python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
from meerkat.interactive import Page, print from meerkat.interactive.app.src.lib.component.core.textbox import Textbox textbox = Textbox() print(textbox.text) page = Page(component=textbox, id="textbox") page.launch()
meerkat-main
meerkat/interactive/app/src/lib/component/core/textbox/test_textbox.py
import meerkat as mk from meerkat.interactive import Page from meerkat.interactive.app.src.lib.component.core.stats import Stats component = mk.gui.html.div( slots=[ Stats( data={ "stat_1": 11.34, "stat_2": 10000.3, "stat_3": 0.003, # TODO: this displays as 0.00 "stat_4": 10013123.3, "stat_5": 100131131231.3, "stat_6": 0.000005, # TODO: this displays as 0.00 }, ) ] ) page = Page(component=component, id="stats") page.launch()
meerkat-main
meerkat/interactive/app/src/lib/component/core/stats/test_stats.py
from typing import Mapping, Union from meerkat.interactive.app.src.lib.component.abstract import Component class Stats(Component): data: Mapping[str, Union[int, float]]
meerkat-main
meerkat/interactive/app/src/lib/component/core/stats/__init__.py
from meerkat.interactive.app.src.lib.component.abstract import Component from meerkat.interactive.endpoint import EndpointProperty from meerkat.interactive.event import EventInterface class OnRunEditor(EventInterface): new_code: str class Editor(Component): code: str = "" title: str = "Code Editor" on_run: EndpointProperty[OnRunEditor] = None
meerkat-main
meerkat/interactive/app/src/lib/component/core/editor/__init__.py
meerkat-main
meerkat/interactive/app/src/lib/component/deprecate/__init__.py
from pydantic import Field from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import EndpointProperty from meerkat.interactive.graph import Store from ...abstract import Component def is_none(x): return (isinstance(x, Store) and x.__wrapped__ is None) or x is None class Plot(Component): # name: str = "Plot" df: "DataFrame" x: str y: str x_label: str = None y_label: str = None type: str = Store("scatter") slot: str = None keys_to_remove: list = Field(default_factory=list) metadata_columns: list = Field(default_factory=list) on_select: EndpointProperty = None on_remove: EndpointProperty = None
meerkat-main
meerkat/interactive/app/src/lib/component/deprecate/plot/__init__.py
# from typing import List, Union # import numpy as np # from meerkat.dataframe import DataFrame # from meerkat.interactive.app.src.lib.component.abstract import BaseComponent # from meerkat.interactive.edit import EditTarget # from meerkat.interactive.graph import Store, make_store # class Editor(BaseComponent): # name = "Editor" # def __init__( # self, # df: DataFrame, # col: Union[Store, str], # target: EditTarget = None, # selected: Store[List[int]] = None, # primary_key: str = None, # title: str = None, # ) -> None: # super().__init__() # self.col = make_store(col) # self.text = make_store("") # self.primary_key = primary_key # self.df = df # if target is None: # df["_edit_id"] = np.arange(len(df)) # target = EditTarget(self.df, "_edit_id", "_edit_id") # self.target = target # self.selected = selected # self.title = title if title is not None else "" # @property # def props(self): # return { # "df": self.df.config, # FIXME # "target": self.target.config, # "col": self.col.config, # "text": self.text.config, # "selected": self.selected.config, # "primary_key": self.primary_key, # "title": self.title, # }
meerkat-main
meerkat/interactive/app/src/lib/component/deprecate/editor/__init__.py
from typing import List, Optional from pydantic import validator from meerkat.interactive.app.src.lib.component.abstract import ( BaseComponent, Component, Slottable, ) from meerkat.tools.utils import classproperty class HtmlMixin: @classproperty def library(cls): return "html" @classproperty def namespace(cls): return "html" def _get_ipython_height(self): import re # search the classes for the tailwind height class if isinstance(self.classes, str): match = re.search(r"(^|\s)h-\[(\d+px)\]", self.classes.value) if match: return match.group(2) return super()._get_ipython_height() class a(Slottable, HtmlMixin, Component): classes: Optional[str] = None style: Optional[str] = None href: str = "" target: str = "" rel: str = "" class div(Slottable, HtmlMixin, Component): classes: Optional[str] = None style: Optional[str] = None def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """A div element. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) class flex(div): def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """A div element with flexbox styling. Places the children in a row. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) @validator("classes", pre=True, always=True) def make_flex(cls, v): return "flex flex-row " + v if v is not None else "flex flex-row" class flexcol(div): def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """A div element with flexbox styling. Places the children in a column. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) @validator("classes", pre=True, always=True) def make_flexcol(cls, v): return "flex flex-col " + v if v is not None else "flex flex-col" class grid(div): def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """A div element with grid styling. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) @validator("classes", pre=True, always=True) def make_grid(cls, v): return "grid " + v if v is not None else "grid" class gridcols2(div): def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """A div element with grid styling and two columns. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) @validator("classes", pre=True, always=True) def make_gridcols2(cls, v): return "grid grid-cols-2 " + v if v is not None else "grid grid-cols-2" class gridcols3(div): def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """A div element with grid styling and three columns. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) @validator("classes", pre=True, always=True) def make_gridcols3(cls, v): return "grid grid-cols-3 " + v if v is not None else "grid grid-cols-3" class gridcols4(div): def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """A div element with grid styling and four columns. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) @validator("classes", pre=True, always=True) def make_gridcols4(cls, v): return "grid grid-cols-4 " + v if v is not None else "grid grid-cols-4" class p(Slottable, HtmlMixin, Component): classes: Optional[str] = None style: Optional[str] = None def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """A p element. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) class span(Slottable, HtmlMixin, Component): classes: Optional[str] = None style: Optional[str] = None class h1(Slottable, HtmlMixin, Component): classes: Optional[str] = "text-4xl" style: Optional[str] = None def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """An h1 element, with a default font size of 4xl. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) class h2(Slottable, HtmlMixin, Component): classes: Optional[str] = "text-3xl" style: Optional[str] = None def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """An h2 element, with a default font size of 3xl. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) class h3(Slottable, HtmlMixin, Component): classes: Optional[str] = "text-2xl" style: Optional[str] = None def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """An h3 element, with a default font size of 2xl. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) class h4(Slottable, HtmlMixin, Component): classes: Optional[str] = "text-xl" style: Optional[str] = None def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """An h4 element, with a default font size of xl. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) class h5(Slottable, HtmlMixin, Component): classes: Optional[str] = "text-lg" style: Optional[str] = None def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """An h5 element, with a default font size of lg. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) class h6(Slottable, HtmlMixin, Component): classes: Optional[str] = "text-md" style: Optional[str] = None def __init__( self, slots: Optional[List[BaseComponent]] = None, *, classes: Optional[str] = None, style: Optional[str] = None, ): """An h6 element, with a default font size of md. Args: slots (List[BaseComponent], optional): The components to render inside this div. Defaults to None. classes (str, optional): The Tailwind classes to apply to this div. Defaults to None. style (str, optional): The inline CSS to apply to this div. Defaults to None. """ super().__init__(slots=slots, classes=classes, style=style) # class radio(Slottable, HtmlMixin, Component): # classes: Optional[str] = None # style: Optional[str] = None # name: str = "" # value: str = "" # checked: bool = False # disabled: bool = False # color: str = "purple" # on_change: Optional[Endpoint] = None class svg(Slottable, HtmlMixin, Component): classes: Optional[str] = None style: Optional[str] = None fill: Optional[str] = None viewBox: Optional[str] = None stroke: Optional[str] = None stroke_width: Optional[str] = None stroke_linecap: Optional[str] = None stroke_linejoin: Optional[str] = None # Keeping this attribute in makes the svg component not render # xmlns: str = "http://www.w3.org/2000/svg" aria_hidden: Optional[str] = None class path(Slottable, HtmlMixin, Component): classes: Optional[str] = None style: Optional[str] = None d: Optional[str] = None fill: Optional[str] = None clip_rule: Optional[str] = None fill_rule: Optional[str] = None stroke: Optional[str] = None stroke_linecap: Optional[str] = None stroke_linejoin: Optional[str] = None stroke_width: Optional[str] = None class ul(Slottable, HtmlMixin, Component): classes: Optional[str] = None style: Optional[str] = None class ol(Slottable, HtmlMixin, Component): pass class li(Slottable, HtmlMixin, Component): pass class table(Slottable, HtmlMixin, Component): pass class thead(Slottable, HtmlMixin, Component): pass class tbody(Slottable, HtmlMixin, Component): pass class tr(Slottable, HtmlMixin, Component): pass class th(Slottable, HtmlMixin, Component): pass class td(Slottable, HtmlMixin, Component): pass # class br(HtmlMixin, Component): # pass # class hr(HtmlMixin, Component): # pass class form(Slottable, HtmlMixin, Component): classes: Optional[str] = None style: Optional[str] = None action: Optional[str] = None method: str = "get" enctype: str = "application/x-www-form-urlencoded" target: Optional[str] = None class button(Slottable, HtmlMixin, Component): classes: Optional[str] = None style: Optional[str] = None type: str = "button" value: Optional[str] = None name: Optional[str] = None disabled: bool = False formaction: Optional[str] = None # class input(Slottable, HtmlMixin, Component): # pass # FIXME: remove closing tags in the Wrapper.svelte transipler # class input(HtmlMixin, Component): # classes: Optional[str] = None # style: Optional[str] = None # type: str = "text" # value: str = "" # placeholder: str = "" # name: str = "" # class img(Slottable, HtmlMixin, Component): # src: str = "" # alt: str = "" # width: str = "" # height: str = "" class textarea(Slottable, HtmlMixin, Component): pass class select(Slottable, HtmlMixin, Component): pass # class option(Slottable, HtmlMixin, Component): # pass # class label(Slottable, HtmlMixin, Component): # pass # class form(Slottable, HtmlMixin, Component): # pass # class iframe(Slottable, HtmlMixin, Component): # pass # class script(Slottable, HtmlMixin, Component): # pass # class style(Slottable, HtmlMixin, Component): # pass # class link(Slottable, HtmlMixin, Component): # pass # class meta(Slottable, HtmlMixin, Component): # pass # class header(Slottable, HtmlMixin, Component): # pass # class footer(Slottable, HtmlMixin, Component): # pass # class nav(Slottable, HtmlMixin, Component): # pass # class main(Slottable, HtmlMixin, Component): # pass # class section(Slottable, HtmlMixin, Component): # pass # class article(Slottable, HtmlMixin, Component): # pass # class aside(Slottable, HtmlMixin, Component): # pass # class details(Slottable, HtmlMixin, Component): # pass # class summary(Slottable, HtmlMixin, Component): # pass # class dialog(Slottable, HtmlMixin, Component): # pass # class menu(Slottable, HtmlMixin, Component): # pass # class menuitem(Slottable, HtmlMixin, Component): # pass
meerkat-main
meerkat/interactive/app/src/lib/component/html/__init__.py
import functools import os import pytest from meerkat.interactive import Page from meerkat.interactive.app.src.lib.component.html import ( div, flex, flexcol, grid, gridcols2, gridcols3, gridcols4, h1, h2, h3, h4, h5, h6, ) def hello_div(): return div(slots=["Hello world!"]) def hello_div_k(k=20): return [hello_div()] * k def test_div(): return functools.partial(div, slots=hello_div_k()) def test_flex(): return functools.partial(flex, slots=hello_div_k()) def test_flexcol(): return functools.partial(flexcol, slots=hello_div_k()) def test_grid(): return functools.partial(grid, slots=hello_div_k()) def test_gridcols2(): return functools.partial(gridcols2, slots=hello_div_k()) def test_gridcols3(): return functools.partial(gridcols3, slots=hello_div_k()) def test_gridcols4(): return functools.partial(gridcols4, slots=hello_div_k()) @pytest.mark.skipif(os.environ.get("TEST_REMOTE", False), reason="Skip html tests") def test_html_components(): component = div( slots=[ "Div with flex-col", test_div()(classes="flex flex-col bg-slate-200 text-red-800"), "Div with flex-row", test_div()(classes="flex flex-row"), "Div with grid-cols-2", test_div()(classes="grid grid-cols-2"), "Flex", test_flex()(), "Flexcol", test_flexcol()(), "Grid", test_grid()(), "Gridcols2", test_gridcols2()(), "Gridcols3", test_gridcols3()(), "Gridcols4", test_gridcols4()(), "H1", h1(slots=["H1"]), "H2", h2(slots=["H2"]), "H3", h3(slots=["H3"]), "H4", h4(slots=["H4"]), "H5", h5(slots=["H5"]), "H6", h6(slots=["H6"]), ] ) page = Page(component=component, id="html") page.launch()
meerkat-main
meerkat/interactive/app/src/lib/component/html/test_html.py
from .area import Area from .bar import Bar from .bar_polar import BarPolar from .box import Box from .choropleth import Choropleth from .choropleth_mapbox import ChoroplethMapbox from .density_contour import DensityContour from .density_heatmap import DensityHeatmap from .density_mapbox import DensityMapbox from .dynamic_scatter import DynamicScatter from .ecdf import ECDF from .funnel import Funnel from .funnel_area import FunnelArea from .histogram import Histogram from .icicle import Icicle from .line import Line from .line_3d import Line3D from .line_geo import LineGeo from .line_mapbox import LineMapbox from .line_polar import LinePolar from .line_ternary import LineTernary from .parallel_categories import ParallelCategories from .parallel_coordinates import ParallelCoordinates from .pie import Pie from .scatter import Scatter from .scatter_3d import Scatter3D from .scatter_geo import ScatterGeo from .scatter_mapbox import ScatterMapbox from .scatter_matrix import ScatterMatrix from .scatter_polar import ScatterPolar from .scatter_ternary import ScatterTernary from .strip import Strip from .sunburst import Sunburst from .timeline import Timeline from .treemap import Treemap from .violin import Violin __all__ = [ "Area", "Bar", "BarPolar", "Box", "Choropleth", "ChoroplethMapbox", "DensityContour", "DensityHeatmap", "DensityMapbox", "DynamicScatter", "ECDF", "Funnel", "FunnelArea", "Histogram", "Icicle", "Line", "Line3D", "LineGeo", "LineMapbox", "LinePolar", "LineTernary", "ParallelCategories", "ParallelCoordinates", "Pie", "Scatter", "Scatter3D", "ScatterGeo", "ScatterMapbox", "ScatterMatrix", "ScatterPolar", "ScatterTernary", "Strip", "Sunburst", "Timeline", "Treemap", "Violin", ]
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class ScatterMapbox(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, lat=None, lon=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.scatter_mapbox.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.scatter_mapbox(df.to_pandas(), lat=lat, lon=lon, color=color, **kwargs) super().__init__( df=df, on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/scatter_mapbox/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class ParallelCategories(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, dimensions=None, labels=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.parallel_categories.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.parallel_categories( df.to_pandas(), dimensions=dimensions, labels=labels, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/parallel_categories/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Scatter3D(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, z=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.scatter_3d.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.scatter_3d(df.to_pandas(), x=x, y=y, z=z, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/scatter_3d/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Violin(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.violin.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.violin(df.to_pandas(), x=x, y=y, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/violin/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class ScatterMatrix(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, dimensions=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.scatter_matrix.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.scatter_matrix( df.to_pandas(), dimensions=dimensions, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/scatter_matrix/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Box(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.box.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.box(df.to_pandas(), x=x, y=y, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/box/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Strip(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.strip.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.strip(df.to_pandas(), x=x, y=y, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/strip/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class ScatterGeo(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, lat=None, lon=None, locations=None, locationmode=None, geojson=None, featureidkey=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.scatter_geo.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.scatter_geo( df.to_pandas(), lat=lat, lon=lon, locations=locations, locationmode=locationmode, geojson=geojson, featureidkey=featureidkey, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/scatter_geo/__init__.py
from meerkat.tools.utils import classproperty from ...abstract import Component class Plot(Component): title: str @classproperty def namespace(cls): return "plotly"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/plot/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Area(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, line_group=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.area.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.area( df.to_pandas(), x=x, y=y, line_group=line_group, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/area/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class LineMapbox(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, lat=None, lon=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.line_mapbox.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.line_mapbox( df.to_pandas(), lat=lat, lon=lon, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/line_mapbox/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class LineGeo(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, lat=None, lon=None, locations=None, locationmode=None, geojson=None, featureidkey=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.line_geo.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.line_geo( df.to_pandas(), lat=lat, lon=lon, locations=locations, locationmode=locationmode, geojson=geojson, featureidkey=featureidkey, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/line_geo/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class DensityContour(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, z=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.density_contour.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.density_contour( df.to_pandas(), x=x, y=y, z=z, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/density_contour/__init__.py
import json from typing import List from meerkat import env from meerkat.dataframe import DataFrame from meerkat.ibis import IbisDataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty, endpoint from meerkat.interactive.event import EventInterface from meerkat.interactive.graph import Store, reactive from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") ibis = LazyLoader("ibis") class OnRelayoutInterface(EventInterface): """Defines the interface for an event. Subclass this to define the interface for a new event type. The class will specify the keyword arguments returned by an event from the frontend to any endpoint that has subscribed to it. All endpoints that are expected to receive an event of this type should ensure they have a signature that matches the keyword arguments defined in this class. """ x_range: List[float] y_range: List[float] class DynamicScatter(Component): df: DataFrame on_click: EndpointProperty = None on_relayout: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None data: str = "" layout: str = "" filtered_df: DataFrame = None @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, color=None, max_points: int = 1_000, on_click: EndpointProperty = None, on_relayout: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.scatter.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") full_size = len(df) # noqa: F841 @reactive() def get_layout(df: DataFrame, x: str, y: str, color: str): if isinstance(df, IbisDataFrame): fig_df = DataFrame.from_pandas( df.expr.order_by(ibis.random()) .limit(max_points)[x, y, color] .execute() ) else: fig_df = df if len(df) <= max_points else df.sample(max_points) fig = px.scatter(fig_df.to_pandas(), x=x, y=y, color=color, **kwargs) return json.dumps(json.loads(fig.to_json())["layout"]) layout = get_layout(df, x=x, y=y, color=color) axis_range = Store({"x0": None, "x1": None, "y0": None, "y1": None}) @endpoint() def on_relayout(axis_range: Store[dict], x_range, y_range): axis_range.set( {"x0": x_range[0], "x1": x_range[1], "y0": y_range[0], "y1": y_range[1]} ) @reactive() def filter_df(df: DataFrame, axis_range: dict, x: str, y: str): is_ibis = isinstance(df, IbisDataFrame) if is_ibis: df = df.expr else: df = df.view() if axis_range["x0"] is not None: df = df[axis_range["x0"] < df[x]] if axis_range["x1"] is not None: df = df[df[x] < axis_range["x1"]] if axis_range["y0"] is not None: df = df[axis_range["y0"] < df[y]] if axis_range["y1"] is not None: df = df[df[y] < axis_range["y1"]] if is_ibis: df = IbisDataFrame(df) return df @reactive() def sample_df(df: DataFrame): is_ibis = isinstance(df, IbisDataFrame) if is_ibis: df = DataFrame.from_pandas( df.expr.order_by(ibis.random()) .limit(max_points)[x, y, color, df.primary_key_name] .execute() ) else: df = df.view() if len(df) > max_points: df = df.sample(max_points) return df @reactive() def compute_plotly(df: DataFrame, x: str, y: str, color: str): fig = px.scatter(df.to_pandas(), x=x, y=y, color=color, **kwargs) return json.dumps(json.loads(fig.to_json())["data"]) df.mark() filtered_df = filter_df(df=df, axis_range=axis_range, x=x, y=y) sampled_df = sample_df(df=filtered_df) plotly_data = compute_plotly(df=sampled_df, x=x, y=y, color=color) super().__init__( df=df, on_click=on_click, selected=selected, on_select=on_select, on_relayout=on_relayout.partial(axis_range=axis_range), data=plotly_data, layout=layout, filtered_df=filtered_df, ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/dynamic_scatter/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class DensityMapbox(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, lat=None, lon=None, z=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.density_mapbox.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.density_mapbox(df.to_pandas(), lat=lat, lon=lon, z=z, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/density_mapbox/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class FunnelArea(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, names=None, values=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.funnel_area.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.funnel_area( df.to_pandas(), names=names, values=values, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/funnel_area/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class BarPolar(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, r=None, theta=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.bar_polar.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.bar_polar( df.to_pandas(), r=r, theta=theta, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/bar_polar/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class ParallelCoordinates(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, dimensions=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.parallel_categories.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.parallel_categories( df.to_pandas(), dimensions=dimensions, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/parallel_coordinates/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Pie(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, names=None, values=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.pie.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.pie( df.to_pandas(), names=names, values=values, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/pie/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Choropleth(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, lat=None, lon=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.choropleth.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.choropleth( df.to_pandas(), lat=lat, lon=lon, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/choropleth/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Scatter(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.scatter.