param mention: The Mention whose column Cells are being searched :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param spread: The number of cols left and right to also consider "aligned". :param lower: If True, all ngrams will be returned in lower case """ spans = _to_spans(mention) for span in spans: for ngram in _get_axis_ngrams( span, axis="col", attrib=attrib, n_min=n_min, n_max=n_max, spread=spread, lower=lower, ): yield ngram def get_aligned_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], attrib: str = "words", n_min: int = 1, n_max: int = 1, spread: List[int] = [0, 0], lower: bool = True, ) -> Iterator[str]: """Get the ngrams from all Cells in the same row or column as the given Mention. Note that if a candidate is passed in, all of its Mentions will be searched. Also note that if the mention is not tabular, nothing will be yielded. :param mention: The Mention whose row and column Cells are being searched :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param spread: The number of rows/cols above/below/left/right to also consider "aligned". :param lower: If True, all ngrams will be returned in lower case """ spans = _to_spans(mention) for span in spans: for ngram in get_row_ngrams( span, attrib=attrib, n_min=n_min, n_max=n_max, spread=spread, lower=lower ): yield ngram for ngram in get_col_ngrams( span, attrib=attrib, n_min=n_min, n_max=n_max, spread=spread, lower=lower ): yield ngram def get_head_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], axis: Optional[str] = None, attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, ) -> Iterator[str]: """Get the ngrams from the cell in the head of the row or column. More specifically, this returns the ngrams in the leftmost cell in a row and/or the ngrams in the topmost cell in the column, depending on the axis parameter. Note that if a candidate is passed in, all of its Mentions will be searched. Also note that if the mention is not tabular, nothing will be yielded. :param mention: The Mention whose head Cells are being returned :param axis: Which axis {'row', 'col'} to search. If None, then both row and col are searched. :param attrib: The token attribute type (e.g. words, lemmas, poses) :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If True, all ngrams will be returned in lower case """ spans = _to_spans(mention) axes: Set[str] = (axis,) if axis else ("row", "col") # type: ignore for span in spans: if span.sentence.is_tabular(): for axis in axes: if getattr(span.sentence, _other_axis(axis) + "_start") == 0: return for sentence in getattr( _get_head_cell(span.sentence.cell, axis), "sentences", [] ): for ngram in tokens_to_ngrams( getattr(sentence, attrib), n_min=n_min, n_max=n_max, lower=lower ): yield ngram @lru_cache(maxsize=1024) def _get_head_cell(root_cell: Cell, axis: str) -> Cell: other_axis = "row" if axis == "col" else "col" aligned_cells = _get_aligned_cells(root_cell, axis) return ( sorted(aligned_cells, key=lambda x: getattr(x, other_axis + "_start"))[0] if aligned_cells else None ) @lru_cache(maxsize=256) def _get_table_cells(table: Table) -> DefaultDict[Cell, List[Sentence]]: """Cache table cells and the cells' sentences. This function significantly improves the speed of `get_row_ngrams` primarily by reducing the number of queries that are made (which were previously the bottleneck. Rather than taking a single mention, then its sentence, then its table, then all the cells in the table, then all the sentences in each cell, and performing operations on that series of queries, this performs a single query for all the sentences in a table and returns all of the cells and the cells sentences directly. :param table: the Table object to cache. :return: an iterator of (Cell, [Sentence._asdict(), ...]) tuples. """ sent_map: DefaultDict[Cell, List[Sentence]] = defaultdict(list) for sent in table.sentences: sent_map[sent.cell].append(sent) return sent_map def _get_axis_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], axis: str, attrib: str = "words", n_min: int = 1, n_max: int = 1, spread: List[int] = [0, 0], lower: bool = True, ) -> Iterator[str]: span = _to_span(mention) if not span.sentence.is_tabular(): return yield for ngram in get_sentence_ngrams( span, attrib=attrib, n_min=n_min, n_max=n_max, lower=lower ): yield ngram for sentence in _get_aligned_sentences(span.sentence, axis, spread=spread): for ngram in tokens_to_ngrams( getattr(sentence, attrib), n_min=n_min, n_max=n_max, lower=lower ): yield ngram @lru_cache(maxsize=1024) def _get_aligned_cells(root_cell: Cell, axis: str) -> List[Cell]: aligned_cells = [ cell for cell in root_cell.table.cells if is_axis_aligned(root_cell, cell, axis=axis) and cell != root_cell ] return aligned_cells def _get_aligned_sentences( root_sentence: Sentence, axis: str, spread: List[int] = [0, 0] ) -> List[Sentence]: cells = _get_table_cells(root_sentence.table).items() aligned_sentences = [ sentence for (cell, sentences) in cells if is_axis_aligned(root_sentence, cell, axis=axis, spread=spread) for sentence in sentences if sentence != root_sentence ] return aligned_sentences def _other_axis(axis: str) -> str: return "row" if axis == "col" else "col"
fonduer-master
src/fonduer/utils/data_model_utils/tabular.py
"""Fonduer's data model utils module.""" from fonduer.utils.data_model_utils.structural import ( common_ancestor, get_ancestor_class_names, get_ancestor_id_names, get_ancestor_tag_names, get_attributes, get_next_sibling_tags, get_parent_tag, get_prev_sibling_tags, get_tag, lowest_common_ancestor_depth, ) from fonduer.utils.data_model_utils.tabular import ( get_aligned_ngrams, get_cell_ngrams, get_col_ngrams, get_head_ngrams, get_max_col_num, get_min_col_num, get_neighbor_cell_ngrams, get_neighbor_sentence_ngrams, get_row_ngrams, get_sentence_ngrams, is_tabular_aligned, same_cell, same_col, same_row, same_sentence, same_table, ) from fonduer.utils.data_model_utils.textual import ( get_between_ngrams, get_left_ngrams, get_right_ngrams, ) from fonduer.utils.data_model_utils.utils import get_matches, is_superset, overlap from fonduer.utils.data_model_utils.visual import ( get_aligned_lemmas, get_horz_ngrams, get_page, get_page_horz_percentile, get_page_vert_percentile, get_vert_ngrams, get_visual_aligned_lemmas, is_horz_aligned, is_vert_aligned, is_vert_aligned_center, is_vert_aligned_left, is_vert_aligned_right, same_page, ) __all__ = [ "common_ancestor", "get_aligned_lemmas", "get_aligned_ngrams", "get_ancestor_class_names", "get_ancestor_id_names", "get_ancestor_tag_names", "get_attributes", "get_between_ngrams", "get_cell_ngrams", "get_col_ngrams", "get_head_ngrams", "get_horz_ngrams", "get_left_ngrams", "get_matches", "get_max_col_num", "get_min_col_num", "get_neighbor_cell_ngrams", "get_neighbor_sentence_ngrams", "get_next_sibling_tags", "get_page", "get_page_horz_percentile", "get_page_vert_percentile", "get_parent_tag", "get_prev_sibling_tags", "get_right_ngrams", "get_row_ngrams", "get_sentence_ngrams", "get_tag", "get_vert_ngrams", "get_visual_aligned_lemmas", "is_horz_aligned", "is_superset", "is_tabular_aligned", "is_vert_aligned", "is_vert_aligned_center", "is_vert_aligned_left", "is_vert_aligned_right", "lowest_common_ancestor_depth", "overlap", "same_cell", "same_col", "same_page", "same_row", "same_sentence", "same_table", ]
fonduer-master
src/fonduer/utils/data_model_utils/__init__.py
"""Fonduer data model utils.""" import logging from functools import lru_cache from typing import Callable, Iterable, List, Set, Union from fonduer.candidates.models import Candidate, Mention from fonduer.candidates.models.span_mention import TemporarySpanMention @lru_cache(maxsize=1024) def _to_span( x: Union[Candidate, Mention, TemporarySpanMention], idx: int = 0 ) -> TemporarySpanMention: """Convert a Candidate, Mention, or Span to a span.""" if isinstance(x, Candidate): return x[idx].context elif isinstance(x, Mention): return x.context elif isinstance(x, TemporarySpanMention): return x else: raise ValueError(f"{type(x)} is an invalid argument type") @lru_cache(maxsize=1024) def _to_spans( x: Union[Candidate, Mention, TemporarySpanMention] ) -> List[TemporarySpanMention]: """Convert a Candidate, Mention, or Span to a list of spans.""" if isinstance(x, Candidate): return [_to_span(m) for m in x] elif isinstance(x, Mention): return [x.context] elif isinstance(x, TemporarySpanMention): return [x] else: raise ValueError(f"{type(x)} is an invalid argument type") def is_superset(a: Iterable, b: Iterable) -> bool: """Check if a is a superset of b. This is typically used to check if ALL of a list of sentences is in the ngrams returned by an lf_helper. :param a: A collection of items :param b: A collection of items """ return set(a).issuperset(b) def overlap(a: Iterable, b: Iterable) -> bool: """Check if a overlaps b. This is typically used to check if ANY of a list of sentences is in the ngrams returned by an lf_helper. :param a: A collection of items :param b: A collection of items """ return not set(a).isdisjoint(b) def get_matches( lf: Callable, candidate_set: Set[Candidate], match_values: List[int] = [1, -1] ) -> List[Candidate]: """Return a list of candidates that are matched by a particular LF. A simple helper function to see how many matches (non-zero by default) an LF gets. :param lf: The labeling function to apply to the candidate_set :param candidate_set: The set of candidates to evaluate :param match_values: An option list of the values to consider as matched. [1, -1] by default. """ logger = logging.getLogger(__name__) matches: List[Candidate] = [] for c in candidate_set: label = lf(c) if label in match_values: matches.append(c) logger.info(f"{len(matches)} matches") return matches
fonduer-master
src/fonduer/utils/data_model_utils/utils.py
"""Fonduer visual modality utilities.""" from builtins import range from collections import defaultdict from functools import lru_cache from typing import Any, DefaultDict, Iterator, List, Set, Union from fonduer.candidates.mentions import Ngrams from fonduer.candidates.models import Candidate, Mention from fonduer.candidates.models.span_mention import TemporarySpanMention from fonduer.parser.models import Document, Sentence from fonduer.utils.data_model_utils.utils import _to_span, _to_spans from fonduer.utils.utils import tokens_to_ngrams from fonduer.utils.utils_visual import ( bbox_horz_aligned, bbox_vert_aligned, bbox_vert_aligned_center, bbox_vert_aligned_left, bbox_vert_aligned_right, ) @lru_cache(maxsize=1024) def get_page(mention: Union[Candidate, Mention, TemporarySpanMention]) -> int: """Return the page number of the given mention. If a candidate is passed in, this returns the page of its first Mention. :param mention: The Mention to get the page number of. """ span = _to_span(mention) return span.get_attrib_tokens("page")[0] @lru_cache(maxsize=1024) def is_horz_aligned(c: Candidate) -> bool: """Return True if all the components of c are horizontally aligned. Horizontal alignment means that the bounding boxes of each Mention of c shares a similar y-axis value in the visual rendering of the document. :param c: The candidate to evaluate """ return all( [ _to_span(c[i]).sentence.is_visual() and bbox_horz_aligned(_to_span(c[i]).get_bbox(), _to_span(c[0]).get_bbox()) for i in range(len(c)) ] ) @lru_cache(maxsize=1024) def is_vert_aligned(c: Candidate) -> bool: """Return true if all the components of c are vertically aligned. Vertical alignment means that the bounding boxes of each Mention of c shares a similar x-axis value in the visual rendering of the document. :param c: The candidate to evaluate """ return all( [ _to_span(c[i]).sentence.is_visual() and bbox_vert_aligned(_to_span(c[i]).get_bbox(), _to_span(c[0]).get_bbox()) for i in range(len(c)) ] ) @lru_cache(maxsize=1024) def is_vert_aligned_left(c: Candidate) -> bool: """Return true if all components are vertically aligned on their left border. Vertical alignment means that the bounding boxes of each Mention of c shares a similar x-axis value in the visual rendering of the document. In this function the similarity of the x-axis value is based on the left border of their bounding boxes. :param c: The candidate to evaluate """ return all( [ _to_span(c[i]).sentence.is_visual() and bbox_vert_aligned_left( _to_span(c[i]).get_bbox(), _to_span(c[0]).get_bbox() ) for i in range(len(c)) ] ) @lru_cache(maxsize=1024) def is_vert_aligned_right(c: Candidate) -> bool: """Return true if all components vertically aligned on their right border. Vertical alignment means that the bounding boxes of each Mention of c shares a similar x-axis value in the visual rendering of the document. In this function the similarity of the x-axis value is based on the right border of their bounding boxes. :param c: The candidate to evaluate """ return all( [ _to_span(c[i]).sentence.is_visual() and bbox_vert_aligned_right( _to_span(c[i]).get_bbox(), _to_span(c[0]).get_bbox() ) for i in range(len(c)) ] ) @lru_cache(maxsize=1024) def is_vert_aligned_center(c: Candidate) -> bool: """Return true if all the components are vertically aligned on their center. Vertical alignment means that the bounding boxes of each Mention of c shares a similar x-axis value in the visual rendering of the document. In this function the similarity of the x-axis value is based on the center of their bounding boxes. :param c: The candidate to evaluate """ return all( [ _to_span(c[i]).sentence.is_visual() and bbox_vert_aligned_center( _to_span(c[i]).get_bbox(), _to_span(c[0]).get_bbox() ) for i in range(len(c)) ] ) @lru_cache(maxsize=1024) def same_page(c: Candidate) -> bool: """Return true if all the components of c are on the same page of the document. Page numbers are based on the PDF rendering of the document. If a PDF file is provided, it is used. Otherwise, if only a HTML/XML document is provided, a PDF is created and then used to determine the page number of a Mention. :param c: The candidate to evaluate """ return all( [ _to_span(c[i]).sentence.is_visual() and _to_span(c[i]).get_bbox().page == _to_span(c[0]).get_bbox().page for i in range(len(c)) ] ) def get_horz_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, from_sentence: bool = True, ) -> Iterator[str]: """Return all ngrams which are visually horizontally aligned with the Mention. Note that if a candidate is passed in, all of its Mentions will be searched. :param mention: The Mention to evaluate :param attrib: The token attribute type (e.g. words, lemmas, pos_tags). This option is valid only when ``from_sentence==True``. :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If True, all ngrams will be returned in lower case :param from_sentence: If True, return ngrams of any ``Sentence`` that is horizontally aligned (in the same page) with the mention's ``Sentence``. If False, return ngrams that are horizontally aligned with the mention no matter which ``Sentence`` they are from. :return: a *generator* of ngrams """ spans = _to_spans(mention) for span in spans: for ngram in _get_direction_ngrams( "horz", span, attrib, n_min, n_max, lower, from_sentence ): yield ngram def get_vert_ngrams( mention: Union[Candidate, Mention, TemporarySpanMention], attrib: str = "words", n_min: int = 1, n_max: int = 1, lower: bool = True, from_sentence: bool = True, ) -> Iterator[str]: """Return all ngrams which are visually vertically aligned with the Mention. Note that if a candidate is passed in, all of its Mentions will be searched. :param mention: The Mention to evaluate :param attrib: The token attribute type (e.g. words, lemmas, pos_tags). This option is valid only when ``from_sentence==True``. :param n_min: The minimum n of the ngrams that should be returned :param n_max: The maximum n of the ngrams that should be returned :param lower: If True, all ngrams will be returned in lower case :param from_sentence: If True, return ngrams of any ``Sentence`` that is vertically aligned (in the same page) with the mention's ``Sentence``. If False, return ngrams that are vertically aligned with the mention no matter which ``Sentence`` they are from. :return: a *generator* of ngrams """ spans = _to_spans(mention) for span in spans: for ngram in _get_direction_ngrams( "vert", span, attrib, n_min, n_max, lower, from_sentence ): yield ngram def _get_direction_ngrams( direction: str, c: Union[Candidate, Mention, TemporarySpanMention], attrib: str, n_min: int, n_max: int, lower: bool, from_sentence: bool, ) -> Iterator[str]: bbox_direction_aligned = ( bbox_vert_aligned if direction == "vert" else bbox_horz_aligned ) ngrams_space = Ngrams(n_max=n_max, split_tokens=[]) f = (lambda w: w.lower()) if lower else (lambda w: w) spans = _to_spans(c) for span in spans: if not span.sentence.is_visual(): continue for sentence in span.sentence.document.sentences: # Skip if not in the same page. if span.sentence.get_bbox().page != sentence.get_bbox().page: continue if from_sentence: if ( bbox_direction_aligned(sentence.get_bbox(), span.get_bbox()) and sentence is not span.sentence # not from its Sentence ): for ngram in tokens_to_ngrams( getattr(sentence, attrib), n_min=n_min, n_max=n_max, lower=lower ): yield ngram else: for ts in ngrams_space.apply(sentence): if ( # True if visually aligned AND not from itself. bbox_direction_aligned(ts.get_bbox(), span.get_bbox()) and ts not in span and span not in ts ): yield f(ts.get_span()) def get_vert_ngrams_left(c): # type: ignore """Not implemented.""" # TODO return def get_vert_ngrams_right(c): # type: ignore """Not implemented.""" # TODO return def get_vert_ngrams_center(c): # type: ignore """Not implemented.""" # TODO return def get_visual_header_ngrams(c, axis=None): # type: ignore """Not implemented.""" # TODO return def get_visual_distance(c, axis=None): # type: ignore """Not implemented.""" # TODO return # Default dimensions for 8.5" x 11" DEFAULT_WIDTH = 612 DEFAULT_HEIGHT = 792 def get_page_vert_percentile( mention: Union[Candidate, Mention, TemporarySpanMention], page_width: int = DEFAULT_WIDTH, page_height: int = DEFAULT_HEIGHT, ) -> float: """Return which percentile from the TOP in the page the Mention is located in. Percentile is calculated where the top of the page is 0.0, and the bottom of the page is 1.0. For example, a Mention in at the top 1/4 of the page will have a percentile of 0.25. Page width and height are based on pt values:: Letter 612x792 Tabloid 792x1224 Ledger 1224x792 Legal 612x1008 Statement 396x612 Executive 540x720 A0 2384x3371 A1 1685x2384 A2 1190x1684 A3 842x1190 A4 595x842 A4Small 595x842 A5 420x595 B4 729x1032 B5 516x729 Folio 612x936 Quarto 610x780 10x14 720x1008 and should match the source documents. Letter size is used by default. Note that if a candidate is passed in, only the vertical percentil of its first Mention is returned. :param mention: The Mention to evaluate :param page_width: The width of the page. Default to Letter paper width. :param page_height: The heigh of the page. Default to Letter paper height. """ span = _to_span(mention) return span.get_bbox().top / page_height def get_page_horz_percentile( mention: Union[Candidate, Mention, TemporarySpanMention], page_width: int = DEFAULT_WIDTH, page_height: int = DEFAULT_HEIGHT, ) -> float: """Return which percentile from the LEFT in the page the Mention is located in. Percentile is calculated where the left of the page is 0.0, and the right of the page is 1.0. Page width and height are based on pt values:: Letter 612x792 Tabloid 792x1224 Ledger 1224x792 Legal 612x1008 Statement 396x612 Executive 540x720 A0 2384x3371 A1 1685x2384 A2 1190x1684 A3 842x1190 A4 595x842 A4Small 595x842 A5 420x595 B4 729x1032 B5 516x729 Folio 612x936 Quarto 610x780 10x14 720x1008 and should match the source documents. Letter size is used by default. Note that if a candidate is passed in, only the vertical percentile of its first Mention is returned. :param mention: The Mention to evaluate :param page_width: The width of the page. Default to Letter paper width. :param page_height: The heigh of the page. Default to Letter paper height. """ span = _to_span(mention) return span.get_bbox().left / page_width def _assign_alignment_features(sentences_by_key: defaultdict, align_type: str) -> None: for key, sentences in sentences_by_key.items(): if len(sentences) == 1: continue context_lemmas: Set[str] = set() for p in sentences: p._aligned_lemmas.update(context_lemmas) # update lemma context for upcoming sentences in the group if len(p.lemmas) < 7: new_lemmas = [lemma.lower() for lemma in p.lemmas if lemma.isalpha()] context_lemmas.update(new_lemmas) context_lemmas.update(align_type + lemma for lemma in new_lemmas) @lru_cache(maxsize=2) def _preprocess_visual_features(doc: Document) -> None: if hasattr(doc, "_visual_features"): return # cache flag doc._visual_features = True sentence_by_page: DefaultDict[str, List[Sentence]] = defaultdict(list) for sentence in doc.sentences: sentence_by_page[sentence.page[0]].append(sentence) sentence._aligned_lemmas = set() for page, sentences in sentence_by_page.items(): # process per page alignments yc_aligned: DefaultDict[Any, List[Sentence]] = defaultdict(list) x0_aligned: DefaultDict[Any, List[Sentence]] = defaultdict(list) xc_aligned: DefaultDict[Any, List[Sentence]] = defaultdict(list) x1_aligned: DefaultDict[Any, List[Sentence]] = defaultdict(list) for sentence in sentences: sentence.bbox = sentence.get_bbox() sentence.yc = (sentence.bbox.top + sentence.bbox.bottom) / 2 sentence.x0 = sentence.bbox.left sentence.x1 = sentence.bbox.right sentence.xc = (sentence.x0 + sentence.x1) / 2 # index current sentence by different alignment keys yc_aligned[sentence.yc].append(sentence) x0_aligned[sentence.x0].append(sentence) x1_aligned[sentence.x1].append(sentence) xc_aligned[sentence.xc].append(sentence) for l in yc_aligned.values(): l.sort(key=lambda p: p.xc) for l in x0_aligned.values(): l.sort(key=lambda p: p.yc) for l in x1_aligned.values(): l.sort(key=lambda p: p.yc) for l in xc_aligned.values(): l.sort(key=lambda p: p.yc) _assign_alignment_features(yc_aligned, "Y_") _assign_alignment_features(x0_aligned, "LEFT_") _assign_alignment_features(x1_aligned, "RIGHT_") _assign_alignment_features(xc_aligned, "CENTER_") def get_visual_aligned_lemmas( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> Iterator[str]: """Return a generator of the lemmas aligned visually with the Mention. Note that if a candidate is passed in, all of its Mentions will be searched. :param mention: The Mention to evaluate. """ spans = _to_spans(mention) for span in spans: sentence = span.sentence doc = sentence.document # cache features for the entire document _preprocess_visual_features(doc) for aligned_lemma in sentence._aligned_lemmas: yield aligned_lemma def get_aligned_lemmas( mention: Union[Candidate, Mention, TemporarySpanMention] ) -> Set[str]: """Return a set of the lemmas aligned visually with the Mention. Note that if a candidate is passed in, all of its Mentions will be searched. :param mention: The Mention to evaluate. """ return set(get_visual_aligned_lemmas(mention))
