python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
"""Unittests for Datasets.""" from itertools import product import numpy as np import pytest from meerkat import concat from meerkat.columns.object.base import ObjectColumn from meerkat.columns.tensor.numpy import NumPyTensorColumn from meerkat.dataframe import DataFrame from meerkat.errors import ConcatError, ConcatWarning from meerkat.ops.map import defer from ...testbeds import AbstractColumnTestBed, MockDatapanel from ...utils import product_parametrize from ..columns.abstract import AbstractColumnTestBed, column_parametrize from ..columns.deferred.test_deferred import DeferredColumnTestBed from ..columns.deferred.test_image import ImageColumnTestBed from ..columns.scalar.test_arrow import ArrowScalarColumnTestBed from ..columns.scalar.test_pandas import PandasScalarColumnTestBed from ..columns.tensor.test_numpy import NumPyTensorColumnTestBed from ..columns.tensor.test_torch import TorchTensorColumnTestBed # flake8: noqa: E501 @pytest.fixture( **column_parametrize( [ NumPyTensorColumnTestBed, PandasScalarColumnTestBed, TorchTensorColumnTestBed, DeferredColumnTestBed, ArrowScalarColumnTestBed, ImageColumnTestBed, ] ) ) def column_testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) @pytest.mark.parametrize( "use_visible_columns,n", product([True, False], [1, 2, 3]), ) def test_dataframe_row_concat(use_visible_columns, n): mock_df = MockDatapanel( length=16, use_visible_columns=use_visible_columns, ) out = concat([mock_df.df] * n, axis="rows") assert len(out) == len(mock_df.visible_rows) * n assert isinstance(out, DataFrame) assert set(out.columns) == set(mock_df.df.columns) assert (out["a"].data == np.concatenate([mock_df.visible_rows] * n)).all() assert out["b"].data == list(np.concatenate([mock_df.visible_rows] * n)) def test_dataframe_column_concat(): mock_df = MockDatapanel( length=16, use_visible_columns=False, ) out = concat([mock_df.df[["a"]], mock_df.df[["b"]]], axis="columns") assert len(out) == len(mock_df.visible_rows) assert isinstance(out, DataFrame) assert set(out.columns) == {"a", "b"} assert list(out["a"].data) == out["b"].data @product_parametrize(params={"n": [1, 2, 3]}) def test_concat(column_testbed: AbstractColumnTestBed, n: int): col = column_testbed.col out = concat([col] * n) assert len(out) == len(col) * n assert isinstance(out, type(col)) for i in range(n): assert out[i * len(col) : (i + 1) * len(col)].is_equal(col) def test_concat_same_columns(): a = DataFrame.from_batch({"a": [1, 2, 3]}) b = DataFrame.from_batch({"a": [2, 3, 4]}) out = concat([a, b], axis="columns", suffixes=["_a", "_b"]) assert out.columns == ["a_a", "a_b"] assert list(out["a_a"].data) == [1, 2, 3] assert list(out["a_b"].data) == [2, 3, 4] def test_concat_different_type(): a = NumPyTensorColumn.from_array([1, 2, 3]) b = ObjectColumn.from_list([1, 2, 3]) with pytest.raises(ConcatError): concat([a, b]) def test_concat_unsupported_type(): a = [1, 2, 3] b = [4, 5, 6] with pytest.raises(ConcatError): concat([a, b]) def test_concat_unsupported_axis(): a = DataFrame.from_batch({"a": [1, 2, 3]}) b = DataFrame.from_batch({"b": [1, 2, 3]}) with pytest.raises(ConcatError): concat([a, b], axis="abc") def test_concat_different_column_names(): a = DataFrame.from_batch({"a": [1, 2, 3]}) b = DataFrame.from_batch({"b": [1, 2, 3]}) with pytest.raises(ConcatError): concat([a, b], axis="rows") def test_concat_different_lengths(): a = DataFrame.from_batch({"a": [1, 2, 3]}) b = DataFrame.from_batch({"b": [1, 2, 3, 4]}) with pytest.raises(ConcatError): concat([a, b], axis="columns") def test_empty_concat(): out = concat([]) assert isinstance(out, DataFrame) def test_concat_deferred_column_different_fns(): """Test concat with deferred columns that have different functions. The fn of the first dataframe will be taken. """ a = DataFrame.from_batch({"a": [1, 2, 3]}) b = DataFrame.from_batch({"a": [4, 5, 6]}) a["fn"] = defer(a["a"], lambda x: x + 1) b["fn"] = defer(b["a"], lambda x: x + 2) with pytest.warns(ConcatWarning): out = concat([a, b], axis="rows") np.testing.assert_equal(np.asarray(out["fn"]().data), [2, 3, 4, 5, 6, 7]) # def test_concat_deferred_column_expand(): # """ # Deferred columns should expand to dataframes when concatenated. # """ # a = DataFrame.from_batch({"a": [1, 2, 3]}) # b = DataFrame.from_batch({"a": [4, 5, 6]}) # a["fn"] = defer(a["a"], lambda x: x + 1) # out = concat([a, b], axis="rows") # np.testing.assert_equal(out["fn"]().data, [2, 3, 4, 5, 6, 7])
meerkat-main
tests/meerkat/ops/test_concat.py
import pytest from meerkat import DeferredColumn from meerkat.dataframe import DataFrame from ...utils import product_parametrize from ..columns.abstract import AbstractColumnTestBed, column_parametrize # from ..columns.deferred.test_deferred import DeferredColumnTestBed # from ..columns.deferred.test_image import ImageColumnTestBed # from ..columns.scalar.test_arrow import ArrowScalarColumnTestBed # from ..columns.scalar.test_pandas import PandasScalarColumnTestBed from ..columns.tensor.test_numpy import NumPyTensorColumnTestBed # from ..columns.tensor.test_torch import TorchTensorColumnTestBed @pytest.fixture( **column_parametrize( [ NumPyTensorColumnTestBed, # PandasScalarColumnTestBed, # TorchTensorColumnTestBed, # DeferredColumnTestBed, # ArrowScalarColumnTestBed, # ImageColumnTestBed, ] ) ) def column_testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) @product_parametrize( params={ "batched": [True, False], "materialize": [True, False], "use_ray": [False], # TODO: Put the tests with ray back } ) def test_map_return_single( column_testbed: AbstractColumnTestBed, batched: bool, materialize: bool, use_ray: bool, ): """`map`, single return,""" if not (isinstance(column_testbed.col, DeferredColumn) or materialize): # skip columns for which materialize has no effect return col = column_testbed.col map_spec = column_testbed.get_map_spec(batched=batched, materialize=materialize) def func(x): out = map_spec["fn"](x) return out result = col.map( func, batch_size=4, is_batched_fn=batched, materialize=materialize, output_type=map_spec.get("output_type", None), use_ray=use_ray, ) assert result.is_equal(map_spec["expected_result"]) # @product_parametrize(params={"batched": [True, False], "materialize": [True, False]}) # def test_map_return_single_w_kwarg( # column_testbed: AbstractColumnTestBed, batched: bool, materialize: bool # ): # """`map`, single return,""" # if not (isinstance(column_testbed.col, DeferredColumn) or materialize): # # skip columns for which materialize has no effect # return # col = column_testbed.col # kwarg = 2 # map_spec = column_testbed.get_map_spec( # batched=batched, materialize=materialize, kwarg=kwarg # ) # def func(x, k=0): # out = map_spec["fn"](x, k=k) # return out # result = col.map( # func, # batch_size=4, # is_batched_fn=batched, # materialize=materialize, # output_type=map_spec.get("output_type", None), # k=kwarg, # ) # assert result.is_equal(map_spec["expected_result"]) @product_parametrize( params={ "batched": [True, False], "materialize": [True, False], "use_ray": [False], # TODO (dean): Multiple outputs not supported. } ) def test_map_return_multiple( column_testbed: AbstractColumnTestBed, batched: bool, materialize: bool, use_ray: bool, ): """`map`, single return,""" if not (isinstance(column_testbed.col, DeferredColumn) or materialize): # skip columns for which materialize has no effect return col = column_testbed.col map_specs = { "map1": column_testbed.get_map_spec( batched=batched, materialize=materialize, salt=1 ), "map2": column_testbed.get_map_spec( batched=batched, materialize=materialize, salt=2 ), } def func(x): out = {key: map_spec["fn"](x) for key, map_spec in map_specs.items()} return out result = col.map( func, batch_size=4, is_batched_fn=batched, materialize=materialize, output_type={k: v.get("output_type", None) for k, v in map_specs.items()}, use_ray=use_ray, ) assert isinstance(result, DataFrame) for key, map_spec in map_specs.items(): assert result[key].is_equal(map_spec["expected_result"])
meerkat-main
tests/meerkat/ops/test_map.py
import hashlib import os import numpy as np import PIL import pytest import torch from PIL import Image import meerkat as mk from meerkat import embed from meerkat.ops.embed import encoders from meerkat.ops.embed.encoder import Encoder class ImageColumnTestBed: def __init__( self, tmpdir: str, length: int = 16, ): self.image_paths = [] self.image_arrays = [] self.ims = [] self.data = [] for i in range(0, length): self.image_arrays.append((i * np.ones((4, 4, 3))).astype(np.uint8)) im = Image.fromarray(self.image_arrays[-1]) self.ims.append(im) self.data.append(im) filename = "{}.png".format(i) im.save(os.path.join(tmpdir, filename)) self.image_paths.append(os.path.join(tmpdir, filename)) self.col = mk.FileColumn( self.image_paths, loader=Image.open, ) class TextColumnTestBed: def __init__(self, length: int = 16): self.data = ["Row " * idx for idx in range(length)] self.col = mk.ScalarColumn(self.data) EMB_SIZE = 4 def simple_encode(batch: torch.Tensor): value = batch.to(torch.float32).mean(dim=-1, keepdim=True) return torch.ones(batch.shape[0], EMB_SIZE) * value def simple_image_transform(image: PIL.Image): return torch.tensor(np.asarray(image)).to(torch.float32) def simple_text_transform(text: str): return torch.tensor( [ int.from_bytes(hashlib.sha256(token.encode("utf-8")).digest(), "big") % 100 for token in text.split(" ") ] )[:1] def _simple_encoder(variant: str = "ViT-B/32", device: str = "cpu"): return { "image": Encoder(encode=simple_encode, preprocess=simple_image_transform), "text": Encoder(encode=simple_encode, preprocess=simple_text_transform), } @pytest.fixture() def simple_encoder(monkeypatch): if "_simple_encoder" not in encoders.names: encoders.register(_simple_encoder) return _simple_encoder def test_embed_images(tmpdir: str, simple_encoder): image_testbed = ImageColumnTestBed(tmpdir=tmpdir) df = mk.DataFrame({"image": image_testbed.col}) df = embed( data=df, input="image", encoder="_simple_encoder", modality="image", batch_size=4, num_workers=0, ) assert isinstance(df, mk.DataFrame) assert "_simple_encoder(image)" in df assert ( simple_image_transform(df["image"][0]()).mean() == df["_simple_encoder(image)"][0].mean() ) def test_embed_text(simple_encoder): testbed = TextColumnTestBed() df = mk.DataFrame({"text": testbed.col}) df = embed( data=df, input="text", encoder="_simple_encoder", modality="text", batch_size=4, num_workers=0, ) assert isinstance(df, mk.DataFrame) assert "_simple_encoder(text)" in df assert ( simple_text_transform(df["text"][0]).to(torch.float32).mean() == df["_simple_encoder(text)"][0].mean() )
meerkat-main
tests/meerkat/ops/embed/test__init__.py
meerkat-main
tests/meerkat/ops/embed/__init__.py
meerkat-main
tests/meerkat/ops/sliceby/__init __.py
import numpy as np from meerkat import NumPyTensorColumn, ObjectColumn from meerkat.dataframe import DataFrame from meerkat.ops.sliceby.groupby import GroupBy, groupby # Comment for meeting 5/19: Testing group by multiple columns, # single columns on list, on string. # Different columns as by: including ListColumn, NumpyArrayColumn, # TensorColumn # Key index is NumpyArrays, TensorColumn # Coverage: 100% def assertNumpyArrayEquality(arr1, arr2): assert np.allclose(arr1, arr2) def test_group_by_type(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array( ["sam", "liam", "sam", "owen", "liam", "connor", "connor"], dtype=str, ) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, "name") assert isinstance(df, GroupBy) def test_tensor_column_by(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, "a") out = df["b"].mean() assertNumpyArrayEquality(out["b"].data, np.array([2.5, (2 + 3 + 6) / 3, 6])) assertNumpyArrayEquality(out["a"].data, np.array([1, 2, 3])) def test_group_by_integer_type(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, "a") out = df["b"].mean() assertNumpyArrayEquality(out["b"].data, np.array([2.5, (2 + 3 + 6) / 3, 6])) assertNumpyArrayEquality(out["a"].data, np.array([1, 2, 3])) def test_group_by_integer_type_md(): b = np.zeros((7, 4)) b[0, 0] = 4 b[1, 1] = 3 df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn(b), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = df.groupby("a") out = df["b"].mean(axis=0) assertNumpyArrayEquality(out["b"][0], np.array([2, 0, 0, 0])) assert out["a"][0] == 1 assert out["a"][1] == 2 assert out["a"][2] == 3 assertNumpyArrayEquality(out["b"][1], np.array([0, 1, 0, 0])) assertNumpyArrayEquality(out["b"][2], np.array([0, 0, 0, 0])) def test_group_by_integer_type_axis_passed(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, "a") out = df["b"].mean(axis=0) assertNumpyArrayEquality(out["b"].data, np.array([2.5, (2 + 3 + 6) / 3, 6])) assertNumpyArrayEquality(out["a"].data, np.array([1, 2, 3])) def test_group_by_integer_type_as_prop(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = df.groupby("a") out = df["b"].mean() assertNumpyArrayEquality(out["b"].data, np.array([2.5, (2 + 3 + 6) / 3, 6])) assertNumpyArrayEquality(out["a"].data, np.array([1, 2, 3])) def test_group_by_tensor_key(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, "a") out = df["b"].mean() assertNumpyArrayEquality(out["b"].data, np.array([2.5, (2 + 3 + 6) / 3, 6])) assertNumpyArrayEquality(out["a"].data, np.array([1, 2, 3])) def test_group_by_string_type(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, "name") out = df["b"].mean() assertNumpyArrayEquality(out["b"].data, np.array([2, 3.5, 4, 6.5])) assert (out["name"].data == NumPyTensorColumn(["a", "b", "c", "d"]).data).all() def test_group_by_string_type_multiple_keys(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, "name") out = df[["b", "a"]].mean() assert (np.linalg.norm(out["a"].data - np.array([1.5, 2.5, 1, 2.5]))) < 1e-10 assertNumpyArrayEquality(out["b"].data, np.array([2, 3.5, 4, 6.5])) assert (out["name"].data == NumPyTensorColumn(["a", "b", "c", "d"]).data).all() def test_group_by_by_string_type_as_list(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, ["name"]) out = df["b"].mean() assertNumpyArrayEquality(out["b"].data, np.array([2, 3.5, 4, 6.5])) assert (out["name"].data == NumPyTensorColumn(["a", "b", "c", "d"]).data).all() def test_group_by_by_string_type_as_list_key_as_list(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, ["name"]) out = df[["b"]].mean() assertNumpyArrayEquality(out["b"].data, np.array([2, 3.5, 4, 6.5])) assert (out["name"].data == NumPyTensorColumn(["a", "b", "c", "d"]).data).all() def test_group_by_float_should_fail(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) try: groupby(df, ["c"]) assert False except Exception: assert True def test_group_by_float_should_fail_nonexistent_column(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) try: groupby(df, ["d"]) assert False except Exception: assert True def test_group_by_by_string_type_as_list_key_as_list_mult_key_by_name(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, ["name"]) out = df[["b", "c"]].mean() assert np.linalg.norm(out["c"].data - np.array([1.55, 3.75, 4.3, 7.05]) < 1e-10) assertNumpyArrayEquality(out["b"].data, np.array([2, 3.5, 4, 6.5])) assert (out["name"].data == NumPyTensorColumn(["a", "b", "c", "d"]).data).all() def test_group_by_by_string_type_as_list_key_as_list_mult_key(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "a_diff": NumPyTensorColumn([1, 2, 2, 2, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, ["a", "a_diff"]) out = df[["b"]].mean() assertNumpyArrayEquality(out["a"].data, np.array([1, 1, 2, 3])) assertNumpyArrayEquality(out["a_diff"].data, np.array([1, 2, 2, 3])) assertNumpyArrayEquality(out["b"].data, np.array([1, 4, 11.0 / 3.0, 6])) def test_group_by_by_string_type_as_list_key_as_list_mult_key_tensor(): df = DataFrame( { "a": NumPyTensorColumn([1, 2, 2, 1, 3, 2, 3]), "a_diff": NumPyTensorColumn([1, 2, 2, 2, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, ["a", "a_diff"]) out = df[["b"]].mean() assertNumpyArrayEquality(out["a"].data, np.array([1, 1, 2, 3])) assertNumpyArrayEquality(out["a_diff"].data, np.array([1, 2, 2, 3])) assertNumpyArrayEquality(out["b"].data, np.array([1, 4, 11.0 / 3.0, 6])) def test_simple_list_column(): df = DataFrame( { "a": ObjectColumn([1, 2, 2, 1, 3, 2, 3]), "a_diff": NumPyTensorColumn([1, 2, 2, 2, 3, 2, 3]), "name": NumPyTensorColumn( np.array(["a", "b", "a", "c", "b", "d", "d"], dtype=str) ), "b": NumPyTensorColumn([1, 2, 3, 4, 5, 6, 7]), "c": NumPyTensorColumn([1.0, 3.2, 2.1, 4.3, 5.4, 6.5, 7.6]), } ) df = groupby(df, ["a", "a_diff"]) out = df[["b"]].mean() assertNumpyArrayEquality(out["a"].data, np.array([1, 1, 2, 3])) assertNumpyArrayEquality(out["a_diff"].data, np.array([1, 2, 2, 3])) assertNumpyArrayEquality(out["b"].data, np.array([1, 4, 11.0 / 3.0, 6]))
meerkat-main
tests/meerkat/ops/sliceby/test_groupby.py
from functools import wraps from itertools import product from typing import Any, Dict, List, Type, Union import numpy as np import pytest def column_parametrize( testbed_classes: List[Union[Type, Dict]], config: dict = None, single: bool = False, ): params = [ c.get_params(config=config, single=single) if isinstance(c, type) else c for c in testbed_classes ] return { "params": sum([p["argvalues"] for p in params], []), "ids": sum([p["ids"] for p in params], []), } @pytest.fixture def testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) def obj_to_id(obj: Any): return str(obj) class AbstractColumnTestBed: DEFAULT_CONFIG = {} # subclasses can add pytest marks which will be applied to all # tests using the testbed marks: pytest.Mark = None @classmethod def get_params( cls, config: dict = None, params: dict = None, single: bool = False ) -> Dict[str, Any]: updated_config = cls.DEFAULT_CONFIG.copy() if config is not None: updated_config.update(config) configs = [ (cls, config) if cls.marks is None else pytest.param((cls, config), marks=cls.marks) for config in map( dict, product(*[[(k, v) for v in vs] for k, vs in updated_config.items()]), ) ] if single: configs = configs[:1] if params is None: return { "argnames": "testbed", "argvalues": configs, "ids": [str(config) for config in configs], } else: argvalues = list(product(configs, *params.values())) return { "argnames": "testbed," + ",".join(params.keys()), "argvalues": argvalues, "ids": [",".join(map(str, values)) for values in argvalues], } @classmethod @wraps(pytest.mark.parametrize) def parametrize( cls, config: dict = None, params: dict = None, single: bool = False, ): return pytest.mark.parametrize( **cls.get_params(config=config, single=single), indirect=["testbed"] ) @classmethod def single(cls, tmpdir): return cls(**cls.get_params(single=True)["argvalues"][0][1], tmpdir=tmpdir) def get_map_spec(self, key: str = "default"): raise NotImplementedError() def get_data(self, index): raise NotImplementedError() def get_data_to_set(self, index): # only mutable columns need implement this pass @staticmethod def assert_data_equal(data1: np.ndarray, data2: np.ndarray): raise NotImplementedError()
meerkat-main
tests/meerkat/columns/abstract.py
import os import numpy as np import pandas as pd import pytest from meerkat import DeferredColumn, NumPyTensorColumn, TorchTensorColumn from meerkat.columns.deferred.base import DeferredCell from meerkat.columns.scalar.pandas import PandasScalarColumn from meerkat.errors import ConversionError, ImmutableError from ...utils import product_parametrize from .abstract import AbstractColumnTestBed, column_parametrize from .deferred.test_deferred import DeferredColumnTestBed from .deferred.test_image import ImageColumnTestBed from .scalar.test_arrow import ArrowScalarColumnTestBed from .scalar.test_pandas import PandasScalarColumnTestBed from .tensor.test_numpy import NumPyTensorColumnTestBed from .tensor.test_torch import TorchTensorColumnTestBed @pytest.fixture( **column_parametrize( [ NumPyTensorColumnTestBed, PandasScalarColumnTestBed, TorchTensorColumnTestBed, DeferredColumnTestBed, ArrowScalarColumnTestBed, # FileColumnTestBed, ImageColumnTestBed, # AudioColumnTestBed, ] ) ) def column_testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) @pytest.fixture( **column_parametrize( [ NumPyTensorColumnTestBed, PandasScalarColumnTestBed, TorchTensorColumnTestBed, DeferredColumnTestBed, ArrowScalarColumnTestBed, ], single=True, ), ) def single_column_testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) @product_parametrize(params={"index_type": [np.array, list]}) def test_getitem(column_testbed, index_type: type): col = column_testbed.col result = col[1] if isinstance(result, DeferredCell): result = result() column_testbed.assert_data_equal(column_testbed.get_data(1), result) for index in [ slice(2, 4, 1), (np.arange(len(col)) % 2).astype(bool), np.array([0, 3, 5, 6]), ]: col_index = index_type(index) if not isinstance(index, slice) else index data = column_testbed.get_data(index) result = col[col_index] if isinstance(result, DeferredColumn): result = result() column_testbed.assert_data_equal(data, result.data) if type(result) == type(col): # if the getitem returns a column of the same type, enforce that all the # attributes were cloned over appropriately. We don't want to check this # for columns that return columns of different type from getitem # (e.g. LambdaColumn) assert col._clone(data=data).is_equal(result) @product_parametrize(params={"index_type": [np.array, list, pd.Series]}) def test_set_item(column_testbed, index_type: type): MUTABLE_COLUMNS = (NumPyTensorColumn, TorchTensorColumn, PandasScalarColumn) col = column_testbed.col for index in [ 1, slice(2, 4, 1), (np.arange(len(col)) % 2).astype(bool), np.array([0, 3, 5, 6]), ]: col_index = index_type(index) if isinstance(index, np.ndarray) else index data_to_set = column_testbed.get_data_to_set(index) if isinstance(col, MUTABLE_COLUMNS): col[col_index] = data_to_set if isinstance(index, int): column_testbed.assert_data_equal(data_to_set, col[col_index]) else: column_testbed.assert_data_equal(data_to_set, col[col_index].data) else: with pytest.raises(ImmutableError): col[col_index] = data_to_set def test_copy(column_testbed: AbstractColumnTestBed): col, _ = column_testbed.col, column_testbed.data col_copy = col.copy() assert isinstance(col_copy, type(col)) assert col.is_equal(col_copy) @pytest.mark.skip def test_pickle(column_testbed): import dill as pickle # needed so that it works with lambda functions # important for dataloader col = column_testbed.col buf = pickle.dumps(col) new_col = pickle.loads(buf) assert isinstance(new_col, type(col)) if isinstance(new_col, DeferredColumn): # the lambda function isn't exactly the same after reading new_col.data.fn = col.data.fn assert col.is_equal(new_col) def test_io(tmp_path, column_testbed: AbstractColumnTestBed): # uses the tmp_path fixture which will provide a # temporary directory unique to the test invocation, # important for dataloader col, _ = column_testbed.col, column_testbed.data path = os.path.join(tmp_path, "test") col.write(path) new_col = type(col).read(path) assert isinstance(new_col, type(col)) if isinstance(new_col, DeferredColumn): # the lambda function isn't exactly the same after reading new_col.data.fn = col.data.fn assert col.is_equal(new_col) def test_head(single_column_testbed: AbstractColumnTestBed): testbed = single_column_testbed length = 10 result = testbed.col.head(length) assert len(result) == length assert result.is_equal(testbed.col[:length]) def test_tail(single_column_testbed: AbstractColumnTestBed): testbed = single_column_testbed length = 10 result = testbed.col.tail(length) assert len(result) == length assert result.is_equal(testbed.col[-length:]) def test_repr_html(single_column_testbed: AbstractColumnTestBed): testbed = single_column_testbed testbed.col._repr_html_() def test_str(single_column_testbed: AbstractColumnTestBed): testbed = single_column_testbed result = str(testbed.col) assert isinstance(result, str) def test_repr(single_column_testbed: AbstractColumnTestBed): testbed = single_column_testbed result = repr(testbed.col) assert isinstance(result, str) def test_streamlit(single_column_testbed: AbstractColumnTestBed): testbed = single_column_testbed testbed.col.streamlit() def test_repr_pandas(single_column_testbed: AbstractColumnTestBed): testbed = single_column_testbed series, _ = testbed.col._repr_pandas_() assert isinstance(series, pd.Series) def test_to_pandas(single_column_testbed: AbstractColumnTestBed): testbed = single_column_testbed if isinstance(testbed.col, DeferredColumn): with pytest.raises(ConversionError): series = testbed.col.to_pandas() else: series = testbed.col.to_pandas() assert isinstance(series, pd.Series) def test_to_torch(single_column_testbed: AbstractColumnTestBed): pass
meerkat-main
tests/meerkat/columns/test_common.py
meerkat-main
tests/meerkat/columns/__init__.py
"""Unittests for NumpyColumn.""" from __future__ import annotations import os from typing import List, Union import numpy as np import pytest import torch import torchaudio from meerkat import AudioColumn from meerkat.columns.abstract import Column from meerkat.columns.deferred.base import DeferredCell from meerkat.columns.deferred.file import FileCell from meerkat.columns.scalar import ScalarColumn from ..abstract import AbstractColumnTestBed def simple_transform(audio): return 2 * audio def loader(filepath): return torchaudio.load(filepath)[0] class AudioColumnTestBed(AbstractColumnTestBed): DEFAULT_CONFIG = { "transform": [True, False], "use_base_dir": [True, False], } marks = pytest.mark.audio_col def __init__( self, tmpdir: str, length: int = 16, transform: bool = False, use_base_dir: bool = False, seed: int = 123, ): self.audio_paths = [] self.audio_arrays = [] self.data = [] transform = simple_transform if transform else None self.base_dir = tmpdir if use_base_dir else None for i in range(0, length): # we want the audio to be variable length to test the collate audio = torch.tensor( (1 / (i + 1)) * np.ones((1, 16 + i)).astype(np.float32) ) self.audio_arrays.append(audio) self.data.append(transform(audio) if transform else audio) filename = "{}.wav".format(i) torchaudio.save( os.path.join(tmpdir, filename), audio, sample_rate=16, ) if use_base_dir: self.audio_paths.append(filename) else: self.audio_paths.append(os.path.join(tmpdir, filename)) self.transform = transform self.col = AudioColumn.from_filepaths( self.audio_paths, transform=transform, loader=loader, base_dir=self.base_dir, ) def get_data(self, index, materialize: bool = True): if materialize: if isinstance(index, int): return self.data[index] index = np.arange(len(self.data))[index] return [self.data[idx] for idx in index] else: if isinstance(index, int): return FileCell( data=self.audio_paths[index], loader=self.col.loader, transform=self.col.transform, base_dir=self.base_dir, ) index = np.arange(len(self.data))[index] return ScalarColumn([self.audio_paths[idx] for idx in index]) @staticmethod def assert_data_equal( data1: Union[Column, List, torch.Tensor], data2: Union[Column, List, torch.Tensor], ): def unpad_and_compare(padded: torch.Tensor, data: List): for row_idx in range(padded.shape[0]): padded_row = padded[row_idx] unpadded_row = padded_row[padded_row != 0] assert torch.allclose(unpadded_row, data[row_idx]) if isinstance(data1, Column) and isinstance(data2, Column): assert data1.is_equal(data2) elif torch.is_tensor(data1) and torch.is_tensor(data2): assert torch.allclose(data1, data2) elif torch.is_tensor(data1) and isinstance(data2, List): # because the waveforms are of different lengths, collate will put them # into a padded tensor, so we use unpad_and_compare to compare to the # original unpadded data unpad_and_compare(data1, data2) elif torch.is_tensor(data2) and isinstance(data1, List): unpad_and_compare(data2, data1) elif isinstance(data1, DeferredCell): assert data1 == data2 else: raise ValueError( "Cannot assert data equal between objects type:" f" {type(data1), type(data2)}" )
meerkat-main
tests/meerkat/columns/deferred/test_audio.py
"""Unittests for NumpyColumn.""" from __future__ import annotations import os from typing import List, Union import numpy as np import pandas as pd import pytest import torch import torchvision.datasets.folder as folder from PIL import Image import meerkat from meerkat import ImageColumn from meerkat.block.deferred_block import DeferredCellOp, DeferredOp from meerkat.columns.abstract import Column from meerkat.columns.deferred.base import DeferredCell from meerkat.columns.deferred.file import FileCell from meerkat.columns.object.base import ObjectColumn from meerkat.columns.scalar import ScalarColumn from ....utils import product_parametrize from ..abstract import AbstractColumnTestBed, column_parametrize class ImageColumnTestBed(AbstractColumnTestBed): DEFAULT_CONFIG = { "use_base_dir": [True, False], } marks = pytest.mark.image_col def __init__( self, tmpdir: str, length: int = 16, use_base_dir: bool = False, seed: int = 123, ): self.image_paths = [] self.image_arrays = [] self.ims = [] self.data = [] self.base_dir = tmpdir if use_base_dir else "" for i in range(0, length): self.image_arrays.append((i * np.ones((4, 4, 3))).astype(np.uint8)) im = Image.fromarray(self.image_arrays[-1]) self.ims.append(im) self.data.append(im) filename = "{}.png".format(i) im.save(os.path.join(tmpdir, filename)) if use_base_dir: self.image_paths.append(filename) else: self.image_paths.append(os.path.join(tmpdir, filename)) self.col = ImageColumn( self.image_paths, loader=folder.default_loader, base_dir=self.base_dir, ) def get_map_spec( self, batched: bool = True, materialize: bool = False, kwarg: int = 0, salt: int = 1, ): if not materialize: if batched: return {"fn": lambda x, k=0: x, "expected_result": self.col} else: # can't check for cell column equivalence because the `fn` is a bound # method of different objects (since we perform batching then convert) # non-batched fns to batched functions, so we call get return { "fn": lambda x, k=0: x.get().rotate(45 + salt + k), "expected_result": ObjectColumn( [im.rotate(45 + salt + kwarg) for im in self.ims] ), } else: return { "fn": (lambda x, k=0: [im.rotate(45 + salt + k) for im in x]) if batched else (lambda x, k=0: x.rotate(45 + salt + k)), "expected_result": ObjectColumn( [im.rotate(45 + salt + kwarg) for im in self.ims] ), } def get_filter_spec( self, batched: bool = True, materialize: bool = False, salt: int = 1, kwarg: int = 0, ): if not materialize: if batched: return { "fn": lambda x, k=0: [ int(os.path.splitext(os.path.basename(cell.data))[0]) < (4 + salt + k) for cell in x ], "expected_result": self.col[: 4 + salt + kwarg], } else: return { "fn": ( lambda x, k=0: int( os.path.splitext(os.path.basename(x.data))[0] ) < (4 + salt + k) ), "expected_result": self.col[: 4 + salt + kwarg], } else: return { "fn": (lambda x, k=0: [im.rotate(45 + salt + k) for im in x]) if batched else (lambda x, k=0: x.rotate(45 + salt + k)), "expected_result": ObjectColumn( [im.rotate(45 + salt + kwarg) for im in self.ims] ), } def get_data(self, index, materialize: bool = True): if materialize: if isinstance(index, int): return self.data[index] index = np.arange(len(self.data))[index] return [self.data[idx] for idx in index] else: if isinstance(index, int): return FileCell( DeferredCellOp( args=[self.image_paths[index]], kwargs={}, fn=self.col.fn, is_batched_fn=False, return_index=None, ) ) index = np.arange(len(self.data))[index] col = ScalarColumn([self.image_paths[idx] for idx in index]) return DeferredOp( args=[col], kwargs={}, fn=self.col.fn, is_batched_fn=False, batch_size=1 ) @staticmethod def assert_data_equal( data1: Union[Image.Image, Column, List, torch.Tensor], data2: Union[Image.Image, Column, List, torch.Tensor], ): if isinstance(data1, Image.Image) or isinstance(data1, List): assert data1 == data2 elif isinstance(data1, Column): assert data1.is_equal(data2) elif torch.is_tensor(data1): print(data2) assert (data1 == data2).all() elif isinstance(data1, DeferredCell): assert data1 == data2 elif isinstance(data1, DeferredOp): assert data1.is_equal(data2) else: raise ValueError( "Cannot assert data equal between objects type:" f" {type(data1), type(data2)}" ) @pytest.fixture(**column_parametrize([ImageColumnTestBed])) def testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) @product_parametrize(params={"max_rows": [6, 16, 20]}) def test_repr_pandas(testbed, max_rows): meerkat.config.display.max_rows = max_rows series, _ = testbed.col._repr_pandas_() assert isinstance(series, pd.Series) assert len(series) == min(len(series), max_rows + 1) def test_repr_when_transform_produces_invalid_image(testbed): from torchvision.transforms import ToTensor def mean_transform(cell): return ToTensor()(cell).mean(dim=[1, 2]) testbed.col.transform = mean_transform testbed.col._repr_html_()
meerkat-main
tests/meerkat/columns/deferred/test_image.py
meerkat-main
tests/meerkat/columns/deferred/__init__.py
import json import os from typing import Union import dill import numpy as np import pytest from PIL import Image import meerkat as mk from meerkat.block.deferred_block import DeferredCellOp, DeferredOp from meerkat.columns.deferred.base import DeferredCell from meerkat.columns.deferred.file import FILE_TYPES, FileCell, FileColumn, FileLoader from meerkat.columns.scalar import ScalarColumn from tests.meerkat.columns.abstract import AbstractColumnTestBed, column_parametrize from tests.utils import product_parametrize def load_json(path): with open(path, "r") as f: return json.load(f) def add_one(data): return data + 1 class FileColumnTestBed(AbstractColumnTestBed): DEFAULT_CONFIG = { "use_base_dir": [True, False], } marks = pytest.mark.file_col def __init__( self, tmpdir: str, length: int = 16, use_base_dir: bool = False, seed: int = 123, ): self.paths = [] self.data = [] self.tmp_dir = tmpdir self.files_dir = os.path.join(tmpdir, "files") os.makedirs(self.files_dir, exist_ok=True) self.base_dir = self.files_dir if use_base_dir else None for i in range(0, length): # write a simple json file to disk filename = "file_{}.json".format(i) path = os.path.join(self.files_dir, filename) with open(path, "w") as f: json.dump(i, f) self.data.append(i) if use_base_dir: self.paths.append(filename) else: self.paths.append(os.path.join(self.files_dir, filename)) self.data = np.arange(length) self.col = mk.files( self.paths, loader=load_json, base_dir=self.base_dir, ) def get_data(self, index, materialize: bool = True): if materialize: return self.data[index] else: if isinstance(index, int): return FileCell( DeferredCellOp( args=[self.paths[index]], kwargs={}, fn=self.col.fn, is_batched_fn=False, return_index=None, ) ) index = np.arange(len(self.data))[index] col = ScalarColumn([self.paths[idx] for idx in index]) return DeferredOp( args=[col], kwargs={}, fn=self.col.fn, is_batched_fn=False, batch_size=1 ) @staticmethod def assert_data_equal( data1: Union[np.ndarray, DeferredCell, DeferredOp], data2: Union[np.ndarray, DeferredCell, DeferredOp], ): if isinstance(data1, (int, np.int64)): assert data1 == data2 elif isinstance(data1, np.ndarray): assert (data1 == data2).all() elif isinstance(data1, DeferredCell): assert data1 == data2 elif isinstance(data1, DeferredOp): assert data1.is_equal(data2) else: raise ValueError( "Cannot assert data equal between objects type:" f" {type(data1), type(data2)}" ) @pytest.fixture(**column_parametrize([FileColumnTestBed])) def testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) @FileColumnTestBed.parametrize( config={ "use_base_dir": [True], } ) def test_change_base_dir(testbed): assert testbed.base_dir is not None col = testbed.col new_dir = os.path.join(testbed.tmp_dir, "new_files") os.rename(testbed.files_dir, new_dir) col.base_dir = new_dir assert (col[[1, 3, 5]]().data == testbed.get_data([1, 3, 5])).all() BUCKET_URL = "https://storage.googleapis.com/meerkat-ml/tests/file_types" TEST_FILES = { "image": [ os.path.join(BUCKET_URL, "image/test-img-01.jpg"), os.path.join(BUCKET_URL, "image/test-img-02.jpg"), os.path.join(BUCKET_URL, "image/test-img-01.png"), os.path.join(BUCKET_URL, "image/test-img-02.png"), os.path.join(BUCKET_URL, "image/test-img-01.jpeg"), os.path.join(BUCKET_URL, "image/test-img-02.jpeg"), ], "pdf": [ os.path.join(BUCKET_URL, "pdf/test-pdf-01.pdf"), os.path.join(BUCKET_URL, "pdf/test-pdf-02.pdf"), os.path.join(BUCKET_URL, "pdf/test-pdf-03.pdf"), ], "text": [ os.path.join(BUCKET_URL, "text/test-txt-01.txt"), os.path.join(BUCKET_URL, "text/test-txt-02.txt"), os.path.join(BUCKET_URL, "text/test-txt-03.txt"), ], "html": [ os.path.join(BUCKET_URL, "html/test-html-01.html"), os.path.join(BUCKET_URL, "html/test-html-02.html"), os.path.join(BUCKET_URL, "html/test-html-03.html"), ], "code": [ os.path.join(BUCKET_URL, "code/test-code-01.py"), os.path.join(BUCKET_URL, "code/test-code-02.py"), os.path.join(BUCKET_URL, "code/test-code-03.py"), ], } @product_parametrize({"file_type": list(TEST_FILES.keys())}) def test_file_types(file_type: str, tmpdir): files = TEST_FILES[file_type] col = mk.files(files) assert isinstance(col, FileColumn) assert isinstance(col.formatters, FILE_TYPES[file_type]["formatters"]) col.formatters["base"].encode(col[0]) def test_downloader(monkeypatch, tmpdir): import urllib ims = [] def patched_urlretrieve(url, filename): img_array = np.ones((4, 4, 3)).astype(np.uint8) im = Image.fromarray(img_array) ims.append(im) im.save(filename) monkeypatch.setattr(urllib.request, "urlretrieve", patched_urlretrieve) downloader = FileLoader( loader=Image.open, downloader="url", cache_dir=os.path.join(tmpdir, "cache") ) out = downloader("https://test.com/dir/2.jpg") assert os.path.exists(os.path.join(tmpdir, "cache", "test.com/dir/2.jpg")) assert (np.array(out) == np.array(ims[0])).all() out = downloader("https://test.com/dir/2.jpg") assert len(ims) == 1 out = downloader("https://test.com/dir/3.jpg") assert len(ims) == 2 def test_fallback_download(monkeypatch, tmpdir): import urllib def patched_urlretrieve(url, filename): raise urllib.error.HTTPError(url, 404, "Not found", None, None) monkeypatch.setattr(urllib.request, "urlretrieve", patched_urlretrieve) ims = [] def fallback(filename): img_array = np.ones((4, 4, 3)).astype(np.uint8) im = Image.fromarray(img_array) ims.append(im) im.save(filename) downloader = FileLoader( loader=Image.open, downloader="url", fallback_downloader=fallback, cache_dir=os.path.join(tmpdir, "cache"), ) with pytest.warns(UserWarning): out = downloader("https://test.com/dir/2.jpg") assert os.path.exists(os.path.join(tmpdir, "cache", "test.com/dir/2.jpg")) assert (np.array(out) == np.array(ims[0])).all() out = downloader("https://test.com/dir/2.jpg") assert len(ims) == 1 with pytest.warns(UserWarning): out = downloader("https://test.com/dir/3.jpg") assert len(ims) == 2 def test_serialize_downloader(tmpdir): downloader = FileLoader( loader=Image.open, downloader="url", cache_dir=os.path.join(tmpdir, "cache"), ) dill.dump(downloader, open(os.path.join(tmpdir, "downloader.pkl"), "wb")) downloader = dill.load(open(os.path.join(tmpdir, "downloader.pkl"), "rb")) assert downloader.cache_dir == os.path.join(tmpdir, "cache")
meerkat-main
tests/meerkat/columns/deferred/test_file_column.py
import json import os from typing import Union import dill import numpy as np import pytest from PIL import Image from meerkat.block.deferred_block import DeferredCellOp, DeferredOp from meerkat.columns.deferred.base import DeferredCell from meerkat.columns.deferred.file import FileCell, FileColumn, FileLoader from meerkat.columns.scalar import ScalarColumn from tests.meerkat.columns.abstract import AbstractColumnTestBed, column_parametrize def load_json(path): with open(path, "r") as f: return json.load(f) def add_one(data): return data + 1 class FileColumnTestBed(AbstractColumnTestBed): DEFAULT_CONFIG = { "use_base_dir": [True, False], } marks = pytest.mark.file_col def __init__( self, tmpdir: str, length: int = 16, use_base_dir: bool = False, seed: int = 123, ): self.paths = [] self.data = [] self.tmp_dir = tmpdir self.files_dir = os.path.join(tmpdir, "files") os.makedirs(self.files_dir, exist_ok=True) self.base_dir = self.files_dir if use_base_dir else None for i in range(0, length): # write a simple json file to disk filename = "file_{}.json".format(i) path = os.path.join(self.files_dir, filename) with open(path, "w") as f: json.dump(i, f) self.data.append(i) if use_base_dir: self.paths.append(filename) else: self.paths.append(os.path.join(self.files_dir, filename)) self.data = np.arange(length) self.col = FileColumn( self.paths, loader=load_json, base_dir=self.base_dir, ) def get_data(self, index, materialize: bool = True): if materialize: return self.data[index] else: if isinstance(index, int): return FileCell( DeferredCellOp( args=[self.paths[index]], kwargs={}, fn=self.col.fn, is_batched_fn=False, return_index=None, ) ) index = np.arange(len(self.data))[index] col = ScalarColumn([self.paths[idx] for idx in index]) return DeferredOp( args=[col], kwargs={}, fn=self.col.fn, is_batched_fn=False, batch_size=1 ) @staticmethod def assert_data_equal( data1: Union[np.ndarray, DeferredCell, DeferredOp], data2: Union[np.ndarray, DeferredCell, DeferredOp], ): if isinstance(data1, (int, np.int64)): assert data1 == data2 elif isinstance(data1, np.ndarray): assert (data1 == data2).all() elif isinstance(data1, DeferredCell): assert data1 == data2 elif isinstance(data1, DeferredOp): assert data1.is_equal(data2) else: raise ValueError( "Cannot assert data equal between objects type:" f" {type(data1), type(data2)}" ) @pytest.fixture(**column_parametrize([FileColumnTestBed])) def testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) @FileColumnTestBed.parametrize( config={ "use_base_dir": [True], } ) def test_change_base_dir(testbed): assert testbed.base_dir is not None col = testbed.col new_dir = os.path.join(testbed.tmp_dir, "new_files") os.rename(testbed.files_dir, new_dir) col.base_dir = new_dir assert (col[[1, 3, 5]]().values == testbed.get_data([1, 3, 5])).all() def test_downloader(monkeypatch, tmpdir): import urllib ims = [] def patched_urlretrieve(url, filename): img_array = np.ones((4, 4, 3)).astype(np.uint8) im = Image.fromarray(img_array) ims.append(im) im.save(filename) monkeypatch.setattr(urllib.request, "urlretrieve", patched_urlretrieve) downloader = FileLoader( loader=Image.open, downloader="url", cache_dir=os.path.join(tmpdir, "cache") ) out = downloader("https://test.com/dir/2.jpg") assert os.path.exists(os.path.join(tmpdir, "cache", "test.com/dir/2.jpg")) assert (np.array(out) == np.array(ims[0])).all() out = downloader("https://test.com/dir/2.jpg") assert len(ims) == 1 out = downloader("https://test.com/dir/3.jpg") assert len(ims) == 2 def test_fallback_download(monkeypatch, tmpdir): import urllib def patched_urlretrieve(url, filename): raise urllib.error.HTTPError(url, 404, "Not found", None, None) monkeypatch.setattr(urllib.request, "urlretrieve", patched_urlretrieve) ims = [] def fallback(filename): img_array = np.ones((4, 4, 3)).astype(np.uint8) im = Image.fromarray(img_array) ims.append(im) im.save(filename) downloader = FileLoader( loader=Image.open, downloader="url", fallback_downloader=fallback, cache_dir=os.path.join(tmpdir, "cache"), ) with pytest.warns(UserWarning): out = downloader("https://test.com/dir/2.jpg") assert os.path.exists(os.path.join(tmpdir, "cache", "test.com/dir/2.jpg")) assert (np.array(out) == np.array(ims[0])).all() out = downloader("https://test.com/dir/2.jpg") assert len(ims) == 1 with pytest.warns(UserWarning): out = downloader("https://test.com/dir/3.jpg") assert len(ims) == 2 def test_serialize_downloader(tmpdir): downloader = FileLoader( loader=Image.open, downloader="url", cache_dir=os.path.join(tmpdir, "cache"), ) dill.dump(downloader, open(os.path.join(tmpdir, "downloader.pkl"), "wb")) downloader = dill.load(open(os.path.join(tmpdir, "downloader.pkl"), "rb")) assert downloader.cache_dir == os.path.join(tmpdir, "cache")
meerkat-main
tests/meerkat/columns/deferred/test_file.py
"""Unittests for LambdaColumn.""" from typing import Type import numpy as np import pytest import meerkat as mk from meerkat import DeferredColumn, NumPyTensorColumn, ObjectColumn from meerkat.errors import ConcatWarning from ....testbeds import MockColumn, MockDatapanel from ..abstract import AbstractColumnTestBed, column_parametrize class DeferredColumnTestBed(AbstractColumnTestBed): DEFAULT_CONFIG = { "batched": [True, False], "from_df": [True, False], "multiple_outputs": [True, False], } marks = pytest.mark.lambda_col def __init__( self, batched: bool, from_df: bool, multiple_outputs: bool, length: int = 16, seed: int = 123, tmpdir: str = None, ): defer_kwargs = { "is_batched_fn": batched, "batch_size": 4 if batched else 1, } np.random.seed(seed) array = np.random.random(length) * 10 self.col = mk.NumPyTensorColumn(array).defer( function=lambda x: x + 2, **defer_kwargs ) self.data = array + 2 def get_map_spec( self, batched: bool = True, materialize: bool = False, kwarg: int = 0, salt: int = 1, ): if materialize: return { "fn": lambda x, k=0: x + salt + k, "expected_result": NumPyTensorColumn.from_array( self.data + salt + kwarg ), } else: if batched: return { "fn": lambda x, k=0: np.array([cell.get() for cell in x]) + salt + k, "expected_result": NumPyTensorColumn.from_array( self.data + salt + kwarg ), } else: return { "fn": lambda x, k=0: x.get() + salt + k, "expected_result": NumPyTensorColumn.from_array( self.data + salt + kwarg ), } def get_data(self, index, materialize: bool = True): if materialize: return self.data[index] else: raise NotImplementedError() def get_data_to_set(self, index): return 0 @staticmethod def assert_data_equal(data1: np.ndarray, data2: np.ndarray): if isinstance(data1, np.ndarray): assert (data1 == data2).all() else: assert data1 == data2 @pytest.fixture(**column_parametrize([DeferredColumnTestBed])) def testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) @pytest.mark.parametrize( "col_type", [NumPyTensorColumn, NumPyTensorColumn, ObjectColumn] ) def test_column_defer(col_type: Type): testbed = MockColumn(col_type=col_type) col = testbed.col # Build a dataset from a batch lambda_col = col.defer(lambda x: x + 1) assert isinstance(lambda_col, DeferredColumn) assert (lambda_col() == testbed.array[testbed.visible_rows] + 1).all() @pytest.mark.parametrize( "use_visible_columns", [True, False], ) def test_df_defer(use_visible_columns: bool): length = 16 testbed = MockDatapanel( use_visible_columns=use_visible_columns, length=length, ) df = testbed.df # Build a dataset from a batch lambda_col = df.defer(lambda x: x["a"] + 1) assert isinstance(lambda_col, DeferredColumn) assert (lambda_col().data == np.arange(length)[testbed.visible_rows] + 1).all() @pytest.mark.parametrize( "col_type", [NumPyTensorColumn, NumPyTensorColumn, ObjectColumn], ) def test_composed_lambda_columns(col_type: Type): testbed = MockColumn(col_type=col_type) # Build a dataset from a batch lambda_col = testbed.col.defer(lambda x: x + 1) lambda_col = lambda_col.defer(lambda x: x + 1) assert (lambda_col() == testbed.array[testbed.visible_rows] + 2).all() def test_df_concat(): length = 16 testbed = MockDatapanel(length=length) df = testbed.df def fn(x): return x["a"] + 1 col_a = df.defer(fn) col_b = df.defer(fn) out = mk.concat([col_a, col_b]) assert isinstance(out, DeferredColumn) assert (out().data == np.concatenate([np.arange(length) + 1] * 2)).all() col_a = df.defer(fn) col_b = df.defer(lambda x: x["a"]) with pytest.warns(ConcatWarning): out = mk.concat([col_a, col_b]) @pytest.mark.parametrize("col_type", [NumPyTensorColumn, ObjectColumn]) def test_col_concat(col_type): testbed = MockColumn(col_type=col_type) col = testbed.col length = len(col) def fn(x): return x + 1 col_a = col.defer(fn) col_b = col.defer(fn) out = mk.concat([col_a, col_b]) assert isinstance(out, DeferredColumn) assert (out().data == np.concatenate([np.arange(length) + 1] * 2)).all() col_a = col.defer(fn) col_b = col.defer(lambda x: x) with pytest.warns(ConcatWarning): out = mk.concat([col_a, col_b])
meerkat-main
tests/meerkat/columns/deferred/test_deferred.py
meerkat-main
tests/meerkat/columns/object/__init__.py
import time import numpy as np from PIL import Image from meerkat.columns.object.base import ObjectColumn from meerkat.interactive.formatter.image import ImageFormatterGroup def test_formatters_image(): """Test formatters when the object column is full of images.""" images = [ Image.fromarray(np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)) for _ in range(10) ] # Automatically detect the formatters. col = ObjectColumn(images) assert isinstance(col.formatters, ImageFormatterGroup) # make sure the formatters do not modify the object in place. for key in col.formatters.keys(): size = images[0].size col.formatters[key].encode(images[0]) assert images[0].size == size def test_to_numpy_speed(): """Casting an object column to numpy should be fast (< 1 second).""" objs = [[0, 0, 0, 0] for _ in range(10000)] col = ObjectColumn(objs) start = time.perf_counter() col.to_numpy() time_elapsed = time.perf_counter() - start assert time_elapsed < 1.0 start = time.perf_counter() np.array(col) time_elapsed = time.perf_counter() - start assert time_elapsed < 1.0