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.scatter(df.to_pandas(), x=x, y=y, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/scatter/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Line(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, line_group=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.line.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.line( df.to_pandas(), x=x, y=y, line_group=line_group, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/line/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class LinePolar(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, r=None, theta=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.line_polar.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.line_polar(df.to_pandas(), r=r, theta=theta, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/line_polar/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class ScatterTernary(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, a=None, b=None, c=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.scatter_ternary.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.scatter_ternary(df.to_pandas(), a=a, b=b, c=c, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/scatter_ternary/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class ECDF(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.ecdf.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.ecdf(df.to_pandas(), x=x, y=y, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/ecdf/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Icicle(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, names=None, values=None, parents=None, path=None, ids=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.icicle.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.icicle( df.to_pandas(), names=names, values=values, parents=parents, path=path, ids=ids, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/icicle/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class ChoroplethMapbox(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, geojson=None, featureidkey=None, locations=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.choropleth_mapbox.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.choropleth_mapbox( df.to_pandas(), geojson=geojson, featureidkey=featureidkey, locations=locations, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/choropleth_mapbox/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class DensityHeatmap(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, z=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.density_heatmap.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.density_heatmap(df.to_pandas(), x=x, y=y, z=z, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/density_heatmap/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Bar(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.scatter_mapbox.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") if len(df[x].unique()) != len(df): df = df.groupby(x)[[x, y]].mean() df.create_primary_key("id") fig = px.bar(df.to_pandas(), x=x, y=y, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/bar/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Timeline(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x_start=None, x_end=None, y=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.timeline.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.timeline( df.to_pandas(), x_start=x_start, x_end=x_end, y=y, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/timeline/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Sunburst(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, names=None, values=None, parents=None, path=None, ids=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.sunburst.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.sunburst( df.to_pandas(), names=names, values=values, parents=parents, path=path, ids=ids, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/sunburst/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class ScatterPolar(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, r=None, theta=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.scatter_polar.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.scatter_polar(df.to_pandas(), r=r, theta=theta, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/scatter_polar/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Line3D(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, z=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.line_3d.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.line_3d(df.to_pandas(), x=x, y=y, z=z, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/line_3d/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Funnel(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.funnel.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.funnel(df.to_pandas(), x=x, y=y, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/funnel/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Treemap(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, names=None, values=None, parents=None, ids=None, path=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.treemap.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.treemap( df.to_pandas(), names=names, values=values, parents=parents, ids=ids, path=path, color=color, **kwargs, ) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/treemap/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class LineTernary(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, a=None, b=None, c=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.line_ternary.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.line_ternary(df.to_pandas(), a=a, b=b, c=c, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/line_ternary/__init__.py
from typing import List, Union from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, EndpointProperty from meerkat.tools.lazy_loader import LazyLoader from meerkat.tools.utils import classproperty, requires from ...abstract import Component px = LazyLoader("plotly.express") class Histogram(Component): df: DataFrame keyidxs: List[Union[str, int]] on_click: EndpointProperty = None selected: List[str] = [] on_select: Endpoint = None json_desc: str = "" @requires("plotly.express") def __init__( self, df: DataFrame, *, x=None, y=None, color=None, on_click: EndpointProperty = None, selected: List[str] = [], on_select: Endpoint = None, **kwargs, ): """See https://plotly.com/python-api- reference/generated/plotly.express.histogram.html for more details.""" if not env.is_package_installed("plotly"): raise ValueError( "Plotly components require plotly. Install with `pip install plotly`." ) if df.primary_key_name is None: raise ValueError("Dataframe must have a primary key") fig = px.histogram(df.to_pandas(), x=x, y=y, color=color, **kwargs) super().__init__( df=df, keyidxs=df.primary_key.values.tolist(), on_click=on_click, selected=selected, on_select=on_select, json_desc=fig.to_json(), ) @classproperty def namespace(cls): return "plotly" def _get_ipython_height(self): return "800px"
meerkat-main
meerkat/interactive/app/src/lib/component/plotly/histogram/__init__.py
from .flash_fill import FlashFill from .gallery_query import GalleryQuery __all__ = ["FlashFill", "GalleryQuery"]
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/__init__.py
# from typing import Any, Dict, List, Optional, Sequence, Union # import numpy as np # import pandas as pd # from pydantic import BaseModel, Field # from meerkat.columns.abstract import Column # from meerkat.columns.scalar import ScalarColumn # from meerkat.dataframe import DataFrame # from meerkat.interactive.endpoint import Endpoint, endpoint # from meerkat.interactive.graph import Store, react # from ..abstract import BaseComponent # @react() # def run_formula_bar(df: DataFrame, code: str): # df = df.view() # this is needed to avoid cycles in simple df case # lines = code.split("\n") # _locals = locals() # exec("\n".join(lines[:-1]), {}, _locals) # return eval(lines[-1], {}, _locals) # @endpoint # def on_run(code: Store[str], new_code: str): # print("is endpoint running") # code.set(new_code) # return code # class FormulaBar(BaseComponent): # on_run: Endpoint = None # def __init__(self, **kwargs): # super().__init__(**kwargs) # self.code = Store("df", backend_only=True) # self.on_run = on_run.partial(code=self.code) # def __call__(self, df: DataFrame): # out = run_formula_bar(df, self.code) # if not isinstance(out, DataFrame): # raise ValueError("The code must return a DataFrame.") # return out
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/formula_bar/__init__.py
from typing import TYPE_CHECKING from meerkat.interactive.app.src.lib.component.core.carousel import Carousel from meerkat.interactive.app.src.lib.component.core.gallery import Gallery from meerkat.interactive.app.src.lib.component.core.markdown import Caption from meerkat.interactive.app.src.lib.component.core.match import Match from meerkat.interactive.graph.magic import magic from meerkat.interactive.graph.reactivity import reactive from meerkat.ops.cond import _bool as mkbool from meerkat.ops.cond import cor from ...html import div, flex, flexcol if TYPE_CHECKING: from meerkat import DataFrame class GalleryQuery(div): # match: Match = None # gallery: Gallery = None def __init__( self, df: "DataFrame", main_column: str, against: str, allow_selection: bool = False, classes: str = "h-screen", ): """ Args: df: The DataFrame to match against and select examples from. main_column: The main column to display in the gallery. against: The column to match against. allow_selection: Whether to allow the user to select examples from the gallery even when not in image match mode. Note the selection will be reset when the user switches to a different mode. classes: The classes to apply to the div. """ from meerkat.ops.sort import sort match = Match( df=df, against=against, ) df = df.mark() # Get the name of the match criterion in a reactive way. with magic(): criterion_name = match.criterion.name # Sort df_sorted = sort(data=df, by=criterion_name, ascending=False) # Gallery with magic(): allow_selection = cor(allow_selection, mkbool(match._mode)) gallery = Gallery( df_sorted, main_column=main_column, allow_selection=allow_selection, ) match.set_selection(gallery.selected) @reactive() def get_positives(df, positive_selection, _positive_selection, selection, mode): if mode == "set_positive_selection": selected = positive_selection else: selected = _positive_selection if selected: return df.loc[selected] else: return df.head(0) @reactive() def get_negatives(df, negative_selection, _negative_selection, selection, mode): if mode == "set_negative_selection": selected = negative_selection else: selected = _negative_selection if selected: return df.loc[selected] else: return df.head(0) positive_caption_classes = reactive( lambda mode: "text-sm self-center mb-1" if mode == "set_positive_selection" else "text-sm self-center mb-1 text-gray-400" ) negative_caption_classes = reactive( lambda mode: "text-sm self-center mb-1" if mode == "set_negative_selection" else "text-sm self-center mb-1 text-gray-400" ) carousel_positives = Carousel( get_positives( df, match.positive_selection, match._positive_selection, gallery.selected, match._mode, ), main_column=main_column, ) carousel_negatives = Carousel( get_negatives( df, match.negative_selection, match._negative_selection, gallery.selected, match._mode, ), main_column=main_column, ) df.unmark() component = div( [ match, flex( [ flexcol( [ Caption( "Negative Query Images Selected", classes=negative_caption_classes(match._mode), ), carousel_negatives, ], classes="flex-1 justify-center align-middle", ), flexcol( [ Caption( "Positive Query Images Selected", classes=positive_caption_classes(match._mode), ), carousel_positives, ], classes="flex-1 justify-center align-middle", ), ], classes="justify-center gap-4 my-2", ), gallery, ], classes="h-full grid grid-rows-[auto,auto,4fr]", ) super().__init__( slots=[component], classes=classes, ) self.match = match self.gallery = gallery def _get_ipython_height(self) -> str: return "1000px"
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/gallery_query/__init__.py
import os from typing import TYPE_CHECKING, List import numpy as np from meerkat.interactive.app.src.lib.component.contrib.discover import Discover from meerkat.interactive.app.src.lib.component.contrib.global_stats import GlobalStats from meerkat.interactive.app.src.lib.component.contrib.row import Row from meerkat.interactive.app.src.lib.component.core.filter import FilterCriterion from meerkat.interactive.app.src.lib.component.deprecate.plot import Plot from meerkat.ops.sliceby.sliceby import SliceBy from meerkat.tools.lazy_loader import LazyLoader from ...abstract import BaseComponent if TYPE_CHECKING: from meerkat.dataframe import DataFrame manifest = LazyLoader("manifest") DELTA_COLUMN = "delta" class ChangeList(BaseComponent): code_control: bool = False gallery: BaseComponent gallery_match: BaseComponent gallery_filter: BaseComponent gallery_sort: BaseComponent gallery_fm_filter: BaseComponent gallery_code: BaseComponent discover: BaseComponent plot: BaseComponent active_slice: BaseComponent slice_sort: BaseComponent slice_match: BaseComponent global_stats: BaseComponent metric: str = ("Accuracy",) v1_name: str = (None,) v2_name: str = (None,) def __init__( self, df: "DataFrame", v1_column: str, v2_column: str, label_column: str, main_column: str, embed_column: str, repo_path: str, tag_columns: List[str] = None, metric: str = "Accuracy", v1_name: str = None, v2_name: str = None, code_control: bool = False, ): from mocha.repo import SliceRepo import meerkat as mk v1_name = v1_name or v1_column v2_name = v2_name or v2_column if tag_columns is None: tag_columns = [] if df.primary_key is None: raise ValueError("The DataFrame must have a primary key set.") df[DELTA_COLUMN] = df[v2_column] - df[v1_column] if os.path.exists(os.path.join(repo_path, "membership.mk")): slice_repo = SliceRepo.read(repo_path) else: slice_repo = SliceRepo(df, repo_path) membership_df = slice_repo.membership slices_df = slice_repo.slices base_examples = df with mk.gui.reactive(): examples_df = mk.merge(base_examples, membership_df, on=df.primary_key_name) examples_df = mk.sample(examples_df, len(examples_df)) # SLICE OVERVIEW @mk.gui.reactive def compute_slice_scores(examples: mk.DataPanel, slices: mk.DataPanel): """Produce a DataFrame with average delta's (and counts) for each slice.""" sb = examples.sliceby( slices["slice_id"].apply(slice_repo._slice_column) ) result = sb[DELTA_COLUMN].mean() # compute prototype image embeddings image_prototypes_df = sb[[embed_column]].mean(axis=0) image_prototypes_df["slice_id"] = image_prototypes_df["slice"].map( slice_repo._slice_id ) image_prototypes_df.remove_column("slice") slices = slices.merge(image_prototypes_df, on="slice_id") # # Hacky way to rename DELTA_COLUMN column -> count count = sb[DELTA_COLUMN].count() count["count"] = count[DELTA_COLUMN] count = count[["slice", "count"]] result = result.merge(count, on="slice") result = result.sort(by=DELTA_COLUMN, ascending=False) slices["slice"] = slices["slice_id"].apply(slice_repo._slice_column) out = ( slices[ "slice_id", "name", "description", "slice", embed_column, ] .merge(result, on="slice") .drop("slice") ) slices.remove_column("slice") return out stats_df = compute_slice_scores(examples=examples_df, slices=slices_df) @mk.endpoint() def append_to_sort(match_criterion, criteria: mk.Store): SOURCE = "match" criterion = mk.gui.Sort.create_criterion( column=match_criterion.name, ascending=False, source=SOURCE ) criteria.set([criterion] + [c for c in criteria if c.source != SOURCE]) sort_criteria = mk.Store([]) match = mk.gui.Match( df=base_examples, against=embed_column, title="Search Examples", on_match=append_to_sort.partial(criteria=sort_criteria), ) examples_df, _ = match(examples_df) # sort the gallery sort = mk.gui.Sort( df=examples_df, criteria=sort_criteria, title="Sort Examples" ) # the filter for the gallery # TODO(sabri): make this default to the active slice filter = mk.gui.Filter(df=examples_df, title="Filter Examples") fm_filter = mk.gui.FMFilter( df=examples_df, manifest_session=manifest.Manifest( client_name="huggingface", client_connection="http://127.0.0.1:7861", temperature=0.1, ), ) code = mk.gui.CodeCell() current_examples = filter(examples_df) current_examples = code(current_examples) current_examples = fm_filter(current_examples) current_examples = sort(current_examples) # removing dirty entries does not use the returned criteria. # but we need to pass it as an argument so that the topological sort # runs this command after the match. slice_sort = mk.gui.Sort(df=stats_df, criteria=[], title="Sort Slices") sb_match = mk.gui.Match( df=stats_df, against=embed_column, title="Search Slices", on_match=append_to_sort.partial(criteria=slice_sort.criteria), ) stats_df, _ = sb_match() stats_df = slice_sort(stats_df) @mk.endpoint() def on_select_slice( slice_id: str, criteria: mk.Store, code: str, query: str, ): """Update the gallery filter criteria with the selected slice. The gallery should be filtered based on the selected slice. If no slice is selected, there shouldn't be any filtering based on the slice. When the selected slice is changed, we should replace the existing filter criteria with the new one. """ source = "on_select_slice" # wrapped = [ # x if isinstance(x, FilterCriterion) else FilterCriterion(**x) # for x in criteria # ] # on_select_criterion = [x for x in wrapped if x.source == source] # assert ( # len(on_select_criterion) <= 1 # ), "Something went wrong - Cannot have more than one selected slice" # for x in on_select_criterion: # wrapped.remove(x) wrapped = [] if slice_id: wrapped.append( FilterCriterion( is_enabled=True, column=slice_repo._slice_column(slice_id), op="==", value=True, source=source, ) ) code.set("df") query.set("__default__") criteria.set(wrapped) # set to empty string if None # TODO: Need mk.None # selected.set(slice_id or "") @mk.endpoint() def on_remove(slice_id: str, slices_df: mk.DataFrame): slice_repo.remove(slice_id) mod = mk.gui.DataFrameModification( id=slices_df.id, scope=slices_df.columns ) mod.add_to_queue() slice_repo.write() @mk.gui.reactive def get_selected_slice_id( criteria: List[FilterCriterion], code: str, query: str, ): if len(criteria) == 1 and query == "__default__" and code == "df": criterion = criteria[0] if criterion.source == "on_select_slice": return slice_repo._slice_id(criterion.column) return "" selected_slice_id = get_selected_slice_id( filter.criteria, code.code, fm_filter.query ) plot = Plot( df=stats_df, x=DELTA_COLUMN, y="name", x_label="Accuracy Shift", y_label="slice", metadata_columns=["count", "description"], on_select=on_select_slice.partial( criteria=filter.criteria, query=fm_filter.query, code=code.code ), on_remove=on_remove.partial(slices_df=slices_df), ) @mk.endpoint() def on_write_row(key: str, column: str, value: str, df: mk.DataFrame): """Change the value of a column in the slice_df.""" if not key: return df[column][df.primary_key._keyidx_to_posidx(key)] = value # We have to force add the dataframe modification to trigger # downstream updates mod = mk.gui.DataFrameModification(id=df.id, scope=[column]) mod.add_to_queue() slice_repo.write() @mk.gui.reactive def compute_stats(df: mk.DataFrame): return { "count": len(df), f"{metric} Shift": df[DELTA_COLUMN].mean(), f"v1 {metric}": df[v1_column].mean(), f"v2 {metric}": df[v2_column].mean(), } stats = compute_stats(current_examples) @mk.endpoint() def on_slice_creation(examples_df: mk.DataFrame): current_df = filter(examples_df) current_df = code(current_df) current_df = fm_filter(current_df) slice_id = slice_repo.add( name="Unnamed Slice", membership=mk.DataFrame( { current_df.primary_key_name: current_df.primary_key, "slice": np.ones(len(current_df)), }, primary_key=current_df.primary_key_name, ), ) slice_repo.write() return slice_id active_slice_view = Row( df=stats_df, selected_key=selected_slice_id, columns=["name", "description"], stats=stats, # rename={""} title="Active Slice", on_change=on_write_row.partial( df=slices_df ), # the edits should be written on the slices_df on_slice_creation=on_slice_creation.partial( examples_df=examples_df ).compose( on_select_slice.partial( criteria=filter.criteria, query=fm_filter.query, code=code.code, ) ), ) @mk.gui.reactive def subselect_columns(df): return df[ list( set( [ main_column, DELTA_COLUMN, label_column, v1_column, v2_column, current_examples.primary_key_name, ] + tag_columns ) ) ] gallery = mk.gui.Gallery( df=subselect_columns(current_examples), main_column=main_column, tag_columns=tag_columns, ) @mk.endpoint() def add_discovered_slices(eb: SliceBy): for key, slice in eb.slices.items(): col = np.zeros(len(slice_repo.membership)) col[slice] = 1 # FIXME: make this interface less awful slice_repo.add( name=f"discovered_{key}", membership=mk.DataFrame( { eb.data.primary_key_name: eb.data.primary_key, "slice": col, }, primary_key=eb.data.primary_key_name, ), ) # add a sort by created time discover = Discover( df=examples_df, by=embed_column, target=v1_column, pred=v2_column, on_discover=add_discovered_slices, ) stats = GlobalStats( v1_name=v1_name, v2_name=v2_name, v1_mean=examples_df[v1_column].mean(), v2_mean=examples_df[v2_column].mean(), shift=examples_df[DELTA_COLUMN].mean(), inconsistency=examples_df[DELTA_COLUMN].std(), metric=metric, ) super().__init__( gallery_match=match, gallery_filter=filter, gallery_sort=sort, gallery_fm_filter=fm_filter, gallery_code=code, gallery=gallery, discover=discover, global_stats=stats, active_slice=active_slice_view, plot=plot, slice_sort=slice_sort, slice_match=sb_match, v1_name=v1_name, v2_name=v2_name, metric=metric, code_control=code_control, )
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/mocha/__init__.py
from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import EndpointProperty, endpoint from ...abstract import Component @endpoint def get_discover_schema(df: DataFrame): import meerkat as mk from meerkat.interactive.api.routers.dataframe import ( SchemaResponse, _get_column_infos, ) columns = [ k for k, v in df.items() if isinstance(v, mk.TorchTensorColumn) and len(v.shape) == 2 ] return SchemaResponse( id=df.id, columns=_get_column_infos(df, columns), nrows=len(df), ) @endpoint def discover(df: DataFrame, by: str, target: str, pred: str): eb = df.explainby( by, target={"targets": target, "pred_probs": pred}, n_slices=10, n_mixture_components=10, n_pca_components=256, use_cache=False, ) return eb class Discover(Component): df: DataFrame by: str target: str = None pred: str = None on_discover: EndpointProperty = None get_discover_schema: EndpointProperty = None def __init__(self, **kwargs): super().__init__(**kwargs) self.get_discover_schema = get_discover_schema.partial( df=self.df, ) on_discover = discover.partial(df=self.df, target=self.target, pred=self.pred) if self.on_discover is not None: on_discover = on_discover.compose(self.on_discover) self.on_discover = on_discover
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/discover/__init__.py
# from typing import List, Union # from meerkat.dataframe import DataFrame # from meerkat.interactive.edit import EditTarget # from meerkat.interactive.graph import Store, make_store # from ..abstract import BaseComponent # class StatsLabeler(BaseComponent): # name = "StatsLabeler" # def __init__( # self, # df: DataFrame, # label_target: EditTarget = None, # phase_target: EditTarget = None, # phase: Union[Store[str], str] = "train", # active_key: Union[Store[str], str] = None, # selected: Store[List[int]] = None, # primary_key: str = None, # precision_estimate: List[Store[float]] = None, # recall_estimate: List[Store[float]] = None, # ) -> None: # super().__init__() # self.df = df # self.label_target = label_target # self.phase_target = phase_target # self.phase = make_store(phase) # self.active_key = make_store(active_key) # self.selected = make_store(selected) # self.primary_key = primary_key # self.precision_estimate = make_store(precision_estimate) # self.recall_estimate = make_store(recall_estimate) # @property # def props(self): # return { # "df": self.df.config, # FIXME # "label_target": self.label_target.config, # "phase_target": self.phase_target.config, # "phase": self.phase.config, # "active_key": self.active_key.config, # "selected": self.selected.config, # "primary_key": self.primary_key, # "precision_estimate": self.precision_estimate.config, # "recall_estimate": self.recall_estimate.config, # }
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/stats_labeler/__init__.py
# from meerkat.dataframe import DataFrame # from ..abstract import BaseComponent # class SchemaTree(BaseComponent): # name = "SchemaTree" # def __init__( # self, # df: DataFrame, # ) -> None: # super().__init__() # self.df = df # @property # def props(self): # return { # "df": self.df.config, # FIXME # }
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/lm/__init__.py