fonduer-master
src/fonduer/utils/data_model_utils/visual.py
"""Fonduer's logging module.""" from fonduer.utils.logging.tensorboard_writer import TensorBoardLogger __all__ = ["TensorBoardLogger"]
fonduer-master
src/fonduer/utils/logging/__init__.py
"""Fonduer tensorboard logger.""" from tensorboardX import SummaryWriter class TensorBoardLogger(object): """A class for logging to Tensorboard during training process.""" def __init__(self, log_dir: str): """Create a summary writer logging to log_dir.""" self.writer = SummaryWriter(log_dir) def add_scalar(self, name: str, value: float, step: int) -> None: """Log a scalar variable.""" self.writer.add_scalar(name, value, step) def close(self) -> None: """Close the tensorboard logger.""" self.writer.close()
fonduer-master
src/fonduer/utils/logging/tensorboard_writer.py
"""Fonduer's parser module.""" from fonduer.parser.parser import Parser __all__ = ["Parser"]
fonduer-master
src/fonduer/parser/__init__.py
"""Fonduer parser.""" import itertools import logging import re import warnings from builtins import range from collections import defaultdict from typing import ( Any, Collection, Dict, Iterator, List, Optional, Pattern, Tuple, Union, ) import lxml.etree import lxml.html from lxml.html import HtmlElement from sqlalchemy.orm import Session from fonduer.parser.lingual_parser import LingualParser, SimpleParser, SpacyParser from fonduer.parser.models import ( Caption, Cell, Context, Document, Figure, Paragraph, Section, Sentence, Table, ) from fonduer.parser.models.utils import construct_stable_id from fonduer.parser.visual_parser import VisualParser from fonduer.utils.udf import UDF, UDFRunner logger = logging.getLogger(__name__) class Parser(UDFRunner): r"""Parses into documents into Fonduer's Data Model. :param session: The database session to use. :param parallelism: The number of processes to use in parallel. Default 1. :param structural: Whether to parse structural information from a DOM. :param blacklist: A list of tag types to ignore. Default ["style", "script"]. :param flatten: A list of tag types to flatten. Default ["span", "br"] :param language: Which spaCy NLP language package. Default "en". :param lingual: Whether or not to include NLP information. Default True. :param lingual_parser: A custom lingual parser that inherits :class:`LingualParser <fonduer.parser.lingual_parser.LingualParser>`. When specified, `language` will be ignored. When not, :class:`Spacy` with `language` will be used. :param strip: Whether or not to strip whitespace during parsing. Default True. :param replacements: A list of tuples where the regex string in the first position is replaced by the character in the second position. Default [(u"[\u2010\u2011\u2012\u2013\u2014\u2212]", "-")], which replaces various unicode variants of a hyphen (e.g. emdash, endash, minus, etc.) with a standard ASCII hyphen. :param tabular: Whether to include tabular information in the parse. :param visual_parser: A visual parser that parses visual information. Defaults to None (visual information is not parsed). """ def __init__( self, session: Session, parallelism: int = 1, structural: bool = True, # structural information blacklist: List[str] = [ "style", "script", ], # ignore tag types, default: style, script flatten: List[str] = ["span", "br"], # flatten tag types, default: span, br language: str = "en", lingual: bool = True, # lingual information lingual_parser: Optional[LingualParser] = None, strip: bool = True, replacements: List[Tuple[str, str]] = [ ("[\u2010\u2011\u2012\u2013\u2014\u2212]", "-") ], tabular: bool = True, # tabular information visual_parser: Optional[VisualParser] = None, # visual parser ) -> None: """Initialize Parser.""" super().__init__( session, ParserUDF, parallelism=parallelism, structural=structural, blacklist=blacklist, flatten=flatten, lingual=lingual, lingual_parser=lingual_parser, strip=strip, replacements=replacements, tabular=tabular, visual_parser=visual_parser, language=language, ) def apply( # type: ignore self, doc_loader: Collection[Document], clear: bool = True, parallelism: Optional[int] = None, progress_bar: bool = True, ) -> None: """Run the Parser. :param doc_loader: An iteratable of ``Documents`` to parse. Typically, one of Fonduer's document preprocessors. :param clear: Whether or not to clear the labels table before applying these LFs. :param parallelism: How many threads to use for extraction. This will override the parallelism value used to initialize the Labeler if it is provided. :param progress_bar: Whether or not to display a progress bar. The progress bar is measured per document. """ super().apply( doc_loader, clear=clear, parallelism=parallelism, progress_bar=progress_bar, ) def _add(self, session: Session, doc: Union[Document, None]) -> None: # Persist the object if no error happens during parsing. if doc: session.add(doc) session.commit() def clear(self) -> None: # type: ignore """Clear all of the ``Context`` objects in the database.""" self.session.query(Context).delete(synchronize_session="fetch") def get_last_documents(self) -> List[Document]: """Return the most recently successfully parsed list of ``Documents``. :return: A list of the most recently parsed ``Documents`` ordered by name. """ return ( self.session.query(Document) .filter(Document.name.in_(self.last_docs)) .order_by(Document.name) .all() ) def get_documents(self) -> List[Document]: """Return all the successfully parsed ``Documents`` in the database. :return: A list of all ``Documents`` in the database ordered by name. """ # return ( # self.session.query(Document, Sentence) # .join(Sentence, Document.id == Sentence.document_id) # .all() # ) # return self.session.query(Sentence).order_by(Sentence.name).all() return self.session.query(Document).order_by(Document.name).all() class ParserUDF(UDF): """Parser UDF class.""" def __init__( self, structural: bool, blacklist: Union[str, List[str]], flatten: Union[str, List[str]], lingual: bool, lingual_parser: Optional[LingualParser], strip: bool, replacements: List[Tuple[str, str]], tabular: bool, visual_parser: Optional[VisualParser], language: Optional[str], **kwargs: Any, ) -> None: """Initialize Parser UDF. :param replacements: a list of (_pattern_, _replace_) tuples where _pattern_ isinstance a regex and _replace_ is a character string. All occurents of _pattern_ in the text will be replaced by _replace_. """ super().__init__(**kwargs) # structural (html) setup self.structural = structural self.blacklist = blacklist if isinstance(blacklist, list) else [blacklist] self.flatten = flatten if isinstance(flatten, list) else [flatten] # lingual setup self.language = language self.strip = strip self.replacements: List[Tuple[Pattern, str]] = [] for (pattern, replace) in replacements: self.replacements.append((re.compile(pattern, flags=re.UNICODE), replace)) self.lingual = lingual if lingual_parser: self.lingual_parser = lingual_parser else: self.lingual_parser = SpacyParser(self.language) # Fallback to SimpleParser if a tokenizer is not supported. if not self.lingual_parser.has_tokenizer_support(): self.lingual_parser = SimpleParser() if self.lingual and not self.lingual_parser.has_NLP_support(): logger.warning( f"Lingual mode will be turned off, " f"as spacy doesn't provide support for this " f"language ({self.language})" ) self.lingual = False # tabular setup self.tabular = tabular # visual setup self.visual_parser = visual_parser def apply( # type: ignore self, document: Document, **kwargs: Any ) -> Optional[Document]: """Parse a text in an instance of Document. :param document: document to parse. """ try: [y for y in self.parse(document, document.text)] if self.visual_parser: if not self.visual_parser.is_parsable(document.name): warnings.warn( ( f"Visual parse failed. " f"{document.name} not a PDF. " f"Proceeding without visual parsing." ), RuntimeWarning, ) else: # Add visual attributes [ y for y in self.visual_parser.parse( document.name, document.sentences ) ] return document except Exception as e: logging.exception( ( f"Document {document.name} not added to database, " f"because of parse error: \n{e}" ) ) return None def _parse_table(self, node: HtmlElement, state: Dict[str, Any]) -> Dict[str, Any]: """Parse a table node. :param node: The lxml table node to parse :param state: The global state necessary to place the node in context of the document as a whole. """ if not self.tabular: logger.error("Called _parse_table without tabular activated.") return state if node.tag == "table": table_idx = state["table"]["idx"] stable_id = f"{state['document'].name}::{'table'}:{state['table']['idx']}" # Set name for Table name = node.attrib["name"] if "name" in node.attrib else None # Create the Table in the DB parts = {} parts["document"] = state["document"] parts["stable_id"] = stable_id parts["name"] = name parts["position"] = table_idx parent = state["parent"][node] if isinstance(parent, Cell): parts["section"] = parent.table.section elif isinstance(parent, Section): parts["section"] = parent else: raise NotImplementedError("Table is not within a Section or Cell") state["context"][node] = Table(**parts) # Local state for each table. This is required to support nested # tables state["table"][table_idx] = { "grid": defaultdict(int), "cell_pos": 0, "row_idx": -1, "col_idx": 0, } # Increment table counter state["table"]["idx"] += 1 elif node.tag == "tr": if not isinstance(state["parent"][node], Table): raise NotImplementedError("Table row parent must be a Table.") state["table"][state["parent"][node].position]["col_idx"] = 0 state["table"][state["parent"][node].position]["row_idx"] += 1 elif node.tag in ["td", "th"]: if not isinstance(state["parent"][node], Table): raise NotImplementedError("Cell parent must be a Table.") if not state["table"][state["parent"][node].position]["row_idx"] >= 0: raise NotImplementedError("Table cell encountered before a table row.") # calculate row_start/col_start while state["table"][state["parent"][node].position]["grid"][ ( state["table"][state["parent"][node].position]["row_idx"], state["table"][state["parent"][node].position]["col_idx"], ) ]: # while a cell on the grid is occupied, keep moving state["table"][state["parent"][node].position]["col_idx"] += 1 col_start = state["table"][state["parent"][node].position]["col_idx"] row_start = state["table"][state["parent"][node].position]["row_idx"] # calculate row_end/col_end row_end = row_start if "rowspan" in node.attrib: try: row_end += int(node.get("rowspan")) - 1 except ValueError: logger.error(f"Rowspan has invalid value: '{node.get('rowspan')}'") col_end = col_start if "colspan" in node.attrib: try: col_end += int(node.get("colspan")) - 1 except ValueError: logger.error(f"Colspan has invalid value: '{node.get('colspan')}'") # update grid with occupied cells for r, c in itertools.product( list(range(row_start, row_end + 1)), list(range(col_start, col_end + 1)) ): state["table"][state["parent"][node].position]["grid"][(r, c)] = 1 # Set name for Cell name = node.attrib["name"] if "name" in node.attrib else None # construct cell parts = defaultdict(list) parts["document"] = state["document"] parts["name"] = name parts["table"] = state["parent"][node] parts["row_start"] = row_start parts["row_end"] = row_end parts["col_start"] = col_start parts["col_end"] = col_end parts["position"] = state["table"][state["parent"][node].position][ "cell_pos" ] stable_id = ( f"{parts['document'].name}" f"::" f"{'cell'}" f":" f"{parts['table'].position}" f":" f"{row_start}" f":" f"{col_start}" ) parts["stable_id"] = stable_id # Create the Cell in the DB state["context"][node] = Cell(**parts) # Update position state["table"][state["parent"][node].position]["col_idx"] += 1 state["table"][state["parent"][node].position]["cell_pos"] += 1 return state def _parse_figure(self, node: HtmlElement, state: Dict[str, Any]) -> Dict[str, Any]: """Parse the figure node. :param node: The lxml img node to parse :param state: The global state necessary to place the node in context of the document as a whole. """ if node.tag not in ["img", "figure"]: return state # Process the Figure stable_id = ( f"{state['document'].name}" f"::" f"{'figure'}" f":" f"{state['figure']['idx']}" ) # Set name for Figure name = node.attrib["name"] if "name" in node.attrib else None # img within a Figure get's processed in the parent Figure if node.tag == "img" and isinstance(state["parent"][node], Figure): return state # NOTE: We currently do NOT support nested figures. parts: Dict[str, Any] = {} parent = state["parent"][node] if isinstance(parent, Section): parts["section"] = parent elif isinstance(parent, Cell): parts["section"] = parent.table.section parts["cell"] = parent else: logger.warning(f"Figure is nested within {state['parent'][node]}") return state parts["document"] = state["document"] parts["stable_id"] = stable_id parts["name"] = name parts["position"] = state["figure"]["idx"] # If processing a raw img if node.tag == "img": # Create the Figure entry in the DB parts["url"] = node.get("src") state["context"][node] = Figure(**parts) elif node.tag == "figure": # Pull the image from a child img node, if one exists imgs = [child for child in node if child.tag == "img"] # In case the image from the child img node doesn't exist if len(imgs) == 0: logger.warning("No image found in Figure.") return state if len(imgs) > 1: logger.warning("Figure contains multiple images.") # Right now we don't support multiple URLs in the Figure context # As a workaround, just ignore the outer Figure and allow processing # of the individual images. We ignore the accompanying figcaption # by marking it as visited. for child in node: if child.tag == "figcaption": child.set("visited", "true") return state img = imgs[0] img.set("visited", "true") # Create the Figure entry in the DB parts["url"] = img.get("src") state["context"][node] = Figure(**parts) state["figure"]["idx"] += 1 return state def _parse_sentence( self, paragraph: Paragraph, node: HtmlElement, state: Dict[str, Any] ) -> Iterator[Sentence]: """Parse the Sentences of the node. :param node: The lxml node to parse :param state: The global state necessary to place the node in context of the document as a whole. """ text = state["paragraph"]["text"] field = state["paragraph"]["field"] # Set name for Sentence name = node.attrib["name"] if "name" in node.attrib else None # Lingual Parse document = state["document"] for parts in self.lingual_parser.split_sentences(text): abs_offset = state["sentence"]["abs_offset"] parts["abs_char_offsets"] = [ char_offset + abs_offset for char_offset in parts["char_offsets"] ] parts["document"] = document # NOTE: Why do we overwrite this from the spacy parse? parts["position"] = state["sentence"]["idx"] abs_sentence_offset_end = ( state["sentence"]["abs_offset"] + parts["char_offsets"][-1] + len(parts["words"][-1]) ) parts["stable_id"] = construct_stable_id( document, "sentence", state["sentence"]["abs_offset"], abs_sentence_offset_end, ) parts["name"] = name state["sentence"]["abs_offset"] = abs_sentence_offset_end if self.structural: context_node = node.getparent() if field == "tail" else node tree = lxml.etree.ElementTree(state["root"]) parts["xpath"] = tree.getpath(context_node) parts["html_tag"] = context_node.tag parts["html_attrs"] = [ "=".join(x) for x in context_node.attrib.items() if x[0] != "visited" ] # Extending html style attribute with the styles # from inline style class for the element. cur_style_index = None for index, attr in enumerate(parts["html_attrs"]): if attr.find("style") >= 0: cur_style_index = index break head = state["root"].find("head") styles = None if head is not None: styles = head.find("style") if styles is not None: for x in list(context_node.attrib.items()): if x[0] == "class": exp = r"(." + x[1] + r")([\n\s\r]*)\{(.*?)\}" r = re.compile(exp, re.DOTALL) if r.search(styles.text) is not None: if cur_style_index is not None: parts["html_attrs"][cur_style_index] += ( r.search(styles.text) .group(3) .replace("\r", "") .replace("\n", "") .replace("\t", "") ) else: parts["html_attrs"].extend( [ "style=" + re.sub( r"\s{1,}", " ", r.search(styles.text) .group(3) .replace("\r", "") .replace("\n", "") .replace("\t", "") .strip(), ) ] ) break parts["position"] = state["sentence"]["idx"] # If tabular, consider own Context first in case a Cell # was just created. Otherwise, defer to the parent. parent = paragraph if isinstance(parent, Paragraph): parts["section"] = parent.section parts["paragraph"] = parent if parent.cell: # if True self.tabular is also always True parts["table"] = parent.cell.table parts["cell"] = parent.cell parts["row_start"] = parent.cell.row_start parts["row_end"] = parent.cell.row_end parts["col_start"] = parent.cell.col_start parts["col_end"] = parent.cell.col_end else: raise NotImplementedError("Sentence parent must be Paragraph.") yield Sentence(**parts) state["sentence"]["idx"] += 1 def _parse_paragraph( self, node: HtmlElement, state: Dict[str, Any] ) -> Iterator[Sentence]: """Parse a Paragraph of the node. :param node: The lxml node to parse :param state: The global state necessary to place the node in context of the document as a whole. """ # Both Paragraphs will share the same parent parent = ( state["context"][node] if node in state["context"] else state["parent"][node] ) # Set name for Paragraph name = node.attrib["name"] if "name" in node.attrib else None if len(node.getchildren()) == 0: # leaf node fields = ["text", "tail"] elif node.get("visited") == "text": # .text was parsed already fields = ["tail"] node.set("visited", "true") else: fields = ["text"] node.set("visited", "text") self.stack.append(node) # will visit again later for tail for field in fields: text = getattr(node, field) text = text.strip() if text and self.strip else text # Skip if "" or None if not text: continue # Run RegEx replacements for (rgx, replace) in self.replacements: text = rgx.sub(replace, text) # Process the Paragraph stable_id = ( f"{state['document'].name}" f"::" f"{'paragraph'}" f":" f"{state['paragraph']['idx']}" ) parts = {} parts["stable_id"] = stable_id parts["name"] = name parts["document"] = state["document"] parts["position"] = state["paragraph"]["idx"] if isinstance(parent, Caption): if parent.table: parts["section"] = parent.table.section elif parent.figure: parts["section"] = parent.figure.section parts["caption"] = parent elif isinstance(parent, Cell): parts["section"] = parent.table.section parts["cell"] = parent elif isinstance(parent, Section): parts["section"] = parent elif isinstance(parent, Figure): # occurs with text in the tail of an img parts["section"] = parent.section elif isinstance(parent, Table): # occurs with text in the tail of a table parts["section"] = parent.section else: raise NotImplementedError( f"Para '{text}' parent must be Section, Caption, or Cell, " f"not {parent}" ) # Create the entry in the DB paragraph = Paragraph(**parts) state["paragraph"]["idx"] += 1 state["paragraph"]["text"] = text state["paragraph"]["field"] = field yield from self._parse_sentence(paragraph, node, state) def _parse_section( self, node: HtmlElement, state: Dict[str, Any] ) -> Dict[str, Any]: """Parse a Section of the node. Note that this implementation currently creates a Section at the beginning of the document and creates Section based on tag of node. :param node: The lxml node to parse :param state: The global state necessary to place the node in context of the document as a whole. """ if node.tag not in ["html", "section"]: return state # Add a Section stable_id = ( f"{state['document'].name}" f"::" f"{'section'}" f":" f"{state['section']['idx']}" ) # Set name for Section name = node.attrib["name"] if "name" in node.attrib else None state["context"][node] = Section( document=state["document"], name=name, stable_id=stable_id, position=state["section"]["idx"], ) state["section"]["idx"] += 1 return state def _parse_caption( self, node: HtmlElement, state: Dict[str, Any] ) -> Dict[str, Any]: """Parse a Caption of the node. :param node: The lxml node to parse :param state: The global state necessary to place the node in context of the document as a whole. """ if node.tag not in ["caption", "figcaption"]: # captions used in Tables return state # Add a Caption parent = state["parent"][node] stable_id = ( f"{state['document'].name}" f"::" f"{'caption'}" f":" f"{state['caption']['idx']}" ) # Set name for Section name = node.attrib["name"] if "name" in node.attrib else None if isinstance(parent, Table): state["context"][node] = Caption( document=state["document"], table=parent, figure=None, stable_id=stable_id, name=name, position=state["caption"]["idx"], ) elif isinstance(parent, Figure): state["context"][node] = Caption( document=state["document"], table=None, figure=parent, stable_id=stable_id, name=name, position=state["caption"]["idx"], ) else: raise NotImplementedError("Caption must be a child of Table or Figure.") state["caption"]["idx"] += 1 return state def _parse_node( self, node: HtmlElement, state: Dict[str, Any] ) -> Iterator[Sentence]: """Entry point for parsing all node types. :param node: The lxml HTML node to parse :param state: The global state necessary to place the node in context of the document as a whole. :return: a *generator* of Sentences """ # Processing on entry of node if node.get("visited") != "text": # skip when .text has been parsed state = self._parse_section(node, state) state = self._parse_figure(node, state) if self.tabular: state = self._parse_table(node, state) state = self._parse_caption(node, state) yield from self._parse_paragraph(node, state) def parse(self, document: Document, text: str) -> Iterator[Sentence]: """Depth-first search over the provided tree. Implemented as an iterative procedure. The structure of the state needed to parse each node is also defined in this function. :param document: the Document context :param text: the structured text of the document (e.g. HTML) :return: a *generator* of Sentences. """ self.stack = [] root = lxml.html.fromstring(text) # flattens children of node that are in the 'flatten' list if self.flatten: lxml.etree.strip_tags(root, self.flatten) # Strip comments lxml.etree.strip_tags(root, lxml.etree.Comment) # Assign the text, which was stripped of the 'flatten'-tags, to the document document.text = lxml.etree.tostring(root, encoding="unicode") # This dictionary contain the global state necessary to parse a # document and each context element. This reflects the relationships # defined in parser/models. This contains the state necessary to create # the respective Contexts within the document. state = { "parent": {}, # map of parent[child] = node used to discover child "context": {}, # track the Context of each node (context['td'] = Cell) "root": root, "document": document, "section": {"idx": 0}, "paragraph": {"idx": 0}, "figure": {"idx": 0}, "caption": {"idx": 0}, "table": {"idx": 0}, "sentence": {"idx": 0, "abs_offset": 0}, } # NOTE: Currently the helper functions directly manipulate the state # rather than returning a modified copy. # Iterative Depth-First Search self.stack.append(root) state["parent"][root] = document state["context"][root] = document tokenized_sentences: List[Sentence] = [] while self.stack: node = self.stack.pop() if node.get("visited") != "true": # Process if self.lingual: tokenized_sentences += [y for y in self._parse_node(node, state)] else: yield from self._parse_node(node, state) # NOTE: This reversed() order is to ensure that the iterative # DFS matches the order that would be produced by a recursive # DFS implementation. if node.get("visited") != "true": for child in reversed(node): # Skip nodes that are blacklisted if self.blacklist and child.tag in self.blacklist: continue self.stack.append(child) # store the parent of the node, which is either the parent # Context, or if the parent did not create a Context, then # use the node's parent Context. state["parent"][child] = ( state["context"][node] if node in state["context"] else state["parent"][node] ) else: node.set("visited", "true") # mark as visited if self.lingual: yield from self.lingual_parser.enrich_sentences_with_NLP( tokenized_sentences )
fonduer-master
src/fonduer/parser/parser.py
"""Fonduer document preprocessor.""" import glob import os import sys from typing import Iterator, List from fonduer.parser.models.document import Document class DocPreprocessor(object): """An abstract class of a ``Document`` generator. Unless otherwise stated by a subclass, it's assumed that there is one ``Document`` per file. """ def __init__( self, path: str, encoding: str = "utf-8", max_docs: int = sys.maxsize ) -> None: """Initialize DocPreprocessor. :param path: a path to file or directory, or a glob pattern. The basename (as returned by ``os.path.basename``) should be unique among all files. :param encoding: file encoding to use, defaults to "utf-8". :param max_docs: the maximum number of ``Documents`` to produce, defaults to sys.maxsize. :return: A generator of ``Documents``. """ self.path = path self.encoding = encoding self.max_docs = max_docs self.all_files = self._get_files(self.path) def _generate(self) -> Iterator[Document]: """Parse a file or directory of files into a set of ``Document`` objects.""" doc_count = 0 for fp in self.all_files: for doc in self._get_docs_for_path(fp): yield doc doc_count += 1 if doc_count >= self.max_docs: return def __len__(self) -> int: """Get total number of documents.""" raise NotImplementedError( "One generic file can yield more than one Document object, " "so length can not be yielded before we process all files" ) def __iter__(self) -> Iterator[Document]: """Get the generator of documents.""" return self._generate() def _get_docs_for_path(self, fp: str) -> Iterator[Document]: file_name = os.path.basename(fp) if self._can_read(file_name): for doc in self._parse_file(fp, file_name): yield doc def _get_stable_id(self, doc_id: str) -> str: return f"{doc_id}::document:0:0" def _parse_file(self, fp: str, file_name: str) -> Iterator[Document]: raise NotImplementedError() def _can_read(self, fpath: str) -> bool: return not fpath.startswith(".") def _get_files(self, path: str) -> List[str]: if os.path.isfile(path): fpaths = [path] elif os.path.isdir(path): fpaths = [os.path.join(path, f) for f in os.listdir(path)] else: fpaths = glob.glob(path) fpaths = [x for x in fpaths if self._can_read(x)] if len(fpaths) > 0: return sorted(fpaths) else: raise IOError( f"No readable file found at {path}. Check if {path} exists " "and a filename ends with an allowable extension (e.g., .html)" )
fonduer-master
src/fonduer/parser/preprocessors/doc_preprocessor.py
"""Fonduer hOCR document preprocessor.""" import codecs import os import re import sys from typing import Iterator, Optional, Tuple from bs4 import BeautifulSoup from bs4.element import Comment, NavigableString, Tag from fonduer.parser.models import Document from fonduer.parser.preprocessors.doc_preprocessor import DocPreprocessor class HOCRDocPreprocessor(DocPreprocessor): """A ``Document`` generator for hOCR files. hOCR should comply with `hOCR v1.2`_. Note that *ppageno* property of *ocr_page* is optional by `hOCR v1.2`_, but is required by Fonduer. .. _hOCR v1.2: http://kba.cloud/hocr-spec/1.2/ """ def __init__( self, path: str, encoding: str = "utf-8", max_docs: int = sys.maxsize, space: bool = True, ): """Initialize HOCRDocPreprocessor. :param path: a path to file or directory, or a glob pattern. The basename (as returned by ``os.path.basename``) should be unique among all files. :param encoding: file encoding to use, defaults to "utf-8". :param max_docs: the maximum number of ``Documents`` to produce, defaults to sys.maxsize. :param space: boolean value indicating whether each word should have a subsequent space. E.g., English has spaces between words. :return: A generator of ``Documents``. """ super().__init__(path, encoding, max_docs) self.space = space def _parse_file(self, fp: str, file_name: str) -> Iterator[Document]: # Adapted from https://github.com/ocropus/hocr-tools/blob/v1.3.0/hocr-check def get_prop(node: Tag, name: str) -> Optional[str]: title = node["title"] if not title: return None props = title.split(";") for prop in props: (key, args) = prop.split(None, 1) if key == name: return args return None # Adapted from https://github.com/ocropus/hocr-tools/blob/v1.3.0/hocr-check def get_bbox(node: Tag) -> Tuple[str, ...]: bbox = get_prop(node, "bbox") if not bbox: return None return tuple([x for x in bbox.split()]) with codecs.open(fp, encoding=self.encoding) as f: soup = BeautifulSoup(f, "lxml") all_html_elements = soup.find_all("html") if len(all_html_elements) != 1: raise NotImplementedError( f"Expecting exactly one html element per html file: {file_name}" ) root = all_html_elements[0] capabilities = root.find("meta", attrs={"name": "ocr-capabilities"}) if capabilities is None: raise RuntimeError( "The input hOCR does not contain ocr-capabilities metadata." ) # Unwrap ocr_line/ocrx_line as Fonduer has no data model for lines. if "ocr_line" in capabilities["content"]: for line in root.find_all(class_="ocr_line"): line.unwrap() if "ocrx_line" in capabilities["content"]: for line in root.find_all(class_="ocrx_line"): line.unwrap() if "ocrx_word" in capabilities["content"]: for p, page in enumerate(root.find_all(class_="ocr_page")): ppageno = str(p) # 0-based for word in page.find_all(class_="ocrx_word"): parent = word.parent (left, top, right, bottom) = get_bbox(word) # ocrx_word could have multiple words with one or more of spaces # in-between. This actually happens on Tesseract 4.00. # This is normalized by splitting and concatenating later. tokens = word.text.split() if "left" not in parent.attrs: parent["left"] = [] parent["top"] = [] parent["right"] = [] parent["bottom"] = [] parent["ppageno"] = [] parent["tokens"] = [] parent["left"] += [left] * len(tokens) parent["top"] += [top] * len(tokens) parent["right"] += [right] * len(tokens) parent["bottom"] += [bottom] * len(tokens) parent["ppageno"] += [ppageno] * len(tokens) parent["tokens"] += tokens if "ocrp_wconf" in capabilities["content"]: x_wconf = get_prop(word, "x_wconf") if "x_wconf" not in parent.attrs: parent["x_wconf"] = [] parent["x_wconf"].append(x_wconf) # Mark the parent element if "fonduer" not in parent.attrs: parent["fonduer"] = ["1"] # Concat words again with " " or "". if len(tokens) > 1: if self.space: word.string.replace_with(" ".join(tokens)) else: word.string.replace_with("".join(tokens)) word.unwrap() # Clean-up for i, parent in enumerate(root.find_all(attrs={"fonduer": "1"})): # Concat consecutive NavigableString parent.smooth() # beautifulsoup4 >= 4.8.0 # Remove linebreaks and excess spaces # in reverse order b/c removing element from list in loop for child in reversed(parent.contents): if isinstance(child, Comment): # remove comments child.extract() elif isinstance(child, NavigableString): if child.strip() == "": # remove if space or linebreak child.extract() else: tmp = re.sub(r"[\n\s]+", " " if self.space else "", child) n = NavigableString(tmp.strip()) child.replace_with(n) del parent["fonduer"] name = os.path.basename(fp)[: os.path.basename(fp).rfind(".")] stable_id = self._get_stable_id(name) yield Document( name=name, stable_id=stable_id, text=str(root), meta={"file_name": file_name}, ) def __len__(self) -> int: """Provide a len attribute based on max_docs and number of files in folder.""" num_docs = min(len(self.all_files), self.max_docs) return num_docs def _can_read(self, fpath: str) -> bool: """Return True if the path ends with either 'html' or 'hocr'.""" return fpath.lower().endswith("hocr") or fpath.lower().endswith("html")
fonduer-master
src/fonduer/parser/preprocessors/hocr_doc_preprocessor.py
"""Fonduer's parser preprocessor module.""" from fonduer.parser.preprocessors.csv_doc_preprocessor import CSVDocPreprocessor from fonduer.parser.preprocessors.doc_preprocessor import DocPreprocessor from fonduer.parser.preprocessors.hocr_doc_preprocessor import HOCRDocPreprocessor from fonduer.parser.preprocessors.html_doc_preprocessor import HTMLDocPreprocessor from fonduer.parser.preprocessors.text_doc_preprocessor import TextDocPreprocessor from fonduer.parser.preprocessors.tsv_doc_preprocessor import TSVDocPreprocessor __all__ = [ "CSVDocPreprocessor", "DocPreprocessor", "HOCRDocPreprocessor", "HTMLDocPreprocessor", "TSVDocPreprocessor", "TextDocPreprocessor", ]
fonduer-master
src/fonduer/parser/preprocessors/__init__.py
"""Fonduer HTML document preprocessor.""" import codecs import os from typing import Iterator from bs4 import BeautifulSoup from fonduer.parser.models import Document from fonduer.parser.preprocessors.doc_preprocessor import DocPreprocessor class HTMLDocPreprocessor(DocPreprocessor): """A ``Document`` generator for HTML files.""" def _parse_file(self, fp: str, file_name: str) -> Iterator[Document]: with codecs.open(fp, encoding=self.encoding) as f: soup = BeautifulSoup(f, "lxml") all_html_elements = soup.find_all("html") if len(all_html_elements) != 1: raise NotImplementedError( f"Expecting exactly one html element per html file: {file_name}" ) text = all_html_elements[0] name = os.path.basename(fp)[: os.path.basename(fp).rfind(".")] stable_id = self._get_stable_id(name) yield Document( name=name, stable_id=stable_id, text=str(text), meta={"file_name": file_name}, ) def __len__(self) -> int: """Provide a len attribute based on max_docs and number of files in folder.""" num_docs = min(len(self.all_files), self.max_docs) return num_docs def _can_read(self, fpath: str) -> bool: return fpath.lower().endswith("html") # includes both .html and .xhtml
fonduer-master
src/fonduer/parser/preprocessors/html_doc_preprocessor.py
"""Fonduer text document preprocessor.""" import codecs import os from typing import Iterator from fonduer.parser.models import Document from fonduer.parser.preprocessors.doc_preprocessor import DocPreprocessor from fonduer.utils.utils_parser import build_node class TextDocPreprocessor(DocPreprocessor): """A ``Document`` generator for plain text files.""" def _parse_file(self, fp: str, file_name: str) -> Iterator[Document]: with codecs.open(fp, encoding=self.encoding) as f: name = os.path.basename(fp).rsplit(".", 1)[0] stable_id = self._get_stable_id(name) text = build_node("doc", None, build_node("text", None, f.read().strip())) yield Document( name=name, stable_id=stable_id, text=text, meta={"file_name": file_name} ) def __len__(self) -> int: """Provide a len attribute based on max_docs and number of files in folder.""" num_docs = min(len(self.all_files), self.max_docs) return num_docs
fonduer-master
src/fonduer/parser/preprocessors/text_doc_preprocessor.py
"""Fonduer CSV document preprocessor.""" import codecs import csv import os import sys from typing import Callable, Dict, Iterator, Optional from fonduer.parser.models import Document from fonduer.parser.preprocessors.doc_preprocessor import DocPreprocessor from fonduer.utils.utils_parser import build_node, column_constructor class CSVDocPreprocessor(DocPreprocessor): """A ``Document`` generator for CVS files. It treats each line in the input file as a ``Document``. It assumes that each column is one ``Section`` and content in each column as one ``Paragraph`` by default. However, if the column is complex, an advanced parser may be used by specifying ``parser_rule`` parameter in a dict format where key is the column index and value is the specific parser, e,g., ``column_constructor`` in ``fonduer.utils.utils_parser``. """ def __init__( self, path: str, encoding: str = "utf-8", max_docs: int = sys.maxsize, header: bool = False, delim: str = ",", parser_rule: Optional[Dict[int, Callable]] = None, ) -> None: """Initialize CSV DocPreprocessor. :param path: a path to file or directory, or a glob pattern. The basename (as returned by ``os.path.basename``) should be unique among all files. :param encoding: file encoding to use (e.g. "utf-8"). :param max_docs: the maximum number of ``Documents`` to produce. :param header: if the CSV file contain header or not, if yes, the header will be used as Section name. default = False :param delim: delimiter to be used to separate columns when file has more than one column. It is active only when ``column is not None``. default=',' :param parser_rule: The parser rule to be used to parse the specific column. default = None :return: A generator of ``Documents``. """ super().__init__(path, encoding, max_docs) self.header = header self.delim = delim self.parser_rule = parser_rule def _parse_file(self, fp: str, file_name: str) -> Iterator[Document]: name = os.path.basename(fp)[: os.path.basename(fp).rfind(".")] with codecs.open(fp, encoding=self.encoding) as f: reader = csv.reader(f) # Load CSV header header_names = None if self.header: header_names = next(reader) # Load document per row for i, row in enumerate(reader): sections = [] for j, content in enumerate(row): rule = ( self.parser_rule[j] if self.parser_rule is not None and j in self.parser_rule else column_constructor ) content_header = ( header_names[j] if header_names is not None else None ) context = [ build_node(t, n, c) # TODO: Fix this type ignore for t, n, c in rule(content) # type: ignore ] sections.append( build_node("section", content_header, "".join(context)) ) text = build_node("doc", None, "".join(sections)) doc_name = name + ":" + str(i) stable_id = self._get_stable_id(doc_name) yield Document( name=doc_name, stable_id=stable_id, text=text, meta={"file_name": file_name}, ) def __len__(self) -> int: """Provide a len attribute based on max_docs and number of rows in files.""" cnt_docs = 0 for fp in self.all_files: with codecs.open(fp, encoding=self.encoding) as csv: num_lines = sum(1 for line in csv) cnt_docs += num_lines - 1 if self.header else num_lines if cnt_docs > self.max_docs: break num_docs = min(cnt_docs, self.max_docs) return num_docs def _can_read(self, fpath: str) -> bool: return fpath.lower().endswith(".csv")
fonduer-master
src/fonduer/parser/preprocessors/csv_doc_preprocessor.py
"""Fonduer TSV document preprocessor.""" import codecs import sys from typing import Iterator from fonduer.parser.models import Document from fonduer.parser.preprocessors.doc_preprocessor import DocPreprocessor from fonduer.utils.utils_parser import build_node class TSVDocPreprocessor(DocPreprocessor): """A ``Document`` generator for TSV files. It treats each line in the input file as a ``Document``. The TSV file should have one (doc_name <tab> doc_text) per line. """ def __init__( self, path: str, encoding: str = "utf-8", max_docs: int = sys.maxsize, header: bool = False, ) -> None: """Initialize TSV DocPreprocessor. :param path: a path to file or directory, or a glob pattern. The basename (as returned by ``os.path.basename``) should be unique among all files. :param encoding: file encoding to use (e.g. "utf-8"). :param max_docs: the maximum number of ``Documents`` to produce. :param header: if the TSV file contain header or not. default = False :return: A generator of ``Documents``. """ super().__init__(path, encoding, max_docs) self.header = header def _parse_file(self, fp: str, file_name: str) -> Iterator[Document]: with codecs.open(fp, encoding=self.encoding) as tsv: if self.header: tsv.readline() for line in tsv: (doc_name, doc_text) = line.split("\t") stable_id = self._get_stable_id(doc_name) text = build_node("doc", None, build_node("text", None, doc_text)) yield Document( name=doc_name, stable_id=stable_id, text=text, meta={"file_name": file_name}, ) def __len__(self) -> int: """Provide a len attribute based on max_docs and number of rows in files.""" cnt_docs = 0 for fp in self.all_files: with codecs.open(fp, encoding=self.encoding) as tsv: num_lines = sum(1 for line in tsv) cnt_docs += num_lines - 1 if self.header else num_lines if cnt_docs > self.max_docs: break num_docs = min(cnt_docs, self.max_docs) return num_docs def _can_read(self, fpath: str) -> bool: return fpath.lower().endswith(".tsv")
fonduer-master
src/fonduer/parser/preprocessors/tsv_doc_preprocessor.py