meerkat-main
tests/meerkat/columns/object/test_base.py
import numpy as np import pandas as pd import pytest import torch from meerkat import TensorColumn, TorchTensorColumn from meerkat.block.numpy_block import NumPyBlock from ..abstract import AbstractColumnTestBed, column_parametrize class TensorColumnTestBed(AbstractColumnTestBed): DEFAULT_CONFIG = { "num_dims": [1, 2, 3], "dim_length": [1, 5], "dtype": ["float", "int"], } marks = pytest.mark.tensor_col def __init__( self, length: int = 16, num_dims: int = True, dim_length: int = 5, dtype="float", seed: int = 123, tmpdir: str = None, ): self.dtype = dtype np.random.seed(seed) array = ( np.random.random((length, *[dim_length for _ in range(num_dims - 1)])) * 10 ) array = torch.tensor(array).to({"int": torch.int, "float": torch.float}[dtype]) self.col = TorchTensorColumn(array) self.data = array def get_map_spec( self, batched: bool = True, materialize: bool = False, salt: int = 1, kwarg: int = 0, ): return { "fn": lambda x, k=0: x + salt + k, "expected_result": TorchTensorColumn(self.col.data + salt + kwarg), } def get_filter_spec( self, batched: bool = True, materialize: bool = False, salt: int = 1, kwarg: int = 0, ): return { "fn": lambda x, k=0: ( (x > 3 + salt + k).to(dtype=bool) if batched else (x > 3 + salt + k) ), "expected_result": self.col[self.col.data > 3 + salt + kwarg], } def get_data(self, index, materialize=True): return self.data[index] def get_data_to_set(self, data_index): return torch.zeros_like(self.get_data(data_index)) @staticmethod def assert_data_equal(data1: np.ndarray, data2: np.ndarray): assert (data1 == data2).all() @pytest.fixture(**column_parametrize([TensorColumnTestBed])) def testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) def test_init_block(): block_view = NumPyBlock(np.zeros((10, 10)))[0] with pytest.raises(ValueError): TorchTensorColumn(block_view) def test_to_tensor(testbed): col, _ = testbed.col, testbed.data tensor = col.to_tensor() assert torch.is_tensor(tensor) assert (col == tensor.numpy()).all() def test_to_pandas(testbed): series = testbed.col.to_pandas() assert isinstance(series, pd.Series) if testbed.col.shape == 1: assert (series.values == testbed.col.data).all() else: for idx in range(len(testbed.col)): assert (series.iloc[idx] == testbed.col[idx].numpy()).all() def test_repr_pandas(testbed): series = testbed.col.to_pandas() assert isinstance(series, pd.Series) def test_ufunc_unhandled(): a = TorchTensorColumn([1, 2, 3]) with pytest.raises(TypeError): a == "a" @pytest.mark.parametrize( "data", [[1, 2, 3], np.asarray([1, 2, 3]), torch.tensor([1, 2, 3]), pd.Series([1, 2, 3])], ) @pytest.mark.parametrize("backend", ["numpy", "torch"]) def test_backend(data, backend: str): col = TensorColumn(data, backend=backend) expected_type = {"numpy": np.ndarray, "torch": torch.Tensor}[backend] assert isinstance(col.data, expected_type) col_data = col.data if isinstance(col_data, torch.Tensor): col_data = col_data.numpy() if isinstance(data, torch.Tensor): data = data.numpy() col_data = np.asarray(col_data) data = np.asarray(data) assert (col_data == data).all()
meerkat-main
tests/meerkat/columns/tensor/test_tensor_column.py
import numpy as np import pandas as pd import pytest import torch from meerkat import NumPyTensorColumn, TorchTensorColumn from meerkat.block.torch_block import TorchBlock from ..abstract import AbstractColumnTestBed, column_parametrize class TorchTensorColumnTestBed(AbstractColumnTestBed): DEFAULT_CONFIG = { "num_dims": [1, 2, 3], "dim_length": [1, 5], "dtype": ["float", "int"], } marks = pytest.mark.tensor_col def __init__( self, length: int = 16, num_dims: int = True, dim_length: int = 5, dtype="float", seed: int = 123, tmpdir: str = None, ): self.dtype = dtype np.random.seed(seed) array = ( np.random.random((length, *[dim_length for _ in range(num_dims - 1)])) * 10 ) array = torch.tensor(array).to({"int": torch.int, "float": torch.float}[dtype]) self.col = TorchTensorColumn(array) self.data = array def get_map_spec( self, batched: bool = True, materialize: bool = False, salt: int = 1, kwarg: int = 0, ): return { "fn": lambda x, k=0: x + salt + k, "expected_result": TorchTensorColumn(self.col.data + salt + kwarg), } def get_filter_spec( self, batched: bool = True, materialize: bool = False, salt: int = 1, kwarg: int = 0, ): return { "fn": lambda x, k=0: ( (x > 3 + salt + k).to(dtype=bool) if batched else (x > 3 + salt + k) ), "expected_result": self.col[self.col.data > 3 + salt + kwarg], } def get_data(self, index, materialize=True): return self.data[index] def get_data_to_set(self, data_index): return torch.zeros_like(self.get_data(data_index)) @staticmethod def assert_data_equal(data1: np.ndarray, data2: np.ndarray): assert (data1 == data2).all() @pytest.fixture(**column_parametrize([TorchTensorColumnTestBed])) def testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) def test_init_block(): block_view = TorchBlock(torch.zeros(10, 10))[0] with pytest.raises(ValueError): NumPyTensorColumn(block_view) def test_to_tensor(testbed): col, _ = testbed.col, testbed.data tensor = col.to_tensor() assert torch.is_tensor(tensor) assert (col == tensor.numpy()).all() def test_to_pandas(testbed): series = testbed.col.to_pandas(allow_objects=True) assert isinstance(series, pd.Series) if testbed.col.shape == 1: assert (series.values == testbed.col.data).all() else: for idx in range(len(testbed.col)): assert (series.iloc[idx] == testbed.col[idx].numpy()).all() @pytest.mark.parametrize( "data", [ pd.Series([1, 2, 3]), [1, 2, 3], [[1, 2, 3], [4, 5, 6]], [np.asarray([1, 2, 3]), np.asarray([4, 5, 6])], ], ) def test_from_numpyable(data): """Test that numpyable objects can also be converted to TorchTensorColumn.""" col = TorchTensorColumn(data) assert isinstance(col, TorchTensorColumn) assert (col.data == torch.as_tensor(np.asarray(data))).all() def test_repr_pandas(testbed): series = testbed.col.to_pandas(allow_objects=True) assert isinstance(series, pd.Series) def test_ufunc_unhandled(): a = TorchTensorColumn([1, 2, 3]) with pytest.raises(TypeError): a == "a"
meerkat-main
tests/meerkat/columns/tensor/test_torch.py
meerkat-main
tests/meerkat/columns/tensor/__init__.py
import os import numpy as np import numpy.testing as np_test import pandas as pd import pytest from numpy.lib.format import open_memmap from meerkat import NumPyTensorColumn, TorchTensorColumn from meerkat.block.numpy_block import NumPyBlock from ....utils import product_parametrize from ..abstract import AbstractColumnTestBed, column_parametrize class NumPyTensorColumnTestBed(AbstractColumnTestBed): DEFAULT_CONFIG = { "num_dims": [1, 2, 3], "dim_length": [1, 5], "dtype": ["float", "int"], "mmap": [True, False], } marks = pytest.mark.numpy_col def __init__( self, length: int = 16, num_dims: int = True, dim_length: int = 5, dtype="float", mmap: bool = False, seed: int = 123, tmpdir: str = None, ): self.dtype = dtype np.random.seed(seed) array = ( np.random.random((length, *[dim_length for _ in range(num_dims - 1)])) * 10 ) array = array.astype(dtype) if mmap: mmap = open_memmap( filename=os.path.join(tmpdir, "mmap"), dtype=array.dtype, shape=array.shape, mode="w+", ) mmap[:] = array self.col = NumPyTensorColumn.from_array(mmap) else: self.col = NumPyTensorColumn.from_array(array) self.data = array def get_map_spec( self, batched: bool = True, materialize: bool = False, kwarg: int = 0, salt: int = 1, ): return { "fn": lambda x, k=0: x + salt + k, "expected_result": NumPyTensorColumn.from_array( self.col.data + salt + kwarg ), "output_type": NumPyTensorColumn, } def get_filter_spec( self, batched: bool = True, materialize: bool = False, kwarg: int = 0, salt: int = 1, ): return { "fn": lambda x, k=0: x > 3 + k + salt, "expected_result": self.col[self.col.data > 3 + salt + kwarg], } def get_data(self, index, materialize=True): return self.data[index] def get_data_to_set(self, data_index): return np.zeros_like(self.get_data(data_index)) @staticmethod def assert_data_equal(data1: np.ndarray, data2: np.ndarray): assert (data1 == data2).all() @pytest.fixture(**column_parametrize([NumPyTensorColumnTestBed])) def testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) def test_init_block(): block_view = NumPyBlock(np.zeros((10, 10)))[0] with pytest.raises(ValueError): TorchTensorColumn(block_view) @product_parametrize(params={"batched": [True, False]}) def test_map_return_single_mmap(tmpdir, testbed: AbstractColumnTestBed, batched: bool): col = testbed.col map_spec = testbed.get_map_spec(batched=batched) def func(x): out = map_spec["fn"](x) return out mmap_path = os.path.join(tmpdir, "mmap_path") result = col.map( func, batch_size=4, mmap=True, mmap_path=mmap_path, is_batched_fn=batched, output_type=map_spec.get("output_type", None), ) result = NumPyTensorColumn(result) assert result.is_equal(map_spec["expected_result"]) # FIXME: when we add mmap support back to map reintroduce this test. # assert isinstance(result.data, np.memmap) # assert result.data.filename == mmap_path @product_parametrize(params={"link": [True, False], "mmap": [True, False]}) def test_io_mmap(tmp_path, testbed, link, mmap): col = testbed.col path = os.path.join(tmp_path, "test") col.write(path, link=link) assert os.path.islink(os.path.join(path, "data.npy")) == (link and col.is_mmap) new_col = NumPyTensorColumn.read(path, mmap=mmap) assert isinstance(new_col, NumPyTensorColumn) assert col.is_equal(new_col) assert new_col.is_mmap == mmap def test_from_array(): # Build a dataset from a batch array = np.random.rand(10, 3, 3) col = NumPyTensorColumn.from_array(array) assert (col == array).all() np_test.assert_equal(len(col), 10) def test_to_pandas(testbed): series = testbed.col.to_pandas() assert isinstance(series, pd.Series) if testbed.col.shape == 1: assert (series.values == testbed.col.data).all() else: for idx in range(len(testbed.col)): assert (series.iloc[idx] == testbed.col[idx]).all() def test_repr_pandas(testbed): series = testbed.col.to_pandas() assert isinstance(series, pd.Series) def test_ufunc_out(): out = np.zeros(3) a = NumPyTensorColumn([1, 2, 3]) b = NumPyTensorColumn([1, 2, 3]) result = np.add(a, b, out=out) assert (result.data == out).all() def test_ufunc_at(): a = NumPyTensorColumn([1, 2, 3]) result = np.add.at(a, [0, 1, 1], 1) assert result is None assert a.is_equal(NumPyTensorColumn([2, 4, 3])) def test_ufunc_unhandled(): a = NumPyTensorColumn([1, 2, 3]) with pytest.raises(TypeError): a == "a"
meerkat-main
tests/meerkat/columns/tensor/test_numpy.py
meerkat-main
tests/meerkat/columns/scalar/__init__.py
import itertools from typing import Dict import numpy as np import pandas as pd import pyarrow as pa import pytest import torch from meerkat import ScalarColumn from meerkat.dataframe import DataFrame from tests.utils import product_parametrize BACKENDS = ["arrow", "pandas"] @pytest.mark.parametrize( "data", [[1, 2, 3], np.asarray([1, 2, 3]), torch.tensor([1, 2, 3]), pd.Series([1, 2, 3])], ) @pytest.mark.parametrize("backend", BACKENDS) def test_backend(data, backend: str): col = ScalarColumn(data, backend=backend) expected_type = {"arrow": (pa.Array, pa.ChunkedArray), "pandas": pd.Series}[backend] assert isinstance(col.data, expected_type) col_data = col.data if isinstance(col_data, torch.Tensor): col_data = col_data.numpy() if isinstance(data, torch.Tensor): data = data.numpy() col_data = np.asarray(col_data) data = np.asarray(data) assert (col_data == data).all() NUMERIC_COLUMNS = [ np.array([1, 4, 6, 8]), np.array([1, 4, 6, 8], dtype=float), ] BOOL_COLUMNS = [ np.array([True, True, True]), np.array([True, False, True]), np.array([False, False, False]), ] NAN_COLUMNS = [ np.array([np.nan, 1, 2]), np.array([1, 4, 3], dtype=float), np.array([1, np.nan, 3], dtype=float), np.array([np.nan, np.nan, np.nan]), ] @product_parametrize({"backend": BACKENDS, "data": NUMERIC_COLUMNS + BOOL_COLUMNS}) def test_mean(data: np.ndarray, backend: str): col = ScalarColumn(data, backend=backend) assert data.mean() == col.mean() @product_parametrize({"backend": BACKENDS, "data": NUMERIC_COLUMNS + BOOL_COLUMNS}) def test_mode(data: np.ndarray, backend: str): col = ScalarColumn(data, backend=backend) assert np.all(pd.Series(data).mode().values == col.mode().to_numpy()) @product_parametrize({"backend": BACKENDS, "data": NUMERIC_COLUMNS}) def test_median(data: np.ndarray, backend: str): col = ScalarColumn(data, backend=backend) if backend == "arrow": with pytest.warns(UserWarning): assert np.median(data) == col.median() else: assert np.median(data) == col.median() @product_parametrize({"backend": BACKENDS, "data": NUMERIC_COLUMNS + BOOL_COLUMNS}) def test_min(data: np.ndarray, backend: str): col = ScalarColumn(data, backend=backend) assert np.min(data) == col.min() @product_parametrize({"backend": BACKENDS, "data": NUMERIC_COLUMNS + BOOL_COLUMNS}) def test_max(data: np.ndarray, backend: str): col = ScalarColumn(data, backend=backend) assert np.max(data) == col.max() @product_parametrize({"backend": BACKENDS, "data": NUMERIC_COLUMNS}) def test_var(data: np.ndarray, backend: str): col = ScalarColumn(data, backend=backend) assert np.var(data, ddof=1) == col.var() @product_parametrize({"backend": BACKENDS, "data": NUMERIC_COLUMNS}) def test_std(data: np.ndarray, backend: str): col = ScalarColumn(data, backend=backend) assert np.std(data, ddof=1) == col.std() @product_parametrize({"backend": BACKENDS, "data": NUMERIC_COLUMNS + BOOL_COLUMNS}) def test_sum(data: np.ndarray, backend: str): col = ScalarColumn(data, backend=backend) assert data.sum() == col.sum() @product_parametrize({"backend": BACKENDS, "data": BOOL_COLUMNS}) def test_any(data: np.ndarray, backend: str): col = ScalarColumn(data, backend=backend) assert data.prod() == col.product() @product_parametrize({"backend": BACKENDS, "data": BOOL_COLUMNS}) def test_all(data: np.ndarray, backend: str): col = ScalarColumn(data, backend=backend) assert data.prod() == col.product() NUMERIC_COLUMN_OPERANDS = [{"a": col, "b": col + 1} for col in NUMERIC_COLUMNS] NUMERIC_SCALAR_OPERANDS = [{"a": col, "b": col[0].item()} for col in NUMERIC_COLUMNS] BOOL_COLUMN_OPERANDS = [ {"a": col_a, "b": col_b} for col_a, col_b in itertools.combinations(BOOL_COLUMNS, 2) ] BOOL_SCALAR_OPERANDS = [ {"a": col_a, "b": col_b[0].item()} for col_a, col_b in itertools.combinations(BOOL_COLUMNS, 2) ] @product_parametrize({"backend": BACKENDS, "operands": NUMERIC_COLUMN_OPERANDS}) def test_add_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a + col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] + operands["b"], backend=backend)) @product_parametrize( {"backend": BACKENDS, "operands": NUMERIC_SCALAR_OPERANDS, "right": [True, False]} ) def test_add_scalar(backend: str, operands: Dict[str, np.array], right: bool): col_a = ScalarColumn(operands["a"], backend=backend) if right: out = operands["b"] + col_a else: out = col_a + operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] + operands["b"], backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": NUMERIC_COLUMN_OPERANDS}) def test_sub_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a - col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] - operands["b"], backend=backend)) @product_parametrize( {"backend": BACKENDS, "operands": NUMERIC_SCALAR_OPERANDS, "right": [True, False]} ) def test_sub_scalar(backend: str, operands: Dict[str, np.array], right: bool): col_a = ScalarColumn(operands["a"], backend=backend) if right: out = operands["b"] - col_a correct = operands["b"] - operands["a"] else: out = col_a - operands["b"] correct = operands["a"] - operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(correct, backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": NUMERIC_COLUMN_OPERANDS}) def test_mul_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a * col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] * operands["b"], backend=backend)) @product_parametrize( {"backend": BACKENDS, "operands": NUMERIC_SCALAR_OPERANDS, "right": [True, False]} ) def test_mul_scalar(backend: str, operands: Dict[str, np.array], right: bool): col_a = ScalarColumn(operands["a"], backend=backend) if right: out = operands["b"] * col_a correct = operands["b"] * operands["a"] else: out = col_a * operands["b"] correct = operands["a"] * operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(correct, backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": NUMERIC_COLUMN_OPERANDS}) def test_truediv_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a / col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] / operands["b"], backend=backend)) @product_parametrize( {"backend": BACKENDS, "operands": NUMERIC_SCALAR_OPERANDS, "right": [True, False]} ) def test_truediv_scalar(backend: str, operands: Dict[str, np.array], right: bool): col_a = ScalarColumn(operands["a"], backend=backend) if right: out = operands["b"] / col_a correct = operands["b"] / operands["a"] else: out = col_a / operands["b"] correct = operands["a"] / operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(correct, backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": NUMERIC_COLUMN_OPERANDS}) def test_floordiv_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a // col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] // operands["b"], backend=backend)) @product_parametrize( {"backend": BACKENDS, "operands": NUMERIC_SCALAR_OPERANDS, "right": [True, False]} ) def test_floordiv_scalar(backend: str, operands: Dict[str, np.array], right: bool): col_a = ScalarColumn(operands["a"], backend=backend) if right: out = operands["b"] // col_a correct = operands["b"] // operands["a"] else: out = col_a // operands["b"] correct = operands["a"] // operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(correct, backend=backend)) @product_parametrize({"backend": ["pandas"], "operands": NUMERIC_COLUMN_OPERANDS}) def test_mod_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a % col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] % operands["b"], backend=backend)) @product_parametrize( {"backend": ["pandas"], "operands": NUMERIC_SCALAR_OPERANDS, "right": [True, False]} ) def test_mod_scalar(backend: str, operands: Dict[str, np.array], right: bool): col_a = ScalarColumn(operands["a"], backend=backend) if right: out = operands["b"] % col_a correct = operands["b"] % operands["a"] else: out = col_a % operands["b"] correct = operands["a"] % operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(correct, backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": NUMERIC_COLUMN_OPERANDS}) def test_pow_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a**col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] ** operands["b"], backend=backend)) @product_parametrize( {"backend": BACKENDS, "operands": NUMERIC_SCALAR_OPERANDS, "right": [True, False]} ) def test_pow_scalar(backend: str, operands: Dict[str, np.array], right: bool): col_a = ScalarColumn(operands["a"], backend=backend) if right: out = operands["b"] ** col_a correct = operands["b"] ** operands["a"] else: out = col_a ** operands["b"] correct = operands["a"] ** operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(correct, backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": NUMERIC_COLUMN_OPERANDS}) def test_eq_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a == col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] == operands["b"], backend=backend)) @product_parametrize( {"backend": BACKENDS, "operands": NUMERIC_SCALAR_OPERANDS, "right": [True, False]} ) def test_eq_scalar(backend: str, operands: Dict[str, np.array], right: bool): col_a = ScalarColumn(operands["a"], backend=backend) if right: out = operands["b"] == col_a correct = operands["b"] == operands["a"] else: out = col_a == operands["b"] correct = operands["a"] == operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(correct, backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": NUMERIC_COLUMN_OPERANDS}) def test_gt_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a > col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] > operands["b"], backend=backend)) @product_parametrize( {"backend": BACKENDS, "operands": NUMERIC_SCALAR_OPERANDS, "right": [True, False]} ) def test_gt_scalar(backend: str, operands: Dict[str, np.array], right: bool): col_a = ScalarColumn(operands["a"], backend=backend) if right: out = operands["b"] > col_a correct = operands["b"] > operands["a"] else: out = col_a > operands["b"] correct = operands["a"] > operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(correct, backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": NUMERIC_COLUMN_OPERANDS}) def test_lt_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a < col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] < operands["b"], backend=backend)) @product_parametrize( {"backend": BACKENDS, "operands": NUMERIC_SCALAR_OPERANDS, "right": [True, False]} ) def test_lt_scalar(backend: str, operands: Dict[str, np.array], right: bool): col_a = ScalarColumn(operands["a"], backend=backend) if right: out = operands["b"] < col_a correct = operands["b"] < operands["a"] else: out = col_a < operands["b"] correct = operands["a"] < operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(correct, backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": BOOL_COLUMN_OPERANDS}) def test_and_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a & col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] & operands["b"], backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": BOOL_COLUMN_OPERANDS}) def test_and_scalar(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) out = col_a & operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] & operands["b"], backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": BOOL_COLUMN_OPERANDS}) def test_or_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a | col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] | operands["b"], backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": BOOL_COLUMN_OPERANDS}) def test_or_scalar(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) out = col_a | operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] | operands["b"], backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": BOOL_COLUMN_OPERANDS}) def test_xor_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) col_b = ScalarColumn(operands["b"], backend=backend) out = col_a ^ col_b assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] ^ operands["b"], backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": BOOL_COLUMN_OPERANDS}) def test_xor_scalar(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) out = col_a ^ operands["b"] assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(operands["a"] ^ operands["b"], backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": BOOL_COLUMN_OPERANDS}) def test_invert_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) out = ~col_a assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(~operands["a"], backend=backend)) @product_parametrize({"backend": BACKENDS, "operands": NUMERIC_COLUMN_OPERANDS}) def test_isin_column(backend: str, operands: Dict[str, np.array]): col_a = ScalarColumn(operands["a"], backend=backend) values = [operands["b"][0], operands["b"][1], operands["b"][2]] out = col_a.isin(values) assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(np.isin(operands["a"], values), backend=backend)) @product_parametrize({"backend": BACKENDS, "column": NAN_COLUMNS}) def test_isna(backend: str, column: np.array): col = ScalarColumn(column, backend=backend) out = col.isna() assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(np.isnan(column), backend=backend)) @product_parametrize({"backend": BACKENDS, "column": NAN_COLUMNS}) def test_isnull(backend: str, column: np.array): col = ScalarColumn(column, backend=backend) out = col.isnull() assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(np.isnan(column), backend=backend)) STRING_COLUMNS = [ pd.Series( [ "a asdsd ", "bfdidf.", "c asdasd dsd", "1290_dij", "d", " efdsdf ", "Fasdd asdasd", "pppqqqqq", "1290_dijaaa", "hl2dirf83WIW", "22222", "1290_disdj", ] ), ] @product_parametrize( { "backend": BACKENDS, "series": STRING_COLUMNS, "compute_fn": [ "capitalize", "isalnum", "isalpha", "isdecimal", "isdigit", "islower", "isnumeric", "isspace", "istitle", "isupper", "lower", "upper", "len", "lower", "swapcase", "title", "strip", "lstrip", "rstrip", ], } ) def test_unary_str_methods(backend: str, series: pd.Series, compute_fn: str): col = ScalarColumn(series, backend=backend) out = getattr(col.str, compute_fn)() assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(getattr(series.str, compute_fn)(), backend=backend)) # @product_parameterize( # { # "backend": BACKENDS, # "series": STRING_COLUMNS, # "compute_fn": [ # ] # } # ) # def test_pattern_str_methods(backend: str, series: pd.Series, compute_fn: str): # col = ScalarColumn(series, backend=backend) # out = getattr(col.str, compute_fn)() # assert isinstance(out, ScalarColumn) # assert out.equals( # ScalarColumn(getattr(series.str, compute_fn)(), backend=backend) # ) @product_parametrize( { "backend": BACKENDS, "series": STRING_COLUMNS, } ) def test_center(backend: str, series: pd.Series): col = ScalarColumn(series, backend=backend) out = col.str.center(20) assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(series.str.center(20), backend=backend)) @product_parametrize({"backend": BACKENDS, "series": STRING_COLUMNS, "n": [-1, 1, 2]}) def test_split(backend: str, series: pd.Series, n: int): col = ScalarColumn(series, backend=backend) out = col.str.split(" ", n=n) assert isinstance(out, DataFrame) correct_df = DataFrame( { str(name): ScalarColumn(col, backend=backend) for name, col in series.str.split(" ", n=n, expand=True).items() } ) assert correct_df.columns == out.columns for name in correct_df.columns: assert correct_df[name].equals(out[name]) @product_parametrize({"backend": BACKENDS, "series": STRING_COLUMNS, "n": [-1, 1, 2]}) def test_rsplit(backend: str, series: pd.Series, n: int): col = ScalarColumn(series, backend=backend) out = col.str.rsplit(" ", n=n) assert isinstance(out, DataFrame) correct_df = DataFrame( { str(name): ScalarColumn(col, backend=backend) for name, col in series.str.rsplit(" ", n=n, expand=True).items() } ) assert correct_df.columns == out.columns for name in correct_df.columns: assert correct_df[name].equals(out[name]) @product_parametrize( { "backend": BACKENDS, "series": STRING_COLUMNS, } ) def test_center_other(backend: str, series: pd.Series): col = ScalarColumn(series, backend=backend) out = col.str.startswith("1290") assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(series.str.startswith("1290"), backend=backend)) @product_parametrize( { "backend": BACKENDS, "series": STRING_COLUMNS, } ) def test_replace(backend: str, series: pd.Series): col = ScalarColumn(series, backend=backend) out = col.str.replace("di", "do") assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(series.str.replace("di", "do"), backend=backend)) @product_parametrize( { "backend": BACKENDS, "series": STRING_COLUMNS, } ) def test_contains(backend: str, series: pd.Series): col = ScalarColumn(series, backend=backend) out = col.str.contains("di") assert isinstance(out, ScalarColumn) assert out.equals(ScalarColumn(series.str.contains("di"), backend=backend)) @product_parametrize( { "backend": BACKENDS, "series": STRING_COLUMNS, "pat": ["[0-9]+", "(?P<group1>[0-9])(?P<group2>2)"], } ) def test_extract(backend: str, pat: str, series: pd.Series): col = ScalarColumn(series, backend=backend) contains_groups = True try: correct_df = series.str.extract(pat, expand=True) except ValueError: contains_groups = False if contains_groups: out = col.str.extract(pat) assert isinstance(out, DataFrame) for name in correct_df.columns: assert out[name].equals(ScalarColumn(correct_df[name], backend=backend)) else: with pytest.raises(ValueError): out = col.str.extract(pat)
meerkat-main
tests/meerkat/columns/scalar/test_scalar_column.py
"""Unittests for NumpyColumn.""" import numpy as np import pandas as pd import pytest import torch from meerkat import ScalarColumn from meerkat.block.torch_block import TorchBlock from ..abstract import AbstractColumnTestBed, column_parametrize class PandasScalarColumnTestBed(AbstractColumnTestBed): DEFAULT_CONFIG = { "contiguous_index": [True, False], "dtype": ["float", "int", "str"], } marks = pytest.mark.pandas_col def __init__( self, length: int = 16, dtype="float", contiguous_index: bool = True, seed: int = 123, tmpdir: str = None, ): self.dtype = dtype np.random.seed(seed) array = np.random.random(length) * 10 series = pd.Series(array).astype(dtype) if not contiguous_index: series.index = np.arange(1, 1 + 2 * length, 2) self.col = ScalarColumn(series) self.data = series def get_map_spec( self, batched: bool = True, materialize: bool = False, salt: int = 1, kwarg: int = 0, ): salt = salt if self.dtype != "str" else str(salt) kwarg = kwarg if self.dtype != "str" else str(kwarg) return { "fn": lambda x, k=0: x + salt + (k if self.dtype != "str" else str(k)), "expected_result": ScalarColumn(self.col.data + salt + kwarg), "output_type": ScalarColumn, } def get_filter_spec( self, batched: bool = True, materialize: bool = False, salt: int = 1, kwarg: int = 0, ): salt = 3 + salt if self.dtype != "str" else str(3 + salt) kwarg = kwarg if self.dtype != "str" else str(kwarg) return { "fn": lambda x, k=0: x > salt + (k if self.dtype != "str" else str(k)), "expected_result": self.col[self.col.data > salt + kwarg], } def get_data(self, index, materialize: bool = True): return self.data.iloc[index] def get_data_to_set(self, data_index): if isinstance(data_index, int): return 0 return pd.Series(np.zeros_like(self.get_data(data_index).values)) @staticmethod def assert_data_equal(data1: pd.Series, data2: np.ndarray): if isinstance(data1, pd.Series): assert (data1.values == data2.values).all() else: assert data1 == data2 @pytest.fixture(**column_parametrize([PandasScalarColumnTestBed])) def testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) def test_dt_accessor(): col = ScalarColumn( data=[f"01/{idx+1}/2001" for idx in range(16)], ) col = pd.to_datetime(col) day_col = col.dt.day assert isinstance(day_col, ScalarColumn) assert (day_col.values == np.arange(16) + 1).all() def test_cat_accessor(): categories = ["a", "b", "c", "d"] col = ScalarColumn(data=categories * 4) col = col.astype("category") assert (np.array(categories) == col.cat.categories.values).all() def test_init_block(): block_view = TorchBlock(torch.zeros(10, 10))[0] with pytest.raises(ValueError): ScalarColumn(block_view) def test_to_tensor(testbed): col, _ = testbed.col, testbed.data if testbed.dtype == "str": with pytest.raises(ValueError): col.to_tensor() else: tensor = col.to_tensor() assert torch.is_tensor(tensor) assert (col == tensor.numpy()).all() def test_to_pandas(testbed): col, _ = testbed.col, testbed.data series = col.to_pandas() assert isinstance(series, pd.Series) assert (col.data.values == series.values).all() def test_repr_pandas(testbed): series = testbed.col.to_pandas() assert isinstance(series, pd.Series) def test_ufunc_out(): out = np.zeros(3) a = ScalarColumn([1, 2, 3]) b = ScalarColumn([1, 2, 3]) np.add(a, b, out=out) assert (out == np.array([2, 4, 6])).all()
meerkat-main
tests/meerkat/columns/scalar/test_pandas.py
"""Unittests for NumpyColumn.""" from typing import Union import numpy as np import pandas as pd import pyarrow as pa import pytest import torch from meerkat import ArrowScalarColumn from meerkat.block.torch_block import TorchBlock from ..abstract import AbstractColumnTestBed, column_parametrize def to_numpy(array: Union[pa.Array, pa.ChunkedArray]): """For non-chunked arrays, need to pass zero_copy_only=False.""" if isinstance(array, pa.ChunkedArray): return array.to_numpy() return array.to_numpy(zero_copy_only=False) class ArrowScalarColumnTestBed(AbstractColumnTestBed): DEFAULT_CONFIG = { "dtype": ["float", "int", "str"], } marks = pytest.mark.arrow_col def __init__( self, length: int = 16, dtype="float", seed: int = 123, tmpdir: str = None, ): self.dtype = dtype np.random.seed(seed) array = np.random.random(length) * 10 if dtype == "float": array = pa.array(array, type=pa.float64()) elif dtype == "int": array = array.astype(int) array = pa.array(array, type=pa.int64()) elif dtype == "str": array = pd.Series(array).astype("str") array = pa.array(array, type=pa.string()) else: raise ValueError(f"dtype {dtype} not supported.") self.col = ArrowScalarColumn(array) self.data = array def get_map_spec( self, batched: bool = True, materialize: bool = False, salt: int = 1, kwarg: int = 0, ): salt = salt if self.dtype != "str" else str(salt) kwarg = kwarg if self.dtype != "str" else str(kwarg) if batched: return { "fn": lambda x, k=0: pa.array( to_numpy(x.data) + salt + (k if self.dtype != "str" else str(k)) ), "expected_result": ArrowScalarColumn( to_numpy(self.col.data) + salt + kwarg ), "output_type": ArrowScalarColumn, } else: return { "fn": lambda x, k=0: x + salt + (k if self.dtype != "str" else str(k)), "expected_result": ArrowScalarColumn( to_numpy(self.col.data) + salt + kwarg ), "output_type": ArrowScalarColumn, } def get_filter_spec( self, batched: bool = True, materialize: bool = False, salt: int = 1, kwarg: int = 0, ): salt = 3 + salt if self.dtype != "str" else str(3 + salt) kwarg = kwarg if self.dtype != "str" else str(kwarg) if batched: return { "fn": lambda x, k=0: to_numpy(x.data) > salt + (k if self.dtype != "str" else str(k)), "expected_result": self.col[to_numpy(self.col.data) > salt + kwarg], } else: return { "fn": lambda x, k=0: x > salt + (k if self.dtype != "str" else str(k)), "expected_result": self.col[to_numpy(self.col.data) > salt + kwarg], } def get_data(self, index, materialize: bool = True): if isinstance(index, slice) or isinstance(index, int): data = self.data[index] elif index.dtype == bool: data = self.data.filter(pa.array(index)) else: data = self.data.take(index) if isinstance(index, int): return data.as_py() return data def get_data_to_set(self, data_index): if isinstance(data_index, int): return 0 return pd.Series(np.zeros(len(self.data))) @staticmethod def assert_data_equal(data1: pa.Array, data2: pa.Array): if isinstance(data1, (pa.Array, pa.ChunkedArray)): assert (to_numpy(data1) == to_numpy(data2)).all() else: assert data1 == data2 @pytest.fixture(**column_parametrize([ArrowScalarColumnTestBed])) def testbed(request, tmpdir): testbed_class, config = request.param return testbed_class(**config, tmpdir=tmpdir) def test_init_block(): block_view = TorchBlock(torch.zeros(10, 10))[0] with pytest.raises(ValueError): ArrowScalarColumn(block_view) def test_to_numpy(testbed): col, _ = testbed.col, testbed.data array = col.to_numpy() assert isinstance(array, np.ndarray) assert (col.data.to_numpy() == array).all() def test_to_tensor(testbed): col, _ = testbed.col, testbed.data if testbed.dtype == "str": with pytest.raises(TypeError): col.to_tensor() else: tensor = col.to_tensor() assert torch.is_tensor(tensor) assert (col.data.to_numpy() == tensor.numpy()).all() def test_to_pandas(testbed): col, _ = testbed.col, testbed.data series = col.to_pandas() assert isinstance(series, pd.Series) assert (col.data.to_pandas() == series.values).all() def test_repr_pandas(testbed): series = testbed.col.to_pandas() assert isinstance(series, pd.Series)
meerkat-main
tests/meerkat/columns/scalar/test_arrow.py
import glob import os import tempfile from pathlib import Path import pytest from meerkat import initialize_logging def test_initialize_logging(): initialize_logging() @pytest.fixture def unreadable_dir(tmpdir): unread_dir = tmpdir / "unreadable" os.makedirs(unread_dir) unread_dir.chmod(0) if os.access(str(unread_dir), os.R_OK): # Docker container or similar pytest.skip("File was still readable") yield unread_dir unread_dir.chmod(0o755) def test_initialize_logging_permission_denied(monkeypatch, unreadable_dir): def mock_no_access_dir(): return unreadable_dir monkeypatch.setattr(Path, "home", mock_no_access_dir) monkeypatch.setattr(tempfile, "gettempdir", mock_no_access_dir) with pytest.raises( PermissionError, match="Permission denied in all of Meerkat's default logging directories. " "Set environment variable `MEERKAT_LOG_DIR` to specify a directory for " "Meerkat logging.", ): initialize_logging() def test_initialize_logging_environment_variable(monkeypatch, tmpdir): monkeypatch.setattr( os, "environ", {"MEERKAT_LOG_DIR": os.path.join(tmpdir, "env_dir")} ) initialize_logging() out = list(glob.glob(str(tmpdir) + "/**/meerkat.log", recursive=True)) assert len(out) != 0 def test_initialize_logging_arg(tmpdir): initialize_logging(log_dir=os.path.join(tmpdir, "env_dir")) out = list(glob.glob(str(tmpdir) + "/**/meerkat.log", recursive=True)) assert len(out) != 0
meerkat-main
tests/meerkat/logging/test_utils.py
import pytest import torch from meerkat import TorchTensorColumn from meerkat.block.abstract import BlockView from meerkat.block.ref import BlockRef from meerkat.block.torch_block import TorchBlock from meerkat.errors import ConsolidationError def test_signature_hash(): # check equal block1 = TorchBlock(torch.zeros((100, 10))) block2 = TorchBlock(torch.ones((100, 10))) assert hash(block1.signature) == hash(block2.signature) # check differing type block1 = TorchBlock(torch.zeros((100, 10), dtype=int)) block2 = TorchBlock(torch.ones((100, 10), dtype=float)) assert hash(block1.signature) != hash(block2.signature) # check differing column width okay block1 = TorchBlock(torch.zeros((100, 13), dtype=int)) block2 = TorchBlock(torch.ones((100, 10), dtype=int)) assert hash(block1.signature) == hash(block2.signature) # check differing column width okay block1 = TorchBlock(torch.zeros((100, 13, 15), dtype=int)) block2 = TorchBlock(torch.ones((100, 10, 15), dtype=int)) assert hash(block1.signature) == hash(block2.signature) # check differing later dimensions not okay block1 = TorchBlock(torch.zeros((100, 10, 15), dtype=int)) block2 = TorchBlock(torch.ones((100, 10, 20), dtype=int)) assert hash(block1.signature) != hash(block2.signature) # check differing devices not okay block1 = TorchBlock(torch.zeros((100, 10, 15), dtype=int)) block2 = TorchBlock(torch.ones((100, 10, 20), dtype=int).cpu()) assert hash(block1.signature) != hash(block2.signature) # check differing nrows not okay block1 = TorchBlock(torch.zeros((90, 10, 15), dtype=int)) block2 = TorchBlock(torch.ones((100, 10, 20), dtype=int)) assert hash(block1.signature) != hash(block2.signature) @pytest.mark.parametrize("num_blocks", [1, 2, 3]) def test_consolidate_1(num_blocks): # check equal blocks = [ TorchBlock(torch.stack([torch.arange(8)] * 12)) for _ in range(num_blocks) ] slices = [ [0, slice(2, 5, 1)], [6, slice(2, 7, 2)], [slice(2, 7, 3), slice(1, 8, 1)], ] cols = [ { str(slc): TorchTensorColumn( data=BlockView( block=blocks[block_idx], block_index=slc, ) ) for slc in slices[block_idx] } for block_idx in range(num_blocks) ] block_refs = [ BlockRef(block=block, columns=cols) for block, cols in zip(blocks, cols) ] block_ref = TorchBlock.consolidate(block_refs=block_refs) for ref in block_refs: block = ref.block for name, col in ref.items(): assert ( block.data[:, col._block_index] == block_ref.block.data[:, block_ref[name]._block_index] ).all() def test_consolidate_empty(): with pytest.raises(ConsolidationError): TorchBlock.consolidate([]) def test_consolidate_mismatched_signature(): data = torch.stack([torch.arange(8)] * 12) blocks = [TorchBlock(data.to(int)), TorchBlock(data.to(float))] slices = [ [0, slice(2, 5, 1)], [6, slice(2, 7, 2)], ] cols = [ { str(slc): TorchTensorColumn( data=BlockView( block=blocks[block_idx], block_index=slc, ) ) for slc in slices[block_idx] } for block_idx in range(2) ] block_refs = [ BlockRef(block=block, columns=cols) for block, cols in zip(blocks, cols) ] with pytest.raises(ConsolidationError): TorchBlock.consolidate(block_refs) def test_io(tmpdir): torch.manual_seed(123) block = TorchBlock(torch.randn(100, 10)) block.write(tmpdir) new_block = TorchBlock.read(tmpdir) assert isinstance(block, TorchBlock) assert (block.data == new_block.data).all()
meerkat-main
tests/meerkat/block/test_tensor_block.py
import numpy as np import pyarrow as pa import pytest from meerkat.block.abstract import BlockView from meerkat.block.arrow_block import ArrowBlock from meerkat.block.ref import BlockRef from meerkat.columns.scalar.arrow import ArrowScalarColumn from meerkat.errors import ConsolidationError def test_signature_hash(): # check equal block1 = ArrowBlock(pa.Table.from_pydict({"a": [1, 2, 3], "b": ["4", "5", "6"]})) block2 = ArrowBlock(pa.Table.from_pydict({"c": [1, 2, 3], "d": ["4", "5", "6"]})) assert hash(block1.signature) == hash(block2.signature) # check not equal block1 = ArrowBlock(pa.Table.from_pydict({"a": [1, 2, 3], "b": ["4", "5", "6"]})) block2 = ArrowBlock(pa.Table.from_pydict({"c": [1, 2], "d": ["5", "6"]})) assert hash(block1.signature) != hash(block2.signature) @pytest.mark.parametrize("num_blocks", [1, 2, 3]) def test_consolidate_1(num_blocks): # check equal blocks = [ ArrowBlock( pa.Table.from_pydict( {f"a_{idx}": np.arange(10), f"b_{idx}": np.arange(10) * 2}, ) ) for idx in range(num_blocks) ] cols = [ { str(slc): ArrowScalarColumn( data=BlockView( block=blocks[idx], block_index=slc, ) ) for slc in [f"a_{idx}", f"b_{idx}"] } for idx in range(num_blocks) ] block_refs = [ BlockRef(block=block, columns=cols) for block, cols in zip(blocks, cols) ] block_ref = ArrowBlock.consolidate(block_refs=block_refs) for ref in block_refs: block = ref.block for name, col in ref.items(): assert block.data[col._block_index].equals( block_ref.block.data[block_ref[name]._block_index] ) def test_consolidate_empty(): with pytest.raises(ConsolidationError): ArrowBlock.consolidate([]) def test_consolidate_mismatched_signature(): block1 = ArrowBlock(pa.Table.from_pydict({"a": [1, 2, 3], "b": ["4", "5", "6"]})) block2 = ArrowBlock(pa.Table.from_pydict({"c": [1, 2], "d": ["5", "6"]})) blocks = [block1, block2] slices = [ ["a", "b"], ["c", "d"], ] cols = [ { str(slc): ArrowScalarColumn( data=BlockView( block=blocks[block_idx], block_index=slc, ) ) for slc in slices[block_idx] } for block_idx in range(2) ] block_refs = [ BlockRef(block=block, columns=cols) for block, cols in zip(blocks, cols) ] with pytest.raises(ConsolidationError): ArrowBlock.consolidate(block_refs) def test_io(tmpdir): block = ArrowBlock(pa.Table.from_pydict({"a": [1, 2, 3], "b": ["4", "5", "6"]})) block.write(tmpdir) new_block = block.read(tmpdir) assert isinstance(block, ArrowBlock) assert block.data.equals(new_block.data)
meerkat-main
tests/meerkat/block/test_arrow_block.py
import numpy as np import pytest from meerkat import NumPyTensorColumn from meerkat.block.abstract import BlockView from meerkat.block.numpy_block import NumPyBlock from meerkat.block.ref import BlockRef from meerkat.errors import ConsolidationError def test_signature_hash(): # check equal block1 = NumPyBlock(np.zeros((100, 10))) block2 = NumPyBlock(np.ones((100, 10))) assert hash(block1.signature) == hash(block2.signature) # check differing type block1 = NumPyBlock(np.zeros((100, 10), dtype=int)) block2 = NumPyBlock(np.ones((100, 10), dtype=float)) assert hash(block1.signature) != hash(block2.signature) # check differing column width okay block1 = NumPyBlock(np.zeros((100, 13), dtype=int)) block2 = NumPyBlock(np.ones((100, 10), dtype=int)) assert hash(block1.signature) == hash(block2.signature) # check differing column width okay block1 = NumPyBlock(np.zeros((100, 13, 15), dtype=int)) block2 = NumPyBlock(np.ones((100, 10, 15), dtype=int)) assert hash(block1.signature) == hash(block2.signature) # check differing later dimensions not okay block1 = NumPyBlock(np.zeros((100, 10, 15), dtype=int)) block2 = NumPyBlock(np.ones((100, 10, 20), dtype=int)) assert hash(block1.signature) != hash(block2.signature) # check differing nrows not okay block1 = NumPyBlock(np.zeros((90, 10, 15), dtype=int)) block2 = NumPyBlock(np.ones((100, 10, 20), dtype=int)) assert hash(block1.signature) != hash(block2.signature) @pytest.mark.parametrize("num_blocks", [1, 2, 3]) def test_consolidate_1(num_blocks): # check equal data = np.stack([np.arange(8)] * 12) blocks = [NumPyBlock(data.copy()) for _ in range(num_blocks)] slices = [ [0, slice(2, 5, 1)], [6, slice(2, 7, 2)], [slice(2, 7, 3), slice(1, 8, 1)], ] cols = [ { str(slc): NumPyTensorColumn( data=BlockView( block=blocks[block_idx], block_index=slc, ) ) for slc in slices[block_idx] } for block_idx in range(num_blocks) ] block_refs = [ BlockRef(block=block, columns=cols) for block, cols in zip(blocks, cols) ] block_ref = NumPyBlock.consolidate(block_refs=block_refs) for ref in block_refs: block = ref.block for name, col in ref.items(): assert ( block.data[:, col._block_index] == block_ref.block.data[:, block_ref[name]._block_index] ).all() def test_consolidate_empty(): with pytest.raises(ConsolidationError): NumPyBlock.consolidate([]) def test_consolidate_mismatched_signature(): data = np.stack([np.arange(8)] * 12) blocks = [NumPyBlock(data.astype(int)), NumPyBlock(data.astype(float))] slices = [ [0, slice(2, 5, 1)], [6, slice(2, 7, 2)], ] cols = [ { str(slc): NumPyTensorColumn( data=BlockView( block=blocks[block_idx], block_index=slc, ) ) for slc in slices[block_idx] } for block_idx in range(2) ] block_refs = [ BlockRef(block=block, columns=cols) for block, cols in zip(blocks, cols) ] with pytest.raises(ConsolidationError): NumPyBlock.consolidate(block_refs) def test_io(tmpdir): np.random.seed(123) block = NumPyBlock(np.random.randn(100, 10)) block.write(tmpdir) new_block = NumPyBlock.read(tmpdir) assert isinstance(block, NumPyBlock) assert (block.data == new_block.data).all()
meerkat-main
tests/meerkat/block/test_numpy_block.py
meerkat-main
tests/meerkat/block/__init__.py
import numpy as np import pandas as pd import pytest from meerkat import ScalarColumn from meerkat.block.abstract import BlockView from meerkat.block.pandas_block import PandasBlock from meerkat.block.ref import BlockRef from meerkat.errors import ConsolidationError def test_signature_hash(): # check equal block1 = PandasBlock(pd.DataFrame({"a": [1, 2, 3], "b": ["4", "5", "6"]})) block2 = PandasBlock(pd.DataFrame({"c": [1, 2, 3], "d": ["4", "5", "6"]})) assert hash(block1.signature) == hash(block2.signature) # check equal block1 = PandasBlock(pd.DataFrame({"a": [1, 2, 3], "b": ["4", "5", "6"]})) block2 = PandasBlock(pd.DataFrame({"c": [1, 2], "d": ["5", "6"]})) assert hash(block1.signature) != hash(block2.signature) @pytest.mark.parametrize("num_blocks", [1, 2, 3]) def test_consolidate_1(num_blocks): # check equal blocks = [ PandasBlock( pd.DataFrame( {f"a_{idx}": np.arange(10), f"b_{idx}": np.arange(10) * 2}, index=np.arange(idx, idx + 10), # need to test with different ) ) for idx in range(num_blocks) ] cols = [ { str(slc): ScalarColumn( data=BlockView( block=blocks[idx], block_index=slc, ) ) for slc in [f"a_{idx}", f"b_{idx}"] } for idx in range(num_blocks) ] block_refs = [ BlockRef(block=block, columns=cols) for block, cols in zip(blocks, cols) ] block_ref = PandasBlock.consolidate(block_refs=block_refs) for ref in block_refs: block = ref.block for name, col in ref.items(): assert ( block.data[col._block_index].reset_index(drop=True) == block_ref.block.data[block_ref[name]._block_index] ).all() def test_consolidate_empty(): with pytest.raises(ConsolidationError): PandasBlock.consolidate([]) def test_consolidate_mismatched_signature(): block1 = PandasBlock(pd.DataFrame({"a": [1, 2, 3], "b": ["4", "5", "6"]})) block2 = PandasBlock(pd.DataFrame({"c": [1, 2], "d": ["5", "6"]})) blocks = [block1, block2] slices = [ ["a", "b"], ["c", "d"], ] cols = [ { str(slc): ScalarColumn( data=BlockView( block=blocks[block_idx], block_index=slc, ) ) for slc in slices[block_idx] } for block_idx in range(2) ] block_refs = [ BlockRef(block=block, columns=cols) for block, cols in zip(blocks, cols) ] with pytest.raises(ConsolidationError): PandasBlock.consolidate(block_refs) def test_io(tmpdir): block = PandasBlock(pd.DataFrame({"a": [1, 2, 3], "b": ["4", "5", "6"]})) block.write(tmpdir) new_block = block.read(tmpdir) assert isinstance(block, PandasBlock) assert block.data.equals(new_block.data) # test with non-contiguous index, which is not supported by feather block = PandasBlock( pd.DataFrame({"a": [1, 2, 3], "b": ["4", "5", "6"]}, index=np.arange(1, 4)) ) block.write(tmpdir) new_block = block.read(tmpdir) assert isinstance(block, PandasBlock) assert block.data.reset_index(drop=True).equals(new_block.data)
meerkat-main
tests/meerkat/block/test_pandas_block.py