import os import re from functools import partial from typing import TYPE_CHECKING, Dict from ...html import div if TYPE_CHECKING: from meerkat import Component, DataFrame class FlashFill(div): """A component for flash filling a column of data using large language models. Args: df (DataFrame): The dataframe to flash fill. target_column (str): The column to flash fill. """ def __init__( self, df: "DataFrame", target_column: str, manifest_cache_dir: str = "~/.cache/manifest", max_tokens: int = 1, ): df = df.view() if target_column not in df.columns: df[target_column] = "" df["is_train"] = False component, prompt = self._build_component(df) super().__init__( slots=[component], classes="h-full w-full", ) self._prompt = prompt self.manifest_cache_dir = os.path.abspath( os.path.expanduser(manifest_cache_dir) ) os.makedirs(self.manifest_cache_dir, exist_ok=True) self.max_tokens = max_tokens @property def prompt(self): pattern = r"^((.|\n)*)\{([^}]+)\}$" # Use re.search to find the match in the example_template string match = re.search(pattern, self._prompt.value) return match.group(1) def _get_ipython_height(self): return "600px" def _build_component(self, df: "DataFrame") -> "Component": from manifest import Manifest import meerkat as mk def complete_prompt(row: Dict[str, any], example_template: mk.Store[str]): assert isinstance(row, dict) output = example_template.format(**row) return output @mk.reactive def format_output_col(output_col): if output_col is None: return { "text": "Template doesn't end with column.", "classes": "text-red-600 px-2 text-sm", } else: return { "text": output_col, "classes": "font-mono font-bold bg-slate-200 rounded-md px-2 text-violet-600 w-fit", # noqa: E501 } @mk.endpoint def on_edit( df: mk.DataFrame, column: str, keyidx: any, posidx: int, value: any ): df.loc[keyidx, column] = value @mk.reactive(nested_return=True) def update_prompt( df: mk.DataFrame, template: mk.Store[str], instruction: mk.Store[str] ): """Update the df with the new prompt template. This is as simple as returning a view. """ df = df.view() # Extract out the example template from the prompt template. df["example"] = mk.defer( df, function=partial(complete_prompt, example_template=template), inputs="row", ) train_df = df[df["is_train"]] in_context_examples = "\n".join(train_df["example"]()) prompt = f"{instruction} {in_context_examples} {template}" return df, prompt @mk.reactive() def check_example_template(example_template: str, df: mk.DataFrame): example_template = example_template.strip() # check if example_template ends with {.*} using a # regex and extract the content between the brackets. # Define the regular expression pattern pattern = r"\{([^}]+)\}$" # Use re.search to find the match in the example_template string match = re.search(pattern, example_template) if match: # Extract the content between the curly braces using the group() method content = match.group(1) if content not in df.columns: raise ValueError( f"The column '{content}' does not exist in the dataframe." ) else: return None # raise ValueError("The example template must end with '{column_name}'") return content @mk.endpoint() def run_manifest( instruct_cmd: str, df: mk.DataFrame, output_col: str, selected: list, api: str, ): client_name, engine = api.split("/") manifest = Manifest( client_name=client_name, client_connection=os.getenv("OPENAI_API_KEY"), engine=engine, temperature=0, max_tokens=self.max_tokens, cache_name="sqlite", cache_connection=os.path.join(self.manifest_cache_dir, "cache.sqlite"), ) def _run_manifest(example: mk.Column): # Format instruct-example-instruct prompt. out = manifest.run( [f"{instruct_cmd} {in_context_examples} {x}" for x in example] ) return out selected_idxs = df.primary_key.isin(selected).to_pandas() # Concat all of the in-context examples. train_df = df[(~selected_idxs) & (df["is_train"])] in_context_examples = "\n".join(train_df["example"]()) fill_df = df[selected_idxs] # Filter based on train/abstain/fill # Only fill in the blanks. col = output_col flash_fill = mk.map( fill_df, function=_run_manifest, is_batched_fn=True, batch_size=4 ) # If the dataframe does not have the column, add it. if col not in df.columns: df[col] = "" df[col][selected_idxs] = flash_fill df.set(df) df = df.mark() instruction_editor = mk.gui.Editor( code="", title="Instruction Editor", # Is this paper theoretical or empirical?", ) example_template_editor = mk.gui.Editor( code="", # "Abstract: {abstract}, Title: {title}; Answer: {answer}", title="Training Template Editor", ) output_col = check_example_template( example_template=example_template_editor.code, df=df ) df_view, prompt = update_prompt( df=df, template=example_template_editor.code, instruction=instruction_editor.code, ) table = mk.gui.Table( df_view, on_edit=on_edit.partial(df=df), classes="h-[400px]" ) api_select = mk.gui.core.Select( values=[ "together/gpt-j-6b", "together/gpt-2", "openai/text-davinci-003", "openai/code-davinci-002", ], value="together/gpt-j-6b", ) run_manifest_button = mk.gui.Button( title="Flash Fill", icon="Magic", on_click=run_manifest.partial( instruct_cmd=instruction_editor.code, df=df_view, output_col=output_col, selected=table.selected, api=api_select.value, ), ) run_fn = run_manifest.partial( # noqa: F841 instruct_cmd=instruction_editor.code, output_col=output_col, selected=table.selected, api=api_select.value, ) formatted_output_col = format_output_col(output_col) overview_panel = mk.gui.html.flexcol( [ mk.gui.Text( "Infer selected rows using in-context learning.", classes="font-bold text-slate-600 text-sm", ), mk.gui.Text( "Specify the instruction and a template for " "in-context train examples.", classes="text-slate-600 text-sm", ), mk.gui.html.div( [ mk.gui.Text( "Target column: ", classes="text-slate-600 text-sm" ), mk.gui.Text( formatted_output_col["text"], classes=formatted_output_col["classes"], # noqa: E501 ), ], classes="gap-3 align-middle grid grid-cols-[auto_1fr]", ), mk.gui.html.grid( [ run_manifest_button, api_select, ], classes="grid grid-cols-[auto_1fr] gap-2", ), ], classes="items-left mx-4 gap-1", ) prompt_editor = mk.gui.html.flexcol( [ instruction_editor, example_template_editor, ], classes="flex-1 gap-1", ) return ( mk.gui.html.div( [ mk.gui.html.grid( [overview_panel, prompt_editor], classes="grid grid-cols-[1fr_3fr] space-x-5", ), mk.gui.html.div([table], classes="h-full w-screen"), ], classes="gap-4 h-screen grid grid-rows-[auto_1fr]", ), prompt, )
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/flash_fill/__init__.py
from typing import Any, Dict, List, Optional from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import EndpointProperty from ...abstract import Component class Row(Component): df: "DataFrame" columns: List[str] rename: Dict[str, str] = {} # The selected key. This should be an element in primary_key_col. selected_key: Optional[str] = None title: str = "" stats: Dict[str, Any] = {"Change": 0.2, "Count": 1000} # On change should take in 3 arguments: # - key: the primary key (key) # - column: the column name (column) # - value: the new value (value) on_change: EndpointProperty = None on_slice_creation: EndpointProperty = None
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/row/__init__.py
from ...abstract import BaseComponent class ChangeList(BaseComponent): gallery: BaseComponent gallery_match: BaseComponent gallery_filter: BaseComponent gallery_sort: BaseComponent discover: BaseComponent plot: BaseComponent active_slice: BaseComponent slice_sort: BaseComponent slice_match: BaseComponent global_stats: BaseComponent
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/change_list/__init__.py
import hashlib from typing import Sequence from meerkat.dataframe import DataFrame from meerkat.interactive.app.src.lib.component.abstract import Component from meerkat.interactive.endpoint import Endpoint, EndpointProperty, endpoint from meerkat.interactive.graph import Store, reactive, unmarked @endpoint def base_on_run( new_query: str, query: str, df: DataFrame, criteria_df: DataFrame, manifest_session, ): print(new_query) if new_query == "" or new_query == "__default__": query.set("__default__") return variables = {} exec(new_query, None, variables) prompt, answers = variables["prompt"], variables["answers"] df = df.view() def _run_inference(question: Sequence[str]): return manifest_session.run( [prompt.format(question=question) for question in question] ) # df = df.sample(100) # TODO: remove this # create a column name out of a hash of the query print("endpoint", new_query) column_name = _hash_query(new_query) if column_name not in criteria_df: out = df.map(_run_inference, is_batched_fn=True, batch_size=200, pbar=True) criteria_df[column_name] = criteria_df.primary_key.isin( df[out.isin(answers)].primary_key ) query.set(new_query) @reactive def filter_df(df: DataFrame, criteria_df: DataFrame, query: str): df = df[ df.primary_key.isin(criteria_df.primary_key[criteria_df[_hash_query(query)]]) ] return df class FMFilter(Component): query: str criteria_df: DataFrame on_run: EndpointProperty = None def __init__(self, df=DataFrame, on_run: Endpoint = None, manifest_session=None): query = Store("__default__") with unmarked(): criteria_df = df[[df.primary_key_name]] criteria_df[_hash_query("__default__")] = True manifest_session = manifest_session partial_on_run = base_on_run.partial( df=df, query=query, criteria_df=criteria_df, manifest_session=manifest_session, ) if on_run is not None: on_run = partial_on_run.compose(on_run) else: on_run = partial_on_run super().__init__(query=query, criteria_df=criteria_df, on_run=on_run) def __call__(self, df: DataFrame): out = filter_df(df, criteria_df=self.criteria_df, query=self.query) return out def _hash_query(query: str): return "fm_" + hashlib.sha256(query.encode()).hexdigest()[:8]
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/fm_filter/__init__.py
from ...abstract import Component class GlobalStats(Component): v1_name: str v2_name: str v1_mean: float v2_mean: float shift: float inconsistency: float metric: str = "Accuracy"
meerkat-main
meerkat/interactive/app/src/lib/component/contrib/global_stats/__init__.py
import datetime from typing import Any, Dict, List, Optional, Union from meerkat.interactive.app.src.lib.component.abstract import Component, Slottable from meerkat.interactive.endpoint import Endpoint from meerkat.tools.utils import classproperty from .types import ( ActivityType, Buttonshadows, ButtonType, DrawerTransitionTypes, FormColorType, GroupTimelineType, LinkType, Placement, ReviewType, SiteType, SizeType, TransitionTypes, number, ) try: from typing import Literal except ImportError: from typing_extensions import Literal class FlowbiteSvelteMixin: @classproperty def library(cls): return "flowbite-svelte" @classproperty def namespace(cls): return "flowbite" class Accordion(Slottable, FlowbiteSvelteMixin, Component): multiple: bool = False flush: bool = False activeClasses: str = "bg-gray-100 dark:bg-gray-800 text-gray-900 " "dark:text-white focus:ring-4 focus:ring-gray-200 dark:focus:ring-gray-800" inactiveClasses: str = ( "text-gray-500 dark:text-gray-400 hover:bg-gray-100 hover:dark:bg-gray-800" ) defaultClass: str = "text-gray-500 dark:text-gray-400" class AccordionItem(Slottable, FlowbiteSvelteMixin, Component): open: bool = False activeClasses: str = None inactiveClasses: str = None defaultClass: str = "flex items-center justify-between w-full font-medium " "text-left group-first:rounded-t-xl" transitionType: Literal["slide", "fade"] = "slide" transitionParams: dict = {} class Alert(Slottable, FlowbiteSvelteMixin, Component): dismissable: bool = False accent: bool = False color: Literal[ "blue", "dark", "red", "green", "yellow", "indigo", "purple", "pink" ] = "blue" class Avatar(Slottable, FlowbiteSvelteMixin, Component): src: str = "" href: str = None rounded: bool = False border: bool = False stacked: bool = False dot: dict = None alt: str = "" size: SizeType = "md" classes: str = None class Badge(Slottable, FlowbiteSvelteMixin, Component): color: Literal[ "blue", "dark", "red", "green", "yellow", "indigo", "purple", "pink" ] = "blue" large: bool = False border: bool = False href: str = None rounded: bool = False index: bool = False dismissable: bool = False class Breadcrumb(Slottable, FlowbiteSvelteMixin, Component): solid: bool = False navClass: str = "flex" solidClass: str = "flex px-5 py-3 text-gray-700 border border-gray-200 " "rounded-lg bg-gray-50 dark:bg-gray-800 dark:border-gray-700" olClass: str = "inline-flex items-center space-x-1 md:space-x-3" class BreadcrumbItem(Slottable, FlowbiteSvelteMixin, Component): home: bool = False href: str = None linkClass: str = "ml-1 text-sm font-medium text-gray-700 hover:text-gray-900 " "md:ml-2 dark:text-gray-400 dark:hover:text-white" spanClass: str = "ml-1 text-sm font-medium text-gray-500 md:ml-2 " "dark:text-gray-400" homeClass: str = "inline-flex items-center text-sm font-medium " "text-gray-700 hover:text-gray-900 dark:text-gray-400 dark:hover:text-white" class Button(Slottable, FlowbiteSvelteMixin, Component): classes: str = None pill: bool = False outline: bool = False gradient: bool = False size: SizeType = "md" href: str = None btnClass: str = None type: ButtonType = "button" color: Literal[ "alternative", "blue", "cyan", "dark", "light", "lime", "green", "pink", "primary", "red", "teal", "yellow", "purple", "purpleToBlue", "cyanToBlue", "greenToBlue", "purpleToPink", "pinkToOrange", "tealToLime", "redToYellow", ] = "blue" shadow: Optional[Buttonshadows] = None on_change: Endpoint = None on_click: Endpoint = None on_keydown: Endpoint = None on_keyup: Endpoint = None on_mouseenter: Endpoint = None on_mouseleave: Endpoint = None class ButtonGroup(Slottable, FlowbiteSvelteMixin, Component): size: SizeType = "md" divClass: str = "inline-flex rounded-lg shadow-sm" on_blur: Endpoint = None on_change: Endpoint = None on_click: Endpoint = None on_focus: Endpoint = None on_keydown: Endpoint = None on_keyup: Endpoint = None on_mouseenter: Endpoint = None on_mouseleave: Endpoint = None class Card(Slottable, FlowbiteSvelteMixin, Component): href: str = None horizontal: bool = False reverse: bool = False img: str = None padding: Literal["none", "sm", "md", "lg", "xl"] = "lg" size: SizeType = "sm" # Frame options, passed as $$restProps tag: Literal["div", "a"] = "div" color: Literal[ "gray", "red", "yellow", "green", "indigo", "default", "purple", "pink", "blue", "light", "dark", "dropdown", "navbar", "navbarUl", "form", "none", ] = "default" rounded: bool = False border: bool = False shadow: bool = False class Carousel(Slottable, FlowbiteSvelteMixin, Component): showIndicators: bool = True showCaptions: bool = True showThumbs: bool = True images: List[Dict[str, Any]] = [] slideControls: bool = True loop: bool = False duration: int = 2000 divClass: str = "overflow-hidden relative h-56 rounded-lg sm:h-64 xl:h-80 2xl:h-96" indicatorDivClass: str = ( "flex absolute bottom-5 left-1/2 z-30 space-x-3 -translate-x-1/2" ) captionClass: str = ( "h-10 bg-gray-300 dark:bg-gray-700 dark:text-white p-2 my-2 text-center" ) indicatorClass: str = ( "w-3 h-3 rounded-full bg-gray-100 hover:bg-gray-300 opacity-60" ) slideClass: str = "" class CarouselTransition(Slottable, FlowbiteSvelteMixin, Component): showIndicators: bool = True showCaptions: bool = True showThumbs: bool = True images: List[Dict[str, Any]] = [] slideControls: bool = True transitionType: TransitionTypes = "fade" transitionParams: dict = {} # TransitionParamTypes loop: bool = False duration: int = 2000 divClass: str = "overflow-hidden relative h-56 rounded-lg sm:h-64 xl:h-80 2xl:h-96" indicatorDivClass: str = ( "flex absolute bottom-5 left-1/2 z-30 space-x-3 -translate-x-1/2" ) captionClass: str = ( "h-10 bg-gray-300 dark:bg-gray-700 dark:text-white p-2 my-2 text-center" ) indicatorClass: str = ( "w-3 h-3 rounded-full bg-gray-100 hover:bg-gray-300 opacity-60" ) class DarkMode(Slottable, FlowbiteSvelteMixin, Component): btnClass: str = ( "text-gray-500 dark:text-gray-400 hover:bg-gray-100 dark:hover:bg-gray-700 " "focus:outline-none focus:ring-4 focus:ring-gray-200 dark:focus:ring-gray-700 " "rounded-lg text-sm p-2.5" ) class Drawer(Slottable, FlowbiteSvelteMixin, Component): activateClickOutside: bool = True hidden: bool = True position: Literal["fixed", "absolute"] = "fixed" leftOffset: str = "inset-y-0 left-0" rightOffset: str = "inset-y-0 right-0" topOffset: str = "inset-x-0 top-0" bottomOffset: str = "inset-x-0 bottom-0" width: str = "w-80" backdrop: bool = True bgColor: str = "bg-gray-900" bgOpacity: str = "bg-opacity-75" placement: Literal["left", "right", "top", "bottom"] = "left" # id: str = "drawer-example" divClass: str = "overflow-y-auto z-50 p-4 bg-white dark:bg-gray-800" transitionParams: dict = {} # DrawerTransitionParamTypes transitionType: DrawerTransitionTypes = "fly" class Dropdown(Slottable, FlowbiteSvelteMixin, Component): open: bool = False frameClass: str = "" # Configure slots for header and footer class DropdownItem(Slottable, FlowbiteSvelteMixin, Component): defaultClass: str = ( "font-medium py-2 px-4 text-sm hover:bg-gray-100 dark:hover:bg-gray-600" ) href: str = None # Events on_blur: Endpoint = None on_change: Endpoint = None on_click: Endpoint = None on_focus: Endpoint = None on_keydown: Endpoint = None on_keyup: Endpoint = None on_mouseenter: Endpoint = None on_mouseleave: Endpoint = None class DropdownDivider(Slottable, FlowbiteSvelteMixin, Component): divClass: str = "my-1 h-px bg-gray-100 dark:bg-gray-600" class DropdownHeader(Slottable, FlowbiteSvelteMixin, Component): divClass: str = "py-2 px-4 text-gray-700 dark:text-white" divider: bool = True class Footer(Slottable, FlowbiteSvelteMixin, Component): customClass: str = "" footerType: Literal[ "custom", "sitemap", "default", "logo", "socialmedia" ] = "default" class FooterBrand(Slottable, FlowbiteSvelteMixin, Component): aClass: str = "flex items-center" spanClass: str = ( "self-center text-2xl font-semibold whitespace-nowrap dark:text-white" ) imgClass: str = "mr-3 h-8" href: str = "" src: str = "" alt: str = "" name: str = "" target: str = None class FooterCopyright(Slottable, FlowbiteSvelteMixin, Component): spanClass: str = "block text-sm text-gray-500 sm:text-center dark:text-gray-400" aClass: str = "hover:underline" year: number = int(datetime.date.today().strftime("%Y")) # current year href: str = "" by: str = "" target: str = None class FooterIcon(Slottable, FlowbiteSvelteMixin, Component): href: str = "" ariaLabel: str = "" aClass: str = "text-gray-500 hover:text-gray-900 dark:hover:text-white" target: str = None class FooterLink(Slottable, FlowbiteSvelteMixin, Component): liClass: str = "mr-4 last:mr-0 md:mr-6" aClass: str = "hover:underline" href: str = "" target: str = None class FooterLinkGroup(Slottable, FlowbiteSvelteMixin, Component): ulClass: str = "text-gray-600 dark:text-gray-400" class Indicator(Slottable, FlowbiteSvelteMixin, Component): color: Literal[ "gray", "dark", "blue", "green", "red", "purple", "indigo", "yellow", "teal", "none", ] = "gray" rounded: bool = False size: SizeType = "md" border: bool = False placement: Literal[ "top-left", "top-center", "top-right", "center-left", "center", "center-right", "bottom-left", "bottom-center", "bottom-right", ] = None offset: bool = True class Kbd(Slottable, FlowbiteSvelteMixin, Component): kbdClass: str = "text-xs font-semibold text-gray-800 bg-gray-100 " "border border-gray-200 rounded-lg dark:bg-gray-600 " "dark:text-gray-100 dark:border-gray-500" class ArrowKeyDown(Slottable, FlowbiteSvelteMixin, Component): svgClass: str = "w-4 h-4" class ArrowKeyLeft(Slottable, FlowbiteSvelteMixin, Component): svgClass: str = "w-4 h-4" class ArrowKeyRight(Slottable, FlowbiteSvelteMixin, Component): svgClass: str = "w-4 h-4" class ArrowKeyUp(Slottable, FlowbiteSvelteMixin, Component): svgClass: str = "w-4 h-4" # class ListGroup(Slottable, FlowbiteSvelteMixin, Component): # items: List[ListGroupItemType] = [] # active: bool = False # classes: str = "" # class ListGroupItem(Slottable, FlowbiteSvelteMixin, Component): # classes: str = "" # # Events # on_blur: Endpoint = None # on_change: Endpoint = None # on_click: Endpoint = None # on_focus: Endpoint = None # on_keydown: Endpoint = None # on_keypress: Endpoint = None # on_keyup: Endpoint = None # on_mouseenter: Endpoint = None # on_mouseleave: Endpoint = None # on_mouseover: Endpoint = None class MegaMenu(Slottable, FlowbiteSvelteMixin, Component): classes: str = None items: List[LinkType] = [] open: bool = False full: bool = False class Modal(Slottable, FlowbiteSvelteMixin, Component): open: bool = False title: str = "" size: SizeType = "md" placement: Literal[ "top-left", "top-center", "top-right", "center-left", "center", "center-right", "bottom-left", "bottom-center", "bottom-right", ] = "center" autoclose: bool = False permanent: bool = False backdropClasses: str = "bg-gray-900 bg-opacity-50 dark:bg-opacity-80" on_hide: Endpoint = None on_open: Endpoint = None class Navbar(Slottable, FlowbiteSvelteMixin, Component): navClass: str = "px-2 sm:px-4 py-2.5 w-full" navDivClass: str = "mx-auto flex flex-wrap justify-between items-center " fluid: bool = True color: Literal[ "gray", "red", "yellow", "green", "indigo", "default", "purple", "pink", "blue", "light", "dark", "dropdown", "navbar", "navbarUl", "form", "none", ] = "navbar" class NavBrand(Slottable, FlowbiteSvelteMixin, Component): href: str = "" class NavLi(Slottable, FlowbiteSvelteMixin, Component): href: str = "" active: bool = False activeClass: str = "text-white bg-blue-700 md:bg-transparent " "md:text-blue-700 md:dark:text-white dark:bg-blue-600 md:dark:bg-transparent" nonActiveClass: str = "text-gray-700 hover:bg-gray-100 md:hover:bg-transparent " "md:border-0 md:hover:text-blue-700 dark:text-gray-400 md:dark:hover:text-white " "dark:hover:bg-gray-700 dark:hover:text-white md:dark:hover:bg-transparent" class NavUl(Slottable, FlowbiteSvelteMixin, Component): divClass: str = "w-full md:block md:w-auto" ulClass: str = "flex flex-col p-4 mt-4 md:flex-row md:space-x-8 md:mt-0 " "md:text-sm md:font-medium" hidden: bool = True # slideParams: SlideParams = {delay: 250, duration: 500, easing: quintOut} class Pagination(Slottable, FlowbiteSvelteMixin, Component): pages: List[LinkType] = [] activeClass: str = "text-blue-600 border border-gray-300 bg-blue-50 " "hover:bg-blue-100 hover:text-blue-700 dark:border-gray-700 " "dark:bg-gray-700 dark:text-white" normalClass: str = "text-gray-500 bg-white hover:bg-gray-100 " "hover:text-gray-700 dark:bg-gray-800 dark:border-gray-700 " "dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-white" ulClass: str = "inline-flex -space-x-px items-center" table: bool = False class PaginationItem(Slottable, FlowbiteSvelteMixin, Component): href: str = None active: bool = False activeClass: str = "" normalClass: str = "text-gray-500 bg-white hover:bg-gray-100 " "hover:text-gray-700 dark:bg-gray-800 dark:border-gray-700 " "dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-white" class Popover(Slottable, FlowbiteSvelteMixin, Component): title: str = "" defaultClass: str = "py-2 px-3" # class Popper(Slottable, FlowbiteSvelteMixin, Component): # activeContent: bool = False # arrow: bool = True # offset: number = 8 # placement: Placement = "top" # trigger: Literal["hover", "click"] = "hover" # triggeredBy: str = None # strategy: Literal["absolute", "fixed"] = "absolute" # open: bool = False # yOnly: bool = False # class Frame(Slottable, FlowbiteSvelteMixin, Component): # tag: str = "div" # color: Literal[ # "gray", # "red", # "yellow", # "green", # "indigo", # "default", # "purple", # "pink", # "blue", # "light", # "dark", # "dropdown", # "navbar", # "navbarUl", # "form", # "none", # ] = "default" # rounded: bool = False # border: bool = False # shadow: bool = False # # transition: TransitionFunc = None # params: object = {} # # node: HTMLElement = None # # use: Action = noop # options: object = {} class Progressbar(Slottable, FlowbiteSvelteMixin, Component): progress: number = 45 size: Literal["h-2.5", "h-3", "h-4", "h-5"] = "h-2.5" labelInside: bool = False labelOutside: str = "" color: Literal[ "blue", "gray", "red", "green", "yellow", "purple", "indigo" ] = "blue" labelInsideClass: str = ( "text-blue-100 text-xs font-medium text-center p-0.5 leading-none " "rounded-full" ) class Rating(Slottable, FlowbiteSvelteMixin, Component): divClass: str = "flex items-center" size: str = "24" total: number = 5 rating: number = 4 ceil: bool = False count: bool = False class AdvancedRating(Slottable, FlowbiteSvelteMixin, Component): divClass: str = "flex items-center mt-4" labelClass: str = "text-sm font-medium text-blue-600 dark:text-blue-500" ratingDivClass: str = "mx-4 w-2/4 h-5 bg-gray-200 rounded dark:bg-gray-700" ratingClass: str = "h-5 bg-yellow-400 rounded" rightLabelClass: str = "text-sm font-medium text-blue-600 dark:text-blue-500" unit: str = "%" class ScoreRating(Slottable, FlowbiteSvelteMixin, Component): desc1Class: str = "bg-blue-100 w-8 text-blue-800 text-sm font-semibold " "inline-flex items-center p-1.5 rounded dark:bg-blue-200 dark:text-blue-800" desc2Class: str = "ml-2 w-24 font-medium text-gray-900 dark:text-white" desc3spanClass: str = "mx-2 w-1 h-1 bg-gray-900 rounded-full dark:bg-gray-500" desc3pClass: str = "text-sm w-24 font-medium text-gray-500 dark:text-gray-400" class RatingComment(Slottable, FlowbiteSvelteMixin, Component): ceil: bool = False helpfullink: str = "" abuselink: str = "" class Review(Slottable, FlowbiteSvelteMixin, Component): review: ReviewType = None articleClass: str = "md:gap-8 md:grid md:grid-cols-3" divClass: str = "flex items-center mb-6 space-x-4" imgClass: str = "w-10 h-10 rounded-full" ulClass: str = "space-y-4 text-sm text-gray-500 dark:text-gray-400" liClass: str = "flex items-center" class Sidebar(Slottable, FlowbiteSvelteMixin, Component): asideClass: str = "w-64" class SidebarBrand(Slottable, FlowbiteSvelteMixin, Component): site: SiteType = None class SidebarCta(Slottable, FlowbiteSvelteMixin, Component): divWrapperClass: str = "p-4 mt-6 bg-blue-50 rounded-lg dark:bg-blue-900" divClass: str = "flex items-center mb-3" spanClass: str = "bg-orange-100 text-orange-800 text-sm font-semibold " "mr-2 px-2.5 py-0.5 rounded dark:bg-orange-200 dark:text-orange-900" label: str = "" class SidebarDropdownItem(Slottable, FlowbiteSvelteMixin, Component): aClass: str = "flex items-center p-2 pl-11 w-full text-base font-normal " "text-gray-900 rounded-lg transition duration-75 group hover:bg-gray-100 " "dark:text-white dark:hover:bg-gray-700" href: str = "" label: str = "" activeClass: str = "flex items-center p-2 pl-11 text-base font-normal " "text-gray-900 bg-gray-200 dark:bg-gray-700 rounded-lg dark:text-white " "hover:bg-gray-100 dark:hover:bg-gray-700" active: bool = False # Events on_blur: Endpoint = None on_click: Endpoint = None on_focus: Endpoint = None on_keydown: Endpoint = None on_keypress: Endpoint = None on_keyup: Endpoint = None on_mouseenter: Endpoint = None on_mouseleave: Endpoint = None on_mouseover: Endpoint = None class SidebarDropdownWrapper(Slottable, FlowbiteSvelteMixin, Component): btnClass: str = "flex items-center p-2 w-full text-base font-normal " "text-gray-900 rounded-lg transition duration-75 group hover:bg-gray-100 " "dark:text-white dark:hover:bg-gray-700" label: str = "" spanClass: str = "flex-1 ml-3 text-left whitespace-nowrap" ulClass: str = "py-2 space-y-2" isOpen: bool = False class SidebarGroup(Slottable, FlowbiteSvelteMixin, Component): ulClass: str = "space-y-2" borderClass: str = "pt-4 mt-4 border-t border-gray-200 dark:border-gray-700" border: bool = False class SidebarItem(Slottable, FlowbiteSvelteMixin, Component): aClass: str = "flex items-center p-2 text-base font-normal text-gray-900 " "rounded-lg dark:text-white hover:bg-gray-100 dark:hover:bg-gray-700" href: str = "" label: str = "" spanClass: str = "ml-3" activeClass: str = "flex items-center p-2 text-base font-normal text-gray-900 " "bg-gray-200 dark:bg-gray-700 rounded-lg dark:text-white hover:bg-gray-100 " "dark:hover:bg-gray-700" active: bool = False # Events on_blur: Endpoint = None on_click: Endpoint = None on_focus: Endpoint = None on_keydown: Endpoint = None on_keypress: Endpoint = None on_keyup: Endpoint = None on_mouseenter: Endpoint = None on_mouseleave: Endpoint = None on_mouseover: Endpoint = None class SidebarWrapper(Slottable, FlowbiteSvelteMixin, Component): divClass: str = "overflow-y-auto py-4 px-3 bg-gray-50 rounded dark:bg-gray-800" asideClass: str = "w-64" class SpeedDial(Slottable, FlowbiteSvelteMixin, Component): defaultClass: str = "fixed right-6 bottom-6" placement: Placement = "top" pill: bool = True tooltip: Union[Placement, Literal["none"]] = "left" trigger: Literal["hover", "click"] = "hover" textOutside: bool = False # id: str = str(uuid.uuid4()) # Events on_click: Endpoint = None class SpeedDialButton(Slottable, FlowbiteSvelteMixin, Component): pass class Spinner(Slottable, FlowbiteSvelteMixin, Component): color: Literal[ "blue", "gray", "green", "red", "yellow", "pink", "purple", "white" ] = "blue" bg: str = "text-gray-300" size: str = "8" currentFill: str = "currentFill" currentColor: str = "currentColor" class Tabs(Slottable, FlowbiteSvelteMixin, Component): style: Literal["full", "pill", "underline", "none"] = "none" defaultClass: str = "flex flex-wrap space-x-2" contentClass: str = "p-4 bg-gray-50 rounded-lg dark:bg-gray-800 mt-4" divider: bool = True activeClasses: str = ( "p-4 text-blue-600 bg-gray-100 rounded-t-lg dark:bg-gray-800 " "dark:text-blue-500" ) inactiveClasses: str = "p-4 text-gray-500 rounded-t-lg hover:text-gray-600 " "hover:bg-gray-50 dark:text-gray-400 dark:hover:bg-gray-800 " "dark:hover:text-gray-300" class TabItem(Slottable, FlowbiteSvelteMixin, Component): open: bool = False title: str = "Tab title" activeClasses: str = "" inactiveClasses: str = "" defaultClass: str = ( "inline-block text-sm font-medium text-center disabled:cursor-not-allowed" ) class Table(Slottable, FlowbiteSvelteMixin, Component): divClass: str = "relative overflow-x-auto" striped: bool = False hoverable: bool = False noborder: bool = False shadow: bool = False color: Literal[ "blue", "green", "red", "yellow", "purple", "indigo", "pink", "default", "custom", ] = "default" class TableBodyCell(Slottable, FlowbiteSvelteMixin, Component): tdClass: str = "px-6 py-4 whitespace-nowrap font-medium " class TableBodyRow(Slottable, FlowbiteSvelteMixin, Component): # TODO: figure out how to get context color: Literal[ "blue", "green", "red", "yellow", "purple", "default", "custom" ] = "purple" # getContext("color") class TableSearch(Slottable, FlowbiteSvelteMixin, Component): divClass: str = "relative overflow-x-auto shadow-md sm:rounded-lg" inputValue: str = "" striped: bool = False hoverable: bool = False placeholder: str = "Search" color: Literal[ "blue", "green", "red", "yellow", "purple", "default", "custom" ] = "default" class TableHead(Slottable, FlowbiteSvelteMixin, Component): theadClass: str = "text-xs uppercase" defaultRow: bool = True class Timeline(Slottable, FlowbiteSvelteMixin, Component): customClass: str = "" order: Literal[ "default", "vertical", "horizontal", "activity", "group", "custom" ] = "default" class TimelineItem(Slottable, FlowbiteSvelteMixin, Component): title: str = "" date: str = "" customDiv: str = "" customTimeClass: str = "" class Checkbox(Slottable, FlowbiteSvelteMixin, Component): color: FormColorType = "blue" title: str = "" date: str = "" class TimelineHorizontal(Slottable, FlowbiteSvelteMixin, Component): olClass: str = "items-center sm:flex" class TimelineItemHorizontal(Slottable, FlowbiteSvelteMixin, Component): title: str = "" date: str = "" class Toast(Slottable, FlowbiteSvelteMixin, Component): color: Literal[ "gray", "red", "yellow", "green", "indigo", "default", "purple", "pink", "blue", "light", "dark", "dropdown", "navbar", "navbarUl", "form", "none", ] = "blue" simple: bool = False position: Literal[ "top-left", "top-right", "bottom-left", "bottom-right", "none" ] = "none" open: bool = True divClass: str = "w-full max-w-xs p-4" classes: str = None class Tooltip(Slottable, FlowbiteSvelteMixin, Component): style: Literal["dark", "light", "auto", "custom"] = "dark" defaultClass: str = "py-2 px-3 text-sm font-medium" class Activity(Slottable, FlowbiteSvelteMixin, Component): olClass: str = "relative border-l border-gray-200 dark:border-gray-700" class ActivityItem(Slottable, FlowbiteSvelteMixin, Component): activities: List[ActivityType] = [] class Group(Slottable, FlowbiteSvelteMixin, Component): divClass: str = "p-5 mb-4 bg-gray-50 rounded-lg border border-gray-100 " "dark:bg-gray-800 dark:border-gray-700" timeClass: str = "text-lg font-semibold text-gray-900 dark:text-white" date: str = "" # date: Union[Date, str] = "" class GroupItem(Slottable, FlowbiteSvelteMixin, Component): timelines: List[GroupTimelineType] = [] # "blue", "red", "green", "yellow", "indigo", "purple", "pink" # ] = "blue" # TODO: check that these are the right colors custom: bool = False inline: bool = False group: Union[number, str] = "" value: Union[number, str] = "" on_change: Endpoint = None on_click: Endpoint = None on_keydown: Endpoint = None on_keyup: Endpoint = None on_mouseenter: Endpoint = None on_mouseleave: Endpoint = None on_paste: Endpoint = None class FloatingLabelInput(FlowbiteSvelteMixin, Component): # id: str = "" # determine if this should be uuid style: Literal["filled", "outlined", "standard"] = "standard" type: Literal["text"] = "text" # TODO: add more input types size: Literal["small", "default"] = "default" color: Literal["base", "green", "red"] = "base" value: str = "" label: str = "" on_blur: Endpoint = None on_change: Endpoint = None on_click: Endpoint = None on_focus: Endpoint = None on_keydown: Endpoint = None on_keypress: Endpoint = None on_keyup: Endpoint = None on_mouseenter: Endpoint = None on_mouseleave: Endpoint = None on_mouseover: Endpoint = None on_paste: Endpoint = None class Radio(Slottable, FlowbiteSvelteMixin, Component): color: Literal[ "blue", "red", "green", "yellow", "indigo", "purple", "pink" ] = "blue" custom: bool = False inline: bool = False group: Union[number, str] = "" value: Union[number, str] = "" on_blur: Endpoint = None on_change: Endpoint = None on_click: Endpoint = None on_focus: Endpoint = None on_keydown: Endpoint = None on_keypress: Endpoint = None on_keyup: Endpoint = None on_mouseenter: Endpoint = None on_mouseleave: Endpoint = None on_mouseover: Endpoint = None on_paste: Endpoint = None class Range(FlowbiteSvelteMixin, Component): value: number size: Literal["sm", "md", "lg"] = "md" min: number = None max: number = None step: number = None on_change: Endpoint = None on_click: Endpoint = None on_keydown: Endpoint = None on_keypress: Endpoint = None on_keyup: Endpoint = None class Search(FlowbiteSvelteMixin, Component): size: Literal["sm", "md", "lg"] = "lg" placeholder: str = "Search" value: Union[str, number] = "" on_blur: Endpoint = None on_change: Endpoint = None on_click: Endpoint = None on_focus: Endpoint = None on_keydown: Endpoint = None on_keypress: Endpoint = None on_keyup: Endpoint = None on_mouseenter: Endpoint = None on_mouseleave: Endpoint = None on_mouseover: Endpoint = None on_paste: Endpoint = None class Select(Slottable, FlowbiteSvelteMixin, Component): items: list value: Union[str, number] placeholder: str = "Choose option ..." underline: bool = False size: Literal["sm", "md", "lg"] = "md" on_change: Endpoint = None on_input: Endpoint = None class Textarea(FlowbiteSvelteMixin, Component): value: str = "" rows: int = 3 placeholder: str = "" classes: str = None on_blur: Endpoint = None on_change: Endpoint = None on_click: Endpoint = None on_focus: Endpoint = None on_input: Endpoint = None on_keydown: Endpoint = None on_keypress: Endpoint = None on_keyup: Endpoint = None on_mouseenter: Endpoint = None on_mouseleave: Endpoint = None on_mouseover: Endpoint = None on_paste: Endpoint = None class Toggle(Slottable, FlowbiteSvelteMixin, Component): size: Literal["small", "default", "large"] = "default" group: List[Union[str, number]] = () value: Union[str, number] = "" checked: bool = False on_change: Endpoint = None on_click: Endpoint = None """Typography.""" class A(Slottable, FlowbiteSvelteMixin, Component): href: str = "#" color: str = "text-blue-600 dark:text-blue-500" aClass: str = "inline-flex items-center hover:underline" class Blockquote(Slottable, FlowbiteSvelteMixin, Component): border: bool = False italic: bool = True borderClass: str = "border-l-4 border-gray-300 dark:border-gray-500" bgClass: str = "bg-gray-50 dark:bg-gray-800" bg: bool = False baseClass: str = "font-semibold text-gray-900 dark:text-white" alignment: Literal["left", "center", "right"] = "left" size: Literal[ "xs", "sm", "base", "lg", "xl", "2xl", "3xl", "4xl", "5xl", "6xl", "7xl", "8xl", "9xl", ] = "lg" class DescriptionList(Slottable, FlowbiteSvelteMixin, Component): tag: Literal["dt", "dd"] = "" dtClass: str = "text-gray-500 md:text-lg dark:text-gray-400" ddClass: str = "text-lg font-semibold" class Heading(Slottable, FlowbiteSvelteMixin, Component): tag: Literal["h1", "h2", "h3", "h4", "h5", "h6"] = "h1" color: str = "text-gray-900 dark:text-white" customSize: str = "" class Hr(Slottable, FlowbiteSvelteMixin, Component): icon: bool = False width: str = "w-full" height: str = "h-px" divClass: str = "inline-flex justify-center items-center w-full" hrClass: str = "bg-gray-200 rounded border-0 dark:bg-gray-700" iconDivClass: str = "absolute left-1/2 px-4 bg-white -translate-x-1/2 " textSpanClass: str = "absolute left-1/2 px-3 font-medium text-gray-900 " "bg-white -translate-x-1/2 dark:text-white " middleBgColor: str = "dark:bg-gray-900" class Layout(Slottable, FlowbiteSvelteMixin, Component): divClass: str = "grid" cols: str = "grid-cols-1 sm:grid-cols-2" gap: number = 4 class Li(Slottable, FlowbiteSvelteMixin, Component): icon: bool = False liClass: str = "" class List(Slottable, FlowbiteSvelteMixin, Component): tag: Literal["ul", "ol", "dl"] = "ul" list: Literal["disc", "none", "decimal"] = "disc" position: Literal["inside", "outside"] = "inside" color: str = "text-gray-500 dark:text-gray-400" olClass: str = "list-decimal list-inside" ulClass: str = "max-w-md" dlClass: str = "max-w-md divide-y divide-gray-200 dark:divide-gray-700" class Mark(Slottable, FlowbiteSvelteMixin, Component): color: str = "text-white dark:bg-blue-500" bgColor: str = "bg-blue-600" markClass: str = "px-2 rounded" class P(Slottable, FlowbiteSvelteMixin, Component): color: str = "text-gray-900 dark:text-white" height: Literal["normal", "relaxed", "loose"] = "normal" align: Literal["left", "center", "right"] = "left" justify: bool = False italic: bool = False firstupper: bool = False upperClass: str = "first-line:uppercase first-line:tracking-widest " "first-letter:text-7xl first-letter:font-bold first-letter:text-gray-900 " "dark:first-letter:text-gray-100 first-letter:mr-3 first-letter:float-left" opacity: Union[number, None] = None whitespace: Literal["normal", "nowrap", "pre", "preline", "prewrap"] = "normal" size: Literal[ "xs", "sm", "base", "lg", "xl", "2xl", "3xl", "4xl", "5xl", "6xl", "7xl", "8xl", "9xl", ] = "base" space: Literal[ "tighter", "tight", "normal", "wide", "wider", "widest", None, ] = None weight: Literal[ "thin", "extralight", "light", "normal", "medium", "semibold", "bold", "extrabold", "black", ] = "normal" class Secondary(Slottable, FlowbiteSvelteMixin, Component): color: str = "text-gray-500 dark:text-gray-400" secondaryClass: str = "font-semibold" class Span(Slottable, FlowbiteSvelteMixin, Component): italic: bool = False underline: bool = False linethrough: bool = False uppercase: bool = False gradient: bool = False highlight: bool = False highlightClass: str = "text-blue-600 dark:text-blue-500" decorationClass: str = "decoration-2 decoration-blue-400 " "dark:decoration-blue-600" gradientClass: str = ( "text-transparent bg-clip-text bg-gradient-to-r to-emerald-600 " "from-sky-400" ) __all__ = [ "Accordion", "AccordionItem", "Button", "Card", "Dropdown", "DropdownItem", "DropdownDivider", "DropdownHeader", ]
meerkat-main
meerkat/interactive/app/src/lib/component/flowbite/__init__.py
from dataclasses import dataclass from typing import Callable, List, Optional, Union try: from typing import Literal except ImportError: from typing_extensions import Literal number = Union[int, float] AlignType = Literal["text-center", "text-left", "text-right"] ButtonType = Literal["button", "submit", "reset"] Buttontypes = Literal[ "blue", "blue-outline", "dark", "dark-outline", "light", "green", "green-outline", "red", "red-outline", "yellow", "yellow-outline", "purple", "purple-outline", ] Buttonshadows = Literal[ "blue", "green", "cyan", "teal", "lime", "red", "pink", "purple" ] Colors = Literal[ "blue", "gray", "red", "yellow", "purple", "green", "indigo", "pink", "white", "custom", ] SizeType = Literal["sm", "md", "lg"] Placement = Literal["top", "bottom", "left", "right"] @dataclass class ActivityType: title: str # title: Union[HTMLElement, str] date: str # date: Union[Date, str] src: str alt: str text: str = None # text: Optional[Union[HTMLElement, str]] = None @dataclass class AuthFieldType: label: str fieldtype: str required: Optional[bool] = None placeholder: Optional[str] = None @dataclass class CheckboxType: id: str label: str checked: Optional[bool] = None disabled: Optional[bool] = None helper: Optional[str] = None Colors = Literal[ "blue", "gray", "red", "yellow", "purple", "green", "indigo", "pink", "white", "custom", ] @dataclass class DotType: top: Optional[bool] = None color: Optional[str] = None DrawerTransitionTypes = Optional[ Literal[ "fade", "fly", "slide", "blur", "in:fly", "out:fly", "in:slide", "out:slide", "in:fade", "out:fade", "in:blur", "out:blur", ] ] FormColorType = Literal["blue", "red", "green", "purple", "teal", "yellow", "orange"] Gradientduotones = Literal[ "purple2blue", "cyan2blue", "green2blue", "purple2pink", "pink2orange", "teal2lime", "red2yellow", ] @dataclass class IconType: name: str size: Optional[int] = None color: Optional[Colors] = None class_: Optional[str] = None @dataclass class ImgType: src: str alt: Optional[str] = None InputType = Literal[ "color", "date", "datetime-local", "email", "file", "hidden", "image", "month", "number", "password", "reset", "submit", "tel", "text", "time", "url", "week", "search", ] @dataclass class InteractiveTabType: name: str id: int content: str active: Optional[bool] = None disabled: Optional[bool] = None icon: Optional[IconType] = None iconSize: Optional[int] = None @dataclass class ListGroupItemType: current: Optional[bool] = None disabled: Optional[bool] = None href: Optional[str] = None @dataclass class LinkType: name: str href: Optional[str] = None rel: Optional[str] = None active: Optional[bool] = None @dataclass class ListCardType: img: ImgType field1: str field2: str = "" field3: str = "" @dataclass class NavbarType: name: str href: str rel: str = "" child: List["NavbarType"] = None @dataclass class PageType: pageNum: number href: str SizeType = Literal["xs", "sm", "md", "lg", "xl"] FormSizeType = Literal["sm", "md", "lg"] @dataclass class PillTabType: name: str selected: bool href: str @dataclass class ReviewType: name: str imgSrc: str imgAlt: str title: str rating: number address: Optional[str] = None reviewDate: Optional[str] = None item1: Optional[str] = None item2: Optional[str] = None item3: Optional[str] = None @dataclass class SelectOptionType: name: Union[str, number] value: Union[str, number] @dataclass class SidebarType: id: number name: str href: Optional[str] = None # icon: Optional[Type[SvelteComponent]] = None iconSize: Optional[number] = None iconClass: Optional[str] = None iconColor: Optional[str] = None rel: Optional[str] = None # children: Optional[List[SidebarType]] = None # subtext: Optional[HTMLElement] = None @dataclass class SidebarCtaType: label: str # text: HTMLElement @dataclass class SiteType: name: str href: str img: Optional[str] = None @dataclass class SocialMediaLinkType: parent: str children: Optional[List[LinkType]] = None @dataclass class SocialMediaType: href: str # icon: Type[SvelteComponent] iconSize: Optional[number] = None iconClass: Optional[str] = None @dataclass class TabHeadType: name: str id: number @dataclass class TabType: name: str active: bool href: str rel: Optional[str] = None @dataclass class TableDataHelperType: start: number end: number total: number @dataclass class TimelineItemType: date: str # date: Union[Date, str] title: str # icon: Optional[Type[SvelteComponent]] href: Optional[str] linkname: Optional[str] text: str # text: Optional[Union[HTMLElement, str]] @dataclass class TimelineItemVerticalType: date: str # date: Union[Date, str] title: str # icon: Optional[Type[SvelteComponent]] iconSize: Optional[int] iconClass: Optional[str] href: Optional[str] linkname: Optional[str] text: str # text: Optional[Union[HTMLElement, str]] @dataclass class TimelineItemHorizontalType: date: str # date: Union[Date, str] title: str # icon: Optional[Type[SvelteComponent]] iconSize: Optional[int] iconClass: Optional[str] text: str # text: Optional[Union[HTMLElement, str]] @dataclass class TransitionParamTypes: delay: Optional[int] duration: Optional[int] easing: Optional[Callable[[int], int]] css: Optional[Callable[[int, int], str]] tick: Optional[Callable[[int, int], None]] Textsize = Literal[ "text-xs", "text-sm", "text-base", "text-lg", "text-xl", "text-2xl", "text-3xl", "text-4xl", ] ToggleColorType = Literal["blue", "red", "green", "purple", "yellow", "teal", "orange"] TransitionTypes = Literal[ "fade", "fly", "slide", "blur", "in:fly", "out:fly", "in:slide", "out:slide", "in:fade", "out:fade", "in:blur", "out:blur", ] Colors = Literal[ "blue", "gray", "red", "yellow", "purple", "green", "indigo", "pink", "white", "custom", ] @dataclass class drawerTransitionParamTypes: amount: Optional[int] = None delay: Optional[int] = None duration: Optional[int] = None easing: Callable = None opacity: Optional[number] = None x: Optional[int] = None y: Optional[int] = None drawerTransitionTypes = Optional[ Literal[ "fade", "fly", "slide", "blur", "in:fly", "out:fly", "in:slide", "out:slide", "in:fade", "out:fade", "in:blur", "out:blur", ] ] @dataclass class DropdownType: name: str href: str divider: Optional[bool] = None FormColorType = Literal["blue", "red", "green", "purple", "teal", "yellow", "orange"] Gradientduotones = Literal[ "purple2blue", "cyan2blue", "green2blue", "purple2pink", "pink2orange", "teal2lime", "red2yellow", ] @dataclass class GroupTimelineType: title: str src: str alt: str href: Optional[str] = None isPrivate: Optional[bool] = None comment: Optional[str] = None @dataclass class IconType: name: str size: Optional[int] = None color: Optional[Colors] = None class_: Optional[str] = None @dataclass class IconTabType: name: str active: bool href: str rel: Optional[str] = None icon: Optional[str] = None iconSize: Optional[int] = None @dataclass class ImgType: src: str alt: Optional[str] = None InputType = Literal[ "color", "date", "datetime-local", "email", "file", "hidden", "image", "month", "number", "password", "reset", "submit", "tel", "text", "time", "url", "week", "search", ] SizeType = Literal["xs", "sm", "md", "lg", "xl"] FormSizeType = Literal["sm", "md", "lg"]
meerkat-main
meerkat/interactive/app/src/lib/component/flowbite/types.py
meerkat-main
meerkat/interactive/app/src/lib/shared/__init__.py
meerkat-main
meerkat/interactive/app/src/lib/shared/cell/__init__.py
from meerkat.interactive.app.src.lib.component.abstract import Component from meerkat.interactive.formatter.base import BaseFormatter class Website(Component): data: str height: int class WebsiteFormatter(BaseFormatter): component_class: type = Website data_prop: str = "data" def __init__(self, height: int = 50): super().__init__(height=height) def _encode(self, url: str) -> str: return url
meerkat-main
meerkat/interactive/app/src/lib/shared/cell/website/__init__.py
import math import textwrap from typing import Any import numpy as np import pandas as pd from pandas.io.formats.format import format_array from meerkat.interactive.app.src.lib.component.abstract import BaseComponent from meerkat.interactive.formatter.base import BaseFormatter class Scalar(BaseComponent): data: Any dtype: str = None precision: int = 3 percentage: bool = False class ScalarFormatter(BaseFormatter): component_class: type = Scalar data_prop: str = "data" def __init__(self, dtype: str = None, precision: int = 3, percentage: bool = False): super().__init__(dtype=dtype, precision=precision, percentage=percentage) def encode(self, cell: Any): # check for native python nan if isinstance(cell, float) and math.isnan(cell): return "NaN" if isinstance(cell, np.generic): if pd.isna(cell): return "NaN" return cell.item() if hasattr(cell, "as_py"): return cell.as_py() return str(cell) def html(self, cell: Any): cell = self.encode(cell) if isinstance(cell, str): cell = textwrap.shorten(cell, width=100, placeholder="...") return format_array(np.array([cell]), formatter=None)[0]
meerkat-main
meerkat/interactive/app/src/lib/shared/cell/basic/__init__.py
from functools import wraps from typing import Any, Callable, List, TypeVar, cast from meerkat.interactive.graph.marking import unmarked from meerkat.interactive.graph.reactivity import reactive # Used for annotating decorator usage of 'react'. # Adapted from PyTorch: # https://mypy.readthedocs.io/en/latest/generics.html#declaring-decorators FuncType = Callable[..., Any] F = TypeVar("F", bound=FuncType) T = TypeVar("T") _IS_MAGIC_CONTEXT: List[bool] = [] _MAGIC_FN = "magic" def _magic(fn: Callable) -> Callable: """Internal decorator that is used to mark a function with a wand. Wand functions can be activated when the magic context is active (`with magic:`). When the magic context is active, the function will be wrapped in `reactive` and will be executed as a reactive function. When the magic context is not active, the function will be effectively run with unmarked inputs (i.e. `with unmarked():`). This means that the function will not be added to the graph. The return value will be marked and returned. This allows the return value to be used as a marked element in the future. This is only meant for internal use. with mk.unmarked(): with mk.magic(): s = s + 3 # s.__add__ is a wand """ def __wand(fn: Callable): @wraps(fn) def wrapper(*args, **kwargs): """Wrapper function that wraps the function in `reactive` if the magic context is active, and just wraps with `mark` otherwise.""" # Check if magic context is active. if is_magic_context(): # If active, we wrap with `reactive` and return. return reactive(fn, nested_return=False)(*args, **kwargs) else: # Just wrap with `mark` and return. with unmarked(): out = reactive(fn, nested_return=False)(*args, **kwargs) # out = mark(out) return out # setattr(wrapper, "__wrapper__", _MAGIC_FN) return wrapper return __wand(fn) class magic: """A context manager and decorator that changes the behavior of Store objects inside it. All methods, properties and public attributes of Store objects will be wrapped in @reactive decorators. Examples: """ def __init__(self, magic: bool = True) -> None: self._magic = magic def __call__(self, func): @wraps(func) def decorate_context(*args, **kwargs): with self.clone(): return func(*args, **kwargs) setattr(decorate_context, "__wrapper__", _MAGIC_FN) return cast(F, decorate_context) def __enter__(self): _IS_MAGIC_CONTEXT.append(self._magic) return self def __exit__(self, type, value, traceback): _IS_MAGIC_CONTEXT.pop(-1) def clone(self): return self.__class__(self._magic) def is_magic_context() -> bool: """Whether the code is in a magic context. Returns: bool: True if the code is in a magic context. """ # By default, we should not assume we are in a magic context. # This will mean that Store objects will default to not decorating # their methods and properties with @reactive. if len(_IS_MAGIC_CONTEXT) == 0: return False # Otherwise, we check if the user has explicitly used the # `magic` context manager or decorator. return len(_IS_MAGIC_CONTEXT) > 0 and bool(_IS_MAGIC_CONTEXT[-1])
meerkat-main
meerkat/interactive/graph/magic.py