"""A simple alternative tokenizer which parses text by splitting on whitespace.""" from typing import Any, Dict, Iterator import numpy as np from fonduer.parser.lingual_parser.lingual_parser import LingualParser class SimpleParser(LingualParser): """Tokenizes text on whitespace only using split(). :param delim: a delimiter to split text into sentences. """ def __init__(self, delim: str = ".") -> None: """Initialize SimpleParser.""" self.delim = delim def split_sentences(self, str: str) -> Iterator[Dict[str, Any]]: """Parse the document. :param str: The text contents of the document. :return: a *generator* of tokenized text. """ i = 0 for text in str.split(self.delim): if not len(text.strip()): continue words = text.split() char_offsets = [0] + [ int(_) for _ in np.cumsum([len(x) + 1 for x in words])[:-1] ] text = " ".join(words) yield { "text": text, "words": words, "pos_tags": [""] * len(words), "ner_tags": [""] * len(words), "lemmas": [""] * len(words), "dep_parents": [0] * len(words), "dep_labels": [""] * len(words), "char_offsets": char_offsets, "abs_char_offsets": char_offsets, } i += 1 def has_NLP_support(self) -> bool: """ Return True when NLP is supported. :return: True when NLP is supported. """ return False def has_tokenizer_support(self) -> bool: """ Return True when a tokenizer is supported. :return: True when a tokenizer is supported. """ return True
fonduer-master
src/fonduer/parser/lingual_parser/simple_parser.py
"""Fonduer's lingual parser module.""" from fonduer.parser.lingual_parser.lingual_parser import LingualParser from fonduer.parser.lingual_parser.simple_parser import SimpleParser from fonduer.parser.lingual_parser.spacy_parser import SpacyParser __all__ = ["LingualParser", "SpacyParser", "SimpleParser"]
fonduer-master
src/fonduer/parser/lingual_parser/__init__.py
"""Fonduer Spacy parser.""" import importlib import logging from collections import defaultdict from pathlib import Path from string import whitespace from typing import Any, Collection, Dict, Iterator, List, Optional import spacy from spacy import util from spacy.cli import download from spacy.language import Language from spacy.tokens import Doc from spacy.util import is_package from spacy.vocab import Vocab from fonduer.parser.lingual_parser.lingual_parser import LingualParser from fonduer.parser.models.sentence import Sentence logger = logging.getLogger(__name__) class SpacyParser(LingualParser): """Spacy parser class. :param lang: Language. This can be one of ``["en", "de", "es", "pt", "fr", "it", "nl", "xx", "ja", "zh"]``. See here_ for details of languages supported by spaCy. .. _here: https://spacy.io/usage/models#languages. """ languages = ["en", "de", "es", "pt", "fr", "it", "nl", "xx", "ja", "zh"] # Keep alpha_languages for future alpha supported languages # E.g., alpha_languages = {"ja": "Japanese", "zh": "Chinese"} alpha_languages: Dict[str, str] = {} def __init__(self, lang: Optional[str]) -> None: """Initialize SpacyParser.""" self.name = "spacy" self.lang = lang self.model: Optional[Language] = None if self.has_tokenizer_support(): self._load_lang_model() def has_tokenizer_support(self) -> bool: """ Return True when a tokenizer is supported. :return: True when a tokenizer is supported. """ return self.lang is not None and ( self.has_NLP_support() or self.lang in self.alpha_languages ) def has_NLP_support(self) -> bool: """ Return True when NLP is supported. :return: True when NLP is supported. """ return self.lang is not None and (self.lang in self.languages) @staticmethod def model_installed(name: str) -> bool: """Check if spaCy language model is installed. From https://github.com/explosion/spaCy/blob/master/spacy/util.py :param name: :return: """ data_path = util.get_data_path() if not data_path or not data_path.exists(): raise IOError(f"Can't find spaCy data path: {data_path}") if name in {d.name for d in data_path.iterdir()}: return True if is_package(name): # installed as package return True if Path(name).exists(): # path to model data directory return True return False def _load_lang_model(self) -> None: """Load spaCy language model. If a model is not installed, download it before loading it. :return: """ if self.lang in self.languages: if not SpacyParser.model_installed(self.lang): download(self.lang) model = spacy.load(self.lang) elif self.lang in self.alpha_languages: language_module = importlib.import_module(f"spacy.lang.{self.lang}") language_method = getattr(language_module, self.alpha_languages[self.lang]) model = language_method() self.model = model def enrich_sentences_with_NLP( self, sentences: Collection[Sentence] ) -> Iterator[Sentence]: """Enrich a list of fonduer Sentence objects with NLP features. We merge and process the text of all Sentences for higher efficiency. :param sentences: List of fonduer Sentence objects for one document :return: """ if not self.has_NLP_support(): raise NotImplementedError( f"Language {self.lang} not available in spacy beyond tokenization" ) if len(sentences) == 0: return # Nothing to parse if self.model.has_pipe("sentencizer"): self.model.remove_pipe("sentencizer") logger.debug( f"Removed sentencizer ('sentencizer') from model. " f"Now in pipeline: {self.model.pipe_names}" ) if self.model.has_pipe("sentence_boundary_detector"): self.model.remove_pipe(name="sentence_boundary_detector") self.model.add_pipe( set_custom_boundary, before="parser", name="sentence_boundary_detector" ) sentence_batches: List[List[Sentence]] = self._split_sentences_by_char_limit( sentences, self.model.max_length ) # TODO: We could do this in parallel. Test speedup in the future for sentence_batch in sentence_batches: custom_tokenizer = TokenPreservingTokenizer(self.model.vocab) # we circumvent redundant tokenization by using a custom # tokenizer that directly uses the already separated words # of each sentence as tokens doc = custom_tokenizer(sentence_batch) doc.user_data = sentence_batch for name, proc in self.model.pipeline: # iterate over components in order doc = proc(doc) try: assert doc.is_parsed except Exception: logger.exception(f"{doc} was not parsed") for sent, current_sentence_obj in zip(doc.sents, sentence_batch): parts: Dict[str, Any] = defaultdict(list) for i, token in enumerate(sent): parts["lemmas"].append(token.lemma_) parts["pos_tags"].append(token.tag_) parts["ner_tags"].append( token.ent_type_ if token.ent_type_ else "O" ) head_idx = ( 0 if token.head is token else token.head.i - sent[0].i + 1 ) parts["dep_parents"].append(head_idx) parts["dep_labels"].append(token.dep_) # Special case as Japanese model does not have "tagger" in pipeline # Instead, Japanese model does tagging during tokenization. if not self.lang == "ja": current_sentence_obj.pos_tags = parts["pos_tags"] current_sentence_obj.lemmas = parts["lemmas"] current_sentence_obj.ner_tags = parts["ner_tags"] current_sentence_obj.dep_parents = parts["dep_parents"] current_sentence_obj.dep_labels = parts["dep_labels"] yield current_sentence_obj def _split_sentences_by_char_limit( self, all_sentences: Collection[Sentence], batch_char_limit: int ) -> List[List[Sentence]]: sentence_batches: List[List[Sentence]] = [[]] num_chars = 0 for sentence in all_sentences: if num_chars + len(sentence.text) >= batch_char_limit: sentence_batches.append([sentence]) num_chars = len(sentence.text) else: sentence_batches[-1].append(sentence) num_chars += len(sentence.text) return sentence_batches def split_sentences(self, text: str) -> Iterator[Dict[str, Any]]: """Split text into sentences. Split input text into sentences that match CoreNLP's default format, but are not yet processed. :param text: The text of the parent paragraph of the sentences :return: """ if self.model.has_pipe("sentence_boundary_detector"): self.model.remove_pipe(name="sentence_boundary_detector") if not self.model.has_pipe("sentencizer"): sentencizer = self.model.create_pipe("sentencizer") # add sentencizer self.model.add_pipe(sentencizer) try: doc = self.model(text, disable=["parser", "tagger", "ner"]) except ValueError: # temporary increase character limit of spacy # 'Probably save' according to spacy, as no parser or NER is used previous_max_length = self.model.max_length self.model.max_length = 100_000_000 logger.warning( f"Temporarily increased spacy maximum " f"character limit to {self.model.max_length} to split sentences." ) doc = self.model(text, disable=["parser", "tagger", "ner"]) self.model.max_length = previous_max_length logger.warning( f"Spacy maximum " f"character limit set back to {self.model.max_length}." ) except Exception as e: logger.exception(e) doc.is_parsed = True position = 0 for sent in doc.sents: parts: Dict[str, Any] = defaultdict(list) for token in sent: parts["words"].append(str(token)) parts["lemmas"].append(token.lemma_) parts["pos_tags"].append(token.pos_) parts["ner_tags"].append("") # placeholder for later NLP parsing parts["char_offsets"].append(token.idx) parts["dep_parents"].append(0) # placeholder for later NLP parsing parts["dep_labels"].append("") # placeholder for later NLP parsing # make char_offsets relative to start of sentence parts["char_offsets"] = [ p - parts["char_offsets"][0] for p in parts["char_offsets"] ] parts["position"] = position parts["text"] = sent.text position += 1 yield parts def set_custom_boundary(doc: Doc) -> Doc: """Set the boundaries of sentence. Set the sentence boundaries based on the already separated sentences. :param doc: doc.user_data should have a list of Sentence. :return doc: """ if doc.user_data == {}: raise AttributeError("A list of Sentence is not attached to doc.user_data.") # Set every token.is_sent_start False because they are all True by default for token_nr, token in enumerate(doc): doc[token_nr].is_sent_start = False # Set token.is_sent_start True when it is the first token of a Sentence token_nr = 0 for sentence in doc.user_data: doc[token_nr].is_sent_start = True token_nr += len(sentence.words) return doc class TokenPreservingTokenizer(object): """Token perserving tokenizer. This custom tokenizer simply preserves the tokenization that was already performed during sentence splitting. It will output a list of space separated tokens, whereas each token is a single word from the list of sentences. """ def __init__(self, vocab: Vocab) -> None: """Initialize a custom tokenizer. :param vocab: The vocab attribute of the respective spacy language object. """ self.vocab = vocab def __call__(self, tokenized_sentences: List[Sentence]) -> Doc: """Apply the custom tokenizer. :param tokenized_sentences: A list of sentences that was previously tokenized/split by spacy :return: Doc (a container for accessing linguistic annotations). """ all_input_tokens: List[str] = [] all_spaces: List[bool] = [] for sentence in tokenized_sentences: words_in_sentence = sentence.words if len(words_in_sentence) > 0: all_input_tokens += sentence.words current_sentence_pos = 0 spaces_list = [True] * len(words_in_sentence) # Last word in sentence always assumed to be followed by space for i, word in enumerate(words_in_sentence[:-1]): current_sentence_pos = sentence.text.find( word, current_sentence_pos ) if current_sentence_pos == -1: raise AttributeError( "Could not find token in its parent sentence" ) current_sentence_pos += len(word) if not any( sentence.text[current_sentence_pos:].startswith(s) for s in whitespace ): spaces_list[i] = False all_spaces += spaces_list return Doc(self.vocab, words=all_input_tokens, spaces=all_spaces)
fonduer-master
src/fonduer/parser/lingual_parser/spacy_parser.py
"""Fonduer lingual parser.""" from typing import Collection, Iterable, Iterator from fonduer.parser.models import Sentence class LingualParser(object): """Lingual parser.""" def split_sentences(self, text: str) -> Iterable[dict]: """ Split input text into sentences. :param text: text to be split :return: A generator of dict that is used as `**kwargs` to instantiate :class:`Sentence <fonduer.parser.models.Sentence>`. """ raise NotImplementedError() def enrich_sentences_with_NLP( self, sentences: Collection[Sentence] ) -> Iterator[Sentence]: """ Add NLP attributes like lemmas, pos_tags, etc. to sentences. :param sentences: a iterator of :class:`Sentence <fonduer.parser.models.Sentence>`. :return: a generator of :class:`Sentence <fonduer.parser.models.Sentence>`. """ raise NotImplementedError() def has_NLP_support(self) -> bool: """ Return True when NLP is supported. :return: True when NLP is supported. """ raise NotImplementedError() def has_tokenizer_support(self) -> bool: """ Return True when a tokenizer is supported. :return: True when a tokenizer is supported. """ raise NotImplementedError()
fonduer-master
src/fonduer/parser/lingual_parser/lingual_parser.py
"""Fonduer webpage context model.""" from sqlalchemy import Column, ForeignKey, Integer, String from fonduer.parser.models.context import Context class Webpage(Context): """A Webpage Context enhanced with additional metadata.""" __tablename__ = "webpage" #: The unique id of the ``Webpage``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The name of a ``Webpage``. name = Column(String, unique=False, nullable=True) #: The URL of the ``Webpage``. url = Column(String) #: The host of the ``Webpage``. host = Column(String) #: The type of the ``Webpage``. page_type = Column(String) #: The raw content of the ``Webpage``. raw_content = Column(String) #: The timestamp of when the ``Webpage`` was crawled. crawltime = Column(String) all = Column(String) # Polymorphism information for SQLAlchemy __mapper_args__ = {"polymorphic_identity": "webpage"} # Rest of class definition here def __repr__(self) -> str: """Represent the context as a string.""" return f"Webpage(id: {self.name[:10]}..., url: {self.url[8:23]}...)"
fonduer-master
src/fonduer/parser/models/webpage.py
"""Fonduer figure context model.""" from sqlalchemy import Column, ForeignKey, Integer, String, UniqueConstraint from sqlalchemy.orm import backref, relationship from fonduer.parser.models.context import Context class Figure(Context): """A figure Context in a Document. Used to represent figures in a document. .. note:: As of v0.6.2, ``<img>`` and ``<figure>`` tags turn into ``Figure``. """ __tablename__ = "figure" #: The unique id of the ``Figure``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The position of the ``Figure`` in the ``Document``. position = Column(Integer, nullable=False) #: The name of a ``Figure``. name = Column(String, unique=False, nullable=True) #: The id of the parent ``Document``. document_id = Column(Integer, ForeignKey("document.id", ondelete="CASCADE")) #: The parent ``Document``. document = relationship( "Document", backref=backref("figures", order_by=position, cascade="all, delete-orphan"), foreign_keys=document_id, ) #: The id of the parent ``Section``. section_id = Column(Integer, ForeignKey("section.id")) #: The parent ``Section``. section = relationship( "Section", backref=backref("figures", order_by=position, cascade="all, delete-orphan"), foreign_keys=section_id, ) #: The id of the parent ``Cell``, if any. cell_id = Column(Integer, ForeignKey("cell.id")) #: The the parent ``Cell``, if any. cell = relationship( "Cell", backref=backref("figures", order_by=position, cascade="all, delete-orphan"), foreign_keys=cell_id, ) #: The ``Figure``'s URL. url = Column(String) __mapper_args__ = {"polymorphic_identity": "figure"} __table_args__ = (UniqueConstraint(document_id, position),) def __repr__(self) -> str: """Represent the context as a string.""" if self.cell: return ( f"Figure(" f"Doc: {self.document.name}, " f"Sec: {self.section.position}, " f"Cell: {self.cell.position}, " f"Pos: {self.position}, " f"Url: {self.url}" f")" ) else: return ( f"Figure(" f"Doc: {self.document.name}, " f"Sec: {self.section.position}, " f"Pos: {self.position}, " f"Url: {self.url}" f")" ) def __gt__(self, other: "Figure") -> bool: """Check if the context is greater than another context.""" # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__()
fonduer-master
src/fonduer/parser/models/figure.py
"""Fonduer's parser model module.""" from fonduer.parser.models.caption import Caption from fonduer.parser.models.context import Context from fonduer.parser.models.document import Document from fonduer.parser.models.figure import Figure from fonduer.parser.models.paragraph import Paragraph from fonduer.parser.models.section import Section from fonduer.parser.models.sentence import Sentence from fonduer.parser.models.table import Cell, Table from fonduer.parser.models.webpage import Webpage __all__ = [ "Caption", "Cell", "Context", "Document", "Figure", "Paragraph", "Section", "Sentence", "Table", "Webpage", ]
fonduer-master
src/fonduer/parser/models/__init__.py
"""Fonduer section context model.""" from sqlalchemy import Column, ForeignKey, Integer, String, UniqueConstraint from sqlalchemy.orm import backref, relationship from fonduer.parser.models.context import Context class Section(Context): """A Section Context in a Document. .. note:: As of v0.6.2, each document simply has a single Section. Specifically, ``<html>`` and ``<section>`` tags turn into ``Section``. Future parsing improvements can add better section recognition, such as the sections of an academic paper. """ __tablename__ = "section" #: The unique id of the ``Section``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The name of a ``Section``. name = Column(String, unique=False, nullable=True) #: The position of the ``Section`` in a ``Document``. position = Column(Integer, nullable=False) #: The id of the parent ``Document``. document_id = Column(Integer, ForeignKey("document.id", ondelete="CASCADE")) #: The parent ``Document``. document = relationship( "Document", backref=backref("sections", order_by=position, cascade="all, delete-orphan"), foreign_keys=document_id, ) __mapper_args__ = {"polymorphic_identity": "section"} __table_args__ = (UniqueConstraint(document_id, position),) def __repr__(self) -> str: """Represent the context as a string.""" return f"Section(Doc: {self.document.name}, Pos: {self.position})" def __gt__(self, other: "Section") -> bool: """Check if the context is greater than another context.""" # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__()
fonduer-master
src/fonduer/parser/models/section.py
"""Fonduer caption context model.""" from sqlalchemy import Column, ForeignKey, Integer, String, UniqueConstraint from sqlalchemy.orm import backref, relationship from fonduer.parser.models.context import Context class Caption(Context): """A Caption Context in a Document. Used to represent figure or table captions in a document. .. note:: As of v0.6.2, ``<caption>`` and ``<figcaption>`` tags turn into ``Caption``. """ __tablename__ = "caption" #: The unique id the ``Caption``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The position of the ``Caption`` in the ``Document``. position = Column(Integer, nullable=False) #: The name of a ``Caption``. name = Column(String, unique=False, nullable=True) #: The id of the parent ``Document``. document_id = Column(Integer, ForeignKey("document.id")) #: The parent ``Document``. document = relationship( "Document", backref=backref("captions", order_by=position, cascade="all, delete-orphan"), foreign_keys=document_id, ) #: The id of the parent ``Table``, if any. table_id = Column(Integer, ForeignKey("table.id")) #: The parent ``Table``, if any. table = relationship( "Table", backref=backref("captions", order_by=position, cascade="all, delete-orphan"), foreign_keys=table_id, ) #: The id of the parent ``Figure``, if any. figure_id = Column(Integer, ForeignKey("figure.id")) #: The parent ``Figure``, if any. figure = relationship( "Figure", backref=backref("captions", order_by=position, cascade="all, delete-orphan"), foreign_keys=figure_id, ) __mapper_args__ = {"polymorphic_identity": "caption"} __table_args__ = (UniqueConstraint(document_id, table_id, figure_id, position),) def __repr__(self) -> str: """Represent the context as a string.""" if self.figure: return ( f"Caption(" f"Doc: {self.document.name}, " f"Figure: {self.figure.position}, " f"Pos: {self.position}" f")" ) elif self.table: return ( f"Caption(" f"Doc: {self.document.name}, " f"Table: {self.table.position}, " f"Pos: {self.position}" f")" ) else: raise NotImplementedError( "Caption must be associated with Figure or Table." ) def __gt__(self, other: "Caption") -> bool: """Check if the context is greater than another context.""" # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__()
fonduer-master
src/fonduer/parser/models/caption.py