import numpy as np from meerkat import DeferredColumn, TensorColumn from meerkat.block.deferred_block import DeferredBlock, DeferredOp from meerkat.block.ref import BlockRef from ...utils import product_parametrize def fn(x: int) -> int: return x + 1, x + 2, x + 3 @product_parametrize(params={"num_blocks": [1, 2, 3]}) def test_consolidate(num_blocks: int): inp = TensorColumn(np.arange(8)) op = DeferredOp(args=[inp], fn=fn, kwargs={}, is_batched_fn=False, batch_size=1) block_views = [ DeferredBlock.from_column_data(data=op.with_return_index(i)) for i in range(3) ] cols = [ {str(block_view.block_index): DeferredColumn(data=block_view)} for block_view in block_views ] block_ref = DeferredBlock.consolidate( block_refs=[ BlockRef( block=block_view.block, columns=col, ) for block_view, col in zip(block_views, cols) ] ) assert isinstance(block_ref, BlockRef) for name, col in block_ref.items(): assert col._block is block_ref.block assert int(name) == col._block_index for i in range(num_blocks): assert (block_ref[str(i)]().data == cols[i][str(i)]().data).all() def test_consolidate_same_index(): inp = TensorColumn(np.arange(8)) op = DeferredOp(args=[inp], fn=fn, kwargs={}, is_batched_fn=False, batch_size=1) block_views = [ DeferredBlock.from_column_data(data=op.with_return_index(0)), DeferredBlock.from_column_data(data=op.with_return_index(0)), DeferredBlock.from_column_data(data=op.with_return_index(1)), ] cols = [ {str(i): DeferredColumn(data=block_view)} for i, block_view in enumerate(block_views) ] block_ref = DeferredBlock.consolidate( block_refs=[ BlockRef( block=block_view.block, columns=col, ) for block_view, col in zip(block_views, cols) ] ) assert isinstance(block_ref, BlockRef) for _, col in block_ref.items(): assert col._block is block_ref.block for i in range(len(block_views)): assert (block_ref[str(i)]().data == cols[i][str(i)]().data).all()
meerkat-main
tests/meerkat/block/test_deferred_block.py
import os from itertools import product import numpy as np import pytest import torch import meerkat as mk from meerkat.block.manager import BlockManager from meerkat.tools.utils import load_yaml from ...utils import product_parametrize def test_consolidate_no_op(): mgr = BlockManager() col1 = mk.TensorColumn(data=np.arange(10)) mgr.add_column(col1, "a") col2 = mk.TensorColumn(np.arange(10) * 2) mgr.add_column(col2, "b") col2 = mk.TensorColumn(np.arange(10, dtype=float) * 2) mgr.add_column(col2, "c") block_ref = mgr.get_block_ref("c") assert len(mgr._block_refs) == 3 mgr.consolidate() assert len(mgr._block_refs) == 2 # assert that the block_ref hasn't changed for the isolated block ref assert mgr.get_block_ref("c") is block_ref def test_consolidate(): mgr = BlockManager() col1 = mk.TensorColumn(data=np.arange(10)) mgr.add_column(col1, "col1") col2 = mk.TensorColumn(np.arange(10) * 2) mgr.add_column(col2, "col2") col3 = mk.ScalarColumn(np.arange(10) * 3) mgr.add_column(col3, "col3") col4 = mk.ScalarColumn(np.arange(10) * 4) mgr.add_column(col4, "col4") col5 = mk.TensorColumn(torch.arange(10) * 5) mgr.add_column(col5, "col5") col6 = mk.TensorColumn(torch.arange(10) * 6) mgr.add_column(col6, "col6") col9 = mk.TensorColumn(torch.ones(10, 5).to(int) * 9) mgr.add_column(col9, "col9") assert len(mgr._block_refs) == 7 mgr.consolidate() assert len(mgr._block_refs) == 3 # check that the same object backs both the block and the column for name, col in [("col1", col1), ("col2", col2)]: assert mgr[name].data.base is mgr.get_block_ref(name).block.data assert (mgr[name] == col).all() # check that the same object backs both the block and the column for name, col in [("col3", col3), ("col4", col4)]: assert mgr[name].data is mgr.get_block_ref(name).block.data[name] assert (mgr[name] == col).all() # check that the same object backs both the bock for name, col in [("col5", col5), ("col6", col6)]: # TODO (sabri): Figure out a way to check this for tensors assert (mgr[name] == col).all() def test_consolidate_multiple_types(): mgr = BlockManager() for dtype in [int, float]: for idx in range(3): col = mk.TensorColumn(np.arange(10, dtype=dtype)) mgr.add_column(col, f"col{idx}_{dtype}") mgr.add_column(mk.ScalarColumn(np.arange(10) * 4), "col4_pandas") mgr.add_column(mk.ScalarColumn(np.arange(10) * 5), "col5_pandas") assert len(mgr._block_refs) == 8 mgr.consolidate() assert len(mgr._block_refs) == 3 def test_consolidate_preserves_order(): mgr = BlockManager() col1 = mk.TensorColumn(data=np.arange(10)) mgr.add_column(col1, "col1") col2 = mk.TensorColumn(np.arange(10) * 2) mgr.add_column(col2, "col2") col3 = mk.ScalarColumn(np.arange(10) * 3) mgr.add_column(col3, "col3") order = ["col2", "col3", "col1"] mgr.reorder(order) assert list(mgr.keys()) == order mgr.consolidate() assert list(mgr.keys()) == order @pytest.mark.parametrize( "num_blocks, consolidated", product([1, 2, 3], [True, False]), ) def test_apply_get_multiple(num_blocks, consolidated): mgr = BlockManager() for dtype in [int, float]: for idx in range(num_blocks): col = mk.TensorColumn(np.arange(10, dtype=dtype) * idx) mgr.add_column(col, f"col{idx}_{dtype}") if consolidated: mgr.consolidate() for slc in [ slice(2, 6, 1), slice(0, 1, 1), slice(2, 8, 3), np.array([1, 4, 6]), np.array([True, False] * 5), ]: new_mgr = mgr.apply(method_name="_get", index=slc) assert isinstance(new_mgr, BlockManager) for dtype in [int, float]: for idx in range(num_blocks): # check it's equivalent to applying the slice to each column in turn assert ( new_mgr[f"col{idx}_{dtype}"].data == mgr[f"col{idx}_{dtype}"][slc].data ).all() # check that the base is the same (since we're just slicing) assert ( new_mgr[f"col{idx}_{dtype}"].data.base is mgr[f"col{idx}_{dtype}"][slc].data.base ) == isinstance(slc, slice) @pytest.mark.parametrize( "num_blocks, consolidated", product([1, 2, 3], [True, False]), ) def test_apply_get_single(num_blocks, consolidated): mgr = BlockManager() for dtype in [int, float]: for idx in range(num_blocks): col = mk.TensorColumn(np.arange(10, dtype=dtype) * idx) mgr.add_column(col, f"col{idx}_{dtype}") if consolidated: mgr.consolidate() for slc in [0, 8]: result_dict = mgr.apply(method_name="_get", index=slc) assert isinstance(result_dict, dict) for dtype in [int, float]: for idx in range(num_blocks): # check it's equivalent to applying the slice to each column in turn assert result_dict[f"col{idx}_{dtype}"] == mgr[f"col{idx}_{dtype}"][slc] @pytest.fixture() def call_count(monkeypatch): from meerkat import TensorColumn from meerkat.block.numpy_block import NumPyBlock calls = {"count": 0} block_get = NumPyBlock._get def patched_get(self, *args, **kwargs): nonlocal calls calls["count"] += 1 return block_get(self, *args, **kwargs) monkeypatch.setattr(NumPyBlock, "_get", patched_get) col_get = TensorColumn._get def patched_get_col(self, *args, **kwargs): nonlocal calls calls["count"] += 1 return col_get(self, *args, **kwargs) monkeypatch.setattr(TensorColumn, "_get", patched_get_col) return calls @product_parametrize({"consolidated": [True, False]}) def test_apply_get_single_lambda(call_count, consolidated): mgr = BlockManager() base_col = mk.TensorColumn(np.arange(10)) mgr.add_column(base_col, "a") # lambda_column = base_col.defer(lambda x: x + 2) # mgr.add_column(lambda_column, "b") if consolidated: mgr.consolidate() mgr.apply(method_name="_get", index=1, materialize=True) # we should only call NumpyBlock._get once assert call_count["count"] == 1 @product_parametrize({"consolidated": [True, False]}) def test_apply_get_multiple_lambda(call_count, consolidated): mgr = BlockManager() base_col = mk.TensorColumn(np.arange(10)) mgr.add_column(base_col, "a") lambda_column = base_col.defer(lambda x: x + 2) mgr.add_column(lambda_column, "b") if consolidated: mgr.consolidate() new_mgr = mgr.apply(method_name="_get", index=[1, 3, 5], materialize=False) # the columns should stil be linked after an index assert new_mgr["b"].data.args[0] is new_mgr["a"] # we should only call NumpyBlock._get once assert call_count["count"] == 1 @pytest.mark.parametrize( "consolidated", [True, False], ) def test_remove(consolidated): mgr = BlockManager() col = mk.TensorColumn(np.arange(10)) mgr.add_column(col, "a") col = mk.TensorColumn(np.arange(10)) mgr.add_column(col, "b") if consolidated: mgr.consolidate() assert len(mgr) == 2 assert len(mgr._block_refs) == 1 if consolidated else 2 mgr.remove("a") assert len(mgr) == 1 assert list(mgr.keys()) == ["b"] assert len(mgr._block_refs) == 1 with pytest.raises( expected_exception=ValueError, match="Remove failed: no column 'c' in BlockManager.", ): mgr.remove("c") def test_getitem(): mgr = BlockManager() a = mk.TensorColumn(np.arange(10)) mgr.add_column(a, "a") b = mk.TensorColumn(np.arange(10)) mgr.add_column(b, "b") # check that manager holds coreference of original column, but returns a coreference assert mgr["a"] is a assert mgr["a"] is mgr["a"] with pytest.raises( ValueError, match="Unsupported index of type `<class 'int'>` passed to `BlockManager`.", ): mgr[0] out = mgr[["a", "b"]] assert isinstance(out, BlockManager) # check that manager holds reference of original column, and returns a coreference assert mgr["a"].data.base is out["a"].data.base assert mgr["a"] is out["a"] assert out["a"] is out["a"] with pytest.raises(ValueError, match="`BlockManager` does not contain column 'c'."): mgr[["a", "c"]] def test_setitem(): mgr = BlockManager() a = mk.TensorColumn(np.arange(10)) mgr["a"] = a b = mk.TensorColumn(np.arange(10)) * 2 mgr["b"] = b # check that manager holds coreference of original column, and returns a coreference assert mgr["a"] is a assert mgr["a"] is mgr["a"] with pytest.raises( ValueError, match="Cannot set item with object of type `<class 'int'>` on `BlockManager`.", ): mgr["a"] = 1 def test_contains(): mgr = BlockManager() col = mk.TensorColumn(np.arange(10)) mgr.add_column(col, "a") col = mk.TensorColumn(np.arange(10)) mgr.add_column(col, "b") assert "a" in mgr assert "b" in mgr assert "c" not in mgr @pytest.mark.parametrize( "num_blocks, consolidated", product([1, 2, 3], [True, False]), ) def test_len(num_blocks, consolidated): mgr = BlockManager() for dtype in [int, float]: for idx in range(num_blocks): col = mk.TensorColumn(np.arange(10, dtype=dtype) * idx) mgr.add_column(col, f"col{idx}_{dtype}") if consolidated: mgr.consolidate() assert len(mgr) == num_blocks * 2 def test_io(tmpdir): tmpdir = os.path.join(tmpdir, "test") mgr = BlockManager() col1 = mk.TensorColumn(data=np.arange(10)) mgr.add_column(col1, "col1") col2 = mk.TensorColumn(np.arange(10) * 2) mgr.add_column(col2, "col2") col3 = mk.ScalarColumn(np.arange(10) * 3) mgr.add_column(col3, "col3") col4 = mk.ScalarColumn(np.arange(10) * 4) mgr.add_column(col4, "col4") col5 = mk.TensorColumn(torch.arange(10) * 5) mgr.add_column(col5, "col5") col6 = mk.TensorColumn(torch.arange(10) * 6) mgr.add_column(col6, "col6") col7 = mk.ObjectColumn(list(range(10))) mgr.add_column(col7, "col7") col8 = mk.ObjectColumn(list(range(10))) mgr.add_column(col8, "col8") col9 = mk.TensorColumn(torch.ones(10, 5).to(int) * 9) mgr.add_column(col9, "col9") assert len(mgr._block_refs) == 7 mgr.write(tmpdir) new_mgr = BlockManager.read(tmpdir) assert len(new_mgr._block_refs) == 3 for idx in range(1, 7): assert (mgr[f"col{idx}"] == new_mgr[f"col{idx}"]).all() for idx in range(7, 8): assert mgr[f"col{idx}"].data == new_mgr[f"col{idx}"].data # test overwriting col1 = mk.TensorColumn(data=np.arange(10) * 100) mgr.add_column(col1, "col1") mgr.remove("col9") assert "col9" in load_yaml(os.path.join(tmpdir, "meta.yaml"))["columns"] mgr.write(tmpdir) # make sure the old column was removed assert "col9" not in load_yaml(os.path.join(tmpdir, "meta.yaml"))["columns"] new_mgr = BlockManager.read(tmpdir) assert len(new_mgr._block_refs) == 3 for idx in range(1, 7): assert (mgr[f"col{idx}"] == new_mgr[f"col{idx}"]).all() for idx in range(7, 8): assert mgr[f"col{idx}"].data == new_mgr[f"col{idx}"].data def test_io_no_overwrite(tmpdir): new_dir = os.path.join(tmpdir, "test") os.mkdir(new_dir) mgr = BlockManager() with pytest.raises( IsADirectoryError, match=f"Cannot write `BlockManager`. {new_dir} is a directory.", ): mgr.write(new_dir) @product_parametrize( { "column_type": [ mk.TensorColumn, mk.PandasScalarColumn, mk.ArrowScalarColumn, mk.TensorColumn, ], "column_order": [("z", "a"), ("a", "z")], } ) def test_io_lambda_args(tmpdir, column_type, column_order): mgr = BlockManager() base_col_name, col_name = column_order base_col = column_type(np.arange(16)) mgr.add_column(base_col, base_col_name) # want to order backwards lambda_column = base_col.defer(lambda x: x + 2) mgr.add_column(lambda_column, col_name) mgr.write(os.path.join(tmpdir, "test")) new_mgr = BlockManager.read(os.path.join(tmpdir, "test")) # ensure that in the loaded df, the lambda column points to the same # underlying data as the base column assert new_mgr[col_name].data.args[0] is new_mgr[base_col_name] # ensure that the the base column was not written twice # check that dir is empty block_id = mgr._column_to_block_id[col_name] assert not os.listdir( os.path.join(tmpdir, "test", f"blocks/{block_id}", "data.op/args") ) assert not os.listdir( os.path.join(tmpdir, "test", f"blocks/{block_id}", "data.op/kwargs") ) @product_parametrize( { "column_type": [ mk.NumPyTensorColumn, mk.PandasScalarColumn, mk.ArrowScalarColumn, mk.TorchTensorColumn, ] } ) def test_io_chained_lambda_args(tmpdir, column_type): mgr = BlockManager() base_col = column_type(np.arange(16)) mgr.add_column(base_col, "a") lambda_column = base_col.defer(lambda x: x + 2) mgr.add_column(lambda_column, "b") second_lambda_column = lambda_column.defer(lambda x: x + 2) mgr.add_column(second_lambda_column, "c") mgr.write(os.path.join(tmpdir, "test")) new_mgr = BlockManager.read(os.path.join(tmpdir, "test")) # ensure that in the loaded df, the lambda column points to the same # underlying data as the base column # TODO: this should work once we get topological sort correct assert new_mgr["c"].data.args[0] is new_mgr["b"] # ensure that the the base column was not written twice # check that dir is empty block_id = mgr._column_to_block_id["c"] assert not os.listdir( os.path.join(tmpdir, "test", f"blocks/{block_id}", "data.op/args") ) assert not os.listdir( os.path.join(tmpdir, "test", f"blocks/{block_id}", "data.op/kwargs") ) def test_topological_block_refs(): mgr = BlockManager() base_col = mk.TensorColumn(np.arange(16)) lambda_columns = [] expected_order = [id(base_col._block)] curr_col = base_col for _ in range(10): curr_col = curr_col.defer(lambda x: x + 2) expected_order.append(id(curr_col._block)) lambda_columns.append(curr_col) # add to manager in reversed order for i, col in enumerate(lambda_columns[::-1]): mgr.add_column(col, f"lambda_{i}") mgr.add_column(base_col, "base") sorted_block_refs = list(list(zip(*mgr.topological_block_refs()))[0]) assert sorted_block_refs == expected_order def test_topological_block_refs_w_gap(): mgr = BlockManager() base_col = mk.TensorColumn(np.arange(16)) lambda_columns = [] curr_col = base_col for _ in range(10): curr_col = curr_col.defer(lambda x: x + 2) lambda_columns.append(curr_col) mgr.add_column(lambda_columns[0], "first") mgr.add_column(lambda_columns[-2], "second_to_last") mgr.add_column(lambda_columns[-1], "last") mgr.add_column(base_col, "base") expected_order = [ id(base_col._block), id(lambda_columns[0]._block), id(lambda_columns[-2]._block), id(lambda_columns[-1]._block), ] sorted_block_refs = list(list(zip(*mgr.topological_block_refs()))[0]) # because there is a gap, we cannot guarantee the global order of the blocks # at some point, we may want to support this, but for the time being we don't # need to support this assert sorted_block_refs.index(id(base_col._block)) < sorted_block_refs.index( id(lambda_columns[0]._block) ) assert sorted_block_refs.index( id(lambda_columns[-2]._block) ) < sorted_block_refs.index(id(lambda_columns[-1]._block)) assert len(sorted_block_refs) == len(expected_order)
meerkat-main
tests/meerkat/block/test_manager.py
"""Functions to generate certain RST files.""" # import math import inspect import os import pathlib from collections import defaultdict from typing import List, Union # import numpy as np import pandas as pd import meerkat as mk _DIR = pathlib.Path(os.path.dirname(os.path.abspath(__file__))) def _replace_contents_in_file(fpath, *, key: str, contents: Union[str, List[str]]): """Replace contents of a file that are between the delimiters. Delimiters should be Markdown style comments formatted with the key. For example: <!---autogen-start: my-key--> <!---autogen-end: my-key--> """ if isinstance(contents, str): contents = [contents] contents = [line + "\n" if not line.endswith("\n") else line for line in contents] if not contents[-1].endswith("\n"): contents += ["\n"] start_delimiter = f"<!---autogen-start: {key}-->" end_delimiter = f"<!---autogen-end: {key}-->" # Read in the file with open(fpath, "r") as file: lines = file.readlines() start_indices = [ idx for idx, line in enumerate(lines) if line.strip() == start_delimiter ] end_indices = [ idx for idx, line in enumerate(lines) if line.strip() == end_delimiter ] if len(start_indices) != len(end_indices): raise ValueError(f"Number of start and end delimiters do not match in {fpath}.") if len(start_indices) == 0: raise ValueError(f"No start and end delimiters found in {fpath}.") # Replace the content between the delimiters. brackets = lines[: start_indices[0] + 1] + contents for end_idx, next_start_idx in zip(end_indices, start_indices[1:]): brackets.extend(lines[end_idx : next_start_idx + 1]) brackets.extend(contents) brackets.extend(lines[end_indices[-1] :]) # Write the file out again with open(fpath, "w") as file: file.writelines(brackets) def generate_inbuilt_reactive_fns(): """Generate the inbuilt reactive functions RST file.""" fpath = _DIR / "user-guide" / "interactive" / "reactive-functions" / "inbuilts.rst" _REACTIVE_FNS = { "General": [ "all", "any", "bool", "complex", "float", "hex", "int", "len", "oct", "str", "list", "tuple", "sum", "dict", "set", "range", "abs", ], "Boolean Operations": ["cand", "cnot", "cor"], "DataFrame Operations": [ "concat", "merge", "sort", "sample", "shuffle", "groupby", "clusterby", "aggregate", "explainby", ], } lines = [ ".. _reactivity_inbuilts:", "", "Reactive Functions in Meerkat", "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^", "Meerkat provides some reactive functions out of the box.", ] # Add the reactive functions to the lines. for category, fns in _REACTIVE_FNS.items(): fns = sorted(fns) lines.append("") lines.append(category) lines.append("-" * len(category)) lines.append("") lines.append(".. autosummary::") lines.append(" :toctree: ../../apidocs/generated") lines.append(" :nosignatures:") lines.append("") for fn in fns: assert hasattr(mk, fn), f"mk.{fn} is not a function in Meerkat." mk_fn = getattr(mk, fn) assert ( hasattr(mk_fn, "__wrapper__") and mk_fn.__wrapper__ == "reactive" ), f"mk.{fn} is not a reactive function." lines.append(f" meerkat.{fn}") with open(fpath, "w") as f: for line in lines: f.write(line + "\n") def generate_store_operators(): """Generate table of store operators that are reactive.""" fpath = _DIR / "user-guide" / "interactive" / "stores" / "inbuilts.md" operators = [ # Arthmetic "Addition, +, x + y", "Subtraction, -, x - y", "Multiplication, *, x * y", "Division, /, x / y", "Floor Division, //, x // y", "Modulo, %, x % y", "Exponentiation, **, x ** y", # Assignment "Add & Assign, +=, x+=1", "Subtract & Assign, -=, x-=1", "Multiply & Assign, *=, x*=1", "Divide & Assign, /=, x/=1", "Floor Divide & Assign, //=, x//=1", "Modulo & Assign, %=, x%=1", "Exponentiate & Assign, **=, x**=1", "Power & Assign, **=, x**=1", "Bitwise Left Shift & Assign, <<=, x<<=1", "Bitwise Right Shift & Assign, >>=, x>>=1", "Bitwise AND & Assign, &=, x&=1", "Bitwise XOR & Assign, ^=, x^=1", "Bitwise OR & Assign, \|=, x\|=1", # Bitwise "Bitwise Left Shift, <<, x << y", "Bitwise Right Shift, >>, x >> y", "Bitwise AND, &, x & y", "Bitwise XOR, ^, x ^ y", "Bitwise OR, \|, x \| y", "Bitwise Inversion, ~, ~x", # Comparison "Less Than, <, x < y", "Less Than or Equal, <=, x <= y", "Equal, ==, x == y", "Not Equal, !=, x != y", "Greater Than, >, x > y", "Greater Than or Equal, >=, x >= y", # Get item "Get Item, [key], x[0]", "Get Slice, [start:stop], x[0:10]", ] content = defaultdict(list) for operator in operators: name, symbol, example = [x.strip() for x in operator.split(",")] content["name"].append(name) content["symbol"].append(symbol) content["example"].append(example) df = pd.DataFrame(content) content_markdown = df.to_markdown(index=False) _replace_contents_in_file( fpath, key="mk-store-reactive-operators", contents=content_markdown ) def generate_common_inplace_methods(): """Generate table of common inplace methods.""" fpath = _DIR / "advanced" / "magic-contexts" / "limitations.md" # Examples of common inplace methods include: methods = [ # list "list.append", "list.extend", "list.insert", "list.remove", "list.pop", "list.clear", "list.sort", "list.reverse", # dict "dict.clear", "dict.pop", "dict.popitem", "dict.setdefault", "dict.update", # set "set.add", "set.clear", "set.discard", "set.pop", "set.remove", "set.update", ] methods = sorted(methods) # num_columns = range(1, 5) # num_rows = [math.ceil(len(methods) / ncol) for ncol in num_columns] # remainder = [ # nrow * ncol - len(methods) for nrow, ncol in zip(num_rows, num_columns) # ] # min_remainder_loc = np.argmin(remainder) # ncols = num_columns[min_remainder_loc] # nrows = num_rows[min_remainder_loc] # TODO: make a table methods = ["- {py:meth}" + f"`{method}`" for method in methods] _replace_contents_in_file(fpath, key="common-inplace-methods", contents=methods) def generate_components_doc(): """Generate autosummary doc for all components.""" fpath = _DIR / "user-guide" / "interactive" / "components" / "inbuilts.rst" component_libs = ["core", "html", "plotly", "flowbite"] _COMPONENTS = {} for name in component_libs: components = [] for klass_name in dir(getattr(mk.gui, name)): klass = getattr(getattr(mk.gui, name), klass_name) if inspect.isclass(klass) and issubclass(klass, mk.gui.Component): components.append( f"meerkat.interactive.app.src.lib.component.{name}.{klass_name}" ) components = sorted(components) _COMPONENTS[name] = components lines = [ ".. _components_inbuilts:", "", "Meerkat Components", "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^", "Meerkat provides some components out of the box.", ] # Add the reactive functions to the lines. for category, components in _COMPONENTS.items(): lines.append("") lines.append(category) lines.append("-" * len(category)) lines.append("") lines.append(".. autosummary::") lines.append(" :toctree: ../../apidocs/generated") lines.append(" :nosignatures:") lines.append("") for component in components: lines.append(f" {component}") os.makedirs(os.path.dirname(fpath), exist_ok=True) with open(fpath, "w+") as f: for line in lines: f.write(line + "\n") if __name__ == "__main__": generate_inbuilt_reactive_fns() generate_store_operators() generate_common_inplace_methods() generate_components_doc()
meerkat-main
docs/source/rst_gen.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import subprocess import sys from distutils.util import convert_path main_ns = {} ver_path = convert_path("../../meerkat/version.py") with open(ver_path) as ver_file: exec(ver_file.read(), main_ns) sys.path.insert(0, os.path.abspath("")) sys.path.insert(0, os.path.abspath("..")) sys.path.insert(0, os.path.abspath("../..")) sys.setrecursionlimit(1500) # -- Project information ----------------------------------------------------- project = "Meerkat" copyright = "2023 Meerkat" author = "The Meerkat Team" # The full version, including alpha/beta/rc tags # release = "0.0.0dev" version = release = main_ns["__version__"] # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.coverage", "sphinx.ext.napoleon", "sphinx.ext.viewcode", "sphinx.ext.todo", "nbsphinx", # "recommonmark", "IPython.sphinxext.ipython_directive", "IPython.sphinxext.ipython_console_highlighting", "myst_nb", "sphinx.ext.intersphinx", "sphinx_book_theme", "sphinx_external_toc", "sphinx_design", "sphinx_toolbox.collapse", "sphinx_copybutton", "sphinx_remove_toctrees", ] autosummary_generate = True autosummary_imported_members = True # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_book_theme" html_title = f"🔮 v{version}" html_logo = "../assets/meerkat_banner_padded.svg" html_favicon = "../assets/meerkat_logo.png" # html_sidebars = {"**": ["sbt-sidebar-nav.html"]} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] html_css_files = [ "css/custom.css", ] # From jupyter-book default sphinx config # https://github.com/executablebooks/jupyter-book/blob/421f6198728b21c94726a10b61776fb4cc097d72/jupyter_book/config.py#L23 html_permalinks_icon = "¶" html_sourcelink_suffix = "" numfig = True panels_add_bootstrap_css = False # Don't show module names in front of class names. add_module_names = False # Intersphinx mappings intersphinx_mapping = { "python": ("https://docs.python.org/3", None), "numpy": ("https://numpy.org/doc/stable", None), "pandas": ("https://pandas.pydata.org/docs", None), "pd": ("https://pandas.pydata.org/docs", None), } # Set a longer nb execution timeout nb_execution_timeout = 180 remove_from_toctrees = ["apidocs/generated/*"] # Sort members by group autodoc_member_order = "bysource" # Color Scheme panels_css_variables = { "tabs-color-label-active": "rgb(108,72,232)", "tabs-color-label-inactive": "rgba(108,72,232,0.5)", } todo_include_todos = True source_suffix = { ".rst": "restructuredtext", ".ipynb": "myst-nb", ".myst": "myst-nb", ".md": "myst-nb", } external_toc_path = "_toc.yml" html_theme_options = { "repository_url": "https://github.com/hazyresearch/meerkat/", "use_repository_button": True, "use_issues_button": True, "use_edit_page_button": True, "path_to_docs": "doc/source", "home_page_in_toc": True, "show_navbar_depth": 2, "use_sidenotes": True, "show_toc_level": 2, "launch_buttons": { "notebook_interface": "jupyterlab", "binderhub_url": "https://mybinder.org", "colab_url": "https://colab.research.google.com", }, "announcement": "<div class='topnav'></div>", # "navigation_depth": 3, } html_context = { "display_github": True, "github_user": "hazyresearch", "github_repo": "meerkat", "github_version": "main", "conf_py_path": "/docs/", } def setup(app): """Generate the rst files you need.""" # Only run the generation when we are not in livedocs. # this codeblock causes livedocs to unnecessarily retrigger if os.environ.get("SPHINX_LIVEDOCS", "false") != "true": path = os.path.abspath(os.path.dirname(__file__)) path = os.path.join(path, "rst_gen.py") subprocess.run(["python", path])
meerkat-main
docs/source/conf.py
import os import meerkat as mk def display_df(df: mk.DataFrame, name: str): # need to get absolute paths so this works on readthedocs base_dir = os.path.join(os.path.dirname(os.path.dirname(mk.__file__)), "docs") body_html = df._repr_html_() css = open(os.path.join(base_dir, "source/html/display/dataframe.css"), "r").read() body_html = body_html.replace("\n", f"\n <style> {css} </style>", 1) open(os.path.join(base_dir, f"source/html/display/{name}.html"), "w").write( body_html ) return df
meerkat-main
docs/source/display.py
from typing import List import meerkat as mk def get_rst_class_ref(klass: type): return f":class:`dcbench.{klass.__name__}`" def get_link(text: str, url: str): return f"`{text} <{url}>`_" def create_tags_html(tags: List[str]): tags = "".join([f"<div class='tag'>{tag.replace('_', ' ')}</div>" for tag in tags]) html = f""" <div class='tags'> {tags} </div> """ return html def create_versions_html(versions: List[str]): versions = "".join( [f"<div class='tag'>{tag.replace('_', ' ')}</div>" for tag in versions] ) html = f""" <div class='versions'> {versions} </div> """ return html def get_datasets_table(): df = mk.datasets.catalog df = df.to_pandas() df["versions"] = df["name"].apply( lambda x: create_versions_html(mk.datasets.versions(x)) ) df["homepage"] = df["homepage"].apply(lambda x: f'<a href="{x}">link</a>') df["tags"] = df["tags"].apply(create_tags_html) df = df.set_index("name") df.index.name = None style = df[["tags", "versions", "homepage"]].style.set_table_styles( {"description": [{"selector": "", "props": "max-width: 50%;"}]} ) html = style.to_html(escape=False) html += """ <style> .tag { font-family: monospace; font-size: 0.8em; border: 10px; border-radius: 5px; border-color: black; padding-left: 7px; padding-right: 7px; padding-top: 0px; padding-bottom: 0px; margin: 1px; } .tags .tag { background-color: lightgrey; } .versions .tag { background-color: lightblue; } .tags { display: inline-flex; flex-wrap: wrap; } .versions { display: inline-flex; flex-wrap: wrap; } </style> """ return html datasets_table = get_datasets_table() open("source/datasets/datasets_table.html", "w").write(datasets_table)
meerkat-main
docs/source/datasets/build_datasets_docs.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Evaluation script for object localization import json import argparse import torch import itertools import numpy as np from collections import defaultdict from utils import bbox_overlaps_batch, get_frm_mask from stanfordcorenlp import StanfordCoreNLP from tqdm import tqdm class ANetGrdEval(object): def __init__(self, reference_file=None, submission_file=None, split_file=None, val_split=None, iou_thresh=0.5, verbose=False): if not reference_file: raise IOError('Please input a valid reference file!') if not submission_file: raise IOError('Please input a valid submission file!') self.iou_thresh = iou_thresh self.verbose = verbose self.val_split = val_split self.import_ref(reference_file, split_file) self.import_sub(submission_file) def import_ref(self, reference_file=None, split_file=None): with open(split_file) as f: split_dict = json.load(f) split = {} for s in self.val_split: split.update({i:i for i in split_dict[s]}) with open(reference_file) as f: ref = json.load(f)['annotations'] ref = {k:v for k,v in ref.items() if k in split} self.ref = ref def import_sub(self, submission_file=None): with open(submission_file) as f: pred = json.load(f)['results'] self.pred = pred def gt_grd_eval(self): ref = self.ref pred = self.pred print('Number of videos in the reference: {}, number of videos in the submission: {}'.format(len(ref), len(pred))) results = defaultdict(list) for vid, anns in ref.items(): for seg, ann in anns['segments'].items(): if len(ann['frame_ind']) == 0: continue # annotation not available ref_bbox_all = torch.cat((torch.Tensor(ann['process_bnd_box']), \ torch.Tensor(ann['frame_ind']).unsqueeze(-1)), dim=1) # 5-D coordinates sent_idx = set(itertools.chain.from_iterable(ann['process_idx'])) # index of word in sentence to evaluate for idx in sent_idx: sel_idx = [ind for ind, i in enumerate(ann['process_idx']) if idx in i] ref_bbox = ref_bbox_all[sel_idx] # select matched boxes # Note that despite discouraged, a single word could be annotated across multiple boxes/frames assert(ref_bbox.size(0) > 0) class_name = ann['process_clss'][sel_idx[0]][ann['process_idx'][sel_idx[0]].index(idx)] if vid not in pred: results[class_name].append(0) # video not grounded elif seg not in pred[vid]: results[class_name].append(0) # segment not grounded elif idx not in pred[vid][seg]['idx_in_sent']: results[class_name].append(0) # object not grounded else: pred_ind = pred[vid][seg]['idx_in_sent'].index(idx) pred_bbox = torch.cat((torch.Tensor(pred[vid][seg]['bbox_for_all_frames'][pred_ind])[:,:4], \ torch.Tensor(range(10)).unsqueeze(-1)), dim=1) frm_mask = torch.from_numpy(get_frm_mask(pred_bbox[:, 4].numpy(), \ ref_bbox[:, 4].numpy()).astype('uint8')) overlap = bbox_overlaps_batch(pred_bbox[:, :5].unsqueeze(0), \ ref_bbox[:, :5].unsqueeze(0), frm_mask.unsqueeze(0)) results[class_name].append(1 if torch.max(overlap) > self.iou_thresh else 0) print('Number of groundable objects in this split: {}'.format(len(results))) grd_accu = np.mean([sum(hm)*1./len(hm) for i,hm in results.items()]) print('-' * 80) print('The overall localization accuracy is {:.4f}'.format(grd_accu)) print('-' * 80) if self.verbose: print('Object frequency and grounding accuracy per class (descending by object frequency):') accu_per_clss = {(i, sum(hm)*1./len(hm)):len(hm) for i,hm in results.items()} accu_per_clss = sorted(accu_per_clss.items(), key=lambda x:x[1], reverse=True) for accu in accu_per_clss: print('{} ({}): {:.4f}'.format(accu[0][0], accu[1], accu[0][1])) return grd_accu def precision_recall_util(self, mode='all'): ref = self.ref pred = self.pred print('Number of videos in the reference: {}, number of videos in the submission: {}'.format(len(ref), len(pred))) nlp = StanfordCoreNLP('tools/stanford-corenlp-full-2018-02-27') props={'annotators': 'lemma','pipelineLanguage':'en', 'outputFormat':'json'} vocab_in_split = set() prec = defaultdict(list) prec_per_sent = defaultdict(list) for vid, anns in tqdm(ref.items()): for seg, ann in anns['segments'].items(): if len(ann['frame_ind']) == 0 or vid not in pred or seg not in pred[vid]: continue # do not penalize if sentence not annotated prec_per_sent_tmp = [] # for each sentence ref_bbox_all = torch.cat((torch.Tensor(ann['process_bnd_box']), torch.Tensor(ann['frame_ind']).unsqueeze(-1)), dim=1) # 5-D coordinates idx_in_sent = {} for box_idx, cls_lst in enumerate(ann['process_clss']): vocab_in_split.update(set(cls_lst)) for cls_idx, cls in enumerate(cls_lst): idx_in_sent[cls] = idx_in_sent.get(cls, []) + [ann['process_idx'][box_idx][cls_idx]] sent_idx = set(itertools.chain.from_iterable(ann['process_idx'])) # index of gt object words exclude_obj = {json.loads(nlp.annotate(token, properties=props) )['sentences'][0]['tokens'][0]['lemma']: 1 for token_idx, token in enumerate(ann['tokens'] ) if (token_idx not in sent_idx and token != '')} for pred_idx, class_name in enumerate(pred[vid][seg]['clss']): if class_name in idx_in_sent: gt_idx = min(idx_in_sent[class_name]) # always consider the first match... sel_idx = [idx for idx, i in enumerate(ann['process_idx']) if gt_idx in i] ref_bbox = ref_bbox_all[sel_idx] # select matched boxes assert (ref_bbox.size(0) > 0) pred_bbox = torch.cat((torch.Tensor(pred[vid][seg]['bbox_for_all_frames'][pred_idx])[:, :4], torch.Tensor(range(10)).unsqueeze(-1)), dim=1) frm_mask = torch.from_numpy(get_frm_mask(pred_bbox[:, 4].numpy(), ref_bbox[:, 4].numpy()).astype('uint8')) overlap = bbox_overlaps_batch(pred_bbox[:, :5].unsqueeze(0), ref_bbox[:, :5].unsqueeze(0), frm_mask.unsqueeze(0)) prec[class_name].append(1 if torch.max(overlap) > self.iou_thresh else 0) prec_per_sent_tmp.append(1 if torch.max(overlap) > self.iou_thresh else 0) elif json.loads(nlp.annotate(class_name, properties=props))['sentences'][0]['tokens'][0]['lemma'] in exclude_obj: pass # do not penalize if gt object word not annotated (missed) else: if mode == 'all': prec[class_name].append(0) # hallucinated object prec_per_sent_tmp.append(0) prec_per_sent[vid + seg] = prec_per_sent_tmp nlp.close() # recall recall = defaultdict(list) recall_per_sent = defaultdict(list) for vid, anns in ref.items(): for seg, ann in anns['segments'].items(): if len(ann['frame_ind']) == 0: # print('no annotation available') continue recall_per_sent_tmp = [] # for each sentence ref_bbox_all = torch.cat((torch.Tensor(ann['process_bnd_box']), \ torch.Tensor(ann['frame_ind']).unsqueeze(-1)), dim=1) # 5-D coordinates sent_idx = set(itertools.chain.from_iterable(ann['process_idx'])) # index of gt object words for gt_idx in sent_idx: sel_idx = [idx for idx, i in enumerate(ann['process_idx']) if gt_idx in i] ref_bbox = ref_bbox_all[sel_idx] # select matched boxes # Note that despite discouraged, a single word could be annotated across multiple boxes/frames assert(ref_bbox.size(0) > 0) class_name = ann['process_clss'][sel_idx[0]][ann['process_idx'][sel_idx[0]].index(gt_idx)] if vid not in pred: recall[class_name].append(0) # video not grounded recall_per_sent_tmp.append(0) elif seg not in pred[vid]: recall[class_name].append(0) # segment not grounded recall_per_sent_tmp.append(0) elif class_name in pred[vid][seg]['clss']: pred_idx = pred[vid][seg]['clss'].index(class_name) # always consider the first match... pred_bbox = torch.cat((torch.Tensor(pred[vid][seg]['bbox_for_all_frames'][pred_idx])[:,:4], \ torch.Tensor(range(10)).unsqueeze(-1)), dim=1) frm_mask = torch.from_numpy(get_frm_mask(pred_bbox[:, 4].numpy(), \ ref_bbox[:, 4].numpy()).astype('uint8')) overlap = bbox_overlaps_batch(pred_bbox[:, :5].unsqueeze(0), \ ref_bbox[:, :5].unsqueeze(0), frm_mask.unsqueeze(0)) recall[class_name].append(1 if torch.max(overlap) > self.iou_thresh else 0) recall_per_sent_tmp.append(1 if torch.max(overlap) > self.iou_thresh else 0) else: if mode == 'all': recall[class_name].append(0) # object not grounded recall_per_sent_tmp.append(0) recall_per_sent[vid + seg] = recall_per_sent_tmp return prec, recall, prec_per_sent, recall_per_sent, vocab_in_split def grd_eval(self, mode='all'): if mode == 'all': print('Evaluating on all object words.') elif mode == 'loc': print('Evaluating only on correctly-predicted object words.') else: raise Exception('Invalid loc mode!') prec, recall, prec_per_sent, rec_per_sent, vocab_in_split = self.precision_recall_util(mode=mode) # compute the per-class precision, recall, and F1 scores num_vocab = len(vocab_in_split) print('Number of groundable objects in this split: {}'.format(num_vocab)) print('Number of objects in prec and recall: {}, {}'.format(len(prec), len(recall))) prec_cls = np.sum([sum(hm)*1./len(hm) for i,hm in prec.items()])*1./num_vocab recall_cls = np.sum([sum(hm)*1./len(hm) for i,hm in recall.items()])*1./num_vocab f1_cls = 2. * prec_cls * recall_cls / (prec_cls + recall_cls) print('-' * 80) print('The overall precision_{0} / recall_{0} / F1_{0} are {1:.4f} / {2:.4f} / {3:.4f}'.format(mode, prec_cls, recall_cls, f1_cls)) print('-' * 80) if self.verbose: print('Object frequency and grounding accuracy per class (descending by object frequency):') accu_per_clss = {} for i in vocab_in_split: prec_clss = sum(prec[i])*1./len(prec[i]) if i in prec else 0 recall_clss = sum(recall[i])*1./len(recall[i]) if i in recall else 0 accu_per_clss[(i, prec_clss, recall_clss)] = (len(prec[i]), len(recall[i])) accu_per_clss = sorted(accu_per_clss.items(), key=lambda x:x[1][1], reverse=True) for accu in accu_per_clss: print('{} ({} / {}): {:.4f} / {:.4f}'.format(accu[0][0], accu[1][0], accu[1][1], accu[0][1], accu[0][2])) # compute the per-sent precision, recall, and F1 scores num_segment_without_labels = 0 prec, rec, f1 = [], [], [] for seg_id, prec_list in prec_per_sent.items(): if rec_per_sent[seg_id] == []: # skip the segment if no target objects num_segment_without_labels += 1 else: current_prec = 0 if prec_list == [] else np.mean(prec_list) # avoid empty prec_list current_rec = np.mean(rec_per_sent[seg_id]) # if precision and recall are both 0, set the f1 to be 0 if current_prec == 0.0 and current_rec == 0.0: current_f1_score = 0.0 else: current_f1_score = 2. * current_prec * current_rec / (current_prec + current_rec) # per-sent F1 prec.append(current_prec) rec.append(current_rec) f1.append(current_f1_score) num_predictions = 0 for _, pred_seg in self.pred.items(): num_predictions += len(pred_seg) # divide the scores with the total number of predictions avg_prec = np.sum(prec) / (num_predictions - num_segment_without_labels) avg_rec = np.sum(rec) / (num_predictions - num_segment_without_labels) avg_f1 = np.sum(f1) / (num_predictions - num_segment_without_labels) print('-' * 80) print('The overall precision_{0}_per_sent / recall_{0}_per_sent / F1_{0}_per_sent are {1:.4f} / {2:.4f} / {3:.4f}'.format(mode, avg_prec, avg_rec, avg_f1)) print('-' * 80) return prec_cls, recall_cls, f1_cls, avg_prec, avg_rec, avg_f1 def main(args): grd_evaluator = ANetGrdEval(reference_file=args.reference, submission_file=args.submission, split_file=args.split_file, val_split=args.split, iou_thresh=args.iou_thresh, verbose=args.verbose) if args.eval_mode == 'GT': print('Assuming the input boxes are based upon GT sentences.') grd_evaluator.gt_grd_eval() elif args.eval_mode == 'gen': print('Assuming the input boxes are based upon generated sentences.') grd_evaluator.grd_eval(mode=args.loc_mode) else: raise Exception('Invalid eval mode!') if __name__=='__main__': parser = argparse.ArgumentParser(description='ActivityNet-Entities object grounding evaluation script.') parser.add_argument('-s', '--submission', type=str, default='', help='submission grounding result file') parser.add_argument('-r', '--reference', type=str, default='data/anet_entities_cleaned_class_thresh50_trainval.json', help='reference file') parser.add_argument('--split_file', type=str, default='data/split_ids_anet_entities.json', help='path to the split file') parser.add_argument('--split', type=str, nargs='+', default=['validation'], help='which split(s) to evaluate') parser.add_argument('--eval_mode', type=str, default='GT', help='GT | gen, indicating whether the input is on GT sentences or generated sentences') parser.add_argument('--loc_mode', type=str, default='all', help='all | loc, when the input is on generate sentences, whether consider language error or not') parser.add_argument('--iou_thresh', type=float, default=0.5, help='the iou threshold for grounding correctness') parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() main(args)
ActivityNet-Entities-main
scripts/eval_grd_anet_entities.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Script to print stats on the NP annotation file import numpy as np import json import csv import sys src_file = sys.argv[1] # 'anet_entities.json' dataset_file = sys.argv[2] # 'anet_captions_all_splits.json' split_file = sys.argv[3] # 'split_ids_anet_entities.json' if __name__ == '__main__': with open(src_file) as f: data = json.load(f)['database'] with open(dataset_file) as f: raw_data = json.load(f) split_dict = {} with open(split_file) as f: split = json.load(f) for s,ids in split.items(): split_dict.update({i:s for i in ids}) num_seg = np.sum([len(dat['segments']) for vid, dat in data.items()]) total_box = {} total_dur = [] seg_splits = {} for vid, dat in data.items(): for seg, ann in dat['segments'].items(): total_box[split_dict[vid]] = total_box.get(split_dict[vid], 0)+len(ann['objects']) total_dur.append(float(raw_data[vid]['timestamps'][int(seg)][1]-raw_data[vid]['timestamps'][int(seg)][0])) seg_splits[split_dict[vid]] = seg_splits.get(split_dict[vid], 0)+1 print('number of annotated video: {}'.format(len(data))) print('number of annotated video segments: {}'.format(num_seg)) print('number of segments in each split: {}'.format(seg_splits)) print('total duration in hr: {}'.format(np.sum(total_dur)/3600)) print('total number of noun phrase boxes: {}'.format(total_box))
ActivityNet-Entities-main
scripts/anet_entities_np_stats.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Based on # https://github.com/jiasenlu/NeuralBabyTalk/blob/master/misc/bbox_transform.py # Licensed under The MIT License # Copyright (c) 2017 Jiasen Lu # -------------------------------------------------------- # Reorganized and modified by Jianwei Yang and Jiasen Lu # -------------------------------------------------------- # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import torch import numpy as np def bbox_overlaps_batch(anchors, gt_boxes, frm_mask=None): """ anchors: (N, 4) ndarray of float gt_boxes: (b, K, 5) ndarray of float frm_mask: (b, N, K) ndarray of bool overlaps: (N, K) ndarray of overlap between boxes and query_boxes """ batch_size = gt_boxes.size(0) if anchors.dim() == 2: assert frm_mask == None, 'mask not implemented yet' # hasn't updated the mask yet N = anchors.size(0) K = gt_boxes.size(1) anchors = anchors.view(1, N, 4).expand(batch_size, N, 4).contiguous() gt_boxes = gt_boxes[:,:,:4].contiguous() gt_boxes_x = (gt_boxes[:,:,2] - gt_boxes[:,:,0] + 1) gt_boxes_y = (gt_boxes[:,:,3] - gt_boxes[:,:,1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:,:,2] - anchors[:,:,0] + 1) anchors_boxes_y = (anchors[:,:,3] - anchors[:,:,1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 4).expand(batch_size, N, K, 4) query_boxes = gt_boxes.view(batch_size, 1, K, 4).expand(batch_size, N, K, 4) iw = (torch.min(boxes[:,:,:,2], query_boxes[:,:,:,2]) - torch.max(boxes[:,:,:,0], query_boxes[:,:,:,0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:,:,:,3], query_boxes[:,:,:,3]) - torch.max(boxes[:,:,:,1], query_boxes[:,:,:,1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) overlaps = iw * ih / ua # mask the overlap here. overlaps.masked_fill_(gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_(anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) elif anchors.dim() == 3: N = anchors.size(1) K = gt_boxes.size(1) if anchors.size(2) == 5: anchors = anchors[:,:,:5].contiguous() else: anchors = anchors[:,:,1:6].contiguous() gt_boxes = gt_boxes[:,:,:5].contiguous() gt_boxes_x = (gt_boxes[:,:,2] - gt_boxes[:,:,0] + 1) gt_boxes_y = (gt_boxes[:,:,3] - gt_boxes[:,:,1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:,:,2] - anchors[:,:,0] + 1) anchors_boxes_y = (anchors[:,:,3] - anchors[:,:,1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 5).expand(batch_size, N, K, 5) query_boxes = gt_boxes.view(batch_size, 1, K, 5).expand(batch_size, N, K, 5) iw = (torch.min(boxes[:,:,:,2], query_boxes[:,:,:,2]) - torch.max(boxes[:,:,:,0], query_boxes[:,:,:,0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:,:,:,3], query_boxes[:,:,:,3]) - torch.max(boxes[:,:,:,1], query_boxes[:,:,:,1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) if frm_mask is not None: # proposal and gt should be on the same frame to overlap # frm_mask = ~frm_mask # bitwise not (~) does not work with uint8 in pytorch 1.3 frm_mask = 1 - frm_mask # print('Percentage of proposals that are in the annotated frame: {}'.format(torch.mean(frm_mask.float()))) overlaps = iw * ih / ua overlaps *= frm_mask.type(overlaps.type()) # mask the overlap here. overlaps.masked_fill_(gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_(anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) else: raise ValueError('anchors input dimension is not correct.') return overlaps def get_frm_mask(proposals, gt_bboxs): # proposals: num_pps # gt_bboxs: num_box num_pps = proposals.shape[0] num_box = gt_bboxs.shape[0] return (np.tile(proposals.reshape(-1,1), (1,num_box)) != np.tile(gt_bboxs, (num_pps,1)))
ActivityNet-Entities-main