import logging import warnings from typing import Any, Generic, Iterator, List, Tuple, TypeVar, Union from fastapi.encoders import jsonable_encoder from pydantic import BaseModel, ValidationError from pydantic.fields import ModelField from wrapt import ObjectProxy from meerkat.interactive.graph.magic import _magic, is_magic_context from meerkat.interactive.graph.marking import is_unmarked_context, unmarked from meerkat.interactive.graph.reactivity import reactive from meerkat.interactive.modification import StoreModification from meerkat.interactive.node import NodeMixin from meerkat.interactive.types import Storeable from meerkat.interactive.utils import get_custom_json_encoder from meerkat.mixins.identifiable import IdentifiableMixin from meerkat.mixins.reactifiable import MarkableMixin __all__ = ["Store", "StoreFrontend", "make_store"] logger = logging.getLogger(__name__) class StoreFrontend(BaseModel): store_id: str value: Any has_children: bool is_store: bool = True T = TypeVar("T") # ObjectProxy must be the last base class class Store(IdentifiableMixin, NodeMixin, MarkableMixin, Generic[T], ObjectProxy): _self_identifiable_group: str = "stores" # By default, stores are marked. _self_marked = True def __init__(self, wrapped: T, backend_only: bool = False): super().__init__(wrapped=wrapped) if not isinstance(self, _IteratorStore) and isinstance(wrapped, Iterator): warnings.warn( "Wrapping an iterator in a Store is not recommended. " "If the iterator is derived from an iterable, wrap the iterable:\n" " >>> store = mk.Store(iterable)\n" " >>> iterator = iter(store)" ) # Set up these attributes so we can create the # schema and detail properties. self._self_schema = None self._self_detail = None self._self_value = None self._self_backend_only = backend_only @property def value(self): return self.__wrapped__ def to_json(self) -> Any: """Converts the wrapped object into a jsonifiable object.""" return jsonable_encoder( self.__wrapped__, custom_encoder=get_custom_json_encoder() ) @property def frontend(self): return StoreFrontend( store_id=self.id, value=self.__wrapped__, has_children=self.inode.has_children() if self.inode else False, ) @property def detail(self): return f"Store({self.__wrapped__}) has id {self.id} and node {self.inode}" def set(self, new_value: T) -> None: """Set the value of the store. This will trigger any reactive functions that depend on this store. Args: new_value (T): The new value of the store. Returns: None Note: Even if the new_value is the same as the current value, this will still trigger any reactive functions that depend on this store. To avoid this, check for equality before calling this method. """ if isinstance(new_value, Store): # if the value is a store, then we need to unpack so it can be sent to the # frontend new_value = new_value.__wrapped__ logging.debug(f"Setting store {self.id}: {self.value} -> {new_value}.") # TODO: Find operations that depend on this store and edit the cache. # This should be done in the StoreModification mod = StoreModification(id=self.id, value=new_value) self.__wrapped__ = new_value mod.add_to_queue() @unmarked() def __repr__(self) -> str: return f"{type(self).__name__}({repr(self.__wrapped__)})" def __getattr__(self, name: str) -> Any: # This method is only run when the attribute is not found in the class. # In this case, we will always punt the call to the wrapped object. # Only create a reactive function if we are not in an unmarked context # This is like creating another `getattr` function that is reactive # and calling it with `self` as the first argument. if is_magic_context(): @_magic def wrapper(wrapped, name: str = name): return getattr(wrapped, name) # Note: this will work for both methods and properties. return wrapper(self) else: # Otherwise, just return the `attr` as is. return getattr(self.__wrapped__, name) @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate(cls, v, field: ModelField): if not isinstance(v, cls): if not field.sub_fields: # Generic parameters were not provided so we don't try to validate # them and just return the value as is return cls(v) else: # Generic parameters were provided so we try to validate them # and return a Store object v, error = field.sub_fields[0].validate(v, {}, loc="value") if error: raise ValidationError(error) return cls(v) return v def __hash__(self): return hash(self.__wrapped__) @reactive() def __call__(self, *args, **kwargs): return self.__wrapped__(*args, **kwargs) @reactive() def __lt__(self, other): return super().__lt__(other) @reactive() def __le__(self, other): return super().__le__(other) @reactive() def __eq__(self, other): return super().__eq__(other) @reactive() def __ne__(self, other): return super().__ne__(other) @reactive() def __gt__(self, other): return super().__gt__(other) @reactive() def __ge__(self, other): return super().__ge__(other) @_magic def __nonzero__(self): return super().__nonzero__() # @reactive() # def to_str(self): # return super().__str__() @reactive() def __add__(self, other): return super().__add__(other) @reactive() def __sub__(self, other): return super().__sub__(other) @reactive() def __mul__(self, other): return super().__mul__(other) @reactive() def __div__(self, other): return super().__div__(other) @reactive() def __truediv__(self, other): return super().__truediv__(other) @reactive() def __floordiv__(self, other): return super().__floordiv__(other) @reactive() def __mod__(self, other): return super().__mod__(other) @reactive(nested_return=False) def __divmod__(self, other): return super().__divmod__(other) @reactive() def __pow__(self, other, *args): return super().__pow__(other, *args) @reactive() def __lshift__(self, other): return super().__lshift__(other) @reactive() def __rshift__(self, other): return super().__rshift__(other) @reactive() def __and__(self, other): return super().__and__(other) @reactive() def __xor__(self, other): return super().__xor__(other) @reactive() def __or__(self, other): return super().__or__(other) @reactive() def __radd__(self, other): return super().__radd__(other) @reactive() def __rsub__(self, other): return super().__rsub__(other) @reactive() def __rmul__(self, other): return super().__rmul__(other) @reactive() def __rdiv__(self, other): return super().__rdiv__(other) @reactive() def __rtruediv__(self, other): return super().__rtruediv__(other) @reactive() def __rfloordiv__(self, other): return super().__rfloordiv__(other) @reactive() def __rmod__(self, other): return super().__rmod__(other) @reactive() def __rdivmod__(self, other): return super().__rdivmod__(other) @reactive() def __rpow__(self, other, *args): return super().__rpow__(other, *args) @reactive() def __rlshift__(self, other): return super().__rlshift__(other) @reactive() def __rrshift__(self, other): return super().__rrshift__(other) @reactive() def __rand__(self, other): return super().__rand__(other) @reactive() def __rxor__(self, other): return super().__rxor__(other) @reactive() def __ror__(self, other): return super().__ror__(other) @reactive() def __neg__(self): return super().__neg__() @reactive() def __pos__(self): return super().__pos__() @_magic def __abs__(self): return super().__abs__() @reactive() def __invert__(self): return super().__invert__() # We do not need to decorate i-methods because they call their # out-of-place counterparts, which are reactive def __iadd__(self, other): warnings.warn( f"{type(self).__name__}.__iadd__ is out-of-place. Use __add__ instead." ) return self.__add__(other) def __isub__(self, other): warnings.warn( f"{type(self).__name__}.__isub__ is out-of-place. Use __sub__ instead." ) return self.__sub__(other) def __imul__(self, other): warnings.warn( f"{type(self).__name__}.__imul__ is out-of-place. Use __mul__ instead." ) return self.__mul__(other) def __idiv__(self, other): warnings.warn( f"{type(self).__name__}.__idiv__ is out-of-place. Use __div__ instead." ) return self.__div__(other) def __itruediv__(self, other): warnings.warn( f"{type(self).__name__}.__itruediv__ is out-of-place. " "Use __truediv__ instead." ) return self.__truediv__(other) def __ifloordiv__(self, other): warnings.warn( f"{type(self).__name__}.__ifloordiv__ is out-of-place. " "Use __floordiv__ instead." ) return self.__floordiv__(other) def __imod__(self, other): warnings.warn( f"{type(self).__name__}.__imod__ is out-of-place. Use __mod__ instead." ) return self.__mod__(other) def __ipow__(self, other): warnings.warn( f"{type(self).__name__}.__ipow__ is out-of-place. Use __pow__ instead." ) return self.__pow__(other) def __ilshift__(self, other): warnings.warn( f"{type(self).__name__}.__ilshift__ is out-of-place. " "Use __lshift__ instead." ) return self.__lshift__(other) def __irshift__(self, other): warnings.warn( f"{type(self).__name__}.__irshift__ is out-of-place. " "Use __rshift__ instead." ) return self.__rshift__(other) def __iand__(self, other): warnings.warn( f"{type(self).__name__}.__iand__ is out-of-place. Use __and__ instead." ) return self.__and__(other) def __ixor__(self, other): warnings.warn( f"{type(self).__name__}.__ixor__ is out-of-place. Use __xor__ instead." ) return self.__xor__(other) def __ior__(self, other): warnings.warn( f"{type(self).__name__}.__ior__ is out-of-place. Use __or__ instead." ) return self.__or__(other) # While __index__ must return an integer, we decorate it with @reactive(). # This means that any calls to __index__ when the store is marked will # return a Store, which will raise a TypeError. # We do this to make sure that wrapper methods calling __index__ # handle non-integer values appropriately. # NOTE: This only works if __index__ is always called from wrapper methods # and the user/developer has a way of intercepting these methods or creating # recommended practices for avoiding this error. @reactive() def __index__(self): return super().__index__() def _reactive_warning(self, name): # If the context is not unmarked and the store is operating in a magic # context, this method will raise a warning. # This will primarily be done by __dunder__ methods, which are called by # builtin Python functions (e.g. __len__ -> len, __int__ -> int, etc.) if not is_unmarked_context() and is_magic_context(): warnings.warn( f"Calling {name}(store) is not reactive. Use `mk.{name}(store)` to get" f"a reactive variable (i.e. a Store). `mk.{name}(store)` behaves" f"exactly like {name}(store) outside of this difference." ) # Don't use @_wand on: # - __len__ # - __int__ # - __long__ # - __float__ # - __complex__ # - __oct__ # - __hex__ # Python requires that these methods must return a primitive type # (i.e. not a Store). As such, we cannot wrap them in @reactive using # @_wand. # We allow the user to call these methods on stores (e.g. len(store)), # which will return the appropriate primitive type (i.e. not reactive). # We raise a warning to remind the user that these methods are not reactive. def __len__(self): self._reactive_warning("len") return super().__len__() def __int__(self): self._reactive_warning("int") return super().__int__() def __long__(self): self._reactive_warning("long") return super().__long__() def __float__(self): self._reactive_warning("float") return super().__float__() def __complex__(self): self._reactive_warning("complex") return super().__complex__() def __oct__(self): self._reactive_warning("oct") return super().__oct__() def __hex__(self): self._reactive_warning("hex") return super().__hex__() def __bool__(self): self._reactive_warning("bool") return super().__bool__() @_magic def __contains__(self, value): return super().__contains__(value) @reactive(nested_return=False) def __getitem__(self, key): return super().__getitem__(key) # TODO(Arjun): Check whether this needs to be reactive. # @reactive # def __setitem__(self, key, value): # print("In setitem", self, "key", key, "value", value, "type", type(value)) # # Make a shallow copy of the value because this operation is not in-place. # obj = self.__wrapped__.copy() # obj[key] = value # warnings.warn(f"{type(self).__name__}.__setitem__ is out-of-place.") # return type(self)(obj, backend_only=self._self_backend_only) @_magic def __delitem__(self, key): obj = self.__wrapped__.copy() del obj[key] warnings.warn(f"{type(self).__name__}.__delitem__ is out-of-place.") return type(self)(obj, backend_only=self._self_backend_only) @reactive(nested_return=False) def __getslice__(self, i, j): return super().__getslice__(i, j) # # TODO(Arjun): Check whether this needs to be reactive. # @_wand # def __setslice__(self, i, j, value): # obj = self.__wrapped__.copy() # obj[i:j] = value # warnings.warn(f"{type(self).__name__}.__setslice__ is out-of-place.") # return type(self)(obj, backend_only=self._self_backend_only) @_magic def __delslice__(self, i, j): obj = self.__wrapped__.copy() del obj[i:j] warnings.warn(f"{type(self).__name__}.__delslice__ is out-of-place.") return type(self)(obj, backend_only=self._self_backend_only) # def __enter__(self): # return self.__wrapped__.__enter__() # def __exit__(self, *args, **kwargs): # return self.__wrapped__.__exit__(*args, **kwargs) # Overriding __next__ causes issues when using Stores with third-party libraries. # @reactive # def __next__(self): # return next(self.__wrapped__) # @_wand: __iter__ behaves like a @_wand method, but cannot be decorated due to # Pythonic limitations @reactive() def __iter__(self): return iter(self.__wrapped__) class _IteratorStore(Store): """A special store that wraps an iterator.""" def __init__(self, wrapped: T, backend_only: bool = False): if not isinstance(wrapped, Iterator): raise ValueError("wrapped object must be an Iterator.") super().__init__(wrapped, backend_only=backend_only) @reactive() def __next__(self): return next(self.__wrapped__) def make_store(value: Union[str, Storeable]) -> Store: """Make a Store. If value is a Store, return it. Otherwise, return a new Store that wraps value. Args: value (Union[str, Storeable]): The value to wrap. Returns: Store: The Store wrapping value. """ return value if isinstance(value, Store) else Store(value) def _unpack_stores_from_object( obj: Any, unpack_nested: bool = False ) -> Tuple[Any, List[Store]]: """Unpack all the `Store` objects from a given object. By default, if a store is nested inside another store, it is not unpacked. If `unpack_nested` is True, then all stores are unpacked. Args: obj: The object to unpack stores from. unpack_nested: Whether to unpack nested stores. Returns: A tuple of the unpacked object and a list of the stores. """ # Must use no_react here so that calling a method on a `Store` # e.g. `obj.items()` doesn't return new `Store` objects. # Note: cannot use `no_react` as a decorator on this fn because # it will automatically unpack the stores in the arguments. with unmarked(): if not unpack_nested and isinstance(obj, Store): return obj.value, [obj] _type = type(obj) if isinstance(obj, Store): _type = type(obj.value) if isinstance(obj, (list, tuple)): stores = [] unpacked = [] for x in obj: x, stores_i = _unpack_stores_from_object(x, unpack_nested) unpacked.append(x) stores.extend(stores_i) if isinstance(obj, Store): stores.append(obj) return _type(unpacked), stores elif isinstance(obj, dict): stores = [] unpacked = {} for k, v in obj.items(): k, stores_i_k = _unpack_stores_from_object(k, unpack_nested) v, stores_i_v = _unpack_stores_from_object(v, unpack_nested) unpacked[k] = v stores.extend(stores_i_k) stores.extend(stores_i_v) if isinstance(obj, Store): stores.append(obj) return _type(unpacked), stores elif isinstance(obj, slice): stores = [] # TODO: Figure out if we should do unpack nested here. start, start_store = _unpack_stores_from_object(obj.start) stop, stop_store = _unpack_stores_from_object(obj.stop) step, step_store = _unpack_stores_from_object(obj.step) stores.extend(start_store) stores.extend(stop_store) stores.extend(step_store) return _type(start, stop, step), stores elif isinstance(obj, Store): return obj.value, [obj] else: return obj, []
meerkat-main
meerkat/interactive/graph/store.py
import logging from typing import List from meerkat.errors import TriggerError from meerkat.interactive.graph.marking import ( is_unmarked_context, is_unmarked_fn, mark, unmarked, ) from meerkat.interactive.graph.operation import Operation from meerkat.interactive.graph.reactivity import is_reactive_fn, reactive from meerkat.interactive.graph.store import Store, StoreFrontend, make_store from meerkat.interactive.modification import Modification from meerkat.interactive.node import _topological_sort from meerkat.state import state __all__ = [ "reactive", "unmarked", "mark", "is_unmarked_fn", "reactive", "is_unmarked_context", "is_reactive_fn", "reactive", "get_reactive_kwargs", "Store", "StoreFrontend", "make_store", "Operation", "trigger", ] logger = logging.getLogger(__name__) @unmarked() def trigger() -> List[Modification]: """Trigger the computation graph of an interface based on a list of modifications. To force trigger, add the modifications to the modification queue. Return: List[Modification]: The list of modifications that resulted from running the computation graph. """ # Get all the modifications collected so far # This clears the modification queue modifications = state.modification_queue.clear() # Stop tracking modifications since we're triggering with what we have state.modification_queue.unready() logger.debug(f"Triggering on {modifications}") # build a graph rooted at the stores and refs in the modifications list root_nodes = [mod.node for mod in modifications if mod.node is not None] # Sort the nodes in topological order, and keep the Operation nodes # TODO: dynamically traverse and sort the graph instead of pre-sorting. # We need to do this to skip operations where inputs are not changed. order = [ node.obj for node in _topological_sort(root_nodes) if isinstance(node.obj, Operation) ] new_modifications = [] if len(order) > 0: logger.debug( f"Triggered pipeline: {'->'.join([node.fn.__name__ for node in order])}" ) # Add the number of operations to the progress queue # TODO: this should be an object that contains other information # for the start of the progress bar state.progress_queue.add([op.fn.__name__ for op in order]) # Go through all the operations in order: run them and add # their modifications to the new_modifications list for i, op in enumerate(order): # Add the operation name to the progress queue # TODO: this should be an object that contains other information # for the progress bar state.progress_queue.add( {"op": op.fn.__name__, "progress": int(i / len(order) * 100)} ) try: mods = op() except Exception as e: # TODO (sabri): Change this to a custom error type raise TriggerError("Exception in trigger. " + str(e)) from e # TODO: check this # mods = [mod for mod in mods if not isinstance(mod, StoreModification)] new_modifications.extend(mods) state.progress_queue.add({"op": "Done!", "progress": 100}) logger.debug("Done running trigger pipeline.") return modifications + new_modifications
meerkat-main
meerkat/interactive/graph/__init__.py
import inspect import logging from typing import TYPE_CHECKING, Any, Callable, Dict, List, Union from meerkat.interactive.graph.marking import unmarked from meerkat.interactive.graph.utils import _replace_nodes_with_nodeables from meerkat.interactive.modification import ( DataFrameModification, Modification, StoreModification, ) from meerkat.interactive.node import NodeMixin from meerkat.interactive.types import Primitive if TYPE_CHECKING: from meerkat.interactive.graph.store import Store logger = logging.getLogger(__name__) def _check_fn_has_leading_self_arg(fn: Callable): """# FIXME: super hacky # We need to figure out why Store.__eq__ (and potentially other dunder methods) # are passed into `reactive` as the class method instead of the instance method. # In the meantime, we can check if the first argument is `self` and if so, # we can assume that the function is an instance method. """ import inspect parameters = list(inspect.signature(fn).parameters) if len(parameters) > 0: return "self" == parameters[0] return False class Operation(NodeMixin): def __init__( self, fn: Callable, args: List[Any], kwargs: Dict[str, Any], result: Any, skip_fn: Callable[..., bool] = None, ): super().__init__() self.fn = fn self.args = args self.kwargs = kwargs self.result = result self.skip_fn = skip_fn self.cache = None if self.skip_fn is None: self._skip_parameters = None else: # The fn parameters we need to extract for skip_fn. self._skip_parameters = _validate_and_extract_skip_fn( skip_fn=self.skip_fn, fn=self.fn ) self._reset_cache() def __repr__(self): return ( f"Operation({self.fn.__name__}, {self.args}, {self.kwargs}, {self.result})" ) def _reset_cache(self): """Set the cache to the new arguments and keyword arguments.""" args, kwargs = self._dereference_nodes() cache = inspect.getcallargs(self.fn, *args, **kwargs) self.cache = {param: cache[param] for param in self._skip_parameters} def _run_skip_fn(self, *args, **kwargs): """Run the skip_fn to determine if the operation should be skipped. Args: *args: The new arguments to the function. **kwargs: The new keyword arguments to the function. """ # Process cache. skip_kwargs = {f"old_{k}": v for k, v in self.cache.items()} self.cache = {} # Process new arguments. new_kwargs = inspect.getcallargs(self.fn, *args, **kwargs) new_kwargs = { f"new_{param}": new_kwargs[param] for param in self._skip_parameters } skip_kwargs.update(new_kwargs) skip = self.skip_fn(**skip_kwargs) logger.debug(f"Operation({self.fn.__name__}): skip_fn -> {skip}") return skip def _dereference_nodes(self): # Dereference the nodes. args = _replace_nodes_with_nodeables(self.args, unwrap_stores=True) kwargs = _replace_nodes_with_nodeables(self.kwargs, unwrap_stores=True) # Special logic to make sure we unwrap all Store objects, except those # that correspond to `self`. if _check_fn_has_leading_self_arg(self.fn): args = list(args) args[0] = _replace_nodes_with_nodeables(self.args[0], unwrap_stores=False) return args, kwargs def __call__(self) -> List[Modification]: """Execute the operation. Unpack the arguments and keyword arguments and call the function. Then, update the result Reference with the result and return a list of modifications. These modifications describe the delta changes made to the result Reference, and are used to update the state of the GUI. """ logger.debug(f"Running {repr(self)}") # Dereference the nodes. args, kwargs = self._dereference_nodes() # If we are skipping the function, then we can # return an empty list of modifications. if self.skip_fn is not None: skip = self._run_skip_fn(*args, **kwargs) # Reset the cache to the new arguments and keyword arguments. # FIXME: We are deferencing the nodes again, which we dont need to do. self._reset_cache() if skip: return [] with unmarked(): update = self.fn(*args, **kwargs) modifications = [] self.result = _update_result(self.result, update, modifications=modifications) return modifications def _update_result( result: Union[list, tuple, dict, "Store", Primitive], update: Union[list, tuple, dict, "Store", Primitive], modifications: List[Modification], ) -> Union[list, tuple, dict, "Store", Primitive]: """Update the result object with the update object. This recursive function will perform a nested update to the result with the update. This function will also update the modifications list with the changes made to the result object. Args: result: The result object to update. update: The update object to use to update the result. modifications: The list of modifications to update. Returns: The updated result object. """ from meerkat.dataframe import DataFrame from meerkat.interactive.graph.store import Store from meerkat.interactive.utils import is_equal if isinstance(result, DataFrame): # Detach the result object from the Node inode = result.detach_inode() # Attach the inode to the update object update.attach_to_inode(inode) # Create modifications modifications.append(DataFrameModification(id=inode.id, scope=update.columns)) return update elif isinstance(result, Store): # If the result is a Store, then we need to update the Store's value # and return a StoreModification # TODO(karan): now checking if the value is the same # This is assuming that all values put into Stores have an __eq__ method # defined that can be used to check if the value has changed. if isinstance(result, (str, int, float, bool, type(None), tuple)): # We can just check if the value is the same if not is_equal(result.value, update): result.set(update) modifications.append( StoreModification(id=result.inode.id, value=update) ) else: # We can't just check if the value is the same if the Store contains # a list, dict or object, since they are mutable (and it would just # return True). result.set(update) modifications.append(StoreModification(id=result.inode.id, value=update)) return result elif isinstance(result, list): # Recursively update each element of the list return [_update_result(r, u, modifications) for r, u in zip(result, update)] elif isinstance(result, tuple): # Recursively update each element of the tuple return tuple( _update_result(r, u, modifications) for r, u in zip(result, update) ) elif isinstance(result, dict): # Recursively update each element of the dict return { k: _update_result(v, update[k], modifications) for k, v in result.items() } else: # If the result is not a Reference or Store, then it is a primitive type # and we can just return the update return update def _validate_and_extract_skip_fn(*, skip_fn, fn) -> set: # Skip functions should have arguments that start with `old_` and `new_` # followed by the same keyword argument name. # e.g. def skip(old_x, new_x): fn_parameters = inspect.signature(fn).parameters.keys() skip_parameters = inspect.signature(skip_fn).parameters.keys() if not all( param.startswith("old_") or param.startswith("new_") for param in skip_parameters ): raise ValueError( f"Expected skip_fn to have parameters that start with " f"`old_` or `new_`, but got parameters: {skip_parameters}" ) # Remove the `old_` and `new_` prefixes from the skip parameters. skip_parameters_no_prefix = {param[4:] for param in skip_parameters} if not skip_parameters_no_prefix.issubset(fn_parameters): unknown_parameters = skip_parameters_no_prefix - fn_parameters unknown_parameters = [x for x in skip_parameters if x[4:] in unknown_parameters] unknown_parameters = ", ".join(unknown_parameters) raise ValueError( "Expected skip_fn to have parameters that match the " "parameters of the function, but got parameters: " f"{skip_parameters_no_prefix}" ) return skip_parameters_no_prefix
meerkat-main
meerkat/interactive/graph/operation.py
from typing import List from meerkat.interactive.node import Node, NodeMixin def _replace_nodeables_with_nodes(obj): if isinstance(obj, NodeMixin): obj = obj.inode elif isinstance(obj, list) or isinstance(obj, tuple): obj = type(obj)(_replace_nodeables_with_nodes(x) for x in obj) elif isinstance(obj, dict): obj = { _replace_nodeables_with_nodes(k): _replace_nodeables_with_nodes(v) for k, v in obj.items() } return obj def _replace_nodes_with_nodeables(obj, unwrap_stores=True): from meerkat.interactive.graph.store import Store if isinstance(obj, Node): obj = obj.obj if unwrap_stores: # Replace `Store` objects with their wrapped values if isinstance(obj, Store): obj = obj.__wrapped__ elif isinstance(obj, list) or isinstance(obj, tuple): obj = type(obj)(_replace_nodes_with_nodeables(x) for x in obj) elif isinstance(obj, dict): obj = { _replace_nodes_with_nodeables(k): _replace_nodes_with_nodeables(v) for k, v in obj.items() } return obj def _get_nodeables(*args, **kwargs) -> List[NodeMixin]: # TODO: figure out if we need to handle this case # Store([Store(1), Store(2), Store(3)]) nodeables = [] for arg in args: if isinstance(arg, NodeMixin): nodeables.append(arg) elif isinstance(arg, list) or isinstance(arg, tuple): nodeables.extend(_get_nodeables(*arg)) elif isinstance(arg, dict): nodeables.extend(_get_nodeables(**arg)) elif isinstance(arg, slice): nodeables.extend(_get_nodeables(arg.start, arg.stop, arg.step)) for _, v in kwargs.items(): if isinstance(v, NodeMixin): nodeables.append(v) elif isinstance(v, list) or isinstance(v, tuple): nodeables.extend(_get_nodeables(*v)) elif isinstance(v, dict): nodeables.extend(_get_nodeables(**v)) elif isinstance(v, slice): nodeables.extend(_get_nodeables(arg.start, arg.stop, arg.step)) return nodeables
meerkat-main
meerkat/interactive/graph/utils.py