"""Fonduer sentence context model.""" from builtins import object from typing import Any, Dict from sqlalchemy import Column, ForeignKey, Integer, String, Text, UniqueConstraint from sqlalchemy.dialects import postgresql from sqlalchemy.ext.declarative import declared_attr from sqlalchemy.orm import backref, relationship from fonduer.parser.models.context import Context from fonduer.utils.utils_visual import Bbox INT_ARRAY_TYPE = postgresql.ARRAY(Integer) STR_ARRAY_TYPE = postgresql.ARRAY(String) class SentenceMixin(object): """A sentence Context in a Document.""" def is_lingual(self) -> bool: """ Return True when lingual information is available. :return: True when lingual information is available. """ return False def is_visual(self) -> bool: """ Return True when visual information is available. :return: True when visual information is available. """ return False def is_tabular(self) -> bool: """ Return True when tabular information is available. :return: True when tabular information is available. """ return False def is_structural(self) -> bool: """ Return True when structural information is available. :return: True when structural information is available. """ return False class LingualMixin(object): """A collection of lingual attributes.""" @declared_attr def lemmas(cls) -> Column: """List of the lemmas for each word in a ``Sentence``.""" return Column(STR_ARRAY_TYPE) @declared_attr def pos_tags(cls) -> Column: """List of POS tags for each word in a ``Sentence``.""" return Column(STR_ARRAY_TYPE) @declared_attr def ner_tags(cls) -> Column: """List of NER tags for each word in a ``Sentence``.""" return Column(STR_ARRAY_TYPE) @declared_attr def dep_parents(cls) -> Column: """List of the dependency parents for each word in a ``Sentence``.""" return Column(INT_ARRAY_TYPE) @declared_attr def dep_labels(cls) -> Column: """List of dependency labels for each word in a ``Sentence``.""" return Column(STR_ARRAY_TYPE) def is_lingual(self) -> bool: """Whether or not the ``Sentence`` contains NLP information.""" return self.lemmas is not None class TabularMixin(object): """A collection of tabular attributes.""" @declared_attr def table_id(cls) -> Column: """Id of the parent ``Table``, if any.""" return Column("table_id", ForeignKey("table.id")) @declared_attr def table(cls) -> relationship: """Parent ``Table``, if any.""" return relationship( "Table", backref=backref("sentences", cascade="all, delete-orphan"), foreign_keys=lambda: cls.table_id, ) @declared_attr def cell_id(cls) -> Column: """Id of the parent ``Cell``, if any.""" return Column("cell_id", ForeignKey("cell.id")) @declared_attr def cell(cls) -> relationship: """Parent ``Cell``, if any.""" return relationship( "Cell", backref=backref("sentences", cascade="all, delete-orphan"), foreign_keys=lambda: cls.cell_id, ) @declared_attr def row_start(cls) -> Column: """``row_start`` of the parent ``Cell``, if any.""" return Column(Integer) @declared_attr def row_end(cls) -> Column: """``row_end`` of the parent ``Cell``, if any.""" return Column(Integer) @declared_attr def col_start(cls) -> Column: """``col_start`` of the parent ``Cell``, if any.""" return Column(Integer) @declared_attr def col_end(cls) -> Column: """``col_end`` of the parent ``Cell``, if any.""" return Column(Integer) def is_tabular(self) -> bool: """Whether or not the ``Sentence`` contains tabular information.""" return self.table is not None def is_cellular(self) -> bool: """Whether or not the ``Sentence`` contains information about its table cell.""" return self.cell is not None class VisualMixin(object): """A collection of visual attributes.""" @declared_attr def page(cls) -> Column: """List of the page index of each word in the ``Sentence``. Page indexes start at 1. """ return Column(INT_ARRAY_TYPE) @declared_attr def top(cls) -> Column: """List of each word's TOP bounding box coordinate in the ``Sentence``.""" return Column(INT_ARRAY_TYPE) @declared_attr def left(cls) -> Column: """List of each word's LEFT bounding box coordinate in the ``Sentence``.""" return Column(INT_ARRAY_TYPE) @declared_attr def bottom(cls) -> Column: """List of each word's BOTTOM bounding box coordinate in the ``Sentence``.""" return Column(INT_ARRAY_TYPE) @declared_attr def right(cls) -> Column: """List of each word's RIGHT bounding box coordinate in the ``Sentence``.""" return Column(INT_ARRAY_TYPE) def is_visual(self) -> bool: """Whether or not the ``Sentence`` contains visual information.""" return self.page is not None and self.page[0] is not None def get_bbox(self) -> Bbox: """Get the bounding box.""" # TODO: this may have issues where a sentence is linked to words on different # pages if self.is_visual(): return Bbox( self.page[0], min(self.top), max(self.bottom), min(self.left), max(self.right), ) else: return None class StructuralMixin(object): """A collection of structural attributes.""" @declared_attr def xpath(cls) -> Column: """HTML XPATH to the ``Sentence``.""" return Column(String) @declared_attr def html_tag(cls) -> Column: """HTML tag of the element containing the ``Sentence``.""" return Column(String) #: The HTML attributes of the element the ``Sentence`` is found in. @declared_attr def html_attrs(cls) -> Column: """List of the html attributes of the element containing the ``Sentence``.""" return Column(STR_ARRAY_TYPE) def is_structural(self) -> bool: """Whether or not the ``Sentence`` contains structural information.""" return self.html_tag is not None # SentenceMixin must come last in arguments to not ovewrite is_* methods # class Sentence(Context, StructuralMixin, SentenceMixin): # Memex variant class Sentence( Context, TabularMixin, LingualMixin, VisualMixin, StructuralMixin, SentenceMixin ): """A Sentence subclass with Lingual, Tabular, Visual, and HTML attributes. .. note:: Unlike other data models, there is no HTML element corresponding to ``Sentence``. One ``Paragraph`` comprises one or more of ``Sentence``, but how a ``Paragraph`` is split depends on which NLP parser (e.g., spaCy) is used. """ __tablename__ = "sentence" #: The unique id for the ``Sentence``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The position of the ``Sentence`` in the ``Document``. position = Column(Integer, nullable=False) # unique sentence number per document #: The name of a ``Sentence``. name = Column(String, unique=False, nullable=True) #: The id of the parent ``Document``. document_id = Column(Integer, ForeignKey("document.id")) #: The the parent ``Document``. document = relationship( "Document", backref=backref("sentences", cascade="all, delete-orphan"), foreign_keys=document_id, ) #: The id of the parent ``Section``. section_id = Column(Integer, ForeignKey("section.id")) #: The parent ``Section``. section = relationship( "Section", backref=backref("sentences", cascade="all, delete-orphan"), foreign_keys=section_id, ) #: The id of the parent ``Paragraph``. paragraph_id = Column(Integer, ForeignKey("paragraph.id")) #: The parent ``Paragraph``. paragraph = relationship( "Paragraph", backref=backref("sentences", cascade="all, delete-orphan"), foreign_keys=paragraph_id, ) #: The full text of the ``Sentence``. text = Column(Text, nullable=False) #: A list of the words in a ``Sentence``. words = Column(STR_ARRAY_TYPE) #: A list of the character offsets of each word in a ``Sentence``, with #: respect to the start of the sentence. char_offsets = Column(INT_ARRAY_TYPE) #: A list of the character offsets of each word in a ``Sentence``, with #: respect to the entire document. abs_char_offsets = Column(INT_ARRAY_TYPE) __mapper_args__ = {"polymorphic_identity": "sentence"} __table_args__ = (UniqueConstraint(document_id, position),) def __repr__(self) -> str: """Represent the context as a string.""" if self.is_tabular(): rows = ( tuple([self.row_start, self.row_end]) if self.row_start != self.row_end else self.row_start ) cols = ( tuple([self.col_start, self.col_end]) if self.col_start != self.col_end else self.col_start ) return ( f"Sentence (" f"Doc: '{self.document.name}', " f"Table: {self.table.position}, " f"Row: {rows}, " f"Col: {cols}, " f"Index: {self.position}, " f"Text: '{self.text}'" f")" ) else: return ( f"Sentence (" f"Doc: '{self.document.name}', " f"Sec: {self.section.position}, " f"Par: {self.paragraph.position}, " f"Idx: {self.position}, " f"Text: '{self.text}'" f")" ) def _asdict(self) -> Dict[str, Any]: return { # base "id": self.id, # 'document': self.document, "position": self.position, "text": self.text, # tabular # 'table': self.table, # 'cell': self.cell, "row_start": self.row_start, "row_end": self.row_end, "col_start": self.col_start, "col_end": self.col_end, # lingual "words": self.words, "char_offsets": self.char_offsets, "lemmas": self.lemmas, "pos_tags": self.pos_tags, "ner_tags": self.ner_tags, "dep_parents": self.dep_parents, "dep_labels": self.dep_labels, # visual "page": self.page, "top": self.top, "bottom": self.bottom, "left": self.left, "right": self.right, } def __gt__(self, other: "Sentence") -> bool: """Check if the context is greater than another context.""" # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__()
fonduer-master
src/fonduer/parser/models/sentence.py
"""Fonduer context model.""" from sqlalchemy import Column, Integer, String from fonduer.meta import Meta class Context(Meta.Base): """A piece of content from which Candidates are composed. This serves as the base class of the Fonduer document model. """ __tablename__ = "context" #: The unique id of the ``Context``. id = Column(Integer, primary_key=True) #: The type of the ``Context`` represented as a string (e.g. "sentence", #: "paragraph", "figure"). type = Column(String, nullable=False) #: A stable representation of the ``Context`` that will not change between #: runs. stable_id = Column(String, unique=True, nullable=False) __mapper_args__ = {"polymorphic_identity": "context", "polymorphic_on": type}
fonduer-master
src/fonduer/parser/models/context.py
"""Utilities for constructing and splitting stable ids.""" from typing import List, Tuple from fonduer.parser.models import Context def construct_stable_id( parent_context: Context, polymorphic_type: str, relative_char_offset_start: int, relative_char_offset_end: int, ) -> str: """Construct Context's stable ID. Construct a stable ID for a Context given its parent and its character offsets relative to the parent. """ doc_id, type, idx = split_stable_id(parent_context.stable_id) if polymorphic_type in [ "section_mention", "figure_mention", "table_mention", "paragraph_mention", "caption_mention", ]: parent_doc_start = idx[0] return f"{doc_id}::{polymorphic_type}:{parent_doc_start}" elif polymorphic_type in ["cell_mention"]: cell_pos = idx[0] cell_row_start = idx[1] cell_col_start = idx[2] return ( f"{doc_id}::{polymorphic_type}:{cell_pos}:{cell_row_start}:{cell_col_start}" ) elif polymorphic_type in ["sentence", "document_mention", "span_mention"]: parent_doc_char_start = idx[0] start = parent_doc_char_start + relative_char_offset_start end = parent_doc_char_start + relative_char_offset_end return f"{doc_id}::{polymorphic_type}:{start}:{end}" raise ValueError(f"Unrecognized context type:\t{polymorphic_type}") def split_stable_id( stable_id: str, ) -> Tuple[str, str, List[int]]: """Split stable ID. Analyzing stable ID and return the following information: * Document (root) stable ID * Context polymorphic type * Character offset start, end *relative to document start* Returns tuple of four values. """ split1 = stable_id.split("::") if len(split1) == 2: split2 = split1[1].split(":") type = split2[0] idx = [int(_) for _ in split2[1:]] return split1[0], type, idx raise ValueError(f"Malformed stable_id:\t{stable_id}")
fonduer-master
src/fonduer/parser/models/utils.py
"""Fonduer document context model.""" from sqlalchemy import Column, ForeignKey, Integer, String from sqlalchemy.types import PickleType from fonduer.parser.models.context import Context class Document(Context): """A document Context. Represents all the information of a particular document. What becomes a document depends on which child class of ``DocPreprocessor`` is used. .. note:: As of v0.6.2, each file is one document when ``HTMLDocPreprocessor`` or ``TextDocPreprocessor`` is used, each line in the input file is treated as one document when ``CSVDocPreprocessor`` or ``TSVDocPreprocessor`` is used. """ __tablename__ = "document" #: The unique id of a ``Document``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The filename of a ``Document``, without its extension (e.g., "BC818"). name = Column(String, unique=True, nullable=False) #: The full text of the ``Document``. text = Column(String) #: Pickled metadata about a document extrated from a document preprocessor. meta = Column(PickleType) __mapper_args__ = {"polymorphic_identity": "document"} def __repr__(self) -> str: """Represent the context as a string.""" return f"Document {self.name}" def __gt__(self, other: "Document") -> bool: """Check if the context is greater than another context.""" # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__()
fonduer-master
src/fonduer/parser/models/document.py
"""Fonduer paragraph context model.""" from sqlalchemy import Column, ForeignKey, Integer, String, UniqueConstraint from sqlalchemy.orm import backref, relationship from fonduer.parser.models.context import Context class Paragraph(Context): """A paragraph Context in a Document. Represents a grouping of adjacent sentences. .. note:: As of v0.6.2, a text content in two properties ``.text`` and ``.tail`` turn into ``Paragraph``. See https://lxml.de/tutorial.html#elements-contain-text for details about ``.text`` and ``.tail`` properties. """ __tablename__ = "paragraph" #: The unique id of the ``Paragraph``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The position of the ``Paragraph`` in the ``Document``. position = Column(Integer, nullable=False) #: The name of a ``Paragraph``. name = Column(String, unique=False, nullable=True) #: The id of the parent ``Document``. document_id = Column(Integer, ForeignKey("document.id")) #: The parent ``Document``. document = relationship( "Document", backref=backref("paragraphs", order_by=position, cascade="all, delete-orphan"), foreign_keys=document_id, ) #: The id of the parent ``Section``. section_id = Column(Integer, ForeignKey("section.id")) #: The parent ``Section``. section = relationship( "Section", backref=backref("paragraphs", cascade="all, delete-orphan"), foreign_keys=section_id, ) #: The id of the parent ``Cell``, if any. cell_id = Column(Integer, ForeignKey("cell.id")) #: The parent ``Cell``, if any. cell = relationship( "Cell", backref=backref("paragraphs", cascade="all, delete-orphan"), foreign_keys=cell_id, ) #: The id of the parent ``Caption``, if any. caption_id = Column(Integer, ForeignKey("caption.id")) #: The parent ``Caption``, if any. caption = relationship( "Caption", backref=backref("paragraphs", cascade="all, delete-orphan"), foreign_keys=caption_id, ) __mapper_args__ = {"polymorphic_identity": "paragraph"} __table_args__ = (UniqueConstraint(document_id, position),) def __repr__(self) -> str: """Represent the context as a string.""" if self.cell: return ( f"Paragraph(" f"Doc: {self.document.name}, " f"Sec: {self.section.position}, " f"Cell: {self.cell.position}, " f"Pos: {self.position}" f")" ) elif self.caption: return ( f"Paragraph(" f"Doc: {self.document.name}, " f"Sec: {self.section.position}, " f"Caption: {self.caption.position}, " f"Pos: {self.position}" ")" ) else: return ( f"Paragraph(" f"Doc: {self.document.name}, " f"Sec: {self.section.position}, " f"Pos: {self.position}" f")" ) def __gt__(self, other: "Paragraph") -> bool: """Check if the context is greater than another context.""" # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__()
fonduer-master
src/fonduer/parser/models/paragraph.py
"""Fonduer table context model.""" from sqlalchemy import Column, ForeignKey, Integer, String, UniqueConstraint from sqlalchemy.orm import backref, relationship from fonduer.parser.models.context import Context class Table(Context): """A Table Context in a Document. Used to represent tables found in a document. .. note:: As of v0.6.2, ``<table>`` tags turn into ``Table``. """ __tablename__ = "table" #: The unique id of the ``Table``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The position of the ``Table`` in the ``Document``. position = Column(Integer, nullable=False) #: The name of a ``Table``. name = Column(String, unique=False, nullable=True) #: The id of the parent ``Document``. document_id = Column(Integer, ForeignKey("document.id")) #: The parent ``Document``. document = relationship( "Document", backref=backref("tables", order_by=position, cascade="all, delete-orphan"), foreign_keys=document_id, ) #: The id of the parent ``Section``. section_id = Column(Integer, ForeignKey("section.id")) #: The parent ``Section``. section = relationship( "Section", backref=backref("tables", order_by=position, cascade="all, delete-orphan"), foreign_keys=section_id, ) __mapper_args__ = {"polymorphic_identity": "table"} __table_args__ = (UniqueConstraint(document_id, position),) def __repr__(self) -> str: """Represent the context as a string.""" return ( f"Table(" f"Doc: {self.document.name}, " f"Sec: {self.section.position}, " f"Position: {self.position}" f")" ) def __gt__(self, other: "Table") -> bool: """Check if the context is greater than another context.""" # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__() class Cell(Context): """A cell Context in a Document. Used to represent the cells that comprise a table in a document. .. note:: As of v0.6.2, ``<th>`` and ``<td>`` tags turn into ``Cell``. """ __tablename__ = "cell" #: The unique id of the ``Cell``. id = Column(Integer, ForeignKey("context.id", ondelete="CASCADE"), primary_key=True) #: The position of the ``Cell`` in the ``Table``. position = Column(Integer, nullable=False) #: The name of a ``Cell``. name = Column(String, unique=False, nullable=True) #: The id of the parent ``Table``. table_id = Column(Integer, ForeignKey("table.id")) #: The parent ``Table``. table = relationship( "Table", backref=backref("cells", order_by=position, cascade="all, delete-orphan"), foreign_keys=table_id, ) #: The id of the parent ``Document``. document_id = Column(Integer, ForeignKey("document.id")) #: The parent ``Document``. document = relationship( "Document", backref=backref("cells", order_by=position, cascade="all, delete-orphan"), foreign_keys=document_id, ) #: The start index of the row in the ``Table`` the ``Cell`` is in. row_start = Column(Integer) #: The end index of the row in the ``Table`` the ``Cell`` is in. row_end = Column(Integer) #: The start index of the column in the ``Table`` the ``Cell`` is in. col_start = Column(Integer) #: The end index of the column in the ``Table`` the ``Cell`` is in. col_end = Column(Integer) __mapper_args__ = {"polymorphic_identity": "cell"} __table_args__ = (UniqueConstraint(document_id, table_id, position),) def __repr__(self) -> str: """Represent the context as a string.""" return ( f"Cell(Doc: {self.document.name}, " f"Table: {self.table.position}, " f"Row: {tuple({self.row_start, self.row_end})}, " f"Col: {tuple({self.col_start, self.col_end})}, " f"Pos: {self.position})" ) def __gt__(self, other: "Cell") -> bool: """Check if the context is greater than another context.""" # Allow sorting by comparing the string representations of each return self.__repr__() > other.__repr__()
fonduer-master
src/fonduer/parser/models/table.py
"""Fonduer visual parser that parses visual information from hOCR.""" import itertools import re from typing import Dict, Iterable, Iterator, List, Pattern, Tuple, Union import spacy import spacy.gold from packaging import version from spacy.gold import align from fonduer.parser.models import Sentence from fonduer.parser.visual_parser.visual_parser import VisualParser class HocrVisualParser(VisualParser): """Visual Parser for hOCR.""" def __init__( self, replacements: List[Tuple[str, str]] = [ ("[\u2010\u2011\u2012\u2013\u2014\u2212]", "-") ], ): """Initialize a visual parser. :raises ImportError: an error is raised when spaCy is not 2.3.0 or later. """ if version.parse(spacy.__version__) < version.parse("2.3.0"): raise ImportError( f"You are using spaCy {spacy.__version__}, " f"but it should be 2.3.0 or later to use HocrVisualParser." ) self.replacements: List[Tuple[Pattern, str]] = [] for (pattern, replace) in replacements: self.replacements.append((re.compile(pattern, flags=re.UNICODE), replace)) def parse( self, document_name: str, sentences: Iterable[Sentence] ) -> Iterator[Sentence]: """Parse visual information embedded in sentence's html_attrs. :param document_name: the document name. :param sentences: sentences to be linked with visual information. :return: A generator of ``Sentence``. """ def attrib_parse( html_attrs: List[str], ) -> Dict[str, Union[List[int], List[str]]]: ret: Dict[str, Union[List[int], List[str]]] = {} for attr in html_attrs: key, values = attr.split("=", 1) # split only at the first occurence if key in ["left", "top", "right", "bottom", "ppageno"]: ret[key] = [int(x) for x in values.split()] elif key == "tokens": # Run RegEx replacements for (rgx, replace) in self.replacements: values = rgx.sub(replace, values) ret[key] = values.split() return ret for _, group in itertools.groupby(sentences, key=lambda x: x.xpath): sents = list(group) # Get bbox from document attribs = attrib_parse(sents[0].html_attrs) lefts = attribs["left"] tops = attribs["top"] rights = attribs["right"] bottoms = attribs["bottom"] ppagenos = attribs["ppageno"] # Clear the hocr specific html_attrs for sent in sents: for attr in sent.html_attrs[:]: key, values = attr.split( "=", 1 ) # split only at the first occurence if key in [ "left", "top", "right", "bottom", "ppageno", "tokens", "x_wconf", ]: sent.html_attrs.remove(attr) # Get a list of all tokens represented by ocrx_word in hOCR hocr_tokens = attribs["tokens"] # Get a list of all tokens tokenized by spaCy. spacy_tokens = [word for sent in sents for word in sent.words] # gold.align assumes that both tokenizations add up to the same string. cost, h2s, s2h, h2s_multi, s2h_multi = align(hocr_tokens, spacy_tokens) ptr = 0 # word pointer for sent in sents: sent.left = [] sent.top = [] sent.right = [] sent.bottom = [] sent.page = [] for i, word in enumerate(sent.words): # One-to-one mapping is NOT available if s2h[ptr + i] == -1: if ptr + i in s2h_multi: # One spacy token-to-multi hOCR words left = lefts[s2h_multi[ptr + i]] top = tops[s2h_multi[ptr + i]] right = rights[s2h_multi[ptr + i]] bottom = bottoms[s2h_multi[ptr + i]] ppageno = ppagenos[s2h_multi[ptr + i]] else: h2s_multi_idx = [ k for k, v in h2s_multi.items() if ptr + i == v ] start, end = 0, 0 if h2s_multi_idx: # One hOCR word-to-multi spacy tokens start = h2s_multi_idx[0] end = h2s_multi_idx[-1] + 1 else: start = s2h_multi[i - 1 if i > 0 else 0] end = s2h_multi[i + 1] + 1 # calculate a bbox that can include all left = min(lefts[start:end]) top = min(tops[start:end]) right = max(rights[start:end]) bottom = max(bottoms[start:end]) ppageno = ppagenos[start] # One-to-one mapping is available else: left = lefts[s2h[ptr + i]] top = tops[s2h[ptr + i]] right = rights[s2h[ptr + i]] bottom = bottoms[s2h[ptr + i]] ppageno = ppagenos[s2h[ptr + i]] sent.left.append(left) sent.top.append(top) sent.right.append(right) sent.bottom.append(bottom) sent.page.append(ppageno + 1) # 1-based in Fonduer ptr += len(sent.words) yield sent def is_parsable(self, document_name: str) -> bool: """Whether visual information can be parsed. Currently always return True. :param document_name: the document name. """ return True