scripts/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Script to preprocess the raw annotation output to NP/object annotation files import os import sys import json import argparse import numpy as np from collections import Counter, defaultdict from stanfordcorenlp import StanfordCoreNLP def define_split(database): with open(args.train_cap_file) as f: train_ids = json.load(f).keys() with open(args.val_cap_file) as f: valtest_ids = json.load(f).keys() val_split = np.random.rand(len(valtest_ids))>=0.5 # split a half as the test split val_ids = [valtest_ids[i] for i,j in enumerate(val_split) if j] test_ids = [valtest_ids[i] for i,j in enumerate(val_split) if ~j] vid_ids = set(database.keys()) train_ann_ids = vid_ids.intersection(set(train_ids)) val_ann_ids = vid_ids.intersection(set(val_ids)) test_ann_ids = vid_ids.intersection(set(test_ids)) print('All data - total: {}, train split: {}, val split: {}, test split: {}'.format(len(train_ids+val_ids+test_ids), len(train_ids), len(val_ids), len(test_ids))) print('Annotated data - total: {}, train split: {}, val split: {}, and test split: {}'.format( len(vid_ids), len(train_ann_ids), len(val_ann_ids), len(test_ann_ids))) return [train_ids, val_ids, test_ids] def extract_attr(database, splits): split_dict = {} for split in splits: split_dict.update({s:s for s in split}) print('Object classes defined on {} videos, freq threshold is {}'.format(len(split_dict), args.freq_thresh)) attr_all = [] # all the attributes for vid_id, vid in database.items(): if split_dict.get(vid_id, -1) != -1: for seg_id, seg in vid['segments'].items(): for obj in seg['objects']: assert(len(obj['frame_ind']) == 1) for box_id, box in obj['frame_ind'].items(): tmp = [] attr_lst = [] sorted_attr = sorted(box['attributes'], key=lambda x:x[0]) # the attributes are unordered for ind, attr in enumerate(sorted_attr): assert(attr[0] >= 0) if len(tmp) == 0: tmp.append(attr[1].lower()) # convert to lowercase else: if attr[0] == (sorted_attr[ind-1][0]+1): tmp.append(attr[1].lower()) else: attr_lst.append(tmp) tmp = [attr[1].lower()] if len(tmp) > 0: # the last one attr_lst.append(tmp) # exclude empty box (no attribute) # crowd boxes are ok for now if len(attr_lst) == 0: # or box['crowds'] == 1 pass # print('empty attribute at video {}, segment {}, box {}'.format(vid_id, seg_id, box_id)) else: attr_all.extend([' '.join(i) for i in attr_lst]) return attr_all def prep_all(database, database_cap, obj_cls_lst, w2l, nlp): w2d = {} for ind, obj in enumerate(obj_cls_lst): w2d[obj] = ind avg_box = [] # number of boxes per segment avg_attr = [] # number of attributes per box attr_all = [] # all the attributes crowd_all = [] # all the crowd labels attr_dict = defaultdict(list) with open(args.attr_to_video_file) as f: for line in f.readlines(): line_split = line.split(',') attr_id = line_split[0] vid_name = line_split[-1] attr = ','.join(line_split[1:-1]) vid_id, seg_id = vid_name.strip().split('_segment_') attr_dict[(vid_id, str(int(seg_id)))].append([int(attr_id), attr]) print('Number of segments with attributes: {}'.format(len(attr_dict))) vid_seg_dict = {} for vid_id, vid in database.items(): for seg_id, _ in vid['segments'].items(): vid_seg_dict[(vid_id, seg_id)] = vid_seg_dict.get((vid_id, seg_id), 0) + 1 new_database = {} new_database_np = {} seg_counter = 0 for vid_id, cap in database_cap.items(): new_database_np[vid_id] = {'segments':{}} new_seg = {} for cap_id in range(len(cap['sentences'])): new_obj_lst = defaultdict(list) seg_id = str(cap_id) new_database_np[vid_id]['segments'][seg_id] = {'objects':[]} if vid_seg_dict.get((vid_id, seg_id), 0) == 0: new_obj_lst['tokens'] = nlp.word_tokenize(cap['sentences'][cap_id].encode('utf-8')) # sentences not in ANet-BB else: vid = database[vid_id] seg = vid['segments'][seg_id] # preprocess attributes attr_sent = sorted(attr_dict[(vid_id, seg_id)], key=lambda x:x[0]) start_ind = attr_sent[0][0] # legacy token issues from our annotation tool for ind, tup in enumerate(attr_sent): if attr_sent[ind][1] == '\\,': attr_sent[ind][1] = ',' new_obj_lst['tokens'] = [i[1] for i in attr_sent] # all the word tokens for obj in seg['objects']: assert(len(obj['frame_ind']) == 1) np_ann = {} box_id = obj['frame_ind'].keys()[0] box = obj['frame_ind'].values()[0] np_ann['frame_ind'] = int(box_id) np_ann.update(box) if len(box['attributes']) > 0: # just in case the attribute is empty, though it should not be tmp = [] tmp_ind = [] tmp_obj = [] attr_lst = [] attr_ind_lst = [] tmp_np_ind = [] np_lst = [] sorted_attr = sorted(box['attributes'], key=lambda x:x[0]) # the attributes are unordered sorted_attr = [(x[0]-start_ind, x[1]) for x in sorted_attr] # index relative to the sent for ind, attr in enumerate(sorted_attr): assert(attr[0] >= 0) attr_w = attr[1].lower() if len(tmp) == 0: tmp.append(attr_w) # convert to lowercase tmp_np_ind.append(attr[0]) if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj.append(attr_l) tmp_ind.append(attr[0]) else: if attr[0] == (sorted_attr[ind-1][0]+1): tmp.append(attr_w) tmp_np_ind.append(attr[0]) if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj.append(attr_l) tmp_ind.append(attr[0]) else: np_lst.append([' '.join(tmp), tmp_np_ind]) if len(tmp_obj) >= 1: attr_lst.append(tmp_obj[-1]) # the last noun is usually the head noun attr_ind_lst.append(tmp_ind[-1]) tmp = [attr_w] tmp_np_ind = [attr[0]] if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj = [attr_l] tmp_ind = [attr[0]] else: tmp_obj = [] tmp_ind = [] else: tmp_obj = [] tmp_ind = [] if len(tmp) > 0: # the last one np_lst.append([' '.join(tmp), tmp_np_ind]) if len(tmp_obj) >= 1: attr_lst.append(tmp_obj[-1]) # the last noun is usually the head noun attr_ind_lst.append(tmp_ind[-1]) assert(len(np_lst) > 0) np_ann['noun_phrases'] = np_lst np_ann.pop('attributes', None) new_database_np[vid_id]['segments'][seg_id]['objects'].append(np_ann) # exclude empty box (no attribute) # crowd boxes are ok for now if len(attr_lst) == 0: # or box['crowds'] == 1 pass # print('empty attribute at video {}, segment {}, box {}'.format(vid_id, seg_id, box_id)) else: new_obj_lst['process_bnd_box'].append([box['xtl'], box['ytl'], box['xbr'], box['ybr']]) new_obj_lst['frame_ind'].append(int(box_id)) new_obj_lst['crowds'].append(box['crowds']) new_obj_lst['process_clss'].append(attr_lst) new_obj_lst['process_idx'].append(attr_ind_lst) avg_attr.append(len(attr_lst)) attr_all.extend([' '.join(i) for i in attr_lst]) crowd_all.append(box['crowds']) avg_box.append(len(new_obj_lst['frame_ind'])) # cound be 0 if len(new_obj_lst['frame_ind']) == 0: new_obj_lst['process_bnd_box'] = [] new_obj_lst['frame_ind'] = [] # all empty new_obj_lst['crowds'] = [] new_obj_lst['process_clss'] = [] new_obj_lst['process_idx'] = [] seg_counter += 1 new_seg[seg_id] = new_obj_lst new_database_np[vid_id]['segments'][seg_id]['tokens'] = new_obj_lst['tokens'] new_database[vid_id] = {'segments':new_seg} # quick stats print('Number of videos: {} (including empty ones)'.format(len(new_database))) print('Number of segments: {}'.format(seg_counter)) print('Average number of valid segments per video: {}'.format(np.mean([len(vid['segments']) for vid_id, vid in new_database.items()]))) print('Average number of box per segment: {} and frequency: {}'.format(np.mean(avg_box), Counter(avg_box))) print('Average number of attributes per box: {} and frequency: {} (for valid box only)'.format(np.mean(avg_attr), Counter(avg_attr))) crowd_freq = Counter(crowd_all) print('Percentage of crowds: {} (for valid box only)'.format(crowd_freq[1]*1./(crowd_freq[1]+crowd_freq[0]))) return new_database, new_database_np def freq_obj_list(attr_all, nlp, props): # generate a list of object classes num_nn_per_attr = [] anet_obj_cls = [] nn_wo_noun = [] # noun phrases that contain no nouns w2lemma = defaultdict(list) for i, v in enumerate(attr_all): if i%10000 == 0: print(i) out = json.loads(nlp.annotate(v.encode('utf-8'), properties=props)) assert(out['sentences'] > 0) counter = 0 for token in out['sentences'][0]['tokens']: if ('NN' in token['pos']) or ('PRP' in token['pos']): lemma_w = token['lemma'] anet_obj_cls.append(lemma_w) w2lemma[token['word']].append(lemma_w) counter += 1 num_nn_per_attr.append(counter) if counter == 0: nn_wo_noun.append(v) top_nn_wo_noun = Counter(nn_wo_noun) print('Frequency of NPs w/o nouns:') print(top_nn_wo_noun.most_common(10)) print('Frequency of number of nouns per attribute:') print(Counter(num_nn_per_attr)) top_obj_cls = Counter(anet_obj_cls) print('Top 10 objects:', top_obj_cls.most_common(20)) obj_cls_lst = [] for w,freq in top_obj_cls.items(): if freq >= args.freq_thresh: obj_cls_lst.append(w.encode('ascii')) w2l = {} for w, l in w2lemma.items(): # manually correct some machine lemmatization mistakes spec_w2l = {'outfits':'outfit', 'mariachi':'mariachi', 'barrios':'barrio', 'mans':'man', 'bags':'bag', 'aerobics':'aerobic', 'motobikes':'motobike', 'graffiti':'graffiti', 'semi':'semi', 'los':'los', 'tutus':'tutu'} if spec_w2l.get(w, -1) != -1: # one special case... w2l[w] = spec_w2l[w] print('Ambiguous lemma for: {}'.format(w)) else: assert(len(set(l)) == 1) w2l[w] = list(set(l))[0] print('Number of words derived from lemma visual words {}'.format(len(w2l))) return obj_cls_lst, w2l def main(args): nlp = StanfordCoreNLP(args.corenlp_path) props={'annotators': 'ssplit, tokenize, lemma','pipelineLanguage':'en', 'outputFormat':'json'} # load anet captions with open(args.train_cap_file) as f: database_cap = json.load(f) with open(args.val_cap_file) as f: database_cap.update(json.load(f)) print('Number of videos in ActivityNet Captions (train+val): {}'.format(len(database_cap))) # load raw annotation output anet bb with open(args.src_file) as f: database = json.load(f)['database'] print('Number of videos in ActivityNet-BB (train+val): {}'.format(len(database))) if os.path.isfile(args.split_file): with open(args.split_file) as f: all_splits = json.load(f) splits = [all_splits['training'], all_splits['validation'], all_splits['testing']] else: raise '[WARNING] Cannot find the split file! Uncomment this if you want to create a new split.' splits = define_split(database) all_splits = {'training':splits[0], 'validation':splits[1], 'testing':splits[2]} with open(args.split_file, 'w') as f: json.dump(all_splits, f) attr_all = extract_attr(database, splits[:2]) # define object classes on train/val data obj_cls_lst, w2l = freq_obj_list(attr_all, nlp, props) new_database, new_database_np = prep_all(database, database_cap, obj_cls_lst, w2l, nlp) # write raw annotation file new_database_np = {'database':new_database_np} with open(args.target_np_file, 'w') as f: json.dump(new_database_np, f) # write pre-processed annotation file new_database = {'vocab':obj_cls_lst, 'annotations':new_database} with open(args.target_file, 'w') as f: json.dump(new_database, f) nlp.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description='ActivityNet-Entities dataset preprocessing script.') parser.add_argument('--dataset_root', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/', help='dataset root directory') parser.add_argument('--corenlp_path', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttn/tools/stanford-corenlp-full-2018-02-27', help='path to stanford core nlp toolkit') parser.add_argument('--freq_thresh', type=int, default=50, help='frequency threshold for determining object classes') parser.add_argument('--train_cap_file', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/raw_annotation_file/train.json') parser.add_argument('--val_cap_file', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/raw_annotation_file/val_1.json') args = parser.parse_args() args.src_file = args.dataset_root+'anet_bb.json' # the raw annotation file args.target_np_file = args.dataset_root+'anet_entities.json' # output np file args.target_file = args.dataset_root+'anet_entities_cleaned_class_thresh'+str(args.freq_thresh)+'.json' # output object file args.attr_to_video_file = args.dataset_root+'attr_to_video.txt' # from annotation tool args.split_file = args.dataset_root+'split_ids_anet_entities.json' # split file np.random.seed(123) # make reproducible main(args)
ActivityNet-Entities-main
scripts/attr_prep_tag_NP.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Script to print stats on the object annotation file import numpy as np import json import csv # import visdom import sys from collections import Counter src_file = sys.argv[1] # 'anet_entities_cleaned_class_thresh50_trainval.json' dataset_file = sys.argv[2] # 'anet_captions_all_splits.json' split_file = sys.argv[3] # 'split_ids_anet_entities.json' if __name__=='__main__': with open(src_file) as f: data = json.load(f)['annotations'] with open(dataset_file) as f: raw_data = json.load(f) split_dict = {} with open(split_file) as f: split = json.load(f) for s,ids in split.items(): split_dict.update({i:s for i in ids}) num_seg = np.sum([len(dat['segments']) for vid, dat in data.items()]) total_box = {} total_dur = [] seg_splits = {} box_per_seg = [] obj_per_box = [] count_obj = [] for vid, dat in data.items(): for seg, ann in dat['segments'].items(): total_box[split_dict[vid]] = total_box.get(split_dict[vid], 0)+len(ann['process_bnd_box']) total_dur.append(float(raw_data[vid]['timestamps'][int(seg)][1]-raw_data[vid]['timestamps'][int(seg)][0])) seg_splits[split_dict[vid]] = seg_splits.get(split_dict[vid], 0)+1 box_per_seg.append(len(ann['process_bnd_box'])) for c in ann['process_clss']: obj_per_box.append(len(c)) count_obj.extend(c) print('number of annotated video: {}'.format(len(data))) print('number of annotated video segments: {}'.format(num_seg)) print('number of segments in each split: {}'.format(seg_splits)) print('total duration in hr: {}'.format(np.sum(total_dur)/3600)) print('total number of phrase (not object) boxes: {}'.format(total_box)) print('box per segment, mean {}, std {}, count {}'.format(np.mean(box_per_seg), np.std(box_per_seg), Counter(box_per_seg))) print('object per box, mean {}, std {}, count {}'.format(np.mean(obj_per_box), np.std(obj_per_box), Counter(obj_per_box))) print('Top 10 object labels: {}'.format(Counter(count_obj).most_common(10))) """ # visualization vis = visdom.Visdom() vis.histogram(X=[i for i in box_per_seg if i < 20], opts={'numbins': 20, 'xtickmax':20, 'xtickmin':0, 'xmax':20, 'xmin':0, 'title':'Distribution of number of boxes per segment', 'xtickfont':{'size':14}, \ 'ytickfont':{'size':14}, 'xlabel':'Number of boxes', 'ylabel': 'Counts'}) vis.histogram(X=[i for i in obj_per_box if i < 100], opts={'numbins': 100, 'xtickmax':100, 'xtickmin':0, 'xmax':100, 'xmin':0, 'title':'Distribution of number of object labels per box', 'xtickfont':{'size':14}, \ 'ytickfont':{'size':14}, 'xlabel':'Number of object labels', 'ylabel': 'Counts'}) """
ActivityNet-Entities-main
scripts/anet_entities_object_stats.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os class Path(object): """ User-specific path configuration. Please complete the /path/to/* paths to point into valid directories. """ @staticmethod def db_root_dir(database=''): db_root = '/path/to/databases' db_names = {'PASCAL_MT', 'NYUD_MT', 'BSDS500', 'NYUD_raw', 'PASCAL', 'COCO', 'FSV', 'MSRA10K', 'PASCAL-S'} if database in db_names: return os.path.join(db_root, database) elif not database: return db_root else: raise NotImplementedError @staticmethod def save_root_dir(): return './' @staticmethod def exp_dir(): return './' @staticmethod def models_dir(): return '/path/to/pre-trained/models/' @staticmethod def seism_root_dir(): # For edge detection evaluation (optional) return '/path/to/seism'
astmt-master
mypath.py
astmt-master
experiments/__init__.py
astmt-master
experiments/classification/__init__.py
astmt-master
experiments/classification/imagenet/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import os import copy import shutil import time import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets from fblib.util.classification.utils import convert_secs2time, time_string, time_file_str, AverageMeter from fblib.networks.classification import se_resnet, mobilenet_v2, resnet, resnext from fblib.util.mypath import Path def parse_args(): def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('--data', default=Path.db_root_dir('Imagenet'), help='path to dataset') parser.add_argument('--arch', '-a', metavar='ARCH', default='x50') parser.add_argument('-j', '--workers', default=16, type=int, metavar='N', help='number of data loading workers (default: 16)') parser.add_argument('--epochs', default=100, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--print-freq', '-p', default=200, type=int, metavar='N', help='print frequency (default: 100)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--n_gpu', type=int, default=8, help='number of GPUs') parser.add_argument('--group_norm', type=str2bool, default=False, help='Group Normalization') args = parser.parse_args() args.prefix = time_file_str() return args def main(): args = parse_args() best_prec1 = 0 if not args.group_norm: save_dir = os.path.join(Path.exp_dir(), 'imagenet', args.arch) else: save_dir = os.path.join(Path.exp_dir(), 'imagenet', args.arch + '-GN') if not os.path.isdir(save_dir): os.makedirs(save_dir) log = open(os.path.join(save_dir, '{}.{}.log'.format(args.arch, args.prefix)), 'w') # create model print_log("=> creating model '{}'".format(args.arch), log) resol = 224 if args.arch == 'res26': model = resnet.resnet26(pretrained=False, group_norm=args.group_norm) elif args.arch == 'res50': model = resnet.resnet50(pretrained=False, group_norm=args.group_norm) elif args.arch == 'res101': model = resnet.resnet101(pretrained=False, group_norm=args.group_norm) elif args.arch == 'x50': model = resnext.resnext50_32x4d(pretrained=False) elif args.arch == 'x101': model = resnext.resnext101_32x4d(pretrained=False) elif args.arch == 'res26-se': model = se_resnet.se_resnet26(num_classes=1000) elif args.arch == 'res50-se': model = se_resnet.se_resnet50(num_classes=1000) elif args.arch == 'res101-se': model = se_resnet.se_resnet101(num_classes=1000) elif args.arch == 'mobilenet-v2': model = mobilenet_v2.mobilenet_v2(pretrained=False, n_class=1000, last_channel=2048) print_log("=> Model : {}".format(model), log) print_log("=> parameter : {}".format(args), log) if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): model.features = torch.nn.DataParallel(model.features, device_ids=list(range(args.n_gpu))) model.cuda() else: model = torch.nn.DataParallel(model, device_ids=list(range(args.n_gpu))).cuda() # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print_log("=> loading checkpoint '{}'".format(args.resume), log) checkpoint = torch.load(args.resume) args.start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print_log("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']), log) else: raise ValueError("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True # Data loading code traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(resol), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(resol), transforms.ToTensor(), normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) if args.evaluate: validate(val_loader, model, criterion) return filename = os.path.join(save_dir, 'checkpoint.{}.{}.pth.tar'.format(args.arch, args.prefix)) bestname = os.path.join(save_dir, 'best.{}.{}.pth.tar'.format(args.arch, args.prefix)) start_time = time.time() epoch_time = AverageMeter() for epoch in range(args.start_epoch, args.epochs): lr = adjust_learning_rate(optimizer, epoch, args) need_hour, need_mins, need_secs = convert_secs2time(epoch_time.val * (args.epochs - epoch)) need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs) print_log(' [{:s}] :: {:3d}/{:3d} ----- [{:s}] {:s} LR={:}'.format(args.arch, epoch, args.epochs, time_string(), need_time, lr), log) # train for one epoch train(train_loader, model, criterion, optimizer, epoch, log, args) # evaluate on validation set prec1 = validate(val_loader, model, criterion, log, args) # remember best prec@1 and save checkpoint is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict(), 'args': copy.deepcopy(args), }, is_best, filename, bestname) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() log.close() def train(train_loader, model, criterion, optimizer, epoch, log, args): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to train mode model.train() end = time.time() for i, (input, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) target_var = target.cuda(non_blocking=True) input_var = input.requires_grad_() # compute output output = model(input_var) loss = criterion(output, target_var) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target_var, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(prec1.item(), input.size(0)) top5.update(prec5.item(), input.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print_log('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, top1=top1, top5=top5), log) def validate(val_loader, model, criterion, log, args): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() with torch.no_grad(): for i, (input_var, target) in enumerate(val_loader): target_var = target.cuda(non_blocking=True) # compute output output = model(input_var) loss = criterion(output, target_var) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target_var, topk=(1, 5)) losses.update(loss.item(), input_var.size(0)) top1.update(prec1.item(), input_var.size(0)) top5.update(prec5.item(), input_var.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print_log('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5), log) print_log(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5, error1=100 - top1.avg), log) return top1.avg def save_checkpoint(state, is_best, filename, bestname): torch.save(state, filename) if is_best: shutil.copyfile(filename, bestname) def adjust_learning_rate(optimizer, epoch, args): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def print_log(print_string, log): print("{}".format(print_string)) log.write('{}\n'.format(print_string)) log.flush() if __name__ == '__main__': main()
astmt-master
experiments/classification/imagenet/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torchvision import transforms from torch.utils.data import DataLoader from fblib.util.helpers import worker_seed import fblib.util.pdf_visualizer as viz # Losses from fblib.layers.loss import BalancedCrossEntropyLoss, SoftMaxwithLoss, NormalsLoss, DepthLoss # Dataloaders import fblib.dataloaders as dbs from fblib.dataloaders.combine_im_dbs import CombineIMDBs from fblib.layers.loss import normal_ize # Transformations from fblib.dataloaders import custom_transforms as tr # Collate for MIL from fblib.util.custom_collate import collate_mil def accuracy(output, target, topk=(1,), ignore_label=255): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = (target != ignore_label).sum().item() if batch_size == 0: return -1 _, pred = output.topk(maxk, 1, True, True) if pred.shape[-1] == 1: pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) else: correct = pred.eq(target.unsqueeze(1)) res = [] for _ in topk: correct_k = correct[:].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def eval_all_results(p): if 'DO_SEMSEG' in p and p.DO_SEMSEG: from fblib.evaluation.eval_semseg import eval_and_store_semseg for db in p['infer_db_names']: eval_and_store_semseg(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_HUMAN_PARTS' in p and p.DO_HUMAN_PARTS: from fblib.evaluation.eval_human_parts import eval_and_store_human_parts for db in p['infer_db_names']: eval_and_store_human_parts(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_NORMALS' in p and p.DO_NORMALS: from fblib.evaluation.eval_normals import eval_and_store_normals for db in p['infer_db_names']: eval_and_store_normals(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_SAL' in p and p.DO_SAL: from fblib.evaluation.eval_sal import eval_and_store_sal for db in p['infer_db_names']: eval_and_store_sal(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_DEPTH' in p and p.DO_DEPTH: from fblib.evaluation.eval_depth import eval_and_store_depth for db in p['infer_db_names']: eval_and_store_depth(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_ALBEDO' in p and p.DO_ALBEDO: from fblib.evaluation.eval_albedo import eval_and_store_albedo for db in p['infer_db_names']: eval_and_store_albedo(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_EDGE' in p and p.DO_EDGE and p['eval_edge']: from fblib.evaluation.eval_edges import sync_and_evaluate_one_folder for db in p['infer_db_names']: sync_and_evaluate_one_folder(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], prefix=p['tasks_name'], all_tasks_present=(p.MINI if 'MINI' in p else False)) def get_transformations(p): """ Get the transformations for training and testing """ # Training transformations # Horizontal flips with probability of 0.5 transforms_tr = [tr.RandomHorizontalFlip()] # Rotations and scaling transforms_tr.extend([tr.ScaleNRotate(rots=(-20, 20), scales=(.75, 1.25), flagvals={x: p.TASKS.FLAGVALS[x] for x in p.TASKS.FLAGVALS})]) # Fixed Resize to input resolution transforms_tr.extend([tr.FixedResize(resolutions={x: tuple(p.TRAIN.SCALE) for x in p.TASKS.FLAGVALS}, flagvals={x: p.TASKS.FLAGVALS[x] for x in p.TASKS.FLAGVALS})]) transforms_tr.extend([tr.AddIgnoreRegions(), tr.ToTensor()]) transforms_tr = transforms.Compose(transforms_tr) # Testing (during training transforms) transforms_ts = [] transforms_ts.extend([tr.FixedResize(resolutions={x: tuple(p.TEST.SCALE) for x in p.TASKS.FLAGVALS}, flagvals={x: p.TASKS.FLAGVALS[x] for x in p.TASKS.FLAGVALS})]) transforms_ts.extend([tr.AddIgnoreRegions(), tr.ToTensor()]) transforms_ts = transforms.Compose(transforms_ts) # Transformations to be used during inference transforms_infer = transforms_ts return transforms_tr, transforms_ts, transforms_infer def get_loss(p, task=None): if task == 'edge': criterion = BalancedCrossEntropyLoss(size_average=True, pos_weight=p['edge_w']) elif task == 'semseg' or task == 'human_parts': criterion = SoftMaxwithLoss() elif task == 'normals': criterion = NormalsLoss(normalize=True, size_average=True, norm=p['normloss']) elif task == 'sal': criterion = BalancedCrossEntropyLoss(size_average=True) elif task == 'depth': criterion = DepthLoss() elif task == 'albedo': criterion = torch.nn.L1Loss(reduction='elementwise_mean') else: raise NotImplementedError('Undefined Loss: Choose a task among ' 'edge, semseg, human_parts, sal, depth, albedo, or normals') return criterion def get_train_loader(p, db_name, transforms): print('Preparing train loader for db: {}'.format(db_name)) db_names = [db_name] if isinstance(db_name, str) else db_name dbs_train = {} for db in db_names: if db == 'PASCALContext': dbs_train[db] = dbs.PASCALContext(split=['train'], transform=transforms, retname=True, do_edge=p.DO_EDGE, do_human_parts=p.DO_HUMAN_PARTS, do_semseg=p.DO_SEMSEG, do_normals=p.DO_NORMALS, do_sal=p.DO_SAL, overfit=p['overfit']) elif db == 'VOC12': dbs_train[db] = dbs.VOC12(split=['train'], transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, overfit=p['overfit']) elif db == 'SBD': dbs_train[db] = dbs.SBD(split=['train', 'val'], transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, overfit=p['overfit']) elif db == 'NYUD_nrm': dbs_train[db] = dbs.NYUDRaw(split='train', transform=transforms, overfit=p['overfit']) elif db == 'NYUD': dbs_train[db] = dbs.NYUD_MT(split='train', transform=transforms, do_edge=p.DO_EDGE, do_semseg=p.DO_SEMSEG, do_normals=p.DO_NORMALS, do_depth=p.DO_DEPTH, overfit=p['overfit']) elif db == 'COCO': dbs_train[db] = dbs.COCOSegmentation(split='train2017', transform=transforms, retname=True, area_range=[1000, float("inf")], only_pascal_categories=True, overfit=p['overfit']) elif db == 'FSV': dbs_train[db] = dbs.FSVGTA(split='train', mini=False, transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, do_albedo=p.DO_ALBEDO, do_depth=p.DO_DEPTH, overfit=p['overfit']) else: raise NotImplemented("train_db_name: Choose among BSDS500, PASCALContext, VOC12, COCO, FSV, and NYUD") if len(dbs_train) == 1: db_train = dbs_train[list(dbs_train.keys())[0]] else: db_exclude = dbs.VOC12(split=['val'], transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, overfit=p['overfit']) db_train = CombineIMDBs([dbs_train[x] for x in dbs_train], excluded=[db_exclude], repeat=[1, 1]) trainloader = DataLoader(db_train, batch_size=p['trBatch'], shuffle=True, drop_last=True, num_workers=4, worker_init_fn=worker_seed, collate_fn=collate_mil) return trainloader def get_test_loader(p, db_name, transforms, infer=False): print('Preparing test loader for db: {}'.format(db_name)) if db_name == 'BSDS500': db_test = dbs.BSDS500(split=['test'], transform=transforms, overfit=p['overfit']) elif db_name == 'PASCALContext': db_test = dbs.PASCALContext(split=['val'], transform=transforms, retname=True, do_edge=p.DO_EDGE, do_human_parts=p.DO_HUMAN_PARTS, do_semseg=p.DO_SEMSEG, do_normals=p.DO_NORMALS, do_sal=p.DO_SAL, overfit=p['overfit']) elif db_name == 'VOC12': db_test = dbs.VOC12(split=['val'], transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, overfit=p['overfit']) elif db_name == 'NYUD': db_test = dbs.NYUD_MT(split='val', transform=transforms, do_edge=p.DO_EDGE, do_semseg=p.DO_SEMSEG, do_normals=p.DO_NORMALS, do_depth=p.DO_DEPTH, overfit=p['overfit']) elif db_name == 'COCO': db_test = dbs.COCOSegmentation(split='val2017', transform=transforms, retname=True, area_range=[1000, float("inf")], only_pascal_categories=True, overfit=p['overfit']) elif db_name == 'FSV': db_test = dbs.FSVGTA(split='test', mini=True, transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, do_albedo=p.DO_ALBEDO, do_depth=p.DO_DEPTH, overfit=p['overfit']) else: raise NotImplemented("test_db_name: Choose among BSDS500, PASCALContext, VOC12, COCO, FSV, and NYUD") drop_last = False if infer else True testloader = DataLoader(db_test, batch_size=p.TEST.BATCH_SIZE, shuffle=False, drop_last=drop_last, num_workers=2, worker_init_fn=worker_seed) return testloader def get_output(output, task): output = output.permute(0, 2, 3, 1) if task == 'normals': output = (normal_ize(output, dim=3) + 1.0) * 255 / 2.0 elif task in {'semseg', 'human_parts'}: _, output = torch.max(output, dim=3) elif task in {'edge', 'sal'}: output = torch.squeeze(255 * 1 / (1 + torch.exp(-output))) elif task in {'depth'}: pass else: raise ValueError('Select one of the valid tasks') return output.cpu().data.numpy()
astmt-master
experiments/dense_predict/common_configs.py
MAX_N_IMAGES_PER_GPU = { 'res26-8': 8, 'res26-16': 12, 'res50-8': 8, 'res50-16': 10, 'res101-8': 4, 'res101-16': 10, 'x50-8': 4, 'x50-16': 10, 'x101-8': 2, 'x101-16': 6, }
astmt-master
experiments/dense_predict/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import cv2 import argparse import torch import tarfile from six.moves import urllib from easydict import EasyDict as edict # Networks import fblib.networks.deeplab_multi_task.deeplab_se_resnet_multitask as se_resnet_multitask # Common configs from experiments.dense_predict.common_configs import get_loss, get_train_loader, get_test_loader, get_transformations from fblib.util.mypath import Path def parse_args(): def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser(description='Multi-task learning with PASCAL') # Select tasks parser.add_argument('--active_tasks', type=int, nargs='+', default=[1, 1, 1, 1, 1], help='Which tasks to train?') parser.add_argument('--onlyVOC', type=str2bool, default=False, help='Use standard training and testing for semantic segmentation') # General parameters parser.add_argument('--arch', type=str, default='se_res26', help='network: se_res26, se_res50, se_res101') parser.add_argument('--pretr', type=str, default='imagenet', help='pre-trained model: "imagenet" or "scratch"') parser.add_argument('--trBatch', type=int, default=8, help='training batch size') parser.add_argument('-lr', type=float, default=0.001, help='initial learning rate. poly-learning rate is used.') parser.add_argument('--lr_dec', type=float, default=1, help='decoder learning rate multiplier') parser.add_argument('-wd', type=float, default=1e-4, help='Weight decay') parser.add_argument('--epochs', type=int, default=60, help='Total number of epochs for training') parser.add_argument('--resume_epoch', type=int, default=0, help='Resume Epoch #') parser.add_argument('--cls', type=str, default='atrous-v3', help='Classifier type') parser.add_argument('--stride', type=int, default=16, help='Output stride of ResNet backbone. If set to 16 saves significant memory') parser.add_argument('--trNorm', type=str2bool, default=True, help='train normalization layers of Backbone?') parser.add_argument('--dec_w', type=int, default=64, help='decoder width (default 256 in Deeplab v3+') parser.add_argument('--overfit', type=str2bool, default=False, help='overfit to small subset of data for debugging purposes') # Modulation Parameters parser.add_argument('--seenc', type=str2bool, default=True, help='Squeeze and excitation per task for encoder? False will still use 1 SE for all tasks') parser.add_argument('--sedec', type=str2bool, default=True, help='Squeeze and excitation per task for decoder? False will not use SE modules') parser.add_argument('--adapt', type=str2bool, default=True, help='Use parallel residual adapters?') parser.add_argument('--lr_tsk', type=float, default=-1, help='Task Specific layer learning rate multiplier') # Discriminator parameters parser.add_argument('--dscr', type=str, default='fconv', help='Use discriminator?') parser.add_argument('--lr_dscr', type=int, default=10, help='learning rate multiplier of discriminator?') parser.add_argument('--dscr_w', type=float, default=0.01, help='weight of discriminator in the range [0, 1]') parser.add_argument('--dscrd', type=int, default=2, help='Depth of discriminator') parser.add_argument('--dscrk', type=int, default=1, help='kernel size of discriminator') # Task-specific parameters parser.add_argument('--edge_w', type=float, default=0.95, help='weighting the positive loss for boundary detection as w * L_pos + (1 - w) * L_neg') return parser.parse_args() def create_config(): cfg = edict() args = parse_args() # Parse tasks assert (len(args.active_tasks) == 5) args.do_edge = args.active_tasks[0] args.do_semseg = args.active_tasks[1] args.do_human_parts = args.active_tasks[2] args.do_normals = args.active_tasks[3] args.do_sal = args.active_tasks[4] print('\nThis script was run with the following parameters:') for x in vars(args): print('{}: {}'.format(x, str(getattr(args, x)))) cfg.resume_epoch = args.resume_epoch cfg.DO_EDGE = args.do_edge cfg.DO_SEMSEG = args.do_semseg cfg.DO_HUMAN_PARTS = args.do_human_parts cfg.DO_NORMALS = args.do_normals cfg.DO_SAL = args.do_sal if not cfg.DO_EDGE and not cfg.DO_SEMSEG and not cfg.DO_HUMAN_PARTS and not cfg.DO_NORMALS and not cfg.DO_SAL: raise ValueError("Select at least one task") cfg['arch'] = args.arch cfg['pretr'] = args.pretr cfg['trBatch'] = args.trBatch cfg['lr'] = args.lr cfg['lr_dec'] = args.lr_dec cfg['wd'] = args.wd cfg['cls'] = args.cls cfg['epochs'] = args.epochs cfg['stride'] = args.stride cfg['trNorm'] = args.trNorm cfg['dec_w'] = args.dec_w # Set Modulation (Squeeze and Exciation, Residual Adapters) parameters cfg['seenc'] = args.seenc cfg['sedec'] = args.sedec cfg['adapters'] = args.adapt if cfg['sedec']: cfg['norm_per_task'] = True else: cfg['norm_per_task'] = False if args.dscr == 'None': args.dscr = None cfg['dscr_type'] = args.dscr cfg['lr_dscr'] = args.lr_dscr cfg['dscr_w'] = args.dscr_w cfg['dscrd'] = args.dscrd cfg['dscrk'] = args.dscrk task_args, name_args = get_exp_name(args) cfg['exp_folder_name'] = 'pascal_resnet' cfg['exp_name'] = "_".join(name_args) cfg['tasks_name'] = "_".join(task_args) cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name'], cfg['tasks_name']) if args.onlyVOC: cfg['train_db_name'] = ['VOC12', 'SBD'] cfg['test_db_name'] = 'VOC12' cfg['infer_db_names'] = ['VOC12', ] else: cfg['train_db_name'] = ['PASCALContext', ] cfg['test_db_name'] = 'PASCALContext' cfg['infer_db_names'] = ['PASCALContext', ] # Which tasks? cfg.TASKS = edict() cfg.TASKS.NAMES = [] cfg.TASKS.NUM_OUTPUT = {} # How many outputs per task? cfg.TASKS.TB_MIN = {} cfg.TASKS.TB_MAX = {} cfg.TASKS.LOSS_MULT = {} cfg.TASKS.FLAGVALS = {'image': cv2.INTER_CUBIC} cfg.TASKS.INFER_FLAGVALS = {} if cfg.DO_EDGE: # Edge Detection print('Adding task: Edge Detection') tmp = 'edge' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] cfg.TASKS.LOSS_MULT[tmp] = 50 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR # Add task-specific parameters from parser cfg['edge_w'] = args.edge_w cfg['eval_edge'] = False if cfg.DO_SEMSEG: # Semantic Segmentation print('Adding task: Semantic Segmentation') tmp = 'semseg' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 21 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] - 1 cfg.TASKS.LOSS_MULT[tmp] = 1 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_NEAREST if cfg.DO_HUMAN_PARTS: # Human Parts Segmentation print('Adding task: Human Part Segmentation') tmp = 'human_parts' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 7 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] - 1 cfg.TASKS.LOSS_MULT[tmp] = 2 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_NEAREST if cfg.DO_NORMALS: # Human Parts Segmentation print('Adding task: Normals') tmp = 'normals' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 3 cfg.TASKS.TB_MIN[tmp] = -1 cfg.TASKS.TB_MAX[tmp] = 1 cfg.TASKS.LOSS_MULT[tmp] = 10 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_CUBIC cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['normloss'] = 1 # Hard-coded L1 loss for normals if cfg.DO_SAL: # Saliency Estimation print('Adding task: Saliency') tmp = 'sal' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = 1 cfg.TASKS.LOSS_MULT[tmp] = 5 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['lr_tsk'] = len(cfg.TASKS.NAMES) if args.lr_tsk < 0 else args.lr_tsk cfg.NETWORK = edict() # Visualize the network on Tensorboard / pdf? cfg.NETWORK.VIS_NET = False cfg.TRAIN = edict() cfg.TRAIN.SCALE = (512, 512) cfg.TRAIN.MOMENTUM = 0.9 cfg.TRAIN.TENS_VIS = True cfg.TRAIN.TENS_VIS_INTER = 1000 cfg.TRAIN.TEMP_LOSS_INTER = 1000 cfg.TEST = edict() # See evolution of the test set when training? cfg.TEST.USE_TEST = True cfg.TEST.TEST_INTER = 10 cfg.TEST.SCALE = (512, 512) cfg.SEED = 0 cfg.EVALUATE = True cfg.DEBUG = False cfg['overfit'] = args.overfit if cfg['overfit']: cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name']) cfg['exp_name'] = 'test' cfg['save_dir'] = os.path.join(cfg['save_dir_root'], cfg['exp_name']) return cfg def check_downloaded(p): def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() def _create_url(name): return 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/astmt/{}.tgz'.format(name) _model_urls = { 'pascal_resnet_edge_semseg_human_parts_normals_sal_' 'arch-se_res26_pretr-imagenet_trBatch-8_lr-0.001_epochs-60_trNorm_seenc_sedec_adapt_dscr-fconv_lr_dscr' '-10_dscr_w-0.01_dscrd-2_dscrk-1_edge_w-0.95_60', } ans = False _check = p['exp_folder_name'] + '_' + p['tasks_name'] + '_' + p['exp_name'] + '_' + str(p['resume_epoch']) _fpath = os.path.join(Path.exp_dir(), _check + '.tgz') if _check in _model_urls: if not os.path.isfile(os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth')): urllib.request.urlretrieve(_create_url(_check), _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.exp_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') ans = True return ans def get_net_resnet(p): """ Define the network (standard Deeplab ResNet101) and the trainable parameters """ if p['arch'] == 'se_res26': network = se_resnet_multitask.se_resnet26 elif p['arch'] == 'se_res50': network = se_resnet_multitask.se_resnet50 elif p['arch'] == 'se_res101': network = se_resnet_multitask.se_resnet101 else: raise NotImplementedError('ResNet: Choose between among se_res26, se_res50, and se_res101') print('Creating ResNet model: {}'.format(p.NETWORK)) net = network(tasks=p.TASKS.NAMES, n_classes=p.TASKS.NUM_OUTPUT, pretrained=p['pretr'], classifier=p['cls'], output_stride=p['stride'], train_norm_layers=p['trNorm'], width_decoder=p['dec_w'], squeeze_enc=p['seenc'], squeeze_dec=p['sedec'], adapters=p['adapters'], norm_per_task=p['norm_per_task'], dscr_type=p['dscr_type'], dscr_d=p['dscrd'], dscr_k=p['dscrk']) if p['resume_epoch'] != 0: print("Initializing weights from: {}".format( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth'))) state_dict_checkpoint = torch.load( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth') , map_location=lambda storage, loc: storage) net.load_state_dict(state_dict_checkpoint) return net def get_train_params(net, p): train_params = [{'params': se_resnet_multitask.get_lr_params(net, part='backbone', tasks=p.TASKS.NAMES), 'lr': p['lr']}, {'params': se_resnet_multitask.get_lr_params(net, part='decoder', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_dec']}, {'params': se_resnet_multitask.get_lr_params(net, part='task_specific', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_tsk']}] if p['dscr_type'] is not None: train_params.append( {'params': se_resnet_multitask.get_lr_params(net, part='discriminator', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_dscr']}) return train_params def get_exp_name(args): """ Creates the name experiment from the configuration file and the arguments """ task_dict = { 'do_edge': 0, 'do_semseg': 0, 'do_human_parts': 0, 'do_normals': 0, 'do_sal': 0 } name_dict = { 'arch': None, 'onlyVOC': False, 'pretr': None, 'trBatch': None, 'lr': None, 'wd': 1e-04, 'epochs': None, 'cls': 'atrous-v3', 'stride': 16, 'trNorm': False, 'dec_w': 64, 'seenc': False, 'sedec': False, 'adapt': False, 'dscr': None, 'lr_dscr': 1, 'dscr_w': ('dscr', None), 'dscrd': ('dscr', None), 'dscrk': ('dscr', None), 'edge_w': ('do_edge', None), 'lr_dec': 1, 'lr_tsk': -1, } # Experiment folder (task) string task_args = [x.replace('do_', '') for x in task_dict if getattr(args, x) != task_dict[x]] # Experiment name string name_args = [] for x in name_dict: # Check dependencies in tuple if isinstance(name_dict[x], tuple): elem = name_dict if name_dict[x][0] in name_dict else task_dict if elem[name_dict[x][0]] == getattr(args, name_dict[x][0]): continue if getattr(args, x) != name_dict[x]: tmp = getattr(args, x) if isinstance(tmp, list): tmp = "_".join([str(x) for x in tmp]) else: tmp = str(tmp) name_args.append(x + '-' + tmp) name_args = [x.replace('-True', '') for x in name_args] return task_args, name_args
astmt-master
experiments/dense_predict/pascal_resnet/config.py
MAX_N_IMAGES_PER_GPU = { 'se_res26-8': 10, 'se_res26-16': 16, 'se_res50-8': 8, 'se_res50-16': 10, 'se_res101-8': 2, 'se_res101-16': 8, }
astmt-master
experiments/dense_predict/pascal_resnet/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import socket import timeit import cv2 from datetime import datetime import imageio import numpy as np # PyTorch includes import torch import torch.optim as optim from torch.nn.functional import interpolate # Custom includes from fblib.util.helpers import generate_param_report from fblib.util.dense_predict.utils import lr_poly from experiments.dense_predict import common_configs from fblib.util.mtl_tools.multitask_visualizer import TBVisualizer, visualize_network from fblib.util.model_resources.flops import compute_gflops from fblib.util.model_resources.num_parameters import count_parameters from fblib.util.dense_predict.utils import AverageMeter # Custom optimizer from fblib.util.optimizer_mtl.select_used_modules import make_closure # Configuration file from experiments.dense_predict.pascal_resnet import config as config # Tensorboard include from tensorboardX import SummaryWriter def main(): p = config.create_config() gpu_id = 0 device = torch.device("cuda:" + str(gpu_id) if torch.cuda.is_available() else "cpu") p.TEST.BATCH_SIZE = 32 # Setting parameters n_epochs = p['epochs'] print("Total training epochs: {}".format(n_epochs)) print(p) print('Training on {}'.format(p['train_db_name'])) snapshot = 10 # Store a model every snapshot epochs test_interval = p.TEST.TEST_INTER # Run on test set every test_interval epochs torch.manual_seed(p.SEED) exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1] if not os.path.exists(os.path.join(p['save_dir'], 'models')): if p['resume_epoch'] == 0: os.makedirs(os.path.join(p['save_dir'], 'models')) else: if not config.check_downloaded(p): print('Folder does not exist.No checkpoint to resume from. Exiting') exit(1) net = config.get_net_resnet(p) # Visualize the network if p.NETWORK.VIS_NET: visualize_network(net, p) gflops = compute_gflops(net, in_shape=(p['trBatch'], 3, p.TRAIN.SCALE[0], p.TRAIN.SCALE[1]), tasks=p.TASKS.NAMES[0]) print('GFLOPS per task: {}'.format(gflops / p['trBatch'])) print('\nNumber of parameters (in millions): {0:.3f}'.format(count_parameters(net) / 1e6)) print('Number of parameters (in millions) for decoder: {0:.3f}\n'.format(count_parameters(net.decoder) / 1e6)) net.to(device) if p['resume_epoch'] != n_epochs: criteria_tr = {} criteria_ts = {} running_loss_tr = {task: 0. for task in p.TASKS.NAMES} running_loss_ts = {task: 0. for task in p.TASKS.NAMES} curr_loss_task = {task: 0. for task in p.TASKS.NAMES} counter_tr = {task: 0 for task in p.TASKS.NAMES} counter_ts = {task: 0 for task in p.TASKS.NAMES} # Discriminator loss variables for logging running_loss_tr_dscr = 0 running_loss_ts_dscr = 0 # Logging into Tensorboard log_dir = os.path.join(p['save_dir'], 'models', datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname()) writer = SummaryWriter(log_dir=log_dir) # Training parameters and their optimizer train_params = config.get_train_params(net, p) optimizer = optim.SGD(train_params, lr=p['lr'], momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) for task in p.TASKS.NAMES: # Losses criteria_tr[task] = config.get_loss(p, task) criteria_ts[task] = config.get_loss(p, task) criteria_tr[task].to(device) criteria_ts[task].to(device) # Preparation of the data loaders transforms_tr, transforms_ts, _ = config.get_transformations(p) trainloader = config.get_train_loader(p, db_name=p['train_db_name'], transforms=transforms_tr) testloader = config.get_test_loader(p, db_name=p['test_db_name'], transforms=transforms_ts) # TensorBoard Image Visualizer tb_vizualizer = TBVisualizer(tasks=p.TASKS.NAMES, min_ranges=p.TASKS.TB_MIN, max_ranges=p.TASKS.TB_MAX, batch_size=p['trBatch']) generate_param_report(os.path.join(p['save_dir'], exp_name + '.txt'), p) # Train variables num_img_tr = len(trainloader) num_img_ts = len(testloader) print("Training Network") # Main Training and Testing Loop for epoch in range(p['resume_epoch'], n_epochs): top1_dscr = AverageMeter() start_time = timeit.default_timer() # One training epoch net.train() alpha = 2. / (1. + np.exp(-10 * ((epoch + 1) / n_epochs))) - 1 # Ganin et al for gradient reversal if p['dscr_type'] is not None: print('Value of alpha: {}'.format(alpha)) for ii, sample in enumerate(trainloader): curr_loss_dscr = 0 # Grab the input inputs = sample['image'] inputs.requires_grad_() inputs = inputs.to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # Forward pass output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) loss_tasks = losses_tasks[task] running_loss_tr[task] += losses_tasks[task].item() curr_loss_task[task] = losses_tasks[task].item() counter_tr[task] += 1 # Store output for logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: # measure loss, accuracy and record accuracy for discriminator loss_dscr = losses_dscr[task] running_loss_tr_dscr += losses_dscr[task].item() curr_loss_dscr += loss_dscr.item() prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) loss = (1 - p['dscr_w']) * loss_tasks + p['dscr_w'] * loss_dscr else: loss = loss_tasks # Backward pass inside make_closure to update only weights that were used during fw pass optimizer.zero_grad() optimizer.step(closure=make_closure(loss=loss, net=net)) # Print stuff and log epoch loss into Tensorboard if ii % num_img_tr == num_img_tr - 1: print('[Epoch: %d, numImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_tr[task] = running_loss_tr[task] / counter_tr[task] writer.add_scalar('data/total_loss_epoch' + task, running_loss_tr[task] / p.TASKS.LOSS_MULT[task], epoch) print('Loss %s: %f' % (task, running_loss_tr[task])) running_loss_tr[task] = 0 counter_tr[task] = 0 if p['dscr_type'] is not None: running_loss_tr_dscr = running_loss_tr_dscr / num_img_tr / len(p.TASKS.NAMES) writer.add_scalar('data/total_loss_epoch_dscr', running_loss_tr_dscr, epoch) print('Loss Discriminator: %f' % running_loss_tr_dscr) print('Train Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) writer.add_scalar('data/train_accuracy_dscr', top1_dscr.avg, epoch) stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log current train loss into Tensorboard for task in p.TASKS.NAMES: writer.add_scalar('data/train_loss_iter_' + task, curr_loss_task[task], ii + num_img_tr * epoch) curr_loss_task[task] = 0. if p['dscr_type'] is not None: writer.add_scalar('data/train_loss_dscr_iter', curr_loss_dscr, ii + num_img_tr * epoch) curr_loss_dscr = 0. # Log train images to Tensorboard if p['overfit'] and p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='train') if ii % num_img_tr == num_img_tr - 1: lr_ = lr_poly(p['lr'], iter_=epoch, max_iter=n_epochs) print('(poly lr policy) learning rate: {0:.6f}'.format(lr_)) train_params = config.get_train_params(net, p) optimizer = optim.SGD(train_params, lr=lr_, momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) optimizer.zero_grad() # Save the model if (epoch % snapshot) == snapshot - 1 and epoch != 0: torch.save(net.state_dict(), os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(epoch) + '.pth')) # One testing epoch if p.TEST.USE_TEST and epoch % test_interval == (test_interval - 1): print('Testing Phase') top1_dscr = AverageMeter() net.eval() start_time = timeit.default_timer() for ii, sample in enumerate(testloader): inputs = sample['image'].to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # forward pass of the mini-batch output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) running_loss_ts[task] += losses_tasks[task].item() counter_ts[task] += 1 # for logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: running_loss_ts_dscr += losses_dscr[task].item() # measure accuracy and record loss for discriminator prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) # Print stuff if ii % num_img_ts == num_img_ts - 1: print('[Epoch: %d, numTestImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_ts[task] = running_loss_ts[task] / counter_ts[task] writer.add_scalar('data/test_loss_' + task + '_epoch', running_loss_ts[task] / p.TASKS.LOSS_MULT[task], epoch) print('Testing Loss %s: %f' % (task, running_loss_ts[task])) running_loss_ts[task] = 0 counter_ts[task] = 0 # Free the graph losses_tasks = {} if p['dscr_type'] is not None: running_loss_ts_dscr = running_loss_ts_dscr / num_img_ts / len(p.TASKS.NAMES) writer.add_scalar('data/test_loss_dscr', running_loss_ts_dscr, epoch) print('Loss Discriminator: %f' % running_loss_ts_dscr) writer.add_scalar('data/test_accuracy_dscr', top1_dscr.avg, epoch) print('Test Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) # Free the graph losses_dscr = {} stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log test images to Tensorboard if p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='test') writer.close() # Generate Results net.eval() _, _, transforms_infer = config.get_transformations(p) for db_name in p['infer_db_names']: testloader = config.get_test_loader(p, db_name=db_name, transforms=transforms_infer, infer=True) save_dir_res = os.path.join(p['save_dir'], 'Results_' + db_name) print('Testing Network') # Main Testing Loop with torch.no_grad(): for ii, sample in enumerate(testloader): img, meta = sample['image'], sample['meta'] # Forward pass of the mini-batch inputs = img.to(device) tasks = net.tasks for task in tasks: output, _ = net.forward(inputs, task=task) save_dir_task = os.path.join(save_dir_res, task) if not os.path.exists(save_dir_task): os.makedirs(save_dir_task) output = interpolate(output, size=(inputs.size()[-2], inputs.size()[-1]), mode='bilinear', align_corners=False) output = common_configs.get_output(output, task) for jj in range(int(inputs.size()[0])): if len(sample[task][jj].unique()) == 1 and sample[task][jj].unique() == 255: continue fname = meta['image'][jj] result = cv2.resize(output[jj], dsize=(meta['im_size'][1][jj], meta['im_size'][0][jj]), interpolation=p.TASKS.INFER_FLAGVALS[task]) imageio.imwrite(os.path.join(save_dir_task, fname + '.png'), result.astype(np.uint8)) if p.EVALUATE: common_configs.eval_all_results(p) if __name__ == '__main__': main()