from functools import wraps from typing import Any, Callable, List, TypeVar, cast # Used for annotating decorator usage of 'react'. # Adapted from PyTorch: # https://mypy.readthedocs.io/en/latest/generics.html#declaring-decorators FuncType = Callable[..., Any] F = TypeVar("F", bound=FuncType) T = TypeVar("T") _IS_UNMARKED_CONTEXT: List[bool] = [] _UNMARKED_FN = "unmarked" class unmarked: """A context manager and decorator that forces all objects within it to behave as if they are not marked. This means that any functions (reactive or not) called with those objects will never be rerun. Effectively, functions (by decoration) or blocks of code (with the context manager) behave as if they are not reactive. Examples: Consider the following function: >>> @reactive ... def f(x): ... return x + 1 If we call `f` with a marked object, then it will be rerun if the object changes: >>> x = mark(1) >>> f(x) # f is rerun when x changes Now, suppose we call `f` inside another function `g` that is not reactive: >>> def g(x): ... out = f(x) ... return out If we call `g` with a marked object, then the `out` variable will be recomputed if the object changes. Even though `g` is not reactive, `f` is, and `f` is called within `g` with a marked object. Sometimes, this might be what we want. However, sometimes we want to ensure that a function or block of code behaves as if it is not reactive. For this behavior, we can use the `unmarked` context manager: >>> with unmarked(): ... g(x) # g and nothing in g is rerun when x changes Or, we can use the `unmarked` decorator: >>> @unmarked ... def g(x): ... out = f(x) ... return out In both cases, the `out` variable will not be recomputed if the object changes, even though `f` is reactive. """ def __call__(self, func): from meerkat.interactive.graph.reactivity import reactive @wraps(func) def decorate_context(*args, **kwargs): with self.clone(): return reactive(func, nested_return=False)(*args, **kwargs) setattr(decorate_context, "__wrapper__", _UNMARKED_FN) return cast(F, decorate_context) def __enter__(self): _IS_UNMARKED_CONTEXT.append(True) return self def __exit__(self, type, value, traceback): _IS_UNMARKED_CONTEXT.pop(-1) def clone(self): return self.__class__() def is_unmarked_context() -> bool: """Whether the code is in an unmarked context. Returns: bool: True if the code is in an unmarked context. """ # By default, we should not assume we are in an unmarked context. # This will allow functions that are decorated with `reactive` to # add nodes to the graph. if len(_IS_UNMARKED_CONTEXT) == 0: return False # TODO: we need to check this since users are only allowed the use # of the `unmarked` context manager. Therefore, everything is reactive # by default, *unless the user has explicitly used `unmarked`*. return len(_IS_UNMARKED_CONTEXT) > 0 and bool(_IS_UNMARKED_CONTEXT[-1]) def is_unmarked_fn(fn: Callable) -> bool: """Check if a function is wrapped by the `unmarked` decorator.""" return ( hasattr(fn, "__wrapped__") and hasattr(fn, "__wrapper__") and fn.__wrapper__ == _UNMARKED_FN ) def mark(input: T) -> T: """Mark an object. If the input is an object, then the object will become reactive: all of its methods and properties will become reactive. It will be returned as a `Store` object. Args: input: Any object to mark. Returns: A reactive function or object. Examples: Use `mark` on primitive types: >>> x = mark(1) >>> # x is now a `Store` object Use `mark` on complex types: >>> x = mark([1, 2, 3]) Use `mark` on instances of classes: >>> import pandas as pd >>> df = pd.DataFrame({"a": [1, 2, 3]}) >>> x: Store = mark(df) >>> y = x.head() >>> class Foo: ... def __init__(self, x): ... self.x = x ... def __call__(self): ... return self.x + 1 >>> f = Foo(1) >>> x = mark(f) Use `mark` on functions: >>> aggregation = mark(mean) """ from meerkat.interactive.graph.store import Store from meerkat.mixins.reactifiable import MarkableMixin if isinstance(input, MarkableMixin): return input.mark() return Store(input)
meerkat-main
meerkat/interactive/graph/marking.py
import types from functools import partial, wraps from typing import Callable, Iterator from meerkat.interactive.graph.marking import is_unmarked_context, unmarked from meerkat.interactive.graph.operation import ( Operation, _check_fn_has_leading_self_arg, ) from meerkat.interactive.graph.utils import ( _get_nodeables, _replace_nodeables_with_nodes, ) from meerkat.interactive.node import NodeMixin from meerkat.mixins.reactifiable import MarkableMixin __all__ = ["reactive", "reactive", "is_unmarked_context"] _REACTIVE_FN = "reactive" def isclassmethod(method): """ StackOverflow: https://stackoverflow.com/a/19228282 """ bound_to = getattr(method, "__self__", None) if not isinstance(bound_to, type): # must be bound to a class return False name = method.__name__ for cls in bound_to.__mro__: descriptor = vars(cls).get(name) if descriptor is not None: return isinstance(descriptor, classmethod) return False def reactive( fn: Callable = None, nested_return: bool = False, skip_fn: Callable[..., bool] = None, backend_only: bool = False, ) -> Callable: """Internal decorator that is used to mark a function as reactive. This is only meant for internal use, and users should use the :func:`react` decorator instead. Functions decorated with this will create nodes in the operation graph, which are executed whenever their inputs are modified. A basic example that adds two numbers: .. code-block:: python @reactive def add(a: int, b: int) -> int: return a + b a = Store(1) b = Store(2) c = add(a, b) When either `a` or `b` is modified, the `add` function will be called again with the new values of `a` and `b`. A more complex example that concatenates two mk.DataFrame objects: .. code-block:: python @reactive def concat(df1: mk.DataFrame, df2: mk.DataFrame) -> mk.DataFrame: return mk.concat([df1, df2]) df1 = mk.DataFrame(...) df2 = mk.DataFrame(...) df3 = concat(df1, df2) Args: fn: See :func:`react`. nested_return: See :func:`react`. skip_fn: See :func:`react`. Returns: See :func:`react`. """ # TODO: Remove nested_return argument. With the addition of __iter__ and __next__ # to mk.Store, we no longer need to support nested return values. # This will require looking through current use of reactive and patching them. if fn is None: # need to make passing args to the args optional # note: all of the args passed to the decorator MUST be optional return partial( reactive, nested_return=nested_return, skip_fn=skip_fn, backend_only=backend_only, ) # Built-in functions cannot be wrapped in reactive. # They have to be converted to a lambda function first and then run. if isinstance(fn, types.BuiltinFunctionType): raise ValueError( "Cannot wrap built-in function in reactive. " "Please convert to lambda function first:\n" " >>> reactive(lambda x: {}(x))".format(fn.__name__) ) def __reactive(fn: Callable): @wraps(fn) def wrapper(*args, **kwargs): """This `wrapper` function is only run once. It creates a node in the operation graph and returns a `Reference` object that wraps the output of the function. Subsequent calls to the function will be handled by the graph. """ from meerkat.interactive.graph.store import ( Store, _IteratorStore, _unpack_stores_from_object, ) # nested_return is False because any operations on the outputs of the # function should recursively generate Stores / References. # For example, if fn returns a list. The reactified fn will return # a Store(list). # Then, Store(list)[0] should also return a Store. # TODO (arjun): These if this assumption holds. nonlocal nested_return nonlocal backend_only nonlocal fn _is_unmarked_context = is_unmarked_context() # Check if fn is a bound method (i.e. an instance method). # If so, we need to functionalize the method (i.e. make the method # into a function). # First argument in *args must be the instance. # We assume that the type of the instance will not change. def _fn_outer_wrapper(_fn): @wraps(_fn) def _fn_wrapper(*args, **kwargs): return _fn(*args, **kwargs) return _fn_wrapper # Unpack the stores from the args and kwargs unpacked_args, _ = _unpack_stores_from_object(list(args)) unpacked_kwargs, _ = _unpack_stores_from_object(kwargs) _force_no_react = False if hasattr(fn, "__self__") and fn.__self__ is not None: if isclassmethod(fn): # If the function is a classmethod, then it will always be # bound to the class when we grab it later in this block, # and we don't need to unpack the first argument. args = args else: args = (fn.__self__, *args) # Unpack the stores from the args and kwargs because # args has changed! # TODO: make this all nicer unpacked_args, _ = _unpack_stores_from_object(list(args)) unpacked_kwargs, _ = _unpack_stores_from_object(kwargs) # The method bound to the class. try: fn_class = getattr(fn.__self__.__class__, fn.__name__) except AttributeError: fn_class = getattr(fn.__self__.mro()[0], fn.__name__) fn = _fn_outer_wrapper(fn_class) # If `fn` is an instance method, then the first argument in `args` # is the instance. We should **not** unpack the `self` argument # if it is a Store. if args and isinstance(args[0], Store): unpacked_args[0] = args[0] elif _check_fn_has_leading_self_arg(fn): # If the object is a MarkableMixin and fn has a leading self arg, # (i.e. fn(self, ...)), then we need to check if the function # should be added to the graph. # If the object is a MarkableMixin, the fn will be added # to the graph only when the object is marked (i.e. `obj.marked`). # This is required for magic methods for MarkableMixin instances # because shorthand accessors (e.g. x[0] for x.__getitem__(0)) do not # use the __getattribute__ method. # TODO: When the function is an instance method, should # instance.marked determine if the function is reactive? # obj = args[0] # if isinstance(obj, MarkableMixin): # with unmarked(): # is_obj_reactive = obj.marked # _force_no_react = not is_obj_reactive # If `fn` is an instance method, then the first argument in `args` # is the instance. We should **not** unpack the `self` argument # if it is a Store. if isinstance(args[0], Store): unpacked_args[0] = args[0] # We need to check the arguments to see if they are reactive. # If any of the inputs into fn are reactive, we need to add fn # to the graph. with unmarked(): any_inputs_marked = _any_inputs_marked(*args, **kwargs) # Call the function on the args and kwargs with unmarked(): result = fn(*unpacked_args, **unpacked_kwargs) # TODO: Check if result is equal to one of the inputs. # If it is, we need to copy it. if _is_unmarked_context or _force_no_react or not any_inputs_marked: # If we are in an unmarked context, then we don't need to create # any nodes in the graph. # `fn` should be run as normal. return result # Now we're in a reactive context i.e. is_reactive() == True # Get all the NodeMixin objects from the args and kwargs. # These objects will be parents of the Operation node # that is created for this function. nodeables = _get_nodeables(*args, **kwargs) # Wrap the Result in NodeMixin objects if nested_return: result = _nested_apply( result, fn=partial(_wrap_outputs, backend_only=backend_only) ) elif isinstance(result, NodeMixin): result = result elif isinstance(result, Iterator): result = _IteratorStore(result, backend_only=backend_only) else: result = Store(result, backend_only=backend_only) # If the object is a ReactifiableMixin, we should turn # reactivity on. # TODO: This should be done in a nested way. if isinstance(result, MarkableMixin): result._self_marked = True with unmarked(): # Setup an Operation node if any of the args or kwargs # were nodeables op = None # Create Nodes for each NodeMixin object _create_nodes_for_nodeables(*nodeables) args = _replace_nodeables_with_nodes(args) kwargs = _replace_nodeables_with_nodes(kwargs) # Create the Operation node op = Operation( fn=fn, args=args, kwargs=kwargs, result=result, skip_fn=skip_fn, ) # For normal functions # Make a node for the operation if it doesn't have one if not op.has_inode(): op.attach_to_inode(op.create_inode()) # Add this Operation node as a child of all of the nodeables. # This function takes care of only adding it as a child for # nodeables that are marked. _add_op_as_child(op, *nodeables) # Attach the Operation node to its children (if it is not None) def _foo(nodeable: NodeMixin): # FIXME: make sure they are not returning a nodeable that # is already in the dag. May be related to checking that the graph # is acyclic. if not nodeable.has_inode(): inode_id = ( None if not isinstance(nodeable, Store) else nodeable.id ) nodeable.attach_to_inode( nodeable.create_inode(inode_id=inode_id) ) if op is not None: op.inode.add_child(nodeable.inode) _nested_apply(result, _foo) return result setattr(wrapper, "__wrapper__", _REACTIVE_FN) return wrapper return __reactive(fn) def is_reactive_fn(fn: Callable) -> bool: """Check if a function is wrapped by the `reactive` decorator.""" return ( hasattr(fn, "__wrapped__") and hasattr(fn, "__wrapper__") and fn.__wrapper__ == _REACTIVE_FN ) def _nested_apply(obj: object, fn: Callable): from meerkat.interactive.graph.store import Store def _internal(_obj: object, depth: int = 0): if isinstance(_obj, Store) or isinstance(_obj, NodeMixin): return fn(_obj) if isinstance(_obj, list): return [_internal(v, depth=depth + 1) for v in _obj] elif isinstance(_obj, tuple): return tuple(_internal(v, depth=depth + 1) for v in _obj) elif isinstance(_obj, dict): return {k: _internal(v, depth=depth + 1) for k, v in _obj.items()} elif _obj is None: return None elif depth > 0: # We want to call the function on the object (including primitives) when we # have recursed into it at least once. return fn(_obj) else: raise ValueError(f"Unexpected type {type(_obj)}.") return _internal(obj) def _add_op_as_child(op: Operation, *nodeables: NodeMixin): """Add the operation as a child of the nodeables. Args: op: The operation to add as a child. nodeables: The nodeables to add the operation as a child. """ for nodeable in nodeables: # Add the operation as a child of the nodeable triggers = nodeable.marked if isinstance(nodeable, MarkableMixin) else True nodeable.inode.add_child(op.inode, triggers=triggers) def _wrap_outputs(obj, backend_only=False): from meerkat.interactive.graph.store import Store, _IteratorStore if isinstance(obj, NodeMixin): return obj elif isinstance(obj, Iterator): return _IteratorStore(obj, backend_only=backend_only) return Store(obj, backend_only=backend_only) def _create_nodes_for_nodeables(*nodeables: NodeMixin): from meerkat.interactive.graph.store import Store for nodeable in nodeables: assert isinstance(nodeable, NodeMixin) # Make a node for this nodeable if it doesn't have one if not nodeable.has_inode(): inode_id = None if not isinstance(nodeable, Store) else nodeable.id nodeable.attach_to_inode(nodeable.create_inode(inode_id=inode_id)) def _any_inputs_marked(*args, **kwargs) -> bool: """Returns True if any of the inputs are reactive. Note: This function does not recursively check the arguments for reactive inputs. """ def _is_marked(obj): return isinstance(obj, MarkableMixin) and obj.marked return any(_is_marked(arg) for arg in args) or any( _is_marked(arg) for arg in kwargs.values() )
meerkat-main
meerkat/interactive/graph/reactivity.py
from ..app.src.lib.component.core.icon import Icon from .base import Formatter class IconFormatter(Formatter): component_class = Icon data_prop: str = "data" static_encode: bool = True def encode(self, data: str) -> str: return ""
meerkat-main
meerkat/interactive/formatter/icon.py
from typing import Any, Dict, List, Tuple import numpy as np from PIL import Image as PILImage from scipy.ndimage import zoom from meerkat import env from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, endpoint from meerkat.interactive.formatter.icon import IconFormatter from ..app.src.lib.component.core.medimage import MedicalImage from .base import DeferredFormatter, FormatterGroup from .image import ImageFormatter if env.package_available("voxel"): import voxel as vx from voxel import MedicalVolume else: MedicalVolume = None class MedicalImageFormatter(ImageFormatter): component_class = MedicalImage data_prop: str = "data" def __init__( self, max_size: Tuple[int] = None, classes: str = "", dim: int = 2, scrollable: bool = False, show_toolbar: bool = False, type: str = "image", segmentation_column: str = "", ): if not env.package_available("voxel"): raise ImportError( "voxel is not installed. Install with `pip install pyvoxel`." ) if not self._is_valid_type(type): raise ValueError( f"Unknown type '{type}'. Expected ['image', 'segmentation']." ) super().__init__(max_size=max_size, classes=classes) self.dim = dim self.scrollable = scrollable self.show_toolbar = show_toolbar self.type = type self.segmentation_column = segmentation_column self._fetch_data: Endpoint = self.fetch_data.partial(self) def encode( self, cell: MedicalVolume, *, skip_copy: bool = False, dim: int = None, type: str = None, ) -> List[str]: """Encodes an image as a base64 string. Args: cell: The image to encode. dim: The dimension to slice along. """ from meerkat.columns.deferred.base import DeferredCell if type is None: type = self.type if not self._is_valid_type(type): raise ValueError( f"Unknown type '{type}'. Expected ['image', 'segmentation']." ) if isinstance(cell, DeferredCell): cell = cell() return self.encode(cell, skip_copy=skip_copy, dim=dim, type=type) if dim is None: dim = self.dim if isinstance(dim, str): dim = cell.orientation.index(dim) if not self.scrollable: # TODO: Update when np.take supported in voxel. length = cell.shape[dim] sl = slice(length // 2, length // 2 + 1) sls = [slice(None), slice(None), slice(None)] sls[dim] = sl cell = cell[tuple(sls)] cell: MedicalVolume = cell.materialize() breakpoint if type == "image": return self._process_image(cell, dim) elif type == "segmentation": return self._process_segmentation(cell, dim) def _is_valid_type(self, type): return type in ["image", "segmentation"] def _process_image(self, cell, dim: int): cell = cell.apply_window(inplace=False) cell = self._resize(cell, slice_dim=dim) # Put the slice dimension first. arr = cell.volume arr = np.transpose(arr, (dim, *range(dim), *(range(dim + 1, cell.ndim)))) # Normalize the array to [0, 255] uint8. arr = arr - arr.min() arr = np.clip(arr, 0, np.percentile(arr, 98)) arr: np.ndarray = np.round(arr / arr.max() * 255) arr = arr.astype(np.uint8) arr_slices = [arr[i] for i in range(arr.shape[0])] # TODO: Investigate why we need to pass MedicalImageFormatter to super. return [super(MedicalImageFormatter, self).encode(x) for x in arr_slices] def _process_segmentation(self, cell, dim: int): # We assume the segmentation is one-hot encoded. arr: np.ndarray = cell.volume # Resize the image to match resolution. zoom_extent = self._get_zoom_extent(cell, dim) # Resize the image to max size. if self.max_size: inplane_dims = [i for i in range(3) if i != dim] inplane_shape = np.asarray([cell.shape[i] for i in inplane_dims]) downsample_factor = np.max(inplane_shape / np.asarray(self.max_size)) for _dim in inplane_dims: zoom_extent[_dim] /= downsample_factor # Zoom into the array (if necessary). if not np.allclose(zoom_extent, 1.0): arr = zoom(arr, zoom_extent) # Threshold the zoomed image. arr = arr > 0.5 arr = arr.astype(bool) # Colorize the image. arr = _colorize(arr) # Convert to 2D slices. arr = np.transpose(arr, (dim, *range(dim), *(range(dim + 1, cell.ndim)))) arr_slices = [PILImage.fromarray(arr[i]) for i in range(arr.shape[0])] return [ super(MedicalImageFormatter, self).encode(x, mode="RGBA") for x in arr_slices ] def _get_zoom_extent(self, mv: MedicalVolume, slice_dim: int) -> MedicalVolume: spacing = np.asarray(mv.pixel_spacing) inplane_dims = [i for i in range(3) if i != slice_dim] inplane_spacing = np.asarray([spacing[dim] for dim in inplane_dims]) zoom_extent = np.ones(2) # Resize for pixel spacing. if np.allclose(inplane_spacing, inplane_spacing[0]): return np.ones(mv.ndim) resolution = np.max(inplane_spacing) zoom_extent *= inplane_spacing / resolution total_zoom_extent = np.ones(mv.ndim) for i, dim in enumerate(inplane_dims): total_zoom_extent[dim] = zoom_extent[i] return total_zoom_extent def _resize(self, mv: MedicalVolume, slice_dim: int) -> MedicalVolume: """Resizes a medical volume so that in-plane is the same resolution (in mm). Args: mv: The medical volume to resize. slice_dim: The dimension to slice along. """ spacing = np.asarray(mv.pixel_spacing) zoom_extent = self._get_zoom_extent(mv, slice_dim=slice_dim) if np.allclose(zoom_extent, 1.0): return mv arr = zoom(mv.volume, zoom_extent) return MedicalVolume(arr, vx.to_affine(mv.orientation, spacing)) @endpoint() def fetch_data( self, df: DataFrame, column: str, index: int, dim: int = None, type: str = "image", ) -> List[str]: cell = df[column][index] return self.encode(cell, dim=dim, type=type) @property def props(self) -> Dict[str, Any]: return { "classes": self.classes, "show_toolbar": self.show_toolbar, "on_fetch": self._fetch_data.frontend, "dim": self.dim, "segmentation_column": self.segmentation_column, } def html(self, cell: MedicalVolume) -> str: # TODO: Fix standard html rendering. encoded = self.encode(cell) return f'<img src="{encoded[len(encoded) // 2]}">' def _get_state(self) -> Dict[str, Any]: return { "max_size": self.max_size, "classes": self.classes, "dim": self.dim, "show_toolbar": self.show_toolbar, } def _set_state(self, state: Dict[str, Any]): self.max_size = state["max_size"] self.classes = state["classes"] self.dim = state["dim"] self.show_toolbar = state["show_toolbar"] class MedicalImageFormatterGroup(FormatterGroup): formatter_class: type = MedicalImageFormatter def __init__(self, classes: str = "", dim: int = None, type: str = None): super().__init__( icon=IconFormatter(name="Image"), base=self.formatter_class(classes=classes), tiny=self.formatter_class(max_size=[32, 32], classes=classes), small=self.formatter_class(max_size=[64, 64], classes=classes), thumbnail=self.formatter_class(max_size=[256, 256], classes=classes), gallery=self.formatter_class( max_size=[512, 512], classes="h-full w-full" + " " + classes, ), full=self.formatter_class( classes=classes, scrollable=True, show_toolbar=True ), ) if dim is not None: self.dim = dim if type is not None: self.type = type @property def dim(self): return self["base"].dim @dim.setter def dim(self, value): for v in self._dict.values(): v = _get_wrapped_formatter(v) if isinstance(v, MedicalImageFormatter): v.dim = value @property def type(self): return self["base"].type @type.setter def type(self, value): for v in self._dict.values(): v = _get_wrapped_formatter(v) if isinstance(v, MedicalImageFormatter): v.type = value if value == "segmentation": self._dict["tiny"] = IconFormatter(name="Image") @property def segmentation_column(self): return self["base"].segmentation_column @segmentation_column.setter def segmentation_column(self, value): for v in self._dict.values(): v = _get_wrapped_formatter(v) if isinstance(v, MedicalImageFormatter): v.segmentation_column = value def _get_wrapped_formatter(formatter): if isinstance(formatter, DeferredFormatter): return _get_wrapped_formatter(formatter.wrapped) return formatter def _colorize(x: np.ndarray): """Colorize the segmentation array. Args: x: An array representing the segmentation (..., num_classes) Returns: An array of shape (..., 4) where the last dimension is RGBA. """ arr = np.zeros(x.shape[:-1] + (4,), dtype=np.uint8) num_classes = x.shape[-1] for k in range(num_classes): arr[x[..., k]] = np.asarray(_COLORS[k] + (255,)) return arr _COLORS = [ (255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255), (0, 255, 255), (128, 128, 128), (255, 128, 0), (128, 0, 128), (0, 128, 128), ]
meerkat-main
meerkat/interactive/formatter/medimage.py
import math import textwrap from typing import Any, Dict import numpy as np import pandas as pd from pandas.io.formats.format import format_array from meerkat.interactive.app.src.lib.component.core.number import Number from meerkat.interactive.formatter.base import BaseFormatter, FormatterGroup from meerkat.interactive.formatter.icon import IconFormatter class NumberFormatter(BaseFormatter): component_class: type = Number data_prop: str = "data" def __init__( self, dtype: str = "auto", precision: int = 3, percentage: bool = False, classes: str = "", ): self.dtype = dtype self.precision = precision self.percentage = percentage self.classes = classes @property def props(self): return { "dtype": self.dtype, "precision": self.precision, "percentage": self.percentage, "classes": self.classes, } def encode(self, cell: Any): # check for native python nan if isinstance(cell, float) and math.isnan(cell): return "NaN" if isinstance(cell, (str, int, float)): return cell if isinstance(cell, np.generic): if pd.isna(cell): return "NaN" return cell.item() if hasattr(cell, "as_py"): return cell.as_py() return str(cell) def html(self, cell: Any): cell = self.encode(cell) if isinstance(cell, str): cell = textwrap.shorten(cell, width=100, placeholder="...") return format_array(np.array([cell]), formatter=None)[0] def _get_state(self) -> Dict[str, Any]: return { "dtype": self.dtype, "precision": self.precision, "percentage": self.percentage, "classes": self.classes, } def _set_state(self, state: Dict[str, Any]): self.dtype = state["dtype"] self.precision = state["precision"] self.percentage = state["percentage"] self.classes = state["classes"] class NumberFormatterGroup(FormatterGroup): def __init__(self, **kwargs): super().__init__( base=NumberFormatter(**kwargs), icon=IconFormatter(name="Hash") )
meerkat-main
meerkat/interactive/formatter/number.py
from ..app.src.lib.component.core.raw_html import RawHTML from .base import Formatter, FormatterGroup from .icon import IconFormatter class HTMLFormatter(Formatter): component_class: type = RawHTML data_prop: str = "html" def encode(self, data: str) -> str: return data def html(self, cell: str) -> str: return "HTML" class HTMLFormatterGroup(FormatterGroup): def __init__(self, sanitize: bool = True, classes: str = ""): super().__init__( base=HTMLFormatter(view="full", sanitize=sanitize, classes=classes), icon=IconFormatter(name="Globe2"), tag=IconFormatter(name="Globe2"), thumbnail=HTMLFormatter( view="thumbnail", sanitize=sanitize, classes=classes ), gallery=HTMLFormatter(view="thumbnail", sanitize=sanitize, classes=classes), )
meerkat-main
meerkat/interactive/formatter/raw_html.py