fonduer-master
src/fonduer/parser/visual_parser/hocr_visual_parser.py
"""Fonduer's visual parser module.""" from fonduer.parser.visual_parser.hocr_visual_parser import HocrVisualParser from fonduer.parser.visual_parser.pdf_visual_parser import PdfVisualParser from fonduer.parser.visual_parser.visual_parser import VisualParser __all__ = ["VisualParser", "PdfVisualParser", "HocrVisualParser"]
fonduer-master
src/fonduer/parser/visual_parser/__init__.py
"""Fonduer visual parser that parses visual information from PDF.""" import logging import os import re import shutil import subprocess from builtins import range, zip from collections import OrderedDict, defaultdict from operator import attrgetter from typing import DefaultDict, Dict, Iterable, Iterator, List, Optional, Tuple import numpy as np from bs4 import BeautifulSoup from bs4.element import Tag from editdistance import eval as editdist # Alternative library: python-levenshtein from fonduer.parser.models import Sentence from fonduer.parser.visual_parser.visual_parser import VisualParser from fonduer.utils.utils_visual import Bbox logger = logging.getLogger(__name__) # Define a type alias for readability # PdfWordId is an ID for a word that is unique within a PDF file. # The two elements represent (page_num, i), where page_num is 1-based page number and # i is a 0-based unique ID for a word within that page. PdfWordId = Tuple[int, int] # PdfWord is a type alias for (PdfWordId, str), where the second element is a string # repsentation of the word. PdfWord = Tuple[PdfWordId, str] # Similarly, HtmlWordId is an ID for word that is unique within a HTML file. # The two elements represent (sentence.stable_id, i), where i is an ID within a # Sentence. HtmlWordId = Tuple[str, int] # Similar to PdfWord, HtmlWord is a type alias for (HtmlWordId, str), where the second # element is a string repsentation of the word. HtmlWord = Tuple[HtmlWordId, str] class PdfVisualParser(VisualParser): """Link visual information, extracted from PDF, with parsed sentences. This linker assumes the following conditions for expected results: - The PDF file exists in a directory specified by `pdf_path`. - The basename of the PDF file is same as the *document name* and its extension is either ".pdf" or ".PDF". - A PDF has a text layer. """ def __init__(self, pdf_path: str, verbose: bool = False) -> None: """Initialize VisualParser. :param pdf_path: a path to directory that contains PDF files. :param verbose: whether to turn on verbose logging. """ if not os.path.isdir(pdf_path): raise ValueError(f"No directory exists at {pdf_path}!") self.pdf_path = pdf_path self.pdf_file: Optional[str] = None self.verbose = verbose self.coordinate_map: Optional[Dict[PdfWordId, Bbox]] = None self.pdf_word_list: Optional[List[PdfWord]] = None self.html_word_list: Optional[List[HtmlWord]] = None self.links: Optional[OrderedDict[HtmlWordId, PdfWordId]] = None self.pdf_dim: Optional[Tuple[int, int]] = None delimiters = ( r"([\(\)\,\?\u2212\u201C\u201D\u2018\u2019\u00B0\*']|(?<!http):|\.$|\.\.\.)" ) self.separators = re.compile(delimiters) # Check if poppler-utils is installed AND the version is 0.36.0 or above if shutil.which("pdfinfo") is None or shutil.which("pdftotext") is None: raise RuntimeError("poppler-utils is not installed or they are not in PATH") version = subprocess.check_output( "pdfinfo -v", shell=True, stderr=subprocess.STDOUT, universal_newlines=True ) m = re.search(r"\d{1,2}\.\d{2}\.\d", version) if int(m.group(0).replace(".", "")) < 360: raise RuntimeError( f"Installed poppler-utils's version is {m.group(0)}, " f"but should be 0.36.0 or above" ) def parse( self, document_name: str, sentences: Iterable[Sentence] ) -> Iterator[Sentence]: """Link visual information with sentences. :param document_name: the document name. :param sentences: sentences to be linked with visual information. :return: A generator of ``Sentence``. """ # sentences should be sorted as their order is not deterministic. self.sentences = sorted(sentences, key=attrgetter("position")) self.pdf_file = self._get_linked_pdf_path(document_name) try: self._extract_pdf_words() except RuntimeError as e: logger.exception(e) return self._extract_html_words() self._link_lists(search_max=200) for sentence in self._update_coordinates(): yield sentence def _extract_pdf_words(self) -> None: logger.debug(f"pdfinfo '{self.pdf_file}' | grep -a ^Pages: | sed 's/[^0-9]*//'") num_pages = subprocess.check_output( f"pdfinfo '{self.pdf_file}' | grep -a ^Pages: | sed 's/[^0-9]*//'", shell=True, ) pdf_word_list: List[PdfWord] = [] coordinate_map: Dict[PdfWordId, Bbox] = {} for i in range(1, int(num_pages) + 1): logger.debug(f"pdftotext -f {i} -l {i} -bbox-layout '{self.pdf_file}' -") html_content = subprocess.check_output( f"pdftotext -f {i} -l {i} -bbox-layout '{self.pdf_file}' -", shell=True ) soup = BeautifulSoup(html_content, "html.parser") pages = soup.find_all("page") pdf_word_list_i, coordinate_map_i = self._coordinates_from_HTML(pages[0], i) pdf_word_list += pdf_word_list_i # update coordinate map coordinate_map.update(coordinate_map_i) self.pdf_word_list = pdf_word_list self.coordinate_map = coordinate_map if len(self.pdf_word_list) == 0: raise RuntimeError( f"Words could not be extracted from PDF: {self.pdf_file}" ) # take last page dimensions page_width, page_height = ( int(float(pages[0].get("width"))), int(float(pages[0].get("height"))), ) self.pdf_dim = (page_width, page_height) if self.verbose: logger.info(f"Extracted {len(self.pdf_word_list)} pdf words") def _get_linked_pdf_path(self, document_name: str) -> str: """Get the pdf file path, return None if it doesn't exist. :param document_name: a document name. """ full_path = os.path.join(self.pdf_path, document_name + ".pdf") if os.path.isfile(full_path): return full_path full_path = os.path.join(self.pdf_path, document_name + ".PDF") if os.path.isfile(full_path): return full_path return None def is_parsable(self, document_name: str) -> bool: """Verify that the file exists and has a PDF extension. :param document_name: The path to the PDF document. """ return False if self._get_linked_pdf_path(document_name) is None else True def _coordinates_from_HTML( self, page: Tag, page_num: int ) -> Tuple[List[PdfWord], Dict[PdfWordId, Bbox]]: pdf_word_list: List[PdfWord] = [] coordinate_map: Dict[PdfWordId, Bbox] = {} block_coordinates: Dict[PdfWordId, Tuple[int, int]] = {} blocks = page.find_all("block") i = 0 # counter for word_id in page_num for block in blocks: x_min_block = int(float(block.get("xmin"))) y_min_block = int(float(block.get("ymin"))) lines = block.find_all("line") for line in lines: y_min_line = int(float(line.get("ymin"))) y_max_line = int(float(line.get("ymax"))) words = line.find_all("word") for word in words: xmin = int(float(word.get("xmin"))) xmax = int(float(word.get("xmax"))) for content in self.separators.split(word.getText()): if len(content) > 0: # Ignore empty characters word_id: PdfWordId = (page_num, i) pdf_word_list.append((word_id, content)) coordinate_map[word_id] = Bbox( page_num, y_min_line, y_max_line, xmin, xmax, ) block_coordinates[word_id] = (y_min_block, x_min_block) i += 1 # sort pdf_word_list by page, block top then block left, top, then left pdf_word_list = sorted( pdf_word_list, key=lambda word_id__: block_coordinates[word_id__[0]] + (coordinate_map[word_id__[0]].top, coordinate_map[word_id__[0]].left), ) return pdf_word_list, coordinate_map def _extract_html_words(self) -> None: html_word_list: List[HtmlWord] = [] for sentence in self.sentences: for i, word in enumerate(sentence.words): html_word_list.append(((sentence.stable_id, i), word)) self.html_word_list = html_word_list if self.verbose: logger.info(f"Extracted {len(self.html_word_list)} html words") def _link_lists( self, search_max: int = 100, edit_cost: int = 20, offset_cost: int = 1 ) -> None: # NOTE: there are probably some inefficiencies here from rehashing words # multiple times, but we're not going to worry about that for now def link_exact(l: int, u: int) -> None: l, u, L, U = get_anchors(l, u) # Inverted index that maps word to index(es) of html_word_list html_dict: DefaultDict[str, List[int]] = defaultdict(list) # Inverted index that maps word to index(es) of pdf_word_list pdf_dict: DefaultDict[str, List[int]] = defaultdict(list) for i, (_, word) in enumerate(self.html_word_list[l:u]): if html_to_pdf[l + i] is None: html_dict[word].append(l + i) for j, (_, word) in enumerate(self.pdf_word_list[L:U]): if pdf_to_html[L + j] is None: pdf_dict[word].append(L + j) for word, html_list in list(html_dict.items()): pdf_list = pdf_dict[word] if len(html_list) == len(pdf_list): for k in range(len(html_list)): html_to_pdf[html_list[k]] = pdf_list[k] pdf_to_html[pdf_list[k]] = html_list[k] def link_fuzzy(i: int) -> None: (_, word) = self.html_word_list[i] l = u = i l, u, L, U = get_anchors(l, u) offset = int(L + float(i - l) / (u - l) * (U - L)) searchIndices = np.clip(offset + search_order, 0, M - 1) cost = [0] * search_max for j, k in enumerate(searchIndices): other = self.pdf_word_list[k][1] if ( word.startswith(other) or word.endswith(other) or other.startswith(word) or other.endswith(word) ): html_to_pdf[i] = k return else: cost[j] = int(editdist(word, other)) * edit_cost + j * offset_cost html_to_pdf[i] = searchIndices[np.argmin(cost)] return def get_anchors(l: int, u: int) -> Tuple[int, int, int, int]: while l >= 0 and html_to_pdf[l] is None: l -= 1 while u < N and html_to_pdf[u] is None: u += 1 if l < 0: l = 0 L = 0 else: L = html_to_pdf[l] if u >= N: u = N U = M else: U = html_to_pdf[u] return l, u, L, U def display_match_counts() -> int: matches = sum( [ html_to_pdf[i] is not None and self.html_word_list[i][1] == self.pdf_word_list[html_to_pdf[i]][1] for i in range(len(self.html_word_list)) ] ) total = len(self.html_word_list) logger.info(f"({matches}/{total}) = {matches / total:.2f}") return matches N = len(self.html_word_list) M = len(self.pdf_word_list) try: assert N > 0 and M > 0 except Exception: logger.exception(f"N = {N} and M = {M} are invalid values.") html_to_pdf: List[Optional[int]] = [None] * N pdf_to_html: List[Optional[int]] = [None] * M search_radius = search_max // 2 # first pass: global search for exact matches link_exact(0, N) if self.verbose: logger.debug("Global exact matching:") display_match_counts() # second pass: local search for exact matches for i in range(((N + 2) // search_radius) + 1): link_exact( max(0, i * search_radius - search_radius), min(N, i * search_radius + search_radius), ) if self.verbose: logger.debug("Local exact matching:") display_match_counts() # third pass: local search for approximate matches search_order = np.array( [(-1) ** (i % 2) * (i // 2) for i in range(1, search_max + 1)] ) for i in range(len(html_to_pdf)): if html_to_pdf[i] is None: link_fuzzy(i) if self.verbose: logger.debug("Local approximate matching:") display_match_counts() # convert list to dict matches = sum( [ html_to_pdf[i] is not None and self.html_word_list[i][1] == self.pdf_word_list[html_to_pdf[i]][1] for i in range(len(self.html_word_list)) ] ) total = len(self.html_word_list) if self.verbose: logger.debug( f"Linked {matches}/{total} ({matches / total:.2f}) html words exactly" ) self.links = OrderedDict( (self.html_word_list[i][0], self.pdf_word_list[html_to_pdf[i]][0]) for i in range(len(self.html_word_list)) ) def _update_coordinates(self) -> Iterator[Sentence]: for sentence in self.sentences: (page, top, bottom, left, right) = list( zip( *[ self.coordinate_map[self.links[((sentence.stable_id), i)]] for i in range(len(sentence.words)) ] ) ) sentence.page = list(page) sentence.top = list(top) sentence.left = list(left) sentence.bottom = list(bottom) sentence.right = list(right) yield sentence if self.verbose: logger.debug("Updated coordinates in database")
fonduer-master
src/fonduer/parser/visual_parser/pdf_visual_parser.py
"""Abstract visual parser.""" from abc import ABC, abstractmethod from typing import Iterable, Iterator from fonduer.parser.models import Sentence class VisualParser(ABC): """Abstract visual parer.""" @abstractmethod def parse( self, document_name: str, sentences: Iterable[Sentence], ) -> Iterator[Sentence]: """Parse visual information and link them with given sentences. :param document_name: the document name. :param sentences: sentences to be linked with visual information. :yield: sentences with visual information. """ pass @abstractmethod def is_parsable(self, document_name: str) -> bool: """Check if visual information can be parsed. :param document_name: the document name. :return: Whether visual information is parsable. """ pass
fonduer-master
src/fonduer/parser/visual_parser/visual_parser.py
"""Fonduer's supervision module.""" from fonduer.supervision.labeler import Labeler __all__ = ["Labeler"]
fonduer-master
src/fonduer/supervision/__init__.py
"""Fonduer labeler.""" import logging from collections import defaultdict from typing import ( Any, Callable, Collection, DefaultDict, Dict, Iterable, Iterator, List, Optional, Tuple, Type, Union, ) import numpy as np from sqlalchemy import Table from sqlalchemy.orm import Session from fonduer.candidates.models import Candidate from fonduer.parser.models import Document from fonduer.supervision.models import GoldLabelKey, Label, LabelKey from fonduer.utils.udf import UDF, UDFRunner from fonduer.utils.utils_udf import ( ALL_SPLITS, batch_upsert_records, drop_all_keys, drop_keys, get_docs_from_split, get_mapping, get_sparse_matrix, get_sparse_matrix_keys, unshift_label_matrix, upsert_keys, ) logger = logging.getLogger(__name__) # Snorkel changed the label convention: ABSTAIN is now represented by -1 (used to be 0). # Accordingly, user-defined labels should now be 0-indexed (used to be 1-indexed). # Details can be found at https://github.com/snorkel-team/snorkel/pull/1309 ABSTAIN = -1 class Labeler(UDFRunner): """An operator to add Label Annotations to Candidates. :param session: The database session to use. :param candidate_classes: A list of candidate_subclasses to label. :param parallelism: The number of processes to use in parallel. Default 1. """ def __init__( self, session: Session, candidate_classes: List[Type[Candidate]], parallelism: int = 1, ): """Initialize the Labeler.""" super().__init__( session, LabelerUDF, parallelism=parallelism, candidate_classes=candidate_classes, ) self.candidate_classes = candidate_classes self.lfs: List[List[Callable]] = [] def update( self, docs: Collection[Document] = None, split: int = 0, lfs: List[List[Callable]] = None, parallelism: int = None, progress_bar: bool = True, table: Table = Label, ) -> None: """Update the labels of the specified candidates based on the provided LFs. :param docs: If provided, apply the updated LFs to all the candidates in these documents. :param split: If docs is None, apply the updated LFs to the candidates in this particular split. :param lfs: A list of lists of labeling functions to update. Each list should correspond with the candidate_classes used to initialize the Labeler. :param parallelism: How many threads to use for extraction. This will override the parallelism value used to initialize the Labeler if it is provided. :param progress_bar: Whether or not to display a progress bar. The progress bar is measured per document. :param table: A (database) table labels are written to. Takes `Label` (by default) or `GoldLabel`. """ if lfs is None: raise ValueError("Please provide a list of lists of labeling functions.") if len(lfs) != len(self.candidate_classes): raise ValueError("Please provide LFs for each candidate class.") self.table = table self.apply( docs=docs, split=split, lfs=lfs, train=True, clear=False, parallelism=parallelism, progress_bar=progress_bar, table=table, ) def apply( # type: ignore self, docs: Collection[Document] = None, split: int = 0, train: bool = False, lfs: List[List[Callable]] = None, clear: bool = True, parallelism: int = None, progress_bar: bool = True, table: Table = Label, ) -> None: """Apply the labels of the specified candidates based on the provided LFs. :param docs: If provided, apply the LFs to all the candidates in these documents. :param split: If docs is None, apply the LFs to the candidates in this particular split. :param train: Whether or not to update the global key set of labels and the labels of candidates. :param lfs: A list of lists of labeling functions to apply. Each list should correspond with the candidate_classes used to initialize the Labeler. :param clear: Whether or not to clear the labels table before applying these LFs. :param parallelism: How many threads to use for extraction. This will override the parallelism value used to initialize the Labeler if it is provided. :param progress_bar: Whether or not to display a progress bar. The progress bar is measured per document. :param table: A (database) table labels are written to. Takes `Label` (by default) or `GoldLabel`. :raises ValueError: If labeling functions are not provided for each candidate class. """ if lfs is None: raise ValueError("Please provide a list of labeling functions.") if len(lfs) != len(self.candidate_classes): raise ValueError("Please provide LFs for each candidate class.") self.lfs = lfs self.table = table if docs: # Call apply on the specified docs for all splits # TODO: split is int split = ALL_SPLITS # type: ignore super().apply( docs, split=split, train=train, lfs=self.lfs, clear=clear, parallelism=parallelism, progress_bar=progress_bar, table=table, ) # Needed to sync the bulk operations self.session.commit() else: # Only grab the docs containing candidates from the given split. split_docs = get_docs_from_split( self.session, self.candidate_classes, split ) super().apply( split_docs, split=split, train=train, lfs=self.lfs, clear=clear, parallelism=parallelism, progress_bar=progress_bar, table=table, ) # Needed to sync the bulk operations self.session.commit() def get_keys(self) -> List[LabelKey]: """Return a list of keys for the Labels. :return: List of LabelKeys. """ return list(get_sparse_matrix_keys(self.session, LabelKey)) def upsert_keys( self, keys: Iterable[Union[str, Callable]], candidate_classes: Optional[ Union[Type[Candidate], List[Type[Candidate]]] ] = None, ) -> None: """Upsert the specified keys from LabelKeys. :param keys: A list of labeling functions to upsert. :param candidate_classes: A list of the Candidates to upsert the key for. If None, upsert the keys for all candidate classes associated with this Labeler. """ # Make sure keys is iterable keys = keys if isinstance(keys, (list, tuple)) else [keys] # Make sure candidate_classes is iterable if candidate_classes: candidate_classes = ( candidate_classes if isinstance(candidate_classes, (list, tuple)) else [candidate_classes] ) # Ensure only candidate classes associated with the labeler are used. candidate_classes = [ _.__tablename__ for _ in candidate_classes if _ in self.candidate_classes ] if len(candidate_classes) == 0: logger.warning( "You didn't specify valid candidate classes for this Labeler." ) return # If unspecified, just use all candidate classes else: candidate_classes = [_.