astmt-master
experiments/dense_predict/pascal_resnet/main.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import cv2 import argparse import torch import tarfile from six.moves import urllib from easydict import EasyDict as edict # Networks import fblib.networks.deeplab_multi_task.deeplab_se_mobilenet_v2_multitask as se_mobilenet_v2 # Common configs from experiments.dense_predict.common_configs import get_loss, get_train_loader, get_test_loader, get_transformations from fblib.util.mypath import Path def parse_args(): def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser(description='Multi-task Learning with PASCAL and MobileNet-v2') # Select tasks parser.add_argument('--active_tasks', type=int, nargs='+', default=[1, 1, 1, 1, 1], help='Which tasks to train?') # General parameters parser.add_argument('--arch', type=str, default='mnetv2', help='network: Mobilenet v2') parser.add_argument('--pretr', type=str, default='imagenet', help='pre-trained model: "imagenet" or "scratch"') parser.add_argument('--trBatch', type=int, default=16, help='training batch size') parser.add_argument('-lr', type=float, default=0.001, help='initial learning rate. poly-learning rate is used.') parser.add_argument('--lr_dec', type=float, default=1, help='decoder learning rate multiplier') parser.add_argument('-wd', type=float, default=1e-4, help='Weight decay') parser.add_argument('--epochs', type=int, default=130, help='total number of epochs for training') parser.add_argument('--resume_epoch', type=int, default=0, help='Resume Epoch #') parser.add_argument('--stride', type=int, default=16, help='output stride of ResNet backbone. If set to 16 saves significant memory') parser.add_argument('--trNorm', type=str2bool, default=True, help='train normalization layers of backbone?') parser.add_argument('--poly', type=str2bool, default=True, help='Use poly learning rate') parser.add_argument('--overfit', type=str2bool, default=False, help='overfit to small subset of data for debugging purposes') # Squeeze and Excitation Parameters parser.add_argument('--seenc', type=str2bool, default=True, help='Squeeze and excitation per task on encoder?') parser.add_argument('--sedec', type=str2bool, default=True, help='Squeeze and excitation per task on decoder?') parser.add_argument('--lr_tsk', type=float, default=-1, help='Task Specific layer learning rate multiplier') # Discriminator parameters parser.add_argument('--dscr', type=str, default='None', help='Use discriminator?') parser.add_argument('--lr_dscr', type=int, default=1, help='learning rate multiplier of discriminator?') parser.add_argument('--dscr_w', type=float, default=0, help='weight of discriminator in the range [0, 1]') parser.add_argument('--dscrd', type=int, default=2, help='Depth of discriminator') parser.add_argument('--dscrk', type=int, default=1, help='kernel size of discriminator') # Task-specific parameters parser.add_argument('--edge_w', type=float, default=0.95, help='weighting the positive loss for boundary detection as w * L_pos + (1 - w) * L_neg') return parser.parse_args() def create_config(): cfg = edict() args = parse_args() # Parse tasks assert (len(args.active_tasks) == 5) args.do_edge = args.active_tasks[0] args.do_semseg = args.active_tasks[1] args.do_human_parts = args.active_tasks[2] args.do_normals = args.active_tasks[3] args.do_sal = args.active_tasks[4] print('\nThis script was run with the following parameters:') for x in vars(args): print('{}: {}'.format(x, str(getattr(args, x)))) cfg.resume_epoch = args.resume_epoch cfg.DO_EDGE = args.do_edge cfg.DO_SEMSEG = args.do_semseg cfg.DO_HUMAN_PARTS = args.do_human_parts cfg.DO_NORMALS = args.do_normals cfg.DO_SAL = args.do_sal if not cfg.DO_EDGE and not cfg.DO_SEMSEG and not cfg.DO_HUMAN_PARTS and not cfg.DO_NORMALS and not cfg.DO_SAL: raise ValueError("Select at least one task") cfg['arch'] = args.arch cfg['pretr'] = args.pretr cfg['trBatch'] = args.trBatch cfg['lr'] = args.lr cfg['lr_dec'] = args.lr_dec cfg['wd'] = args.wd cfg['epochs'] = args.epochs cfg['stride'] = args.stride cfg['trNorm'] = args.trNorm cfg['poly'] = args.poly # Set squeeze and excitation parameters cfg['seenc'] = args.seenc cfg['sedec'] = args.sedec if args.dscr == 'None': args.dscr = None cfg['dscr_type'] = args.dscr cfg['lr_dscr'] = args.lr_dscr cfg['dscr_w'] = args.dscr_w cfg['dscrd'] = args.dscrd cfg['dscrk'] = args.dscrk task_args, name_args = get_exp_name(args) cfg['exp_folder_name'] = 'pascal_mnet' cfg['exp_name'] = "_".join(name_args) cfg['tasks_name'] = "_".join(task_args) cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name'], cfg['tasks_name']) cfg['train_db_name'] = ['PASCALContext', ] cfg['test_db_name'] = 'PASCALContext' cfg['infer_db_names'] = ['PASCALContext', ] # Which tasks? cfg.TASKS = edict() cfg.TASKS.NAMES = [] cfg.TASKS.NUM_OUTPUT = {} # How many outputs per task? cfg.TASKS.TB_MIN = {} cfg.TASKS.TB_MAX = {} cfg.TASKS.LOSS_MULT = {} cfg.TASKS.FLAGVALS = {'image': cv2.INTER_CUBIC} cfg.TASKS.INFER_FLAGVALS = {} if cfg.DO_EDGE: # Edge Detection print('Adding task: Edge Detection') tmp = 'edge' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] cfg.TASKS.LOSS_MULT[tmp] = 50 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR # Add task-specific parameters from parser cfg['edge_w'] = args.edge_w cfg['eval_edge'] = False if cfg.DO_SEMSEG: # Semantic Segmentation print('Adding task: Semantic Segmentation') tmp = 'semseg' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 21 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] - 1 cfg.TASKS.LOSS_MULT[tmp] = 1 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_NEAREST if cfg.DO_HUMAN_PARTS: # Human Parts Segmentation print('Adding task: Human Part Segmentation') tmp = 'human_parts' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 7 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] - 1 cfg.TASKS.LOSS_MULT[tmp] = 2 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_NEAREST if cfg.DO_NORMALS: # Human Parts Segmentation print('Adding task: Normals') tmp = 'normals' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 3 cfg.TASKS.TB_MIN[tmp] = -1 cfg.TASKS.TB_MAX[tmp] = 1 cfg.TASKS.LOSS_MULT[tmp] = 10 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_CUBIC cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['normloss'] = 1 # Hard-coded L1 loss for normals if cfg.DO_SAL: # Saliency Estimation print('Adding task: Saliency') tmp = 'sal' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = 1 cfg.TASKS.LOSS_MULT[tmp] = 5 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['lr_tsk'] = len(cfg.TASKS.NAMES) if args.lr_tsk < 0 else args.lr_tsk cfg.NETWORK = edict() # Visualize the network on Tensorboard / pdf? cfg.NETWORK.VIS_NET = False cfg.TRAIN = edict() cfg.TRAIN.SCALE = (512, 512) cfg.TRAIN.MOMENTUM = 0.9 cfg.TRAIN.TENS_VIS = False cfg.TRAIN.TENS_VIS_INTER = 1000 cfg.TRAIN.TEMP_LOSS_INTER = 1000 cfg.TEST = edict() # See evolution of the test set when training? cfg.TEST.USE_TEST = True cfg.TEST.TEST_INTER = 10 cfg.TEST.SCALE = (512, 512) cfg.SEED = 0 cfg.EVALUATE = True cfg.DEBUG = False cfg['overfit'] = args.overfit if cfg['overfit']: cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name']) cfg['exp_name'] = 'test' cfg['save_dir'] = os.path.join(cfg['save_dir_root'], cfg['exp_name']) return cfg def check_downloaded(p): def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() def _create_url(name): return 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/astmt/{}.tgz'.format(name) _model_urls = { 'pascal_mnet_edge_semseg_human_parts_normals_sal_' 'arch-mnetv2_pretr-imagenet_trBatch-16_lr-0.001_epochs-130_trNorm_poly_seenc_sedec_edge_w-0.95_130' } ans = False _check = p['exp_folder_name'] + '_' + p['tasks_name'] + '_' + p['exp_name'] + '_' + str(p['resume_epoch']) _fpath = os.path.join(Path.exp_dir(), _check + '.tgz') if _check in _model_urls: if not os.path.isfile(os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth')): urllib.request.urlretrieve(_create_url(_check), _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.exp_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') ans = True return ans def get_net_mnet(p): """ Define the network (standard Deeplab ResNet101) and the trainable parameters """ print('Creating DeepLab with Mobilenet-V2 model: {}'.format(p.NETWORK)) network = se_mobilenet_v2.se_mobilenet_v2 net = network(n_classes=p.TASKS.NUM_OUTPUT, pretrained=p['pretr'], tasks=p.TASKS.NAMES, output_stride=p['stride'], train_norm_layers=p['trNorm'], mod_enc=p['seenc'], mod_dec=p['sedec'], use_dscr=(p['dscr_type'] == 'fconv'), dscr_k=p['dscrk'], dscr_d=p['dscrd']) if p['resume_epoch'] != 0: print("Initializing weights from: {}".format( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth'))) state_dict_checkpoint = torch.load( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth') , map_location=lambda storage, loc: storage) net.load_state_dict(state_dict_checkpoint) return net def get_train_params(net, p, lr): print('Adjusting learning rate') print('Base lr: {}'.format(lr)) print('Decoder lr: {}'.format(lr * p['lr_dec'])) print('Task-specific lr: {}'.format(lr * p['lr_tsk'])) train_params = [{'params': se_mobilenet_v2.get_lr_params(net, part='backbone', tasks=p.TASKS.NAMES), 'lr': lr}, {'params': se_mobilenet_v2.get_lr_params(net, part='decoder', tasks=p.TASKS.NAMES), 'lr': lr * p['lr_dec']}, {'params': se_mobilenet_v2.get_lr_params(net, part='task_specific', tasks=p.TASKS.NAMES), 'lr': lr * p['lr_tsk']}] if p['dscr_type'] is not None: print('Discriminator lr: {}'.format(lr * p['lr_dscr'])) train_params.append( {'params': se_mobilenet_v2.get_lr_params(net, part='discriminator', tasks=p.TASKS.NAMES), 'lr': lr * p['lr_dscr']}) return train_params def get_exp_name(args): """ Creates the name experiment from the configuration file and the arguments """ task_dict = { 'do_edge': 0, 'do_semseg': 0, 'do_human_parts': 0, 'do_normals': 0, 'do_sal': 0 } name_dict = { 'arch': None, 'pretr': None, 'trBatch': None, 'lr': None, 'wd': 1e-04, 'epochs': None, 'stride': 16, 'trNorm': False, 'poly': False, 'seenc': False, 'sedec': False, 'dscr': None, 'lr_dscr': 1, 'dscr_w': ('dscr', None), 'dscrd': ('dscr', None), 'dscrk': ('dscr', None), 'edge_w': ('do_edge', None), 'lr_dec': 1, 'lr_tsk': -1, } # Experiment folder (task) string task_args = [x.replace('do_', '') for x in task_dict if getattr(args, x) != task_dict[x]] # Experiment name string name_args = [] for x in name_dict: # Check dependencies in tuple if isinstance(name_dict[x], tuple): elem = name_dict if name_dict[x][0] in name_dict else task_dict if elem[name_dict[x][0]] == getattr(args, name_dict[x][0]): continue if getattr(args, x) != name_dict[x]: tmp = getattr(args, x) if isinstance(tmp, list): tmp = "_".join([str(x) for x in tmp]) else: tmp = str(tmp) name_args.append(x + '-' + tmp) name_args = [x.replace('-True', '') for x in name_args] return task_args, name_args
astmt-master
experiments/dense_predict/pascal_mnet/config.py
MAX_N_IMAGES_PER_GPU = { 'mnetv2-8': 10, 'mnetv2-16': 16, }
astmt-master
experiments/dense_predict/pascal_mnet/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import socket import timeit import cv2 from datetime import datetime import imageio import numpy as np # PyTorch includes import torch import torch.optim as optim from torch.nn.functional import interpolate # Custom includes from fblib.util.helpers import generate_param_report from fblib.util.dense_predict.utils import lr_poly from experiments.dense_predict import common_configs from fblib.util.mtl_tools.multitask_visualizer import TBVisualizer from fblib.util.model_resources.flops import compute_gflops from fblib.util.model_resources.num_parameters import count_parameters from fblib.util.dense_predict.utils import AverageMeter # Custom optimizer from fblib.util.optimizer_mtl.select_used_modules import make_closure # Configuration from experiments.dense_predict.pascal_mnet import config # Tensorboard include from tensorboardX import SummaryWriter def main(): p = config.create_config() gpu_id = 0 device = torch.device("cuda:" + str(gpu_id) if torch.cuda.is_available() else "cpu") p.TEST.BATCH_SIZE = 32 # Setting parameters n_epochs = p['epochs'] print("Total training epochs: {}".format(n_epochs)) print(p) print('Training on {}'.format(p['train_db_name'])) snapshot = 10 # Store a model every snapshot epochs test_interval = p.TEST.TEST_INTER # Run on test set every test_interval epochs torch.manual_seed(p.SEED) exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1] if not os.path.exists(os.path.join(p['save_dir'], 'models')): if p['resume_epoch'] == 0: os.makedirs(os.path.join(p['save_dir'], 'models')) else: if not config.check_downloaded(p): print('Folder does not exist.No checkpoint to resume from. Exiting') exit(1) net = config.get_net_mnet(p) gflops = compute_gflops(net, in_shape=(p['trBatch'], 3, p.TRAIN.SCALE[0], p.TRAIN.SCALE[1]), tasks=p.TASKS.NAMES[0]) print('GFLOPS per task: {}'.format(gflops / p['trBatch'])) print('\nNumber of parameters (in millions): {0:.3f}'.format(count_parameters(net) / 1e6)) print('Number of parameters (in millions) for decoder: {0:.3f}\n'.format(count_parameters(net.decoder) / 1e6)) net.to(device) if p['resume_epoch'] != n_epochs: criteria_tr = {} criteria_ts = {} running_loss_tr = {task: 0. for task in p.TASKS.NAMES} running_loss_ts = {task: 0. for task in p.TASKS.NAMES} curr_loss_task = {task: 0. for task in p.TASKS.NAMES} counter_tr = {task: 0 for task in p.TASKS.NAMES} counter_ts = {task: 0 for task in p.TASKS.NAMES} # Discriminator loss variables for logging running_loss_tr_dscr = 0 running_loss_ts_dscr = 0 # Logging into Tensorboard log_dir = os.path.join(p['save_dir'], 'models', datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname()) writer = SummaryWriter(log_dir=log_dir) # Training parameters and their optimizer train_params = config.get_train_params(net, p, p['lr']) optimizer = optim.SGD(train_params, lr=p['lr'], momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) for task in p.TASKS.NAMES: # Losses criteria_tr[task] = config.get_loss(p, task) criteria_ts[task] = config.get_loss(p, task) criteria_tr[task].to(device) criteria_ts[task].to(device) # Preparation of the data loaders transforms_tr, transforms_ts, _ = config.get_transformations(p) trainloader = config.get_train_loader(p, db_name=p['train_db_name'], transforms=transforms_tr) testloader = config.get_test_loader(p, db_name=p['test_db_name'], transforms=transforms_ts) # TensorBoard Image Visualizer tb_vizualizer = TBVisualizer(tasks=p.TASKS.NAMES, min_ranges=p.TASKS.TB_MIN, max_ranges=p.TASKS.TB_MAX, batch_size=p['trBatch']) generate_param_report(os.path.join(p['save_dir'], exp_name + '.txt'), p) # Train variables num_img_tr = len(trainloader) num_img_ts = len(testloader) print("Training Network") # Main Training and Testing Loop for epoch in range(p['resume_epoch'], n_epochs): top1_dscr = AverageMeter() start_time = timeit.default_timer() # One training epoch net.train() alpha = 2. / (1. + np.exp(-10 * ((epoch + 1) / n_epochs))) - 1 # Ganin et al for gradient reversal if p['dscr_type'] is not None: print('Value of alpha: {}'.format(alpha)) for ii, sample in enumerate(trainloader): curr_loss_dscr = 0 # Grab the input inputs = sample['image'] inputs.requires_grad_() inputs = inputs.to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # Forward pass output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) loss_tasks = losses_tasks[task] running_loss_tr[task] += losses_tasks[task].item() curr_loss_task[task] = losses_tasks[task].item() counter_tr[task] += 1 # Store output for logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: # measure loss, accuracy and record accuracy for discriminator loss_dscr = losses_dscr[task] running_loss_tr_dscr += losses_dscr[task].item() curr_loss_dscr += loss_dscr.item() prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) loss = (1 - p['dscr_w']) * loss_tasks + p['dscr_w'] * loss_dscr else: loss = loss_tasks # Backward pass inside make_closure to update only weights that were used during fw pass optimizer.zero_grad() optimizer.step(closure=make_closure(loss=loss, net=net)) # Print stuff and log epoch loss into Tensorboard if ii % num_img_tr == num_img_tr - 1: print('[Epoch: %d, numImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_tr[task] = running_loss_tr[task] / counter_tr[task] writer.add_scalar('data/total_loss_epoch' + task, running_loss_tr[task] / p.TASKS.LOSS_MULT[task], epoch) print('Loss %s: %f' % (task, running_loss_tr[task])) running_loss_tr[task] = 0 counter_tr[task] = 0 if p['dscr_type'] is not None: running_loss_tr_dscr = running_loss_tr_dscr / num_img_tr / len(p.TASKS.NAMES) writer.add_scalar('data/total_loss_epoch_dscr', running_loss_tr_dscr, epoch) print('Loss Discriminator: %f' % running_loss_tr_dscr) print('Train Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) writer.add_scalar('data/train_accuracy_dscr', top1_dscr.avg, epoch) stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log current train loss into Tensorboard for task in p.TASKS.NAMES: writer.add_scalar('data/train_loss_iter_' + task, curr_loss_task[task], ii + num_img_tr * epoch) curr_loss_task[task] = 0. if p['dscr_type'] is not None: writer.add_scalar('data/train_loss_dscr_iter', curr_loss_dscr, ii + num_img_tr * epoch) curr_loss_dscr = 0. # Log train images to Tensorboard if p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='train') if p['poly'] and ii % num_img_tr == num_img_tr - 1: lr_ = lr_poly(p['lr'], iter_=epoch, max_iter=n_epochs) print('(poly lr policy) learning rate: {0:.6f}'.format(lr_)) train_params = config.get_train_params(net, p, lr_) optimizer = optim.SGD(train_params, lr=lr_, momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) optimizer.zero_grad() # Save the model if (epoch % snapshot) == snapshot - 1 and epoch != 0: torch.save(net.state_dict(), os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(epoch) + '.pth')) # One testing epoch if p.TEST.USE_TEST and epoch % test_interval == (test_interval - 1): print('Testing Phase') top1_dscr = AverageMeter() net.eval() start_time = timeit.default_timer() for ii, sample in enumerate(testloader): inputs = sample['image'].to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # Forward pass of the mini-batch output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) running_loss_ts[task] += losses_tasks[task].item() counter_ts[task] += 1 # For logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: running_loss_ts_dscr += losses_dscr[task].item() # measure accuracy and record loss for discriminator prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) # Print stuff if ii % num_img_ts == num_img_ts - 1: print('[Epoch: %d, numTestImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_ts[task] = running_loss_ts[task] / counter_ts[task] writer.add_scalar('data/test_loss_' + task + '_epoch', running_loss_ts[task] / p.TASKS.LOSS_MULT[task], epoch) print('Testing Loss %s: %f' % (task, running_loss_ts[task])) running_loss_ts[task] = 0 counter_ts[task] = 0 # Free the graph losses_tasks = {} if p['dscr_type'] is not None: running_loss_ts_dscr = running_loss_ts_dscr / num_img_ts / len(p.TASKS.NAMES) writer.add_scalar('data/test_loss_dscr', running_loss_ts_dscr, epoch) print('Loss Discriminator: %f' % running_loss_ts_dscr) writer.add_scalar('data/test_accuracy_dscr', top1_dscr.avg, epoch) print('Test Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) # Free the graph losses_dscr = {} stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log test images to Tensorboard if p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='test') writer.close() # Generate Results net.eval() _, _, transforms_infer = config.get_transformations(p) for db_name in p['infer_db_names']: testloader = config.get_test_loader(p, db_name=db_name, transforms=transforms_infer, infer=True) save_dir_res = os.path.join(p['save_dir'], 'Results_' + db_name) print('Testing network') # Main Testing Loop with torch.no_grad(): for ii, sample in enumerate(testloader): img, meta = sample['image'], sample['meta'] # Forward pass of the mini-batch inputs = img.to(device) tasks = net.tasks for task in tasks: output, _ = net.forward(inputs, task=task) save_dir_task = os.path.join(save_dir_res, task) if not os.path.exists(save_dir_task): os.makedirs(save_dir_task) output = interpolate(output, size=(inputs.size()[-2], inputs.size()[-1]), mode='bilinear', align_corners=False) output = common_configs.get_output(output, task) for jj in range(int(inputs.size()[0])): if len(sample[task][jj].unique()) == 1 and sample[task][jj].unique() == 255: continue fname = meta['image'][jj] result = cv2.resize(output[jj], dsize=(meta['im_size'][1][jj], meta['im_size'][0][jj]), interpolation=p.TASKS.INFER_FLAGVALS[task]) imageio.imwrite(os.path.join(save_dir_task, fname + '.png'), result.astype(np.uint8)) if p.EVALUATE: common_configs.eval_all_results(p) if __name__ == '__main__': main()
astmt-master
experiments/dense_predict/pascal_mnet/main.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import cv2 import argparse import torch import tarfile from six.moves import urllib from easydict import EasyDict as edict # Networks import fblib.networks.deeplab_multi_task.deeplab_se_resnet_multitask as se_resnet_multitask # Common configs from experiments.dense_predict.common_configs import get_loss, get_train_loader, get_test_loader, get_transformations from fblib.util.mypath import Path def parse_args(): def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser(description='Multi-task Learning for NYUD') # Select tasks parser.add_argument('--active_tasks', type=int, nargs='+', default=[1, 1, 1, 1], help='Which tasks to train?') # General parameters parser.add_argument('--arch', type=str, default='se_res50', help='network: se_res26, se_res50, se_res101') parser.add_argument('--pretr', type=str, default='imagenet', help='pre-trained model: "imagenet" or "scratch"') parser.add_argument('--trBatch', type=int, default=8, help='training batch size') parser.add_argument('-lr', type=float, default=0.001, help='initial learning rate. poly-learning rate is used.') parser.add_argument('--lr_dec', type=float, default=1, help='decoder learning rate multiplier') parser.add_argument('-wd', type=float, default=1e-4, help='Weight decay') parser.add_argument('--epochs', type=int, default=200, help='Total number of epochs for training') parser.add_argument('--resume_epoch', type=int, default=0, help='Resume Epoch #') parser.add_argument('--cls', type=str, default='atrous-v3', help='Classifier type') parser.add_argument('--stride', type=int, default=16, help='Output stride of ResNet backbone. If set to 16 saves significant memory') parser.add_argument('--trNorm', type=str2bool, default=True, help='train normalization layers of Backbone?') parser.add_argument('--dec_w', type=int, default=64, help='decoder width (default 256 in Deeplab v3+') parser.add_argument('--overfit', type=str2bool, default=False, help='overfit to small subset of data for debugging purposes') # Modulation Parameters parser.add_argument('--seenc', type=str2bool, default=True, help='Squeeze and excitation per task for encoder? False will still use 1 SE for all tasks') parser.add_argument('--sedec', type=str2bool, default=True, help='Squeeze and excitation per task for decoder? False will not use SE modules') parser.add_argument('--adapt', type=str2bool, default=True, help='Use parallel residual adapters?') parser.add_argument('--lr_tsk', type=float, default=-1, help='Task Specific layer learning rate multiplier') # Discriminator parameters parser.add_argument('--dscr', type=str, default='fconv', help='Use discriminator?') parser.add_argument('--lr_dscr', type=int, default=10, help='learning rate multiplier of discriminator?') parser.add_argument('--dscr_w', type=float, default=0.01, help='weight of discriminator in the range [0, 1]') parser.add_argument('--dscrd', type=int, default=2, help='Depth of discriminator') parser.add_argument('--dscrk', type=int, default=3, help='Kernel size of discriminator') # Task-specific parameters parser.add_argument('--edge_w', type=float, default=0.8, help='Weighting the positive loss for boundary detection as w * L_pos + (1 - w) * L_neg') return parser.parse_args() def create_config(): cfg = edict() args = parse_args() # Parse tasks assert (len(args.active_tasks) == 4) args.do_edge = args.active_tasks[0] args.do_semseg = args.active_tasks[1] args.do_normals = args.active_tasks[2] args.do_depth = args.active_tasks[3] print('\nThis script was run with the following parameters:') for x in vars(args): print('{}: {}'.format(x, str(getattr(args, x)))) cfg.resume_epoch = args.resume_epoch cfg.DO_EDGE = args.do_edge cfg.DO_SEMSEG = args.do_semseg cfg.DO_NORMALS = args.do_normals cfg.DO_DEPTH = args.do_depth if not cfg.DO_EDGE and not cfg.DO_SEMSEG and not cfg.DO_NORMALS and not cfg.DO_DEPTH: raise ValueError("Select at least one task") cfg['arch'] = args.arch cfg['pretr'] = args.pretr cfg['trBatch'] = args.trBatch cfg['lr'] = args.lr cfg['lr_dec'] = args.lr_dec cfg['wd'] = args.wd cfg['cls'] = args.cls cfg['epochs'] = args.epochs cfg['stride'] = args.stride cfg['trNorm'] = args.trNorm cfg['dec_w'] = args.dec_w # Set Modulation (Squeeze and Exciation, Residual Adapters) parameters cfg['seenc'] = args.seenc cfg['sedec'] = args.sedec cfg['adapters'] = args.adapt if cfg['sedec']: cfg['norm_per_task'] = True else: cfg['norm_per_task'] = False if args.dscr == 'None': args.dscr = None cfg['dscr_type'] = args.dscr cfg['lr_dscr'] = args.lr_dscr cfg['dscr_w'] = args.dscr_w cfg['dscrd'] = args.dscrd cfg['dscrk'] = args.dscrk task_args, name_args = get_exp_name(args) cfg['exp_folder_name'] = 'nyud_resnet' cfg['exp_name'] = "_".join(name_args) cfg['tasks_name'] = "_".join(task_args) cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name'], cfg['tasks_name']) cfg['train_db_name'] = ['NYUD', ] cfg['test_db_name'] = 'NYUD' cfg['infer_db_names'] = ['NYUD', ] # Which tasks? cfg.TASKS = edict() cfg.TASKS.NAMES = [] cfg.TASKS.NUM_OUTPUT = {} # How many outputs per task? cfg.TASKS.TB_MIN = {} cfg.TASKS.TB_MAX = {} cfg.TASKS.LOSS_MULT = {} cfg.TASKS.FLAGVALS = {'image': cv2.INTER_CUBIC} cfg.TASKS.INFER_FLAGVALS = {} if cfg.DO_EDGE: # Edge Detection print('Adding task: Edge Detection') tmp = 'edge' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] cfg.TASKS.LOSS_MULT[tmp] = 50 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR # Add task-specific parameters from parser cfg['edge_w'] = args.edge_w cfg['eval_edge'] = False if cfg.DO_SEMSEG: # Semantic Segmentation print('Adding task: Semantic Segmentation') tmp = 'semseg' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 41 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] - 1 cfg.TASKS.LOSS_MULT[tmp] = 1 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_NEAREST if cfg.DO_NORMALS: # Human Parts Segmentation print('Adding task: Normals') tmp = 'normals' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 3 cfg.TASKS.TB_MIN[tmp] = -1 cfg.TASKS.TB_MAX[tmp] = 1 cfg.TASKS.LOSS_MULT[tmp] = 10 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_CUBIC cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['normloss'] = 1 # Hard-coded L1 loss for normals if cfg.DO_DEPTH: # Depth Estimation print('Adding task: Depth') tmp = 'depth' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 1 cfg.TASKS.TB_MAX[tmp] = 10 cfg.TASKS.LOSS_MULT[tmp] = 1 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_LINEAR cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['lr_tsk'] = len(cfg.TASKS.NAMES) if args.lr_tsk < 0 else args.lr_tsk cfg.NETWORK = edict() # Visualize the network on Tensorboard / pdf? cfg.NETWORK.VIS_NET = False cfg.TRAIN = edict() cfg.TRAIN.SCALE = (512, 512) cfg.TRAIN.MOMENTUM = 0.9 cfg.TRAIN.TENS_VIS = True cfg.TRAIN.TENS_VIS_INTER = 1000 cfg.TRAIN.TEMP_LOSS_INTER = 1000 cfg.TEST = edict() # See evolution of the test set when training? cfg.TEST.USE_TEST = True cfg.TEST.TEST_INTER = 10 cfg.TEST.SCALE = (512, 512) cfg.SEED = 0 cfg.EVALUATE = True cfg.DEBUG = False cfg['overfit'] = args.overfit if cfg['overfit']: cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name']) cfg['exp_name'] = 'test' cfg['save_dir'] = os.path.join(cfg['save_dir_root'], cfg['exp_name']) return cfg def check_downloaded(p): def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() def _create_url(name): return 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/astmt/{}.tgz'.format(name) _model_urls = { 'nyud_resnet_edge_semseg_normals_depth_' 'arch-se_res50_pretr-imagenet_trBatch-8_lr-0.001_epochs-200_trNorm_seenc_sedec_adapt_dscr-fconv_lr_dscr' '-10_dscr_w-0.01_dscrd-2_dscrk-3_edge_w-0.8_200', } ans = False _check = p['exp_folder_name'] + '_' + p['tasks_name'] + '_' + p['exp_name'] + '_' + str(p['resume_epoch']) _fpath = os.path.join(Path.exp_dir(), _check + '.tgz') if _check in _model_urls: if not os.path.isfile(os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth')): urllib.request.urlretrieve(_create_url(_check), _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.exp_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') ans = True return ans def get_net_resnet(p): """ Define the network (standard Deeplab ResNet101) and the trainable parameters """ if p['arch'] == 'se_res26': network = se_resnet_multitask.se_resnet26 elif p['arch'] == 'se_res50': network = se_resnet_multitask.se_resnet50 elif p['arch'] == 'se_res101': network = se_resnet_multitask.se_resnet101 else: raise NotImplementedError('ResNet: Choose between among se_res26, se_res50, and se_res101') print('Creating ResNet model: {}'.format(p.NETWORK)) net = network(tasks=p.TASKS.NAMES, n_classes=p.TASKS.NUM_OUTPUT, pretrained=p['pretr'], classifier=p['cls'], output_stride=p['stride'], train_norm_layers=p['trNorm'], width_decoder=p['dec_w'], squeeze_enc=p['seenc'], squeeze_dec=p['sedec'], adapters=p['adapters'], norm_per_task=p['norm_per_task'], dscr_type=p['dscr_type'], dscr_d=p['dscrd'], dscr_k=p['dscrk']) if p['resume_epoch'] != 0: print("Initializing weights from: {}".format( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth'))) state_dict_checkpoint = torch.load( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth') , map_location=lambda storage, loc: storage) net.load_state_dict(state_dict_checkpoint) return net def get_train_params(net, p): train_params = [{'params': se_resnet_multitask.get_lr_params(net, part='backbone', tasks=p.TASKS.NAMES), 'lr': p['lr']}, {'params': se_resnet_multitask.get_lr_params(net, part='decoder', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_dec']}, {'params': se_resnet_multitask.get_lr_params(net, part='task_specific', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_tsk']}] if p['dscr_type'] is not None: train_params.append( {'params': se_resnet_multitask.get_lr_params(net, part='discriminator', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_dscr']}) return train_params def get_exp_name(args): """ Creates the name experiment from the configuration file and the arguments """ task_dict = { 'do_edge': 0, 'do_semseg': 0, 'do_normals': 0, 'do_depth': 0 } name_dict = { 'arch': None, 'pretr': None, 'trBatch': None, 'lr': None, 'wd': 1e-04, 'epochs': None, 'cls': 'atrous-v3', 'stride': 16, 'trNorm': False, 'dec_w': 64, 'seenc': False, 'sedec': False, 'adapt': False, 'dscr': None, 'lr_dscr': 1, 'dscr_w': ('dscr', None), 'dscrd': ('dscr', None), 'dscrk': ('dscr', None), 'edge_w': ('do_edge', None), 'lr_dec': 1, 'lr_tsk': -1, } # Experiment folder (task) string task_args = [x.replace('do_', '') for x in task_dict if getattr(args, x) != task_dict[x]] # Experiment name string name_args = [] for x in name_dict: # Check dependencies in tuple if isinstance(name_dict[x], tuple): elem = name_dict if name_dict[x][0] in name_dict else task_dict if elem[name_dict[x][0]] == getattr(args, name_dict[x][0]): continue if getattr(args, x) != name_dict[x]: tmp = getattr(args, x) if isinstance(tmp, list): tmp = "_".join([str(x) for x in tmp]) else: tmp = str(tmp) name_args.append(x + '-' + tmp) name_args = [x.replace('-True', '') for x in name_args] return task_args, name_args
astmt-master
experiments/dense_predict/nyud_resnet/config.py
MAX_N_IMAGES_PER_GPU = { 'se_res26-8': 10, 'se_res26-16': 16, 'se_res50-8': 8, 'se_res50-16': 16, 'se_res101-8': 2, 'se_res101-16': 10, }
astmt-master
experiments/dense_predict/nyud_resnet/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import socket import timeit import cv2 from datetime import datetime import imageio import scipy.io as sio import numpy as np # PyTorch includes import torch import torch.optim as optim from torch.nn.functional import interpolate # Custom includes from fblib.util.helpers import generate_param_report from fblib.util.dense_predict.utils import lr_poly from experiments.dense_predict import common_configs from fblib.util.mtl_tools.multitask_visualizer import TBVisualizer, visualize_network from fblib.util.model_resources.flops import compute_gflops from fblib.util.model_resources.num_parameters import count_parameters from fblib.util.dense_predict.utils import AverageMeter # Custom optimizer from fblib.util.optimizer_mtl.select_used_modules import make_closure # Configuration file from experiments.dense_predict.nyud_resnet import config as config # Tensorboard include from tensorboardX import SummaryWriter def main(): p = config.create_config() gpu_id = 0 device = torch.device("cuda:" + str(gpu_id) if torch.cuda.is_available() else "cpu") p.TEST.BATCH_SIZE = 32 # Setting parameters n_epochs = p['epochs'] print("Total training epochs: {}".format(n_epochs)) print(p) print('Training on {}'.format(p['train_db_name'])) snapshot = 10 # Store a model every snapshot epochs test_interval = p.TEST.TEST_INTER # Run on test set every test_interval epochs torch.manual_seed(p.SEED) exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1] if not os.path.exists(os.path.join(p['save_dir'], 'models')): if p['resume_epoch'] == 0: os.makedirs(os.path.join(p['save_dir'], 'models')) else: if not config.check_downloaded(p): print('Folder does not exist.No checkpoint to resume from. Exiting') exit(1) net = config.get_net_resnet(p) # Visualize the network if p.NETWORK.VIS_NET: visualize_network(net, p) gflops = compute_gflops(net, in_shape=(p['trBatch'], 3, p.TRAIN.SCALE[0], p.TRAIN.SCALE[1]), tasks=p.TASKS.NAMES[0]) print('GFLOPS per task: {}'.format(gflops / p['trBatch'])) print('\nNumber of parameters (in millions): {0:.3f}'.format(count_parameters(net) / 1e6)) print('Number of parameters (in millions) for decoder: {0:.3f}\n'.format(count_parameters(net.decoder) / 1e6)) net.to(device) if p['resume_epoch'] != n_epochs: criteria_tr = {} criteria_ts = {} running_loss_tr = {task: 0. for task in p.TASKS.NAMES} running_loss_ts = {task: 0. for task in p.TASKS.NAMES} curr_loss_task = {task: 0. for task in p.TASKS.NAMES} counter_tr = {task: 0 for task in p.TASKS.NAMES} counter_ts = {task: 0 for task in p.TASKS.NAMES} # Discriminator loss variables for logging running_loss_tr_dscr = 0 running_loss_ts_dscr = 0 # Logging into Tensorboard log_dir = os.path.join(p['save_dir'], 'models', datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname()) writer = SummaryWriter(log_dir=log_dir) # Training parameters and their optimizer train_params = config.get_train_params(net, p) optimizer = optim.SGD(train_params, lr=p['lr'], momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) for task in p.TASKS.NAMES: # Losses criteria_tr[task] = config.get_loss(p, task) criteria_ts[task] = config.get_loss(p, task) criteria_tr[task].to(device) criteria_ts[task].to(device) # Preparation of the data loaders transforms_tr, transforms_ts, _ = config.get_transformations(p) trainloader = config.get_train_loader(p, db_name=p['train_db_name'], transforms=transforms_tr) testloader = config.get_test_loader(p, db_name=p['test_db_name'], transforms=transforms_ts) # TensorBoard Image Visualizer tb_vizualizer = TBVisualizer(tasks=p.TASKS.NAMES, min_ranges=p.TASKS.TB_MIN, max_ranges=p.TASKS.TB_MAX, batch_size=p['trBatch']) generate_param_report(os.path.join(p['save_dir'], exp_name + '.txt'), p) # Train variables num_img_tr = len(trainloader) num_img_ts = len(testloader) print("Training Network") # Main Training and Testing Loop for epoch in range(p['resume_epoch'], n_epochs): top1_dscr = AverageMeter() start_time = timeit.default_timer() # One training epoch net.train() alpha = 2. / (1. + np.exp(-10 * ((epoch + 1) / n_epochs))) - 1 # Ganin et al for gradient reversal if p['dscr_type'] is not None: print('Value of alpha: {}'.format(alpha)) for ii, sample in enumerate(trainloader): curr_loss_dscr = 0 # Grab the input inputs = sample['image'] inputs.requires_grad_() inputs = inputs.to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # Forward pass output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) loss_tasks = losses_tasks[task] running_loss_tr[task] += losses_tasks[task].item() curr_loss_task[task] = losses_tasks[task].item() counter_tr[task] += 1 # Store output for logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: # measure loss, accuracy and record accuracy for discriminator loss_dscr = losses_dscr[task] running_loss_tr_dscr += losses_dscr[task].item() curr_loss_dscr += loss_dscr.item() prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) loss = (1 - p['dscr_w']) * loss_tasks + p['dscr_w'] * loss_dscr else: loss = loss_tasks # Backward pass inside make_closure to update only weights that were used during fw pass optimizer.zero_grad() optimizer.step(closure=make_closure(loss=loss, net=net)) # Print stuff and log epoch loss into Tensorboard if ii % num_img_tr == num_img_tr - 1: print('[Epoch: %d, numImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_tr[task] = running_loss_tr[task] / counter_tr[task] writer.add_scalar('data/total_loss_epoch' + task, running_loss_tr[task] / p.TASKS.LOSS_MULT[task], epoch) print('Loss %s: %f' % (task, running_loss_tr[task])) running_loss_tr[task] = 0 counter_tr[task] = 0 if p['dscr_type'] is not None: running_loss_tr_dscr = running_loss_tr_dscr / num_img_tr / len(p.TASKS.NAMES) writer.add_scalar('data/total_loss_epoch_dscr', running_loss_tr_dscr, epoch) print('Loss Discriminator: %f' % running_loss_tr_dscr) print('Train Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) writer.add_scalar('data/train_accuracy_dscr', top1_dscr.avg, epoch) stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log current train loss into Tensorboard for task in p.TASKS.NAMES: writer.add_scalar('data/train_loss_iter_' + task, curr_loss_task[task], ii + num_img_tr * epoch) curr_loss_task[task] = 0. if p['dscr_type'] is not None: writer.add_scalar('data/train_loss_dscr_iter', curr_loss_dscr, ii + num_img_tr * epoch) curr_loss_dscr = 0. # Log train images to Tensorboard if p['overfit'] and p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='train') if ii % num_img_tr == num_img_tr - 1: lr_ = lr_poly(p['lr'], iter_=epoch, max_iter=n_epochs) print('(poly lr policy) learning rate: {0:.6f}'.format(lr_)) train_params = config.get_train_params(net, p) optimizer = optim.SGD(train_params, lr=lr_, momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) optimizer.zero_grad() # Save the model if (epoch % snapshot) == snapshot - 1 and epoch != 0: torch.save(net.state_dict(), os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(epoch) + '.pth')) # One testing epoch if p.TEST.USE_TEST and epoch % test_interval == (test_interval - 1): print('Testing Phase') top1_dscr = AverageMeter() net.eval() start_time = timeit.default_timer() for ii, sample in enumerate(testloader): inputs = sample['image'].to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # Forward pass of the mini-batch output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) running_loss_ts[task] += losses_tasks[task].item() counter_ts[task] += 1 # For logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: running_loss_ts_dscr += losses_dscr[task].item() # measure accuracy and record loss for discriminator prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) # Print stuff if ii % num_img_ts == num_img_ts - 1: print('[Epoch: %d, numTestImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_ts[task] = running_loss_ts[task] / counter_ts[task] writer.add_scalar('data/test_loss_' + task + '_epoch', running_loss_ts[task] / p.TASKS.LOSS_MULT[task], epoch) print('Testing Loss %s: %f' % (task, running_loss_ts[task])) running_loss_ts[task] = 0 counter_ts[task] = 0 # Free the graph losses_tasks = {} if p['dscr_type'] is not None: running_loss_ts_dscr = running_loss_ts_dscr / num_img_ts / len(p.TASKS.NAMES) writer.add_scalar('data/test_loss_dscr', running_loss_ts_dscr, epoch) print('Loss Discriminator: %f' % running_loss_ts_dscr) writer.add_scalar('data/test_accuracy_dscr', top1_dscr.avg, epoch) print('Test Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) # Free the graph losses_dscr = {} stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log test images to Tensorboard if p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='test') writer.close() # Generate Results net.eval() _, _, transforms_infer = config.get_transformations(p) for db_name in p['infer_db_names']: testloader = config.get_test_loader(p, db_name=db_name, transforms=transforms_infer, infer=True) save_dir_res = os.path.join(p['save_dir'], 'Results_' + db_name) print('Testing Network') # Main Testing Loop with torch.no_grad(): for ii, sample in enumerate(testloader): img, meta = sample['image'], sample['meta'] # Forward pass of the mini-batch inputs = img.to(device) tasks = net.tasks for task in tasks: output, _ = net.forward(inputs, task=task) save_dir_task = os.path.join(save_dir_res, task) if not os.path.exists(save_dir_task): os.makedirs(save_dir_task) output = interpolate(output, size=(inputs.size()[-2], inputs.size()[-1]), mode='bilinear', align_corners=False) output = common_configs.get_output(output, task) for jj in range(int(inputs.size()[0])): if len(sample[task][jj].unique()) == 1 and sample[task][jj].unique() == 255: continue # Parameters fname = meta['image'][jj] result = cv2.resize(output[jj], dsize=(meta['im_size'][1][jj], meta['im_size'][0][jj]), interpolation=p.TASKS.INFER_FLAGVALS[task]) if task == 'depth': sio.savemat(os.path.join(save_dir_task, fname + '.mat'), {'depth': result}) else: imageio.imwrite(os.path.join(save_dir_task, fname + '.png'), result.astype(np.uint8)) if p.EVALUATE: common_configs.eval_all_results(p) if __name__ == '__main__': main()
astmt-master
experiments/dense_predict/nyud_resnet/main.py
import os PROJECT_ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
astmt-master
fblib/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F class AttentionModuleFree(nn.Module): """ Attention Module """ def __init__(self, input_size, offset=0.): super(AttentionModuleFree, self).__init__() # randomly initialize parameters self.weight = nn.Parameter(torch.rand(1, input_size, 1, 1) + offset) def forward(self, x): return torch.mul(self.weight, x) class AttentionModule(AttentionModuleFree): """ AttentionModuleFree with restricted real-valued parameters within range [0, 1] """ def __init__(self, input_size): super(AttentionModule, self).__init__(input_size, offset=10) # randomly initialize the parameters self.sigm = nn.Sigmoid() def forward(self, x): return torch.mul(self.sigm(self.weight), x) class Conv2dAttentionAdapters(nn.Module): """ 2D convolution followed by optional per-task transformation. The transformation can include the following: - Residual adapters (in parallel) - Attention modules (per-task feature multiplications) with gating, which can be binary or real-valued During forward pass, except for the input tensor, the index of the task is required """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False, n_tasks=1, adapters=False, attention=False, bn_per_task=False, binary_attention=False): super(Conv2dAttentionAdapters, self).__init__() self.adapters = adapters self.attention = attention self.bn_per_task = bn_per_task and (self.adapters or self.attention) self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) if self.attention: print('Constructing attention modules.') if binary_attention: print('Binary attention!') att_module = AttentionModuleFree else: att_module = AttentionModule self.attend = nn.ModuleList([att_module(out_channels) for i in range(n_tasks)]) if self.adapters: print('Constructing parallel residual adapters.') self.adapt = nn.ModuleList([ nn.Conv2d(in_channels, out_channels, stride=stride, kernel_size=1, bias=False)for i in range(n_tasks)]) if self.bn_per_task: print('Constructing per task batchnorm layers') self.bn = nn.ModuleList([nn.BatchNorm2d(out_channels) for i in range(n_tasks)]) else: self.bn = nn.BatchNorm2d(out_channels) def forward(self, x, task=None): if self.adapters: adapt = self.adapt[task](x) x = self.conv(x) if self.attention: # print('Attend, task {}'.format(task)) x = self.attend[task](x) if self.adapters: # print('adapt, task {}'.format(task)) x += adapt if self.bn_per_task: # print('Bnorm, task {}'.format(task)) x = self.bn[task](x) else: x = self.bn(x) return x class XPathLayer(nn.Module): """ Create per task ResNeXt path """ def __init__(self, in_channels, interm_channels, out_channels, stride, n_tasks): super(XPathLayer, self).__init__() self.conv_reduce = nn.ModuleList([nn.Conv2d(in_channels=in_channels, out_channels=interm_channels, kernel_size=1, stride=1, padding=0, bias=False) for i in range(n_tasks)]) self.bn_reduce = nn.ModuleList([nn.BatchNorm2d(interm_channels) for i in range(n_tasks)]) self.conv = nn.ModuleList([nn.Conv2d(in_channels=interm_channels, out_channels=interm_channels, kernel_size=3, stride=stride, padding=1) for i in range(n_tasks)]) self.bn = nn.ModuleList([nn.BatchNorm2d(interm_channels) for i in range(n_tasks)]) self.conv_expand = nn.ModuleList([nn.Conv2d(in_channels=interm_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, bias=False) for i in range(n_tasks)]) self.bn_expand = nn.ModuleList([nn.BatchNorm2d(out_channels) for i in range(n_tasks)]) def forward(self, x, task=None): if task is None: raise NotImplementedError('XPathLayer: Task not given at forward pass') # Reduce x = self.conv_reduce[task](x) x = self.bn_reduce[task](x) x = F.relu(x, inplace=True) # Process x = self.conv[task](x) x = self.bn[task](x) x = F.relu(x, inplace=True) # Expand x = self.conv_expand[task](x) x = self.bn_expand[task](x) return x
astmt-master
fblib/layers/attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn import torch.nn.functional as F class Normalize(object): """Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of the torch.*Tensor, i.e. channel = (channel - mean) / std """ def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): for i in range(len(self.mean)): tensor[:, i, :, :].sub_(self.mean[i]).div_(self.std[i]) return tensor class ImageFeatures(nn.Module): """ Forward pass of an image on a pre-trained imagenet model. Resurns output and features of the forward pass. """ def __init__(self, net, mean=None, std=None): super(ImageFeatures, self).__init__() if not mean: mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] self.normalize = Normalize(mean=mean, std=std) self.net = net def forward(self, x): x = (x - x.min()) / (x.max() - x.min()) x = F.interpolate(x, size=(224, 224), mode='bilinear', align_corners=False) x = self.normalize(x) out, features = self.net(x) return out, features def main(): import os import torch import pickle import cv2 import numpy as np import urllib.request from fblib import PROJECT_ROOT_DIR from fblib.networks.classification.resnet import resnet101 classes = pickle.load(urllib.request.urlopen( 'https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/d133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee' '/imagenet1000_clsid_to_human.pkl')) model = resnet101(pretrained=True, features=True) model = ImageFeatures(model) img = cv2.imread(os.path.join(PROJECT_ROOT_DIR, 'util/img/cat.jpg')).astype(np.float32) img = img[:, :, :, np.newaxis] img = img.transpose((3, 2, 0, 1)) img = torch.from_numpy(img.astype(np.float32)) model = model.eval() with torch.no_grad(): output, features = model(img) output = torch.nn.functional.softmax(output, dim=1) print(output.max()) print(output.argmax()) print(classes[np.asscalar(output.argmax().numpy())]) if __name__ == '__main__': main()