from ..app.src.lib.component.core.code import Code from .base import Formatter, FormatterGroup from .icon import IconFormatter class CodeFormatter(Formatter): component_class = Code data_prop: str = "body" class CodeFormatterGroup(FormatterGroup): def __init__(self): super().__init__( base=CodeFormatter(), icon=IconFormatter(name="CodeSquare"), tiny=IconFormatter(name="CodeSquare"), tag=IconFormatter(name="CodeSquare"), thumbnail=CodeFormatter(), gallery=CodeFormatter(classes="h-full aspect-[3/4]"), full=CodeFormatter(classes="h-full w-ful rounded-lg"), )
meerkat-main
meerkat/interactive/formatter/code.py
from .audio import AudioFormatter, AudioFormatterGroup from .base import Formatter, deferred_formatter_group from .boolean import BooleanFormatter, BooleanFormatterGroup from .code import CodeFormatter, CodeFormatterGroup from .image import ( DeferredImageFormatter, DeferredImageFormatterGroup, ImageFormatter, ImageFormatterGroup, ) from .medimage import MedicalImageFormatter, MedicalImageFormatterGroup from .number import NumberFormatter, NumberFormatterGroup from .pdf import PDFFormatter, PDFFormatterGroup from .raw_html import HTMLFormatter, HTMLFormatterGroup from .tensor import TensorFormatter, TensorFormatterGroup from .text import TextFormatter, TextFormatterGroup __all__ = [ "Formatter", "deferred_formatter_group", "ImageFormatter", "ImageFormatterGroup", "DeferredImageFormatter", "DeferredImageFormatterGroup", "TextFormatter", "TextFormatterGroup", "NumberFormatter", "NumberFormatterGroup", "HTMLFormatter", "HTMLFormatterGroup", "CodeFormatter", "CodeFormatterGroup", "PDFFormatter", "PDFFormatterGroup", "TensorFormatter", "TensorFormatterGroup", "BooleanFormatter", "BooleanFormatterGroup", "AudioFormatter", "AudioFormatterGroup", "MedicalImageFormatter", "MedicalImageFormatterGroup", ] # backwards compatibility class DeprecatedFormatter: # noqa: E302 pass ObjectFormatter = DeprecatedFormatter BasicFormatter = DeprecatedFormatter NumpyArrayFormatter = DeprecatedFormatter # TensorFormatter = DeprecatedFormatter WebsiteFormatter = DeprecatedFormatter # CodeFormatter = DeprecatedFormatter PILImageFormatter = DeprecatedFormatter
meerkat-main
meerkat/interactive/formatter/__init__.py
from ..app.src.lib.component.core.pdf import PDF from .base import Formatter, FormatterGroup from .icon import IconFormatter class PDFFormatter(Formatter): component_class: type = PDF data_prop: str = "data" def encode(self, data: bytes) -> str: return data.decode("latin-1") class PDFFormatterGroup(FormatterGroup): def __init__(self): super().__init__( base=PDFFormatter(), icon=IconFormatter(name="FileEarmarkPdf"), tag=IconFormatter(name="FileEarmarkPdf"), small=IconFormatter(name="FileEarmarkPdf"), thumbnail=PDFFormatter(), full=PDFFormatter(classes="max-w-full max-h-full"), gallery=PDFFormatter(classes="h-full"), )
meerkat-main
meerkat/interactive/formatter/pdf.py
import numpy as np import pandas as pd from ..app.src.lib.component.core.checkbox import Checkbox from .base import Formatter, FormatterGroup from .icon import IconFormatter class BooleanFormatter(Formatter): component_class: type = Checkbox data_prop: str = "checked" def encode(self, cell: bool) -> bool: if isinstance(cell, np.generic): if pd.isna(cell): return "NaN" return cell.item() if hasattr(cell, "as_py"): return cell.as_py() return str(cell) class BooleanFormatterGroup(FormatterGroup): def __init__(self): super().__init__( base=BooleanFormatter(), icon=IconFormatter(name="CheckSquare"), )
meerkat-main
meerkat/interactive/formatter/boolean.py
from typing import Any from meerkat.interactive.app.src.lib.component.core.tensor import Tensor from .base import Formatter, FormatterGroup from .icon import IconFormatter class TensorFormatter(Formatter): """Formatter for an embedding.""" component_class: type = Tensor def encode(self, cell: Any): return { "data": cell.tolist(), "shape": list(cell.shape), "dtype": str(cell.dtype), } class TensorFormatterGroup(FormatterGroup): def __init__(self, dtype: str = None): super().__init__( base=TensorFormatter(dtype=dtype), icon=IconFormatter(name="BoxFill"), )
meerkat-main
meerkat/interactive/formatter/tensor.py
import textwrap from typing import Any, Dict import numpy as np from pandas.io.formats.format import format_array from meerkat.interactive.app.src.lib.component.core.text import Text from meerkat.interactive.formatter.base import BaseFormatter, FormatterGroup from meerkat.interactive.formatter.icon import IconFormatter class TextFormatter(BaseFormatter): """Formatter for Text component. Args: component_class: The component class to format. data_prop: The property name of the data to format. variants: The variants of the component. """ component_class: type = Text data_prop: str = "data" def __init__(self, classes: str = ""): self.classes = classes def encode(self, cell: Any): return str(cell) @property def props(self) -> Dict[str, Any]: return {"classes": self.classes} def _get_state(self) -> Dict[str, Any]: return { "classes": self.classes, } def _set_state(self, state: Dict[str, Any]): self.classes = state["classes"] def html(self, cell: Any): cell = self.encode(cell) if isinstance(cell, str): cell = textwrap.shorten(cell, width=100, placeholder="...") return format_array(np.array([cell]), formatter=None)[0] class TextFormatterGroup(FormatterGroup): def __init__(self, classes: str = ""): super().__init__( icon=IconFormatter(name="FileEarmarkFont"), base=TextFormatter(classes=classes), tiny=TextFormatter(classes=classes), small=TextFormatter(classes=classes), thumbnail=TextFormatter(classes=classes), table=TextFormatter( classes="max-h-64 overflow-hidden focus:overflow-y-scroll " + classes ), gallery=TextFormatter(classes="aspect-video h-full p-2 " + classes), tag=TextFormatter( classes="whitespace-nowrap text-ellipsis overflow-hidden text-right " + classes ), # noqa: E501 )
meerkat-main
meerkat/interactive/formatter/text.py
import base64 import os from io import BytesIO from typing import Any, Dict, Union from scipy.io.wavfile import write from meerkat.cells.audio import Audio as AudioCell from meerkat.columns.deferred.base import DeferredCell from meerkat.interactive.formatter.icon import IconFormatter from ..app.src.lib.component.core.audio import Audio from .base import BaseFormatter, FormatterGroup class AudioFormatter(BaseFormatter): component_class = Audio data_prop: str = "data" def __init__(self, downsampling_factor: int = 1, classes: str = ""): """ Args: sampling_rate_factor: The factor by which to multiply the sampling rate. classes: The CSS classes to apply to the audio. """ self.downsampling_factor = downsampling_factor self.classes = classes def encode(self, cell: Union[AudioCell, bytes]) -> str: """Encodes audio as a base64 string. Args: cell: The image to encode. skip_copy: If True, the image may be modified in place. Set to ``True`` if the image is already a copy or is loaded dynamically (e.g. DeferredColumn). This may save time for large images. """ if isinstance(cell, DeferredCell): cell = cell() # If the audio is already encoded, return it. if isinstance(cell, bytes): return "data:audio/mpeg;base64,{im_base_64}".format( im_base_64=base64.b64encode(cell).decode() ) arr = cell.data sampling_rate = cell.sampling_rate import torch if isinstance(arr, torch.Tensor): arr = arr.cpu().numpy() arr = arr[:: self.downsampling_factor] sampling_rate = sampling_rate // self.downsampling_factor with BytesIO() as buffer: write(buffer, sampling_rate, arr) return "data:audio/mpeg;base64,{im_base_64}".format( im_base_64=base64.b64encode(buffer.getvalue()).decode() ) @property def props(self) -> Dict[str, Any]: return {"classes": self.classes} def html(self, cell: AudioCell) -> str: encoded = self.encode(cell) return ( "<audio controls={true} autoplay={false}>" + f"<source src={encoded} /></audio>" ) def _get_state(self) -> Dict[str, Any]: return {"classes": self.classes} def _set_state(self, state: Dict[str, Any]): self.classes = state["classes"] class AudioFormatterGroup(FormatterGroup): formatter_class: type = AudioFormatter def __init__(self, classes: str = ""): super().__init__( icon=IconFormatter(name="Soundwave"), base=self.formatter_class(), ) class DeferredAudioFormatter(AudioFormatter): component_class: type = Audio data_prop: str = "data" def encode(self, audio: DeferredCell) -> str: if hasattr(audio, "absolute_path"): absolute_path = audio.absolute_path if isinstance(absolute_path, os.PathLike): absolute_path = str(absolute_path) if isinstance(absolute_path, str) and absolute_path.startswith("http"): return audio.absolute_path audio = audio() return super().encode(audio) class DeferredAudioFormatterGroup(AudioFormatterGroup): formatter_class: type = DeferredAudioFormatter
meerkat-main
meerkat/interactive/formatter/audio.py
import base64 import os from io import BytesIO from typing import Any, Dict, Optional, Tuple, Union import numpy as np from PIL import Image as PILImage from meerkat import env from meerkat.columns.deferred.base import DeferredCell from meerkat.interactive.formatter.icon import IconFormatter from meerkat.tools.lazy_loader import LazyLoader from ..app.src.lib.component.core.image import Image from .base import BaseFormatter, FormatterGroup torch = LazyLoader("torch") class ImageFormatter(BaseFormatter): component_class = Image data_prop: str = "data" def __init__( self, max_size: Tuple[int] = None, classes: str = "", mode: Optional[str] = None, enable_zoom: Union[bool, float] = False, enable_pan: bool = False, ): super().__init__() self.max_size = max_size self.classes = classes self.mode = mode self.enable_zoom = enable_zoom self.enable_pan = enable_pan def encode(self, cell: PILImage, skip_copy: bool = False, mode: str = None) -> str: """Encodes an image as a base64 string. Args: cell: The image to encode. skip_copy: If True, the image may be modified in place. Set to ``True`` if the image is already a copy or is loaded dynamically (e.g. DeferredColumn). This may save time for large images. """ if mode is None: mode = self.mode if env.package_available("torch") and isinstance(cell, torch.Tensor): cell = cell.cpu().numpy() if isinstance(cell, np.ndarray): cell = PILImage.fromarray(cell, mode=mode) # We can skip copying if we are constructing the image from a numpy array. skip_copy = True ftype = "png" if mode == "RGBA" else "jpeg" with BytesIO() as buffer: if self.max_size: # Image.thumbnail modifies the image in place, so we need to # make a copy first. if not skip_copy: cell = cell.copy() cell.thumbnail(self.max_size) cell.save(buffer, ftype) return "data:image/{ftype};base64,{im_base_64}".format( ftype=ftype, im_base_64=base64.b64encode(buffer.getvalue()).decode() ) @property def props(self) -> Dict[str, Any]: return { "classes": self.classes, "enable_zoom": self.enable_zoom, "enable_pan": self.enable_pan, } def html(self, cell: Image) -> str: encoded = self.encode(cell) return f'<img src="{encoded}">' def _get_state(self) -> Dict[str, Any]: return { "max_size": self.max_size, "classes": self.classes, "mode": self.mode, "enable_zoom": self.enable_zoom, "enable_pan": self.enable_pan, } def _set_state(self, state: Dict[str, Any]): self.max_size = state["max_size"] self.classes = state["classes"] self.mode = state["mode"] if "enable_zoom" in state: self.enable_zoom = state["enable_zoom"] if "enable_pan" in state: self.enable_pan = state["enable_pan"] class ImageFormatterGroup(FormatterGroup): formatter_class: type = ImageFormatter def __init__(self, classes: str = "", mode: Optional[str] = None): super().__init__( icon=IconFormatter(name="Image"), base=self.formatter_class( classes=classes, mode=mode, enable_zoom=True, enable_pan=True ), tiny=self.formatter_class(max_size=[32, 32], classes=classes, mode=mode), small=self.formatter_class(max_size=[64, 64], classes=classes, mode=mode), thumbnail=self.formatter_class( max_size=[256, 256], classes=classes, mode=mode ), gallery=self.formatter_class( max_size=[512, 512], classes="h-full w-full" + " " + classes, mode=mode ), ) # TODO: Add support for displaying numpy arrays and torch tensors as images. # This breaks currently with html rendering. class DeferredImageFormatter(ImageFormatter): component_class: type = Image data_prop: str = "data" def encode(self, image: DeferredCell) -> str: if hasattr(image, "absolute_path"): absolute_path = image.absolute_path if isinstance(absolute_path, os.PathLike): absolute_path = str(absolute_path) if isinstance(absolute_path, str) and absolute_path.startswith("http"): return image.absolute_path image = image() return super().encode(image, skip_copy=True) class DeferredImageFormatterGroup(ImageFormatterGroup): formatter_class: type = DeferredImageFormatter
meerkat-main
meerkat/interactive/formatter/image.py
from __future__ import annotations import collections from abc import ABC, abstractmethod, abstractproperty from typing import TYPE_CHECKING, Any, Dict, Iterator, List, Type, Union import yaml from meerkat.columns.deferred.base import DeferredCell from meerkat.tools.utils import MeerkatDumper, MeerkatLoader if TYPE_CHECKING: from meerkat.interactive.app.src.lib.component.abstract import BaseComponent class Variant: def __init__(*args, **kwargs): pass class FormatterGroup(collections.abc.Mapping): """A formatter group is a mapping from formatter placeholders to formatters. Data in a Meerkat column sometimes need to be displayed differently in different GUI contexts. For example, in a table, we display thumbnails of images, but in a carousel view, we display the full image. Because most components in Meerkat work on any data type, it is important that they are implemented in a formatter-agnostic way. So, instead of specifying formatters, components make requests for data specifying a *formatter placeholder*. For example, the {class}`mk.gui.Gallery` component requests data using the `thumbnail` formatter placeholder. For a specific column of data, we specify which formatters to use for each placeholder using a *formatter group*. A formatter group is a mapping from formatter placeholders to formatters. Each column in Meerkat has a `formatter_group` property. A column's formatter group controls how it will be displayed in different contexts in Meerkat GUIs. Args: base (FormatterGroup): The base formatter group to use. **kwargs: The formatters to add to the formatter group. """ def __init__(self, base: BaseFormatter = None, **kwargs): if base is None: from meerkat.interactive.formatter import TextFormatter # everything has a str method so this is a safe default base = TextFormatter() if not isinstance(base, BaseFormatter): raise TypeError("base must be a Formatter") for key, value in kwargs.items(): if key not in formatter_placeholders: raise ValueError( f"The key {key} is not a registered formatter " "placeholder. Use `mk.register_formatter_placeholder`" ) if not isinstance(value, BaseFormatter): raise TypeError( f"FormatterGroup values must be Formatters, not {type(value)}" ) # must provide a base formatter self._dict = dict(base=base, **kwargs) def __getitem__(self, key: Union[FormatterPlaceholder, str]) -> BaseFormatter: """Get the formatter for the given formatter placeholder. Args: key (FormatterPlaceholder): The formatter placeholder. Returns: (Formatter) The formatter for the formatter placeholder. """ if isinstance(key, str): if key in formatter_placeholders: key = formatter_placeholders[key] else: key = FormatterPlaceholder(key, []) if key.name in self._dict: return self._dict.__getitem__(key.name) for fallback in key.fallbacks: if fallback.name in self._dict: return self.__getitem__(fallback) return self._dict["base"] def __setitem__( self, key: Union[FormatterPlaceholder, str], value: BaseFormatter ) -> None: if key not in formatter_placeholders: raise ValueError( f"The key {key} is not a registered formatter " "placeholder. Use `mk.register_formatter_placeholder`" ) if not isinstance(value, BaseFormatter): raise TypeError( f"FormatterGroup values must be Formatters, not {type(value)}" ) return self._dict.__setitem__(key, value) def defer(self): return deferred_formatter_group(self) def __len__(self) -> int: return len(self._dict) def __iter__(self) -> Iterator: return iter(self._dict) def update(self, other: Union[FormatterGroup, Dict]): self._dict.update(other) def copy(self): new = self.__class__.__new__(self.__class__) new._dict = self._dict.copy() return new @staticmethod def to_yaml(dumper: yaml.Dumper, data: BaseFormatter): """This function is called by the YAML dumper to convert a :class:`Formatter` object into a YAML node. It should not be called directly. """ data = { "class": type(data), "dict": data._dict, } return dumper.represent_mapping("!FormatterGroup", data) @staticmethod def from_yaml(loader, node): """This function is called by the YAML loader to convert a YAML node into an :class:`Formatter` object. It should not be called directly. """ data = loader.construct_mapping(node) formatter = data["class"].__new__(data["class"]) formatter._dict = data["dict"] return formatter MeerkatDumper.add_multi_representer(FormatterGroup, FormatterGroup.to_yaml) MeerkatLoader.add_constructor("!FormatterGroup", FormatterGroup.from_yaml) def deferred_formatter_group(group: FormatterGroup) -> FormatterGroup: """Wrap all formatters in a FormatterGroup with a DeferredFormatter. Args: group (FormatterGroup): The FormatterGroup to wrap. Returns: (FormatterGroup) A new FormatterGroup with all formatters wrapped in a DeferredFormatter. """ new_group = group.copy() for name, formatter in group.items(): new_group[name] = DeferredFormatter(formatter) return new_group class FormatterPlaceholder: def __init__( self, name: str, fallbacks: List[Union[str, FormatterPlaceholder]], description: str = "", ): global formatter_placeholders self.name = name self.fallbacks = [ fb if isinstance(fb, FormatterPlaceholder) else formatter_placeholders[fb] for fb in fallbacks ] if name != "base": self.fallbacks.append(FormatterPlaceholder("base", fallbacks=[])) self.description = description formatter_placeholders = { "base": FormatterPlaceholder("base", []), } def register_placeholder( name: str, fallbacks: List[FormatterPlaceholder] = [], description: str = "" ): """Register a new formatter placeholder. Args: name (str): The name of the formatter placeholder. fallbacks (List[FormatterPlaceholder]): The fallbacks for the formatter placeholder. description (str): A description of the formatter placeholder. """ if name in formatter_placeholders: raise ValueError(f"{name} is already a registered formatter placeholder") formatter_placeholders[name] = FormatterPlaceholder( name=name, fallbacks=fallbacks, description=description ) # register core formatter placeholders register_placeholder("small", fallbacks=[], description="A small version of the data.") register_placeholder( "tiny", fallbacks=["small"], description="A tiny version of the data." ) register_placeholder( "thumbnail", fallbacks=["small"], description="A thumbnail of the data." ) register_placeholder( "icon", fallbacks=["tiny"], description="An icon representing the data." ) register_placeholder( "tag", fallbacks=["tiny"], description="A small version of the data meant to go in a tag field.", ) register_placeholder( "full", fallbacks=["base"], description="A full version of the data.", ) class BaseFormatter(ABC): component_class: Type["BaseComponent"] data_prop: str = "data" static_encode: bool = False def encode(self, cell: Any, **kwargs): """Encode the cell on the backend before sending it to the frontend. The cell is lazily loaded, so when used on a LambdaColumn, ``cell`` will be a ``LambdaCell``. This is important for displays that don't actually need to apply the lambda in order to display the value. """ return cell @abstractproperty def props(self): return self._props @abstractmethod def _get_state(self) -> Dict[str, Any]: pass @abstractmethod def _set_state(self, state: Dict[str, Any]): pass @staticmethod def to_yaml(dumper: yaml.Dumper, data: BaseFormatter): """This function is called by the YAML dumper to convert a :class:`Formatter` object into a YAML node. It should not be called directly. """ data = { "class": type(data), "state": data._get_state(), } return dumper.represent_mapping("!Formatter", data) @staticmethod def from_yaml(loader, node): """This function is called by the YAML loader to convert a YAML node into an :class:`Formatter` object. It should not be called directly. """ data = loader.construct_mapping(node, deep=True) formatter = data["class"].__new__(data["class"]) formatter._set_state(data["state"]) return formatter def html(self, cell: Any): """When not in interactive mode, objects are visualized using static html. This method should produce that static html for the cell. """ return str(cell) class Formatter(BaseFormatter): # TODO: set the signature of the __init__ so it works with autocomplete and docs def __init__(self, **kwargs): for k in kwargs: if k not in self.component_class.prop_names: raise ValueError(f"{k} is not a valid prop for {self.component_class}") for prop_name, field in self.component_class.__fields__.items(): if field.name != self.data_prop and prop_name not in kwargs: if field.required: raise ValueError("""Missing required argument.""") kwargs[prop_name] = field.default self._props = kwargs def encode(self, cell: str): return cell @property def props(self) -> Dict[str, Any]: return self._props def _get_state(self) -> Dict[str, Any]: return { "_props": self._props, } def _set_state(self, state: Dict[str, Any]): self._props = state["_props"] MeerkatDumper.add_multi_representer(BaseFormatter, BaseFormatter.to_yaml) MeerkatLoader.add_constructor("!Formatter", BaseFormatter.from_yaml) class DeferredFormatter(BaseFormatter): def __init__(self, formatter: BaseFormatter): self.wrapped = formatter def encode(self, cell: DeferredCell, **kwargs): if self.wrapped.static_encode: return self.wrapped.encode(None, **kwargs) return self.wrapped.encode(cell(), **kwargs) @property def component_class(self): return self.wrapped.component_class @property def data_prop(self): return self.wrapped.data_prop @property def props(self): return self.wrapped.props def html(self, cell: DeferredCell): return self.wrapped.html(cell()) def _get_state(self): data = { "wrapped": { "class": self.wrapped.__class__, "state": self.wrapped._get_state(), }, } return data def _set_state(self, state: Dict[str, Any]): wrapped_state = state["wrapped"] wrapped = wrapped_state["class"].__new__(wrapped_state["class"]) wrapped._set_state(wrapped_state["state"]) self.wrapped = wrapped MeerkatDumper.add_multi_representer(DeferredFormatter, DeferredFormatter.to_yaml) MeerkatLoader.add_constructor("!DeferredFormatter", DeferredFormatter.from_yaml)
meerkat-main
meerkat/interactive/formatter/base.py
from .main import app as MeerkatAPI # noqa: F401 from .routers import ( # noqa: F401 dataframe, endpoint, llm, page, sliceby, store, subscribe, )
meerkat-main
meerkat/interactive/api/__init__.py
from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware app = FastAPI(debug=True) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], )
meerkat-main
meerkat/interactive/api/main.py
import logging import traceback from fastapi import HTTPException from fastapi.encoders import jsonable_encoder from meerkat.interactive.endpoint import Endpoint, endpoint from meerkat.interactive.graph import Store, trigger from meerkat.interactive.modification import StoreModification from meerkat.interactive.utils import get_custom_json_encoder, is_equal from meerkat.state import state from meerkat.tools.lazy_loader import LazyLoader torch = LazyLoader("torch") logger = logging.getLogger(__name__) # KG: do not use -> List[Modification] as the return type for the `update` # fn. This causes Pydantic to drop several fields from the # StoreModification object (it only ends up sending the ids). @endpoint(prefix="/store", route="/{store}/update/") def update(store: Store, value=Endpoint.EmbeddedBody()): """Triggers the computational graph when a store on the frontend changes.""" logger.debug(f"Updating store {store} with value {value}.") # TODO: the interface sends store_triggers for all stores when it starts # up -- these requests should not be being sent. # These requests are indirectly ignored here because we check if the # value of the store actually changed (and these initial post requests # do not change the value of the store). # Check if this request would actually change the value of the store # current_store_value = store_modification.node # TODO: Verify this works for nested stores. if is_equal(store.value, value): logger.debug("Store value did not change. Skipping trigger.") return [] # Ready the modification queue state.modification_queue.ready() # Set the new value of the store store.set(value) # Trigger on the store modification: leads to modifications on the graph try: modifications = trigger() except Exception as e: logger.error(traceback.format_exc()) raise HTTPException(status_code=400, detail=str(e)) from e # Only return modifications that are not backend_only modifications = [ m for m in modifications if not (isinstance(m, StoreModification) and m.backend_only) ] logger.debug(f"Returning modifications: {modifications}.") # Return the modifications return jsonable_encoder( modifications, custom_encoder=get_custom_json_encoder(), )
meerkat-main
meerkat/interactive/api/routers/store.py
import asyncio import json import logging from sse_starlette.sse import EventSourceResponse from meerkat.interactive.endpoint import endpoint logger = logging.getLogger(__name__) STREAM_DELAY = 0.150 # second RETRY_TIMEOUT = 15000 # milisecond async def progress_generator(): from meerkat.state import state progress_queue = state.progress_queue while True: # Checks for any progress and return to client if any progress = progress_queue.clear() if progress: for item in progress: if isinstance(item, list): # Start events just send the total length # of the progressbar logger.debug(f"Sending start event with {item}.") yield { "event": "start", "id": "message_id", "retry": RETRY_TIMEOUT, "data": json.dumps(item), } elif item is None: logger.debug("Sending end event.") yield { "event": "end", "id": "message_id", "retry": RETRY_TIMEOUT, "data": "", } elif isinstance(item, str): logger.debug(f"Sending endpoint event with {item}.") yield { "event": "endpoint", "id": "message_id", "retry": RETRY_TIMEOUT, "data": json.dumps(item), } else: # Progress events send the current progress # and the operation name logger.debug(f"Sending progress event with {item}.") yield { "event": "progress", "id": "message_id", "retry": RETRY_TIMEOUT, "data": json.dumps(item), } await asyncio.sleep(STREAM_DELAY) @endpoint(prefix="/subscribe", route="/progress/", method="GET") def progress(): return EventSourceResponse(progress_generator())