__tablename__ for _ in self.candidate_classes] # build dict for use by utils key_map = dict() for key in keys: # Assume key is an LF if hasattr(key, "__name__"): key_map[key.__name__] = set(candidate_classes) elif hasattr(key, "name"): key_map[key.name] = set(candidate_classes) else: key_map[key] = set(candidate_classes) upsert_keys(self.session, LabelKey, key_map) def drop_keys( self, keys: Iterable[Union[str, Callable]], candidate_classes: Optional[ Union[Type[Candidate], List[Type[Candidate]]] ] = None, ) -> None: """Drop the specified keys from LabelKeys. :param keys: A list of labeling functions to delete. :param candidate_classes: A list of the Candidates to drop the key for. If None, drops the keys for all candidate classes associated with this Labeler. """ # Make sure keys is iterable keys = keys if isinstance(keys, (list, tuple)) else [keys] # Make sure candidate_classes is iterable if candidate_classes: candidate_classes = ( candidate_classes if isinstance(candidate_classes, (list, tuple)) else [candidate_classes] ) # Ensure only candidate classes associated with the labeler are used. candidate_classes = [ _.__tablename__ for _ in candidate_classes if _ in self.candidate_classes ] if len(candidate_classes) == 0: logger.warning( "You didn't specify valid candidate classes for this Labeler." ) return # If unspecified, just use all candidate classes else: candidate_classes = [_.__tablename__ for _ in self.candidate_classes] # build dict for use by utils key_map = dict() for key in keys: # Assume key is an LF if hasattr(key, "__name__"): key_map[key.__name__] = set(candidate_classes) elif hasattr(key, "name"): key_map[key.name] = set(candidate_classes) else: key_map[key] = set(candidate_classes) drop_keys(self.session, LabelKey, key_map) def _add(self, session: Session, records_list: List[List[Dict[str, Any]]]) -> None: for records in records_list: batch_upsert_records(session, self.table, records) def clear( # type: ignore self, train: bool, split: int, lfs: Optional[List[List[Callable]]] = None, table: Table = Label, **kwargs: Any, ) -> None: """Delete Labels of each class from the database. :param train: Whether or not to clear the LabelKeys. :param split: Which split of candidates to clear labels from. :param lfs: This parameter is ignored. :param table: A (database) table labels are cleared from. Takes `Label` (by default) or `GoldLabel`. """ # Clear Labels for the candidates in the split passed in. logger.info(f"Clearing Labels (split {split})") if split == ALL_SPLITS: sub_query = self.session.query(Candidate.id).subquery() else: sub_query = ( self.session.query(Candidate.id) .filter(Candidate.split == split) .subquery() ) query = self.session.query(table).filter(table.candidate_id.in_(sub_query)) query.delete(synchronize_session="fetch") # Delete all old annotation keys if train: key_table = LabelKey if table == Label else GoldLabelKey logger.debug( f"Clearing all {key_table.__name__}s from {self.candidate_classes}..." ) drop_all_keys(self.session, key_table, self.candidate_classes) def clear_all(self, table: Table = Label) -> None: """Delete all Labels. :param table: A (database) table labels are cleared from. Takes `Label` (by default) or `GoldLabel`. """ key_table = LabelKey if table == Label else GoldLabelKey logger.info(f"Clearing ALL {table.__name__}s and {key_table.__name__}s.") self.session.query(table).delete(synchronize_session="fetch") self.session.query(key_table).delete(synchronize_session="fetch") def _after_apply( self, train: bool = False, table: Table = Label, **kwargs: Any ) -> None: # Insert all Label Keys if train: key_map: DefaultDict[str, set] = defaultdict(set) for label in self.session.query(table).all(): cand = label.candidate for key in label.keys: key_map[key].add(cand.__class__.__tablename__) key_table = LabelKey if table == Label else GoldLabelKey self.session.query(key_table).delete(synchronize_session="fetch") # TODO: upsert is too much. insert is fine as all keys are deleted. upsert_keys(self.session, key_table, key_map) def get_gold_labels( self, cand_lists: List[List[Candidate]], annotator: Optional[str] = None ) -> List[np.ndarray]: """Load dense matrix of GoldLabels for each candidate_class. :param cand_lists: The candidates to get gold labels for. :param annotator: A specific annotator key to get labels for. Default None. :raises ValueError: If get_gold_labels is called before gold labels are loaded, the result will contain ABSTAIN values. We raise a ValueError to help indicate this potential mistake to the user. :return: A list of MxN dense matrix where M are the candidates and N is the annotators. If annotator is provided, return a list of Mx1 matrix. """ gold_labels = [ unshift_label_matrix(m) for m in get_sparse_matrix( self.session, GoldLabelKey, cand_lists, key=annotator ) ] for cand_labels in gold_labels: if ABSTAIN in cand_labels: raise ValueError( "Gold labels contain ABSTAIN labels. " "Did you load gold labels beforehand?" ) return gold_labels def get_label_matrices(self, cand_lists: List[List[Candidate]]) -> List[np.ndarray]: """Load dense matrix of Labels for each candidate_class. :param cand_lists: The candidates to get labels for. :return: A list of MxN dense matrix where M are the candidates and N is the labeling functions. """ return [ unshift_label_matrix(m) for m in get_sparse_matrix(self.session, LabelKey, cand_lists) ] class LabelerUDF(UDF): """UDF for performing candidate extraction.""" def __init__( self, candidate_classes: Union[Type[Candidate], List[Type[Candidate]]], **kwargs: Any, ): """Initialize the LabelerUDF.""" self.candidate_classes = ( candidate_classes if isinstance(candidate_classes, (list, tuple)) else [candidate_classes] ) super().__init__(**kwargs) def _f_gen(self, c: Candidate) -> Iterator[Tuple[int, str, int]]: """Convert lfs into a generator of id, name, and labels. In particular, catch verbose values and convert to integer ones. """ lf_idx = self.candidate_classes.index(c.__class__) labels = lambda c: [ ( c.id, lf.__name__ if hasattr(lf, "__name__") else lf.name, # type: ignore lf(c), ) for lf in self.lfs[lf_idx] ] for cid, lf_key, label in labels(c): # Note: We assume if the LF output is an int, it is already # mapped correctly if isinstance(label, int): yield cid, lf_key, label + 1 # convert to {0, 1, ..., k} # None is a protected LF output value corresponding to ABSTAIN, # representing LF abstaining elif label is None: yield cid, lf_key, ABSTAIN + 1 # convert to {0, 1, ..., k} elif label in c.values: # convert to {0, 1, ..., k} yield cid, lf_key, c.values.index(label) + 1 else: raise ValueError( f"Can't parse label value {label} for candidate values {c.values}" ) def apply( # type: ignore self, doc: Document, lfs: List[List[Callable]], table: Table = Label, **kwargs: Any, ) -> List[List[Dict[str, Any]]]: """Extract candidates from the given Context. :param doc: A document to process. :param lfs: The list of functions to use to generate labels. """ logger.debug(f"Document: {doc}") if lfs is None: raise ValueError("Must provide lfs kwarg.") self.lfs = lfs # Get all the candidates in this doc that will be labeled cands_list = [ getattr(doc, candidate_class.__tablename__ + "s") for candidate_class in self.candidate_classes ] records_list = [ list(get_mapping(table, cands, self._f_gen)) for cands in cands_list ] return records_list
fonduer-master
src/fonduer/supervision/labeler.py
"""Fonduer's supervision model module.""" from fonduer.supervision.models.label import ( GoldLabel, GoldLabelKey, Label, LabelKey, StableLabel, ) __all__ = ["GoldLabel", "GoldLabelKey", "Label", "LabelKey", "StableLabel"]
fonduer-master
src/fonduer/supervision/models/__init__.py
"""Fonduer label model.""" from sqlalchemy import Column, Integer, String from sqlalchemy.dialects import postgresql from fonduer.meta import Meta from fonduer.utils.models.annotation import AnnotationKeyMixin, AnnotationMixin class GoldLabelKey(AnnotationKeyMixin, Meta.Base): """Gold label key class. A gold label's key that identifies the annotator of the gold label. """ pass class GoldLabel(AnnotationMixin, Meta.Base): """Gold label class. A separate class for labels from human annotators or other gold standards. """ #: A list of integer values for each Key. values = Column(postgresql.ARRAY(Integer), nullable=False) class LabelKey(AnnotationKeyMixin, Meta.Base): """Label key class. A label's key that identifies the labeling function. """ pass class Label(AnnotationMixin, Meta.Base): """Label class. A discrete label associated with a Candidate, indicating a target prediction value. Labels are used to represent the output of labeling functions. A Label's annotation key identifies the labeling function that provided the Label. """ #: A list of integer values for each Key. values = Column(postgresql.ARRAY(Integer), nullable=False) class StableLabel(Meta.Base): """Stable label table. A special secondary table for preserving labels created by *human annotators* in a stable format that does not cascade, and is independent of the Candidate IDs. .. note:: This is currently unused. """ __tablename__ = "stable_label" #: Delimited list of the context stable ids. context_stable_ids = Column( String, primary_key=True ) # ~~ delimited list of the context stable ids #: The annotator's name annotator_name = Column(String, primary_key=True) #: Which split the label belongs to split = Column(Integer, default=0) # The value of the label value = Column(Integer, nullable=False) def __repr__(self) -> str: """Represent the stable label as a string.""" return f"{self.__class__.__name__} ({self.annotator_name} : {self.value})"
fonduer-master
src/fonduer/supervision/models/label.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import setuptools setuptools.setup( name="ctrl-benchmark", version="0.0.3", author="Tom Veniat, Ludovic Denoyer & Marc'Aurelio Ranzato", license="MIT License", description="Continual Transfer Learning Benchmark", packages=setuptools.find_packages(), install_requires=[ 'pyyaml', 'torch>=1.3,<2', 'torchvision<1', 'networkx>2,<3', 'plotly', 'pydot', 'tqdm', 'sklearn', 'bs4' ], include_package_data=True, )
CTrLBenchmark-master
setup.py
from .streams import get_stream
CTrLBenchmark-master
ctrl/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import random from collections import defaultdict import torch import torchvision from sklearn.decomposition import PCA from sklearn.manifold import TSNE from torch.utils.data import TensorDataset logger = logging.getLogger(__name__) class Task(object): def __init__(self, name, samples, loss_fn, transformation=None, split_names=None, creator=None, source_concepts=None, attributes=None, dim_red='PCA', generator=None, n_samples_per_class=None, save_path=None, id=None): """ :param samples: Iterable containing the data and labels for each split. The length corresponds to the number of splits. Each split i should be composed of two Tensors: - a `(N_i x ...)` tensor containing the features of the N_i samples for this splits - a `(N_i x n_labels)` tensor containing the labels for each attribute that we want to classify. The attributes in different splits are not forced to overlap, allowing to generate ZSL tasks. :param transformation: :param creator: """ self._infos = { 'src_concepts': [] if source_concepts is None else source_concepts, 'transformation': transformation, 'attributes': attributes } self.name = name self.save_path = None self.loss_fn = loss_fn self.id = id self.split_names = split_names self.datasets = [TensorDataset(s_samples, labels.long()) for s_samples, labels in samples] self.n_classes = [dataset.tensors[1].max(dim=0).values + 1 for dataset in self.datasets] self.x_dim = list(self.datasets[0].tensors[0].size()[1:]) assert all(list(split.tensors[0].size()[1:]) == self.x_dim for split in self.datasets) self.n_samples = [dataset.tensors[0].size(0) for dataset in self.datasets] self.n_samples_per_class = n_samples_per_class assert all([torch.equal(self.n_classes[0], t) for t in self.n_classes]) self.n_classes = self.n_classes[0] self._dim_reduction = PCA(n_components=3) \ if dim_red == 'PCA' else TSNE(n_components=3) self.creator = creator # self.generator = generator self.statistics = self.compute_statistics() if save_path: self.save_path = self.save(save_path) def compute_statistics(self): train_split = self.datasets[0].tensors[0] if train_split[0].dim() == 3: # Images # assert train_split.size(1) == 3 n_channels = train_split.size(1) mean = [train_split[:, i, :, :].mean() for i in range(n_channels)] std = [train_split[:, i, :, :].std() for i in range(n_channels)] else: # Vectors mean = train_split.mean() std = train_split.std() # Prevent division by 0 if we have a constant channel std = [1 if itm == 0 else itm for itm in std] return {'mean': mean, 'std': std} @property def concepts(self): return [concept for cat_concepts in self.src_concepts for concept in cat_concepts] @property def transformation(self): return self._infos['transformation'] @property def src_concepts(self): """ :return: A copy of the concepts list of this task """ return self._infos['src_concepts'].copy() @property def attributes(self): return self._infos['attributes'] def get_data(self, split:str): """ :param split: :type split: :return: :rtype: """ return self.datasets[split].tensors[0] def get_labels(self, split, prop): return self.datasets[split].tensors[1][:, prop] def plot_task(self, viz, name): legend = [str(c) for c in self.src_concepts] selected_means = [] cat_ids = [] for cat_id, cat in enumerate(self.src_concepts): for c in cat: if hasattr(c, 'mean'): selected_means.append(c.mean) cat_ids.append(cat_id + 1) if len(selected_means) > 2: data = torch.stack(selected_means) title = '{} selected concepts'.format(name) if selected_means[0].numel() > 3: title = '{} of {}'.format( self._dim_reduction.__class__.__name__, title) data = self._dim_reduction.fit_transform(data) viz.scatter(data, Y=cat_ids, opts={'title': title, 'markersize': 3, 'legend': legend}) plot_data = self.get_data(split=0) title = '{} features'.format(name) if plot_data[0].ndimension() == 3 and plot_data[0].size(0) in [1, 3]: # We have an image imgs_per_label = defaultdict(list) for ds in self.datasets: x, y = ds.tensors y = y.squeeze() for y_val in y.unique(): x_sample = random.choice(x[y == y_val]) imgs_per_label[y_val.item()].append(x_sample) for y, images in imgs_per_label.items(): grid = torchvision.utils.make_grid(images) viz.image(grid, opts={ 'title': '{} ({})'.format(self.src_concepts[y], y), 'width': grid.size(2) * 3, 'height': grid.size(1) * 3.2}) else: # Vectorial data if plot_data[0].numel() > 3: plot_data = self._dim_reduction.fit_transform( plot_data.view(plot_data.size(0), -1)) title = '{} of {}'.format( self._dim_reduction.__class__.__name__, title) viz.scatter(plot_data, Y=self.get_labels(split=0, prop=0) + 1, opts={'title': title, 'webgl': True, 'markersize': 3, 'legend': legend}) def save(self, path): if not os.path.isdir(path): os.makedirs(path) task_datasets = [] save_paths = [] for split_data, split_name in zip(self.datasets, ['train', 'val', 'test']): save_path = os.path.join(path, '{}_{}.pth'.format(self.name, split_name)) save_paths.append(save_path) torch.save(split_data.tensors, save_path) task_datasets.append(save_path) logger.info('Task saved to {} ...'.format(save_paths)) metadata_file = os.path.join(path, '{}.meta'.format(self.name)) torch.save(self._meta(), metadata_file) return task_datasets def _meta(self): meta = { 'source_concepts': [tuple(str(c) for c in cat) for cat in self.src_concepts], 'transformation': str(self.transformation), 'creator': self.creator } return meta def info(self, full=True): infos = { 'data_path': self.save_path, 'split_names': self.split_names, 'id': self.id, 'x_dim': self.x_dim, 'n_classes': self.n_classes.tolist(), 'descriptor': self.name, 'full_descr': str(self), } if full: infos['loss_fn'] = self.loss_fn infos['statistics'] = self.statistics return infos def __repr__(self): return "{}-way classification".format(len(self.src_concepts)) def __str__(self): categories = '\n\t-'.join([str(c) for c in self.src_concepts]) descr = "{}-way classification created by {} ({} samples): \n\t {} \n\t-{}" trans_descr = self.transformation return descr.format(self.n_classes[0].item(), self.creator, self.n_samples, trans_descr, categories) def __eq__(self, other): return all( map(lambda x: torch.equal(*x), zip(self.datasets[0].tensors, other.datasets[0].tensors)))
CTrLBenchmark-master
ctrl/tasks/task.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
CTrLBenchmark-master
ctrl/tasks/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import random import time from types import SimpleNamespace import numpy as np import torch import torch.nn.functional as F from ctrl.concepts.concept import ComposedConcept from ctrl.concepts.concept_tree import ConceptTree from ctrl.tasks.task import Task from torchvision import transforms logger = logging.getLogger(__name__) def loss(y_hat, y, reduction: str = 'none'): """ :param y_hat: Model predictions :param y: Ground Truth :param reduction: :return: """ assert y.size(1) == 1 and torch.is_tensor(y_hat) y = y.squeeze(1) loss_val = F.cross_entropy(y_hat, y, reduction=reduction) assert loss_val.dim() == 1 return loss_val def augment_samples(samples): trans = transforms.Compose( [ transforms.ToPILImage(), transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, 4), transforms.ToTensor() ]) aug_samples = [] for sample in samples: for i in range(4): aug_samples.append(trans(sample)) for sample in samples: aug_samples.append(transforms.ToTensor()(transforms.ToPILImage()(sample))) return torch.stack(aug_samples) def _generate_samples_from_descr(categories, attributes, n_samples_per_class, augment, rnd): use_cat_id, attributes = attributes assert use_cat_id and not attributes, \ "usage of attributes isn't supporte in v1." samples = [] labels = [] for i, cat_concepts in enumerate(categories): mixture = ComposedConcept(cat_concepts, id=None) cat_samples = [] cat_labels = [] for s_id, n in enumerate(n_samples_per_class): split_samples, split_attrs = mixture._get_samples(n, attributes, split_id=s_id, rng=rnd) if s_id in augment: split_samples = augment_samples(split_samples) split_labels = torch.Tensor().long() cat_id = torch.tensor([i]).expand(split_samples.shape[0], 1) split_labels = torch.cat([split_labels, cat_id], dim=1) cat_samples.append(split_samples) cat_labels.append(split_labels) samples.append(cat_samples) labels.append(cat_labels) if torch.is_tensor(samples[0][0]): cat_func = torch.cat else: cat_func = np.concatenate samples = (cat_func(split) for split in zip(*samples)) labels = (torch.cat(split) for split in zip(*labels)) return samples, labels class TaskGenIter(object): def __init__(self, task_generator): self.task_gen = task_generator self.n = 0 def __next__(self): if len(self.task_gen.task_pool) > self.n: t = self.task_gen.task_pool[self.n] else: assert self.n == len(self.task_gen.task_pool) try: t = self.task_gen.add_task() except IndexError: raise StopIteration self.n += 1 return t class TaskGenerator(object): def __init__(self, concept_pool: ConceptTree, transformation_pool, samples_per_class, split_names, strat, seed: int, flatten, n_initial_classes, use_cat_id, tta, *args, **kwargs): """ :param concepts: Concept pool from which we will sample when creating new tasks. :param transformation_pool: Transformation pool from which we will select the operations to be applied on the data of new tasks. :param samples_per_class: Initial number of samples per class :param split_names: Name of the different data splits usually (train, val, test) :param strat: Strategy to use for the creation of new tasks :param seed: The seed used for the samples selection :param flatten: :param n_initial_classes: :param use_cat_id: Legacy prop used with attributes. :param tta: use Test Time Augmentation """ super(TaskGenerator, self).