astmt-master
fblib/layers/image_features.py
astmt-master
fblib/layers/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from torch.autograd import Function class ReverseLayerF(Function): @staticmethod def forward(ctx, x, alpha): ctx.alpha = alpha return x.view_as(x) @staticmethod def backward(ctx, grad_output): output = grad_output.neg() * ctx.alpha return output, None
astmt-master
fblib/layers/reverse_grad.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.module import Module import numpy as np class SoftMaxwithLoss(Module): """ This function returns cross entropy loss for semantic segmentation """ def __init__(self): super(SoftMaxwithLoss, self).__init__() self.softmax = nn.LogSoftmax(dim=1) self.criterion = nn.NLLLoss(ignore_index=255) def forward(self, out, label): assert not label.requires_grad # out shape batch_size x channels x h x w # label shape batch_size x 1 x h x w label = label[:, 0, :, :].long() loss = self.criterion(self.softmax(out), label) return loss class BalancedCrossEntropyLoss(Module): """ Balanced Cross Entropy Loss with optional ignore regions """ def __init__(self, size_average=True, batch_average=True, pos_weight=None): super(BalancedCrossEntropyLoss, self).__init__() self.size_average = size_average self.batch_average = batch_average self.pos_weight = pos_weight def forward(self, output, label, void_pixels=None): assert (output.size() == label.size()) labels = torch.ge(label, 0.5).float() # Weighting of the loss, default is HED-style if self.pos_weight is None: num_labels_pos = torch.sum(labels) num_labels_neg = torch.sum(1.0 - labels) num_total = num_labels_pos + num_labels_neg w = num_labels_neg / num_total else: w = self.pos_weight output_gt_zero = torch.ge(output, 0).float() loss_val = torch.mul(output, (labels - output_gt_zero)) - torch.log( 1 + torch.exp(output - 2 * torch.mul(output, output_gt_zero))) loss_pos_pix = -torch.mul(labels, loss_val) loss_neg_pix = -torch.mul(1.0 - labels, loss_val) if void_pixels is not None and not self.pos_weight: w_void = torch.le(void_pixels, 0.5).float() loss_pos_pix = torch.mul(w_void, loss_pos_pix) loss_neg_pix = torch.mul(w_void, loss_neg_pix) num_total = num_total - torch.ge(void_pixels, 0.5).float().sum() w = num_labels_neg / num_total loss_pos = torch.sum(loss_pos_pix) loss_neg = torch.sum(loss_neg_pix) final_loss = w * loss_pos + (1 - w) * loss_neg if self.size_average: final_loss /= float(np.prod(label.size())) elif self.batch_average: final_loss /= label.size()[0] return final_loss class BinaryCrossEntropyLoss(Module): """ Binary Cross Entropy with ignore regions, not balanced. """ def __init__(self, size_average=True, batch_average=True): super(BinaryCrossEntropyLoss, self).__init__() self.size_average = size_average self.batch_average = batch_average def forward(self, output, label, void_pixels=None): assert (output.size() == label.size()) labels = torch.ge(label, 0.5).float() output_gt_zero = torch.ge(output, 0).float() loss_val = torch.mul(output, (labels - output_gt_zero)) - torch.log( 1 + torch.exp(output - 2 * torch.mul(output, output_gt_zero))) loss_pos_pix = -torch.mul(labels, loss_val) loss_neg_pix = -torch.mul(1.0 - labels, loss_val) if void_pixels is not None: w_void = torch.le(void_pixels, 0.5).float() loss_pos_pix = torch.mul(w_void, loss_pos_pix) loss_neg_pix = torch.mul(w_void, loss_neg_pix) loss_pos = torch.sum(loss_pos_pix) loss_neg = torch.sum(loss_neg_pix) final_loss = loss_pos + loss_neg if self.size_average: final_loss /= float(np.prod(label.size())) elif self.batch_average: final_loss /= label.size()[0] return final_loss class ImGrad(nn.Module): """ Compute the spatial gradients of input with Sobel filter, in order to penalize gradient mismatch. Used for depth prediction """ def __init__(self): super(ImGrad, self).__init__() self.convx = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False) self.convy = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False) fx = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]]) fy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) weight_x = torch.from_numpy(fx).float().unsqueeze(0).unsqueeze(0) weight_y = torch.from_numpy(fy).float().unsqueeze(0).unsqueeze(0) self.convx.weight.data = weight_x self.convy.weight.data = weight_y for p in self.parameters(): p.requires_grad = False def forward(self, x): grad_x = self.convx(x) grad_y = self.convy(x) return grad_x, grad_y class GradLoss(nn.Module): """ Compute gradient loss using ImGrad """ def __init__(self, ignore_label=255): super(GradLoss, self).__init__() self.imgrad = ImGrad() self.ignore_label = ignore_label def forward(self, out, label): if self.ignore_label: n_valid = torch.sum(label != self.ignore_label).item() label[label == self.ignore_label] = 0 out_grad_x, out_grad_y = self.imgrad(out) label_grad_x, label_grad_y = self.imgrad(label) out_grad = torch.cat((out_grad_y, out_grad_x), dim=1) label_grad = torch.cat((label_grad_y, label_grad_x), dim=1) # L1 norm loss = torch.abs(out_grad - label_grad) if self.ignore_label: loss = torch.sum(loss) / n_valid else: loss = torch.mean(loss) return loss class RMSE_log(nn.Module): def __init__(self, ignore_label=255): super(RMSE_log, self).__init__() self.ignore_label = ignore_label def forward(self, out, label): out[out <= 0] = 1e-6 log_mse = (torch.log(label) - torch.log(out)) ** 2 # Only inside valid pixels if self.ignore_label: n_valid = torch.sum(label != self.ignore_label).item() log_mse[label == self.ignore_label] = 0 log_mse = torch.sum(log_mse) / n_valid else: log_mse = torch.mean(log_mse) loss = torch.sqrt(log_mse) return loss class L1loss(nn.Module): """ L1 loss with ignore labels """ def __init__(self, ignore_label=255): super(L1loss, self).__init__() self.loss_func = F.l1_loss self.ignore_label = ignore_label def forward(self, out, label): if self.ignore_label: n_valid = torch.sum(label != self.ignore_label).item() loss = torch.abs(out - label) loss[label == self.ignore_label] = 0 loss = loss.sum() if self.ignore_label: loss.div_(max(n_valid, 1e-6)) else: loss.div(float(np.prod(label.size()))) return loss class DepthLoss(nn.Module): """ Loss for depth prediction. Combination of L1 loss and Gradient loss """ def __init__(self): super(DepthLoss, self).__init__() self.diff_loss = L1loss(ignore_label=255) self.grad_loss = GradLoss(ignore_label=255) def forward(self, out, label): loss_diff = self.diff_loss(out, label) loss_grad = self.grad_loss(out, label) loss = loss_diff + loss_grad return loss def normal_ize(bottom, dim=1): qn = torch.norm(bottom, p=2, dim=dim).unsqueeze(dim=dim) + 1e-12 return bottom.div(qn) class Normalize(nn.Module): def __init__(self): super(Normalize, self).__init__() def forward(self, bottom): qn = torch.norm(bottom, p=2, dim=1).unsqueeze(dim=1) + 1e-12 top = bottom.div(qn) return top class NormalsLoss(Module): """ L1 loss with ignore labels normalize: normalization for surface normals """ def __init__(self, size_average=True, normalize=False, norm=1): super(NormalsLoss, self).__init__() self.size_average = size_average if normalize: self.normalize = Normalize() else: self.normalize = None if norm == 1: print('Using L1 loss for surface normals') self.loss_func = F.l1_loss elif norm == 2: print('Using L2 loss for surface normals') self.loss_func = F.mse_loss else: raise NotImplementedError def forward(self, out, label, ignore_label=255): assert not label.requires_grad if ignore_label: n_valid = torch.sum(label != ignore_label).item() out[label == ignore_label] = 0 label[label == ignore_label] = 0 if self.normalize is not None: out = self.normalize(out) loss = self.loss_func(out, label, reduction='sum') if self.size_average: if ignore_label: loss.div_(max(n_valid, 1e-6)) else: loss.div_(float(np.prod(label.size()))) return loss def normals_test(): from fblib.dataloaders.pascal_context import PASCALContext flagvals = {'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'human_parts': cv2.INTER_NEAREST, 'normals': cv2.INTER_CUBIC} transform = Compose([tr.RandomHorizontalFlip(), tr.ScaleNRotate(rots=(-90, 90), scales=(1., 1.), flagvals=flagvals), tr.FixedResize(resolutions={x: (512, 512) for x in flagvals}, flagvals=flagvals), tr.AddIgnoreRegions(), tr.ToTensor()]) dataset_human = PASCALContext(split=['train', 'val'], transform=transform, retname=True, do_edge=True, do_human_parts=True, do_semseg=True, do_normals=True) dataloader = torch.utils.data.DataLoader(dataset_human, batch_size=2, shuffle=False, num_workers=0) criterion = NormalsLoss(normalize=True) for i, sample in enumerate(dataloader): assert (sample['normals'].size()[2:] == sample['image'].size()[2:]) loss = criterion(sample['normals'], sample['normals']) print('Sample number: {}. Loss: {} (should be very close to 0)'.format(i, loss.item())) def depth_test(): from fblib.dataloaders.nyud import NYUD_MT flagvals = {'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'normals': cv2.INTER_LINEAR, 'depth': cv2.INTER_LINEAR} transform = Compose([tr.RandomHorizontalFlip(), tr.ScaleNRotate(rots=(-90, 90), scales=(1., 1.), flagvals=flagvals), tr.FixedResize(resolutions={x: (512, 512) for x in flagvals}, flagvals=flagvals), tr.AddIgnoreRegions(), tr.ToTensor()]) dataset_human = NYUD_MT(split=['train', 'val'], transform=transform, retname=True, do_edge=True, do_semseg=True, do_normals=True, do_depth=True) dataloader = torch.utils.data.DataLoader(dataset_human, batch_size=2, shuffle=False, num_workers=0) criterion = DepthLoss() for i, sample in enumerate(dataloader): loss = criterion(sample['depth'], sample['depth']) print('Sample number: {}. Loss: {} (should be 0)'.format(i, loss.item())) if __name__ == '__main__': import cv2 from torchvision.transforms import Compose import fblib.dataloaders.custom_transforms as tr normals_test()
astmt-master
fblib/layers/loss.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import torch from torch.nn import functional as F def logit(x): return np.log(x/(1-x+1e-08)+1e-08) def sigmoid_np(x): return 1/(1+np.exp(-x)) def center_crop(x, height, width): crop_h = torch.FloatTensor([x.size()[2]]).sub(height).div(-2) crop_w = torch.FloatTensor([x.size()[3]]).sub(width).div(-2) # fixed indexing for PyTorch 0.4 return F.pad(x, [int(crop_w.ceil()[0]), int(crop_w.floor()[0]), int(crop_h.ceil()[0]), int(crop_h.floor()[0])]) def upsample_filt(size): factor = (size + 1) // 2 if size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:size, :size] return (1 - abs(og[0] - center) / factor) * \ (1 - abs(og[1] - center) / factor) def interp_surgery(lay): """ Set parameters s.t. deconvolutional layers compute bilinear interpolation Only for deconvolution without groups """ m, k, h, w = lay.weight.data.size() if m != k: print('input + output channels need to be the same') raise ValueError if h != w: print('filters need to be square') raise ValueError filt = upsample_filt(h) for i in range(m): lay.weight[i, i, :, :].data.copy_(torch.from_numpy(filt)) return lay.weight.data
astmt-master
fblib/layers/misc_layers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from torch import nn from fblib.util.custom_container import SequentialMultiTask class SELayer(nn.Module): """ Squeeze and Excitation Layer """ def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class SELayerMultiTaskDict(nn.Module): """ Squeeze and Excitation Layer for multiple tasks (dict) """ def __init__(self, channel, reduction=16, tasks=None): super(SELayerMultiTaskDict, self).__init__() self.tasks = tasks self.avg_pool = nn.AdaptiveAvgPool2d(1) if self.tasks is None: self.fc = nn.Sequential(nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid()) else: print('Initializing squeeze and excitation modules:') self.fc = nn.ModuleDict() for task in self.tasks: print('SE for task: {}'.format(task)) self.fc[task] = SequentialMultiTask(nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid()) def forward(self, x, task=None): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) if self.tasks: y = self.fc[task](y).view(b, c, 1, 1) else: y = self.fc(y).view(b, c, 1, 1) return x * y class ConvCoupledSE(nn.Module): """ SE-layer per task, coupled with convolutions and batchnorm. Possibility to place convolutions before/after bn, deploy bn per task, and use/not use SE attention. """ def __init__(self, tasks, process_layers=None, norm=None, norm_kwargs=None, norm_per_task=False, squeeze=False, adapters=False, se_after_relu=True, reduction=16): super(ConvCoupledSE, self).__init__() self.norm_per_task = norm_per_task self.squeeze = squeeze self.adapters = adapters self.se_after_relu = se_after_relu if not isinstance(process_layers, list): process_layers = [process_layers] self.process = nn.Sequential(*process_layers) se_module = SELayerMultiTaskDict if self.squeeze: self.se = se_module(process_layers[-1].out_channels, tasks=tasks, reduction=reduction) if self.adapters: print('Using parallel adapters') self.adapt = nn.ModuleDict({task: nn.Conv2d(process_layers[-1].in_channels, process_layers[-1].out_channels, kernel_size=1, bias=False) for task in tasks}) if self.norm_per_task: self.norm = nn.ModuleDict({task: norm(**norm_kwargs) for task in tasks}) else: self.norm = norm(**norm_kwargs) self.relu = nn.ReLU(inplace=True) def forward(self, x, task): if self.adapters: x = self.process(x) + self.adapt[task](x) else: x = self.process(x) if self.squeeze and not self.se_after_relu: x = self.se(x, task) if self.norm_per_task: x = self.norm[task](x) else: x = self.norm(x) x = self.relu(x) if self.squeeze and self.se_after_relu: x = self.se(x, task) return x
astmt-master
fblib/layers/squeeze.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torch.autograd import Variable from torchvision import models from graphviz import Digraph def make_dot(var, params): """ Produces Graphviz representation of PyTorch autograd graph Blue nodes are the Variables that require grad, orange are Tensors saved for backward in torch.autograd.Function Args: var: output Variable params: dict of (name, Variable) to add names to node that require grad """ param_map = {id(v): k for k, v in params.items()} node_attr = dict(style='filled', shape='box', align='left', fontsize='12', ranksep='0.1', height='0.2') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) seen = set() def size_to_str(size): return '(' + (', ').join(['%d' % v for v in size]) + ')' def add_nodes(var): if var not in seen: if torch.is_tensor(var): dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange') elif hasattr(var, 'variable'): u = var.variable node_name = '%s\n %s' % (param_map.get(id(u)), size_to_str(u.size())) dot.node(str(id(var)), node_name, fillcolor='lightblue') else: dot.node(str(id(var)), str(type(var).__name__)) seen.add(var) if hasattr(var, 'next_functions'): for u in var.next_functions: if u[0] is not None: dot.edge(str(id(u[0])), str(id(var))) add_nodes(u[0]) if hasattr(var, 'saved_tensors'): for t in var.saved_tensors: dot.edge(str(id(t)), str(id(var))) add_nodes(t) if type(var) == list: for ii in range(0, len(var)): add_nodes(var[ii].grad_fn) elif type(var) == dict: for x in var: add_nodes(var[x].grad_fn) else: add_nodes(var.grad_fn) return dot if __name__ == "__main__": inputs = torch.randn(1, 3, 224, 224) resnet18 = models.resnet18() y = resnet18(Variable(inputs)) g = make_dot(y, resnet18.state_dict()) g.view()
astmt-master
fblib/util/pdf_visualizer.py
astmt-master
fblib/util/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import collections import re from torch._six import string_classes, int_classes _use_shared_memory = False r"""Whether to use shared memory in default_collate""" numpy_type_map = { 'float64': torch.DoubleTensor, 'float32': torch.FloatTensor, 'float16': torch.HalfTensor, 'int64': torch.LongTensor, 'int32': torch.IntTensor, 'int16': torch.ShortTensor, 'int8': torch.CharTensor, 'uint8': torch.ByteTensor, } def collate_mil(batch): """ Puts each data field into a tensor with outer dimension batch size. Custom-made for supporting MIL """ error_msg = "batch must contain tensors, numbers, dicts or lists; found {}" elem_type = type(batch[0]) if isinstance(batch[0], torch.Tensor): out = None if _use_shared_memory: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = batch[0].storage()._new_shared(numel) out = batch[0].new(storage) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ and elem_type.__name__ != 'string_': elem = batch[0] if elem_type.__name__ == 'ndarray': # array of string classes and object if re.search('[SaUO]', elem.dtype.str) is not None: raise TypeError(error_msg.format(elem.dtype)) return torch.stack([torch.from_numpy(b) for b in batch], 0) if elem.shape == (): # scalars py_type = float if elem.dtype.name.startswith('float') else int return numpy_type_map[elem.dtype.name](list(map(py_type, batch))) elif isinstance(batch[0], int_classes): return torch.LongTensor(batch) elif isinstance(batch[0], float): return torch.DoubleTensor(batch) elif isinstance(batch[0], string_classes): return batch elif isinstance(batch[0], collections.Mapping): batch_modified = {key: collate_mil([d[key] for d in batch]) for key in batch[0] if key.find('idx') < 0} if 'edgeidx' in batch[0]: batch_modified['edgeidx'] = [batch[x]['edgeidx'] for x in range(len(batch))] return batch_modified elif isinstance(batch[0], collections.Sequence): transposed = zip(*batch) return [collate_mil(samples) for samples in transposed] raise TypeError((error_msg.format(type(batch[0]))))
astmt-master
fblib/util/custom_collate.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import cv2 import numpy as np # set random seed in each worker worker_seed = lambda x: np.random.seed((torch.initial_seed()) % 2 ** 32) def tens2image(tens): """Converts tensor with 2 or 3 dimensions to numpy array""" im = tens.numpy() if im.shape[0] == 1: im = np.squeeze(im, axis=0) if im.ndim == 3: im = im.transpose((1, 2, 0)) return im def pascal_color_map(N=256, normalized=False): """ Python implementation of the color map function for the PASCAL VOC data set. Official Matlab version can be found in the PASCAL VOC devkit http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit """ def bitget(byteval, idx): return (byteval & (1 << idx)) != 0 dtype = 'float32' if normalized else 'uint8' cmap = np.zeros((N, 3), dtype=dtype) for i in range(N): r = g = b = 0 c = i for j in range(8): r = r | (bitget(c, 0) << 7 - j) g = g | (bitget(c, 1) << 7 - j) b = b | (bitget(c, 2) << 7 - j) c = c >> 3 cmap[i] = np.array([r, g, b]) cmap = cmap / 255 if normalized else cmap return cmap def fixed_resize(sample, resolution, flagval=None): """ Fixed resize to resolution (tuple): resize image to size specified by tuple eg. (512, 512). resolution (int): bring smaller side to resolution eg. image of shape 321 x 481 -> 512 x 767 """ if flagval is None: if ((sample == 0) | (sample == 1)).all(): flagval = cv2.INTER_NEAREST else: flagval = cv2.INTER_CUBIC if isinstance(resolution, int): tmp = [resolution, resolution] tmp[int(np.argmax(sample.shape[:2]))] = int( round(float(resolution) / np.min(sample.shape[:2]) * np.max(sample.shape[:2]))) resolution = tuple(tmp) if sample.ndim == 2 or (sample.ndim == 3 and sample.shape[2] == 3): sample = cv2.resize(sample, resolution[::-1], interpolation=flagval) else: tmp = sample sample = np.zeros(np.append(resolution, tmp.shape[2]), dtype=np.float32) for ii in range(sample.shape[2]): sample[:, :, ii] = cv2.resize(tmp[:, :, ii], resolution[::-1], interpolation=flagval) return sample def im_normalize(im, max_value=1): """ Normalize image to range 0 - max_value """ imn = max_value * (im - im.min()) / max((im.max() - im.min()), 1e-8) return imn def generate_param_report(logfile, param): log_file = open(logfile, 'w') for key, val in param.items(): log_file.write(key + ':' + str(val) + '\n') log_file.close() def ind2sub(array_shape, inds): rows, cols = [], [] for k in range(len(inds)): if inds[k] == 0: continue cols.append((inds[k].astype('int') // array_shape[1])) rows.append((inds[k].astype('int') % array_shape[1])) return rows, cols def main(): import matplotlib.pyplot as plt from torch.utils.data import DataLoader from fblib.dataloaders.bsds import BSDS500 from fblib.dataloaders.custom_transforms import ToTensor db = BSDS500(transform=ToTensor()) dataloader = DataLoader(db, batch_size=1) for i, sample in enumerate(dataloader): img = sample['image'] plt.imshow(im_normalize(fixed_resize(tens2image(img), resolution=512))) plt.show() if __name__ == "__main__": main()
astmt-master
fblib/util/helpers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from collections import OrderedDict from torch.nn.modules.container import Sequential class SequentialMultiTask(Sequential): """A sequential container for multiple tasks. Forward pass re-written to incorporate multiple tasks """ def __init__(self, *args): super(SequentialMultiTask, self).__init__(*args) def __getitem__(self, idx): if isinstance(idx, slice): return SequentialMultiTask(OrderedDict(list(self._modules.items())[idx])) else: return self._get_item_by_idx(self._modules.values(), idx) def forward(self, input, task=None): for module in self._modules.values(): if task is None: input = module(input) else: input = module(input, task) return input
astmt-master
fblib/util/custom_container.py
astmt-master
fblib/util/classification/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import time import random class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def time_string(): ISOTIMEFORMAT = '%Y-%m-%d %X' string = '[{}]'.format(time.strftime(ISOTIMEFORMAT, time.gmtime(time.time()))) return string def convert_secs2time(epoch_time): need_hour = int(epoch_time / 3600) need_mins = int((epoch_time - 3600 * need_hour) / 60) need_secs = int(epoch_time - 3600 * need_hour - 60 * need_mins) return need_hour, need_mins, need_secs def time_file_str(): ISOTIMEFORMAT = '%Y-%m-%d' string = '{}'.format(time.strftime(ISOTIMEFORMAT, time.gmtime(time.time()))) return string + '-{}'.format(random.randint(1, 10000))
astmt-master
fblib/util/classification/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torchvision import utils as vutils import fblib.util.pdf_visualizer as viz from fblib.util.mypath import Path def visualize_network(net, p): net.eval() x = torch.randn(1, 3, 512, 512) x.requires_grad_() # pdf visualizer y = {} for task in p.TASKS.NAMES: y[task], _ = net.forward(x, task) g = viz.make_dot(y, net.state_dict()) g.view(directory=Path.save_root_dir()) class TBVisualizer(object): def __init__(self, tasks, min_ranges, max_ranges, batch_size): # Visualization settings self.grid_input = { 'image': { 'range': (0, 255), 'normalize': True, 'scale_each': True, 'nrow': batch_size }} self.grid_output = {} for task in tasks: min_range = min_ranges[task] max_range = max_ranges[task] self.grid_input[task] = { 'range': (min_range, max_range), 'normalize': True, 'scale_each': True, 'nrow': batch_size } self.grid_output[task+'_pred'] = { 'range': (min_range, max_range), 'normalize': True, 'scale_each': True, 'nrow': batch_size } def visualize_images_tb(self, writer, sample, outputs, global_step, tag, phase='train'): """Vizualize images into Tensorboard writer: Tensorboardx summary writer sample: dataloader sample that contains a dict of tensors, aka images and groundtruths grid_input: see function get_visualizer() grid_output: see function get_visualizer() global_step: global iteration num tag: current iteration num to tag on tensorboard phase: 'train' or 'test """ for k in list(self.grid_input.keys()): if k in sample.keys(): elem = sample[k].detach() if k in {'normals', 'depth'}: elem[elem == 255] = 0 img_grid = vutils.make_grid(elem, **self.grid_input[k]) writer.add_image(f'{k}_gt/{phase}_{tag}', img_grid, global_step) for k in list(outputs.keys()): if (k + '_pred') in self.grid_output.keys(): output = outputs[k].detach() if k == 'normals': elem = self._normalize(output) elif k in {'depth', 'albedo'}: elem = output elif output.size()[1] == 1: elem = 1 / (1 + torch.exp(-output)) else: _, argmax_pred = torch.max(output, dim=1) argmax_pred = argmax_pred.type(torch.FloatTensor) elem = torch.unsqueeze(argmax_pred, 1) img_grid = vutils.make_grid(elem, **self.grid_output[k + '_pred']) writer.add_image(f'{k}_pred/{phase}_{tag}', img_grid, global_step) @staticmethod def _normalize(bottom): qn = torch.norm(bottom, p=2, dim=1).unsqueeze(dim=1) + 1e-12 return bottom.div(qn)
astmt-master
fblib/util/mtl_tools/multitask_visualizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def imagenet_categ_names(): return { 0: 'tench, Tinca tinca', 1: 'goldfish, Carassius auratus', 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias', 3: 'tiger shark, Galeocerdo cuvieri', 4: 'hammerhead, hammerhead shark', 5: 'electric ray, crampfish, numbfish, torpedo', 6: 'stingray', 7: 'cock', 8: 'hen', 9: 'ostrich, Struthio camelus', 10: 'brambling, Fringilla montifringilla', 11: 'goldfinch, Carduelis carduelis', 12: 'house finch, linnet, Carpodacus mexicanus', 13: 'junco, snowbird', 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea', 15: 'robin, American robin, Turdus migratorius', 16: 'bulbul', 17: 'jay', 18: 'magpie', 19: 'chickadee', 20: 'water ouzel, dipper', 21: 'kite', 22: 'bald eagle, American eagle, Haliaeetus leucocephalus', 23: 'vulture', 24: 'great grey owl, great gray owl, Strix nebulosa', 25: 'European fire salamander, Salamandra salamandra', 26: 'common newt, Triturus vulgaris', 27: 'eft', 28: 'spotted salamander, Ambystoma maculatum', 29: 'axolotl, mud puppy, Ambystoma mexicanum', 30: 'bullfrog, Rana catesbeiana', 31: 'tree frog, tree-frog', 32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui', 33: 'loggerhead, loggerhead turtle, Caretta caretta', 34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea', 35: 'mud turtle', 36: 'terrapin', 37: 'box turtle, box tortoise', 38: 'banded gecko', 39: 'common iguana, iguana, Iguana iguana', 40: 'American chameleon, anole, Anolis carolinensis', 41: 'whiptail, whiptail lizard', 42: 'agama', 43: 'frilled lizard, Chlamydosaurus kingi', 44: 'alligator lizard', 45: 'Gila monster, Heloderma suspectum', 46: 'green lizard, Lacerta viridis', 47: 'African chameleon, Chamaeleo chamaeleon', 48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis', 49: 'African crocodile, Nile crocodile, Crocodylus niloticus', 50: 'American alligator, Alligator mississipiensis', 51: 'triceratops', 52: 'thunder snake, worm snake, Carphophis amoenus', 53: 'ringneck snake, ring-necked snake, ring snake', 54: 'hognose snake, puff adder, sand viper', 55: 'green snake, grass snake', 56: 'king snake, kingsnake', 57: 'garter snake, grass snake', 58: 'water snake', 59: 'vine snake', 60: 'night snake, Hypsiglena torquata', 61: 'boa constrictor, Constrictor constrictor', 62: 'rock python, rock snake, Python sebae', 63: 'Indian cobra, Naja naja', 64: 'green mamba', 65: 'sea snake', 66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus', 67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus', 68: 'sidewinder, horned rattlesnake, Crotalus cerastes', 69: 'trilobite', 70: 'harvestman, daddy longlegs, Phalangium opilio', 71: 'scorpion', 72: 'black and gold garden spider, Argiope aurantia', 73: 'barn spider, Araneus cavaticus', 74: 'garden spider, Aranea diademata', 75: 'black widow, Latrodectus mactans', 76: 'tarantula', 77: 'wolf spider, hunting spider', 78: 'tick', 79: 'centipede', 80: 'black grouse', 81: 'ptarmigan', 82: 'ruffed grouse, partridge, Bonasa umbellus', 83: 'prairie chicken, prairie grouse, prairie fowl', 84: 'peacock', 85: 'quail', 86: 'partridge', 87: 'African grey, African gray, Psittacus erithacus', 88: 'macaw', 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita', 90: 'lorikeet', 91: 'coucal', 92: 'bee eater', 93: 'hornbill', 94: 'hummingbird', 95: 'jacamar', 96: 'toucan', 97: 'drake', 98: 'red-breasted merganser, Mergus serrator', 99: 'goose', 100: 'black swan, Cygnus atratus', 101: 'tusker', 102: 'echidna, spiny anteater, anteater', 103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus', 104: 'wallaby, brush kangaroo', 105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus', 106: 'wombat', 107: 'jellyfish', 108: 'sea anemone, anemone', 109: 'brain coral', 110: 'flatworm, platyhelminth', 111: 'nematode, nematode worm, roundworm', 112: 'conch', 113: 'snail', 114: 'slug', 115: 'sea slug, nudibranch', 116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore', 117: 'chambered nautilus, pearly nautilus, nautilus', 118: 'Dungeness crab, Cancer magister', 119: 'rock crab, Cancer irroratus', 120: 'fiddler crab', 121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica', 122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus', 123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish', 124: 'crayfish, crawfish, crawdad, crawdaddy', 125: 'hermit crab', 126: 'isopod', 127: 'white stork, Ciconia ciconia', 128: 'black stork, Ciconia nigra', 129: 'spoonbill', 130: 'flamingo', 131: 'little blue heron, Egretta caerulea', 132: 'American egret, great white heron, Egretta albus', 133: 'bittern', 134: 'crane', 135: 'limpkin, Aramus pictus', 136: 'European gallinule, Porphyrio porphyrio', 137: 'American coot, marsh hen, mud hen, water hen, Fulica americana', 138: 'bustard', 139: 'ruddy turnstone, Arenaria interpres', 140: 'red-backed sandpiper, dunlin, Erolia alpina', 141: 'redshank, Tringa totanus', 142: 'dowitcher', 143: 'oystercatcher, oyster catcher', 144: 'pelican', 145: 'king penguin, Aptenodytes patagonica', 146: 'albatross, mollymawk', 147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus', 148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca', 149: 'dugong, Dugong dugon', 150: 'sea lion', 151: 'Chihuahua', 152: 'Japanese spaniel', 153: 'Maltese dog, Maltese terrier, Maltese', 154: 'Pekinese, Pekingese, Peke', 155: 'Shih-Tzu', 156: 'Blenheim spaniel', 157: 'papillon', 158: 'toy terrier', 159: 'Rhodesian ridgeback', 160: 'Afghan hound, Afghan', 161: 'basset, basset hound', 162: 'beagle', 163: 'bloodhound, sleuthhound', 164: 'bluetick', 165: 'black-and-tan coonhound', 166: 'Walker hound, Walker foxhound', 167: 'English foxhound', 168: 'redbone', 169: 'borzoi, Russian wolfhound', 170: 'Irish wolfhound', 171: 'Italian greyhound', 172: 'whippet', 173: 'Ibizan hound, Ibizan Podenco', 174: 'Norwegian elkhound, elkhound', 175: 'otterhound, otter hound', 176: 'Saluki, gazelle hound', 177: 'Scottish deerhound, deerhound', 178: 'Weimaraner', 179: 'Staffordshire bullterrier, Staffordshire bull terrier', 180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier', 181: 'Bedlington terrier', 182: 'Border terrier', 183: 'Kerry blue terrier', 184: 'Irish terrier', 185: 'Norfolk terrier', 186: 'Norwich terrier', 187: 'Yorkshire terrier', 188: 'wire-haired fox terrier', 189: 'Lakeland terrier', 190: 'Sealyham terrier, Sealyham', 191: 'Airedale, Airedale terrier', 192: 'cairn, cairn terrier', 193: 'Australian terrier', 194: 'Dandie Dinmont, Dandie Dinmont terrier', 195: 'Boston bull, Boston terrier', 196: 'miniature schnauzer', 197: 'giant schnauzer', 198: 'standard schnauzer', 199: 'Scotch terrier, Scottish terrier, Scottie', 200: 'Tibetan terrier, chrysanthemum dog', 201: 'silky terrier, Sydney silky', 202: 'soft-coated wheaten terrier', 203: 'West Highland white terrier', 204: 'Lhasa, Lhasa apso', 205: 'flat-coated retriever', 206: 'curly-coated retriever', 207: 'golden retriever', 208: 'Labrador retriever', 209: 'Chesapeake Bay retriever', 210: 'German short-haired pointer', 211: 'vizsla, Hungarian pointer', 212: 'English setter', 213: 'Irish setter, red setter', 214: 'Gordon setter', 215: 'Brittany spaniel', 216: 'clumber, clumber spaniel', 217: 'English springer, English springer spaniel', 218: 'Welsh springer spaniel', 219: 'cocker spaniel, English cocker spaniel, cocker', 220: 'Sussex spaniel', 221: 'Irish water spaniel', 222: 'kuvasz', 223: 'schipperke', 224: 'groenendael', 225: 'malinois', 226: 'briard', 227: 'kelpie', 228: 'komondor', 229: 'Old English sheepdog, bobtail', 230: 'Shetland sheepdog, Shetland sheep dog, Shetland', 231: 'collie', 232: 'Border collie', 233: 'Bouvier des Flandres, Bouviers des Flandres', 234: 'Rottweiler', 235: 'German shepherd, German shepherd dog, German police dog, alsatian', 236: 'Doberman, Doberman pinscher', 237: 'miniature pinscher', 238: 'Greater Swiss Mountain dog', 239: 'Bernese mountain dog', 240: 'Appenzeller', 241: 'EntleBucher', 242: 'boxer', 243: 'bull mastiff', 244: 'Tibetan mastiff', 245: 'French bulldog', 246: 'Great Dane', 247: 'Saint Bernard, St Bernard', 248: 'Eskimo dog, husky', 249: 'malamute, malemute, Alaskan malamute', 250: 'Siberian husky', 251: 'dalmatian, coach dog, carriage dog', 252: 'affenpinscher, monkey pinscher, monkey dog', 253: 'basenji', 254: 'pug, pug-dog', 255: 'Leonberg', 256: 'Newfoundland, Newfoundland dog', 257: 'Great Pyrenees', 258: 'Samoyed, Samoyede', 259: 'Pomeranian', 260: 'chow, chow chow', 261: 'keeshond', 262: 'Brabancon griffon', 263: 'Pembroke, Pembroke Welsh corgi', 264: 'Cardigan, Cardigan Welsh corgi', 265: 'toy poodle', 266: 'miniature poodle', 267: 'standard poodle', 268: 'Mexican hairless', 269: 'timber wolf, grey wolf, gray wolf, Canis lupus', 270: 'white wolf, Arctic wolf, Canis lupus tundrarum', 271: 'red wolf, maned wolf, Canis rufus, Canis niger', 272: 'coyote, prairie wolf, brush wolf, Canis latrans', 273: 'dingo, warrigal, warragal, Canis dingo', 274: 'dhole, Cuon alpinus', 275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus', 276: 'hyena, hyaena', 277: 'red fox, Vulpes vulpes', 278: 'kit fox, Vulpes macrotis', 279: 'Arctic fox, white fox, Alopex lagopus', 280: 'grey fox, gray fox, Urocyon cinereoargenteus', 281: 'tabby, tabby cat', 282: 'tiger cat', 283: 'Persian cat', 284: 'Siamese cat, Siamese', 285: 'Egyptian cat', 286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor', 287: 'lynx, catamount', 288: 'leopard, Panthera pardus', 289: 'snow leopard, ounce, Panthera uncia', 290: 'jaguar, panther, Panthera onca, Felis onca', 291: 'lion, king of beasts, Panthera leo', 292: 'tiger, Panthera tigris', 293: 'cheetah, chetah, Acinonyx jubatus', 294: 'brown bear, bruin, Ursus arctos', 295: 'American black bear, black bear, Ursus americanus, Euarctos americanus', 296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', 297: 'sloth bear, Melursus ursinus, Ursus ursinus', 298: 'mongoose', 299: 'meerkat, mierkat', 300: 'tiger beetle', 301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle', 302: 'ground beetle, carabid beetle', 303: 'long-horned beetle, longicorn, longicorn beetle', 304: 'leaf beetle, chrysomelid', 305: 'dung beetle', 306: 'rhinoceros beetle', 307: 'weevil', 308: 'fly', 309: 'bee', 310: 'ant, emmet, pismire', 311: 'grasshopper, hopper', 312: 'cricket', 313: 'walking stick, walkingstick, stick insect', 314: 'cockroach, roach', 315: 'mantis, mantid', 316: 'cicada, cicala', 317: 'leafhopper', 318: 'lacewing, lacewing fly', 319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", 320: 'damselfly', 321: 'admiral', 322: 'ringlet, ringlet butterfly', 323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus', 324: 'cabbage butterfly', 325: 'sulphur butterfly, sulfur butterfly', 326: 'lycaenid, lycaenid butterfly', 327: 'starfish, sea star', 328: 'sea urchin', 329: 'sea cucumber, holothurian', 330: 'wood rabbit, cottontail, cottontail rabbit', 331: 'hare', 332: 'Angora, Angora rabbit', 333: 'hamster', 334: 'porcupine, hedgehog', 335: 'fox squirrel, eastern fox squirrel, Sciurus niger', 336: 'marmot', 337: 'beaver', 338: 'guinea pig, Cavia cobaya', 339: 'sorrel', 340: 'zebra', 341: 'hog, pig, grunter, squealer, Sus scrofa', 342: 'wild boar, boar, Sus scrofa', 343: 'warthog', 344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius', 345: 'ox', 346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis', 347: 'bison', 348: 'ram, tup', 349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis', 350: 'ibex, Capra ibex', 351: 'hartebeest', 352: 'impala, Aepyceros melampus', 353: 'gazelle', 354: 'Arabian camel, dromedary, Camelus dromedarius', 355: 'llama', 356: 'weasel', 357: 'mink', 358: 'polecat, fitch, foulmart, foumart, Mustela putorius', 359: 'black-footed ferret, ferret, Mustela nigripes', 360: 'otter', 361: 'skunk, polecat, wood pussy', 362: 'badger', 363: 'armadillo', 364: 'three-toed sloth, ai, Bradypus tridactylus', 365: 'orangutan, orang, orangutang, Pongo pygmaeus', 366: 'gorilla, Gorilla gorilla', 367: 'chimpanzee, chimp, Pan troglodytes', 368: 'gibbon, Hylobates lar', 369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus', 370: 'guenon, guenon monkey', 371: 'patas, hussar monkey, Erythrocebus patas', 372: 'baboon', 373: 'macaque', 374: 'langur', 375: 'colobus, colobus monkey', 376: 'proboscis monkey, Nasalis larvatus', 377: 'marmoset', 378: 'capuchin, ringtail, Cebus capucinus', 379: 'howler monkey, howler', 380: 'titi, titi monkey', 381: 'spider monkey, Ateles geoffroyi', 382: 'squirrel monkey, Saimiri sciureus', 383: 'Madagascar cat, ring-tailed lemur, Lemur catta', 384: 'indri, indris, Indri indri, Indri brevicaudatus', 385: 'Indian elephant, Elephas maximus', 386: 'African elephant, Loxodonta africana', 387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens', 388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca', 389: 'barracouta, snoek', 390: 'eel', 391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch', 392: 'rock beauty, Holocanthus tricolor', 393: 'anemone fish', 394: 'sturgeon', 395: 'gar, garfish, garpike, billfish, Lepisosteus osseus', 396: 'lionfish', 397: 'puffer, pufferfish, blowfish, globefish', 398: 'abacus', 399: 'abaya', 400: "academic gown, academic robe, judge's robe", 401: 'accordion, piano accordion, squeeze box', 402: 'acoustic guitar', 403: 'aircraft carrier, carrier, flattop, attack aircraft carrier', 404: 'airliner', 405: 'airship, dirigible', 406: 'altar', 407: 'ambulance', 408: 'amphibian, amphibious vehicle', 409: 'analog clock', 410: 'apiary, bee house', 411: 'apron', 412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin', 413: 'assault rifle, assault gun', 414: 'backpack, back pack, knapsack, packsack, rucksack, haversack', 415: 'bakery, bakeshop, bakehouse', 416: 'balance beam, beam', 417: 'balloon', 418: 'ballpoint, ballpoint pen, ballpen, Biro', 419: 'Band Aid', 420: 'banjo', 421: 'bannister, banister, balustrade, balusters, handrail', 422: 'barbell', 423: 'barber chair', 424: 'barbershop', 425: 'barn', 426: 'barometer', 427: 'barrel, cask', 428: 'barrow, garden cart, lawn cart, wheelbarrow', 429: 'baseball', 430: 'basketball', 431: 'bassinet', 432: 'bassoon', 433: 'bathing cap, swimming cap', 434: 'bath towel', 435: 'bathtub, bathing tub, bath, tub', 436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon', 437: 'beacon, lighthouse, beacon light, pharos', 438: 'beaker', 439: 'bearskin, busby, shako', 440: 'beer bottle', 441: 'beer glass', 442: 'bell cote, bell cot', 443: 'bib', 444: 'bicycle-built-for-two, tandem bicycle, tandem', 445: 'bikini, two-piece', 446: 'binder, ring-binder', 447: 'binoculars, field glasses, opera glasses', 448: 'birdhouse', 449: 'boathouse', 450: 'bobsled, bobsleigh, bob', 451: 'bolo tie, bolo, bola tie, bola', 452: 'bonnet, poke bonnet', 453: 'bookcase', 454: 'bookshop, bookstore, bookstall', 455: 'bottlecap', 456: 'bow', 457: 'bow tie, bow-tie, bowtie', 458: 'brass, memorial tablet, plaque', 459: 'brassiere, bra, bandeau', 460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty', 461: 'breastplate, aegis, egis', 462: 'broom', 463: 'bucket, pail', 464: 'buckle', 465: 'bulletproof vest', 466: 'bullet train, bullet', 467: 'butcher shop, meat market', 468: 'cab, hack, taxi, taxicab', 469: 'caldron, cauldron', 470: 'candle, taper, wax light', 471: 'cannon', 472: 'canoe', 473: 'can opener, tin opener', 474: 'cardigan', 475: 'car mirror', 476: 'carousel, carrousel, merry-go-round, roundabout, whirligig', 477: "carpenter's kit, tool kit", 478: 'carton', 479: 'car wheel', 480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM', 481: 'cassette', 482: 'cassette player', 483: 'castle', 484: 'catamaran', 485: 'CD player', 486: 'cello, violoncello', 487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone', 488: 'chain', 489: 'chainlink fence', 490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour', 491: 'chain saw, chainsaw', 492: 'chest', 493: 'chiffonier, commode', 494: 'chime, bell, gong', 495: 'china cabinet, china closet', 496: 'Christmas stocking', 497: 'church, church building', 498: 'cinema, movie theater, movie theatre, movie house, picture palace', 499: 'cleaver, meat cleaver, chopper', 500: 'cliff dwelling', 501: 'cloak', 502: 'clog, geta, patten, sabot', 503: 'cocktail shaker', 504: 'coffee mug', 505: 'coffeepot', 506: 'coil, spiral, volute, whorl, helix', 507: 'combination lock', 508: 'computer keyboard, keypad', 509: 'confectionery, confectionary, candy store', 510: 'container ship, containership, container vessel', 511: 'convertible', 512: 'corkscrew, bottle screw', 513: 'cornet, horn, trumpet, trump', 514: 'cowboy boot', 515: 'cowboy hat, ten-gallon hat', 516: 'cradle', 517: 'crane', 518: 'crash helmet', 519: 'crate', 520: 'crib, cot', 521: 'Crock Pot', 522: 'croquet ball', 523: 'crutch', 524: 'cuirass', 525: 'dam, dike, dyke', 526: 'desk', 527: 'desktop computer', 528: 'dial telephone, dial phone', 529: 'diaper, nappy, napkin', 530: 'digital clock', 531: 'digital watch', 532: 'dining table, board', 533: 'dishrag, dishcloth', 534: 'dishwasher, dish washer, dishwashing machine', 535: 'disk brake, disc brake', 536: 'dock, dockage, docking facility', 537: 'dogsled, dog sled, dog sleigh', 538: 'dome', 539: 'doormat, welcome mat', 540: 'drilling platform, offshore rig', 541: 'drum, membranophone, tympan', 542: 'drumstick', 543: 'dumbbell', 544: 'Dutch oven', 545: 'electric fan, blower', 546: 'electric guitar', 547: 'electric locomotive', 548: 'entertainment center', 549: 'envelope', 550: 'espresso maker', 551: 'face powder', 552: 'feather boa, boa', 553: 'file, file cabinet, filing cabinet', 554: 'fireboat', 555: 'fire engine, fire truck', 556: 'fire screen, fireguard', 557: 'flagpole, flagstaff', 558: 'flute, transverse flute', 559: 'folding chair', 560: 'football helmet', 561: 'forklift', 562: 'fountain', 563: 'fountain pen', 564: 'four-poster', 565: 'freight car', 566: 'French horn, horn', 567: 'frying pan, frypan, skillet', 568: 'fur coat', 569: 'garbage truck, dustcart', 570: 'gasmask, respirator, gas helmet', 571: 'gas pump, gasoline pump, petrol pump, island dispenser', 572: 'goblet', 573: 'go-kart', 574: 'golf ball', 575: 'golfcart, golf cart', 576: 'gondola', 577: 'gong, tam-tam', 578: 'gown', 579: 'grand piano, grand', 580: 'greenhouse, nursery, glasshouse', 581: 'grille, radiator grille', 582: 'grocery store, grocery, food market, market', 583: 'guillotine', 584: 'hair slide', 585: 'hair spray', 586: 'half track', 587: 'hammer', 588: 'hamper', 589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier', 590: 'hand-held computer, hand-held microcomputer', 591: 'handkerchief, hankie, hanky, hankey', 592: 'hard disc, hard disk, fixed disk', 593: 'harmonica, mouth organ, harp, mouth harp', 594: 'harp', 595: 'harvester, reaper', 596: 'hatchet', 597: 'holster', 598: 'home theater, home theatre', 599: 'honeycomb', 600: 'hook, claw', 601: 'hoopskirt, crinoline', 602: 'horizontal bar, high bar', 603: 'horse cart, horse-cart', 604: 'hourglass', 605: 'iPod', 606: 'iron, smoothing iron', 607: "jack-o'-lantern", 608: 'jean, blue jean, denim', 609: 'jeep, landrover', 610: 'jersey, T-shirt, tee shirt', 611: 'jigsaw puzzle', 612: 'jinrikisha, ricksha, rickshaw', 613: 'joystick', 614: 'kimono', 615: 'knee pad', 616: 'knot', 617: 'lab coat, laboratory coat', 618: 'ladle', 619: 'lampshade, lamp shade', 620: 'laptop, laptop computer', 621: 'lawn mower, mower', 622: 'lens cap, lens cover', 623: 'letter opener, paper knife, paperknife', 624: 'library', 625: 'lifeboat', 626: 'lighter, light, igniter, ignitor', 627: 'limousine, limo', 628: 'liner, ocean liner', 629: 'lipstick, lip rouge', 630: 'Loafer', 631: 'lotion', 632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system', 633: "loupe, jeweler's loupe", 634: 'lumbermill, sawmill', 635: 'magnetic compass', 636: 'mailbag, postbag', 637: 'mailbox, letter box', 638: 'maillot', 639: 'maillot, tank suit', 640: 'manhole cover', 641: 'maraca', 642: 'marimba, xylophone', 643: 'mask', 644: 'matchstick', 645: 'maypole', 646: 'maze, labyrinth', 647: 'measuring cup', 648: 'medicine chest, medicine cabinet', 649: 'megalith, megalithic structure', 650: 'microphone, mike', 651: 'microwave, microwave oven', 652: 'military uniform', 653: 'milk can', 654: 'minibus', 655: 'miniskirt, mini', 656: 'minivan', 657: 'missile', 658: 'mitten', 659: 'mixing bowl', 660: 'mobile home, manufactured home', 661: 'Model T', 662: 'modem', 663: 'monastery', 664: 'monitor', 665: 'moped', 666: 'mortar', 667: 'mortarboard', 668: 'mosque', 669: 'mosquito net', 670: 'motor scooter, scooter', 671: 'mountain bike, all-terrain bike, off-roader', 672: 'mountain tent', 673: 'mouse, computer mouse', 674: 'mousetrap', 675: 'moving van', 676: 'muzzle', 677: 'nail', 678: 'neck brace', 679: 'necklace', 680: 'nipple', 681: 'notebook, notebook computer', 682: 'obelisk', 683: 'oboe, hautboy, hautbois', 684: 'ocarina, sweet potato', 685: 'odometer, hodometer, mileometer, milometer', 686: 'oil filter', 687: 'organ, pipe organ', 688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO', 689: 'overskirt', 690: 'oxcart', 691: 'oxygen mask', 692: 'packet', 693: 'paddle, boat paddle', 694: 'paddlewheel, paddle wheel', 695: 'padlock', 696: 'paintbrush', 697: "pajama, pyjama, pj's, jammies", 698: 'palace', 699: 'panpipe, pandean pipe, syrinx', 700: 'paper towel', 701: 'parachute, chute', 702: 'parallel bars, bars', 703: 'park bench', 704: 'parking meter', 705: 'passenger car, coach, carriage', 706: 'patio, terrace', 707: 'pay-phone, pay-station', 708: 'pedestal, plinth, footstall', 709: 'pencil box, pencil case', 710: 'pencil sharpener', 711: 'perfume, essence', 712: 'Petri dish', 713: 'photocopier', 714: 'pick, plectrum, plectron', 715: 'pickelhaube', 716: 'picket fence, paling', 717: 'pickup, pickup truck', 718: 'pier', 719: 'piggy bank, penny bank', 720: 'pill bottle', 721: 'pillow', 722: 'ping-pong ball', 723: 'pinwheel', 724: 'pirate, pirate ship', 725: 'pitcher, ewer', 726: "plane, carpenter's plane, woodworking plane", 727: 'planetarium', 728: 'plastic bag', 729: 'plate rack', 730: 'plow, plough', 731: "plunger, plumber's helper", 732: 'Polaroid camera, Polaroid Land camera', 733: 'pole', 734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria', 735: 'poncho', 736: 'pool table, billiard table, snooker table', 737: 'pop bottle, soda bottle', 738: 'pot, flowerpot', 739: "potter's wheel", 740: 'power drill', 741: 'prayer rug, prayer mat', 742: 'printer', 743: 'prison, prison house', 744: 'projectile, missile', 745: 'projector', 746: 'puck, hockey puck', 747: 'punching bag, punch bag, punching ball, punchball', 748: 'purse', 749: 'quill, quill pen', 750: 'quilt, comforter, comfort, puff', 751: 'racer, race car, racing car', 752: 'racket, racquet', 753: 'radiator', 754: 'radio, wireless', 755: 'radio telescope, radio reflector', 756: 'rain barrel', 757: 'recreational vehicle, RV, R.V.', 758: 'reel', 759: 'reflex camera', 760: 'refrigerator, icebox', 761: 'remote control, remote', 762: 'restaurant, eating house, eating place, eatery', 763: 'revolver, six-gun, six-shooter', 764: 'rifle', 765: 'rocking chair, rocker', 766: 'rotisserie', 767: 'rubber eraser, rubber, pencil eraser', 768: 'rugby ball', 769: 'rule, ruler', 770: 'running shoe', 771: 'safe', 772: 'safety pin', 773: 'saltshaker, salt shaker', 774: 'sandal', 775: 'sarong', 776: 'sax, saxophone', 777: 'scabbard', 778: 'scale, weighing machine', 779: 'school bus', 780: 'schooner', 781: 'scoreboard', 782: 'screen, CRT screen', 783: 'screw', 784: 'screwdriver', 785: 'seat belt, seatbelt', 786: 'sewing machine', 787: 'shield, buckler', 788: 'shoe shop, shoe-shop, shoe store', 789: 'shoji', 790: 'shopping basket', 791: 'shopping cart', 792: 'shovel', 793: 'shower cap', 794: 'shower curtain', 795: 'ski', 796: 'ski mask', 797: 'sleeping bag', 798: 'slide rule, slipstick', 799: 'sliding door', 800: 'slot, one-armed bandit', 801: 'snorkel', 802: 'snowmobile', 803: 'snowplow, snowplough', 804: 'soap dispenser', 805: 'soccer ball', 806: 'sock', 807: 'solar dish, solar collector, solar furnace', 808: 'sombrero', 809: 'soup bowl', 810: 'space bar', 811: 'space heater', 812: 'space shuttle', 813: 'spatula', 814: 'speedboat', 815: "spider web, spider's web", 816: 'spindle', 817: 'sports car, sport car', 818: 'spotlight, spot', 819: 'stage', 820: 'steam locomotive', 821: 'steel arch bridge', 822: 'steel drum', 823: 'stethoscope', 824: 'stole', 825: 'stone wall', 826: 'stopwatch, stop watch', 827: 'stove', 828: 'strainer', 829: 'streetcar, tram, tramcar, trolley, trolley car', 830: 'stretcher', 831: 'studio couch, day bed', 832: 'stupa, tope', 833: 'submarine, pigboat, sub, U-boat', 834: 'suit, suit of clothes', 835: 'sundial', 836: 'sunglass', 837: 'sunglasses, dark glasses, shades', 838: 'sunscreen, sunblock, sun blocker', 839: 'suspension bridge', 840: 'swab, swob, mop', 841: 'sweatshirt', 842: 'swimming trunks, bathing trunks', 843: 'swing', 844: 'switch, electric switch, electrical switch', 845: 'syringe', 846: 'table lamp', 847: 'tank, army tank, armored combat vehicle, armoured combat vehicle', 848: 'tape player', 849: 'teapot', 850: 'teddy, teddy bear', 851: 'television, television system', 852: 'tennis ball', 853: 'thatch, thatched roof', 854: 'theater curtain, theatre curtain', 855: 'thimble', 856: 'thresher, thrasher, threshing machine', 857: 'throne', 858: 'tile roof', 859: 'toaster', 860: 'tobacco shop, tobacconist shop, tobacconist', 861: 'toilet seat', 862: 'torch', 863: 'totem pole', 864: 'tow truck, tow car, wrecker', 865: 'toyshop', 866: 'tractor', 867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi', 868: 'tray', 869: 'trench coat', 870: 'tricycle, trike, velocipede', 871: 'trimaran', 872: 'tripod', 873: 'triumphal arch', 874: 'trolleybus, trolley coach, trackless trolley', 875: 'trombone', 876: 'tub, vat', 877: 'turnstile', 878: 'typewriter keyboard', 879: 'umbrella', 880: 'unicycle, monocycle', 881: 'upright, upright piano', 882: 'vacuum, vacuum cleaner', 883: 'vase', 884: 'vault', 885: 'velvet', 886: 'vending machine', 887: 'vestment', 888: 'viaduct', 889: 'violin, fiddle', 890: 'volleyball', 891: 'waffle iron', 892: 'wall clock', 893: 'wallet, billfold, notecase, pocketbook', 894: 'wardrobe, closet, press', 895: 'warplane, military plane', 896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin', 897: 'washer, automatic washer, washing machine', 898: 'water bottle', 899: 'water jug', 900: 'water tower', 901: 'whiskey jug', 902: 'whistle', 903: 'wig', 904: 'window screen', 905: 'window shade', 906: 'Windsor tie', 907: 'wine bottle', 908: 'wing', 909: 'wok', 910: 'wooden spoon', 911: 'wool, woolen, woollen', 912: 'worm fence, snake fence, snake-rail fence, Virginia fence', 913: 'wreck', 914: 'yawl', 915: 'yurt', 916: 'web site, website, internet site, site', 917: 'comic book', 918: 'crossword puzzle, crossword', 919: 'street sign', 920: 'traffic light, traffic signal, stoplight', 921: 'book jacket, dust cover, dust jacket, dust wrapper', 922: 'menu', 923: 'plate', 924: 'guacamole', 925: 'consomme', 926: 'hot pot, hotpot', 927: 'trifle', 928: 'ice cream, icecream', 929: 'ice lolly, lolly, lollipop, popsicle', 930: 'French loaf', 931: 'bagel, beigel', 932: 'pretzel', 933: 'cheeseburger', 934: 'hotdog, hot dog, red hot', 935: 'mashed potato', 936: 'head cabbage', 937: 'broccoli', 938: 'cauliflower', 939: 'zucchini, courgette', 940: 'spaghetti squash', 941: 'acorn squash', 942: 'butternut squash', 943: 'cucumber, cuke', 944: 'artichoke, globe artichoke', 945: 'bell pepper', 946: 'cardoon', 947: 'mushroom', 948: 'Granny Smith', 949: 'strawberry', 950: 'orange', 951: 'lemon', 952: 'fig', 953: 'pineapple, ananas', 954: 'banana', 955: 'jackfruit, jak, jack', 956: 'custard apple', 957: 'pomegranate', 958: 'hay', 959: 'carbonara', 960: 'chocolate sauce, chocolate syrup', 961: 'dough', 962: 'meat loaf, meatloaf', 963: 'pizza, pizza pie', 964: 'potpie', 965: 'burrito', 966: 'red wine', 967: 'espresso', 968: 'cup', 969: 'eggnog', 970: 'alp', 971: 'bubble', 972: 'cliff, drop, drop-off', 973: 'coral reef', 974: 'geyser', 975: 'lakeside, lakeshore', 976: 'promontory, headland, head, foreland', 977: 'sandbar, sand bar', 978: 'seashore, coast, seacoast, sea-coast', 979: 'valley, vale', 980: 'volcano', 981: 'ballplayer, baseball player', 982: 'groom, bridegroom', 983: 'scuba diver', 984: 'rapeseed', 985: 'daisy', 986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", 987: 'corn', 988: 'acorn', 989: 'hip, rose hip, rosehip', 990: 'buckeye, horse chestnut, conker', 991: 'coral fungus', 992: 'agaric', 993: 'gyromitra', 994: 'stinkhorn, carrion fungus', 995: 'earthstar', 996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa', 997: 'bolete', 998: 'ear, spike, capitulum', 999: 'toilet tissue, toilet paper, bathroom tissue'}