meerkat-main
meerkat/interactive/api/routers/subscribe.py
from typing import Dict, List from fastapi import HTTPException from pydantic import BaseModel from meerkat.interactive.endpoint import Endpoint, endpoint from meerkat.interactive.formatter import BasicFormatter from meerkat.ops.sliceby.sliceby import SliceBy, SliceKey from meerkat.state import state from .dataframe import RowsResponse, _get_column_infos class InfoResponse(BaseModel): id: str type: str n_slices: int slice_keys: List[SliceKey] class Config: # need a smart union here to avoid casting ints to strings in SliceKey # https://pydantic-docs.helpmanual.io/usage/types/#unions smart_union = True @endpoint(prefix="/sliceby", route="/{sb}/info/", method="GET") def get_info(sb: SliceBy) -> InfoResponse: # FIXME Make sure the SliceBy object works for this endpoint return InfoResponse( id=sb.id, type=type(sb).__name__, n_slices=len(sb), slice_keys=sb.slice_keys, ) class SliceByRowsRequest(BaseModel): # TODO (sabri): add support for data validation slice_key: SliceKey start: int = None end: int = None indices: List[int] = None columns: List[str] = None class Config: smart_union = True @endpoint(prefix="/sliceby", route="/{sb}/rows/") def get_rows( sb: SliceBy, request: SliceByRowsRequest, ) -> RowsResponse: """Get rows from a DataFrame as a JSON object.""" # FIXME Make sure the SliceBy object works for this endpoint slice_key = request.slice_key full_length = sb.get_slice_length(slice_key) column_infos = _get_column_infos(sb.data, request.columns) sb = sb[[info.name for info in column_infos]] if request.indices is not None: df = sb.slice[slice_key, request.indices] indices = request.indices elif request.start is not None: df = sb.slice[slice_key, request.start : request.end] indices = list(range(request.start, request.end)) else: raise ValueError() rows = [] for row in df: rows.append( [df[info.name].formatter.encode(row[info.name]) for info in column_infos] ) return RowsResponse( columnInfos=column_infos, rows=rows, fullLength=full_length, indices=indices, ) @endpoint(prefix="/sliceby", route="/{sb}/aggregate/") def aggregate( sb: SliceBy, aggregation_id: str = Endpoint.EmbeddedBody(None), aggregation: str = Endpoint.EmbeddedBody(None), accepts_df: bool = Endpoint.EmbeddedBody(False), columns: List[str] = Endpoint.EmbeddedBody(None), ) -> Dict: # FIXME Make sure the SliceBy object works for this endpoint if columns is not None: sb = sb[columns] if (aggregation_id is None) == (aggregation is None): raise HTTPException( status_code=400, detail="Must specify either aggregation_id or aggregation", ) if aggregation_id is not None: aggregation = state.identifiables.get(id=aggregation_id, group="aggregations") value = sb.aggregate(aggregation, accepts_df=accepts_df) else: if aggregation not in ["mean", "sum", "min", "max"]: raise HTTPException( status_code=400, detail=f"Invalid aggregation {aggregation}" ) value = sb.aggregate(aggregation) # convert to dict format for output df = value.to_pandas().set_index(sb.by) dct = df.applymap(BasicFormatter().encode).to_dict() return dct
meerkat-main
meerkat/interactive/api/routers/sliceby.py
from typing import Any, Dict, List, Optional, Union from fastapi import HTTPException from pydantic import BaseModel, StrictInt, StrictStr from meerkat.dataframe import DataFrame from meerkat.interactive.endpoint import Endpoint, endpoint class ColumnInfo(BaseModel): name: str type: str cellComponent: str cellProps: Dict[str, Any] cellDataProp: str class SchemaResponse(BaseModel): id: str columns: List[ColumnInfo] nrows: int = None primaryKey: str = None @endpoint(prefix="/df", route="/{df}/schema/") def schema( df: DataFrame, columns: List[str] = Endpoint.EmbeddedBody(None), formatter: Union[str, Dict[str, str]] = Endpoint.EmbeddedBody("base"), ) -> SchemaResponse: columns = df.columns if columns is None else columns if isinstance(formatter, str): formatter = {column: formatter for column in columns} return SchemaResponse( id=df.id, columns=_get_column_infos(df, columns, formatter_placeholders=formatter), nrows=len(df), primaryKey=df.primary_key_name, ) def _get_column_infos( df: DataFrame, columns: List[str] = None, formatter_placeholders: Dict[str, str] = None, ): if columns is None: columns = df.columns else: missing_columns = set(columns) - set(df.columns) if len(missing_columns) > 0: raise HTTPException( status_code=404, detail=( f"Requested columns {columns} do not exist in dataframe" f" with id {df.id}" ), ) columns = [column for column in columns if not column.startswith("_")] if df.primary_key_name is not None and df.primary_key_name not in columns: columns += [df.primary_key_name] # TODO: Check if this is the right fix. if formatter_placeholders is None: formatter_placeholders = {} elif isinstance(formatter_placeholders, str): formatter_placeholders = { column: formatter_placeholders for column in df.columns } out = [ ColumnInfo( name=col, type=type(df[col]).__name__, cellComponent=df[col] .formatters[formatter_placeholders.get(col, "base")] .component_class.alias, cellProps=df[col].formatters[formatter_placeholders.get(col, "base")].props, cellDataProp=df[col] .formatters[formatter_placeholders.get(col, "base")] .data_prop, ) for col in columns ] return out class RowsResponse(BaseModel): columnInfos: List[ColumnInfo] posidxs: List[int] = None rows: List[List[Any]] fullLength: int primaryKey: Optional[str] = None @endpoint(prefix="/df", route="/{df}/rows/") def rows( df: DataFrame, start: int = Endpoint.EmbeddedBody(None), end: int = Endpoint.EmbeddedBody(None), posidxs: List[int] = Endpoint.EmbeddedBody(None), key_column: str = Endpoint.EmbeddedBody(None), keyidxs: List[Union[StrictInt, StrictStr]] = Endpoint.EmbeddedBody(None), columns: List[str] = Endpoint.EmbeddedBody(None), formatter: Union[str, Dict[str, str]] = Endpoint.EmbeddedBody("base"), shuffle: bool = Endpoint.EmbeddedBody(False), ) -> RowsResponse: """Get rows from a DataFrame as a JSON object.""" if columns is None: columns = df.columns if isinstance(formatter, str): formatter = {column: formatter for column in columns} full_length = len(df) column_infos = _get_column_infos(df, columns, formatter_placeholders=formatter) if shuffle: df = df.shuffle() df = df[[info.name for info in column_infos]] if posidxs is not None: df = df[posidxs] posidxs = posidxs elif start is not None: if end is None: end = len(df) else: end = min(end, len(df)) df = df[start:end] posidxs = list(range(start, end)) elif keyidxs is not None: if key_column is None: if df.primary_key is None: raise ValueError( "Must provide key_column if keyidxs are provided and no " "primary_key on dataframe." ) df = df.loc[keyidxs] else: # FIXME(sabri): this will only work if key_column is a pandas column df = df[df[key_column].isin(keyidxs)] else: raise ValueError() rows = [] for row in df: rows.append( [ df[info.name] .formatters[formatter.get(info.name, "base")] .encode(row[info.name]) for info in column_infos ] ) return RowsResponse( columnInfos=column_infos, rows=rows, fullLength=full_length, posidxs=posidxs, primaryKey=df.primary_key_name, )
meerkat-main
meerkat/interactive/api/routers/dataframe.py
meerkat-main
meerkat/interactive/api/routers/__init__.py
from fastapi.encoders import jsonable_encoder from meerkat.interactive import Page from meerkat.interactive.endpoint import endpoint from meerkat.interactive.utils import get_custom_json_encoder from meerkat.tools.lazy_loader import LazyLoader torch = LazyLoader("torch") @endpoint(prefix="/page", route="/{page}/config/", method="GET") def config(page: Page): return jsonable_encoder( # TODO: we should not be doing anything except page.frontend # here. This is a temp workaround to avoid getting an # exception in the notebook. page.frontend if isinstance(page, Page) else page, custom_encoder=get_custom_json_encoder(), )
meerkat-main
meerkat/interactive/api/routers/page.py
# TODO(karan): fix and generalize these APIs import functools import random from typing import List from fastapi import APIRouter, Body, HTTPException from pydantic import BaseModel from meerkat.state import state router = APIRouter( prefix="/llm", tags=["llm"], responses={404: {"description": "Not found"}}, ) EmbeddedBody = functools.partial(Body, embed=True) class CategoryGenerationResponse(BaseModel): categories: List[str] class CategorizationGenerationResponse(BaseModel): categories: List[str] @router.post("/generate/categories") def generate_categories( dataset_description: str = EmbeddedBody(), hint: str = EmbeddedBody(), n_categories: int = EmbeddedBody(default=20), ) -> CategoryGenerationResponse: """Generate a list of categories for a dataset using an LLM.""" from manifest import Prompt state.llm.set(client="ai21", engine="j1-jumbo") try: response = state.llm.get().run( Prompt( f""" List {n_categories} distinct attributes that can be used to tag a dataset. --- Dataset: {dataset_description} Hint: {hint} Attributes: """ ), top_k_return=1, temperature=0.5, max_tokens=128, stop_token="\n---", ) print(response) lines = response.split("\n") categories = [line.split(". ")[-1] for line in lines] except Exception as e: raise HTTPException(status_code=400, detail=str(e)) return CategoryGenerationResponse( categories=categories, ) @router.post("/generate/categorization") def generate_categorization( description: str = EmbeddedBody(), existing_categories: List[str] = EmbeddedBody(default=["none"]), ) -> CategorizationGenerationResponse: """Generate a list of categories for a dataset using an LLM.""" from manifest import Prompt state.llm.set(client="ai21", engine="j1-jumbo") random.shuffle(existing_categories) try: response = state.llm.get().run( Prompt( f""" List 5 distinct possibilities that could be used to categorize an attribute. The attribute description is provided. --- Attribute description: types of eyewear Existing categories: none Additional categories: 1. sunglasses 2. eyeglasses 3. goggles 4. blindfolds 5. vr headsets --- Attribute description: age groups (words not ranges) Existing categories: infants, teenagers Additional categories: 1. toddlers 2. children 3. teens 4. adults 5. seniors --- Attribute description: styles of art Existing categories: abstract, modern, impressionism Additional categories: 1. realism 2. surrealism 3. cubism 4. psychedelic 5. contemporary --- Attribute description: political leanings Existing categories: none Additional categories: 1. authoritarian 2. libertarian 3. liberal 4. conservative 5. anarchist --- Attribute description: {description} Existing categories: {", ".join(existing_categories)} More categories: """ # noqa: E501 ), top_k_return=1, temperature=0.5, max_tokens=128, stop_token="\n---", ) print(response) lines = response.split("\n") categories = [line.split(". ")[-1] for line in lines] except Exception as e: raise HTTPException(status_code=400, detail=str(e)) return CategorizationGenerationResponse( categories=categories, )
meerkat-main
meerkat/interactive/api/routers/llm.py
import logging import traceback from fastapi import HTTPException from fastapi.encoders import jsonable_encoder from meerkat.interactive.endpoint import Endpoint, endpoint from meerkat.interactive.utils import get_custom_json_encoder from meerkat.tools.lazy_loader import LazyLoader torch = LazyLoader("torch") logger = logging.getLogger(__name__) @endpoint(prefix="/endpoint", route="/{endpoint}/dispatch/") def dispatch( endpoint: Endpoint, payload: dict, ) -> dict: """Call an endpoint.""" logger.debug(f"Dispatching endpoint {endpoint} with payload {payload}.") from meerkat.interactive.modification import StoreModification # `payload` is a dict with {detail: {key: value} | primitive} # Unpack the payload to build the fn_kwargs fn_kwargs = {} kwargs = payload["detail"] if isinstance(kwargs, dict): fn_kwargs = kwargs try: # Run the endpoint result, modifications = endpoint.partial(**fn_kwargs).run() except Exception as e: # General exception should be converted to a HTTPException # that fastapi can handle. from meerkat.state import state logger.debug("Exception in dispatch", exc_info=True) state.progress_queue.add(None) logger.error(traceback.format_exc()) raise HTTPException(status_code=400, detail=str(e)) from e # Only return store modifications that are not backend_only modifications = [ m for m in modifications if not (isinstance(m, StoreModification) and m.backend_only) ] # Return the modifications and the result to the frontend # Need to support sending back numpy arrays, torch tensors, and pandas series return jsonable_encoder( {"result": result, "modifications": modifications, "error": None}, custom_encoder=get_custom_json_encoder(), )
meerkat-main
meerkat/interactive/api/routers/endpoint.py
from setuptools import find_packages, setup setup( name="app", version="0.0.1", packages=find_packages(), include_package_data=True, install_requires=[ "meerkat-ml", ], )
meerkat-main
meerkat/interactive/templates/setup.py
from app.src.lib.components import ExampleComponent import meerkat as mk # Import and use the ExampleComponent example_component = ExampleComponent(name="Meerkat") # Launch the Meerkat GUI # mk.gui.start() # not required for running with `mk run` page = mk.gui.Page(component=example_component, id="example") page.launch()
meerkat-main
meerkat/interactive/templates/example.py
from meerkat import classproperty from meerkat.interactive import Component class LibraryMixin: @classproperty def namespace(cls): return "custom" # Component should always be the last base class class ExampleComponent(LibraryMixin, Component): """Make custom components by extending the `Component` class. Add the `namespace` and `library` class properties, so that it's easy to import and publish your components. Read our guide on how to publish your components to learn more. The component definition should reflect the structure of the frontend component, and its props. Make sure that - all custom components are defined inside this `components` directory, or any subdirectories. - any `.svelte` Component file defines a corresponding Python class in a `.py` file in the same directory. - all components you define in any subdirectories are imported in this `__init__.py` file of the `components` directory. Meerkat automatically imports and registers all components defined in this file. For fine-grained control of which fields are synchronized with the frontend, you can directly extend the `Component` class instead of the `Component` class. See our documentation for details. """ name: str = "World"
meerkat-main
meerkat/interactive/templates/components.init.py
import collections.abc from typing import List, Sequence, Union import numpy as np from meerkat import DataFrame, ObjectColumn from meerkat.columns.deferred.base import DeferredColumn from meerkat.columns.scalar import ScalarColumn from meerkat.columns.tensor.abstract import TensorColumn from meerkat.columns.tensor.torch import TorchTensorColumn from meerkat.errors import MergeError from meerkat.interactive.graph import reactive from meerkat.ops.decorators import check_primary_key from meerkat.provenance import capture_provenance @capture_provenance(capture_args=["left_on", "on", "right_on", "how"]) @check_primary_key @reactive def merge( left: DataFrame, right: DataFrame, how: str = "inner", on: Union[str, List[str]] = None, left_on: Union[str, List[str]] = None, right_on: Union[str, List[str]] = None, sort: bool = False, suffixes: Sequence[str] = ("_x", "_y"), validate=None, ) -> DataFrame: """Perform a database-style join operation between two DataFrames. Args: left (DataFrame): Left DataFrame. right (DataFrame): Right DataFrame. how (str, optional): The join type. Defaults to "inner". on (Union[str, List[str]], optional): The columns(s) to join on. These columns must be :class:`~meerkat.ScalarColumn`. Defaults to None, in which case the `left_on` and `right_on` parameters must be passed. left_on (Union[str, List[str]], optional): The column(s) in the left DataFrame to join on. These columns must be :class:`~meerkat.ScalarColumn`. Defaults to None. right_on (Union[str, List[str]], optional): The column(s) in the right DataFrame to join on. These columns must be :class:`~meerkat.ScalarColumn`. Defaults to None. sort (bool, optional): Whether to sort the result DataFrame by the join key(s). Defaults to False. suffixes (Sequence[str], optional): Suffixes to use in the case their are conflicting column names in the result DataFrame. Should be a sequence of length two, with ``suffixes[0]`` the suffix for the column from the left DataFrame and ``suffixes[1]`` the suffix for the right. Defaults to ("_x", "_y"). validate (_type_, optional): The check to perform on the result DataFrame. Defaults to None, in which case no check is performed. Valid options are: * “one_to_one” or “1:1”: check if merge keys are unique in both left and right datasets. * “one_to_many” or “1:m”: check if merge keys are unique in left dataset. * “many_to_one” or “m:1”: check if merge keys are unique in right dataset. * “many_to_many” or “m:m”: allowed, but does not result in checks. Returns: DataFrame: The merged DataFrame. """ if how == "cross": raise ValueError("DataFrame does not support cross merges.") # pragma: no cover if (on is None) and (left_on is None) and (right_on is None): raise MergeError("Merge expects either `on` or `left_on` and `right_on`") left_on = on if left_on is None else left_on right_on = on if right_on is None else right_on # cast `left_on` and `right_on` to lists left_on = [left_on] if isinstance(left_on, str) else left_on right_on = [right_on] if isinstance(right_on, str) else right_on # ensure we can merge on specified columns _check_merge_columns(left, left_on) _check_merge_columns(right, right_on) # convert mk.DataFrame to pd.DataFrame so we can apply Pandas merge # (1) only include columns we are joining on left_df = left[left_on].to_pandas() right_df = right[right_on].to_pandas() # (2) add index columns, which we'll use to reconstruct the columns we excluded from # the Pandas merge if ("__right_indices__" in right_df) or ("__left_indices__" in left_df): raise MergeError( "The column names '__right_indices__' and '__left_indices__' cannot appear " "in the right and left panels respectively. They are used by merge." ) left_df["__left_indices__"] = np.arange(len(left_df)) right_df["__right_indices__"] = np.arange(len(right_df)) # apply pandas merge merged_df = left_df.merge( right_df, how=how, left_on=left_on, right_on=right_on, sort=sort, validate=validate, suffixes=suffixes, ) left_indices = merged_df.pop("__left_indices__").values right_indices = merged_df.pop("__right_indices__").values merged_df = merged_df[list(set(left_on) & set(right_on))] # reconstruct other columns not in the `left_on & right_on` using `left_indices` # and `right_indices`, the row order returned by merge def _cols_to_construct(df: DataFrame): # don't construct columns in both `left_on` and `right_on` because we use # `merged_df` for these return [k for k in df.keys() if k not in (set(left_on) & set(right_on))] left_cols_to_construct = _cols_to_construct(left) right_cols_to_construct = _cols_to_construct(right) new_left = ( _construct_from_indices(left[left_cols_to_construct], left_indices) # need to check for special case where there are no columns other than those in # the intersection of `left_on` and `right_on` if len(left_cols_to_construct) > 0 else None ) new_right = ( _construct_from_indices(right[right_cols_to_construct], right_indices) # need to check for special case where there are no columns other than those in # the intersection of `left_on` and `right_on` if len(right_cols_to_construct) > 0 else None ) if new_left is None and new_right is not None: merged = new_right elif new_left is not None and new_right is None: merged = new_left elif new_left is not None and new_right is not None: # concatenate the two new dataframes if both have columns, this should be by # far the most common case merged = new_left.append(new_right, axis="columns", suffixes=suffixes) else: merged = None if merged is not None: # add columns in both `left_on` and `right_on`, # casting to the column type in left for name, column in merged_df.items(): merged.add_column(name, left[name]._clone(data=column.values)) merged.data.reorder(merged.columns[-1:] + merged.columns[:-1]) else: merged = DataFrame.from_pandas(merged_df) # set primary key if either the `left` or `right` has a primary key in the result # note, the `check_primary_key` wrapper wrapper ensures that the primary_key is # actually valid if (left.primary_key_name is not None) and left.primary_key_name in merged: merged.set_primary_key(left.primary_key_name, inplace=True) elif (right.primary_key_name is not None) and right.primary_key_name in merged: merged.set_primary_key(right.primary_key_name, inplace=True) return merged def _construct_from_indices(df: DataFrame, indices: np.ndarray): if np.isnan(indices).any(): # when performing "outer", "left", and "right" merges, column indices output # by pandas merge can include `nan` in rows corresponding to merge keys that # only appear in one of the two panels. For these columns, we convert the # column to ListColumn, and fill with "None" wherever indices is "nan". data = {} for name, col in df.items(): if isinstance(col, (TorchTensorColumn, TorchTensorColumn, ScalarColumn)): new_col = col[indices.astype(int)] if isinstance(new_col, TorchTensorColumn): new_col = new_col.to(float) elif isinstance(new_col, ScalarColumn): if new_col.dtype != "object": new_col = new_col.astype(float) else: new_col = new_col.astype(float) new_col[np.isnan(indices)] = np.nan data[name] = new_col else: data[name] = ObjectColumn( [None if np.isnan(index) else col[int(index)] for index in indices] ) return df._clone(data=data) else: # if there are no `nan`s in the indices, then we can just lazy index the # original column return df[indices] def _check_merge_columns(df: DataFrame, on: List[str]): for name in on: column = df[name] if isinstance(column, TensorColumn): if len(column.shape) > 1: raise MergeError( f"Cannot merge on a TensorColumn column `{name}` that has more " "than one dimension." ) elif isinstance(column, ObjectColumn): if not all([isinstance(cell, collections.abc.Hashable) for cell in column]): raise MergeError( f"Cannot merge on column `{name}`, contains unhashable objects." ) elif isinstance(column, DeferredColumn): raise MergeError(f"Cannot merge on DeferredColumn `{name}`.") elif not isinstance(column, ScalarColumn): raise MergeError(f"Cannot merge on column `{name}` of type {type(column)}.")
meerkat-main
meerkat/ops/merge.py
import asyncio import concurrent import functools from typing import Any, Callable, Union from tqdm.auto import tqdm import meerkat as mk async def callasync(fn: Callable, element: Any): """Call a function asynchronously. Uses the `asyncio` library to call a function asynchronously. """ loop = asyncio.get_event_loop() with concurrent.futures.ThreadPoolExecutor() as executor: result = await loop.run_in_executor(executor, fn, element) return result def asasync(fn: Callable): """Decorator to make a function asynchronous.""" @functools.wraps(fn) async def wrapper(element): return await callasync(fn, element) return wrapper async def apply_function(fn: Callable, column: mk.Column): """Asynchronously apply a function to each element in a column. Run the return value of this function through `asyncio.run()` to get the results. Args: fn: The async function to apply to each element. column: The column to apply the function to. """ assert asyncio.iscoroutinefunction(fn), "Function must be async." tasks = [] # for element in tqdm_asyncio(column, desc=f"Async execution of `{fn.__name__}`"): for element in column: tasks.append(fn(element)) results = await asyncio.gather(*tasks) return results def as_single_arg_fn(fn: Callable) -> Callable: """Convert a function that takes multiple arguments to a function that takes a single argument.""" @functools.wraps(fn) def wrapper(kwargs): return fn(**kwargs) return wrapper async def amap( data: Union[mk.DataFrame, mk.Column], function: Callable, pbar: bool = True, max_concurrent: int = 100, ) -> Union[mk.DataFrame, mk.Column]: """Apply a function to each element in the column. Args: data: The column or dataframe to apply the function to. function: The function to apply to each element in the column. pbar: Whether to show a progress bar or not. max_concurrent: The maximum number of concurrent tasks to run. Returns: A column or dataframe with the function applied to each element. """ # # Check if the function is async. If not, make it. # if not asyncio.iscoroutinefunction(function): # warnings.warn( # f"Function {function} is not async. Automatically converting to async." # " Consider making it async before calling `amap`." # ) fn_name = function.__name__ if hasattr(function, "__name__") else str(function) if isinstance(data, mk.Column): # Run the function asynchronously on the column. # Only run `max_concurrent` tasks at a time. # Split the column into chunks of size `max_concurrent`. chunks = [ data[i : i + max_concurrent] for i in range(0, len(data), max_concurrent) ] # Synchonously apply the function to each chunk. results = [] for chunk in tqdm(chunks, desc=f"Chunked execution of `{fn_name}`"): results.append(await apply_function(asasync(function), chunk)) # Flatten the results. results = [item for sublist in results for item in sublist] # Create a new column with the results. return mk.ScalarColumn(results) elif isinstance(data, mk.DataFrame): # Run the function asynchronously on the dataframe. # Only run `max_concurrent` tasks at a time. # Get the function parameter names. import inspect parameter_names = list(inspect.signature(function).parameters.keys()) # Restrict the dataframe to only the columns that are needed. data = data[parameter_names] # Split the dataframe into chunks of size `max_concurrent`. chunks = [ data[i : i + max_concurrent] for i in range(0, len(data), max_concurrent) ] # Synchonously apply the function to each chunk. results = [] for chunk in tqdm(chunks, desc=f"Chunked execution of `{fn_name}`"): results.append( await apply_function(asasync(as_single_arg_fn(function)), chunk) ) # Flatten the results. results = [item for sublist in results for item in sublist] # Create a new column with the results. return mk.ScalarColumn(results) else: raise TypeError(f"Data must be a Column or DataFrame. Got {type(data)}.")
meerkat-main
meerkat/ops/amap.py