__init__(*args, **kwargs) self.task_pool = [] self.concept_pool = concept_pool self.transformation_pool = transformation_pool assert len(samples_per_class) == len(split_names) self.n_samples_per_class = samples_per_class self.split_names = split_names self.rnd = random.Random(seed) self.flatten = flatten self.tta = tta # For default task creation self.n_initial_classes = n_initial_classes self.use_cat_id = use_cat_id self.strat = strat self.contains_loaded_tasks = False @property def n_tasks(self): return len(self.task_pool) def add_task(self, name=None, save_path=None): """ Adds a new task to the current pool. This task will be created using the current strategy `self.strat` :param name: The name of the new task :param save_path: If provided, the task will be saved under this path :return: The new Task """ new_task_id = len(self.task_pool) if new_task_id == 0: concepts, attrs, trans, n = self._create_new_task( self.concept_pool, self.transformation_pool) else: concepts = self.task_pool[-1].src_concepts attrs = self.task_pool[-1].attributes trans = self.task_pool[-1].transformation n = self.task_pool[-1].n_samples_per_class cur_task_spec = SimpleNamespace(src_concepts=concepts, attributes=attrs, transformation=trans, n_samples_per_class=n, ) cur_task_spec = self.strat.new_task(cur_task_spec, self.concept_pool, self.transformation_pool, self.task_pool) assert len(cur_task_spec.n_samples_per_class) == len(self.split_names) new_task = self._create_task(cur_task_spec, name, save_path) new_task.id = new_task_id self.task_pool.append(new_task) return new_task def load_task(self, task_name, load_path): splits = ['train', 'val', 'test'] samples = [] save_paths = [] for split in splits: file_path = os.path.join(load_path, '{}_{}.pth'.format(task_name, split)) save_paths.append(file_path) assert os.path.isfile(file_path), file_path xs, ys = torch.load(file_path) samples.append((xs, ys)) metadata_file = os.path.join(load_path, '{}.meta'.format(task_name)) if os.path.isfile(metadata_file): meta = torch.load(metadata_file) else: meta = {} task = Task(task_name, samples, loss, split_names=self.split_names, id=len(self.task_pool), **meta) task.save_path = save_paths self.task_pool.append(task) self.contains_loaded_tasks = True return task def _create_task(self, task_spec, name, save_path): concepts = task_spec.src_concepts attributes = task_spec.attributes transformation = task_spec.transformation n_samples_per_class = task_spec.n_samples_per_class samples = self.get_samples(concepts, attributes, transformation, n_samples_per_class) if self.flatten: samples = [(x.view(x.size(0), -1), y) for x, y in samples] task = Task(name, samples, loss, transformation, self.split_names, source_concepts=concepts, attributes=attributes, creator=self.strat.descr(), generator=self, n_samples_per_class=n_samples_per_class, save_path=save_path) return task def get_similarities(self, component=None): """ :param component: String representing the components across which the similarities should be computed, can be any combination of : - 'x' for p(x|z) - 'y' for p(y|z) - 'z' for p(z) :return: A dict associating each component to an n_tasks x n_tasks tensor containing the similarities between tasks over this component. """ if component is None: component = 'xyz' similarities = torch.zeros(self.n_tasks, self.n_tasks, len(component)) times = torch.zeros(len(component)) for i, t1 in enumerate(self.task_pool): for j, t2 in enumerate(self.task_pool[i:]): sim, time = self.get_similarity(t1, t2, component) sim = torch.tensor(sim) # Similarities are symmetric similarities[i, i + j] = sim similarities[i + j, i] = sim times += torch.tensor(time) for comp, time in zip(component, times.unbind()): if time > 1: logger.warning( "Comparison of {} took {:4.2f}s".format(comp, time)) sim_dict = dict(zip(component, similarities.unbind(-1))) return sim_dict def get_similarity(self, t1, t2, component=None): if component is None: component = 'xyz' res = [] times = [] for char in component: start_time = time.time() if char == 'x': res.append(self.transformation_pool.transformations_sim( t1.transformation, t2.transformation)) elif char == 'y': res.append(self.concept_pool.y_attributes_sim(t1.attributes, t2.attributes)) elif char == 'z': res.append(self.concept_pool.categories_sim(t1.src_concepts, t2.src_concepts)) else: raise ValueError('Unknown component {}'.format(char)) times.append(time.time() - start_time) return res, times def get_samples(self, concepts, attributes, transformation, n_samples_per_class): augment = [1] if self.tta else [] samples, labels = _generate_samples_from_descr(concepts, attributes, n_samples_per_class, augment, np.random.default_rng(self.rnd.randint(0, int(1e9)))) # Apply the input transformation samples = [transformation(x) for x in samples] return [(x, y) for x, y in zip(samples, labels)] def stream_infos(self, full=True): """ return a list containing the information of each task in the task_pool, useful when the stream needs to be serialized (e.g. to be sent to workers.) """ return [t.info(full) for t in self.task_pool] def _create_new_task(self, concept_pool, transformation_pool, n_attributes=0): logger.info('Creating new task from scratch') concepts = concept_pool.get_compatible_concepts(self.n_initial_classes, leaf_only=True,) n_avail_attrs = len(concept_pool.attributes) if n_attributes > n_avail_attrs: raise ValueError('Can\'t select {} attributes, only {} available' .format(n_attributes, n_avail_attrs)) attributes = self.rnd.sample(range(n_avail_attrs), n_attributes) transformation = transformation_pool.get_transformation() concepts = [(c,) for c in concepts] return concepts, (self.use_cat_id, attributes), transformation, \ self.n_samples_per_class def __str__(self): descr = "Task stream containing {} tasks:\n\t".format(self.n_tasks) tasks = '\n\t'.join(map(str, self.task_pool)) return descr + tasks def __iter__(self): return TaskGenIter(self)
CTrLBenchmark-master
ctrl/tasks/task_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from ctrl.transformations.transformation_tree import TransformationTree from torch import nn from tqdm import tqdm class NoisyNNTransformationTree(TransformationTree): def __init__(self, noise_min, noise_max, x_dim, z_dim, n_canonic_transfo, n_var_per_trans, *args, **kwargs): self.noise_min = noise_min self.noise_max = noise_max self.x_dim = x_dim self.z_dim = z_dim self.n_canonic_transfo = n_canonic_transfo self.n_var_per_trans = n_var_per_trans self.depth = 2 super().__init__(*args, **kwargs) self._inv_index = {v: k for k, v in self._node_index.items()} def build_tree(self): first_module = nn.Sequential(nn.Linear(self.z_dim, self.z_dim), nn.ReLU()) # node_name = '{}{}'.format(self.name, 'front') node_name = 'front' self.tree.add_node(self._node_index[self.name], name=self.name) self.tree.add_node(self._node_index[node_name], name=node_name) self.tree.add_edge(self._node_index[self.name], self._node_index[node_name], f=first_module) noise_source = torch.distributions.uniform.Uniform(self.noise_min, self.noise_max) for i in tqdm(range(self.n_canonic_transfo), desc='Init noisy x', disable=self.n_canonic_transfo < 30): lin = nn.Linear(self.z_dim, self.x_dim) for j in range(self.n_var_per_trans): mod = mod_lin(lin, noise_source) node_name = (i, j) self.tree.add_node(self._node_index[node_name], name=str(node_name)) self.tree.add_edge(self._node_index['front'], self._node_index[node_name], f=nn.Sequential(mod, nn.ReLU())) self.leaf_nodes.add(self._node_index[node_name]) return self._node_index[self.name] def transformations_sim(self, t1, t2): t1 = self._inv_index[t1.path[-1]] t2 = self._inv_index[t2.path[-1]] return 0 if t1[0] != t2[0] else 1 def mod_lin(lin, noise_source): noise = noise_source.sample(lin.weight.size()) new_lin = nn.Linear(lin.in_features, lin.out_features) state_dict = lin.state_dict() state_dict['weight'] = state_dict['weight'] + noise new_lin.load_state_dict(state_dict) return new_lin
CTrLBenchmark-master
ctrl/transformations/noisy_nn_transformation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch class Transformation(object): def __init__(self, transfo_pool, path, trans_descr): assert path[0] == transfo_pool.root_node self.transfo_pool = transfo_pool self.path = path self.trans_descr = trans_descr def __call__(self, X): with torch.no_grad(): for u, v in zip(self.path, self.path[1:]): f = self.transfo_pool.tree.edges()[u, v]['f'] X = f(X) return X def __str__(self): return self.trans_descr
CTrLBenchmark-master
ctrl/transformations/transformation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from functools import partial import torch from ctrl.transformations.transformation_tree import TransformationTree from ctrl.transformations.utils import BatchedTransformation from torchvision import transforms from torchvision.transforms import RandomAffine ROTATIONS = { '0': 0, # '90': 90, # '180': 180, # '270': 270 } COLORS = [[255, 0, 0], [0, 255, 0], [0, 0, 255]] OLD_BACKGOUND = [0] SCALES = { 'full': 1, # '3/4': 0.75, # 'half': 0.5, # '1/4': 0.25 } def get_rotations(): transformations = {} for name, angle in ROTATIONS.items(): trans = transforms.Compose([ transforms.ToPILImage(), RandomAffine(degrees=(angle, angle)), transforms.ToTensor() ]) transformations[name] = BatchedTransformation(trans) return transformations def get_scales(): transformations = {} for name, scale in SCALES.items(): trans = transforms.Compose([ transforms.ToPILImage(), RandomAffine(degrees=0, scale=(scale, scale)), transforms.ToTensor() ]) transformations[name] = BatchedTransformation(trans) return transformations def change_background_color(images, old_background, new_background): """ :param images: BCHW :return: """ assert old_background == [0] if not torch.is_tensor(new_background): new_background = torch.tensor(new_background, dtype=images.dtype) if images.max() <= 1 and new_background.max() > 1: new_background /= 255 if images.size(1) == 1 and len(new_background) == 3: images = images.expand(-1, 3, -1, -1) else: assert images.size(1) == len(new_background) # raise NotImplementedError(images.size(), new_background) images = images.clone() new_background = new_background.view(-1, 1, 1) bg_ratio = images.max() - images bg = bg_ratio * new_background imgs = images + bg # print(images[:, 0, :, :].std().item(),images[:, 1, :, :].std().item(),images[:, 2, :, :].std().item()) # print(imgs[:, 0, :, :].std().item(), imgs[:, 1, :, :].std().item(), imgs[:, 2, :, :].std().item()) return imgs def get_colors(): transformations = {} for color in COLORS: trans = partial(change_background_color, old_background=OLD_BACKGOUND, new_background=color) transformations[str(color)] = trans return transformations class RainbowTransformationTree(TransformationTree): def __init__(self, *args, **kwargs): self.n_rotations = None self.n_colors = None self.n_scaless = None super(RainbowTransformationTree, self).__init__(*args, **kwargs) def build_tree(self): self.tree.add_node(self._node_index[self.name], name=self.name) rotations = get_rotations() colors = get_colors() scales = get_scales() levels = [rotations, scales, colors] prev_nodes = [self.name] for domain in levels: prev_nodes = self._add_transfos(prev_nodes, domain) self.leaf_nodes.update([self._node_index[node] for node in prev_nodes]) self.depth = len(levels) return self._node_index[self.name] def _add_transfos(self, parent_nodes, transfos): nodes = [] for parent in parent_nodes: for name, transfo in transfos.items(): node_name = '{}_{}'.format(parent, name) self.tree.add_node(self._node_index[node_name], name=node_name, last_transfo=name) self.tree.add_edge(self._node_index[parent], self._node_index[node_name], f=transfo, ) nodes.append(node_name) return nodes def transformations_sim(self, t1, t2): """ arccos((tr(R)−1)/2) :param t1: :param t2: :return: """ t1_nodes = [t1.transfo_pool.tree.nodes()[id]['last_transfo'] for id in t1.path[1:]] t2_nodes = [t2.transfo_pool.tree.nodes()[id]['last_transfo'] for id in t2.path[1:]] n_eq = 0 for op1, op2 in zip(t1_nodes, t2_nodes): if op1 == op2: n_eq += 1 return n_eq / (len(t1_nodes))
CTrLBenchmark-master
ctrl/transformations/rainbow_transformation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import abc class TransformationPool(abc.ABC): @abc.abstractmethod def get_transformation(self, exclude_trans=None): raise NotImplementedError @abc.abstractmethod def transformations_sim(self, t1, t2): raise NotImplementedError
CTrLBenchmark-master
ctrl/transformations/transformation_pool.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from ctrl.transformations.transformation_tree import TransformationTree from torchvision import transforms from torchvision.transforms import RandomRotation class ImgRotationTransformationTree(TransformationTree): def __init__(self, n_rotations, max_degrees, *args, **kwargs): self.n_rotations = n_rotations self.max_degrees = max_degrees super(ImgRotationTransformationTree, self).__init__(*args, **kwargs) def build_tree(self): self.tree.add_node(self._node_index[self.name], name=self.name) for i in range(self.n_rotations): node_name = 'rotate_{}'.format(i) self.leaf_nodes.add(self._node_index[node_name]) degrees = self.rnd.uniform(-self.max_degrees, self.max_degrees) trans = transforms.Compose([ transforms.ToPILImage(), RandomRotation((degrees, degrees)), transforms.ToTensor() ]) f = BatchedTransformation(trans) self.tree.add_node(self._node_index[node_name], name=node_name) self.tree.add_edge(self._node_index[self.name], self._node_index[node_name], f=f, degrees=degrees) self.depth = 1 return self._node_index[self.name] def transformations_sim(self, t1, t2): """ arccos((tr(R)−1)/2) :param t1: :param t2: :return: """ theta_1 = self.tree.in_edges()[t1.path[-2:]]['degrees'] theta_2 = self.tree.in_edges()[t2.path[-2:]]['degrees'] theta = abs(theta_1 - theta_2) * np.pi/180 min_angle = np.arccos(np.cos(theta)) return 1 - min_angle / np.pi
CTrLBenchmark-master
ctrl/transformations/img_rotations.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .identity_transformation import IdentityTransformation from .img_rotations import ImgRotationTransformationTree from .noisy_nn_transformation import NoisyNNTransformationTree from .rainbow_transformation import RainbowTransformationTree from .randperm_transformation import RandomPermutationsTransformation from .transformation_tree import RandomNNTransformationTree
CTrLBenchmark-master
ctrl/transformations/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torchvision.transforms.functional as F from PIL import Image from ctrl.transformations.transformation_tree import TransformationTree from ctrl.transformations.utils import BatchedTransformation from torchvision.transforms import transforms def load_or_convert_to_image(img): if isinstance(img, str): img = Image.open(img).convert('RGB') elif isinstance(img, torch.Tensor) or isinstance(img, np.ndarray): img = F.to_pil_image(img) assert isinstance(img, Image.Image) return img def crop_if_not_square(img, max_size=72): if min(img.size) > max_size: img = F.resize(img, max_size, Image.BILINEAR) if img.size[0] != img.size[1]: img = F.center_crop(img, min(img.size)) return img class IdentityTransformation(TransformationTree): def __init__(self, format_image, *args, **kwargs): self.format_image = format_image super(IdentityTransformation, self).__init__(*args, **kwargs) def build_tree(self): self.tree.add_node(self._node_index[self.name], name=self.name) node_name = 'Id' self.leaf_nodes.add(self._node_index[node_name]) self.tree.add_node(self._node_index[node_name], name=node_name) if self.format_image: trans = transforms.Compose([ load_or_convert_to_image, # transforms.ToPILImage(), crop_if_not_square, transforms.ToTensor() ]) f = BatchedTransformation(trans) else: f = lambda x: x self.tree.add_edge(self._node_index[self.name], self._node_index[node_name], f=f) self.depth = 1 return self._node_index[self.name]
CTrLBenchmark-master
ctrl/transformations/identity_transformation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch class BatchedTransformation(object): def __init__(self, transfo, descr=None): self.transfo = transfo self.descr = descr def __call__(self, batch): if torch.is_tensor(batch): batch = batch.unbind(0) res = [self.transfo(elt) for elt in batch] return torch.stack(res, 0) def __str__(self): if self.descr is None: return super().__str__() else: return self.descr
CTrLBenchmark-master
ctrl/transformations/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import random from abc import ABC from collections import defaultdict from numbers import Number import networkx as nx from torch import nn from ctrl.commons.tree import Tree from ctrl.transformations.transformation import Transformation from ctrl.transformations.transformation_pool import TransformationPool logger = logging.getLogger(__name__) class TransformationTree(TransformationPool, Tree, ABC): def __init__(self, *args, **kwargs): self._node_index = defaultdict() self._node_index.default_factory = self._node_index.__len__ super().__init__(*args, **kwargs) def get_transformation(self, exclude_trans=None, allowed_trans=None): if exclude_trans is None: exclude_trans = [] exclude_nodes = [trans.path[-1] for trans in exclude_trans] if allowed_trans is not None: allowed_nodes = set(trans.path[-1] for trans in allowed_trans) else: allowed_nodes = None node = self.get_compatible_nodes(exclude_nodes=exclude_nodes, force_nodes=allowed_nodes, leaf_only=True) all_paths = list(nx.all_simple_paths(self.tree, self.root_node, node)) selected_path = random.choice(all_paths) path_descr = self.get_path_descr(selected_path) return Transformation(self, selected_path, path_descr) def transformations_sim(self, t1, t2): return self.wu_palmer(t1.path[-1], t2.path[-1]) def edit_transformation(self, transformation, min_dist, max_dist): dist = random.randint(min_dist, max_dist) old_path = transformation.path.copy() old_path = old_path[:-dist] new_candidates = list(nx.all_simple_paths(self.tree, old_path[-1], self.out_nodes)) selected_path = random.choice(new_candidates) new_path = old_path + selected_path[1:] return Transformation(self, new_path) def get_path_descr(self, path): return '->'.join([self.tree.nodes[itm]['name'] for itm in path]) class RandomNNTransformationTree(TransformationTree): def __init__(self, depth, degree, x_dim, z_dim, non_lin, *args, **kwargs): self.depth = depth self.n_children = self._format_property(degree) self.hidden_sizes = self._format_property(x_dim) self.z_dim = z_dim if non_lin == 'relu': self.non_linearity = nn.ReLU elif non_lin == 'tanh': self.non_linearity = nn.Tanh super().__init__(*args, **kwargs) def _format_property(self, prop): if isinstance(prop, Number): prop = [prop] if len(prop) == 1: prop = prop * self.depth assert len(prop) == self.depth return prop def build_tree(self): self._build_tree(self.depth-1, self.n_children, self.name, self.z_dim, self.hidden_sizes) self.tree.add_node(self._node_index[self.name], name=self.name) return self._node_index[self.name] def _build_tree(self, depth, n_children, parent_node, parent_dim, hidden_dims): for i in range(n_children[0]): module = nn.Sequential( nn.Linear(parent_dim, hidden_dims[0]), self.non_linearity()) node_name = '{}{}'.format(parent_node, i) self.tree.add_node(self._node_index[node_name], name=node_name) self.tree.add_edge(self._node_index[parent_node], self._node_index[node_name], f=module) if depth > 0: self._build_tree(depth - 1, n_children[1:], node_name, hidden_dims[0], hidden_dims[1:]) else: self.leaf_nodes.add(self._node_index[node_name])
CTrLBenchmark-master
ctrl/transformations/transformation_tree.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from ctrl.transformations.transformation_tree import TransformationTree from ctrl.transformations.utils import BatchedTransformation from torchvision import transforms class RandomPermutationsTransformation(TransformationTree): def __init__(self, n_permutations, x_off, y_off, width, height, flatten, *args, **kwargs): self.n_permutations = n_permutations self.x_off = x_off self.y_off = y_off self.width = width self.height = height self.flatten = flatten super(RandomPermutationsTransformation, self).__init__(*args, **kwargs) def build_tree(self): self.tree.add_node(self._node_index[self.name], name=self.name) for i in range(self.n_permutations): node_name = 'permutation_{}'.format(i) self.leaf_nodes.add(self._node_index[node_name]) perm = RandomPermutation(self.x_off, self.y_off, self.width, self.height, self.flatten) trans = transforms.Compose( [BatchedTransformation(transforms.Compose([ transforms.ToPILImage(), transforms.ToTensor()])), perm]) # f = BatchedTransformation(trans) self.tree.add_node(self._node_index[node_name], name=node_name) self.tree.add_edge(self._node_index[self.name], self._node_index[node_name], f=trans) self.depth = 1 return self._node_index[self.name] class RandomPermutation(object): """ Applies a constant random permutation to the images. """ def __init__(self, x_off=0, y_off=0, width=None, height=None, flatten=False): self.x_off = x_off self.y_off = y_off self.width = width self.height = height self.x_max = x_off + width self.y_max = y_off + height self.kernel = torch.randperm(width * height) self.flatten = flatten def __call__(self, input): return rand_perm_(input.clone(), self.x_off, self.y_off, self.x_max, self.y_max, self.kernel, self.flatten) def rand_perm_(img, x, y, x_max, y_max, kernel, flatten): """ Applies INPLACE the random permutation defined in `kernel` to the image `img` on the zone defined by `x`, `y`, `x_max`, `y_max` :param img: Input image of dimension (B*C*W*H) :param x: offset on x axis :param y: offset on y axis :param x_max: end of the zone to permute on the x axis :param y_max: end of the zone to permute on the y axis :param kernel: LongTensor of dim 1 containing one value for each point in the zone to permute :return: the permuted image. """ assert img.dim() == 4 if img.size(1) != 1: raise NotImplementedError('Not Implemented for multi-channel images') zone = img[:, :, x:x_max, y:y_max].contiguous() img[:, :, x:x_max, y:y_max] = zone.view(zone.size(0), -1)\ .index_select(1, kernel).view(zone.size()) return img.view(img.size(0), -1) if flatten else img
CTrLBenchmark-master
ctrl/transformations/randperm_transformation.py