astmt-master
fblib/util/db_info/imagenet_categ.py
astmt-master
fblib/util/db_info/__init__.py
astmt-master
fblib/util/model_resources/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch # ---- Public functions def compute_gflops(net, in_shape=(1, 3, 224, 224), tasks=None): net = add_flops_counting_methods(net) net = net.cuda().train() net.start_flops_count() inputs = torch.rand(in_shape).requires_grad_().cuda() if not tasks: _ = net(inputs) else: _ = net.forward(inputs, tasks) gflops = net.compute_average_flops_cost() / 1e9 / 2 return gflops def add_flops_counting_methods(net_main_module): """Adds flops counting functions to an existing model. After that the flops count should be activated and the model should be run on an input image. Example: fcn = add_flops_counting_methods(fcn) fcn = fcn.cuda().train() fcn.start_flops_count() _ = fcn(batch) fcn.compute_average_flops_cost() / 1e9 / 2 # Result in GFLOPs per image in batch Important: dividing by 2 only works for resnet models -- see below for the details of flops computation. Attention: we are counting multiply-add as two flops in this work, because in most resnet models convolutions are bias-free (BN layers act as bias there) and it makes sense to count muliply and add as separate flops therefore. This is why in the above example we divide by 2 in order to be consistent with most modern benchmarks. For example in "Spatially Adaptive Computation Time for Residual Networks" by Figurnov et al multiply-add was counted as two flops. This module computes the average flops which is necessary for dynamic networks which have different number of executed layers. For static networks it is enough to run the network once and get statistics (above example). Implementation: The module works by adding batch_count to the main module which tracks the sum of all batch sizes that were run through the network. Also each convolutional layer of the network tracks the overall number of flops performed. The parameters are updated with the help of registered hook-functions which are being called each time the respective layer is executed. Parameters ---------- net_main_module : torch.nn.Module Main module containing network Returns ------- net_main_module : torch.nn.Module Updated main module with new methods/attributes that are used to compute flops. """ # adding additional methods to the existing module object, # this is done this way so that each function has access to self object net_main_module.start_flops_count = start_flops_count.__get__(net_main_module) net_main_module.stop_flops_count = stop_flops_count.__get__(net_main_module) net_main_module.reset_flops_count = reset_flops_count.__get__(net_main_module) net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__(net_main_module) net_main_module.reset_flops_count() # Adding varialbles necessary for masked flops computation net_main_module.apply(add_flops_mask_variable_or_reset) return net_main_module def compute_average_flops_cost(self): """ A method that will be available after add_flops_counting_methods() is called on a desired net object. Returns current mean flops consumption per image. """ batches_count = self.__batch_counter__ if batches_count == 0: print('Please divide manually with the batch size') batches_count = 1 flops_sum = 0 for module in self.modules(): if is_supported_instance(module): flops_sum += module.__flops__ return flops_sum / batches_count def start_flops_count(self): """ A method that will be available after add_flops_counting_methods() is called on a desired net object. Activates the computation of mean flops consumption per image. Call it before you run the network. """ add_batch_counter_hook_function(self) self.apply(add_flops_counter_hook_function) def stop_flops_count(self): """ A method that will be available after add_flops_counting_methods() is called on a desired net object. Stops computing the mean flops consumption per image. Call whenever you want to pause the computation. """ remove_batch_counter_hook_function(self) self.apply(remove_flops_counter_hook_function) def reset_flops_count(self): """ A method that will be available after add_flops_counting_methods() is called on a desired net object. Resets statistics computed so far. """ add_batch_counter_variables_or_reset(self) self.apply(add_flops_counter_variable_or_reset) def add_flops_mask(module, mask): def add_flops_mask_func(module): if isinstance(module, torch.nn.Conv2d): module.__mask__ = mask module.apply(add_flops_mask_func) def remove_flops_mask(module): module.apply(add_flops_mask_variable_or_reset) # ---- Internal functions def is_supported_instance(module): if isinstance(module, torch.nn.Conv2d) \ or isinstance(module, torch.nn.Linear) \ or isinstance(module, torch.nn.Upsample): return True return False def empty_flops_counter_hook(module, input, output): module.__flops__ += 0 def conv_flops_counter_hook(conv_module, input, output): # Can have multiple inputs, getting the first one input = input[0] batch_size = input.shape[0] output_height, output_width = output.shape[2:] kernel_height, kernel_width = conv_module.kernel_size in_channels = conv_module.in_channels out_channels = conv_module.out_channels # We count multiply-add as 2 flops if conv_module.groups == 1: # Normal convolution conv_per_position_flops = 2 * kernel_height * kernel_width * in_channels * out_channels else: # Grouped convolution d_in = in_channels // conv_module.groups d_out = out_channels // conv_module.groups conv_per_position_flops = 2 * kernel_height * kernel_width * d_in * d_out * conv_module.groups active_elements_count = batch_size * output_height * output_width if conv_module.__mask__ is not None: # (b, 1, h, w) flops_mask = conv_module.__mask__.expand(batch_size, 1, output_height, output_width) active_elements_count = flops_mask.sum() overall_conv_flops = conv_per_position_flops * active_elements_count bias_flops = 0 if conv_module.bias is not None: bias_flops = out_channels * active_elements_count overall_flops = overall_conv_flops + bias_flops conv_module.__flops__ += overall_flops def upsample_flops_counter_hook(module, input, output): output_size = output[0] batch_size = output_size.shape[0] output_elements_count = batch_size for val in output_size.shape[1:]: output_elements_count *= val module.__flops__ += output_elements_count def linear_flops_counter_hook(module, input, output): input = input[0] batch_size = input.shape[0] module.__flops__ += batch_size * input.shape[1] * output.shape[1] def batch_counter_hook(module, input, output): # Can have multiple inputs, getting the first one input = input[0] # print(input) batch_size = input.shape[0] module.__batch_counter__ += batch_size def add_batch_counter_variables_or_reset(module): module.__batch_counter__ = 0 def add_batch_counter_hook_function(module): if hasattr(module, '__batch_counter_handle__'): return handle = module.register_forward_hook(batch_counter_hook) module.__batch_counter_handle__ = handle def remove_batch_counter_hook_function(module): if hasattr(module, '__batch_counter_handle__'): module.__batch_counter_handle__.remove() del module.__batch_counter_handle__ def add_flops_counter_variable_or_reset(module): if is_supported_instance(module): module.__flops__ = 0 def add_flops_counter_hook_function(module): if is_supported_instance(module): if hasattr(module, '__flops_handle__'): return if isinstance(module, torch.nn.Conv2d): handle = module.register_forward_hook(conv_flops_counter_hook) elif isinstance(module, torch.nn.Linear): handle = module.register_forward_hook(linear_flops_counter_hook) elif isinstance(module, torch.nn.Upsample): handle = module.register_forward_hook(upsample_flops_counter_hook) else: handle = module.register_forward_hook(empty_flops_counter_hook) module.__flops_handle__ = handle def remove_flops_counter_hook_function(module): if is_supported_instance(module): if hasattr(module, '__flops_handle__'): module.__flops_handle__.remove() del module.__flops_handle__ # Also being run in the initialization def add_flops_mask_variable_or_reset(module): if is_supported_instance(module): module.__mask__ = None
astmt-master
fblib/util/model_resources/flops.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad)
astmt-master
fblib/util/model_resources/num_parameters.py
astmt-master
fblib/util/dense_predict/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def lr_poly(base_lr, iter_, max_iter=100, power=0.9): return base_lr * ((1 - float(iter_) / max_iter) ** power) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count
astmt-master
fblib/util/dense_predict/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn def traverse_graph(var): """ Args: var: output Variable """ seen = set() var_lst = [] def add_nodes(var): if var not in seen: if hasattr(var, 'variable'): u = var.variable if isinstance(u, nn.Parameter): var_lst.append(u) seen.add(var) if hasattr(var, 'next_functions'): for u in var.next_functions: if u[0] is not None: add_nodes(u[0]) # handle multiple outputs if isinstance(var, tuple): for v in var: add_nodes(v.grad_fn) else: add_nodes(var.grad_fn) return var_lst def make_closure(loss, net): def closure(): used_vars = traverse_graph(loss) loss.backward() for p in net.parameters(): exists = False for v in used_vars: exists = (p is v) if exists: break if not exists: p.grad = None return loss return closure def make_closure_fast(loss, net): def closure(): used_vars = set(traverse_graph(loss)) loss.backward() for p in net.parameters(): if p not in used_vars: p.grad = None return loss return closure class MWENet(nn.Module): def __init__(self): super(MWENet, self).__init__() self.a = nn.Parameter(torch.rand(1)) self.b = nn.Parameter(torch.rand(1)) self.c = nn.Parameter(torch.rand(1)) def forward_b(self, x): x = self.a * x x = x ** self.b return x def forward_c(self, x): x = self.a * x x = x ** self.c return x def print_params(self, txt='Before'): print('{0}: a: {1:.7f}, b: {2:.7f}, c: {3:.7f}'.format( txt, self.a[0].detach().numpy(), self.b[0].detach().numpy(), self.c[0].detach().numpy())) def perform_first_iter(net, optimizer, x): out_b = net.forward_b(x) out_c = net.forward_c(x) loss = (1 - out_b) + (2 - out_c) optimizer.zero_grad() loss.backward() optimizer.step() def test_default_optimizer(): print('\n Using default optimizer. All parameters should change') x = torch.rand(1, requires_grad=True) net = MWENet() optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.99, weight_decay=0.001) # First backward to get some momentum going perform_first_iter(net, optimizer, x) # Without modified optimizer out_b = net.forward_b(x) loss = (1 - out_b) # Before net.print_params() optimizer.zero_grad() loss.backward() optimizer.step() # After: c must get updated without being part of the graph net.print_params('After ') def test_modified_optimizer(): print('\n Using modified optimizer. parameter c should not change') x = torch.rand(1, requires_grad=True) net = MWENet() optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.99, weight_decay=0.0001) # First backward to get some momentum going perform_first_iter(net, optimizer, x) # With modified optimizer out_b = net.forward_b(x) loss = (1 - out_b) # Before net.print_params() optimizer.zero_grad() optimizer.step(closure=make_closure(loss, net)) # After: c SHOULD NOT get updated because it's not part of the graph net.print_params('After ') if __name__ == '__main__': test_default_optimizer() test_modified_optimizer()
astmt-master
fblib/util/optimizer_mtl/select_used_modules.py
astmt-master
fblib/util/optimizer_mtl/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os from fblib.util.mypath import Path import numpy as np import torch.utils.data as data import cv2 class FSVGTA(data.Dataset): def __init__(self, root=Path.db_root_dir('FSV'), split='test', mini=True, transform=None, retname=True, overfit=False, do_semseg=False, do_albedo=False, do_depth=False, prune_rare_classes=True, ): self.root = root self.transform = transform self.prune = [] if prune_rare_classes: self.prune = [1, 4, 5, 6, 7] self.split = split self.retname = retname # Original Images self.im_ids = [] self.images = [] _image_dir = os.path.join(root, 'gta_' + split) # Semantic segmentation self.do_semseg = do_semseg self.semsegs = [] # Albedo self.do_albedo = do_albedo self.albedos = [] # Depth self.do_depth = do_depth self.depths = [] # train/val/test splits are pre-cut _splits_dir = os.path.join(root, 'gt_sets') print("Initializing dataloader for FSV GTA {} set".format(self.split)) with open(os.path.join(os.path.join(_splits_dir, 'gta_' + self.split + '.txt')), "r") as f: lines = f.read().splitlines() if split == 'test' and mini: lines = lines[0:len(lines):int(len(lines)/5000)] for ii, line in enumerate(lines): # Images _image = os.path.join(_image_dir, line + "_final.webp") # assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) # Semantic Segmentation _semseg = os.path.join(_image_dir, line + "_object_id.png") # assert os.path.isfile(_semseg) self.semsegs.append(_semseg) # Albedo _albedo = os.path.join(_image_dir, line + "_albedo.webp") # assert os.path.isfile(_albedo) self.albedos.append(_albedo) # Depth Estimation _depth = os.path.join(_image_dir, line + "_disparity.webp") # assert os.path.isfile(_depth) self.depths.append(_depth) if self.do_semseg: assert (len(self.images) == len(self.semsegs)) if self.do_albedo: assert (len(self.images) == len(self.albedos)) if self.do_depth: assert (len(self.images) == len(self.depths)) # Uncomment to overfit to one image if overfit: n_of = 64 self.images = self.images[:n_of] self.im_ids = self.im_ids[:n_of] # Display stats print('Number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): # if index == 1102: # print('hi') sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_semseg: _semseg = self._load_semseg(index) if _semseg.shape != _img.shape[:2]: _semseg = cv2.resize(_semseg, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['semseg'] = _semseg if self.do_albedo: _albedo = self._load_albedo(index) if _albedo.shape[:2] != _img.shape[:2]: _depth = cv2.resize(_albedo, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['albedo'] = _albedo if self.do_depth: _depth = self._load_depth(index) if _depth.shape[:2] != _img.shape[:2]: _depth = cv2.resize(_depth, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['depth'] = _depth if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.images) def _load_img(self, index): _img = cv2.imread(self.images[index])[:, :, ::-1].astype(np.float32) return _img def _load_semseg(self, index): _semseg = cv2.imread(self.semsegs[index])[:, :, -1].astype(np.float32) # Prune rare classes if self.prune: uniq = np.unique(_semseg) for cls in self.prune: if cls in uniq: _semseg[_semseg == cls] = 0 _semseg = np.maximum(_semseg - 1, 0) return _semseg def _load_albedo(self, index): _albedo = cv2.imread(self.albedos[index])[:, :, ::-1].astype(np.float32) / 255. return _albedo def _load_depth(self, index): _depth = cv2.imread(self.depths[index]) _depth = (_depth[:, :, 0] * 256 * 256 + _depth[:, :, 1] * 256 + _depth[:, :, 2]).astype(np.float32) / 8192 return _depth def __str__(self): return 'FSV GTA Multitask (split=' + str(self.split) + ')'
astmt-master
fblib/dataloaders/fsv.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import os.path from pycocotools.coco import COCO import torch.utils.data as data from PIL import Image import numpy as np from fblib.util.mypath import Path class CocoCaptions(data.Dataset): """`MS Coco Captions <http://mscoco.org/dataset/#captions-challenge2015>`_ Dataset. Args: root (string): Root directory where images are downloaded to. annFile (string): Path to json annotation file. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.ToTensor`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. Example: .. code:: python import torchvision.datasets as dset import torchvision.transforms as transforms cap = dset.CocoCaptions(root = 'dir where images are', annFile = 'json annotation file', transform=transforms.ToTensor()) print('Number of samples: ', len(cap)) img, target = cap[3] # load 4th sample print("Image Size: ", img.size()) print(target) Output: :: Number of samples: 82783 Image Size: (3L, 427L, 640L) [u'A plane emitting smoke stream flying over a mountain.', u'A plane darts across a bright blue sky behind a mountain covered in snow', u'A plane leaves a contrail above the snowy mountain top.', u'A mountain that has a plane flying overheard in the distance.', u'A mountain view with a plume of smoke in the background'] """ def __init__(self, root, annFile, transform=None, target_transform=None): self.root = os.path.expanduser(root) self.coco = COCO(annFile) self.ids = list(self.coco.imgs.keys()) self.transform = transform self.target_transform = target_transform def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, target). target is a list of captions for the image. """ coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) anns = coco.loadAnns(ann_ids) target = [ann['caption'] for ann in anns] path = coco.loadImgs(img_id)[0]['file_name'] img = Image.open(os.path.join(self.root, path)).convert('RGB') if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.ids) class CocoDetection(data.Dataset): """`MS Coco Captions <http://mscoco.org/dataset/#detections-challenge2016>`_ Dataset. Args: root (string): Root directory where images are downloaded to. annFile (string): Path to json annotation file. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.ToTensor`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ def __init__(self, root, annFile, transform=None, target_transform=None): self.root = root self.coco = COCO(annFile) self.ids = list(self.coco.imgs.keys()) self.transform = transform self.target_transform = target_transform def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``. """ coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) target = coco.loadAnns(ann_ids) path = coco.loadImgs(img_id)[0]['file_name'] img = Image.open(os.path.join(self.root, path)).convert('RGB') if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.ids) class COCOSegmentation(data.Dataset): """`MS Coco Captions <http://mscoco.org/dataset/#detections-challenge2016>`_ Dataset. Args: split (string): Select split of the dataset, eg 'val2014' or 'train2014' area_range (list): Select min and max size of the objects eg [500, float("inf")] pascal_categories (boolean): Select only the categories of pascal db_root (string): Root folder where the coco dataset is stored, folder containing annotation and images folders. transform (callable, optional): A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.ToTensor`` retname (boolean): Return metadata about the sample """ PASCAL_CAT_DICT = {'airplane': 1, 'bicycle': 2, 'bird': 3, 'boat': 4, 'bottle': 5, 'bus': 6, 'car': 7, 'cat': 8, 'chair': 9, 'cow': 10, 'dining table': 11, 'dog': 12, 'horse': 13, 'motorcycle': 14, 'person': 15, 'potted plant': 16, 'sheep': 17, 'couch': 18, 'train': 19, 'tv': 20} def __init__(self, split, area_range=[], only_pascal_categories=False, mask_per_class=True, db_root=Path.db_root_dir('COCO'), n_samples=-1, transform=None, retname=True, overfit=False ): self.split = split self.root = os.path.join(db_root, 'images', split) annFile = os.path.join(db_root, 'annotations', 'instances_' + split + '.json') self.coco = COCO(annFile) self.pascal_cat_name = ['person', 'bird', 'cat', 'cow', 'dog', 'horse', 'sheep', 'airplane', 'bicycle', 'boat', 'bus', 'car', 'motorcycle', 'train', 'bottle', 'chair', 'dining table', 'potted plant', 'couch', 'tv'] self.only_pascal_categories = only_pascal_categories if self.only_pascal_categories: cat_ids = self.coco.getCatIds(catNms=self.pascal_cat_name) else: cat_ids = self.coco.getCatIds() self.img_ids = list(self.coco.imgs.keys()) self.ids = self.coco.getAnnIds(imgIds=self.img_ids, areaRng=area_range, catIds=cat_ids) self.transform = transform self.area_range = area_range self.cat_ids = cat_ids self.mask_per_class = mask_per_class self.retname = retname if self.mask_per_class: self._select_imgs() if n_samples > 0: if self.mask_per_class: self.img_ids = list(self.img_ids)[:n_samples] else: self.ids = self.ids[:n_samples] if overfit: n_of = 64 self.img_ids = list(self.img_ids)[:n_of] # Display stats if self.mask_per_class: print("Number of images: {:d}".format(len(self.img_ids))) else: print('Number of images: {:d}\nNumber of objects: {:d}'.format(len(self.coco.imgs), len(self.ids))) def _select_imgs(self): lst = [] for x in self.img_ids: ids_area = self.coco.getAnnIds(imgIds=x, areaRng=self.area_range, catIds=self.cat_ids) ids = self.coco.getAnnIds(imgIds=x, areaRng=[0, float('Inf')], catIds=self.cat_ids) if ids_area and len(ids) == len(ids_area): lst.append(x) self.img_ids = lst def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``. """ coco = self.coco if self.mask_per_class: img_id = self.img_ids[index] ann_meta = [] for cat_id in self.cat_ids: ids = coco.getAnnIds(imgIds=img_id, catIds=cat_id) ann_meta.append(coco.loadAnns(ids)) cat_id = self.cat_ids else: ann_meta = coco.loadAnns(self.ids[index]) img_id = ann_meta[0]["image_id"] cat_id = ann_meta[0]['category_id'] img_meta = coco.loadImgs(img_id)[0] path = img_meta['file_name'] sample = {} if self.retname: sample['meta'] = {'image': str(path).split('.')[0], 'object': str(self.ids[index]), 'category': cat_id, 'im_size': (img_meta['height'], img_meta['width'])} try: img = np.array(Image.open(os.path.join(self.root, path)).convert('RGB')).astype(np.float32) if self.mask_per_class: target = np.zeros([img.shape[0], img.shape[1]]) for ii in range(len(cat_id)): ann_meta_class = ann_meta[ii] target_tmp = np.zeros([img.shape[0], img.shape[1]]) for ann in ann_meta_class: target_tmp = np.logical_or(target_tmp > 0, np.array(coco.annToMask(ann)) > 0) if self.only_pascal_categories: coco_cat_name = self.coco.cats[self.cat_ids[ii]]['name'] if coco_cat_name in self.pascal_cat_name: target[target_tmp > 0] = self.PASCAL_CAT_DICT[coco_cat_name] else: target[target_tmp > 0] = ii + 1 else: target = np.zeros([img.shape[0], img.shape[1], 1]) for ann in ann_meta: target = np.logical_or(target, np.array(coco.annToMask(ann).reshape([img.shape[0], img.shape[1], 1]))) target = target.astype(np.float32) except ValueError: img = np.zeros((100, 100, 3)) target = np.zeros((100, 100)) print('Error reading image ' + str(path) + ' with object id ' + str(self.ids[index])) sample['image'] = img if self.mask_per_class: sample['semseg'] = target else: sample['gt'] = target if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): if self.mask_per_class: return len(self.img_ids) else: return len(self.ids) def __str__(self): return 'COCOSegmentation(split='+str(self.split)+', area_range='+str(self.area_range) + ')' if __name__ == "__main__": from matplotlib.pyplot import imshow, show import torchvision.transforms as transforms import fblib.dataloaders.custom_transforms as tr transform = transforms.Compose([tr.ToTensor()]) dataset = COCOSegmentation(split='val2017', transform=None, retname=True, area_range=[1000, float("inf")], only_pascal_categories=True, overfit=True) for i in range(len(dataset)): sample = dataset[i] imshow(sample['semseg']) show()
astmt-master
fblib/dataloaders/coco.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch.utils.data as data class CombineIMDBs(data.Dataset): """ Combine two datasets, for example to create VOC and SBD training set """ def __init__(self, dataloaders, excluded=None, repeat=None): self.dataloaders = dataloaders self.excluded = excluded self.im_ids = [] # Combine object lists for dl in dataloaders: for elem in dl.im_ids: if elem not in self.im_ids: self.im_ids.append(elem) # Exclude if excluded: for dl in excluded: for elem in dl.im_ids: if elem in self.im_ids: self.im_ids.remove(elem) if repeat: self.repeat = repeat assert(len(repeat) == len(dataloaders)) else: self.repeat = [1] * len(dataloaders) # Get object pointers self.im_list = [] new_im_ids = [] num_images = 0 for ii, dl in enumerate(dataloaders): for jj, curr_im_id in enumerate(dl.im_ids): if (curr_im_id in self.im_ids) and (curr_im_id not in new_im_ids): for r in range(self.repeat[ii]): new_im_ids.append(curr_im_id) self.im_list.append({'db_ii': ii, 'im_ii': jj}) num_images += 1 self.im_ids = new_im_ids print('Combined number of images: {:d}\n'.format(num_images)) def __getitem__(self, index): _db_ii = self.im_list[index]["db_ii"] _im_ii = self.im_list[index]['im_ii'] # print("db_id: {}, im_id: {}".format(_db_ii, _im_ii)) sample = self.dataloaders[_db_ii].__getitem__(_im_ii) if 'meta' in sample.keys(): sample['meta']['db'] = str(self.dataloaders[_db_ii]) return sample def __len__(self): return len(self.im_ids) def __str__(self): include_db = [str(db) for db in self.dataloaders] exclude_db = [str(db) for db in self.excluded] return 'Included datasets:'+str(include_db)+'\n'+'Excluded datasets:'+str(exclude_db) if __name__ == '__main__': from matplotlib import pyplot as plt import fblib.dataloaders as dataloaders pascal_train = dataloaders.VOC12(split='train', do_semseg=True) sbd = dataloaders.SBD(split=['train', 'val'], do_semseg=True) pascal_val = dataloaders.VOC12(split='val', do_semseg=True) dataset = CombineIMDBs([pascal_train, sbd], excluded=[pascal_val]) for i, sample in enumerate(dataset): plt.imshow(sample['image']/255.) plt.show() plt.imshow(sample['semseg']) plt.show()
astmt-master
fblib/dataloaders/combine_im_dbs.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import tarfile import cv2 import numpy as np import torch.utils.data as data from six.moves import urllib from fblib.util.mypath import Path class MSRA(data.Dataset): """ MSRA10k dataset for Saliency Estimation """ URL = 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL/MSRA10K.tgz' FILE = 'MSRA10K.tgz' def __init__(self, root=Path.db_root_dir('MSRA10K'), download=True, split='trainval', transform=None, retname=True, overfit=False): if download: self._download() self.transform = transform self.retname = retname self.root = root self.gt_dir = os.path.join(self.root, 'gt') self.image_dir = os.path.join(self.root, 'Imgs') _splits_dir = os.path.join(self.root, 'gt_sets') self.split = split if isinstance(self.split, str): self.split = [self.split] self.images = [] self.gts = [] self.im_ids = [] for sp in self.split: with open(os.path.join(os.path.join(_splits_dir, sp + '.txt')), "r") as f: lines = f.readlines() for line in lines: line = line.strip() _image = os.path.join(self.image_dir, line + ".jpg") _gt = os.path.join(self.gt_dir, line + ".png") assert os.path.isfile(_image) assert os.path.isfile(_gt) self.im_ids.append(line) self.images.append(_image) self.gts.append(_gt) assert (len(self.images) == len(self.gts) == len(self.im_ids)) if overfit: n_of = 64 self.images = self.images[:n_of] self.im_ids = self.im_ids[:n_of] # Display stats print('Number of images: {:d}'.format(len(self.im_ids))) def __getitem__(self, index): sample = {} _img = self._load_img(index) sample['image'] = _img _sal = self._load_sal(index) sample['sal'] = _sal if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.im_ids) def _load_img(self, index): # Read Image _img = cv2.imread(self.images[index])[:, :, ::-1].astype(np.float32) return _img def _load_sal(self, index): # Read Target object _gt = cv2.imread(self.gts[index], flags=0).astype(np.float32) / 255. return _gt def _download(self): _fpath = os.path.join(Path.db_root_dir(), self.FILE) if os.path.isfile(_fpath): print('Files already downloaded') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.db_root_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def __str__(self): return 'MSRA(split=' + str(self.split) + ')' if __name__ == '__main__': from matplotlib import pyplot as plt dataset = MSRA() for i, sample in enumerate(dataset): plt.imshow(sample['image']/255) plt.show() plt.imshow(sample['sal']) plt.show()
astmt-master
fblib/dataloaders/msra10k.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import tarfile import json import cv2 import numpy as np import scipy.io as sio import torch.utils.data as data from PIL import Image from skimage.morphology import thin from six.moves import urllib from fblib import PROJECT_ROOT_DIR from fblib.util.mypath import Path class PASCALContext(data.Dataset): """ PASCAL-Context dataset, for multiple tasks Included tasks: 1. Edge detection, 2. Semantic Segmentation, 3. Human Part Segmentation, 4. Surface Normal prediction (distilled), 5. Saliency (distilled) """ URL = 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL/PASCAL_MT.tgz' FILE = 'PASCAL_MT.tgz' HUMAN_PART = {1: {'hair': 1, 'head': 1, 'lear': 1, 'lebrow': 1, 'leye': 1, 'lfoot': 1, 'lhand': 1, 'llarm': 1, 'llleg': 1, 'luarm': 1, 'luleg': 1, 'mouth': 1, 'neck': 1, 'nose': 1, 'rear': 1, 'rebrow': 1, 'reye': 1, 'rfoot': 1, 'rhand': 1, 'rlarm': 1, 'rlleg': 1, 'ruarm': 1, 'ruleg': 1, 'torso': 1}, 4: {'hair': 1, 'head': 1, 'lear': 1, 'lebrow': 1, 'leye': 1, 'lfoot': 4, 'lhand': 3, 'llarm': 3, 'llleg': 4, 'luarm': 3, 'luleg': 4, 'mouth': 1, 'neck': 2, 'nose': 1, 'rear': 1, 'rebrow': 1, 'reye': 1, 'rfoot': 4, 'rhand': 3, 'rlarm': 3, 'rlleg': 4, 'ruarm': 3, 'ruleg': 4, 'torso': 2}, 6: {'hair': 1, 'head': 1, 'lear': 1, 'lebrow': 1, 'leye': 1, 'lfoot': 6, 'lhand': 4, 'llarm': 4, 'llleg': 6, 'luarm': 3, 'luleg': 5, 'mouth': 1, 'neck': 2, 'nose': 1, 'rear': 1, 'rebrow': 1, 'reye': 1, 'rfoot': 6, 'rhand': 4, 'rlarm': 4, 'rlleg': 6, 'ruarm': 3, 'ruleg': 5, 'torso': 2}, 14: {'hair': 1, 'head': 1, 'lear': 1, 'lebrow': 1, 'leye': 1, 'lfoot': 14, 'lhand': 8, 'llarm': 7, 'llleg': 13, 'luarm': 6, 'luleg': 12, 'mouth': 1, 'neck': 2, 'nose': 1, 'rear': 1, 'rebrow': 1, 'reye': 1, 'rfoot': 11, 'rhand': 5, 'rlarm': 4, 'rlleg': 10, 'ruarm': 3, 'ruleg': 9, 'torso': 2} } VOC_CATEGORY_NAMES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] CONTEXT_CATEGORY_LABELS = [0, 2, 23, 25, 31, 34, 45, 59, 65, 72, 98, 397, 113, 207, 258, 284, 308, 347, 368, 416, 427] def __init__(self, root=Path.db_root_dir('PASCAL_MT'), download=True, split='val', transform=None, area_thres=0, retname=True, overfit=False, do_edge=True, do_human_parts=False, do_semseg=False, do_normals=False, do_sal=False, num_human_parts=6, ): self.root = root if download: self._download() image_dir = os.path.join(self.root, 'JPEGImages') self.transform = transform if isinstance(split, str): self.split = [split] else: split.sort() self.split = split self.area_thres = area_thres self.retname = retname # Edge Detection self.do_edge = do_edge self.edges = [] edge_gt_dir = os.path.join(self.root, 'pascal-context', 'trainval') # Semantic Segmentation self.do_semseg = do_semseg self.semsegs = [] # Human Part Segmentation self.do_human_parts = do_human_parts part_gt_dir = os.path.join(self.root, 'human_parts') self.parts = [] self.human_parts_category = 15 self.cat_part = json.load(open(os.path.join(os.path.dirname(__file__), '../util/db_info/pascal_part.json'), 'r')) self.cat_part["15"] = self.HUMAN_PART[num_human_parts] self.parts_file = os.path.join(os.path.join(self.root, 'ImageSets', 'Parts'), ''.join(self.split) + '.txt') # Surface Normal Estimation self.do_normals = do_normals _normal_gt_dir = os.path.join(self.root, 'normals_distill') self.normals = [] if self.do_normals: with open(os.path.join(PROJECT_ROOT_DIR, 'util/db_info/nyu_classes.json')) as f: cls_nyu = json.load(f) with open(os.path.join(PROJECT_ROOT_DIR, 'util/db_info/context_classes.json')) as f: cls_context = json.load(f) self.normals_valid_classes = [] for cl_nyu in cls_nyu: if cl_nyu in cls_context and cl_nyu != 'unknown': self.normals_valid_classes.append(cls_context[cl_nyu]) # Custom additions due to incompatibilities self.normals_valid_classes.append(cls_context['tvmonitor']) # Saliency self.do_sal = do_sal _sal_gt_dir = os.path.join(self.root, 'sal_distill') self.sals = [] # train/val/test splits are pre-cut _splits_dir = os.path.join(self.root, 'ImageSets', 'Context') self.im_ids = [] self.images = [] print("Initializing dataloader for PASCAL {} set".format(''.join(self.split))) for splt in self.split: with open(os.path.join(os.path.join(_splits_dir, splt + '.txt')), "r") as f: lines = f.read().splitlines() for ii, line in enumerate(lines): # Images _image = os.path.join(image_dir, line + ".jpg") assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) # Edges _edge = os.path.join(edge_gt_dir, line + ".mat") assert os.path.isfile(_edge) self.edges.append(_edge) # Semantic Segmentation _semseg = self._get_semseg_fname(line) assert os.path.isfile(_semseg) self.semsegs.append(_semseg) # Human Parts _human_part = os.path.join(self.root, part_gt_dir, line + ".mat") assert os.path.isfile(_human_part) self.parts.append(_human_part) _normal = os.path.join(self.root, _normal_gt_dir, line + ".png") assert os.path.isfile(_normal) self.normals.append(_normal) _sal = os.path.join(self.root, _sal_gt_dir, line + ".png") assert os.path.isfile(_sal) self.sals.append(_sal) if self.do_edge: assert (len(self.images) == len(self.edges)) if self.do_human_parts: assert (len(self.images) == len(self.parts)) if self.do_semseg: assert (len(self.images) == len(self.semsegs)) if self.do_normals: assert (len(self.images) == len(self.normals)) if self.do_sal: assert (len(self.images) == len(self.sals)) if not self._check_preprocess_parts(): print('Pre-processing PASCAL dataset for human parts, this will take long, but will be done only once.') self._preprocess_parts() if self.do_human_parts: # Find images which have human parts self.has_human_parts = [] for ii in range(len(self.im_ids)): if self.human_parts_category in self.part_obj_dict[self.im_ids[ii]]: self.has_human_parts.append(1) else: self.has_human_parts.append(0) # If the other tasks are disabled, select only the images that contain human parts, to allow batching if not self.do_edge and not self.do_semseg and not self.do_sal and not self.do_normals: print('Ignoring images that do not contain human parts') for i in range(len(self.parts) - 1, -1, -1): if self.has_human_parts[i] == 0: del self.im_ids[i] del self.images[i] del self.parts[i] del self.has_human_parts[i] print('Number of images with human parts: {:d}'.format(np.sum(self.has_human_parts))) # Overfit to n_of images if overfit: n_of = 64 self.images = self.images[:n_of] self.im_ids = self.im_ids[:n_of] if self.do_edge: self.edges = self.edges[:n_of] if self.do_semseg: self.semsegs = self.semsegs[:n_of] if self.do_human_parts: self.parts = self.parts[:n_of] if self.do_normals: self.normals = self.normals[:n_of] if self.do_sal: self.sals = self.sals[:n_of] # Display stats print('Number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_edge: _edge = self._load_edge(index) if _edge.shape != _img.shape[:2]: _edge = cv2.resize(_edge, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['edge'] = _edge if self.do_human_parts: _human_parts, _ = self._load_human_parts(index) if _human_parts.shape != _img.shape[:2]: _human_parts = cv2.resize(_human_parts, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['human_parts'] = _human_parts if self.do_semseg: _semseg = self._load_semseg(index) if _semseg.shape != _img.shape[:2]: _semseg = cv2.resize(_semseg, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['semseg'] = _semseg if self.do_normals: _normals = self._load_normals_distilled(index) if _normals.shape[:2] != _img.shape[:2]: _normals = cv2.resize(_normals, _img.shape[:2][::-1], interpolation=cv2.INTER_CUBIC) sample['normals'] = _normals if self.do_sal: _sal = self._load_sal_distilled(index) if _sal.shape[:2] != _img.shape[:2]: _sal = cv2.resize(_sal, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['sal'] = _sal if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.images) def _load_img(self, index): _img = np.array(Image.open(self.images[index]).convert('RGB')).astype(np.float32) return _img def _load_edge(self, index): # Read Target object _tmp = sio.loadmat(self.edges[index]) _edge = cv2.Laplacian(_tmp['LabelMap'], cv2.CV_64F) _edge = thin(np.abs(_edge) > 0).astype(np.float32) return _edge def _load_human_parts(self, index): if self.has_human_parts[index]: # Read Target object _part_mat = sio.loadmat(self.parts[index])['anno'][0][0][1][0] _inst_mask = _target = None for _obj_ii in range(len(_part_mat)): has_human = _part_mat[_obj_ii][1][0][0] == self.human_parts_category has_parts = len(_part_mat[_obj_ii][3]) != 0 if has_human and has_parts: if _inst_mask is None: _inst_mask = _part_mat[_obj_ii][2].astype(np.float32) _target = np.zeros(_inst_mask.shape) else: _inst_mask = np.maximum(_inst_mask, _part_mat[_obj_ii][2].astype(np.float32)) n_parts = len(_part_mat[_obj_ii][3][0]) for part_i in range(n_parts): cat_part = str(_part_mat[_obj_ii][3][0][part_i][0][0]) mask_id = self.cat_part[str(self.human_parts_category)][cat_part] mask = _part_mat[_obj_ii][3][0][part_i][1].astype(bool) _target[mask] = mask_id if _target is not None: _target, _inst_mask = _target.astype(np.float32), _inst_mask.astype(np.float32) else: _target, _inst_mask = np.zeros((512, 512), dtype=np.float32), np.zeros((512, 512), dtype=np.float32) return _target, _inst_mask else: return np.zeros((512, 512), dtype=np.float32), np.zeros((512, 512), dtype=np.float32) def _load_semseg(self, index): _semseg = np.array(Image.open(self.semsegs[index])).astype(np.float32) return _semseg def _load_normals_distilled(self, index): _tmp = np.array(Image.open(self.normals[index])).astype(np.float32) _tmp = 2.0 * _tmp / 255.0 - 1.0 labels = sio.loadmat(os.path.join(self.root, 'pascal-context', 'trainval', self.im_ids[index] + '.mat')) labels = labels['LabelMap'] _normals = np.zeros(_tmp.shape, dtype=np.float) for x in np.unique(labels): if x in self.normals_valid_classes: _normals[labels == x, :] = _tmp[labels == x, :] return _normals def _load_sal_distilled(self, index): _sal = np.array(Image.open(self.sals[index])).astype(np.float32) / 255. _sal = (_sal > 0.5).astype(np.float32) return _sal def _get_semseg_fname(self, fname): fname_voc = os.path.join(self.root, 'semseg', 'VOC12', fname + '.png') fname_context = os.path.join(self.root, 'semseg', 'pascal-context', fname + '.png') if os.path.isfile(fname_voc): seg = fname_voc elif os.path.isfile(fname_context): seg = fname_context else: seg = None print('Segmentation for im: {} was not found'.format(fname)) return seg def _check_preprocess_parts(self): _obj_list_file = self.parts_file if not os.path.isfile(_obj_list_file): return False else: self.part_obj_dict = json.load(open(_obj_list_file, 'r')) return list(np.sort([str(x) for x in self.part_obj_dict.keys()])) == list(np.sort(self.im_ids)) def _preprocess_parts(self): self.part_obj_dict = {} obj_counter = 0 for ii in range(len(self.im_ids)): # Read object masks and get number of objects if ii % 100 == 0: print("Processing image: {}".format(ii)) part_mat = sio.loadmat( os.path.join(self.root, 'human_parts', '{}.mat'.format(self.im_ids[ii]))) n_obj = len(part_mat['anno'][0][0][1][0]) # Get the categories from these objects _cat_ids = [] for jj in range(n_obj): obj_area = np.sum(part_mat['anno'][0][0][1][0][jj][2]) obj_cat = int(part_mat['anno'][0][0][1][0][jj][1]) if obj_area > self.area_thres: _cat_ids.append(int(part_mat['anno'][0][0][1][0][jj][1])) else: _cat_ids.append(-1) obj_counter += 1 self.part_obj_dict[self.im_ids[ii]] = _cat_ids with open(self.parts_file, 'w') as outfile: outfile.write('{{\n\t"{:s}": {:s}'.format(self.im_ids[0], json.dumps(self.part_obj_dict[self.im_ids[0]]))) for ii in range(1, len(self.im_ids)): outfile.write( ',\n\t"{:s}": {:s}'.format(self.im_ids[ii], json.dumps(self.part_obj_dict[self.im_ids[ii]]))) outfile.write('\n}\n') print('Preprocessing for parts finished') def _download(self): _fpath = os.path.join(Path.db_root_dir(), self.FILE) if os.path.isfile(_fpath): print('Files already downloaded') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.db_root_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def __str__(self): return 'PASCAL_MT(split=' + str(self.split) + ')' def test_all(): import matplotlib.pyplot as plt import torch import fblib.dataloaders.custom_transforms as tr from torchvision import transforms from fblib.util.custom_collate import collate_mil transform = transforms.Compose([tr.RandomHorizontalFlip(), tr.ScaleNRotate(rots=(-90, 90), scales=(1., 1.), flagvals={'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'human_parts': cv2.INTER_NEAREST, 'normals': cv2.INTER_CUBIC, 'sal': cv2.INTER_NEAREST}), tr.FixedResize(resolutions={'image': (512, 512), 'edge': (512, 512), 'semseg': (512, 512), 'human_parts': (512, 512), 'normals': (512, 512), 'sal': (512, 512)}, flagvals={'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'human_parts': cv2.INTER_NEAREST, 'normals': cv2.INTER_CUBIC, 'sal': cv2.INTER_NEAREST}), tr.AddIgnoreRegions(), tr.ToTensor()]) dataset = PASCALContext(split='train', transform=transform, retname=True, do_edge=True, do_semseg=True, do_human_parts=True, do_normals=True, do_sal=True) dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=False, num_workers=0) # plt.ion() for i, sample in enumerate(dataloader): print(i) for j in range(sample['image'].shape[0]): f, ax_arr = plt.subplots(2, 3) for k in range(len(ax_arr)): for l in range(len(ax_arr[k])): ax_arr[k][l].cla() ax_arr[0][0].set_title('Input Image') ax_arr[0][0].imshow(np.transpose(sample['image'][j], (1, 2, 0))/255.) ax_arr[0][1].set_title('Edge') ax_arr[0][1].imshow(np.transpose(sample['edge'][j], (1, 2, 0))[:, :, 0]) ax_arr[0][2].set_title('Semantic Segmentation') ax_arr[0][2].imshow(np.transpose(sample['semseg'][j], (1, 2, 0))[:, :, 0] / 20.) ax_arr[1][0].set_title('Human Part Segmentation') ax_arr[1][0].imshow(np.transpose(sample['human_parts'][j], (1, 2, 0))[:, :, 0] / 6.) ax_arr[1][1].set_title('Surface Normals') ax_arr[1][1].imshow(np.transpose(sample['normals'][j], (1, 2, 0))) ax_arr[1][2].set_title('Saliency') ax_arr[1][2].imshow(np.transpose(sample['sal'][j], (1, 2, 0))[:, :, 0]) plt.show() break if __name__ == '__main__': test_all()
astmt-master
fblib/dataloaders/pascal_context.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import tarfile import cv2 from PIL import Image import numpy as np import torch.utils.data as data import scipy.io as sio from six.moves import urllib from fblib.util.mypath import Path class NYUD_MT(data.Dataset): """ NYUD dataset for multi-task learning. Includes edge detection, semantic segmentation, surface normals, and depth prediction """ URL = 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL/NYUD_MT.tgz' FILE = 'NYUD_MT.tgz' def __init__(self, root=Path.db_root_dir('NYUD_MT'), download=True, split='val', transform=None, retname=True, overfit=False, do_edge=True, do_semseg=False, do_normals=False, do_depth=False, ): self.root = root if download: self._download() self.transform = transform if isinstance(split, str): self.split = [split] else: split.sort() self.split = split self.retname = retname # Original Images self.im_ids = [] self.images = [] _image_dir = os.path.join(root, 'images') # Edge Detection self.do_edge = do_edge self.edges = [] _edge_gt_dir = os.path.join(root, 'edge') # Semantic segmentation self.do_semseg = do_semseg self.semsegs = [] _semseg_gt_dir = os.path.join(root, 'segmentation') # Surface Normals self.do_normals = do_normals self.normals = [] _normal_gt_dir = os.path.join(root, 'normals') # Depth self.do_depth = do_depth self.depths = [] _depth_gt_dir = os.path.join(root, 'depth') # train/val/test splits are pre-cut _splits_dir = os.path.join(root, 'gt_sets') print('Initializing dataloader for NYUD {} set'.format(''.join(self.split))) for splt in self.split: with open(os.path.join(os.path.join(_splits_dir, splt + '.txt')), 'r') as f: lines = f.read().splitlines() for ii, line in enumerate(lines): # Images _image = os.path.join(_image_dir, line + '.jpg') assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) # Edges _edge = os.path.join(self.root, _edge_gt_dir, line + '.png') assert os.path.isfile(_edge) self.edges.append(_edge) # Semantic Segmentation _semseg = os.path.join(self.root, _semseg_gt_dir, line + '.mat') assert os.path.isfile(_semseg) self.semsegs.append(_semseg) _normal = os.path.join(self.root, _normal_gt_dir, line + '.jpg') assert os.path.isfile(_normal) self.normals.append(_normal) _depth = os.path.join(self.root, _depth_gt_dir, line + '.mat') assert os.path.isfile(_depth) self.depths.append(_depth) if self.do_edge: assert (len(self.images) == len(self.edges)) if self.do_semseg: assert (len(self.images) == len(self.semsegs)) if self.do_normals: assert (len(self.images) == len(self.normals)) if self.do_depth: assert (len(self.images) == len(self.depths)) # Uncomment to overfit to one image if overfit: n_of = 64 self.images = self.images[:n_of] self.im_ids = self.im_ids[:n_of] # Display stats print('Number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): # if index == 1102: # print('hi') sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_edge: _edge = self._load_edge(index) if _edge.shape != _img.shape[:2]: _edge = cv2.resize(_edge, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['edge'] = _edge if self.do_semseg: _semseg = self._load_semseg(index) if _semseg.shape != _img.shape[:2]: _semseg = cv2.resize(_semseg, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['semseg'] = _semseg if self.do_normals: _normals = self._load_normals(index) if _normals.shape[:2] != _img.shape[:2]: _normals = cv2.resize(_normals, _img.shape[:2][::-1], interpolation=cv2.INTER_CUBIC) sample['normals'] = _normals if self.do_depth: _depth = self._load_depth(index) if _depth.shape[:2] != _img.shape[:2]: _depth = cv2.resize(_depth, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['depth'] = _depth if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.images) def _load_img(self, index): _img = np.array(Image.open(self.images[index]).convert('RGB')).astype(np.float32) return _img def _load_edge(self, index): _edge = np.array(Image.open(self.edges[index])).astype(np.float32) / 255. return _edge def _load_semseg(self, index): # Note: Related works are ignoring the background class (40-way classification), such as: # _semseg = np.array(sio.loadmat(self.semsegs[index])['segmentation']).astype(np.float32) - 1 # _semseg[_semseg == -1] = 255 # However, all experiments of ASTMT were conducted by using 41-way classification: _semseg = np.array(sio.loadmat(self.semsegs[index])['segmentation']).astype(np.float32) return _semseg def _load_normals(self, index): _tmp = np.array(Image.open(self.normals[index])).astype(np.float32) _normals = 2.0 * _tmp / 255.0 - 1.0 return _normals def _load_depth(self, index): _depth = np.array(sio.loadmat(self.depths[index])['depth']).astype(np.float32) return _depth def _download(self): _fpath = os.path.join(Path.db_root_dir(), self.FILE) if os.path.isfile(_fpath): print('Files already downloaded') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.db_root_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def __str__(self): return 'NYUD Multitask (split=' + str(self.split) + ')' class NYUDRaw(data.Dataset): """ NYUD dataset for Surface Normal and Depth Estimation using NYUD raw data. """ def __init__(self, root=Path.db_root_dir('NYUD_raw'), split='train', transform=None, do_normals=True, do_depth=False, retname=True, overfit=False, ): self.root = root self.transform = transform self.split = split self.retname = retname self.do_normals = do_normals self.do_depth = do_depth # Original Images self.im_ids = [] self.images = [] _image_dir = os.path.join(root, self.split, 'images') _mask_gt_dir = os.path.join(root, self.split, 'masks') # Surface Normals self.normals = [] nrm_ext = '.png' if self.split == 'train' else '.jpg' self.masks = [] _normal_gt_dir = os.path.join(root, self.split, 'normals') # Monocular depth self.depths = [] _depth_gt_dir = os.path.join(root, self.split, 'depth') # train/val/test splits are pre-cut _splits_dir = os.path.join(root, 'gt_sets') print('Initializing dataloader for NYUD Raw, {} set'.format(self.split)) with open(os.path.join(os.path.join(_splits_dir, self.split + '.txt')), 'r') as f: lines = f.read().splitlines() for ii, line in enumerate(lines): # Images _image = os.path.join(_image_dir, line + '.jpg') assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) if self.do_normals: # Normals _normal = os.path.join(self.root, _normal_gt_dir, line + nrm_ext) assert os.path.isfile(_normal) self.normals.append(_normal) if self.do_depth: # Depth _depth = os.path.join(self.root, _depth_gt_dir, line + '.mat') assert os.path.isfile(_depth) self.depths.append(_depth) if self.split == 'train': # Masks (only available for train data) _mask = os.path.join(self.root, _mask_gt_dir, line + '.png') assert os.path.isfile(_mask) self.masks.append(_mask) if self.do_normals: assert(len(self.images) == len(self.normals)) if self.do_depth: assert(len(self.images) == len(self.depths)) if self.split == 'train': assert(len(self.images) == len(self.masks)) # uncomment to overfit to one image if overfit: n_of = 64 self.images = self.images[:n_of] self.im_ids = self.im_ids[:n_of] # display stats print('number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_normals: _normals = self._load_normals(index) sample['normals'] = _normals if self.do_depth: _depth = self._load_depth(index) sample['depth'] = _depth if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def _load_img(self, index): _img = cv2.imread(self.images[index])[:, :, ::-1].astype(np.float32) return _img def _load_normals(self, index): _tmp = cv2.imread(self.normals[index])[:, :, ::-1].astype(np.float32) _normals = 2.0 * _tmp / 255.0 - 1.0 if self.split == 'train': _mask = cv2.imread(self.masks[index], 0) _normals[_mask == 0, :] = 0 return _normals def _load_depth(self, index): _depth = np.array(sio.loadmat(self.depths[index])['depth']).astype(np.float32) if self.split == 'train': _mask = cv2.imread(self.masks[index], 0) _depth[_mask == 0] = 0 return _depth def __len__(self): return len(self.images) def __str__(self): return 'NYUD-v2 Raw,split=' + str(self.split) + ')' def test_mt(): transform = transforms.Compose([tr.RandomHorizontalFlip(), tr.ScaleNRotate(rots=(-90, 90), scales=(1., 1.), flagvals={'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'normals': cv2.INTER_LINEAR, 'depth': cv2.INTER_LINEAR}), tr.FixedResize(resolutions={'image': (512, 512), 'edge': (512, 512), 'semseg': (512, 512), 'normals': (512, 512), 'depth': (512, 512)}, flagvals={'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'normals': cv2.INTER_LINEAR, 'depth': cv2.INTER_LINEAR}), tr.AddIgnoreRegions(), tr.ToTensor()]) dataset = NYUD_MT(split='train', transform=transform, retname=True, do_edge=True, do_semseg=True, do_normals=True, do_depth=True) dataloader = torch.utils.data.DataLoader(dataset, batch_size=5, shuffle=False, num_workers=5) for i, sample in enumerate(dataloader): imshow(sample['image'][0, 0]) show() imshow(sample['edge'][0, 0]) show() imshow(sample['semseg'][0, 0]) show() imshow(sample['normals'][0, 0]) show() imshow(sample['depth'][0, 0]) show() if __name__ == '__main__': from matplotlib.pyplot import imshow, show import torch import fblib.dataloaders.custom_transforms as tr from torchvision import transforms test_mt()
astmt-master
fblib/dataloaders/nyud.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy.random as random import numpy as np import torch import cv2 import math import fblib.util.helpers as helpers class ScaleNRotate(object): """Scale (zoom-in, zoom-out) and Rotate the image and the ground truth. Args: two possibilities: 1. rots (tuple): (minimum, maximum) rotation angle scales (tuple): (minimum, maximum) scale 2. rots [list]: list of fixed possible rotation angles scales [list]: list of fixed possible scales """ def __init__(self, rots=(-30, 30), scales=(.75, 1.25), semseg=False, flagvals=None): assert (isinstance(rots, type(scales))) self.rots = rots self.scales = scales self.semseg = semseg self.flagvals = flagvals def __call__(self, sample): if type(self.rots) == tuple: # Continuous range of scales and rotations rot = (self.rots[1] - self.rots[0]) * random.random() - \ (self.rots[1] - self.rots[0])/2 sc = (self.scales[1] - self.scales[0]) * random.random() - \ (self.scales[1] - self.scales[0]) / 2 + 1 elif type(self.rots) == list: # Fixed range of scales and rotations rot = self.rots[random.randint(0, len(self.rots))] sc = self.scales[random.randint(0, len(self.scales))] for elem in sample.keys(): if 'meta' in elem: continue tmp = sample[elem] h, w = tmp.shape[:2] center = (w / 2, h / 2) assert(center != 0) # Strange behaviour warpAffine M = cv2.getRotationMatrix2D(center, rot, sc) if self.flagvals is None: if ((tmp == 0) | (tmp == 1)).all(): flagval = cv2.INTER_NEAREST elif 'gt' in elem and self.semseg: flagval = cv2.INTER_NEAREST else: flagval = cv2.INTER_CUBIC else: flagval = self.flagvals[elem] if elem == 'normals': # Rotate Normals properly in_plane = np.arctan2(tmp[:, :, 0], tmp[:, :, 1]) nrm_0 = np.sqrt(tmp[:, :, 0] ** 2 + tmp[:, :, 1] ** 2) rot_rad= rot * 2 * math.pi / 360 tmp[:, :, 0] = np.sin(in_plane + rot_rad) * nrm_0 tmp[:, :, 1] = np.cos(in_plane + rot_rad) * nrm_0 tmp = cv2.warpAffine(tmp, M, (w, h), flags=flagval) sample[elem] = tmp return sample def __str__(self): return 'ScaleNRotate:(rot='+str(self.rots)+',scale='+str(self.scales)+')' class FixedResize(object): """Resize the image and the ground truth to specified resolution. Args: resolutions (dict): the list of resolutions """ def __init__(self, resolutions=None, flagvals=None): self.resolutions = resolutions self.flagvals = flagvals if self.flagvals is not None: assert(len(self.resolutions) == len(self.flagvals)) def __call__(self, sample): # Fixed range of scales if self.resolutions is None: return sample elems = list(sample.keys()) for elem in elems: if 'meta' in elem or 'bbox' in elem: continue if elem in self.resolutions: if self.resolutions[elem] is None: continue if isinstance(sample[elem], list): if sample[elem][0].ndim == 3: output_size = np.append(self.resolutions[elem], [3, len(sample[elem])]) else: output_size = np.append(self.resolutions[elem], len(sample[elem])) tmp = sample[elem] sample[elem] = np.zeros(output_size, dtype=np.float32) for ii, crop in enumerate(tmp): if self.flagvals is None: sample[elem][..., ii] = helpers.fixed_resize(crop, self.resolutions[elem]) else: sample[elem][..., ii] = helpers.fixed_resize(crop, self.resolutions[elem], flagval=self.flagvals[elem]) else: if self.flagvals is None: sample[elem] = helpers.fixed_resize(sample[elem], self.resolutions[elem]) else: sample[elem] = helpers.fixed_resize(sample[elem], self.resolutions[elem], flagval=self.flagvals[elem]) if elem == 'normals': N1, N2, N3 = sample[elem][:, :, 0], sample[elem][:, :, 1], sample[elem][:, :, 2] Nn = np.sqrt(N1 ** 2 + N2 ** 2 + N3 ** 2) + np.finfo(np.float32).eps sample[elem][:, :, 0], sample[elem][:, :, 1], sample[elem][:, :, 2] = N1/Nn, N2/Nn, N3/Nn else: del sample[elem] return sample def __str__(self): return 'FixedResize:'+str(self.resolutions) class RandomResize(object): """Randomly resize the image and the ground truth to specified scales. Args: scales (list): the list of scales """ def __init__(self, scales=[0.5, 0.8, 1]): self.scales = scales def __call__(self, sample): # Fixed range of scales sc = self.scales[random.randint(0, len(self.scales))] for elem in sample.keys(): if 'meta' in elem or 'bbox' in elem: continue tmp = sample[elem] if ((tmp == 0) | (tmp == 1)).all(): flagval = cv2.INTER_NEAREST else: flagval = cv2.INTER_CUBIC tmp = cv2.resize(tmp, None, fx=sc, fy=sc, interpolation=flagval) sample[elem] = tmp return sample def __str__(self): return 'RandomResize:'+str(self.scales) class FixedResizeRatio(object): """Fixed resize for the image and the ground truth to specified scale. Args: scales (float): the scale """ def __init__(self, scale=None, flagvals=None): self.scale = scale self.flagvals = flagvals def __call__(self, sample): for elem in sample.keys(): if 'meta' in elem: continue if elem in self.flagvals: if self.flagvals[elem] is None: continue tmp = sample[elem] tmp = cv2.resize(tmp, None, fx=self.scale, fy=self.scale, interpolation=self.flagvals[elem]) sample[elem] = tmp return sample def __str__(self): return 'FixedResizeRatio: '+str(self.scale) class RandomHorizontalFlip(object): """Horizontally flip the given image and ground truth randomly with a probability of 0.5.""" def __call__(self, sample): if random.random() < 0.5: for elem in sample.keys(): if 'meta' in elem: continue else: tmp = sample[elem] tmp = cv2.flip(tmp, flipCode=1) sample[elem] = tmp if elem == 'normals': sample[elem][:, :, 0] *= -1 return sample def __str__(self): return 'RandomHorizontalFlip' class NormalizeImage(object): """ Return the given elements between 0 and 1 """ def __init__(self, norm_elem='image', clip=False): self.norm_elem = norm_elem self.clip = clip def __call__(self, sample): if isinstance(self.norm_elem, tuple): for elem in self.norm_elem: if np.max(sample[elem]) > 1: sample[elem] /= 255.0 else: if self.clip: sample[self.norm_elem] = np.clip(sample[self.norm_elem], 0, 255) if np.max(sample[self.norm_elem]) > 1: sample[self.norm_elem] /= 255.0 return sample def __str__(self): return 'NormalizeImage' class ToImage(object): """ Return the given elements between 0 and 255 """ def __init__(self, norm_elem='image', custom_max=255.): self.norm_elem = norm_elem self.custom_max = custom_max def __call__(self, sample): if isinstance(self.norm_elem, tuple): for elem in self.norm_elem: tmp = sample[elem] sample[elem] = self.custom_max * (tmp - tmp.min()) / (tmp.max() - tmp.min() + 1e-10) else: tmp = sample[self.norm_elem] sample[self.norm_elem] = self.custom_max * (tmp - tmp.min()) / (tmp.max() - tmp.min() + 1e-10) return sample def __str__(self): return 'NormalizeImage' class AddIgnoreRegions(object): """Add Ignore Regions""" def __call__(self, sample): for elem in sample.keys(): tmp = sample[elem] if elem == 'normals': # Check areas with norm 0 Nn = np.sqrt(tmp[:, :, 0] ** 2 + tmp[:, :, 1] ** 2 + tmp[:, :, 2] ** 2) tmp[Nn == 0, :] = 255. sample[elem] = tmp elif elem == 'human_parts': # Check for images without human part annotations if (tmp == 0).all(): tmp = 255 * np.ones(tmp.shape, dtype=tmp.dtype) sample[elem] = tmp elif elem == 'depth': tmp[tmp == 0] = 255. sample[elem] = tmp return sample class ToTensor(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample): for elem in sample.keys(): if 'meta' in elem: continue elif 'bbox' in elem: tmp = sample[elem] sample[elem] = torch.from_numpy(tmp) continue tmp = sample[elem] if tmp.ndim == 2: tmp = tmp[:, :, np.newaxis] # swap color axis because # numpy image: H x W x C # torch image: C X H X W tmp = tmp.transpose((2, 0, 1)) sample[elem] = torch.from_numpy(tmp.astype(np.float32)) return sample def __str__(self): return 'ToTensor'
astmt-master
fblib/dataloaders/custom_transforms.py
from .bsds import BSDS500 from .coco import COCOSegmentation from .fsv import FSVGTA from .nyud import NYUD_MT, NYUDRaw from .pascal_context import PASCALContext from .pascal_voc import VOC12 from .sbd import SBD from .msra10k import MSRA from .pascal_sal import PASCALS __all__ = ['BSDS500', 'COCOSegmentation', 'FSVGTA', 'NYUD_MT', 'NYUDRaw', 'PASCALContext', 'VOC12', 'SBD', 'MSRA', 'PASCALS']
astmt-master
fblib/dataloaders/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import errno import cv2 import hashlib import tarfile import numpy as np import scipy.io as sio import torch.utils.data as data from PIL import Image from six.moves import urllib from fblib.util.mypath import Path class SBD(data.Dataset): URL = 'http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz' FILE = 'benchmark.tgz' MD5 = '82b4d87ceb2ed10f6038a1cba92111cb' BASE_DIR = 'benchmark_RELEASE/dataset' VOC_CATEGORY_NAMES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] def __init__(self, root=Path.db_root_dir('PASCAL'), download=True, split='val', transform=None, retname=True, do_semseg=True, overfit=False, ): self.root = root _sbd_root = os.path.join(self.root, self.BASE_DIR) _inst_dir = os.path.join(_sbd_root, 'inst') _cat_dir = os.path.join(_sbd_root, 'cls') _image_dir = os.path.join(_sbd_root, 'img') if download: self._download() self.transform = transform if isinstance(split, str): self.split = [split] else: split.sort() self.split = split self.retname = retname self.do_semseg = do_semseg if self.do_semseg: self.semsegs = [] # train/val/test splits are pre-cut _splits_dir = os.path.join(_sbd_root) self.im_ids = [] self.images = [] print("Initializing dataloader for SBD {} set".format(''.join(self.split))) for splt in self.split: with open(os.path.join(os.path.join(_splits_dir, splt + '.txt')), "r") as f: lines = f.read().splitlines() for ii, line in enumerate(lines): # Images _image = os.path.join(_image_dir, line + ".jpg") assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) # Semantic Segmentation if self.do_semseg: _semseg = os.path.join(_cat_dir, line + '.mat') assert os.path.isfile(_semseg) self.semsegs.append(_semseg) if self.do_semseg: assert (len(self.images) == len(self.semsegs)) # Uncomment to overfit to one image if overfit: n_of = 32 self.im_ids = self.im_ids[:n_of] self.images = self.images[:n_of] if self.do_semseg: self.semsegs = self.semsegs[:n_of] # Display stats print('Number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): # if index == 1102: # print('hi') sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_semseg: _semseg = self._load_semseg(index) if _semseg is not None: if _semseg.shape != _img.shape[:2]: _semseg = cv2.resize(_semseg, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['semseg'] = _semseg if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.images) def _load_img(self, index): _img = np.array(Image.open(self.images[index]).convert('RGB')).astype(np.float32) return _img def _load_semseg(self, index): _semseg = sio.loadmat(self.semsegs[index])['GTcls'][0][0][1] _semseg = np.array(_semseg).astype(np.float32) return _semseg def _check_integrity(self): _fpath = os.path.join(self.root, self.FILE) if not os.path.isfile(_fpath): print("{} does not exist".format(_fpath)) return False _md5c = hashlib.md5(open(_fpath, 'rb').read()).hexdigest() if _md5c != self.MD5: print(" MD5({}) did not match MD5({}) expected for {}".format( _md5c, self.MD5, _fpath)) return False return True def _download(self): _fpath = os.path.join(self.root, self.FILE) try: os.makedirs(self.root) except OSError as e: if e.errno == errno.EEXIST: pass else: raise if self._check_integrity(): print('Files already downloaded and verified') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting the tar file') tar = tarfile.open(_fpath) os.chdir(self.root) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def get_img_size(self, idx=0): img = Image.open(os.path.join(self.root, 'JPEGImages', self.images[idx] + '.jpg')) return list(reversed(img.size)) def __str__(self): return 'SBD(split=' + str(self.split) + ')' if __name__ == '__main__': from matplotlib import pyplot as plt dataset = SBD(split=['train', 'val'], retname=True, do_semseg=True) for i, sample in enumerate(dataset): plt.imshow(sample['image']/255.) plt.show() plt.imshow(sample['semseg']) plt.show()
astmt-master
fblib/dataloaders/sbd.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import print_function import torch.utils.data as data from PIL import Image import os import os.path import errno import numpy as np import torch import codecs import random from fblib.util.mypath import Path class MNIST(data.Dataset): """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset. Args: root (string): Root directory of dataset where ``processed/training.pt`` and ``processed/test.pt`` exist. train (bool, optional): If True, creates dataset from ``training.pt``, otherwise from ``test.pt``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ urls = [ 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', ] raw_folder = 'raw' processed_folder = 'processed' training_file = 'training.pt' test_file = 'test.pt' def __init__(self, root=Path.db_root_dir('MNIST'), train=True, transform=None, target_transform=None, download=False, multitask=False): self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.train = train # training set or test set self.multitask = multitask if download: self.download() if not self._check_exists(): raise RuntimeError('Dataset not found.' + ' You can use download=True to download it') if self.train: self.train_data, self.train_labels = torch.load( os.path.join(self.root, self.processed_folder, self.training_file)) else: self.test_data, self.test_labels = torch.load( os.path.join(self.root, self.processed_folder, self.test_file)) if multitask: self._process_labels() def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ if not self.multitask: if self.train: img, target = self.train_data[index], self.train_labels[index] else: img, target = self.test_data[index], self.test_labels[index] else: if self.train: img, target, orig = self.train_data[index], self.train_labels_multitask[index], self.train_labels[index] else: img, target, orig = self.test_data[index], self.test_labels_multitask[index], self.test_labels[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img.numpy(), mode='L') if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if not self.multitask: return img, target else: return img, target, orig def __len__(self): if self.train: return len(self.train_data) else: return len(self.test_data) def _process_labels(self): elem = self.train_labels if self.train else self.test_labels temp = [[0] * 2 for i in range(len(elem))] for i in range(len(elem)): # Create two conflicting tasks if elem[i] >= 5: temp[i][0] = 1 if elem[i] % 2 == 1: temp[i][1] = 1 if self.train: self.train_labels_multitask = temp else: self.test_labels_multitask = temp def _check_exists(self): return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and \ os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file)) def download(self): """Download the MNIST data if it doesn't exist in processed_folder already.""" from six.moves import urllib import gzip if self._check_exists(): return # download files try: os.makedirs(os.path.join(self.root, self.raw_folder)) os.makedirs(os.path.join(self.root, self.processed_folder)) except OSError as e: if e.errno == errno.EEXIST: pass else: raise for url in self.urls: print('Downloading ' + url) data = urllib.request.urlopen(url) filename = url.rpartition('/')[2] file_path = os.path.join(self.root, self.raw_folder, filename) with open(file_path, 'wb') as f: f.write(data.read()) with open(file_path.replace('.gz', ''), 'wb') as out_f, \ gzip.GzipFile(file_path) as zip_f: out_f.write(zip_f.read()) os.unlink(file_path) # process and save as torch files print('Processing...') training_set = ( read_image_file(os.path.join(self.root, self.raw_folder, 'train-images-idx3-ubyte')), read_label_file(os.path.join(self.root, self.raw_folder, 'train-labels-idx1-ubyte')) ) test_set = ( read_image_file(os.path.join(self.root, self.raw_folder, 't10k-images-idx3-ubyte')), read_label_file(os.path.join(self.root, self.raw_folder, 't10k-labels-idx1-ubyte')) ) with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f: torch.save(training_set, f) with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f: torch.save(test_set, f) print('Done!') def __repr__(self): fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) tmp = 'train' if self.train is True else 'test' fmt_str += ' Split: {}\n'.format(tmp) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) tmp = ' Target Transforms (if any): ' fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str class FashionMNIST(MNIST): """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset. Args: root (string): Root directory of dataset where ``processed/training.pt`` and ``processed/test.pt`` exist. train (bool, optional): If True, creates dataset from ``training.pt``, otherwise from ``test.pt``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ urls = [ 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz', ] class EMNIST(MNIST): """`EMNIST <https://www.nist.gov/itl/iad/image-group/emnist-dataset/>`_ Dataset. Args: root (string): Root directory of dataset where ``processed/training.pt`` and ``processed/test.pt`` exist. split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``, ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies which one to use. train (bool, optional): If True, creates dataset from ``training.pt``, otherwise from ``test.pt``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ url = 'http://www.itl.nist.gov/iaui/vip/cs_links/EMNIST/gzip.zip' splits = ('byclass', 'bymerge', 'balanced', 'letters', 'digits', 'mnist') def __init__(self, root, split, **kwargs): if split not in self.splits: raise ValueError('Split "{}" not found. Valid splits are: {}'.format( split, ', '.join(self.splits), )) self.split = split self.training_file = self._training_file(split) self.test_file = self._test_file(split) super(EMNIST, self).__init__(root, **kwargs) def _training_file(self, split): return 'training_{}.pt'.format(split) def _test_file(self, split): return 'test_{}.pt'.format(split) def download(self): """Download the EMNIST data if it doesn't exist in processed_folder already.""" from six.moves import urllib import gzip import shutil import zipfile if self._check_exists(): return # download files try: os.makedirs(os.path.join(self.root, self.raw_folder)) os.makedirs(os.path.join(self.root, self.processed_folder)) except OSError as e: if e.errno == errno.EEXIST: pass else: raise print('Downloading ' + self.url) data = urllib.request.urlopen(self.url) filename = self.url.rpartition('/')[2] raw_folder = os.path.join(self.root, self.raw_folder) file_path = os.path.join(raw_folder, filename) with open(file_path, 'wb') as f: f.write(data.read()) print('Extracting zip archive') with zipfile.ZipFile(file_path) as zip_f: zip_f.extractall(raw_folder) os.unlink(file_path) gzip_folder = os.path.join(raw_folder, 'gzip') for gzip_file in os.listdir(gzip_folder): if gzip_file.endswith('.gz'): print('Extracting ' + gzip_file) with open(os.path.join(raw_folder, gzip_file.replace('.gz', '')), 'wb') as out_f, \ gzip.GzipFile(os.path.join(gzip_folder, gzip_file)) as zip_f: out_f.write(zip_f.read()) shutil.rmtree(gzip_folder) # process and save as torch files for split in self.splits: print('Processing ' + split) training_set = ( read_image_file(os.path.join(raw_folder, 'emnist-{}-train-images-idx3-ubyte'.format(split))), read_label_file(os.path.join(raw_folder, 'emnist-{}-train-labels-idx1-ubyte'.format(split))) ) test_set = ( read_image_file(os.path.join(raw_folder, 'emnist-{}-test-images-idx3-ubyte'.format(split))), read_label_file(os.path.join(raw_folder, 'emnist-{}-test-labels-idx1-ubyte'.format(split))) ) with open(os.path.join(self.root, self.processed_folder, self._training_file(split)), 'wb') as f: torch.save(training_set, f) with open(os.path.join(self.root, self.processed_folder, self._test_file(split)), 'wb') as f: torch.save(test_set, f) print('Done!') class MultiMNIST(MNIST): def __init__(self, root=Path.db_root_dir('MNIST'), train=True, transform=None, target_transform=None, download=False): super(MultiMNIST, self).__init__(root, train, transform, target_transform, download, multitask=False) def __getitem__(self, index1): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ if self.train: image_lst = self.train_data target_lst = self.train_labels else: image_lst = self.test_data target_lst = self.test_labels if self.train: index2 = random.randint(0, self.__len__() - 1) else: index2 = self.__len__() - 1 - index1 img1, target1 = image_lst[index1], target_lst[index1] img2, target2 = image_lst[index2], target_lst[index2] shift = 2 img = torch.zeros(img1.size()) img[:28-shift, :28-shift] = img1[shift:, shift:] img[shift:, shift:] = torch.max(img[shift:, shift:], img2[:28-shift, :28-shift].float()) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img.numpy().astype(np.uint8), mode='L') if self.transform is not None: img = self.transform(img) return img, target1, target2 def get_int(b): return int(codecs.encode(b, 'hex'), 16) def read_label_file(path): with open(path, 'rb') as f: data = f.read() assert get_int(data[:4]) == 2049 length = get_int(data[4:8]) parsed = np.frombuffer(data, dtype=np.uint8, offset=8) return torch.from_numpy(parsed).view(length).long() def read_image_file(path): with open(path, 'rb') as f: data = f.read() assert get_int(data[:4]) == 2051 length = get_int(data[4:8]) num_rows = get_int(data[8:12]) num_cols = get_int(data[12:16]) images = [] parsed = np.frombuffer(data, dtype=np.uint8, offset=16) return torch.from_numpy(parsed).view(length, num_rows, num_cols) if __name__ == '__main__': import torchvision.transforms as transforms from torch.utils.data import DataLoader from matplotlib import pyplot as plt trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) db_train = MultiMNIST(train=True, transform=trans, download=True) db_test = MultiMNIST(train=False, transform=trans, download=True) trainloader = DataLoader(db_train, batch_size=64, shuffle=True, num_workers=2, pin_memory=True) for ii, (img, label1, label2) in enumerate(trainloader): plt.imshow(img[0, 0, :, :]) plt.show()
astmt-master
fblib/dataloaders/mnist_multitask.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import tarfile from PIL import Image import numpy as np from glob import glob import scipy.io as sio import torch.utils.data as data from six.moves import urllib from fblib.util.mypath import Path class BSDS500(data.Dataset): """ BSDS500 datasets for edge detection. """ URL = 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL/BSDS500.tgz' FILE = 'BSDS500.tgz' def __init__(self, root=Path.db_root_dir('BSDS500'), download=True, split=['train', 'val'], transform=None, retname=True, n_votes=1, overfit=False): if download: self._download() self.transform = transform self.retname = retname self.n_votes = n_votes self.root = root self.gt_dir = os.path.join(self.root, 'data', 'groundTruth') self.image_dir = os.path.join(self.root, 'data', 'images') _splits_dir = os.path.join(self.root, 'lists') if not os.path.exists(os.path.join(_splits_dir)): os.mkdir(os.path.join(_splits_dir)) self.split = split self._get_images_trainval() if isinstance(self.split, str): self.split = [self.split] self.images = [] self.gts = [] self.im_ids = [] for sp in self.split: with open(os.path.join(os.path.join(_splits_dir, sp + '.txt')), "r") as f: lines = f.readlines() for line in lines: line = line.strip() _image = os.path.join(self.image_dir, sp, line + ".jpg") _gt = os.path.join(self.gt_dir, sp, line + ".mat") assert os.path.isfile(_image) assert os.path.isfile(_gt) self.im_ids.append(line) self.images.append(_image) self.gts.append(_gt) assert (len(self.images) == len(self.gts) == len(self.im_ids)) if overfit: n_of = 16 self.images = self.images[:n_of] self.gts = self.gts[:n_of] self.im_ids = self.im_ids[:n_of] # Display stats print('Number of images: {:d}'.format(len(self.im_ids))) def __getitem__(self, index): sample = {} _img = self._load_img(index) sample['image'] = _img _edge = self._load_edge(index) sample['edge'] = _edge if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.im_ids) def _get_images_trainval(self): for sp in self.split: if os.path.isfile(os.path.join(self.root, 'lists', sp + '.txt')): continue img_list = glob(os.path.join(self.gt_dir, sp, '*.mat')) img_list = sorted([x.split('/')[-1].split('.')[-2] for x in img_list]) split_f = os.path.join(self.root, 'lists', sp + '.txt') with open(split_f, 'w') as f: for img in img_list: assert os.path.isfile(os.path.join(self.image_dir, sp, img + '.jpg')) f.write('{}\n'.format(img)) def _load_img(self, index): # Read Image _img = np.array(Image.open(self.images[index]).convert('RGB')).astype(np.float32) return _img def _load_edge(self, index): # Read Target object _gt_mat = sio.loadmat(self.gts[index]) _target = np.zeros(_gt_mat['groundTruth'][0][0]['Boundaries'][0][0].shape) for i in range(len(_gt_mat['groundTruth'][0])): _target += _gt_mat['groundTruth'][0][i]['Boundaries'][0][0] if self.n_votes and self.n_votes > 0: _target = (_target >= self.n_votes).astype(np.float32) else: _target = (_target / max(1e-8, _target.max())).astype(np.float32) return _target def _download(self): _fpath = os.path.join(Path.db_root_dir(), self.FILE) if os.path.isfile(_fpath): print('Files already downloaded') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.db_root_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def __str__(self): return 'BSDS500(split=' + str(self.split) + ', n_votes=' + str(self.n_votes) + ')' if __name__ == '__main__': from matplotlib import pyplot as plt dataset = BSDS500() for i, sample in enumerate(dataset): plt.imshow(sample['image'] / 255.) plt.show() plt.imshow(sample['edge']) plt.show()
astmt-master
fblib/dataloaders/bsds.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import errno import cv2 import hashlib import tarfile import numpy as np import torch.utils.data as data from PIL import Image from six.moves import urllib from fblib.util.mypath import Path class VOC12(data.Dataset): URL = "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar" FILE = "VOCtrainval_11-May-2012.tar" MD5 = '6cd6e144f989b92b3379bac3b3de84fd' BASE_DIR = 'VOCdevkit/VOC2012' VOC_CATEGORY_NAMES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] def __init__(self, root=Path.db_root_dir('PASCAL'), download=True, split='val', transform=None, area_thres=0, retname=True, suppress_void_pixels=False, do_semseg=True, overfit=False, ): self.root = root _voc_root = os.path.join(self.root, self.BASE_DIR) _inst_dir = os.path.join(_voc_root, 'SegmentationObject') _cat_dir = os.path.join(_voc_root, 'SegmentationClass') _image_dir = os.path.join(_voc_root, 'JPEGImages') if download: self._download() self.transform = transform if isinstance(split, str): self.split = [split] else: split.sort() self.split = split self.area_thres = area_thres self.retname = retname self.suppress_void_pixels = suppress_void_pixels self.do_semseg = do_semseg if self.do_semseg: self.semsegs = [] # train/val/test splits are pre-cut _splits_dir = os.path.join(_voc_root, 'ImageSets', 'Segmentation') self.im_ids = [] self.images = [] print("Initializing dataloader for PASCAL VOC12 {} set".format(''.join(self.split))) for splt in self.split: with open(os.path.join(os.path.join(_splits_dir, splt + '.txt')), "r") as f: lines = f.read().splitlines() for ii, line in enumerate(lines): # Images _image = os.path.join(_image_dir, line + ".jpg") assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) # Semantic Segmentation if self.do_semseg: _semseg = os.path.join(_cat_dir, line + '.png') assert os.path.isfile(_semseg) self.semsegs.append(_semseg) if self.do_semseg: assert (len(self.images) == len(self.semsegs)) # Uncomment to overfit to one image if overfit: n_of = 32 self.im_ids = self.im_ids[:n_of] self.images = self.images[:n_of] if self.do_semseg: self.semsegs = self.semsegs[:n_of] # Display stats print('Number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): # if index == 1102: # print('hi') sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_semseg: _semseg = self._load_semseg(index) if _semseg is not None: if _semseg.shape != _img.shape[:2]: _semseg = cv2.resize(_semseg, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['semseg'] = _semseg if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.images) def _check_integrity(self): _fpath = os.path.join(self.root, self.FILE) if not os.path.isfile(_fpath): print("{} does not exist".format(_fpath)) return False _md5c = hashlib.md5(open(_fpath, 'rb').read()).hexdigest() if _md5c != self.MD5: print(" MD5({}) did not match MD5({}) expected for {}".format( _md5c, self.MD5, _fpath)) return False return True def _download(self): _fpath = os.path.join(self.root, self.FILE) try: os.makedirs(self.root) except OSError as e: if e.errno == errno.EEXIST: pass else: raise if self._check_integrity(): print('Files already downloaded and verified') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting the tar file') tar = tarfile.open(_fpath) os.chdir(self.root) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def _load_img(self, index): _img = np.array(Image.open(self.images[index]).convert('RGB')).astype(np.float32) return _img def _load_semseg(self, index): _semseg = np.array(Image.open(self.semsegs[index])).astype(np.float32) if self.suppress_void_pixels: _semseg[_semseg == 255] = 0 return _semseg def get_img_size(self, idx=0): img = Image.open(os.path.join(self.root, 'JPEGImages', self.images[idx] + '.jpg')) return list(reversed(img.size)) def __str__(self): return 'VOC12(split=' + str(self.split) + ',area_thres=' + str(self.area_thres) + ')' if __name__ == '__main__': from matplotlib import pyplot as plt dataset = VOC12(split='train', retname=True, do_semseg=True, suppress_void_pixels=True) for i, sample in enumerate(dataset): plt.imshow(sample['image']/255.) plt.show() plt.imshow(sample['semseg']) plt.show()
astmt-master
fblib/dataloaders/pascal_voc.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import tarfile import cv2 from PIL import Image import numpy as np import torch.utils.data as data from six.moves import urllib from fblib.util.mypath import Path class PASCALS(data.Dataset): URL = 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL/PASCAL-S.tgz' FILE = 'PASCAL-S.tgz' def __init__(self, root=Path.db_root_dir('PASCAL-S'), download=True, transform=None, retname=True, overfit=False, threshold=None, ): self.root = root _image_dir = os.path.join(self.root, 'images') _sal_dir = os.path.join(self.root, 'masks') _split_dir = os.path.join(self.root, 'gt_sets') if download: self._download() self.transform = transform self.threshold = threshold self.retname = retname self.im_ids = [] self.images = [] self.sals = [] print('Initializing dataloader for PASCAL Saliency') with open(os.path.join(os.path.join(_split_dir, 'all.txt')), 'r') as f: lines = f.read().splitlines() for ii, line in enumerate(lines): # Images _image = os.path.join(_image_dir, line + '.jpg') assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) # Saliency _sal = os.path.join(_sal_dir, line + '.png') assert os.path.isfile(_sal) self.sals.append(_sal) assert (len(self.images) == len(self.sals)) # Uncomment to overfit to one image if overfit: n_of = 64 self.im_ids = self.im_ids[:n_of] self.images = self.images[:n_of] # Display stats print('Number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): sample = {} # Load Image _img = self._load_img(index) sample['image'] = _img # Load Saliency _sal = self._load_sal(index) if _sal.shape != _img.shape[:2]: _sal = cv2.resize(_sal, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['sal'] = _sal if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.images) def _load_img(self, index): # _img = cv2.imread(self.images[index])[:, :, ::-1].astype(np.float32) return _img def _load_sal(self, index): tmp = np.array(Image.open(self.sals[index])) / 255. if self.threshold: _sal = (tmp > self.threshold).astype(np.float32) else: _sal = tmp.astype(np.float32) return _sal def _download(self): _fpath = os.path.join(Path.db_root_dir(), self.FILE) if os.path.isfile(_fpath): print('Files already downloaded') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.db_root_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def __str__(self): return 'PASCAL-S()' if __name__ == '__main__': from matplotlib.pyplot import imshow, show dataset = PASCALS(threshold=.5) for i, sample in enumerate(dataset): imshow(sample['image'] / 255.) show() imshow(sample['sal']) show()
astmt-master
fblib/dataloaders/pascal_sal.py
astmt-master
fblib/networks/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import math import torch import torch.nn as nn from fblib.util.mypath import Path try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url model_urls = { 'mobilenet_v2_1280': 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/mobilenet_v2_1280-ecbe2b568.pth' } def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True) ) def conv_1x1_bn(inp, oup): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True) ) class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = round(inp * expand_ratio) self.use_res_connect = self.stride == 1 and inp == oup if expand_ratio == 1: self.conv = nn.Sequential( # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) else: self.conv = nn.Sequential( # pw nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU6(inplace=True), # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): def __init__(self, n_class=1000, input_size=224, width_mult=1., last_channel=1280): super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 interverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # building first layer assert input_size % 32 == 0 input_channel = int(input_channel * width_mult) self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel self.features = [conv_bn(3, input_channel, 2)] # building inverted residual blocks for t, c, n, s in interverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): if i == 0: self.features.append(block(input_channel, output_channel, s, expand_ratio=t)) else: self.features.append(block(input_channel, output_channel, 1, expand_ratio=t)) input_channel = output_channel # building last several layers self.features.append(conv_1x1_bn(input_channel, self.last_channel)) # make it nn.Sequential self.features = nn.Sequential(*self.features) # building classifier self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(self.last_channel, n_class), ) self._initialize_weights() def forward(self, x): x = self.features(x) x = x.mean(3).mean(2) x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_() class MobileNetV2Features(MobileNetV2): def __init__(self, n_class=1000, input_size=224, width_mult=1., last_channel=1280): super(MobileNetV2Features, self).__init__(n_class=n_class, input_size=input_size, width_mult=width_mult, last_channel=last_channel) def forward(self, x): x = self.features(x) features = x.mean(3).mean(2) x = self.classifier(features) return x, features def mobilenet_v2(pretrained=False, features=False, n_class=1000, last_channel=1280, remote=True): if not features: model = MobileNetV2(n_class=n_class, last_channel=last_channel) else: model = MobileNetV2Features(n_class=n_class, last_channel=last_channel) if pretrained: if remote: checkpoint = load_state_dict_from_url(model_urls['mobilenet_v2_1280'], map_location='cpu', progress=True) else: checkpoint = torch.load( os.path.join(Path.models_dir(), 'mobilenet_v2.pth'), map_location='cpu') model.load_state_dict(checkpoint) return model def test_visualize_graph(): import fblib.util.visualize as viz net = mobilenet_v2() net.eval() x = torch.randn(2, 3, 224, 224) x.requires_grad_() y = net(x) # pdf visualizer g = viz.make_dot(y, net.state_dict()) g.view(directory='./') def test_reproduce(): import os import cv2 import numpy as np import pickle import urllib.request import torch.nn.functional as F from fblib import PROJECT_ROOT_DIR classes = pickle.load(urllib.request.urlopen( 'https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/' 'd133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee/imagenet1000_clsid_to_human.pkl')) mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] img = cv2.imread( os.path.join(PROJECT_ROOT_DIR, 'util/img/cat.jpg')) \ .astype(np.float32) / 255. img = cv2.resize(img, dsize=(224, 224)) img = (img - mean) / std img = img[:, :, :, np.newaxis] img = img.transpose((3, 2, 0, 1)) img = torch.from_numpy(img.astype(np.float32)) model = mobilenet_v2(pretrained=True, features=False) model = model.eval() with torch.no_grad(): output = model(img) output = torch.nn.functional.softmax(output, dim=1) print('Class id: {}, class name: {}, probability: {:.2f}''' ''.format(output.argmax().item(), classes[output.argmax().item()], output.max().item())) if __name__ == '__main__': test_reproduce()
astmt-master
fblib/networks/classification/mobilenet_v2.py
astmt-master
fblib/networks/classification/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import math from collections import OrderedDict import torch import torch.nn as nn from fblib.util.mypath import Path try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url model_urls = { 'se_mobilenet_v2_1280': 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/' 'se_mobilenet_v2_1280-ce5a6e1d9.pth' } def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True) ) def conv_1x1_bn(inp, oup): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True) ) class SEMobile(nn.Module): def __init__(self, channel, reduction=4): super(SEMobile, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU6(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = round(inp * expand_ratio) self.use_res_connect = self.stride == 1 and inp == oup if expand_ratio == 1: self.conv = nn.Sequential( # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) else: self.conv = nn.Sequential( # pw nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU6(inplace=True), # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) self.se = SEMobile(channel=oup, reduction=4) def forward(self, x): if self.use_res_connect: out = self.conv(x) out = self.se(out) return x + out else: out = self.conv(x) out = self.se(out) return out class SEMobileNetV2(nn.Module): def __init__(self, n_class=1000, input_size=224, width_mult=1., last_channel=1280): super(SEMobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 interverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] assert input_size % 32 == 0 input_channel = int(input_channel * width_mult) self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel # build first layer self.features = [conv_bn(3, input_channel, 2)] # build inverted residual blocks for t, c, n, s in interverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): if i == 0: self.features.append(block(input_channel, output_channel, s, expand_ratio=t)) else: self.features.append(block(input_channel, output_channel, 1, expand_ratio=t)) input_channel = output_channel # build last layers self.features.append(conv_1x1_bn(input_channel, self.last_channel)) # make it nn.Sequential self.features = nn.Sequential(*self.features) # build classifier self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(self.last_channel, n_class), ) self._initialize_weights() def forward(self, x): x = self.features(x) x = x.mean(3).mean(2) x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_() class SEMobileNetV2Features(SEMobileNetV2): def __init__(self, n_class=1000, input_size=224, width_mult=1., last_channel=1280): super(SEMobileNetV2Features, self).__init__(n_class=n_class, input_size=input_size, width_mult=width_mult, last_channel=last_channel) def forward(self, x): x = self.features(x) features = x.mean(3).mean(2) x = self.classifier(features) return x, features def se_mobilenet_v2(pretrained=False, features=False, n_class=1000, last_channel=1280, remote=True): if not features: model = SEMobileNetV2(n_class=n_class, last_channel=last_channel) else: model = SEMobileNetV2Features(n_class=n_class, last_channel=last_channel) if pretrained: print('Loading Imagenet pre-trained SE-MobileNet-v2') # Load checkpoint if remote: checkpoint = load_state_dict_from_url(model_urls['se_mobilenet_v2_1280'], map_location='cpu', progress=True) else: checkpoint = torch.load( os.path.join(Path.models_dir(), 'se_mobilenet_v2_1280.pth'), map_location=lambda storage, loc: storage) checkpoint = checkpoint['model_state'] # Handle DataParallel if 'module.' in list(checkpoint.keys())[0]: new_state_dict = OrderedDict() for k, v in checkpoint.items(): name = k.replace('module.', '') # remove `module.` new_state_dict[name] = v else: new_state_dict = checkpoint # Load pre-trained IN model model.load_state_dict(new_state_dict) return model def test_reproduce(): import os import torch import pickle import cv2 import numpy as np import urllib.request from fblib import PROJECT_ROOT_DIR classes = pickle.load(urllib.request.urlopen( 'https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/d133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee' '/imagenet1000_clsid_to_human.pkl')) model = se_mobilenet_v2(pretrained=True) mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] img = cv2.imread(os.path.join(PROJECT_ROOT_DIR, 'util/img/cat.jpg')).astype(np.float32) / 255. img = cv2.resize(img, dsize=(224, 224)) img = (img - mean) / std img = img[:, :, :, np.newaxis] img = img.transpose((3, 2, 0, 1)) img = torch.from_numpy(img.astype(np.float32)) model = model.eval() with torch.no_grad(): output = model(img) output = torch.nn.functional.softmax(output, dim=1) print('Class id: {}, class name: {}, probability: {:.2f}''' ''.format(output.argmax().item(), classes[output.argmax().item()], output.max().item())) if __name__ == '__main__': test_reproduce()
astmt-master
fblib/networks/classification/se_mobilenet_v2.py